
Bandwidth Allocation and Peer Selection
Methods in BitTorrent Systems

Pasieka Manuel
Departamento de Sistemas Informáticos y Computación

Universitat Politècnica de València , España
mapa17@posgrado.upv.es

September 6, 2012

Abstract

The BitTorrent protocol is one of the most successful Peer-to-Peer systems
and has received immense attention from researchers as well as the industry.
In order to improve its performance a series of protocol modifications have
been published and investigated. Focus of this work was set a subset of
these improvements that intend to optimize the Bandwidth Scheduling as
well as Peer selection. To evaluate some of the most promising protocol
modifications they have been implemented inside a Peer Overlay Simulator
and tested extensively against the unmodified BitTorrent protocol. This work
is therefore presenting a series of protocol modifications, a newly developed
Peer Overlay Simulator that is publicly available and results that shows under
which circumstances the modificated protocol outperforms the traditional
BitTorrent protocol.

Keywords: BitTorrent, Peer selection, Bandwidth Allocation, Simulator

Introduction
This Thesis discusses the peer selection and bandwidth scheduling method

used in the BitTorrent protocol, as well as proposals in the literature on how
to adapt those in order to improve download performance. After analysing
the different proposals a conclusion is presented that captures the core ideas
of possible improvements. To evaluate these proposals a simulation compar-
ing peers running the original BitTorrent protocol and a modified Protocol
is performed.

The BitTorrent protocol (hence forth BT) was chosen because of its enor-
mous success and widespread use, as the BT Protocol is here to stay and
makes up more than 90% of all p2p traffic world wide ([26, 7]). Therefore,
the studies of its inner working and the reasons for its success are more than
beneficial to the studies of distributed systems.

The topics of peer selection and bandwidth allocation have been chosen
for their intrinsic property to peer to peer systems and a wide range of
systems to which the knowledge, gained and deepened through process of
creating this Thesis, can be applied.

The rest of the document is structured as follows. In chapter (1) the
current BT protocol with a historical background and an emphasis on its
algorithms of peer selection and bandwidth scheduling is presented. In chap-
ter (2) important publications in this field are discussed. Chapter (3) rep-
resents the protocol evaluated improvements and describes the simulation
performed. In chapter (5) results of the simulation are presented and dis-
cussed. The document ends with chapter (5.8) containing conclusions and
references to further work.

1

Contents

1 BitTorrent Protocol 5
1.1 Overview . 5
1.2 Short history on the BitTorrent protocol and client 6

1.2.1 Evolution of the BitTorrent protocol 7
1.3 Peer selection and Bandwidth Scheduling 8

1.3.1 Overview . 8
1.3.2 Choke/un-choke . 9
1.3.3 Tit-for-Tat Algorithm 10
1.3.4 Free Riders . 10
1.3.5 Optimistic un-choking Algorithm 10
1.3.6 Peer discovery and Bootstrapping 11

2 Literature 12
2.1 Introduction . 12
2.2 Survey on Methods to optimizing network usage 13

2.2.1 Taming the Torrent . 13
2.2.2 A more complex Model 14
2.2.3 Discussion . 15
2.2.4 Conclusion . 16

2.3 Survey on Bandwidth scheduling Algorithms 16
2.3.1 The more the better 17
2.3.2 A good friend is better than a thousand colleagues . . 20
2.3.3 Balance of Powers . 23

2.4 Conclusion . 24

3 Proposed modifications 26
3.1 Variable number of TFT and OU Slots 26
3.2 Enhanced Peer Discovery and Bandwidth controlling 28

2

3.3 Greedy TFT allocation . 28

4 Simulation and Evaluation 29
4.1 Methods of evaluation . 29

4.1.1 Real-world clients and client extensions 29
4.1.2 Simulation . 30

4.2 Eruliaf . 32
4.2.1 Introduction . 32
4.2.2 Simulation and Scenario files 33
4.2.3 Generated Statistics and evaluation 34
4.2.4 Implementation Details 37

5 Results 40
5.1 Simulation scenarios . 40

5.1.1 Swarm Size . 41
5.2 Simulation results . 43
5.3 Static private Tracker . 45
5.4 Static public Tracker . 50
5.5 Dynamic private Tracker . 55
5.6 Dynamic public Tracker . 60
5.7 Over all comparison . 65

5.7.1 Simulated protocols . 65
5.7.2 Simulation itself . 65

5.8 Further Research . 66

Conclusion 67

Acknowledgement 67

Bibliography 70

Appendix 71

A 71
A.1 Statistic Summary example 71

B 77
B.1 Static Private Tracker - Simulation Results 77

B.1.1 Static private Tracker with small files 77

3

B.1.2 Static private Tracker with medium files 77
B.1.3 Static private Tracker with large files 77

C 96
C.1 Static Public Tracker - Simulation Results 97

C.1.1 Static private Tracker with small files 97
C.1.2 Static private Tracker with medium files 97
C.1.3 Static private Tracker with large files 97

D 113
D.1 Dynamic Private Tracker - Simulation Results 113

D.1.1 Dynamic private Tracker with small files 113
D.1.2 Dynamic private Tracker with medium files 113
D.1.3 Dynamic private Tracker with large files 113

E 129
E.1 Dynamic Public Tracker - Simulation Results 129

E.1.1 Dynamic private Tracker with small files 129
E.1.2 Dynamic private Tracker with medium files 129
E.1.3 Dynamic private Tracker with large files 129

4

Chapter 1

BitTorrent Protocol

In this chapter, the BitTorrent Protocol and relevant parts to this Thesis
are represented. Section 1.1 gives an overview of the BT protocol, followed
by section 1.2 with a short historical evolution of BT and section 1.3 that
discusses in detail peer selection and bandwidth allocation.

1.1 Overview

BitTorrent is a partially distributed peer-to-peer file transfer application sys-
tem of which the main steps of operation are the following:

• A user with the desire to download a specific digital content has to
provide a corresponding meta info file (Torrent file) that has to be
acquired by means not described by the BT system.

• This torrent file contains directions to one or more servers (called
Tracker) that act as central servers to coordinate peers cooperating
(what is called swarm) in downloading the same content.

• From this tracker, the client receives a list of peers that have the re-
quested data or are downloading the same content at the same time
themselves and have parts of the content to share.

• In a peer-to-peer like fashion, the client then connects to these peers
directly and exchanges data in order to acquire a complete copy of the
requested content.

5

• After completing the download a client can either choose to remain in
the system and act as a seeder (that is a peer who only provides data
but does not request them itself) to support other peers by spreading
the content, or leaving the system.

This very simplified view of the BitTorrent system is ought to be enough
for the scope of this work as its focus is set not on the BT protocol as a whole
but on specific parts of it, discussed later in this chapter. The interested
reader is encouraged to look elsewhere for a more in depth description and
explanation of the terminology ([16, 6, 5]).

1.2 Short history on the BitTorrent protocol

and client

The BitTorrent [16] protocol although extremely successful [26] and imple-
mented by various projects, has no official specification. Instead there is an
unofficial protocol specification [6] that reflects the “common” knowledge of
the research community, that was created and is maintained as a wiki.

The original protocol was designed by Bram Cohen and implemented
by him in the first BitTorrent client released in 2001. This BitTorrent client
which is often referenced in the literature as BitTorrent Mainline or vanilla
BitTorrent was undergoing major changes with each version released. The
enormous success of the Mainline client and BitTorrent as a protocol was
the basis for the company BitTorrent, Inc. (created by Cohen in 2004) that
continues the development and extension of the BitTorrent client, now called
µTorrent.

Although there are alternative BitTorrent clients [13],[10] available, their
market share is low compared to µTorrent [12]. From a researchers point
of view, most noteworthy is the fact that all BitTorrent protocol changes
introduced into µTorrent have been adopted by all other clients, giving it a
leading role not only with regards to popularity in the user base but also as
a trendsetter in the evolution of the BitTorrent protocol itself.

On the contrary as one might expect new BitTorrent clients are developed
constantly, as the core BitTorrent engine (Azureus [3]) of the popular Vuze

6

BitTorrent client is distributed under GPL and often used as a basis for the
creation of new clients. These clients tend to specialize on certain key modi-
fications of the BitTorrent protocol to follow a specific goal. The OneSwarm
[8] client for examples tries to protect user privacy; the client Tribler [11] is
a completely decentralized BitTorrent system, lacking Trackers; BitMate [4]
on the other hand is specialised to be used by low bandwidth clients.

1.2.1 Evolution of the BitTorrent protocol

The BitTorrent protocol itself was going through several changes since its
first use in the BitTorrent Mainline client of 2001.

Starting with Cohen’s own description of BitTorrent [16], much of dis-
cussion and research, have been devoted in the following years to improve
BitTorrent. As a consequence of this the protocol used in the BitTorrent
Mainline client was adapted.

Because of the lack of an official protocol specification, as mentioned
before, it is difficult to exactly pin down changes or in which release they were
introduced into the Mainline client. Besides this uncertainty, the following
can be said.

The most important changes are due to the adoption of the new seeding
algorithm called Super Seeding 1, the improvement of the Optimistic un-
choking (OU) algorithm 2 and the extension of the BitTorrent protocol to

1Super Seeding: To improve the spreading of new data in the network, the super seeding
algorithm is applied by a node (seeder) have a full copy of the file to distribute. Instead
of applying the normal seeding protocol which would satisfy request of specific blocks
from other nodes, the seeder decides which blocks to distribute. The seeder will continue
to distribute the piece until it gets confirmation of at least one other node distributing
the same piece and then will change to the next piece. By doing so the time it takes to
replicate a full copy of the file is reduced and the overall system performance enhanced.

2 Optimistic un-chocking (OU) has two important but different roles in the BTP. On
one hand, it is used as a node discovery protocol and on the other hand as an altruistic
act that supports the boot strapping of new nodes. As in its later role, new nodes that
get selected by OU receive data from a node without having to provide data of their own.
This way they have data to share and can participate in the BT System. In the first
implementation of the protocol, OU would in some cases change the node so rapidly that
no whole piece of data, but only fragments of a piece would be transferred. New peers
would then have to take a long time to acquire a complete piece and because of that would

7

include a Distributed Hash Table.

As of 2006 to the day of this writing the BitTorrent core protocol stayed
stable and further releases of the µTorrent client concentrated on improving
the client itself or adding extensions to the protocol that are of no interest
to this work.

1.3 Peer selection and Bandwidth Scheduling

In the following section the Tit-for-tat (TFT) and Optimistic un-choking
(OU) algorithms which are responsible for peer selection and bandwidth
scheduling are discussed in detail. This is done to prepare the reader and
ensure an extensive understanding about the current state of the BitTorrent
Protocol as well as the possibility to better follow the discussions on pro-
posed improvements and their impact on the BT system. In addition and
complementary to this section, [23] is found to be an excellent discussion on
the topics at hand.

1.3.1 Overview

After a client connects to the tracker, it receives a random generated list of
50-80 peers which are part of the swarm. It is up to the client to decide
which peers to contact to and cooperate with. The first thing the client
will do is connect to about 40 of these peers and evaluate if they offer any
interesting pieces of the file to be downloaded and if so the peer makes its
interest known to the other peer (un-choking). If two peers have mutual
interest in each others files, they will start to exchange data over a discrete
time period (called a slot) and than reevaluate whenever to continue with
the same peer in the next slot or choose another peering partner. At normal
times the client has four of these slots in place. Three of them will be using
the Tit-for-tat (TFT) algorithm and the fourth one will use the Optimistic
un-choking algorithm to evaluate which peer to select for cooperation.

wait a long time to participate in the system. OU was optimized, extending the time of
an OU slot, by making sure that inside of one OU slot, at least one whole piece would be
transferred.

8

1.3.2 Choke/un-choke

In order to improve the performance of the TCP/IP connections, BT clients
keep an open connection to all peers they interact with. The state of a
connection between two peers then depends on two properties (choked and
interested) for each end of the connection.

• choked: meaning that no request will be handled. Effectively closing
the connection on the application level between the two peers, but
keeping the connection on the network layer open.

• interested: Whether or not the remote peer has pieces of data that
the client is interested in.

For each connection to another peer the client keeps track of the following
states:

• am choking: this client is choking the remote peer (default 1)

• am interested: this client is interested in pieces offered by the remote
peer (default 0)

• peer choking: remote peer is choking this client (default 1)

• peer interested: remote peer has interest in pieces offered by this
client (default 0)

A peer can choke or un-choke another at any time. This could for exam-
ple happen if a peer receives pieces it was waiting for by another peer and
therefore loses interest or has found a better peer to exchange data with.

As soon as both sides of the connection un-choke one another and at least
one has interest, the previously requested pieces of data will be transferred.

As mentioned earlier a client will have four slots open at any time whereby
three are applying the TFT algorithm and the fourth uses the OU algorithm.
The upload bandwidth of the client is separated in four parts of the same size
and is used in each slot separately. The TFT algorithm will be running 10
seconds on a slot and than restart where the OU algorithm is only executed
every 30 seconds, effectively running 9 TFT and 1 OU slot in a time period
of 30 seconds.

9

1.3.3 Tit-for-Tat Algorithm

The Tit-for-Tat algorithm is a distributed peer selection algorithm that rates
peers by their contribution (in upload bandwidth) they provide to the client.
Resulting in the BitTorrent protocol with three TFT slots, that the three
peers that have uploaded most data during the previous slot will be chosen
in the next TFT slot. Ranking peers by their upload capacity is effectively
hindering FreeRiders3 and is making sure the client will finish the download
as fast as possible.

1.3.4 Free Riders

FreeRiders are peers that contribute very little or no resources to other peers.
Previous peer-to-peer applications like Gnutella or Napster had big perfor-
mance losses as more than 70% of their clients where effectively behaving like
FreeRiders. The TFT algorithm is found to be a working countermeasure
against FreeRiders [23] and is one of the reasons BitTorrent is as successful as
it is. Peers that provide little or no upload bandwidth are rated so low by the
TFT algorithm compared to cooperating peers that they are highly unlikely
to be chosen by TFT, leaving FreeRiders only the chance to download from
seeders or be chosen by OU.

