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Abstract: We study the reflection properties of squeezing devices based on 
transformation optics. An analytical expression for the angle-dependent 
reflection coefficient of a generic three-dimensional squeezer is derived. In 
contrast with previous studies, we find that there exist several conditions 
that guarantee no reflections so it is possible to build transformation-optics-
based reflectionless squeezers. Moreover, it is shown that the design of 
antireflective coatings for the non-reflectionless case can be reduced to 
matching the impedance between two dielectrics. We illustrate the potential 
of these devices by proposing two applications in which a reflectionless 
squeezer is the key element: an ultra-short perfect coupler for high-index 
nanophotonic waveguides and a completely flat reflectionless hyperlens. 
We also apply our theory to the coupling of two metallic waveguides with 
different cross-section. Finally, we show how the studied devices can be 
implemented with non-magnetic isotropic materials by using a quasi-
conformal mapping technique. 
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1. Introduction 

The ability to squeeze and expand light has many applications in optics, ranging from beam 
collimation to nanolithography, optical data storage, imaging quality enhancing and efficient 
coupling to nanoscale structures [1,2]. Transformation optics offers a new way to achieve 
these effects, since it provides the necessary medium to force electromagnetic fields to 
undergo the spatial distortion introduced by a certain coordinate transformation [3,4]. Finite 
embedded coordinate transformations enables us to transfer light alterations, such as bends or 
shifts, from the transformed media to another one [5], so it appears that this technique is very 
adequate for building squeezing devices. A simple two-dimensional (2D) version of a 
compressing device embedded in free space was studied in [6], showing that unavoidable 
reflections appear in that case. Reflections imply power loss, which invalidates the utility of 
squeezers in many situations. The need for antireflective coatings was also observed in [6], 
although it was not clear at all how to design an antireflective coating for such a complex 
material and no hint was given in that study. Moreover, the conclusions drawn from the 2D 
case cannot be generalized to the three-dimensional (3D) one, as there can be fundamental 
differences between them. In addition, the heuristic condition for no reflections given in [6] 
only allows us to know whether the device is reflectionless for all angles or not. However, the 
reflected power depends on the polarization and on the angle, and could be negligible for 
certain spatial directions. Finally, in some situations it would be desirable that the output 
medium was different from the input one (in fact, we will take advantage of the squeezer 
properties in this situation to make a reflectionless device). Therefore, the possibility of 
achieving reflectionless squeezers is still open and a general study with the aim of obtaining 
this feature, indispensable for most applications, is lacking. 

In this work, we develop a method to derive an analytical expression for the angle-
dependent reflection coefficient of a generic 3D squeezer based on transformation optics, 
from which all the necessary information can be obtained. In contrast with previous studies, it 
is shown that squeezing devices based on transformation optics are reflectionless under 
certain conditions. In addition, we show that designing antireflective coatings for the non-
reflectionless case can be reduced to matching the impedance between two dielectrics. Many 
applications could benefit from these devices. As an example, we show that they can 
implement completely flat reflectionless hyperlenses and ultra-short perfect spot-size 
converters (SSC) that couple light to high-index nanophotonic waveguides. Moreover, we use 
our theory to suppress the reflections appearing when transformation media are used to couple 
metallic waveguides with different cross-section. Finally, we propose a non-magnetic 
isotropic implementation of the studied squeezers (expanders) based on a quasi-conformal 
mapping technique. 

2. Theory 

In an isotropic homogeneous background, only rotations and displacements of the outer 
boundaries achieve all-angle reflectionless transformation media [7]. Thus, to build an all-
angle reflectionless squeezer, which has a compressed boundary, it is necessary to consider a 
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more general scenario. Specifically, we will allow the medium that will be transformed into 
the squeezer to be different from the output medium in original space. This step is the key for 
some of the results obtained below. It is also important to consider a full problem with the 
possibility of a 3D transformation as mentioned above. Finally, our aim is to obtain an 
analytical expression for the total reflection coefficient of the squeezer, so that we can 
evaluate the reflected power and see if there is any preferred spatial direction for which no 
reflections occur. The problem under consideration is sketched in Fig. 1. 

