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Abstract: Different methods based on photogrammetry or self-calibration 

exist to calibrate intrinsic and extrinsic camera parameters and also for data 

pre- and post-processing. From a practical viewpoint, it is quite difficult to 

decide which calibration method gives accurate results and even whether 

any data processing is necessary. This paper proposes a set of optimal 

conditions to resolve the calibration process accurately. The calibration 

method uses several images of a 2D pattern. Optimal conditions define the 

number of points and the number of images to resolve the calibration 

accurately, as well as positions and orientations from where images should 

be taken. 
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1. Introduction 

In the camera calibration process, it is essential to consider the quality of results, which 

obviously depends on data accuracy and the computed model. Some studies have been made 

on calibration errors committed due to precision of the computed model [1]. Also, lens 

distortion model is included in the calibration process to improve the computed camera model 

[2,3]. Distortion model can be calibrated alone or together with the pin-hole model. To 

calibrate the distortion model alone, geometric invariants such straight lines, vanishing points, 

#142593 - $15.00 USD Received 11 Feb 2011; revised 23 Mar 2011; accepted 29 Mar 2011; published 18 May 2011
(C) 2011 OSA 23 May 2011 / Vol. 19,  No. 11 / OPTICS EXPRESS  10769



images of a sphere or correspondences between points in different images from multiple 

views are used. To calibrate the distortion model together with the pin-hole model, the pin-

hole calibration process is extended with lens distortion model parameters. In this case, since 

the distortion is coupled with the intrinsic and extrinsic camera parameters, methods which 

extend the calibration of the pin-hole model to obtain the camera distortion parameters result 

in high errors on the internal parameters. If high distorted images are used, calibrate pin-hole 

and lens distortion models together may result in an absurd solution [4]. Other studies define 

errors from imprecise measurement of the image plane or calibration template [5–7] (to cite a 

few). The calibration process is also affected by erroneous association of one point in reality 

with a point in the image. Some authors use statistical tools to detect these anomalies [8]. 

Computing errors due to instabilities of the mathematical tool should also be taken into 

account [9]. In these cases, data normalization improves the robustness of the algorithm and 

gives more accurate results [10]. Another significant case is the number of parameters of the 

computed camera model. A very complex model can complicate the algorithm and the 

obtained result will not be much better than that obtained with a simpler model. A very 

complicated model may produce instabilities in the process of questing and produce 

absurdities [4]. 

The state of the art of calibration provides some guide about efficiency of camera 

calibration in all situations. The Tsai method [11] represents a classical calibration process 

based on the measurements of the 3D points in the template taking a fixed reference. This 

method has been widely used in the past. Salvi [12] compares the calibration methods 

developed between 1982 and 1998, with the Tsai method showing better performance, despite 

the fact that it requires high precision in input data. On the other hand, Zhang’s method [7], 

which is not included in Salvi’s comparison [12], represents a new era in the camera 

calibration process. This method uses images of a 2D template taken from different camera 

positions and orientations. In this way, the advantages of camera self-calibration are combined 

with the point coordinate-based calibration. This calibration method is highly flexible, since 

the camera and the template can be moved freely and also as many images as are required can 

be taken without measuring any position of the template. Sun [13] compares the Tsai method 

with Zhang’s method. On one hand, Tsai produces a precise estimation of camera parameters 

if the input data have not been corrupted. Since 100 points in the template are necessary and 

the coordinates should be referred to a fixed origin, careful design of the calibration template 

and a very accurate coordinate measurement are necessary. Nevertheless, errors are too easily 

committed and in practice these results are not as accurate as expected, as shown by Sun [13]. 

On the other hand, Zhang’s method based on a 2D template requires neither a special design 

nor precise point measurement. Sun obtains camera calibration with a hand-made template, 

and better results are computed using Zhang’s method. Furthermore, the sensibility of the 

calibration algorithm to errors in the measures can be improved by increasing the spotted 

number in the template, by simply printing a chessboard with more corners. The results of the 

comparison show the flexibility and adaptability of Zhang’s method, as it can be performed on 

any scene. Considering the results of these two authors, Zhang’s method is used as a reference 

for camera calibration. 

Camera calibration is a two step process where first a linear algebraic approximation is 

followed by a non linear searching. Since camera parameters are coupled, non linear searching 

is poorly conditioned and local solution is reached easily. Consequently, linear algebraic 

approximation is crucial to avoid divergences to local solution with the non linear searching. 