1.3.5 Optimistic un-choking Algorithm

In order to find newer peers that may have better upload performance, one
of the active slots in the BT protocol is scheduled using the Optimistic un-
choking algorithm. In contrary to the TFT algorithm, the OU algorithm
chooses one peer by random4. This Peer discovery (more will be said later)
aims to please other peers by providing upload bandwidth to them and in
return be rated higher during the next execution of the TFT algorithm. The
intention of this is the following. The peer (called local peer) connects to
another peer (called remote peer) and at the beginning has no possibility to
rate the quality/upload capacity of each other because they never exchanged
data. This changes as the local peer selects the remote peer by OU for an
active slot and contributes. In return the remote peer on its next TFT slot

3A more detailed discussion will follow later.
4Skipping seeders completely but can being able to selecting peers that, for the moment

at least, are not interested.

10

allocation will rate the local peer. If the local peer receives a high enough
rating, the remote peer will allocate it as a TFT slot and return data. Now
the local peer is able to rate the remote peer (as it receives contribution by it)
and if the contribution is high enough, will allocate it as an active TFT slot
as well. After this ”handshake” like process both peers are either interested
in each other and schedule each other for TFT slots or not and will continue
with their current TFT allocations and next OU allocations. It is noteworthy
that in order for a peer to be scheduled in a TFT slot it does not need to
remain in the OU slot for a whole OU Period of thirty seconds, but can be
scheduled at any TFT allocation algorithm.

1.3.6 Peer discovery and Bootstrapping

The OU algorithm has two important functions in the BitTorrent protocol.
It is on one hand used as peer discovery algorithm by testing the upload
performance of new nodes which then can be used in TFT slots, and on
the other hand provides new peers (during what is called the Bootstrapping
phase) that do not yet have any data to share (hindering them to be chosen
by the TFT algorithm as they have no way to provide data and therefore
cannot cooperate, leaving them with a bad TFT rating and a wasted upload
bandwidth) with the first piece of the file to download. This is supported by
making OU slots three times as long as TFT slots and by doing so giving new
clients a higher chance to receive a whole piece of data as they are selected
for an OU slot. The OU slot length is therefore a parameter with which it
is possible to tune how effective OU will be as method for peer discovery (
using a short slot length and therefore traverse more peers) or be used to
support new comers (by an increased slot length).

11

Chapter 2

Literature

In the following chapter, publications about peer selection and bandwidth
scheduling methods in BitTorrent systems are reviewed. The chapter is or-
ganized in an introduction that gives an overview about publication in this
field, followed by a selection of articles that discuss protocol improvements
and ends with a conclusion on general concepts underlying the proposed
modifications.

2.1 Introduction

The BitTorrent system is discussed and evaluated extensively in the litera-
ture and has received much attention in the time period between 2003 and
2006 ([16, 25, 20, 1]), concentrating on the BitTorrent protocol as it was
implemented in the Mainline client [23].

As of 2006 a series of articles ([24], [22] and [19]) started to emerge
that put their focus on adapting the BT protocol by modifying the peer and
bandwidth allocation algorithms. These articles have been selected to be
discussed in detail as they have either received a high response and interest
of the research community or present complementary concepts on how to
improve the BT system performance.

In the articles ([15, 18]) which will be discussed as well, peer selection is
applied to other interesting ends. The focus of these works lies on methods of
applying peer selection in order to improve network performance by reducing

12

traffic traversing different autonomous systems (AS) like Internet Service
Provides (ISPs).

2.2 Survey on Methods to optimizing net-

work usage

As BitTorrent systems are responsible for the majority of Internet traffic
worldwide ([26, 7]) suspicions have been raised if ISPs will not cut costs by
filtering and traffic shaping of BitTorrent traffic and by doing so degenerate
system performance. In response to this a few publications have investi-
gated the possibilities of reducing network traffic between autonomous sys-
tems (AS) in order to make sure that possible manipulation of data streams
by ISPs will not reduce the download performance of BitTorrent systems and
reduce costs for ISPs.

Two different solutions ([15, 18]) to this problem are presented and dis-
cussed.

2.2.1 Taming the Torrent

[15] is found to contain an excellent discussion on the topic; where the au-
thors have developed a system that works on top of public available content
distribution networks (CDNs) that are used to approximate the network dis-
tance between peers and generate a metric that can then be used by peer
selection methods to promote neighbours in order to reduce inter AS network
traffic.

The authors follow the assumption that CDNs are located all over the
world in high numbers and that they have an excellent map of the Internet
in order to provide replicas of content servers near to the consumer. These
CDNs work by dynamically forwarding clients via DNS redirection or URL
rewriting to its closest content replica. As CDNs work in cooperation with
different ISPs they have a good insight in which the client (depending on
its public ip address) is best served by which content replica. Policy con-
siderations aside the most important factor on which to define distance is
network latency. Therefore it is assumed that if two peers are forwarded to
the same replica are also close to each other. Taking into account that an

13

ISP that is eager to reduce traffic crossing its borders will most likely prefer
to serve local peers (peer that reside in its own domain) by local content
servers; clustering peers based on the content server they are redirected to,
effectively groups peers that are in the same domain.

Evaluation and Results

The authors have developed a BitTorrent extension to the Azureus client
that modifies the peer selection algorithm in order to prefer peers close to
oneself on the basis described earlier. As of the popularity of Azureus clients
they have received data from more than 120 000 clients, providing them with
real-world feedback about their system.

The collected data was used to compare download performance of clients
applying the bias peer selection to clients using the normal (unbiased) peer
selection. Results show that choosing a peer from the same AS can be ben-
eficial because of network properties like lower package drop rate and lower
latency, but only in rare cases the average transfer rate depends on the num-
ber of AS hop counts1.

2.2.2 A more complex Model

In [18] the authors follow a different approach, presenting a system that op-
timizes network usage by constructing an extensive model of the network
structure and its transport properties on itself instead relying on an under-
lying CDN. This model is constantly updated and used to calculate virtual
costs for each network operation. By applying cost minimizing functions
that assign a high cost to traffic crossing the boards of different AS, it is
attempted to optimize the network performance.

The described cost calculations are done not by the BT clients themselves
but by modified BitTorrent trackers (called P2P Redirectores) that receive
client requests for a peer list and return a filtered subset of swarm members.
The peers returned are elected on the basis of the requesting peer and the cost
traffic between them would produce. In order to do so the P2P Redirector

1AS Hop count is the number of different AS a packet going from one peer to the other
has to cross.

14

needs in part information 2 that is only known to the ISP of a network. The
system therefore requires to have Redirectors in each AS and the cooperation
of the local domain authority.

The cost model includes network costs like bandwidth usage, transport
delay, package loss and the costs to traffic crossing AS borders, as well as costs
generated at the endpoints of the connections (on the peer side) because of
bandwidth usage.

Evaluation and Results

The proposed system is simulated and compared to previous work done by the
same group as well as to another system that optimizes P2P network traffic.
The scenarios or the inner workings of the simulation are not presented but
the system is shown to outperform its competitors.

2.2.3 Discussion

The first article [15] presented at first glance appears to be an elegant solu-
tion to the problem but leaves some elements of doubt with respect to the
assumptions made by the authors. The inner working of CDN are not easily
observable and the Content Servers (CS) are administrated by third party
companies that may be bound to provide some kind of service quality to the
ISP but in the end will try to reduce their own costs and expenses. This re-
sults in a system in which, due to load balancing or cost optimization, users
are not served by the local CS but by someone else. Even more difficult is to
evaluate how many CSs resign in a single AS and if their density is equally
distributed. In a case where a single ISP has hundreds of CSs, it is very
likely that peers on different ends of the same domain will be redirected to
different CSs. It can then be easily possible that a peer from another ISP is
closer (in a metric of matching CDs) to this peer than to one in the same
domain on the other side of the network.

The second article [18] leaves many questions unanswered and partially
lacks proof for its claims, but even if this is left aside its main weak points
are the complexity of its model and the dependency on the ISPs. Besides the

2Like membership information of an ip.

15

many network properties the model depends on, which need constant obser-
vation and testing, the network status between two peers is approximated
by evaluating the path between the two corresponding P2P Redirectors re-
sponsible for the peer. This may benefit scalability as the system grows in
complexity with the number of P2P Redirectors and not with the number of
peers, but loses accuracy as well and the weight of this loss is not discussed in
the article. In addition to the technical challenges of this solution there are
undiscussed topics of trust and controllability. The P2P Redirectors depend
on crucial information to be provided by the local ISP, but the question arises
as to how they can be trusted with the data provided if they have not been
trusted in the first place to let data travel freely and not filter it for their
benefits. With this in mind it seems that this is less a bug but a feature of
the system, which supports central control of data flow and censorship.

2.2.4 Conclusion

The presented works succeed in using peer selection in order to effectively
reduce inter ISP traffic but fail to improve download performance. As pre-
sented in the results [15], in none of the cases was a major difference in
download time observed, and in the cases where this happened, it was traced
back to strong filtering on the side of very few ISPs. Current studies [7] sup-
port the suggestion that ISP almost never interfere with BitTorrent traffic.
This may partially be because the percentage of Internet traffic produced by
BitTorrent application is dropping and traffic caused by alternative systems,
like video streaming, that are more easily controlled, are growing.

It was therefore decided during the writing of this Thesis that improving
download performance by reducing inter ISP network traffic is not a path
worth following and as a consequence will not be discussed in more detail
from here on.

2.3 Survey on Bandwidth scheduling Algo-

rithms

The articles [24, 22, 19] presented in the following section will apply band-
width allocation methods in order to increase download performance.

16

In [24] the authors present a selfish BitTorrent client which tries to es-
tablish as much connections as possible to utilize its download bandwidth as
opposed to [22] in which a client tries to establish at best a single connec-
tion to another trusted client to improve not its own performance but that
of the whole system. In [19] the authors present a system to manage the
ratio of OU and TFT slots in order to have a higher peer discovery during
the bootstrap and endgame phase without changing the number of peers to
cooperate with.

2.3.1 The more the better

Article [24] probably is one of the most controversial of its kind as it breaks
selfishly with the concept of cooperating peers and asks the questions how
to maximize the performance of a single peer by abusing the good will and
altruistic acts of other peers.

The authors find high capacity nodes that on one hand need a great
amount of time to find peers matching their bandwidth and because of that
“waste” upload bandwidth to peers that return little during that time, and
on the other hand restrict themselves to too few connections which results
in a not fully utilized download bandwidth as a source of altruism that can
be used.

On these results the authors build their own BitTorrent Client called
BitTyrant that follows three basic concepts

• Maximize reciprocation bandwidth per connection: meaning to select
those peers from the known peer list that upload most

• Maximize number of reciprocating peers : don’t limit the client to only
four peers to connect to, but download from as many as needed to fully
utilize the download bandwidth

• Deviate from equal split : upload to each cooperating peer as little as
possible so that it continues to reciprocate and use the excess of upload
bandwidth to connect to even more peers

These concepts are implemented in BitTyrant by modifying the TFT
algorithm to not equally split the upload bandwidth to three (with OU,

17

four) cooperating peers, but rather connect to as many peers as possible and
to individually upload as little as needed to keep the peer to reciprocate.
Further the bandwidth provided to each peering partner is not a discrete
fraction of the total upload bandwidth as in the normal TFT protocol, but
it is adapted continually, with the goal of minimizing invested upload. In
addition the protocol is not time based (meaning up/download slots being
allocated for a specific time) but event based. Nothing is said about the
number of OU slots created, but it can be assumed that there is no limit
either, and as long as unused upload bandwidth is available, new peers are
discovered.

Evaluation and Results

The created client is evaluated in comparison with a standard Azureus client
on a real-world BitTorrent swarm and two PlanetLab [9] simulations. In one
of the simulations the clients behaviour is analysed depending on its upload
capacity in a swarm of normal BitTorrent clients and in the second simulation
a swarm of nodes all using BitTyrant is created to evaluate the results of a
wide spread usage of BitTyrrant.

In comparison to the standard BT client in a real-world swarm, BitTyrrant
can almost always reduce download time and in 25% of the cases is even twice
as fast in completing a download than its counterpart. A similar reduction
in download time can be observed during the PlanetLab simulations, where
all peers run a BitTyrrant client as well a more stable behaviour regarding
the variation in download time during different trails of the simulation and
in upload capacity usage.

In cases when BitTyrrant cannot improve performance, the authors sus-
pect this to be due to either the missing of high capacity peers and their
altruistic contributions or fresh torrents where the number of available peers
is low because of low data availability.

Lesson to learn

Modifying the normal BT bandwidth allocation algorithm in order to mini-
mize upload bandwidth for each connection, and having a dynamic number
of active connections seem to produce the following main effects.

18

For one, the improvement in download performance as presented in the
article appears to be due to increased number of reciprocal peers and their
combined upload, suggesting that it is beneficial to have a dynamic num-
ber of active peers with which to cooperate than to rely on only the most
promising four as done in the standard TFT protocol. Second the authors
found a dynamic number of OU slots to reduce the Bootstrap time of new
peers and therefore reduce overall download time. This is similar to the first
effect suggesting that not limiting the number of OU slots can increase peer
discovery and in the long run download performance.

Discussion

That BitTyrrant is not free of problems and less than optimal behaviour can
at best be seen in the pure BitTyrrant simulations where all peers run a
BitTyrrant client.

In those scenarios the high capacity bandwidth peers play an important
role for peers with a low bandwidth connection as they contribute a lot more
than other peers while searching for the optimal peering partner. Where
though a high bandwidth capacity peer running BitTyrrant splits its upload
into many smaller fragments than a normal BT client would do, and by doing
so effectively acts as a low bandwidth peer, and therefore not provide those
benefits.

A purely selfish BitTyrrant peer only cares about using its OU slots for
peer discovery, and will try to reduce the altruistic aspect of OU which is
responsible for providing highly needed data to new peers during their Boot-
strap phase. A BitTyrrant client therefore reduces its own Bootstrapping
phase but extends that of others. This results in an overall extended Boot-
strap phase in situations where all clients behave selfishly.

Difficult to evaluate but a possible savvier additional downside of the Bit-
Tyrrant system is the inefficient usage of the TCP/IP protocol by connection
to a high number of peers which increases protocol overhead as well as the
potentially fast switching between peers that may not give enough time to
the network protocol to fully ramp up and make use of the available band-
width. This would get worse in a scenario that is not discussed in the article
but that effectively outers itself in a race to the bottom where every client
reduces the upload bandwidth per connection to lower and lower values while
connecting to more and more peers.