 

Fig. 1. Sketch of the problem. Cartesian coordinate mesh in the original media is “seen” 
distorted by the fields in the transformed media. 

We start from Euclidean flat space with Cartesian coordinates denoted by 
ix  

( 1,2,3i  ,
1x x ,

2x y  and 
3x z ) and map it to another space with coordinates 

ix . Both 

coordinate sets are related by ( )i i jx f x  . We assume that in original space all media are 

isotropic. A pair of constitutive parameters 
0 r    and 

0 r    in this space, becomes 

' 'i j  = (ϵ 1 2 3klm

k l m   ) 1 ' 'i jg   and ' 'i j  = (ϵ 1 2 3klm

k l m   ) 1 ' 'i jg   in transformed space, where 

ϵ klm  and 'i

i  are the Levi-Civita and Jacobian tensors, and ' 'i jg  is the metric tensor in the 

transformed space [4]. In the materials interpretation [3,4], these are the media to be placed in 
physical space, represented by the original coordinate system, to modify the fields according 

to the transformations given by
if . We have divided the problem into four slab-shaped 

regions (see Fig. 1). Medium 0 is air, from which light impinges onto medium 1. Mediums 1 

and 2 are also air. Medium 3 (output medium), is isotropic and is characterized by 
3  and 

3 . 

These media are transformed into those denoted by primed numbers according to the 
piecewise functions given by Eq. (1): 

 
 ( ),( ) ( ),( ) 1 1

1 2

2 2 1 2

, 0

( 0) 1, ( ) , 0
: ,

,

( ) ,

i

i i i i i i

i
k

k i

i i

x z

h h z h z d F z d
f

x D d z d

x d d d z

  


     
 

 
     

      

  

    

    

 (1) 

where 
2 2 3/d d F   and we have defined  1 2 31/ ,1/ ,1/k

iD diag F F F . No summation is to be 

performed over repeated indices in parentheses. Note the discontinuity in the transformation 

at 
2z d , which is in general the reason for reflections in embedded compressors. The 

transformation performed on media 0 and 3 does not change their parameters. Medium 1' 
(transformed medium 1) is the squeezer/expander. A continuous compression is made in it, 
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going from no compression at 0z   to a compression 
iF  in coordinate 

ix  at 
1z d  

( 0 1iF   means expansion). The parameters of medium 1’, ' '

1

i j  and ' '

1

i j , are 

inhomogeneous and generally quite complicated at 
1z d , making it very difficult to 

calculate the reflection between this medium and the output one. Our approach to calculate 
the squeezer's reflection is to introduce an auxiliary layer (medium 2 and its transformed 

counterpart medium 2’), in which the squeezer's compression at 
1z d  is kept constant. Thus, 

the relative constitutive parameters of medium 2' are: 

 ' ' ' ' ' ' 2 2 2

2 2 1 2 3 1 2 3: (1/ ,1/ ,1/ ).i j i j i j

r r F F F diag F F F      (2) 

Restricting ourselves to continuous transformations at the boundaries between media 0-1 and 

1-2 ensures that no reflections will take place at these interfaces. The fact that ' 'i j  is 

homogeneous and has its principal components along the Cartesian axes greatly simplifies the 
problem of calculating the reflection coefficient R  between media 2’ and 3’. This can be 
done by matching the tangential components of the eigenmodes of an anisotropic 

homogeneous slab (medium 2’) and the isotropic outer medium (medium 3) at their interface 
[8]. R  does not depend on the length L of medium 2. This enables us to make L tend to zero, 

so in practice this layer will not exist. We now analyze the case corresponding to 0yk   (the 

derived formula can be generalized with some extra work), for which it can be shown that 
(see Appendix A): 

 

2 2 2 2 2

3 0 0 1 2 3 3

2 2 2 2 2

3 0 0 1 2 3 3

,x x

x x

F k F k
R

F k F k

      

