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We propose and analyze a novel (to our knowledge) approach to implement the spectral self-imaging effect of optical
frequency combs. The technique is based on time-domain multilevel phase-only modulation of a periodic optical
pulse train. The method admits both infinite- and finite-duration periodic pulse sequences. We show that the frac-
tional spectral self-imaging effect allows one to reduce by an integer factor the comb frequency spacing. Numerical

simulation results support our theoretical analysis.
OCIS codes:

The temporal self-imaging effect, or temporal Talbot ef-
fect, occurs when periodic trains of transform-limited op-
tical pulses with repetition period 7', propagate through
a quadratic phase-only filter, e. g., a dispersive medium in
a first-order approximation. An appropriate amount of
dispersion, given by the so-called Talbot condition, leads
either to reproduction of the original pulse train (integer
temporal Talbot effect) [1] or to repetition-rate multipli-
cation by an integer factor (fractional temporal Talbot
effect) [2], as shown in Fig. 1(a). In addition, for other
well-known dispersion values, a temporal delay equal
to half of the period of the output pulse train is obtained
(inverted Talbot effect). Traditional implementations of
the temporal Talbot effect include standard single-mode
fibers [3] and linearly chirped fiber Bragg gratings [4]. In
the frequency domain, a periodic pulse train is described
by an optical frequency comb with frequency spacing
equal to the pulse repetition rate, i.e., fo, = 1/Tep, as
shown in Fig. 1(a).

Similarly, the spectral self-imaging effect, or spectral
Talbot effect, occurs when a periodic sequence of pulses
is globally chirped by an optical phase-only modulator
with a quadratic time-domain response. Under specific
temporal chirping conditions, the comb frequency spa-
cing is reduced by an integer factor while the comb en-
velope is unchanged, as shown in Fig. 2(a). For other
chirping conditions, a frequency shifting effect is ob-
served in the frequency comb. The first proposal on these
spectral Talbot effects [5] assumed a particular chirping
mechanism based on cross-phase modulation with a long
Gaussian pump pulse. This approach, however, only ad-
mits periodic pulse sequences with limited time duration,
due to the intrinsic finite extent of the chirping effect pro-
duced by the long Gaussian pump pulse.

In this Letter, we propose a novel approach for the
practical implementation of the spectral self-imaging ef-
fect. The technique requires the time-domain multishift
phase modulation of an input pulse train. This phenom-
enon exhibits interesting features, including tunability in
comb frequency spacing and the ability of comb fre-

eps

0146-9592/11/060858-03$15.00/0

© 2011 Optical Society of America
070.6760, 320.5540, 060.4080, 320.1590, 320.7085.

quency shifting, which can find practical application in
optical communications [6] and optical signal processing
[7]. Our theoretical proposal is confirmed by numerical
simulations.

First, let us assume the propagation of a periodic pulse
train through a general quadratic phase-only optical fil-
ter, described by the spectral transfer function H(w) =
exp(i®,0?/2), where @, is the so-called group delay
dispersion coefficient [2]. When the value of @, verifies
the well-known temporal Talbot condition [2],

2
®, =2 =F

1
T Wrep (1)
an undistorted and multiplied copy of the initial pulse
train is obtained. In this expression, s and r are mutually
prime integer numbers , and wye, = 27f ¢, is the repeti-
tion rate of the original pulse train. The pulse multiplica-
tion factor is given by the integer ». In Fig. 1(a), we
schematically show an example of the temporal Talbot
effect with r = 2.
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Fig. 1. Illustration of the temporal Talbot effect using (a) a
quadratic phase-only filter and (b) line-by-line phase-only filter-
ing. In both cases, two-times repetition-rate multiplication is
shown, i.e., r =2 [Egs. (1) and (2), respectively].
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Fig. 2. Illustration of the spectral Talbot effect (a) using quad-
ratic phase modulation in the time domain (time lens) and
(b) by multilevel time phase modulation. In both examples, r =
2 [Egs. (3) and (4), respectively], so that the frequency spacing
is reduced by a factor of 2.

It is important to note that the application of continu-
ous quadratic phase filtering is only a particular option to
obtain the temporal Talbot effect. In general, there exists
a family of periodic Talbot filters [8] for pulse repetition-
rate multiplication. In addition, continuous quadratic
phase filtering is unnecessary to obtain the temporal Tal-
bot effect. In fact, only the spectral phases at frequencies
equal to the discrete spectral lines of the frequency
comb, w,, = @y + Ny, are relevant, where wy is the op-
tical carrier frequency and 7 is an integer. The Talbot
condition [Eq. (1)] provides the phase shifts that must be
applied to the different spectral lines to obtain repetition-
rate multiplication [9]:

Plw,) = ﬂ:;ﬂ"l’lz. (2)

Individual control of the phase on each spectral comb
component can be achieved by using the so-called spec-
tral line-by-line shaping approach [10]. A traditional im-
plementation of line-by-line shaping involves spectral
(de)multiplexing with a diffraction grating [10] and phase
control with arrayed modulators [11]. In practice, the ac-
tual phase shifts in Eq. (2) are usually applied modulo 2z,
which yields a periodic Talbot phase filter. This line-by-
line phase-filtering technique constitutes an alternative
approach to implement the temporal Talbot effect, as re-
ported in [9]. Figure 1(b) illustrates the case of two-times
repetition-rate multiplication by applying the periodic
phase filter {0, z/2,0, z/2, ...}, which results from Eq. (2)
with s = 1, » = 2. We note that only the intensity profile is
multiplied, and the output train exhibits a pulse-to-pulse
phase variation, not shown in the figure.