19

To counter these effects, it makes sense on one hand to have a maximum
number of peers to actively cooperate and on the other hand to make the UO
slots long and frequently enough to help new comers during their Bootstrap
phase.

2.3.2 A good friend is better than a thousand col-
leagues

A completely different concept for improving the download performance over
the standard BitTorrent protocol, as compared to the previous section 2.3.1,
is explored in [22] where the authors design a system of trusted peers that
try to minimize the number of cooperating nodes and try to find a single
optimal partner with whom to exchange data.

The designed system follows two main concepts

• The uplink should be partitioned minimally : meaning that uplink band-
width should be focused on as few active peers as possible.

• The allocation should be constrained minimally : not partitioning the
upload bandwidth symmetrically between all cooperating peers, but
give preference to high upload capacity nodes which themselves can
spread the data fast to others.

The modified uplink allocation algorithm designed by the authors is called
BitMax and has at its core element a peer rating function decides, which peer
to upload which fragment of the upload bandwidth. BitMax comes in two
flavours (MAX1 and MAX2) where in the first case peers are solely ranked
on their bandwidth capacity and the amount of data they receive by other
nodes, and in the second case where nodes that are of high interest to their
neighbours (because of the pieces they have to offer) are preferred even if
they lack a high capacity bandwidth. These rating for each peer is then used
in a Knapsack algorithm to greedy find the best fit of peer rating to upload
usage which maximises the overall network utility.

This is in contrast to the normal TFT/OU scheduling algorithm used in
BitTorrent that heavily relies on the tit-for-tat concept to promote peers that
cooperate and penalizes FreeRiders, and an even bigger step away from the
egoistic BitTyrrant client.

20

With the BitMax algorithm the authors develop a system that neglects
the desire of a single peer to increase its download performance for the ben-
efit of the system as a whole and promote a scenario in that all peers work
together to increase the overall system performance through which the down-
load performance of every single peer is improved.

In order for the system to work properly, the authors have hard con-
straints on the trust that peers invest in each other and on the homogeneity
of the clients. In an optimal situation, the authors would use swarms of
BitMax only peers and a closed client that offers no way to manipulate its
behaviour to the user. This is partially needed because during the ranking of
its peering partners a node needs vital information on the network capacity
and performance of its neighbours that they have to provide and the peer
itself has no way to validate in order to adequately maximize network utility.

Evaluation and Results

The performance of BitMax is evaluated in the peer-to-peer simulator GPS
[27] with three different network scenarios. The most simple scenario contains
nodes that are restricted in regard to their upload capacity only (Case U),
followed by an additional restriction of download capacity (Case UD) and
the last and most restricted scenario (Case UDN) in which traffic shaping
by ISPs is simulating by restricting the maximum network usage between
groups of peers that are of different autonomous systems (AS).

In all cases of the simulation BitMax outperforms the normal BitTorrent
client and often, by a factor of two, is reducing the download time. The
authors find this to be the result of a better upload bandwidth utilization
compared to the normal BitTorrent client that may be performing well in the
steady state phase of a Torrent download where a client has a wide range of
peers to choose from with which to cooperate and is not restricted by data
availability, but is performing sub optimal in cases of new torrents where
data availability is low.

Lesson to learn

Although completely different in their concepts and implementation, the two
clients, BitMax and BitTyrrant, appear to achieve similar improvement on

21

download performance over the normal BitTorrent client. It is interesting
that in case of BitMax, the source of its performance increase is claimed
to be the focusing of upload bandwidth on as few nodes as possible as in
BitTyrrant where doing the opposite3 seems to achieve the same results by
using as many peers as possible.

A possible explanation for this can be the following. In the beginning of
the life time of a Torrent, the low data availability and clustering effects result
in environment where focusing upload bandwidth to few peers promotes the
faster spread of rare pieces and by doing so, reduces the waste of bandwidth
due to nodes not having enough data to share. After enough copies of the file
are available in the network, the restriction to only peer with four nodes at
the same time may be sub-optimal and letting this restriction fall, as is done
explicitly in BitTyrrant and is a possibility4 in BitMax, may be the cause of
a reduced download time.

Discussion

Considering the goal of the Algorithm to focus its upload bandwidth to as few
peers as possible, some of the results, showing the number of un-choked peers
for example, list a rather surprising high number of peers the client tries to
cooperate with, but unfortunately, nothing is mentioned regarding how many
of those connections are actually used at the same time to exchange data. In
the UDN simulation case the authors conclude that it may be beneficial to
extend the maximum number of active nodes to more than 4, but again this
is not discussed in more detail.

Concerning trust dependencies of the system, it may well be that there are
environments where the vast majority of nodes can be trusted to cooperate
and to have only the good of the system in mind, but this is difficult to
apply and expect of the majority of BitTorrent system on the Internet and
in operation as of this writing. A peer to peer system having such high
demands on trust between nodes is often an easy target for malicious peers
and FreeRiders that have only their own benefits in mind. BitMax is therefore

3As described in section 2.3.1 the BitTyrrant client establishes a high number of con-
nections to active peers to improve its download performance.

4As mentioned in 2.3.2 the authors suggest that it may be appropriate to not limit the
maximum number of active peers to four in order to achieve a better upload bandwidth
utilization.

22

more appropriate to be used in private networks, like in companies or Internet
communities with restricted access.

2.3.3 Balance of Powers

In this [19] work, the authors are not concerned with the number of active
peers a node is cooperating with, but with the management of the ratio
between TFT and OU slots. The authors find one reason for a no-optimal
utilization of the upload Bandwidth utilization during the Bootstrap and the
endgame phase of life cycle of a BT client. The reason for this is presented
to be a static quota-based peer selection strategy that uses three TFT and
one UO slots regardless of the need for a faster peer discovery during these
phases.

The authors therefore propose a system that uses a dynamic quota-
based peer selection strategy that classifies known peers into distinct sets
and adapts the ratio between TFT and OU slots depending on the size of
these sets. The system distinguishes between high return peers that a client
had cooperated successfully in the near past, urgent peers that hold needed
pieces of data but with whom no data was exchanged yet and peers on which
nothing is known of the data they hold. The rest (peers that constitute of
uninteresting peers) are categorised as normal peers.

During the download of the first and the last piece, the number of urgent
to high return is high and because of that more upload slots are set to use
the OU than to TFT algorithm. In addition, the system can be tuned by
adjusting the parameters α and β although as can be seen from the results
of the experimental evaluation their impact seems of no great importance.

Evaluation and Results

The algorithm is evaluated in an undescribed and unknown simulator with
an initial configuration of 1000 peers and one seeder. Peers are configured to
remain in the swarm for a short period of time after completing the download
acting as seeders. The network configuration provides for heterogeneity in
node connection bandwidth by separating the peers in three distinct classes
with different upload and download capacities.

The focus of the simulation is set to the time needed to share the first and

23

the last piece of a torrent. Four BitTorrent clients are compared, whereby
one is the normal static quota based BitTorrent client and the other three
use a dynamic quota with slightly different α and β parameters.

The authors claim a reduction of download time for the first and the last
block of about 59-63% and for all blocks of 62-63% over a normal BT client.

Lesson to learn

This work shows the possibility of improving the BT system by not only
being flexible on the number of peers to cooperate with (in TFT and OU
slots) but as well on the type of slot (TFT or OU) which to allocate to
each connection. It would be therefore interesting to evaluate a system that
dynamically adjusts the number of active peers as well as the ratio between
TFT and OU slots.

2.4 Conclusion

Reflecting on the presented articles and the concepts extracted out of them,
the following ideas appear interesting to evaluate and determine their use in
improving the download performance of future BitTorrent systems.

• Variable number of active peers : meaning that instead of limiting the
number of active peers to four the system should try to adapt to the
situation allowing for more or less active peers, which even improves
download performance.

• Dynamic quota ratio between TFT and OU Slots : depending on the
data availability and its pool of possible peering partners, a client
should dedicate more or less in peer discovery using optimistic un-
choking more than one peer at the time.

• Asymmetric bandwidth allocation: clients should try to get the best
peering partner for their bandwidth and neighbourhood configuration.
Meaning that in a situation in which reciprocation of another peer is
achieved by providing less upload bandwidth than available, the client
shall do so, and invest the excess of bandwidth in creating connections
to other peers or to discover new peers using OU.

24

• Tend to work with less peers and limit bandwidth fragmentation: mean-
ing that a client should try to find a few good/suitable peers with
which to saturate its download bandwidth and if this is not possible,
shall limit the number of active clients to a maximum value in order
to not over fragment its upload bandwidth and in consequence reduce
TCP/IP performance and download performance.

25

Chapter 3

Proposed modifications

In the following chapter a series of modifications to the normal BitTorrent
protocol [6] as discussed in chapter 2 and summarized in section 2.4 are
presented.

This chapter is structured as follows. In section 3.1 a modification adapt-
ing the number of TFT and OU slots is explained, followed by section 3.2
that explains how the variable slow number effects peer discovery and how
Bandwidth allocation is adapted, ending with section 3.3 that explains the
modifications to the TFT algorithm.

3.1 Variable number of TFT and OU Slots

The normal BitTorrent protocol is modified by making the number of OU and
TFT slots variable and to specify the bandwidth capacity for each connection
individually. Whereby the number of OU and TFT slots are calculated based
on the local piece availability. The concrete formulas are shown in 3.1 , 3.2
and where found by empirical studies. A plot showing the course of the
functions is shown in 3.1

maxTFTSlots = barctan(0.05 ∗ (x− 10)) ∗ 10)c (3.1)

nOutSlots = b(8− ((arctan(0.15 ∗ x− 2) ∗ 0.5) + 0.5) ∗ 4) + 1c (3.2)

Where equation 3.1 is used to calculate the maximum number of TFT
slots, and equation 3.2 the number of OU Slots. In addition the “maxTFT-

26

Figure 3.1: TFT and OU Slots

Slot” is controlled to at least have a value of 1 and “nOutSlot” is addition
divided by a factor of {1, 2, 4} (in a round robin like fashion every 30 ticks
a new divider is set) as the piece availability rises above 15%.

The number of TFT and OU slots is calculated with the following ideas
in mind. During the bootstrap phase or the beginning of the lifetime of
a torrent (when the piece availability is low) a high number of OU slots
are allocated to support new clients and rapidly spread the first pieces. As
enough pieces are available, the self interest of a client shall be enforced and
more TFT slots should be used. It is important to note that “maxTFTSlot”
is only defining an upper limit on the number of TFT slots to allocate. The
actual number of TFT slots to use is set by the modified TFT algorithm as
described in section 3.3.

27

3.2 Enhanced Peer Discovery and Bandwidth

controlling

The bandwidth allocated of TFT and OU Slots depends on the ratio between
the total number of OU slots and the maximum number of TFT slots. As
seen in figure 3.1 this means that at a low piece availability rate 90% of
bandwidth is dedicated to OU slots and slowly drops (about 50% with a
piece availability of 20% and then slowly comes closer to about 25% as the
piece availability rises above 70%).

As described in section 3.1 the number of OU slots with a local piece
availability of more then 15% is set to variate between the values 1, 2, 4.
What this means is that for calculating the bandwidth shared between TFT
and OU, the number of OU slots is held constant at 4, but the actual number
of peers scheduled for OU slots variates to be either 1, 2 or 4. This is done so
that the peer discovery process (for which OU is partially used) is finding
peers with different costs of reciprocation. In the case that only one peer is
scheduled by the OU algorithm, the whole portion of OU bandwidth is used
to please this peer, whereby if four peers are scheduled, each of them only
receives a fourth of the total OU bandwidth. This makes it possible to find
peers and get them to reciprocate for a lower dedication of upload bandwidth
than with the normal BitTorrent protocol, which always uses one fourth of
its upload bandwidth.

3.3 Greedy TFT allocation

The TFT algorithm is modified to make use of the peers discovered by the
OU algorithm with different upload bandwidth by applying greedy knapsack
algorithm that rates each peer as a ratio between their provided download
bandwidth and the upload bandwidth that was needed to make the recipro-
cate. The goal of the algorithm is to saturate the download bandwidth of a
client with providing as little upload bandwidth as possible. This is normally
not achieved because in all simulation scenarios, the download bandwidth of
a peer is always by multiple factors larger than its upload bandwidth. What
the knapsack algorithm then achieves is the maximization of the download
rate of the client with the upload bandwidth available.

28

Chapter 4

Simulation and Evaluation

In this chapter a series of practical proposals to improve BT download per-
formance are presented and their evaluation in a newly developed simulator
are described.

The chapter is organized in the following way. In section 4.1 an overview
of possible methods to evaluate a BT client are discussed. In section 4.1.2
the evaluation using an Simulator as well as available simulators is presented,
following section 4.2 where a new Simulator, developed during this Thesis is
presented.

4.1 Methods of evaluation

In the following section the benefits and disadvantages of evaluation using
real-world implementations and simulations as well as the experience gained
in processing these methods are described.

4.1.1 Real-world clients and client extensions

There exists a possibility of implementing a complete client, which has the
benefit of real-world results, that can be evaluated directly, but comes with a
high price of development effort and difficulties of practical testing. Specially
peer to peer applications are difficult to evaluate as they normally depend
on a high number of peers running the application. To evaluate the system
in a realistic environment where peers behave very different to each other (

29

because of available resources like bandwidth or data but also to local policy
like up time and willing to cooperate) can be a lengthy endeavour. To ease
this process, special frameworks like [9] have been developed in which re-
searchers can run their applications in an artificial constructed environment,
but doing so on one hand remains a heavy task and on the other hand may
distort results because the constructed environment may not behave as the
target group. In cases like [4] [24] [11], the developers therefore have chosen
to implement a real-world peer to peer application on top of a BitTorrent
core [3]. This has the benefit of receiving real-world results in a natural
testing environment where the clients can use the underlying peer to peer
network; as long as they remain compatible with the core protocol; and still
can introduce new features and modifications.

This path was pursued first for the BT protocol modifications described
later, but was then dropped as the BT core application [3] was found to
be public available source code but is completely undocumented. The work
that would therefore be needed to implement the modifications proposed was
evaluated to be out of reach for this thesis.