      

  


  
 (3) 

where 
3 3r  , 1    for TM polarization (H field along y axis) and 

3 3r  , 1   for 

TE polarization (E field along y axis). The cross-reflection coefficients between both 
polarizations are zero. Since reflection is only possible at this boundary, Eq. (3) expresses the 
total reflection of the squeezer/expander. First, we observe that R  is independent of z  
compressions. Moreover, we can identify three very interesting cases in which reflection 
vanishes: 

1. 
3 2 1r F    and 2

3 1r F   for TE incidence 

2. 
3 1r   and 2

3 2 1r F F    for TM incidence 

3. 
3 3 1r r    and 

1 2F F  for normal incidence ( 0xk  ) and arbitrary polarization. 

We have focused on non-magnetic output media, which are the most common ones. The first 

two cases tell us that 0R  if the outer medium is a certain dielectric. Note that allowing 

media 2 and 3 to be different has been crucial to find these two conditions. Remarkably, the 

third case indicates that, for normal incidence (which is the case in many applications), 0R  

if we perform a uniform transversal compression from air to air. It has to be stressed that this 
condition cannot be found by studying a 2D problem. Going a step further, we would like to 

transfer squeezed light to any dielectric medium characterized by 
d , regardless of the 

compression. The conditions for 0R  give us a key knowledge to achieve this. Since there 

are no reflections if the output dielectric permittivity is 
3 , we only need to match this 

dielectric to the desired one, with constant d . Antireflective coatings engineering between 

two isotropic dielectrics is a much explored field that offers many simple and flexible options 
[9]. Therefore, a straight solution is to put the proper antireflective coating between the 

squeezer and the medium characterized by d . This way the squeezer will be matched to d  
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instead of 
3  (no medium with 

3  is then needed, as it happened with the auxiliary layer). 

Usually, antireflective coatings consist of one or few dielectric layers, depending on 
bandwidth and angular requirements. Placing a dielectric layer at the device’s output is easier 
than implementing the squeezer and it does not pose a technological drawback. To verify our 
theoretical results, numerical simulations have been performed using COMSOL Multiphysics. 

As an example, we designed a 2D squeezer for TE polarization with 
1 / (1 )h x Cz  , 

2h y , 

3h z , 
1 1( 1) /C F d   and 

1 4F  . Figure 2 shows its performance when the incident wave 

is a Gaussian beam. 

 

Fig. 2. Electric field distribution in the squeezer. The working wavelength is 0.2   m. The 

relative permittivity of medium 3 is (a) 
2

1rd F  . (b) 1rd  . 

Two cases are considered. In the first one, the output medium is 2

3 1rd r F    so that no 

antireflective coating is needed. In the second case, 1rd   and we use a / 4  dielectric 

coating with constant 
rc . It is known that if 2

3rc r rd   , reflections are suppressed. In both 

cases, the calculated relative transmitted power /t out inP P P  is 100% (
inP  and 

outP  are the 

squeezer input and output power). Without the coating, 
t 63%P  . We can verify this result 

with Eq. (3), as 
2

t 1P R  . Since incidence is almost normal, we can put 0xk  . 

Substituting the problem data in Eq. (3) we obtain 
t 64%P  , in very good agreement with 

numerical results. Note that the different E field intensities in the input and output media are 
consistent with the conservation of total power flow. It is also worth mentioning that the 
squeezer provides a compressed version of the fields inside it. This compression is transferred 
to the outside world near the squeezer. However, once the electromagnetic wave has exited 
the squeezer, it is subject to the diffraction laws of the output medium. Thus, the Gaussian 
beam exiting the squeezer will diverge as it propagates. This is mainly observed in Fig. 2(b), 
as this divergence is faster in air than in the medium with n = 4. 