By performing a heuristic analysis, we now investigate
the Talbot effect in frequency domain. If the time and
spectrum domains are exchanged, it is clear from the
above theory that the spectral counterpart of the stan-
dard temporal Talbot effect occurs when a periodic pulse
train is globally chirped by a quadratic temporal phase
modulation, i.e., k(t) = exp(ipt®), where ¢ is the chirp
parameter, as shown in Fig. 2(a). The Talbot condition
on the chirp parameter is directly obtained from
Eq. (1), resulting in the expression
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where s and 7 are again mutually prime integer numbers.
In the framework of the space-time duality [12], the effect
of the temporal chirp is associated with the action of a
time lens. In practice, this chirping effect can be achieved
using, for example, electro-optic modulation [13] or four-
wave mixing [14]. The reported condition (3) constitutes
a generalization of the result derived by Azana [5] for a
particular time-lens mechanism based on cross-phase
modulation. Of course, our condition [Eq. (3)] repro-
duces the result in [5] when the chirp coefficient ¢ is
expressed in terms of the parameters involved in the
cross-phase modulation process, e. g., the pump peak
power and the nonlinear medium coefficient.

Similarly, again by exchanging the time and frequency
domains, it is straightforward to conclude that an appro-
priate time-domain periodic multistep phase modulation
of a pulse train also leads to the spectral self-imaging ef-
fect. The phase shifts are directly derived from Eq. (2),
yielding

S
Pn = iq_ﬂ”nzv (4)

where ¢, is the phase shift applied on the pulse 7 in the
sequence. These phase shifts can be assumed to be ap-
plied on time slots equal to the pulse repetition rate
T'ep- In practice, however, it would be sufficient to guar-
antee that the same phase shift is applied along the whole
pulse duration. If these phase shifts are reduced to a 2z
range, a periodic sequence of phase steps is obtained. A
schematic diagram of the spectral Talbot effect by the
proposed alternative approach based on time-domain
multiphase modulation is sketched in Fig. 2(b), where
the case s =1, r =2 in Eq. (4) is assumed so that a de-
crease in the comb spacing by a factor of 2 is obtained.

We have performed several numerical simulations to
validate the theory on the spectral Talbot effect by multi-
phase time modulation. In particular, we first assume a
periodic infinite sequence of 5 ps FWHM Gaussian pulses
with repetition rate f, = 10 GHz, as shown in Fig. 3(a).
In Fig. 3(b) we show the corresponding comblike fre-
quency spectrum. Figure 3(c) shows the output spectral
comb obtained with the inverted integer spectral Talbot
effectat s = 1, 7 = 1 in Eq. (4) so that the periodic phase
modulation {0, r,0,7,...} is applied on the input pulse
train. Note that a comb frequency shifting by half of the
line spacing is obtained. As a second case, in Fig. 3(d) we
show the output comb that results from the periodic
time-domain modulation {0,7/2,0,7/2,...}, as derived
from Eq. (4) with s =1, r = 2. In this case, the comb
frequency spacing is reduced by a factor of 2. The intro-
duced approach for spectral Talbot effect implementa-
tion also allows for input pulse sequences with finite
duration. In particular, we have performed similar simu-
lations assuming an input pulse sequence constituted by
only 10 pulses with random amplitude noise and the
same pulse width and repetition rate as in the previous
example. The corresponding frequency comb is similar to
that shown in Fig. 3(b), but now, as expected, we find a
finite linewidth in the spectral lines, which is roughly
determined by the whole time duration of the input
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Fig. 3. Results from the simulation of the spectral Talbot ef-
fect with infinite duration pulse trains: (a) input pulse train,
(b) input frequency comb, (c) output frequency comb after
time-domain modulation with s = 1, » = 1 in Eq. (4), obtaining
a comb shift by half of a period, (d) output frequency comb after
time-domain modulation assuming s =1, » = 2 in Eq. (4).

sequence [5]. With the same spectral periodic filters pre-
viously introduced for an infinite pulse train, we again
obtain a frequency comb shifting effect and a decrease
in the frequency spacing. Additional simulations reveal
that the resultant comb envelope is insensitive to the am-
plitude noise in the input sequence. However, the side
lobes found in the output spectral lines are highly depen-
dent on both the whole time duration and amplitude
noise of the input sequence. Furthermore, additional nu-
merical simulations show that inaccuracies in the phase
shifts translate into nonuniformity in the resultant comb
envelope.

Note that only biphase sequences are involved in the
introduced examples, so on—off keying modulation tech-
niques should be appropriate for the practical implemen-
tation of these examples. In general, however, a more
complex multilevel phase modulation is required for
the implementation of the spectral Talbot effect. For
instance, when s =1, r =4, the periodic sequence
{0,7/4,7,7/4, ...}, according to Eq. (4), must be applied
for achievement of a fourfold decrease in the comb line
spacing. A simple method to implement the proposed ap-

proach can be to use electro-optic phase modulation,
e. g., advanced phase modulation techniques such as dif-
ferential phase shift keying modulators [15]. However,
current modulators could only process frequency combs
with pulse repetition rates lower than ~50 GHz. For high-
er rates, nonlinear optical processes could be applied, as
suggested in [5].

In conclusion, a simple approach for the implementa-
tion of the spectral self-imaging effect has been proposed
and analyzed. The technique requires the phase multishift
time modulation of an input periodic optical pulse train
of either infinite or finite duration. The use of this effect
on frequency combs may be relevant for the development
of multiwavelength sources with reconfigurable fre-
quency spacing and offset.
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