4.1.2 Simulation

An alternative to implementing a complete client is the use of simulation in
which only parts of the client (in an optimal scenario only the proposed
modifications) are implemented and the behaviour of the client is simulated
in a carefully designed test environment. This has in general a series of
advantages like a reduced development effort, more control over the testing
environment and therefore the possibility to evaluate the system under differ-
ent assumptions, as well as a complete oversight of the peer to peer network
which is not possible in a real-world example where only parts of the network
are visible. This comes at a cost and like all simulations that by definition
simplify the process they simulate, and that is precision. Depending on the
care and focus taken during the development of the simulation, the results
acquired can at best be used to predict the behaviour of an application in
the real-world. Another deficit of simulation depend on the completeness
and capabilities of the simulation framework applied, but can be the loss of
focus as there may be the need to extend or modify the simulation framework
itself in order to implement the desired modifications. Therefore time and
development effort is diverted from the main goal. As long as the simulation

30

is not proven to be correct 1 results acquired in this way are still left in doubt
and speculation.

Therefore simulations are often used as a first step to guide the devel-
opment of a system that later is evaluated by implementing a real world
client.

As described earlier because of the time limitations of this Thesis the
proposed modifications have not been implemented in a real-world client,
but the first step in this direction was taken by implementing them inside of
a simulator.

A series of simulators for BitTorrent system [27] [21] [17] [2] exist and con-
tinue to be developed as of this writing. A comprehensive survey of available
simulators was performed at the beginning of this work, but unfortunately
found all available system not fit for the task at hand. A short summary of
the findings is presented here as follows.

The General Purpose Simulator for P2P networks [27] seem have been
deserted by its creators and is lacking support in all dimensions. It was eval-
uated due the lack of documentation and active development of the project
this makes no basis for further studies.

Similarly, this applies to [2], that lacks active development but at least
has partially documented source code.

The projects [21] and [17] both are active projects and as they work on top
of the common OMNet++ Simulation framework receive a decent amount
of attention by developers and researchers. The reasons for not choosing
one of them are the following. For one neither has a extensive source code
documentation, making it necessary to first get an in depth understand-
ing of OMNet++ and then interpret the provided extensions. Further and
even worse, both work on top of the INET extension, which is responsible
for simulating realistic network characteristics, down to simulation TCP/IP
package traffic. This may gain precision, but demands a clear view of the
data network on which the BT system should be simulated. Trying to de-
scribe a real-world peer to peer network structure with hundreds of peers
interconnected by different hierarchies of routers and network infrastructure

1correct is here to be understood as the correlations between results obtained by sim-
ulation and results obtained by real-world experiments. Always considering the doubt in
precision of results and the limited scope of properties evaluated.

31

is out of question and definitely not the goal of this Thesis. Using simplified
network models that behave more like a LAN than the Internet raise the
question why to use such an extended model like the INET in the first place,
and secondly if simulating BitTorrent on a LAN like environment will not
generate results that are not applicable to an Internet environment. Besides
these conceptual doubts, both systems were unsuited for at least one of the
modification proposed, as it is needed to control the bandwidth that is re-
served for each active connection, and bandwidth control is not possible with
the INET extension and therefore not possible to be simulated.

Concluding this survey, it was decided to implement a new Simulator
(described in section 4.2) that is less general and more optimized to evaluate
the modifications proposed. As it turns out during the process of writing
this Thesis writing a new simulator has in addition the major benefit that it
supports the automatic generation of statistics in a detail and focus not seen
in any other simulator.

4.2 Eruliaf

In this section the Peer to Peer BitTorrent simulator [14] developed during
this Thesis is presented. At first an overview of major features is presented,
followed by discussion and details about the implementation and main com-
ponents and ending the chapter with an overview of the methods provided
by the simulator to gather statistics of the simulation.

4.2.1 Introduction

The simulator is implementing the following major features that will be dis-
cussed later in more detail:

• Discrete event based peer to peer simulator

• Overlay peer to peer network simulation

• Implement the BitTorrent protocol (Seeder,Tracker, Peers - missing end
game algorithm)

• Simplified network model (upload/download Bandwidth with uniform
noise)

32

• easy specification of simulation properties (number of peers, rate of new
peers joining/leaving swarm, torrent size, number of pieces, network
bandwidth)

• Framework to launch multiple simulations in parallel (utilizing multi-
core system)

• automatic generation of statistics and summaries

Eruliaf is a discrete event peer to peer overlay simulator for the BitTor-
rent system implemented in Python3 for the console (without graphical user
interface).

The simulation has implemented as described by the BitTorrent protocol
[6] without the end game algorithm. Every simulation contains a single
Tracker, a single initial seeder and multiple peers.

Communication is simulated on a peer overlay network only, meaning that
no network simulation is performed. A peer is able to connect to any other
peer directly (fully connected graph) but only knows a subset of available
nodes (its neighbourhood). The interconnection between peers is defined
by upload/download bandwidth only (neglecting latency, jitter or dramatic
network changes), but slight variations in connection quality between peers is
reflected by adding a uniform random noise of ±10% to bandwidth capacity.

A complete simulation contains a scenario file, specifying simulation de-
tails and a simulation file specifying which scenario to execute and where to
store temporary files as well as simulations results. At the end of a simula-
tion the generated simulation data is used to generate statistical diagrams
summarised in a single pdf file.

4.2.2 Simulation and Scenario files

End-users are interacting with the simulator using the simulation and sce-
nario files only. Scenario files configure a single instance of a simulation
where simulation files are used by the simulation framework to run multiple
scenarios. When using the simulation framework only a simulation file has
to be provided by the user. The framework will then automatically generate
scenario files and pass them to the simulator.

A normal simulation is therefore a three phase process. First the sim-
ulation framework parses the simulation file, secondly generates different

33

scenario files and executes the simulation as them as arguments, and in the
third phase generates statistics based on the results of each scenario.

Scenario files

In appendix A.1 a simple example scenario file is presented. The file contains
three categories (General, Peer and PeerC1) with each containing different
key values pairs. All values must be set in order to simulate a scenario,
but some of them will be overwritten (as described later) by the simulation
framework. Table 4.1 contains a description of all parameters contained in
the scenario file

Parameters specifying a value range (e.g UploadRateMin/Max or MaxSleep)
are passed to the python3 random number generator that produces numbers
uniform distributed in the specifying range.

The categories Peer and PeerC1 share the same type of parameters as
they configure the two types of peers implemented in the simulator. Peer is
defining the parameters for the original BitTorrent protocol and PeerC1 for
the client containing the proposed protocol modifications.

Simulation Files

The simulation file as the scenario file is structured by categories containing
peers of keys and values. Appendix A.2 shows a typical Simulation config-
uration file used by the Simulation Framework to launch 4 iterations with
4 parallel threads running the dynamic 50p 50p1 1000MB.cfg scenario. A
complete list of parameters with description is shown in table 4.2.

4.2.3 Generated Statistics and evaluation

A R script using ggplot2 is executed by the Simulation Framework at the
end of each scenario simulation to generate statistics. For each scenario
simulation a statistic summary will be created that contains all statistic
diagrams in a single pdf file. In addition, an ECDF (Empirical Cumulative
Distribution Function) and histogram plot of the download time for each peer
is generated. This plot contains results of all scenario simulations performed

34

Table 4.1: Scenario parameters

General (General scenario parameters)

TorrentSize: Torrent Size in Bytes
PieceSize: Piece Size in Bytes (number of Pieces should be between

500 and 2000, higher values need more processing time)
SimEnd: Specifies the length of the simulation in ticks
SeederUpload: Upload bandwidth of the seeder in Bytes / second
SeederDownload: Download bandwidth of the seeder in Bytes / second
logFile: path to the logfile created by the simulation (will be

overwritten by SimulationFramework)
logLevel: defines the level of detail captures in the log file (possible

values are DEBUG, INFO, WARN, NONE) (will be
overwritten by SimulationFramework)

Peer (Original BitTorrent client)

nInitialPeers: Number of peers at simulation start
SpawnRate: Probability to spawn new peer at each tick (in %)
LeaveRate: Probability to peer leaving swarm after completing

download at each tick (in %)
MaxSleep: Newly created peers will sleep up to MaxSleep ticks after

joining a swarm
UploadRateMin: Minimum upload bandwidth (Bits / second)
UploadRateMax: Maximum upload bandwidth (Bits / second)
DownloadRateMin: Minimum download bandwidth (Bits / second)
DownloadRateMax: Maximum download bandwidth (Bits / second)

PeerC1 (Modified BitTorrent client)

. . . same parameters as the Peer category

35

Table 4.2: Scenario parameters

General (General simulation parameters)

nIterations: number of Iterations to execute the same scenario
nThreads: number of simulation to run in parallel
iterationPrefix: defines a simulation prefix. Will be set as file name

prefix to all files generated by this simulation.
scenario: path to the scenario file
runDirectory: directory in which log files, csv, and temp files are stored.
randSeedBase: passed to the python random initialization and incre-

mented by one with each iteration
statsScript: path to the R script used after simulating a scenario to

generate statistic data.
logLevel: log level for this simulation (possible values are DEBUG,

INFO, WARN, NONE)
statsSummaryDir: path to where statistic summaries for this simulation

should be stored

36

during the same simulation. The plots are generated out of a csv file produced
by each scenario simulation containing a tuple of values for each peer in each
tick.

Each diagram compares the behaviour of an unmodified BitTorrent client
(curve labeled BT) to a client containing the proposed protocol modifica-
tions (curve labeled BT ext). Plots contain data averaged over all peers of
the same time, not including the initial seeder.

A set of different diagrams are generated automatically, containing plots
of upload/download bandwidth usage, neighbourhood size, number of TFT/OU
Slots, download time, number of downloading and completing peers in each
tick, and a few more (A.1) contains an example plot).

4.2.4 Implementation Details

In the following section, a description of the innerworking of the most im-
portant simulator components is given. Starting with an explanation of the
Tick and phase system, followed by the Peer/PeerC1 node, the connection
component and finishing with the observer class.

Tick and Phase system

The simulator is operating in what is called “ticks” what correspond to a
discrete time frame (e.g. a second) in simulation time. In each tick a series
of phases is executed that are used by peers to register callback functions
and that then are called on each tick. Table 4.2.4 shows a list of all phases
with their corresponding description.

Peer nodes

The behaviour of a peer is simulated by the Peer and PeerC1 class that
correspond to a peer client following the normal BitTorrent protocol and a
client following the modified BitTorrent protocol.

Peers are spawned by what is called the “PeerFactory” that is executed
at the beginning of each tick and evaluates if new peers are to be spawned
and is configured by the scenario configuration file.

37

INIT: A newly spawned peer is sleeping by default. The init
phase checks if the peer is to be woken up.

UPDATE LOCAL: First periodic executed phase; Checks if the peer has
completed the file download and updates piece list lo-
cally.

UPDATE GLOBAL: Updates all connection of the peer depending on the
piece list updates in each neighbouring peer done in the
previous phase.

LOGIC: Executes the peer logic responsible for slot allocation
using TFT and OU

FILETRANSFER: simulates the data transfer done in the current time
frame

CONCLUSION: used to keep track on the bandwidth usage of the current
tick and prints log messages summarizing the current
tick

STATISTICS: Internal phase used to gather information on each peer
and to generate entry in simulation log (csv file)

SIMULATION END: executed once at the end of the simulation for the sim-
ulator internal cleanup processes

Table 4.3: Simulation phases

After spawning, the peer remains in a sleep state which duration is defined
on peer creation (by the PeerFactory). This is done because as the simulator
is processing discrete time periods, without a sleep period all peers spawn
in the same tick would have a semi synchronized behaviour that leads to
artificial effects not present in a real Peer to Peer system. At wake up, a
peer connects to the tracker (there is only one tracker per simulation that
is indicated in the torrent file passed to the peer by the PeerFactory) and
receives a list of random chosen peers part of the swarm. The client then
connects to these peers using a connection class object for each peer and
follows the normal BitTorrent protocol.

The connection class is interconnecting peers, giving them information on
the pieces offered by the other side, sets connection attributes like interest
and choke status. The peer logical defines the maximum bandwidth usage
available to each connection and keeps track of the actual used bandwidth
at the end of each tick.

38

In addition, each peer has a torrent object which is used to keep track on
the pieces downloaded already and which are still to be downloaded.

Observer

In order to generate statistics on the process of the simulation, a global
observer is implemented, which is called in each tick during the “SIMULA-
TION END” phase in order to gather information about each peer. For each
peer an entry to the simulation log is added in csv format that contains infor-
mation about the current state of the peer. It includes information like the
type of peer, its spawn tick, the current number of neighbours, the number of
used OU and TFT slots, maximum upload/download bandwidth, currently
used upload/download bandwidth and some additional bits of information
that will be used by the statistic script to generate statistical diagrams.

39

Chapter 5

Results

In this chapter, the results of a series of different simulations are presented
and the performance of the modified BitTorrent client is evaluated.

The chapter is structured in the following way. Section 5.1 will explain
the different scenarios simulated, section 5.2 will present the results of each
simulation and section 5.7 will compare and evaluate the two clients based
on the simulation results.

5.1 Simulation scenarios

The different simulations performed are variations of three main parameters
(churn, swarm size and torrent size).

The first parameter defines if the swarm is dynamic in size, hence if new
peers join the swarm during the simulation and peers that have completed
the download remain for a while as seeders in the swarm, or if it is a static
system in which all peers are present, at the start of the simulation and
peers leave the swarm as soon as they complete their download. Where
the former method (dynamic system) appears to be closer to a real-world
swarm behaviour, the later (static system) is often found in the literature
and therefore both shall be examined here.

The second interesting simulation factor is the swarm size where two kinds
of swarm sizes shall be evaluated. Small swarms with only 100 peers that
could be found with private trackers, and big swarms with about 500 peers
that represent public trackers.

40

At last the file size of the torrent is changed, differentiating between the
exchange of small files of 10MB, medium files of 350MB and large files of
1000MB.

Table 5.1 gives an overview with description about the different simula-
tions performed and table 5.1 lists all Scenario Parameters.

For each file size small, medium and large

Dynamic private Tracker: Dynamic system where constantly new peers join the
swarm but the swarm size is around 100 peers

Dynamic public Tracker: Dynamic system with joining peers but a much larger
swarm size of around 500 peers

Static private Tracker: Static system with one seeder and 100 peers. No new
peers join the swarm and completed peers leave imme-
diately.

