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1 Summary  

The aim of this paper is to present a didactic overview of the operation of the 
Discrete Wavelet Transform (DWT). Unlike the Fast Fourier Transform (FFT), extensively 
exploited to analyze stationary quantities, the DWT is a signal processing tool which 

is especially suited for the analysis of non-stationary signals. These signals are 
present in a countless number of everyday applications and processes. Hence, the 
use of suitable tools for their processing, such as the DWT, is a topic of increasing 
relevance. 

In this particular work, the bases of the DWT are reviewed. The operation of the tool 
is briefly described under an engineering perspective, without deepening in 
complex mathematical details, which are easily available in well-known references. 
Some illustrative examples of the practical operation of the tool are included in the 
final part of the document. 

2 Introduction 

Stationary signals are signals whose spectral characteristics do not change with 
time. Nonetheless, most signals in the nature do not have this characteristic. Instead, 
these signals have a time-varying spectral content. A very obvious one is the human 
speech, in which frequencies change as we speak. In fact, the transmitted 
message relies upon the frequency change and on the time sequencing of the 
frequencies [5]. These signals are known as ‘non-stationary’ signals, due to the fact 
that their basic spectral features do not remain constant but change with time.  

In order to analyze non-stationary signals, the FFT is not longer suitable. Note that in 
the case, since the frequencies change with time, the analysis tool must be 
capable of extracting the time evolution of the frequency components present in 
the analyzed signal. FFT analysis does not enable this, since it implies a loss of time 

information. In order words, FFT only extracts the frequency content of the analyzed 
signal, but it does not inform on when each frequency occurs. 

As an example, consider the following function, which has been built as an addition 
of four sinusoidal signals with similar amplitudes and with frequencies 5, 15, 30 and 
50 Hz: 

       )502cos()302cos()152cos()52cos()( tttttf ⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅= ππππ   

Equation 1. Function based on the addition of four sinusoidal signals. 

Figure 1(a) shows the representation of the function f(t), given by Equation 1. It can 

be observed that all frequencies are present at every time. Hence, the signal has a 
stationary nature, considered as the invariability of its basic spectral features with 
time. Figure 1(b) shows its FFT analysis: it reveals four frequency ‘peaks’ at the 
aforementioned frequencies. 

On the other hand, consider now the function depicted in Figure 2(a); in that 

function, the same frequency components appear but, in this case, they occur at 
different time instants. The signal in this case is no longer stationary. Figure 2(b) 



 

 

 

shows the FFT analysis of this signal: it also reveals the presence of four ‘peaks’ at the 
corresponding frequencies. 
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(a)                                                                 (b) 

Figure 1. (a) Representation of f(t), (b)FFT analysis of f(t) 
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(a)                                                                 (b) 

Figure 2. (a) Different frequencies at different times, (b)FFT analysis 

These examples illustrate one of the drawbacks of the FFT analysis: since the 
transform implies a loss of time information, simply extracting the frequency 
components, two rather different signals (such as those plotted in Figure 1(a) and 
Figure 2(a)) can have similar representations in terms of their FFT spectra. In other 
words, the FFT only extracts the frequency content of a signal, which may be 
enough for stationary signals, but not for non-stationary, in which the knowledge of 
the time at which each frequency occurs is fundamental for the comprehension of 
the signal structure.  

In this context is where novel time-frequency decomposition (TFD) tools, suited for 
the analysis of non-stationary signals rise. These tools enable to extract, not only the 

frequency content present in a certain signal, but also the time information (i.e. 
when the frequencies occur). The TFD tools lead to a time-frequency representation 
of the analyzed signal.   
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3 Objetives 

The present work has three main goals: 

� To explain the operation of a particular TFD tool, the Discrete Wavelet 
Transform, under an engineering perspective, without getting into complex 

mathematical details that are available in well-known references. 

� To provide several illustrative examples facilitating the comprehension of the 
DWT operation. 

� To review the advantages and drawbacks of the transform, in comparison 
with classical FFT analysis and with other TFD tools. 

    The present work can be especially useful for students or researchers involved in 
the study of applications implying the analysis of non-stationary signals. In this 
context, the DWT has recently revealed itself as a very powerful tool, providing 
important advantages versus other techniques.   