3. Applications 

Applications of the proposed reflectionless device are straightforward. Here, two additional 
potential applications are proposed. The first one is a perfect squeezer-based spot size 
converter for an efficient coupling between an optical fibre and a high-index nanophotonic 
waveguide or nanowire, which is one of the most challenging tasks in the field of silicon 
photonics, due to the large mismatch in mode size of nanowires (sub-wavelength transversal 
dimensions) and standard single mode fibres (SMF, 10 µm mode diameter). Many solutions 
have been proposed, following one of these approaches: lateral (in plane) or vertical (out of 
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plane) coupling. The latter requires out of plane diffraction, usually via grating couplers, 
whose achievable efficiency with conventional designs is lower than 40% [10]. To reach 
higher efficiencies, highly sophisticated designs are needed, extremely increasing fabrication 
difficulty [11]. Lateral coupling implies 2D SSC via waveguide inverse tapering down to tens 
of nanometers wide [2], so matching the high SMF mode size is very challenging with a 
single inverted tapering structure. Most actual realizable single stage structures are limited in 
mode size to approximately 3-4 μm. Efficient coupling to such mode diameters can be 
achieved by means of lensed or high-numerical-aperture fibres with 3-4 µm mode diameters. 
Usually, in these structures the required inverted taper is longer than 200 µm and maximum 
coupling efficiency is lower than 80% [12]. We aim to use our squeezer as an efficient SSC 
with a dramatically reduced length while achieving 100% coupling efficiency. Thus, the 
squeezer must compress incoming light fitting its size to that of the waveguide and then 
deliver the compressed beam to the waveguide without reflections, i.e., match air to the 
waveguide high-index core. Then, light is kept confined in the waveguide by total internal 
reflection (TIR) (see Fig. 3). 

 

Fig. 3. (a) Gaussian beam propagating in free space. (b) The squeezer couples the beam to a 
nanophotonic dielectric waveguide. 

We will assume the telecom wavelength  = 1.5μm, and a waveguide with sub-

wavelength width w = 1 μm and refractive index n = 4, as in the example of Fig. 2 (the 
problem would be very similar if we used silicon, since nSi = 3.45 in this band). 

We limit our study to a 2D case due to the computational complexity of the 3D problem. 

Given the size of the input beam, a compression 
1 4F   is enough, which satisfies condition 1 

for no reflections. A seamless coupling can be observed in Fig. 4(b). 
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Fig. 4. (a) Simulation of a 2D Gaussian beam propagating in free space. (b) The beam in (a) is 
squeezed and perfectly coupled to the nanophotonic waveguide. 

Numerical calculations reveal that 
t 100%P   again, where 

outP  has been evaluated at the 

right waveguide end. Without the squeezer, 
t 40%P   and decreases with z  due to an 

inefficient mode matching. To extend the application to larger compression factors, 
antireflective coatings are necessary. In a 3D problem, compression in both transversal 
directions is demanded. Since in this application we have normal incidence, a squeezer 
fulfilling condition 3 with the proper antireflective coating can be employed. As for its size, 
the squeezer can be as short as desired. Nonetheless, the necessary constitutive parameters 

become extreme as we reduce 
1d . A surprisingly small length below 10 μm, far below the 

current state of the art, is enough to achieve a set of parameters with very moderate values for 
the 2D and 3D cases. Although fabrication of the 3D squeezer would be challenging, it is 
worth pointing out that the quasi-conformal mapping technique introduced in [13] would 
provide a practically realizable non-magnetic isotropic implementation for the 2D squeezer, 
as we will see in section 4. Regardless of its application as SSC, our squeezer-TIR waveguide 
device presents the important advantage of using an isotropic homogeneous dielectric as the 
guiding element, as opposed to previously proposed squeezers based on transformation optics 
[14], where complex materials are needed. 