Static public Tracker: Static system with one seeder and 500 peers. No new
peers join the swarm and completed peers leave imme-
diately.

Table 5.1: Simulation Scenarios

5.1.1 Swarm Size

It was found that the swarm size (i.e. the number of peers and seeders in a
swarm) has an important influence on the download performance. In general
it was found that as the swarm size increases, the individual download time
increases as well. This makes sense as each peers join the swarm is in a way
consuming download bandwidth, and offering upload bandwidth. As the
peers consume more than they provide, the download of each individual peer
suffers degeneration. This effect is more complex though because as seeders
remain in a swarm, they consume nothing and only provide. Therefore the
download performance of a general downloading peer depends on the swarm
size as well as the ratio of seeders to leechers. In the static simulations where
the SpawnRate is set to 0, the swarm size is easily controlled by the number
of initial peers and the LeaveRate (which in all static simulations is set to
1.0 and therefore makes all peers leave the swarm as soon as they complete

41

S
ce

n
a
ri

o
s

S
ta

ti
c

D
y
n
am

ic
P

ri
va

te
T

ra
ck

er
P

u
b
li
c

T
ra

ck
er

P
ri

va
te

T
ra

ck
er

P
u
b
li
c

T
ra

ck
er

sm
al

l
m

ed
iu

m
la

rg
e

sm
al

l
m

ed
iu

m
la

rg
e

sm
al

l
m

ed
iu

m
la

rg
e

sm
al

l
m

ed
iu

m
la

rg
e

P
a
ra

m
e
te

rs

T
o
rr

e
n
tS

iz
e

(M
B

):
10

35
0

10
00

10
35

0
10

00
10

35
0

10
00

10
35

0
10

00
P

ie
ce

S
iz

e
:(

k
B

)
10

50
0

10
50

0
10

50
0

10
50

0
S
im

E
n
d

(s
ec

):
18

00
25

00
30

00
20

00
30

00
40

00
20

00
25

00
50

00
S
e
e
d
e
rU

p
lo

a
d

:
64

0k
B

10
0M

b
64

0k
B

10
0M

b
64

0k
B

10
0M

b
64

0k
B

10
0M

b

P
e
e
r

&
P

e
e
rC

1

M
a
x
S
le

e
p

:
30

U
p

lo
a
d
R

a
te

M
in

:
8k

B
1M

b
8k

B
1M

b
8k

B
1M

b
8k

B
1M

b
U

p
lo

a
d
R

a
te

M
a
x

:
32

k
B

5M
b

32
k
B

5M
b

32
k
B

5M
b

32
k
B

5M
b

D
o
w

n
lo

a
d
R

a
te

M
in

:
32

k
B

10
M

b
32

k
B

10
M

b
32

k
B

10
M

b
32

k
B

10
M

b
D

o
w

n
lo

a
d
R

a
te

M
a
x

:
12

8k
B

50
M

b
12

8k
B

50
M

b
12

8k
B

50
M

b
12

8k
B

50
M

b
L

e
a
v
e
R

a
te

:
1.

0
0.

00
3

0.
00

5
0.

00
15

0.
01

P
e
e
r

n
In

it
ia

lP
e
e
rs

:
10

0,
90

,
50

,
10

,
0

50
0,

45
0,

25
0,

50
,

0
30

,
27

,
15

,
3,

0
20

0,
18

0,
10

0,
20

,
0

S
p
a
w

n
R

a
te

:
0.

0
0.

12
a

0.
1a

0.
03

5a
0.

7a
0.

5a
0.

15
a

P
e
e
rC

1

n
In

it
ia

lP
e
e
rs

:
0,

10
,

50
,

90
,

10
0

0,
50

,
25

0,
45

0,
50

0
0,

3,
15

,
27

,
30

0,
20

,
10

0,
18

0,
20

0
S
p
w

a
n
R

a
te

:
0.

0
-a

T
ab

le
5.

2:
O

ve
rv

ie
w

of
sc

en
ar

io
s

an
d

p
ar

am
et

er
s

a
T

h
e

S
p

aw
n

R
at

e
is

p
ro

p
or

ti
on

al
to

th
e

ra
ti

o
o
f

p
ee

r
a
n

d
p

ee
rC

1
n

o
d

es
.

T
h

e
va

lu
es

re
fe

re
n

ce
d

h
er

e
a
re

ta
k
en

fo
r

p
u

re
sw

ar
m

s
on

ly
.

M
ea

n
in

g
th

at
fo

r
a

sc
en

ar
io

w
h
er

e
th

e
p

ee
rs

ty
p

es
a
re

m
ix

ed
1

to
1
,

th
e

S
p

aw
n

R
a
te

o
f

ea
ch

ty
p

e
is

h
a
lf

o
f

th
e

va
lu

e
st

at
ed

in
th

e
ta

b
le

.

42

their download). For the dynamic simulations the swarm size is not that
easily to predict. The SpawnRate is set to values higher than 0.0 (as in all
dynamic cases) and depending on the performance of the algorithms, as well
as a random factor, the swarm size variates.

For these reasons the format in that the ratio and number of peers is
described for each simulation (for example 50p 50pc1 says there will be
about 50 peers running one and 50 peers running the other BT algorithm in
the swarm) is not perfectly reflecting the number of peers of each kind. The
Peer Count plot that is generated for each simulation and can be found in the
appendix lists in more detail the actual number of peers for each simulation
and how they variate during the progress of the simulation.

5.2 Simulation results

In the following section, the important results of each of the simulation sce-
narios described in the previous section are presented. As it would take too
much space to present all data gathered during each simulation, only the
most relevant data is presented. This includes for each simulation the ECDF
plot (which makes for the most important single metric of the download per-
formance of the algorithm), the peer status plot (titled Total and completed
peers), upload usage, average number of OU and TFT slots,

Each simulation was run with a different ratio of peers running the normal
BitTorrent protocol and peers running the modified BitTorrent protocol. The
number of peers of each kind is specified in the title of every graphic, where
the suffix p stands for an unmodified and the suffix pc1 for a modified client.
If not specified differently, each simulation was executed for (100% peers, 0%
modified peers) , (90p , 10pc1), (50p, 50pc1), (10p,90pc1), (0p,100pc1). By
doing so it is possible to estimate the behaviour of systems with different
popularity of the client.

Multiple scenario instances are run for single simulations (if not men-
tioned differently four instances have been executed) differing in the initial-
isation of the random number generator. As for size constraints it would
be impossible to include the simulation results for each instance of each sce-

43

nario 1 it was chosen to only include the results of the first instance, where
the ECDF plot is different as the results of all instances can easily be fused
into a single plot and therefore has been done.

To further make it easier to compare the algorithm performance over
different simulations, it has been decided to move all results but the ECDF
plots into the appendix. The ECDF plot is therefore the first and main
metric to compare the system performance.

1it is to remember that each simulation, from there are nine, five variations are simu-
lated with different ratio of normal and unmodified peers, and on top of this four instances
each. Making for 9*5*4 = 180 instances. The interested reader is therefore encouraged to
get in contact with the author in order to receive a copy of all the simulation results.

44

5.3 Static private Tracker

In this section the protocols are compared in a scenario of a small private
tracker with about 100 peers and a static setup where all peers are present
at the start of the simulation and leave the swarm as soon as they have
completed their download.

All parameters for this scenario can be found in table 5.1. The ECDF
plots are shown at Figure 5.1 (small File size), Figure 5.7 (medium File size)
and Figure 5.13 (large File size). Additional plots can be found in appendix
at B.1.1 , B.1.2 and B.1.3.

The overall picture shows a very similar behavior of both algorithms,
with peers running the unmodified BitTorrent protocol slightly downloading
faster on average than peers using the modified protocol.

A note worthy difference can be seen at the borders of the ECDF plots
for the fastest and the slowest peers. Peers running the modified protocol use
more OU slots at the beginning of the simulation and therefore altruistically
spread the important first pieces to other peers that have no way to cooperate
in TFT slots unless they have something to share. This is visible in most
of the scenarios, but most clearly in the pure swarms (e.g 100p and 100pc1
). As a result the fastest peers (e.g those that complete the download first)
running the modified protocol tend to take longer to complete their download
than peers running the unmodified protocol, but as a consequence support
slower peers (e.g those peers that complete their download as one of the last
) by supplying them with the important first pieces and by staying longer
in the swarm. As can be seen in the plots B.1.1 showing the local piece
availability of the swarm, the modified protocol tends to keep the divergence
in local piece availability smaller than the unmodified protocol so that all
peers in the swarm accumulate pieces at a more or less similar rate.

The importance of this effect clearly depends on the total download time
and therefore is a function of the torrent size. This can be seen when
comparing scenarios of different file size (like 10p10MB, 350p10MB and
1000p10MB). As the total download time increases, the effect of higher us-
age of OU slots and altruistic spread of first pieces, as well as the longer
download time of fast peers, gets less weight and the results of the effect

45

decrease. This can be seen as the download time of the first and the last
peers of both kind are almost the same.

46

Figure 5.1: static,10MB ECDF

Figure 5.2: static,100p,0pc1,10MB Figure 5.3: static,0p,100pc1,10MB

Figure 5.4: static,50p,50pc1,10MB

Figure 5.5: static,90p,10pc1,10MB Figure 5.6: static,10p,90pc1,10MB

47

Figure 5.7: static,350MB ECDF

Figure 5.8: static,100p,0pc1,350MB Figure 5.9: static,0p,100pc1,350MB

Figure 5.10: static,50p,50pc1,350MB

Figure 5.11: static,90p,10pc1,350MB Figure 5.12: static,10p,90pc1,350MB

48

Figure 5.13: static,1000MB ECDF

Figure 5.14: static,100p,0pc1,1000MB Figure 5.15: static,0p,100pc1,1000MB

Figure 5.16: static,50p,50pc1,1000MB

Figure 5.17: static,90p,10pc1,1000MB Figure 5.18: static,10p,90pc1,1000MB

49

5.4 Static public Tracker

In this section the protocols are compared in a scenario with a public tracker
that manages a swarm of about 500 peers in a static system where no new
peers appear after the simulation starts.

All parameters for this scenario can be found in table 5.1. The ECDF
plots are shown at Figure 5.19 (small File size), Figure 5.25 (medium File
size) and Figure 5.31 (large File size). Additional plots can be found in
appendix at C.1.1 , C.1.2 and C.1.3.

Similar to the private Tracker scenario 5.3, both protocols show compa-
rable good results. Peers running the unmodified protocol still have a slight
benefit over peers that implement the modified protocol, and the effect that
increases download time for fast peers and reduces download time for slow
peers (as mentioned in the previous section) remains.

Because of the bigger swarm size (500 peers over 100 in the previous
scenario) it is interesting to compare the behaviour of each protocol in a
pure scenario (like the 500p or 500pc1) scenarios to a mixed scenario (like
the 250p250pc1) in order to understand how the protocols interact with each
other and if there is some kind of bias or special effect when mixing peers of
the two kind.

It is consistent through out all scenario that the behaviour of both proto-
cols remains almost exactly the same in pure swarms (where there are only
peers of the same kind) as in mixed swarms. This can be most easily seen
in the download time (e.g. ECDF plots) where the distribution of download
time between a pure scenario and a mixed ones changes only slightly. It does
not matter if the ratio between peer types is big or if the number of types of
each peer is equal. Both protocols show a very stable and settled behaviour.
There does not seem to be imbalance or exploiting effect taking place which
would cause one of both types to have an important benefit of the other and
therefore reduce its own download time to the costs of the other.

The reader is reminded though that in this simulation all peers behave as
described by the protocol specifications (e.g with good intentions). Previous
work [20] has shown that TFT is an effective method to penalize FreeRiders
and therefore make BitTorrent resilient against this form of misbehaving

50

nodes, but because of the time limitations on this work, the effects caused
by peers with bad intentions where on the modified BT protocol where not
simulated. It can be assumed though that FreeRiders in a swarm of peers
with the modified BT protocol would have a benefit over their counter parts
in a swarm of peers running the unmodified protocol, as the former relies
more on OU and therefore can be easier abused by not cooperative peers.
Similar applies to strategical peers like BitTyrant [24], although it is difficult
to say if they have it easier or equally difficult to make abuse peers running
the modified as the unmodified protocol.

51

Figure 5.19: static,10MB ECDF

Figure 5.20: static,500p,0pc1,10MB Figure 5.21: static,0p,500pc1,10MB

Figure 5.22: static,250p,250pc1,10MB

Figure 5.23: static,450p,50pc1,10MB Figure 5.24: static,50p,450pc1,10MB

52

Figure 5.25: static,350MB ECDF

Figure 5.26: static,500p,0pc1,350MB Figure 5.27: static,0p,500pc1,350MB

Figure 5.28: static,250p,250pc1,350MB

Figure 5.29: static,450p,50pc1,350MB Figure 5.30: static,50p,450pc1,350MB

53

Figure 5.31: static,1000MB ECDF

Figure 5.32: static,500p,0pc1,1000MB Figure 5.33: static,0p,500pc1,1000MB

Figure 5.34: static,250p,250pc1,1000MB

Figure 5.35:
static,450p,50pc1,1000MB

Figure 5.36:
static,50p,450pc1,1000MB

54

5.5 Dynamic private Tracker

In this section the protocols are compared in a scenario of a small private
tracker with about 100 peers and a dynamic setup where new peers are
spawned with a probability defined by the simulation parameter SpawnRate.
After completing their download each round a peer evaluated if it is to re-
main in the swarm acting as a seeder, or leave, governed by the simulation
parameter LeaveRate.

All parameters for this scenario can be found in table 5.1. The ECDF
plots are shown in Figure 5.37 (small File size), Figure 5.43 (medium File
size) and Figure 5.49 (large File size). Additional plots can be found in
appendix at D.1.1 , D.1.2 and D.1.3.

It is very interesting to see the difference between the previously discussed
static simulations and the following two dynamic simulations. As was men-
tioned in the static private tracker scenario 5.3 there was found to be only
a minor difference between the modified and the traditional BT protocol for
small swarms. This is a strong contrast to the results acquired for a swarm
of similar size but a dynamic peer spawning behaviour. In the ECDF plots
presented, it is clearly visible that the difference in download performance
is strongest for short download times (e.g. the 10MB torrents) and declines
with longer download times (e.g the 350MB and 1000MB torrents).