This paper proposes the optimum conditions from the viewpoint of number of points, number 

of images and location of the camera for taking the images, to improve the camera calibration 

method using 2D templates. These definitions obtain a calibration process with a linear 

algebraic approximation well-conditioned which overcomes existing calibration methods. 
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2. Optimal conditions for camera calibration 

To calibrate the pin-hole camera model, Zhang [7] describes a method based on the 

homographies between a planar calibration pattern and its images from several camera 

locations. For each homography two homogeneous equations arise as: 
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h represents elements of the homography H and b = [b11, b12, b22, b13, b23, b33], where bij 

represents the element ij of the symmetric matrix K
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. K contains intrinsic parameters of 

pin-hole model. If m images of the calibration object are observed, m equations such as 

Eq. (1) arise, giving V·b = 0, where V is a 2mx6 matrix. At least three images are necessary 

m3 in order to obtain a unique solution. The closed-form solution is given by the eigenvector 

of V
T
V associated with the smallest eigenvalue. Once b is estimated, intrinsic camera 

parameters can be computed. When K is known, extrinsic parameters for each image are 

computed when the corresponding homography is known. See [7] for details. 

Optimal conditions for camera calibration are defined to reduce errors when computing 

vector b. Since vector b is formed with intrinsic parameters, optimal conditions reduce errors 

of intrinsic parameters. However, since extrinsic parameters are computed from intrinsic 

parameters, both intrinsic and extrinsic parameters are improved if camera is calibrated under 

optimal conditions. 

2.1 Camera calibration scene 

To define the optimal positions for image capture, a calibration scene is defined. 

(o,{xw,yw,zw}) is 3D scene coordinate system and (o’,{xc,yc,zc}) is camera coordinate system 

located as shown in Fig. 1. The centre of the template is situated in the origin of coordinates 

of the scene and the camera is always translated with a negative z-coordinate. The orientation 

of the camera is defined using the position. This means that the camera optical axis crosses the 

centre of the template always as shown on Fig. 1. Moreover, Xc axis of the camera coordinate 

system is always parallel to plane Xw-Yw of the scene. From a practical point of view, the 

template is located on the floor of the calibration scene and the camera is located on a tripod, 

which keeps the upper border of the image parallel to the floor. The origin of the scene 

coordinate system is the template centre. To relate orientation with position of the camera, 

two rotations are defined. First camera and scene coordinate systems coincide. Then, the 

camera is rotated at angle β with respect to the Zc axis as shown in Fig. 1 (centre). Second, in 

relation to the Xc axis, the camera is rotated an angle α as shown on Fig. 1 (right). These two 

rotations keep the Xc axis parallel to plane X-Y of the calibration scene. These angles are a 

function of the camera position: 

 2 2 2 2 21

1 2

1 1 2 2

cos sin cos sin
y zx
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m t t m t t t

m m m m
             

  (3) 

where m1 represents the module of camera translation in plane Xw-Yw, and m2 is the distance of 

the camera to the origin. The origin of coordinates of the image is in the centre and will 

therefore be pixels with negative coordinates. Another supposition refers to the focal lengths 

αu and αv in image axes. Pixels are supposed squared and therefore αu and αv are equal to α. 
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Fig. 1. (left) Scene and camera coordinate systems. Orientation is computed starting with 
camera location. Optical axis goes through origin of coordinates in the scene (middle) First 

rotation angle (right) second rotation angle. Xc remains parallel to the X-Y plane of the scene. 

2.2. Condition of camera calibration 

As known in a general framework, a matrix M has r eigen vectors and r eigen values, where r 

is the rank of matrix M. Eigen vectors are orthogonal to one another. Eigen vectors modules 

represent the number of vectors in the matrix M oriented in the direction defined by each 

eigen vector. The module of one eigen vector increases if there are more vectors in matrix M 

oriented in this eigen vector direction. The ratio between the bigger module and the smaller 

module is called the condition number of the matrix. To obtain a well-conditioned system, the 

condition number should be one. This means there are vectors in M which cover all R-

dimensional space. Therefore, if a parameter vector is estimated with this matrix M, 

information from the data affects all dimensions of the parameter vector. In the event of a 

badly conditioned matrix, some parameters are not influenced by the information contained in 

matrix M and therefore such estimation will be erroneous. 

If this theory is particularized to linear camera calibration, the camera parameters are in 

the eigen vector associated with the smaller eigen value of matrix V defined by expression (1). 

Matrix V is formed from the elements of homographies 
l
H. Since the condition number of 

matrix V should be one, all vectors of matrix V should have the same module, and they should 

be orthogonal to one another. Vectors of V depend on the homographies 
l
H, whereas 

l
H 

depends on the locations from which images are taken. Therefore, vectors of V depend 

indirectly on positions in which the camera is located. Consequently, we can say that locations 

from where images are taken influence the condition of matrix V. As a result, to obtain a well-

conditioned matrix V several locations for the camera should be defined. 