The second application that we propose is a flat hyperlens that uses our reflectionless 
device as a wave expander. It is known that subwavelength spatial features of light sources 
are lost in the far field, since they are carried by evanescent waves that decay exponentially 
with distance. A hyperlens transforms evanescent components into propagating ones by 
magnifying the near field pattern, which can then be treated with conventional optics. Original 
hyperlenses had cylindrical geometry and suffered from reflections, two undesired features 
[15]. A flat hyperlens arising from the truncation of the original design was presented in [16], 
although the truncation gave rise to a variable gain, stronger at the hyperlens centre. 
Transformation optics has led to alternative designs that improved the impedance matching 
and made one of the two lens surfaces flat [15,17]. A hyperlens with both flat surfaces was 
proposed in [18]. However, it is not reflectionless and, as no expansion in z  direction is 
made, its width must be extremely small. The above theoretical results, enables us to design 
an expander that implements a completely flat reflectionless hyperlens. Following a similar 

approach to that of [17], we transform a little slab of length 
1d  into a larger slab of length 

1d   

(this can be done without affecting the reflection properties of the device, since the reflection 
coefficient is independent of compressions/expansions in z direction as was shown above), 
while expanding the fields in x  direction at the same time. This transformation can be 

described by 1 1/ (1 )h x C z  , 
2h y , and 

3 2/ (1 )h z C z  , with 1 1 1( 1) /C F d  , 

1/2

2 3 1( 1) /C F d   and 
1 3, 1F F  . Since light goes from air to air, antireflective coatings are 

needed. An interesting particular case is that in which the sources are embedded in a dielectric 

medium with constant 2

3 3r n  . In this case we can use a squeezer from air to that dielectric, 
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described by the previous functions with the same value of 
3F  and satisfying 

1 3F n  (no 

coating is needed in this case). Since light now travels from right to left (according to Fig. 1), 
the squeezer acts as an expander. Propagating components inside the dielectric also become 

propagating in air, improving the resolution by 
1F , in a similar way to solid immersion 

lenses, with the advantage of being flat and reflectionless. Note that this lens can perform in 

far field. In Fig. 5 we provide a numerical example with 
1 2F  , 

3 1/100F   and 
1 / 20d  , 

where two test point sources separated by / 4  are placed near the lens left surface (for better 

clarity, in Fig. 5 the squeezing device is flipped from left to right as compared to the previous 

figures). The magnitude of the resulting power flow is shown in Fig. 5. Cuts at 0z   (the lens 

output) and at a distance / 20  away from the sources without the lens are also depicted. 

Clearly, the device provides a magnified image of the fields where the images of the two 

sources are separated by / 2 . 

 

Fig. 5. Lens power flow distribution. The working wavelength is 1.5   μm. 

Finally, we apply our theoretical results to the coupling between two metallic waveguides 
of different transverse size. Several devices based on transformation optics have been 
proposed to solve this problem [19,20]. However, as in the other cases, the problem of 
reflections has not been addressed. In these works, some simple compressing or expanding 
spatial transformation is applied to adapt the dimensions of one waveguide to the other one. 
This way, and according to our previous theoretical results, a mismatch between the modes 
supported by the coupler and the outer medium (in this case, the output waveguide) is 
introduced. As an example, let us assume that we desire to couple a waveguide W1 of 
transverse size a, to another waveguide W2 of transverse size a/2, where we only excite the 
first TE mode at the left end of waveguide W1. In Fig. 6, we show the norm of the electric 
field for different solutions to this problem. In Fig. 6(a), no coupler is used and we just 
linearly change the metallic boundary of the waveguide. The strong modulation appearing in 
waveguide W1 and the transition waveguide indicates that high reflections are taking place at 
the boundary between the transition waveguide and waveguide W2. 

In Fig. 6(b), we use a coupler that implements a linear spatial transformation from a 

transverse size of a, to a transverse size of a/2 (
1 2F  ), similar to the one employed in the 

previous examples and to those in [19,20]. Again, strong reflections are observed. 
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Fig. 6. Several solutions for coupling two metallic waveguides of different transverse size. In 

this example, a=0.4 m and d=0.5 m. The free space wavelength is 0.37  m, below cut-off 

in all waveguides. |E| distribution (a) without coupler, (b) with coupler and n3 = 1, and (c) with 
coupler and n3=2. (d) S11 parameter as a function of n3 when the coupler is used. 