In addition there is a strong contrast to the results achieved in mixed sce-
narios in the static scenario as described in 5.4. Where in the static scenario
both algorithms perform independently, it is clear that in the correspond-
ing dynamic scenario, the modified BT protocol is improving tremendously
with corresponding deficit of peers running the traditional protocol. This
is most visible in the short simulations (e.g 10MB Torrents) where a small
number of peers using the modified BT protocol (e.g. 90p10pc1) not only
clearly outperform their counterparts, but even making for the shortest over-
all download time. As the number of peers running the modified protocol
increases, the difference between peers running different protocol declines,
but as well as the absolute download time. The difference between both kind
of peers continues to decline with longer download times (e.g. 350MB and
1000MB Torrents) but is consistent.

55

Although the modified BT protocol in these scenarios seems to perform
better than the traditional protocol it is to remember that this is only true
for the mixed scenarios. Besides the dynamic,90p,10pc1,10MB scenario the
average peer download time of swarms consisting only of peers running the
traditional protocol (e.g 100p10MB, 100p350MB and 100p1000MB) give the
best results.

56

Figure 5.37: dynamic,10MB ECDF

Figure 5.38:
dynamic,100p,0pc1,10MB

Figure 5.39:
dynamic,0p,100pc1,10MB

Figure 5.40: dynamic,50p,50pc1,10MB

Figure 5.41:
dynamic,90p,10pc1,10MB

Figure 5.42:
dynamic,10p,90pc1,10MB

57

Figure 5.43: textbfdynamic,350MB ECDF

Figure 5.44:
dynamic,100p,0pc1,350MB

Figure 5.45:
dynamic,0p,100pc1,350MB

Figure 5.46: dynamic,50p,50pc1,350MB

Figure 5.47:
dynamic,90p,10pc1,350MB

Figure 5.48:
dynamic,10p,90pc1,350MB

58

Figure 5.49: dynamic,1000MB ECDF

Figure 5.50:
dynamic,100p,0pc1,1000MB

Figure 5.51:
dynamic,0p,100pc1,1000MB

Figure 5.52: dynamic,50p,50pc1,1000MB

Figure 5.53:
dynamic,90p,10pc1,1000MB

Figure 5.54:
dynamic,10p,90pc1,1000MB

59

5.6 Dynamic public Tracker

In this section a final and most realistic scenario is simulated. The swarm
consists of about 500 peers that join and after completion leave the swarm
depending on the simulation parameters SpawnRate and LeaveRate.

All parameters for this scenario can be found in table 5.1. The ECDF
plots are shown at Figure 5.55 (small File size), Figure 5.61 (medium File
size) and Figure 5.67 (large File size). Additional plots can be found in
appendix at E.1.1 , E.1.2 and E.1.3.

Two consistent effects that already have been described in the previous
scenarios dominate this simulation.

For one the difference in average download time of the two algorithms
decline with increasing total download time (e.g. the 350MB and 1000MB
Torrents) and secondly, the modified BT protocol remains to reduce the
average download time of the slowest peers and increase the average download
time of the fastest peers in a swarm.

As described in the previous scenario 5.5, peers running the modified
protocol benefit more of a mixed swarm than peers running the traditional
protocol. What was not visible in the previous scenario was that this effect
seems to decline with an increasing absolute download time. Where in the
10MB Torrent scenario the modified protocol clearly outperforms the tradi-
tional one, the situation is more complex in the 350MB and 1000MB Torrent
simulation. What remains valid is the fact that the download time for the
slowest peers is reduced through the modified protocol, but for peers with a
medium download capacity in some scenarios have a lower average download
time using the traditional protocol. This for example can be seen in the
mixed 350MB file scenario (i.e Figure E.52) where both algorithms have a
similar performance for the fastest and the slowest peers, but in the medium
capacity peers (15% - 83%) can complete their download faster with the
traditional protocol. For the simulation on big files (i.e Figure E.82) on the
other hand a smaller range of peers have a benefit of using the traditional
protocol and the slowest peers clearly are benefiting from the modification
applied.

In addition both algorithms tend to converge on the average download
time of their fastest peers in mixed swarms. Meaning that depending on the

60

ratio of modified and unmodified peers, the average download time tends to
equal the value of the corresponding pure swarm simulation.

61

Figure 5.55: dynamic,10MB ECDF

Figure 5.56:
dynamic,500p,0pc1,10MB

Figure 5.57:
dynamic,0p,500pc1,10MB

Figure 5.58: dynamic,250p,250pc1,10MB

Figure 5.59:
dynamic,450p,50pc1,10MB

Figure 5.60:
dynamic,50p,450pc1,10MB

62

Figure 5.61: dynamic,350MB ECDF

Figure 5.62:
dynamic,500p,0pc1,350MB

Figure 5.63:
dynamic,0p,500pc1,350MB

Figure 5.64: dynamic,250p,250pc1,350MB

Figure 5.65:
dynamic,450p,50pc1,350MB

Figure 5.66:
dynamic,50p,450pc1,350MB

63

Figure 5.67: dynamic,1000MB ECDF

Figure 5.68:
dynamic,500p,0pc1,1000MB

Figure 5.69:
dynamic,0p,500pc1,1000MB

Figure 5.70: dynamic,250p,250pc1,1000MB

Figure 5.71:
dynamic,450p,50pc1,1000MB

Figure 5.72:
dynamic,50p,450pc1,1000MB

64

5.7 Over all comparison

In this section a summary of the results found during the simulation of all four
type of scenarios is given. This includes a conclusion about the difference in
performance for both algorithms, as well as what have been found important
simulation parameters.

5.7.1 Simulated protocols

Over all simulations it was found that the average download time of peers
running the different protocols is performing quite similar, where for short
download times the difference is bigger and as the download time increases
the difference declines. The biggest difference can be found in the dynamic
scenario with small files and a private tracker 5.37 in which the modified
protocol clearly outperforms the traditional. The modifications analysed
therefore make sense to be adapted in an environment in which a small
number of peers share small files, as can be found in wireless ad-hoc networks
or similar scenarios.

In addition a second consistent effect is that the modified protocol is re-
ducing the variation in download time over all peers in the swarm. Increasing
the average download time for the fastest and reducing it for the slower peers
in a swarm. This can be used as a positive effect in an environment in which
soft quality of service is of importance, and a maximum download time is
tried to be guarantied. An additional scenario could be the distribution of
content in a system that can only precede to a following system sate when all
peers have completely received the shared data and reducing the download
time or the slowest peers increases the performance for the whole system.

5.7.2 Simulation itself

Besides effects that have been found in the behaviour of the both algorithms,
two main parameters or properties of Peer-to-Peer simulations themselves
have been found that have not been described or analysed in the literature
that makes for the basis of this work.

As mentioned earlier 5.1.1 one of the most important parameters of the
simulations has been found to be the swarm size; the number of peers as

65

well as the ratio of seeders and leechers, in the swarm. Where in the static
scenarios this can be controlled, the swarm size in the dynamic scenarios is a
result of system performance, churn and a random factor. It was found that
in general the average download time of each peer increases as the swarm
size grows, but it is not clear how this increase is governed by the swarm size
and more importantly which effect the number or ratio of seeders have.

A second important property of the simulations is the churn rate. In most
of the literature used for this work, simulations of what here is called static
swarms was performed, where all peers have been present in the simulation
from the start and after completing the download immediately leave the
swarm. The results received by the dynamic simulations have been found to
be quite different than their static counterparts and the magnitude of the
effects discussed in the previous section differ as well.

5.8 Further Research

Drawing from the overall conclusion of the previous section two important
fields of further research appear.

The churn rate of the system was modeled in a very basic matter through
only two scalar parameters (e.g. SpwanRate and LeaveRate). As this was
found to be an important property of the simulations it makes sense to in-
vestigate more sophisticated and realistic mechanism to be added to the
simulator. One can easily image a system where the SpawnRate is dynamic
and changes throughout the simulation to for example simulate a initial rush
into the swarm, followed by a continuous drop of popularity of the torrent
and therefore less and less new peers joining the swarm.

The second interesting field of further research can be the effect of swarm
size and seeder ratio on the average download time. This is tightly coupled to
the previous suggestions as the number of seeders in the current simulation
is only governed by the LeaveRate which is constant. Making this value
dynamic as well as the number of initial seeders would make it possible to
simulate a fast range of different scenarios and possible exposes a deeper
insight in the working of Peer-to-Peer systems.

66

Conclusion

In this work, a series of in the literature presented BitTorrent protocol im-
provements have fused and evaluated inside a simulator against the tradi-
tional protocol. The simulator used was specially developed for this work
and is publicly available. The achieved results show the modified protocol
to be superior in scenarios where small files are shared among few peers and
to balance the average download time among peers with different bandwidth
limitations. In addition future research topics haven be exposed that sug-
gest to investigate the effect of swarm size and churn rate on the average
download rate of peers.

Acknowledgement

This work was coordinated and overseen by Francesc Daniel Muñoz-Escóı.
The author would like to thank him in addition to Arvid Norberg and Ivana
Dzakula for their support.

67

Bibliography

[1] Dissecting BitTorrent: Five Months In Torrent’s Lifetime, 2004.

[2] Bit torrent simulator. http://research.microsoft.com/en-us/

downloads/20d68689-9a8d-44c0-80cd-66dfa4b0504b/, 2005.

[3] Azureus. http://sourceforge.net/projects/azureus/, 2011.

[4] Bitmate. http://www.dritte.org/bitmate.html, 2011.

[5] Bittorrent protocol on wikipedia. http://en.wikipedia.org/wiki/

BitTorrent_(protocol), 2011.

[6] Bittorrent protocol specification v1.0. http://wiki.theory.org/

BitTorrentSpecification, 2011.

[7] Internet observatory - real-time internet statistics. http://www.

internetobservatory.net/, 2011.

[8] Oneswarm. http://www.oneswarm.org, 2011.

[9] A open platform for developing, deploying, and accessing planetary-scale
services. http://www.planet-lab.org, 2011.

[10] Transmission. http://www.transmissionbt.com/, 2011.

[11] Tribler. http://www.tribler.org, 2011.

[12] utorrent keeps bittorrent lead, bitcomet
fades away. http://torrentfreak.com/

utorrent-keeps-bittorrent-lead-bitcomet-fades-away-110916/,
2011.

68

http://research.microsoft.com/en-us/downloads/20d68689-9a8d-44c0-80cd-66dfa4b0504b/
http://research.microsoft.com/en-us/downloads/20d68689-9a8d-44c0-80cd-66dfa4b0504b/
http://sourceforge.net/projects/azureus/
http://www.dritte.org/bitmate.html
http://en.wikipedia.org/wiki/BitTorrent_(protocol)
http://en.wikipedia.org/wiki/BitTorrent_(protocol)
http://wiki.theory.org/BitTorrentSpecification
http://wiki.theory.org/BitTorrentSpecification
http://www.internetobservatory.net/
http://www.internetobservatory.net/
http://www.oneswarm.org
http://www.planet-lab.org
http://www.transmissionbt.com/
http://www.tribler.org
http://torrentfreak.com/utorrent-keeps-bittorrent-lead-bitcomet-fades-away-110916/
http://torrentfreak.com/utorrent-keeps-bittorrent-lead-bitcomet-fades-away-110916/

[13] Vuze - bittorrent client. http://www.vuze.com, 2011.

[14] Eurliaf - a bittorrent like overlay peer simulator. https://github.com/
mapa17/Eruliaf, 2012.

[15] David R. Choffnes and Fabián E. Bustamante. Taming the torrent: a
practical approach to reducing cross-isp traffic in peer-to-peer systems.
In SIGCOMM, pages 363–374, 2008.

[16] B. Cohen. Incentives build robustness in bittorrent. In Proceedings of the
Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA, USA,
2003.

[17] Pedro Evangelista, Marcelo Amaral, Charles Miers, Walter Goya, Mar-
cos A. Simpĺıcio Jr., Tereza Cristina M. B. Carvalho, and Victor Souza.
Ebitsim: An enhanced bittorrent simulation using omnet++ 4. In MAS-
COTS, pages 437–440, 2011.

[18] Tao Guo, Xu Zhou, Hui Tang, and Zexu Wu. A peer selection algorithm
with consideration of both network topology information and node capa-
bility in p2p network. In Proceedings of the 2010 International Confer-
ence on Intelligent Computation Technology and Automation - Volume
01, ICICTA ’10, pages 293–298, Washington, DC, USA, 2010. IEEE
Computer Society.

[19] Kun Huang, Li’e Wang, Dafang Zhang, and Yongwei Liu. Optimizing
the bittorrent performance using an adaptive peer selection strategy.
Future Generation Comp. Syst., 24(7):621–630, 2008.

[20] Seung Jun and Mustaque Ahamad. Incentives in bittorrent induce free
riding. In Proceedings of the 2005 ACM SIGCOMM workshop on Eco-
nomics of peer-to-peer systems, P2PECON ’05, pages 116–121, New
York, NY, USA, 2005. ACM.

[21] Konstantinos V. Katsaros, Vasileios P. Kemerlis, Charilaos Stais, and
George Xylomenos. A bittorrent module for the omnet++ simulator. In
MASCOTS, pages 1–10, 2009.

[22] Nikolaos Laoutaris, Damiano Carra, and Pietro Michiardi. Uplink allo-
cation beyond choke/unchoke: or how to divide and conquer best. In
CoNEXT, page 18, 2008.

69

http://www.vuze.com
https://github.com/mapa17/Eruliaf
https://github.com/mapa17/Eruliaf

[23] Arnaud Legout, Guillaume Urvoy-Keller, and Pietro Michiardi. Rarest
first and choke algorithms are enough. In Internet Measurement Con-
ference, pages 203–216, 2006.

[24] Michael Piatek, Tomas Isdal, Thomas E. Anderson, Arvind Krishna-
murthy, and Arun Venkataramani. Do incentives build robustness in
bittorrent? (awarded best student paper). In NSDI, 2007.

