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Universidad Politécnica de Valencia, Camino de Vera s/n, 46022, Valencia, Spain
∗guibalga@ntc.upv.es

Abstract: We present an experimental technique to characterize back-
scattering in silicon microring resonators, together with a simple analytical
model that reproduces the experimental results. The model can extract all
the key parameters of an add-drop-type resonator, which are the loss, both
coupling coefficients and backscattering. We show that the backscattering
effect strongly affects the resonance shape, and that consecutive resonances
of the same ring can have very different backscattering parameters.
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Fig. 1. (Color online) Schematic view of the layout of add-drop rings with drop (D),
counter-drop (C) and through (T) ports. The back reflected port represents the backreflected
signal that returns to the input port

1. Introduction

Silicon photonics has recently emerged as a viable technology for integrated photonic devices.
Microring resonators are elements which are simple to fabricate and are used for devices such
as optical filters, [1] sensors, [2] modulators, [3] etc. The quality factor is usually the parameter
that determines the performance of the device; however, in this technology the limiting factor
is in most cases not the propagation loss, which can reach values below 2.4 dB/cm [4], but
the backscattering effect due to sidewall roughness [5]. Backscattering in a resonator cannot be
accounted for as a loss mechanism because in a cavity it grows coherently in each loop. Back-
scattering is a well known cause of resonance splitting [6, 7]; but even before splitting occurs,
it can dramatically modify the depth of the resonance; this can sometimes be useful to improve
the extinction ratio of the peak [8]. If this effect is not taken into account and one extracts the
parameters of the ring from a fit, it can produce a good curve agreement but with wrong results.
In this paper, we propose a characterization technique and a fully analytical fitting procedure
that allows a complete characterization of all the parameters of the ring including backscatte-
ring, without the need of a coherent backscattering measuring system as in [5, 9].

2. Experiment

Silicon waveguides were fabricated through the ePIXfab service at CEA-LETI, France, us-
ing silicon-on-insulator wafers with 220nm Si thickness and 2 μm buried oxide thickness.
Waveguides are fully-etched 220×450nm channels which are covered with a 2 μm SiO2 layer,
and shallow-etched grating couplers were used for coupling the light vertically from standard
single-mode fibers at 10◦ angle. Waveguides and gratings were both patterned with deep-UV
lithography. Transverse-electric (TE) polarization was used in all the experiments. Transmis-
sion spectra were collected with a tunable laser with 1 pm resolution and 2 dBm input power
in fiber. The rings had a 20 μm radius and two coupling points, providing a through and a drop
port. However, in this experiment we also collected the signal from the counter-propagating
drop port, which we will call counter-drop port (as shown in Fig. 1). Measuring this port is
crucial to fully characterize the ring, as it directly provides the information about the back-
scattering inside the cavity. The gap of the through and drop couplers was 275nm and 300nm
respectively.

Figure 2 shows the measured transmission extracted from all three ports of one microring. It
is worth noting that the shape of the resonances is very variable, even though one would expect
the loss and the coupling coefficients to be approximately the same in all cases. The reason
for this behavior is the backscattering parameter, which is intrinsically noisy, thus producing
an apparently random response in their resonances. It is noisy because reflections are produced
by sidewall roughness along the ring, so they are randomly distributed along its length, and
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Fig. 2. (Color online)Top panel: Transmission spectrum of each port of the microring: the
through (red, solid), the drop (blue, dashed), and the counter-drop (green, dash-dot). Bot-
tom panels: Detail of 3 resonances corresponding to the peaks at 1549, 1553 and 1558 nm,
where transmission has been normalized. Solid curves are the experimental data and dashed
lines are the analytical curves using the parameters extracted from the fitting procedure and
shown on top of each subplot.

the overall reflection coefficient results from the interference of all the components, giving rise
to sharp spectral variations. In order to extract the parameters of the ring, one must take into
account backreflection, otherwise the estimation of the loss and coupling coefficients would
depend on which resonance we select, which is unphysical and would produce wrong results.
Therefore, a procedure to extract all the parameters including backreflection is needed in or-
der to understand the behavior of our microring resonator. Next section provides an analytical
treatment and a recipe to extract all the parameters from any given resonance.