Dimension of V is 2mx6. Therefore the minimum number m of homographies to resolve 

the system is m3. Within this framework, a well-conditioned matrix V will arise with vectors 
l
vij, which are orthogonal to one another, with equal modules. Sub index ij represents vector v 

formed from the columns i-th and j-th of homography l. Thus, homographies forming a set of 

vectors 
l
vij orthogonal to one another and with identical modules are required. In consequence 

care must be taken when dealing with homography elements. 

To obtain a well-conditioned matrix V, following expressions should be true for all i, j, l. 

  11 22 12· 0l T l T lv v v    (4) 

    11 22 11 22 12 12· · 0l T l T l l l T lv v v v v v      (5) 

First expression represents an orthogonal condition and the second stands for module equality. 

i, j, have values 1 and 2 since they correspond with the two left-hand columns of the 

homography l. The number of homographies l should be at least 3. If 3 homographies are 

established whose vectors are orthogonal and with equal modules, a well-conditioned matrix 

V will be obtained with minimum information. Restrictions for three homographies: 
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Fig. 2. Optimal positions for taking images of the planar template. Camera is moved along X or 
Y scene coordinates axis system and its altitude in the Z axis is defined with the 

expression (17). 
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2.3. Locations for image capturing 

Analysing expressions from Eqs. (6)–(12) they are satisfied when a camera is located with 

null coordinates 
l
tx or 

l
ty. If 

l
tx is zero, 

l
ty and 

l
tz will not be zero. Also, if 

l
ty is zero, 

l
tx and 

l
tz 

will not be zero. 
l
tx or 

l
ty are set different to zero moving the camera along the X or Y scene 

axis. The camera position in the Z axis of the scene 
l
tz is computed with the following 

expressions depending on whether the camera has been located with coordinate 
l
tx or 

l
ty 

different to zero: 
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From a practical point of view, the camera is moved along one of the axes representing the X 

or Y axis of the coordinate system of the scene and then the altitude of the camera in the Z axis 

is defined using the expression (18). After this, the camera must be oriented bearing in mind 

that the optical axis passes through the origin of coordinates in the scene. The camera must be 

moved along the X or Y axis exactly the same distance. It is important to note that 

expressions (13) do not depend on intrinsic parameters. Therefore camera locations do not 

depend on camera features and can be used with any camera. Figure 2 shows these locations. 

3. Experimental results 

To test the performance of the camera calibration conditions a simulated camera is similar to 

Zhang in [3]. The calibration template is a chessboard of 10x14 = 140 corners of 
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180x250 mm. In this case, it is situated on the floor and all corners have coordinates zw = 0. To 

calibrate the camera under optimal conditions, the simulated camera is located at t1 = (200, 0, 

401.8), t2 = (100, 0, 200.9) and t3 = (0, 300, 602.1). Also, camera is calibrated using images 

from random positions t1 = (150, 200, 580), t2 = (50, 250, 880) and t3 = (100, 20, 820). 

Results are shown in Fig. 3 for intrinsic camera parameters focal length αu, and principal point 

u0 only. Similar performance has been computed for the remaining camera parameters. 

Camera calibration is solved using the linear and the non-linear process. In all cases, 

computed camera parameters are improved if optimal conditions are used. 

The number of points necessary for the calibration process can be defined analysing 

experimental results. If images are taken taking into account optimal conditions, more than 70 

does not reduce parameters errors significantly. Obviously, since constructing a calibration 

template is an easy task, more than 70 points can be used to improve the results. 

 

Fig. 3. Comparison of intrinsic camera parameters calibration errors under optimal and non- 

optimal calibration process conditions changing the number of points. 

7. Conclusion 

Optimal conditions for camera calibration using a 2D pattern have been defined. Camera 

calibration is a two step process where first a linear algebraic approximation is followed by a 

non linear searching. Since camera parameters are coupled, non linear searching is poorly 

conditioned and local solution is reached easily. Consequently, linear algebraic approximation 

is crucial to avoid divergences to local solution with the non linear searching. Linear algebraic 

approximation of camera parameters are computed with the eigen vector associated with the 

smaller eigen value of the matrix composed with elements of several homographies. The 

calibration process will therefore be more stable if the condition number of this matrix is close 

to 1. To obtain this condition number closer to 1, elements of the homographies should be 

taken into account. Therefore, images of the template should be captured from specific 

locations to obtain a well-conditioned calibration process. To define the optimal locations 

from where to take template images, the condition number of this matrix has been analysed. 

The camera is located taking into account that the altitude should be twice its separation from 

the origin of coordinates in the scene. Also, the camera should be located along the X or Y 

axes of the scene coordinate system. The camera orientation is defined assuming that the 

optical axis goes through the calibration template. Finally, point coordinates in the image and 

the template should be referred to the centre of the image and the template centre, 

respectively. Although camera calibration using a 2D pattern was intended for self-calibration 

in which images can be taken from anywhere, here we propose a useful guide to improve the 

calibration results. 
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