[25] Dongyu Qiu and R. Srikant. Modeling and performance analysis of
bittorrent-like peer-to-peer networks. In Proceedings of the 2004 con-
ference on Applications, technologies, architectures, and protocols for
computer communications, SIGCOMM ’04, pages 367–378, New York,
NY, USA, 2004. ACM.

[26] Hendrik Schulze and Klaus Mochalski. Internet study 2008/2009. Africa,
pages 1–13, 2009.

[27] Weishuai Yang and Nael Abu-Ghazaleh. Gps: A general peer-to-peer
simulator and its use for modeling bittorrent. In Proceedings of the 13th
IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, pages 425–434, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

70

Appendix A

A.1 Statistic Summary example

The following is a plot of the statistic summary pdf tile generated as described
in section 4.2.3.

71

Listing A.1: ”Scenario example File”

1 #Scenar io : L i t t l e PeerC1 Net
2
3 [General]
4 #1024∗1024∗10 . . . 10MB
5 TorrentS ize = 10485760
6 #10Kb −> 1024 p i e c e s
7 P i e c e S i z e = 10240
8 SimEnd = 1800
9 #5Mb up / 1 kb down

10 SeederUpload = 655360
11 SeederDownload = 1024
12
13 #Parameters w i l l be changed during s imu la t i on
14 l o g F i l e = . / run /100 . l og
15 #logCfg = . / log . conf
16 l ogLeve l = INFO
17 s t a t s F i l e = . / run /100 . csv
18 randSeed = 100
19
20 [Peer]
21 n I n i t i a l P e e r s = 15
22 SpwanRate = 0.025
23 LeaveRate = 0.005
24 MaxSleep = 30
25
26 #64−256kb Up, 256−1024kb Down
27 #DirectUpload min 320 t i ck s , max 1280 t i c k s
28 #DirectDownload min 80 t i ck s , max 320
29 UploadRateMin = 8192
30 UploadRateMax = 32768
31 DownloadRateMin = 32768
32 DownloadRateMax = 131072
33
34 [PeerC1]
35 n I n i t i a l P e e r s = 15
36 SpwanRate = 0.025
37 LeaveRate = 0.005
38 MaxSleep = 30
39
40 #64−256kb Up, 256−1024kb Down
41 #DirectUpload min 320 t i ck s , max 1280 t i c k s
42 #DirectDownload min 80 t i ck s , max 320
43 UploadRateMin = 8192
44 UploadRateMax = 32768
45 DownloadRateMin = 32768
46 DownloadRateMax = 131072 75

Listing A.2: ”Simulation example File”

1 [General]
2 n I t e r a t i o n s = 4
3 nThreads = 4
4 i t e r a t i o n P r e f i x = run
5 s c e n a r i o = . / c o n f i g s / s c e n a r i o s /dynamic 50p 50pc1 1000MB . c f g
6 runDirectory = . / run/dynamic 50p 50pc1 1000MB
7 randSeedBase = 0
8 s t a t s S c r i p t = . /R/ c r e a t e S t a t i s t i c s . py
9 r S c r i p t = . /R/ S t a t i s t i c s .R

10 statsOutput = . / run/dynamic 50p 50pc1 1000MB/ statsData
11 logCfg = . / log . conf
12 l ogLeve l = INFO
13 statsSummaryDir = . / run/ r e s u l t s /dynamic 50p 50pc1 1000MB