4 Development 

4.1 Foundations 

When the Discrete Wavelet Transform (DWT) is applied to a certain sampled function 
s(t), this function is decomposed as the addition of a set of signals, named wavelet 
signals: an approximation signal at a certain decomposition level n (an) plus n detail 
signals (dj  with j varying from 1 to n). The mathematical expression characterizing this 

process is given by Equation 2, where j

i

n

i βα ,  are the scaling and wavelet 

coefficients, φn
(t), ψ

j
(t) are the scaling function at level n and wavelet function at 

level j, respectively, and n is the decomposition level [1-3]. 

 

 

 

Equation 2. Decomposition of the signal s(t) in terms of wavelet signals. 

Each one of the wavelet signals (approximation and detail) has an associated 

frequency band, the limits of which are well-established, once the sampling rate (fs) 
of the original analyzed signal is known, in accordance with an algorithm 
enunciated by S. Mallat (Subband Coding Algorithm) [2]. The expressions used to 
calculate the limits of the frequency bands associated with each wavelet signal, 
according to the Mallat algorithm, are specified in Figure 3 [4]. It is observed how the 
limits of the frequency band for each wavelet signal depend on the sampling rate 

(fs) as well as on the level of the corresponding wavelet signal (j). As an example, if 
the sampling rate used for capturing s(t) is fs=10000 samples/second, and we 

perform the DWT decomposition in n=8 levels, the frequency bands associated with 
each wavelet signal are those specified in Table I.   
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Figure 3. DWT decomposition in wavelet signals and associated frequency bands  

Wavelet signal Frequency band 

a8 [0-19’5] Hz 

d8 [19’5-39] Hz 

d7 [39-78’1] Hz 

d6 [78’1-156’2] Hz 

d5 [156’2-312’5] Hz 

d4 [312’5-625] Hz 

d3 [625-1250] Hz 

d2 [1250-2500] Hz 

d1 [2500-5000] Hz 
Table 1. Frequency bands associated with wavelet signals for fs=10 kHz and n=8 

 

The intuitive idea underlying the application of the DWT relies on the following fact: 
each one of the wavelet signal acts as a filter, extracting the temporal evolution of 
the components of the original signal contained within the frequency band 

associated with that wavelet signal. For instance, in the previous example, the 
wavelet signal d7 (detail signal 7) will reflect the time evolution of every harmonic 
component of the original signal when its frequency falls in the band [39-78’1] Hz. For 
instance, if the signal is a pure 50 Hz sinusoidal waveform, the whole signal evolution 
would be reflected in that signal d7.  

In conclusion, the DWT performs a dyadic band-pass filtering process in frequency 

bands whose limits depend on fs and on n. This filtering is illustrated in Figure 4.    
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Figure 4. Dyadic filtering process carried out by the DWT  



 

 

 

4.2 Examples 

   In this section, several didactic examples of the operation of the DWT are 
explained. They are useful to understand how the transform works in a very simple 
way. In all three examples, the DWT decomposition is carried out in n=9 levels and 
DB-44 is used as mother wavelet for the analyses. The corresponding frequency 
bands associated with each wavelet signal are specified beside each figure. 

4.2.1 Example 1: DWT analysis of a pure sinusoidal signal 

Figure 5 shows the DWT decomposition for the case of a 50 Hz pure sinusoidal 
signal (signal s, plotted at the top of the figure). It is observed how, in 

accordance with the filtering process carried out by the transform, the whole 
signal is filtered into the detail signal d7. This is due to the fact that this signal 
reflects the evolution of every component evolving within the range [39-
78,1]Hz. Since there is a single 50 Hz component in the original signal, d7 
exactly reflects the evolution of the whole component and, hence, of the 

signal. The rest of wavelet signals are approximately zero, since no other 
frequency component exist in the original signal.    
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Figure 5. DWT analysis of a 50 Hz pure sinusoidal signal 

4.2.2 Example 2: Superposition of sinusoidal signals 

Figure 6 shows the DWT analysis of a signal s (plotted at the top of that figure) 

which has been built by adding four sinusoidal signals with respective 
frequencies 5 Hz, 15 Hz, 30 Hz and 50 Hz. The result is a stationary signal in which 
all four frequencies are present at every time. The filtering nature of the DWT 
enables to extract each frequency component in a separate wavelet signal, 
in agreement with the values of their respective band limits. As it is observed, 
the 5Hz component is filtered in a9, the 15 Hz component in d9, the 30 Hz 

component in d8 and the 50 Hz component in d7, remaining almost zero the 



 

 

 

rest of signals, since no other components exist within their bands. This example 
illustrates the filtering process carried out by the transform and its ability to 
separate the different components of the signals, provided that they fall in 
different frequency bands covered by the wavelet signals. 
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Figure 6. DWT analysis of a signal based on the superposition of four sinusoidal signals 

with frequencies 5 Hz, 15 Hz, 30 Hz and 50 Hz. 