Now we apply our theory to this example. To a first approximation, we assume that the 
effective indices in waveguides W1 and W2 are those of the filling medium. Therefore, in 

Fig. 6(b), 2

3 3 1r n   . Obviously, reflections appear because we are not fulfilling condition 1. 

This can be easily solved by filling waveguide W2 with a material 
3 2n   [Fig. 6(c)]. In this 

case, no modulation of the electric field is observed, showing that reflections have been 
suppressed. Alternatively, if we want waveguide W2 to be empty, we can design and use a 
dielectric antireflective coating following the procedure described above. This way, a perfect 
coupling between both waveguides is achieved. In Fig. 6(d), we depict the scattering 
parameter S11 as a function of the refractive index of the filling medium of waveguide W2, for 
the case where the coupler is used [as in Figs. 6(b) and 6(c)]. A pronounced minimum is 

clearly seen very close to 
3 2n  , validating our choice of effective indices. 

4. Practical implementation 

Although the main goal of this work is to study the reflections between squeezers (expanders) 
based on non-continuous transformations, we are also concerned with the practical 
implementation of these devices. In general, transformation media require anisotropic 
materials difficult to fabricate in practice. For instance, the specific implementations proposed 
in [19,20] would challenge current state of the art fabrication capabilities. Another 
disadvantage is that lossy resonant elements would be necessary. In the previous section, we 
mentioned that it would be possible to use a special mapping technique known as quasi-
conformal mapping to achieve a non-magnetic isotropic realization for the 2D squeezers [13]. 
By using this technique anisotropy is minimized in such a way that the in-plane components 
of the constitutive tensors approach unity. We can neglect this slight anisotropy and 
implement the squeezer by using only a certain refractive index distribution. To this end, we 
follow the procedure described in [21] to transform a piece of waveguide W1 into the 
squeezer. In Fig. 7(a) we show the norm of the electric field for this case. All parameters are 
the same as in Fig. 6(c), except for the fact that the squeezer is made up of an isotropic non-
magnetic material, i.e., just a spatially varying refractive index. 
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Fig. 7. Implementation of the squeezer with an isotropic spatially varying refractive index. (a) 
|E| field distribution. (b) Refractive index profile of the squeezer. For this particular 
implementation we obtained an anisotropy factor, as defined in [13], of 1.025. We employed a 
smooth cosine-like profile for the squeezer. 

We can see in Fig. 7 that there are almost no reflections in this case either. Specifically, 
we obtained from the simulation a reflected power of 0.0036%. Thus, we have shown that it is 
possible to couple both waveguides with only a certain refractive index distribution. In this 
specific implementation, the required refractive index varies between 0.86 and 2.1 [see  
Fig. 7(b)]. Although it is possible to implement a refractive index below unity, it is preferable 
to have a refractive index range higher or equal to unity. For that purpose, we can just 
approximate the index by unity in the small regions where it is lower than one. Another 
possibility is to divide the whole index distribution by its minimum value (0.86). This does 
not affect the functionality of the device and introduces very weak reflections (as shown by 
numerical calculations) because the index mismatch is very low. We can of course completely 
avoid reflections by using the appropriate anti-reflective coating. 

5. Conclusion 

In summary, we have derived an analytical expression for the reflection coefficient of an 
optically transformed embedded squeezer. We have found the conditions for no reflections, 
showing how antireflective coatings can be used in non-reflectionless cases. This study has 
allowed us to design an ultra-short perfect SSC, as well as a completely flat reflectionless 
hyperlens. In addition, we have shown how to eliminate the reflections that appear when 
transformation optics-based devices are used to couple metallic waveguides with different 
cross-section. Finally, we have proposed a non-magnetic isotropic implementation of the 
constructed 2D squeezers/expanders, which only requires a spatially varying refractive index 
distribution. 

Appendix A. Derivation of the reflection and transmission coefficients 

In this section we derive Eq. (3). We start from macroscopic Maxwell's equations (assuming 

that the time dependence of the fields is of the form i te  ): 

 
E i B

H i B





 

  
 (A.1) 

Together with the constitutive relations: 

 
.