76

Appendix B

B.1 Static Private Tracker - Simulation Re-

sults

B.1.1 Static private Tracker with small files

B.1.2 Static private Tracker with medium files

B.1.3 Static private Tracker with large files

77

Figure B.1: static,10MB Peer Count

Figure B.2: static,100p,0pc1,10MB Figure B.3: static,0p,100pc1,10MB

Figure B.4: static,50p,50pc1,10MB

Figure B.5: static,90p,10pc1,10MB Figure B.6: static,10p,90pc1,10MB

78

Figure B.7: static,10MB Average number of OU Slots

Figure B.8: static,100p,0pc1,10MB Figure B.9: static,0p,100pc1,10MB

Figure B.10: static,50p,50pc1,10MB

Figure B.11: static,90p,10pc1,10MB Figure B.12: static,10p,90pc1,10MB

79

Figure B.13: static,10MB Average number of TFT Slots

Figure B.14: static,100p,0pc1,10MB Figure B.15: static,0p,100pc1,10MB

Figure B.16: static,50p,50pc1,10MB

Figure B.17: static,90p,10pc1,10MB Figure B.18: static,10p,90pc1,10MB

80

Figure B.19: static,10MB Scaled upload rate

Figure B.20: static,100p,0pc1,10MB Figure B.21: static,0p,100pc1,10MB

Figure B.22: static,50p,50pc1,10MB

Figure B.23: static,90p,10pc1,10MB Figure B.24: static,10p,90pc1,10MB

81

Figure B.25: static,10MB Scaled download rate

Figure B.26: static,100p,0pc1,10MB Figure B.27: static,0p,100pc1,10MB

Figure B.28: static,50p,50pc1,10MB

Figure B.29: static,90p,10pc1,10MB Figure B.30: static,10p,90pc1,10MB

82

Figure B.31: static,10MB Peer Count

Figure B.32: static,100p,0pc1,10MB Figure B.33: static,0p,100pc1,10MB

Figure B.34: static,50p,50pc1,10MB

Figure B.35: static,90p,10pc1,10MB Figure B.36: static,10p,90pc1,10MB

83

Figure B.37: static,350MB Peer Count

Figure B.38: static,100p,0pc1,350MB Figure B.39: static,0p,100pc1,350MB

Figure B.40: static,50p,50pc1,350MB

Figure B.41: static,90p,10pc1,350MB Figure B.42: static,10p,90pc1,350MB

84

Figure B.43: static,350MB Average number of OU Slots

Figure B.44: static,100p,0pc1,350MB Figure B.45: static,0p,100pc1,350MB

Figure B.46: static,50p,50pc1,350MB

Figure B.47: static,90p,10pc1,350MB Figure B.48: static,10p,90pc1,350MB

85

Figure B.49: static,350MB Average number of TFT Slots

Figure B.50: static,100p,0pc1,350MB Figure B.51: static,0p,100pc1,350MB

Figure B.52: static,50p,50pc1,350MB

Figure B.53: static,90p,10pc1,350MB Figure B.54: static,10p,90pc1,350MB

86

Figure B.55: static,350MB Scaled upload rate

Figure B.56: static,100p,0pc1,350MB Figure B.57: static,0p,100pc1,350MB

Figure B.58: static,50p,50pc1,350MB

Figure B.59: static,90p,10pc1,350MB Figure B.60: static,10p,90pc1,350MB

87

Figure B.61: static,350MB Scaled download rate

Figure B.62: static,100p,0pc1,350MB Figure B.63: static,0p,100pc1,350MB

Figure B.64: static,50p,50pc1,350MB

Figure B.65: static,90p,10pc1,350MB Figure B.66: static,10p,90pc1,350MB

88

Figure B.67: static,350MB Peer Count

Figure B.68: static,100p,0pc1,350MB Figure B.69: static,0p,100pc1,350MB

Figure B.70: static,50p,50pc1,350MB

Figure B.71: static,90p,10pc1,350MB Figure B.72: static,10p,90pc1,350MB

89

Figure B.73: static,1000MB Peer Count

Figure B.74:
static,100p,0pc1,1000MB

Figure B.75:
static,0p,100pc1,1000MB

Figure B.76: static,50p,50pc1,1000MB

Figure B.77:
static,90p,10pc1,1000MB

Figure B.78:
static,10p,90pc1,1000MB

90

Figure B.79: static,1000MB Average number of OU Slots

Figure B.80:
static,100p,0pc1,1000MB

Figure B.81:
static,0p,100pc1,1000MB

Figure B.82: static,50p,50pc1,1000MB

Figure B.83:
static,90p,10pc1,1000MB

Figure B.84:
static,10p,90pc1,1000MB

91

Figure B.85: static,1000MB Average number of TFT Slots

Figure B.86:
static,100p,0pc1,1000MB

Figure B.87:
static,0p,100pc1,1000MB

Figure B.88: static,50p,50pc1,1000MB

Figure B.89:
static,90p,10pc1,1000MB

Figure B.90:
static,10p,90pc1,1000MB

92

Figure B.91: static,1000MB Scaled upload rate

Figure B.92:
static,100p,0pc1,1000MB

Figure B.93:
static,0p,100pc1,1000MB

Figure B.94: static,50p,50pc1,1000MB

Figure B.95:
static,90p,10pc1,1000MB

Figure B.96:
static,10p,90pc1,1000MB

93

Figure B.97: static,1000MB Scaled download rate

Figure B.98:
static,100p,0pc1,1000MB

Figure B.99:
static,0p,100pc1,1000MB

Figure B.100: static,50p,50pc1,1000MB

Figure B.101:
static,90p,10pc1,1000MB

Figure B.102:
static,10p,90pc1,1000MB

94

Figure B.103: static,1000MB Peer Count

Figure B.104:
static,100p,0pc1,1000MB

Figure B.105:
static,0p,100pc1,1000MB

Figure B.106: static,50p,50pc1,1000MB

Figure B.107:
static,90p,10pc1,1000MB

Figure B.108:
static,10p,90pc1,1000MB

95

Appendix C

96

C.1 Static Public Tracker - Simulation Re-

sults

C.1.1 Static private Tracker with small files

C.1.2 Static private Tracker with medium files

C.1.3 Static private Tracker with large files

97

Figure C.1: static,10MB Peer Count

Figure C.2: static,500p,0pc1,10MB Figure C.3: static,0p,500pc1,10MB

Figure C.4: static,250p,250pc1,10MB

Figure C.5: static,450p,50pc1,10MB Figure C.6: static,50p,450pc1,10MB

98

Figure C.7: static,10MB Average number of OU Slots

Figure C.8: static,500p,0pc1,10MB Figure C.9: static,0p,500pc1,10MB

Figure C.10: static,250p,250pc1,10MB

Figure C.11: static,450p,50pc1,10MB Figure C.12: static,50p,450pc1,10MB

99

Figure C.13: static,10MB Average number of TFT Slots

Figure C.14: static,500p,0pc1,10MB Figure C.15: static,0p,500pc1,10MB

Figure C.16: static,250p,250pc1,10MB

Figure C.17: static,450p,50pc1,10MB Figure C.18: static,50p,450pc1,10MB

100

Figure C.19: static,10MB Scaled upload rate

Figure C.20: static,500p,0pc1,10MB Figure C.21: static,0p,500pc1,10MB

Figure C.22: static,250p,250pc1,10MB

Figure C.23: static,450p,50pc1,10MB Figure C.24: static,50p,450pc1,10MB

101

Figure C.25: static,10MB Scaled download rate

Figure C.26: static,500p,0pc1,10MB Figure C.27: static,0p,500pc1,10MB

Figure C.28: static,250p,250pc1,10MB

Figure C.29: static,450p,50pc1,10MB Figure C.30: static,50p,450pc1,10MB

102

Figure C.31: static,350MB Peer Count

Figure C.32: static,500p,0pc1,350MB Figure C.33: static,0p,500pc1,350MB

Figure C.34: static,250p,250pc1,350MB

Figure C.35:
static,450p,50pc1,350MB

Figure C.36:
static,50p,450pc1,350MB

103

Figure C.37: static,350MB Average number of OU Slots

Figure C.38: static,500p,0pc1,350MB Figure C.39: static,0p,500pc1,350MB

Figure C.40: static,250p,250pc1,350MB

Figure C.41:
static,450p,50pc1,350MB

Figure C.42:
static,50p,450pc1,350MB

104

Figure C.43: static,350MB Average number of TFT Slots

Figure C.44: static,500p,0pc1,350MB Figure C.45: static,0p,500pc1,350MB

Figure C.46: static,250p,250pc1,350MB

Figure C.47:
static,450p,50pc1,350MB

Figure C.48:
static,50p,450pc1,350MB

105

Figure C.49: static,350MB Scaled upload rate

Figure C.50: static,500p,0pc1,350MB Figure C.51: static,0p,500pc1,350MB

Figure C.52: static,250p,250pc1,350MB

Figure C.53:
static,450p,50pc1,350MB

Figure C.54:
static,50p,450pc1,350MB

106

Figure C.55: static,350MB Scaled download rate

Figure C.56: static,500p,0pc1,350MB Figure C.57: static,0p,500pc1,350MB

Figure C.58: static,250p,250pc1,350MB

Figure C.59:
static,450p,50pc1,350MB

Figure C.60:
static,50p,450pc1,350MB

107

Figure C.61: static,1000MB Peer Count

Figure C.62:
static,500p,0pc1,1000MB

Figure C.63:
static,0p,500pc1,1000MB

Figure C.64: static,250p,250pc1,1000MB

Figure C.65:
static,450p,50pc1,1000MB

Figure C.66:
static,50p,450pc1,1000MB

108

Figure C.67: static,1000MB Average number of OU Slots

Figure C.68:
static,500p,0pc1,1000MB

Figure C.69:
static,0p,500pc1,1000MB

Figure C.70: static,250p,250pc1,1000MB

Figure C.71:
static,450p,50pc1,1000MB

Figure C.72:
static,50p,450pc1,1000MB

109

Figure C.73: static,1000MB Average number of TFT Slots

Figure C.74:
static,500p,0pc1,1000MB

Figure C.75:
static,0p,500pc1,1000MB

Figure C.76: static,250p,250pc1,1000MB

Figure C.77:
static,450p,50pc1,1000MB

Figure C.78:
static,50p,450pc1,1000MB

110

Figure C.79: static,1000MB Scaled upload rate

Figure C.80:
static,500p,0pc1,1000MB

Figure C.81:
static,0p,500pc1,1000MB

Figure C.82: static,250p,250pc1,1000MB

Figure C.83:
static,450p,50pc1,1000MB

Figure C.84:
static,50p,450pc1,1000MB

111

Figure C.85: static,1000MB Scaled download rate

Figure C.86:
static,500p,0pc1,1000MB

Figure C.87:
static,0p,500pc1,1000MB

Figure C.88: static,250p,250pc1,1000MB

Figure C.89:
static,450p,50pc1,1000MB

Figure C.90:
static,50p,450pc1,1000MB

112

Appendix D

D.1 Dynamic Private Tracker - Simulation

Results

D.1.1 Dynamic private Tracker with small files

D.1.2 Dynamic private Tracker with medium files

D.1.3 Dynamic private Tracker with large files

113

Figure D.1: dynamic,10MB Peer Count

Figure D.2: dynamic,100p,0pc1,10MB Figure D.3: dynamic,0p,100pc1,10MB

Figure D.4: dynamic,50p,50pc1,10MB

Figure D.5: dynamic,90p,10pc1,10MB Figure D.6: dynamic,10p,90pc1,10MB

114

Figure D.7: dynamic,10MB Average number of OU Slots

Figure D.8: dynamic,100p,0pc1,10MB Figure D.9: dynamic,0p,100pc1,10MB

Figure D.10: dynamic,50p,50pc1,10MB

Figure D.11:
dynamic,90p,10pc1,10MB

Figure D.12:
dynamic,10p,90pc1,10MB

115

Figure D.13: dynamic,10MB Average number of TFT Slots

Figure D.14:
dynamic,100p,0pc1,10MB

Figure D.15:
dynamic,0p,100pc1,10MB

Figure D.16: dynamic,50p,50pc1,10MB

Figure D.17:
dynamic,90p,10pc1,10MB

Figure D.18:
dynamic,10p,90pc1,10MB

116

Figure D.19: dynamic,10MB Scaled upload rate

Figure D.20:
dynamic,100p,0pc1,10MB

Figure D.21:
dynamic,0p,100pc1,10MB

Figure D.22: dynamic,50p,50pc1,10MB

Figure D.23:
dynamic,90p,10pc1,10MB

Figure D.24:
dynamic,10p,90pc1,10MB

117

Figure D.25: dynamic,10MB Scaled download rate

Figure D.26:
dynamic,100p,0pc1,10MB

Figure D.27:
dynamic,0p,100pc1,10MB

Figure D.28: dynamic,50p,50pc1,10MB

Figure D.29:
dynamic,90p,10pc1,10MB

Figure D.30:
dynamic,10p,90pc1,10MB

118

Figure D.31: dynamic,350MB Peer Count

Figure D.32:
dynamic,100p,0pc1,350MB

Figure D.33:
dynamic,0p,100pc1,350MB

Figure D.34: dynamic,50p,50pc1,350MB

Figure D.35:
dynamic,90p,10pc1,350MB

Figure D.36:
dynamic,10p,90pc1,350MB

119

Figure D.37: dynamic,350MB Average number of OU Slots

Figure D.38:
dynamic,100p,0pc1,350MB

Figure D.39:
dynamic,0p,100pc1,350MB

Figure D.40: dynamic,50p,50pc1,350MB

Figure D.41:
dynamic,90p,10pc1,350MB

Figure D.42:
dynamic,10p,90pc1,350MB

120

Figure D.43: dynamic,350MB Average number of TFT Slots

Figure D.44:
dynamic,100p,0pc1,350MB

Figure D.45:
dynamic,0p,100pc1,350MB

Figure D.46: dynamic,50p,50pc1,350MB

Figure D.47:
dynamic,90p,10pc1,350MB

Figure D.48:
dynamic,10p,90pc1,350MB

121

Figure D.49: dynamic,350MB Scaled upload rate

Figure D.50:
dynamic,100p,0pc1,350MB

Figure D.51:
dynamic,0p,100pc1,350MB

Figure D.52: dynamic,50p,50pc1,350MB

Figure D.53:
dynamic,90p,10pc1,350MB

Figure D.54:
dynamic,10p,90pc1,350MB

122

Figure D.55: dynamic,350MB Scaled download rate

Figure D.56:
dynamic,100p,0pc1,350MB

Figure D.57:
dynamic,0p,100pc1,350MB

Figure D.58: dynamic,50p,50pc1,350MB

Figure D.59:
dynamic,90p,10pc1,350MB

Figure D.60:
dynamic,10p,90pc1,350MB

123

Figure D.61: dynamic,1000MB Peer Count

Figure D.62:
dynamic,100p,0pc1,1000MB

Figure D.63:
dynamic,0p,100pc1,1000MB

Figure D.64: dynamic,50p,50pc1,1000MB

Figure D.65:
dynamic,90p,10pc1,1000MB

Figure D.66:
dynamic,10p,90pc1,1000MB

124

Figure D.67: dynamic,1000MB Average number of OU Slots

Figure D.68:
dynamic,100p,0pc1,1000MB

Figure D.69:
dynamic,0p,100pc1,1000MB

Figure D.70: dynamic,50p,50pc1,1000MB

Figure D.71:
dynamic,90p,10pc1,1000MB

Figure D.72:
dynamic,10p,90pc1,1000MB

125

Figure D.73: dynamic,1000MB Average number of TFT Slots

Figure D.74:
dynamic,100p,0pc1,1000MB

Figure D.75:
dynamic,0p,100pc1,1000MB

Figure D.76: dynamic,50p,50pc1,1000MB

Figure D.77:
dynamic,90p,10pc1,1000MB

Figure D.78:
dynamic,10p,90pc1,1000MB

126

Figure D.79: dynamic,1000MB Scaled upload rate

Figure D.80:
dynamic,100p,0pc1,1000MB

Figure D.81:
dynamic,0p,100pc1,1000MB

Figure D.82: dynamic,50p,50pc1,1000MB

Figure D.83:
dynamic,90p,10pc1,1000MB

Figure D.84:
dynamic,10p,90pc1,1000MB

127

Figure D.85: dynamic,1000MB Scaled download rate

Figure D.86:
dynamic,100p,0pc1,1000MB

Figure D.87:
dynamic,0p,100pc1,1000MB

Figure D.88: dynamic,50p,50pc1,1000MB

Figure D.89:
dynamic,90p,10pc1,1000MB

Figure D.90:
dynamic,10p,90pc1,1000MB

128

Appendix E

E.1 Dynamic Public Tracker - Simulation Re-

sults

E.1.1 Dynamic private Tracker with small files

E.1.2 Dynamic private Tracker with medium files

E.1.3 Dynamic private Tracker with large files

129

Figure E.1: dynamic,10MB Peer Count

Figure E.2: dynamic,500p,0pc1,10MB Figure E.3: dynamic,0p,500pc1,10MB

Figure E.4: dynamic,250p,250pc1,10MB

Figure E.5:
dynamic,450p,50pc1,10MB

Figure E.6:
dynamic,50p,450pc1,10MB

130

Figure E.7: dynamic,10MB Average number of OU Slots

Figure E.8: dynamic,500p,0pc1,10MB Figure E.9: dynamic,0p,500pc1,10MB

Figure E.10: dynamic,250p,250pc1,10MB

Figure E.11:
dynamic,450p,50pc1,10MB

Figure E.12:
dynamic,50p,450pc1,10MB

131

Figure E.13: dynamic,10MB Average number of TFT Slots

Figure E.14:
dynamic,500p,0pc1,10MB

Figure E.15:
dynamic,0p,500pc1,10MB

Figure E.16: dynamic,250p,250pc1,10MB

Figure E.17:
dynamic,450p,50pc1,10MB

Figure E.18:
dynamic,50p,450pc1,10MB

132

Figure E.19: dynamic,10MB Scaled upload rate

Figure E.20:
dynamic,500p,0pc1,10MB

Figure E.21:
dynamic,0p,500pc1,10MB

Figure E.22: dynamic,250p,250pc1,10MB

Figure E.23:
dynamic,450p,50pc1,10MB

Figure E.24:
dynamic,50p,450pc1,10MB

133

Figure E.25: dynamic,10MB Scaled download rate

Figure E.26:
dynamic,500p,0pc1,10MB

Figure E.27:
dynamic,0p,500pc1,10MB

Figure E.28: dynamic,250p,250pc1,10MB

Figure E.29:
dynamic,450p,50pc1,10MB

Figure E.30:
dynamic,50p,450pc1,10MB

134

Figure E.31: dynamic,350MB Peer Count

Figure E.32:
dynamic,500p,0pc1,350MB

Figure E.33:
dynamic,0p,500pc1,350MB

Figure E.34: dynamic,250p,250pc1,350MB

Figure E.35:
dynamic,450p,50pc1,350MB

Figure E.36:
dynamic,50p,450pc1,350MB

135

Figure E.37: dynamic,350MB Average number of OU Slots

Figure E.38:
dynamic,500p,0pc1,350MB

Figure E.39:
dynamic,0p,500pc1,350MB

Figure E.40: dynamic,250p,250pc1,350MB

Figure E.41:
dynamic,450p,50pc1,350MB

Figure E.42:
dynamic,50p,450pc1,350MB

136

Figure E.43: dynamic,350MB Average number of TFT Slots

Figure E.44:
dynamic,500p,0pc1,350MB

Figure E.45:
dynamic,0p,500pc1,350MB

Figure E.46: dynamic,250p,250pc1,350MB

Figure E.47:
dynamic,450p,50pc1,350MB

Figure E.48:
dynamic,50p,450pc1,350MB

137

Figure E.49: dynamic,350MB Scaled upload rate

Figure E.50:
dynamic,500p,0pc1,350MB

Figure E.51:
dynamic,0p,500pc1,350MB

Figure E.52: dynamic,250p,250pc1,350MB

Figure E.53:
dynamic,450p,50pc1,350MB

Figure E.54:
dynamic,50p,450pc1,350MB

138

Figure E.55: dynamic,350MB Scaled download rate

Figure E.56:
dynamic,500p,0pc1,350MB

Figure E.57:
dynamic,0p,500pc1,350MB

Figure E.58: dynamic,250p,250pc1,350MB

Figure E.59:
dynamic,450p,50pc1,350MB

Figure E.60:
dynamic,50p,450pc1,350MB

139

Figure E.61: dynamic,1000MB Peer Count

Figure E.62:
dynamic,500p,0pc1,1000MB

Figure E.63:
dynamic,0p,500pc1,1000MB

Figure E.64: dynamic,250p,250pc1,1000MB

Figure E.65:
dynamic,450p,50pc1,1000MB

Figure E.66:
dynamic,50p,450pc1,1000MB

140

Figure E.67: dynamic,1000MB Average number of OU Slots

Figure E.68:
dynamic,500p,0pc1,1000MB

Figure E.69:
dynamic,0p,500pc1,1000MB

Figure E.70: dynamic,250p,250pc1,1000MB

Figure E.71:
dynamic,450p,50pc1,1000MB

Figure E.72:
dynamic,50p,450pc1,1000MB

141

Figure E.73: dynamic,1000MB Average number of TFT Slots

Figure E.74:
dynamic,500p,0pc1,1000MB

Figure E.75:
dynamic,0p,500pc1,1000MB

Figure E.76: dynamic,250p,250pc1,1000MB

Figure E.77:
dynamic,450p,50pc1,1000MB

Figure E.78:
dynamic,50p,450pc1,1000MB

142

Figure E.79: dynamic,1000MB Scaled upload rate

Figure E.80:
dynamic,500p,0pc1,1000MB

Figure E.81:
dynamic,0p,500pc1,1000MB

Figure E.82: dynamic,250p,250pc1,1000MB

Figure E.83:
dynamic,450p,50pc1,1000MB

Figure E.84:
dynamic,50p,450pc1,1000MB

143

Figure E.85: dynamic,1000MB Scaled download rate

Figure E.86:
dynamic,500p,0pc1,1000MB

Figure E.87:
dynamic,0p,500pc1,1000MB

Figure E.88: dynamic,250p,250pc1,1000MB

Figure E.89:
dynamic,450p,50pc1,1000MB

Figure E.90:
dynamic,50p,450pc1,1000MB

144

	Abstract
	Introduction
	1 BitTorrent Protocol
	1.1 Overview
	1.2 Short history on the BitTorrent protocol and client
	1.2.1 Evolution of the BitTorrent protocol

	1.3 Peer selection and Bandwidth Scheduling
	1.3.1 Overview
	1.3.2 Choke/un-choke
	1.3.3 Tit-for-Tat Algorithm
	1.3.4 Free Riders
	1.3.5 Optimistic un-choking Algorithm
	1.3.6 Peer discovery and Bootstrapping

	2 Literature
	2.1 Introduction
	2.2 Survey on Methods to optimizing network usage
	2.2.1 Taming the Torrent
	2.2.2 A more complex Model
	2.2.3 Discussion
	2.2.4 Conclusion

	2.3 Survey on Bandwidth scheduling Algorithms
	2.3.1 The more the better
	2.3.2 A good friend is better than a thousand colleagues
	2.3.3 Balance of Powers

	2.4 Conclusion

	3 Proposed modifications
	3.1 Variable number of TFT and OU Slots
	3.2 Enhanced Peer Discovery and Bandwidth controlling
	3.3 Greedy TFT allocation

	4 Simulation and Evaluation
	4.1 Methods of evaluation
	4.1.1 Real-world clients and client extensions
	4.1.2 Simulation

	4.2 Eruliaf
	4.2.1 Introduction
	4.2.2 Simulation and Scenario files
	4.2.3 Generated Statistics and evaluation
	4.2.4 Implementation Details

	5 Results
	5.1 Simulation scenarios
	5.1.1 Swarm Size

	5.2 Simulation results
	5.3 Static private Tracker
	5.4 Static public Tracker
	5.5 Dynamic private Tracker
	5.6 Dynamic public Tracker
	5.7 Over all comparison
	5.7.1 Simulated protocols
	5.7.2 Simulation itself

	5.8 Further Research

	Conclusion
	Acknowledgement
	Bibliography
	Appendix
	A
	A.1 Statistic Summary example

	B
	B.1 Static Private Tracker - Simulation Results
	B.1.1 Static private Tracker with small files
	B.1.2 Static private Tracker with medium files
	B.1.3 Static private Tracker with large files

	C
	C.1 Static Public Tracker - Simulation Results
	C.1.1 Static private Tracker with small files
	C.1.2 Static private Tracker with medium files
	C.1.3 Static private Tracker with large files

	D
	D.1 Dynamic Private Tracker - Simulation Results
	D.1.1 Dynamic private Tracker with small files
	D.1.2 Dynamic private Tracker with medium files
	D.1.3 Dynamic private Tracker with large files

	E
	E.1 Dynamic Public Tracker - Simulation Results
	E.1.1 Dynamic private Tracker with small files
	E.1.2 Dynamic private Tracker with medium files
	E.1.3 Dynamic private Tracker with large files