4.2.3 Example 3: Concatenation of sinusoidal signals 

Figure 7 represents the DWT analysis of a signal s (plotted at the top of the 
figure) which has been built by concatenating four sinusoidal signals with 
respective frequencies 5 Hz, 15 Hz, 30 Hz and 50 Hz. The result is a non-

stationary signal, in which each frequency component is present only during its 
corresponding time interval.  

The application of the DWT leads to filter each component in the wavelet 
signal covering the frequency band in which it is included. Hence, the 5Hz 
component is filtered in a9, the 15 Hz component in d9, the 30 Hz component 
in d8 and the 50 Hz component in d7, remaining almost zero the rest of signals 

since no components exist within their bands. Moreover, the transform 
indicates when each component starts and ends in the analyzed signal; for 
instance, a9 shows how the 5 Hz component is present during the initial 0,25 
seconds, d9 shows that the 15 Hz component is present between 0,25 and 0,5 
s, d8 reveals that the 30 Hz component occurs between 0,5 and 0,75 seconds 
and, finally, d7 shows that the 50 Hz component is present between 0,75 and 1 

second.  

This example illustrates a clear advantage of the DWT versus the classical FFT 
approach. Whereas with the FFT, the time information was lost and two rather 
different signals (such as those analyzed in Examples 2 and 3) could be 
represented by similar FFT spectra (see Figures 1 and 2), the DWT preserves the 
time information, enabling to identify not only which frequencies are present 



 

 

 

but also when they occur. Therefore, DWT leads to a three-dimensional 
representation of the analyzed signal: frequency (because each wavelet 
signal covers a frequency band), time (since each wavelet signal is 
represented versus time) and amplitude (the amplitude of the wavelet signal 
informs on the corresponding amplitude of its filtered components in the 
analyzed signal). This is why DWT is known as a time-frequency decomposition 

tool.     
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Figure 7. DWT analysis of a signal based on the concatenation of four sinusoidal signals 

with frequencies 5 Hz, 15 Hz, 30 Hz and 50 Hz. 

5 Closing 

This work has presented a basic overview of the operation of the Discrete Wavelet 
Transform (DWT). This is a time-frequency decomposition tool which has been used 
with success for the analysis of non-stationary signals, overcoming some drawbacks 
of the FFT when analyzing such signals, such as the loss of time information. The DWT 
enables a band pass filtering of the analyzed signal in well-established frequency 
bands. Moreover, it preserves the time information, since each wavelet signal in 
represented versus time. 

The intention of the work has been to introduce the operation of the transform 
under a simple engineering perspective, without deepening in its mathematical 
background, which is easily accessible in well-known textbooks. In this regard, the 
work emphasizes the filtering process carried out by the transform, detailing the 

expressions to calculate the limits of the bands associated with the different 
wavelet signals. Moreover, some examples illustrating the operation of the 
transform are included: the analysis of a pure sinusoidal signal, the analysis of a 
signal based on the superposition of sinusoidal signals and the analysis of a signal 
based on the concatenation of sinusoidal signals. All three didactic examples are 
useful to show how the wavelet signals operate.  



 

 

 

 

   As a conclusion of the ideas exposed in this work we can summarize some of the 
the advantages of the DWT in the following points: 

- Simplicity 

- General availability of the DWT algorithm in conventional software packages. 

- Easy interpretation of the results 

- Low computational burden 

 

     With regards to its drawbacks we can remark, among other, the following ones: 

- Lower flexibility (limits of the bands are fixed, once the sampling rate is known) 

- Reduced frequency resolution for the high frequencies 

- Possible difficult discrimination of components when they fall within the same 

band.  
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