.

D E

B H








 (A.2) 

with: 
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11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

ε μ

     

     

     

   
   

 
   
   
   

       (A.3) 

Now we define the tensors (analogous expressions are defined for μ tt
, μ tz

 and μ zt
): 

 

11 12 13

21 22 23

31 32

0 0 0 0 0 0

ε 0 ε 0 0 ε 0 0 0

0 0 0 0 0 0 0

tt tz zt

  

  

 

    
    

  
    

     
     

             (A.4) 

and separate Maxwell's equations in their transverse and longitudinal components in Cartesian 
coordinates: 

 
E

ˆ ˆ ˆk μ H μt
t z tt t tz zi E z z i i H z

z
 


      


 (A.5) 

 
33

ˆk E μ Ht t zt t zi i i H z      (A.6) 

 
H

ˆ ˆ ˆk ε E εt
t z tt t tz zi H z z i i E z

z
 


       


 (A.7) 

 
33

ˆk H ε Et t zt t zi i i E z       (A.8) 

where ˆ ˆEt x yE x E y  , ˆ ˆHt x yH x H y  , ˆ ˆkt x yk x k y   and we have assumed a spatial 

dependence of the fields of the form ik re  . From Eqs. (A.6) and (A.8), the longitudinal 

components of the fields can be expressed as a function of the transverse ones: 

 
33 33

1 1
ˆ k E μ Hz t t zt tH z

 
     (A.9) 

 
33 33

1 1
ˆ k H ε Ez t t zt tE z

 
      (A.10) 

Upon substitution of Eq. (A.5) and (A.7) in Eq. (A.9) and (A.10), we arrive to: 

 
33 33

33 33

E
ˆ ˆI μ k I I k I ε E

ˆ ˆ ˆI μ I μ μ I k I k I H

t
tz t t zt t

tt tz zt t t t

i i
z z

z

i i
i z z z

 




 

 
             

  

 
               
 

 (A.11) 

 
33 33

33 33

H
ˆ ˆ ˆI ε I ε ε I k I k I E

ˆ ˆI ε k I I k I μ H

t
tt tz zt t t t

tz t t zt t

i i
i z z z

z

i i
z z




 

 

 
               

  

 
            
 

 (A.12) 

where ˆˆ ˆˆ ˆˆI xx yy zz   . As stated above, we will limit ourselves to ky = 0. In addition, the 

problem is simplified due to the fact that both the auxiliary layer and the outer medium are 
characterized by diagonal constitutive parameters. Given these simplifications and 

considering that zik
z





, Eq. (A.11) and (A.12) reduce to: 
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E E

A
H H

t t

z

t t

ik
   

    
   

 (A.13) 

 

2

22

33

11

2

22

33

11

0 0 0

0 0 0
A

0 0 0

0 0 0

x

x

ik
i

i

ik
i

i


 




 



 
  

 
 

  
 


 
 
 
 

 (A.14) 

This is an eigenvalue problem with four solutions. From the eigenvalues 
zik  we find the four 

possible values of 
zk  (two for TE polarization and two for TM polarization), together with 

their corresponding eigenvectors (polarization states): 

  
1,2

1,2 2 211
22 33

33 11

ˆ ˆE H Z
z x t t

k
k k Ey E x


  

 
    TE:                   (A.15) 

  3,4 2 211 11
22 33 3,4

33

ˆ ˆE Hz x t t

Z

k k Ex E y
k

 
  


     TM:                  (A.16) 

Now we particularize Eq. (A.15) and (A.16) for the parameters of the auxiliary layer and the 
outer medium. The parameters of the former correspond to a transformation medium 

associated with the transformation ( ) ( )/i i ix x F  , which leads to: 

 
2 0

2 0

ij ij

ij ij

  

  




 (A.17) 

 

2 3

1 1 1

1 3
1 2 3

2 2 2

1 2

3 3 3

1 1
0 0 0 0 0 0

1 1
0 0 0 0 0 0

1 1
0 0 0 0 0 0

T

ij

F F

F F F

F F
F F F

F F F

F F

F F F



     
     
     
     

      
     
     
     
     

 (A.18) 

This agrees with Eq. (2). In the case of the isotropic outer medium, we have: 

 
3 3

3 3

ij ij

ij ij

  

  




 (A.19) 

Substituting Eqs. (A.17)–(A.19) into Eqs (A.15)–(A.16), we have: 

  
1,2

,1,2 2 211
, 0 0 22 33

33 0 11

ˆ ˆE H z aux

z aux x t t

k
k k Ey E x


    

  
    TE:                  (A.20) 

  3,4 2 211 0 11
, 0 0 22 33 3,4

33 ,

ˆ ˆE Hz aux x t t

z aux

k k Ex E y
k

  
    


     TM:                (A.21) 
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for the auxiliary layer, and: 

 

1,2

,1,2 2 2

, 3 3

3

ˆ ˆTE : E H z out

z out x t t

k
k k Ey E x  


                              (A.22) 

 3,4 2 2 3
, 3 3 3,4

,

ˆ ˆTM : E Hz out x t t

z out

k k Ex E y
k


                             (A.23) 

for the outer medium. Finally, we obtain the reflection coefficients for both TE and TM 
excitation. To this end, we suppose and incident field (TE or TM) in the auxiliary layer 
propagating towards the outer medium and see if there are TE or TM reflected and transmitted 
waves, demanding equality of the tangential fields at the boundary between both media. For 
simplicity, we assume that z = 0 at the boundary. For TE excitation we have in matrix 
notation: 

 1 1 1
11 21 11 21, , ,

0 110 11 0 11 3
1 1

, ,

0 0 01 1

1 1 10 0

0 0

0 0 0

z aux z aux z out

z aux z out

R R T Tk k k

k k

      

        
        
        
           
         
        

        
        

 (A.24) 

from which we deduce that: 

 
21 21 0R T   (A.25) 

 

1 1 1

3 , 0 11 , 3 ,

11 111 1 1 1

3 , 0 11 , 3 , 0 11 ,

2z aux z out z aux

z aux z out z aux z out

k k k
R T

k k k k

   

     


 

 
                    (A.26) 

11R  and 
11T  are the TE reflection and transmission coefficients for TE excitation. 

21R and 
21T  

are the cross-polarization reflection and transmission coefficients from TE excitation to TM 
polarized waves. Analogously, for the TM case we have: 

 1 1
12 22 12 22, ,

0 11 0 110 11 3
1 1 1

, , ,

0 01 1 1

1 10 0 0

0 0 0

0 0

z aux z out

z aux z aux z out

R R T Tk k

k k k

      

        
        
        
           

        
        

        
        

 (A.27) 

and: 

 
12 12 0R T   (A.28) 

 

 

1 1 1

11 0 , 3 , 11 0 ,

22 221 1 1 1

11 0 , 3 , 11 0 , 3 ,

2z out z aux z out

z out z aux z out z aux

k k k
R T

k k k k

    

     


 

 
                    (A.29) 

In a similar way to the previous case, 
22R  and 

22T  are the TM reflection and transmission 

coefficients for TM excitation. 
12R  and 

12T  are the cross-polarization reflection and 

transmission coefficients from TM excitation to TE polarized waves. Finally, substituting Eq. 
(A.18) and Eqs. (A.20)–(A.23) into the previous equations, we arrive to Eq. (3): 
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2 2 2 2 2

3 0 0 1 2 3 3

11 2 2 2 2 2

3 0 0 1 2 3 3

r x x

TE

r x x

F k F k
R R

F k F k
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      

  
 
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 (A.30) 

 

2 2 2 2 2

2 3 3 3 0 0 1

22 2 2 2 2 2

2 3 3 3 0 0 1

x r x

TM

x r x

F k F k
R R

F k F k

      

      

  
 
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 (A.31) 
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