3. Theory

To study this problem we use the time-domain model of two resonators coupled through a
coupling constant [10], and we apply it for the ring resonator problem as in Ref. [8]. Typically
time-domain analyses take the photon lifetimes as parameters, but these can be readily related to
the more frequently used energy coupling coefficient, Kj, and energy propagation loss constant,
α , of space-domain analyses [11] as in [12]. The reflection coefficient R represents the energy
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exchanged between the propagating and counter-propagating modes in a single pass through
the ring. The coupling constants were assumed to be the same for both the propagating and
counter-propagating modes (this is a neccesary condition of a symmetric coupler). The resulting
expressions are as follow:

Kj =
ωoL

Qe, jvg
α =

ωo

Qivg

√
R =

ωoL
2Qrvg

(1)

Qe,1, Qe,2, Qi and Qr are the Q-factors associated to: the coupling with the bottom and top
waveguides, the intrinsic losses and the reflection coefficient; vg is the group velocity of the
fundamental mode of the waveguide and can be obtained from the free spectral range (FSR) of
the ring. The coupling points are assumed to be lossless, but if there is any excess loss, it can
be accounted for as an intrinsic loss in Qi. The model does not require to specify where along
the ring the reflection takes place, as the behavior is not affected by the phase of the reflection
parameter. However, the fact that reflections occur at randomly localized points has the conse-
quence of introducing a strong dependence of the reflection parameter versus wavelength. The
statistical variations of that parameter have been studied in Ref. [13]. Q-factors can be related
to the τ constants of the different processes through Qj = ωoτ j/2. Defining the total quality
factor of the ring as:
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1
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(2)

and following the guidelines in [10, 12, 8], one can obtain the analytical expressions for the
output in each port as a function of all the Q-factors previously defined:
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where ω ′ = ω/ω0 is the normalized angular frequency of the resonance under study, and T ,
D and C are respectively the energy transmission coefficients of the through, drop and counter-
drop ports as defined in Fig. 1. Also, Eq. (3c) would yield the back reflected energy by multiply-
ing it by K1/K2. This means that the counter-drop port can be used as an indirect measurement
of the latter; which can be useful because measuring it directly is not straightfoward as other
sources of backscattering (e.g. reflection in the input grating) can hinder the measurement, thus
coherent methods as in [5] are needed.

One way to extract the ring parameters from the experiment would be to find the parameters
that produce the best fit to the experimental curves; however fitting three curves simultaneously
is not straightforward. For this reason, we have calculated all the Q-factors of the ring as a
function of specific values which are easily extracted from the experimental curves, which are
the central values of the three ports (T0, D0 and C0, all measured at ω0), and the parameter Δω ′,
defined as the normalized frequency width between the points where C =C0/2. When the peak
has not yet split, this corresponds to the full-width at half maximum (FWHM) of the counter-
drop resonance peak. However, if the peak is split in two, the maximum is not located at C0,
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thus Δω ′ would not be the FWHM anymore, although the expressions are still valid using its
mathematical definition. After some algebraic manipulation, the equations that allow extracting
all the parameters from the experimental curves are the following:
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Once all the Q-factors are calculated, one can relate them to the loss, coupling coefficients
and backreflection by using Eqs. (1) and (2). The sign ambiguity in Eqs. (4c) and (4d) is a
byproduct of the existence of two degenerate operation regimes in the ring with different pa-
rameters but the same resonance shape. This ambiguity is well known in cases without any
backreflection effect, and it is due to the fact that in some cases one cannot distiguish be-
tween the intrinsic and the extrinsic loss. Some possible solutions to overcome this problem are
proposed in [14], and consist in looking at the dependence on wavelength or measuring rings
with different geometrical parameters. In our case, the ambiguity only occurs for the peak with
lowest reflection coefficient, as in the other two cases it would give rise to a negative loss coef-
ficient, which is unphysical, because it requires gain from the medium. As the sign has to be the
same in all the peaks of the same ring, this provides an additional way to decide the correct sign
in the expressions by analyzing more than one peak and looking for non-physical solutions.

Looking at Eqs. (3), one can identify 3 main regimes of operations in which the ring can
work. They are distinguished by how strong the backreflection is in relation to the total Q-
factor, that is, how large Qr is in comparison with Q. In the case where Qr � Q, the coupling
can be considered to be negligible and the parameters can be extracted with already existing
methods like in [14], or by making 1/Qr = 0 in Eq. (3a) and solving for Qe,1 and Q as a function
of the extinction ratio and the full-width at half depth (FWHD). In this situation all resonances
tend to have approximately the same shape and they do not split up. When the intention is to
achieve high quality factors, then Q can start to approach to Qr and the expressions described in
this paper should be used. Nevertheless, it may not be obvious from a measurement of a single
resonance of the through port that the latter is the actual mode of operation since resonances
do not always split; under these circumstances one should look at different peaks and see if
they vary in an apparently random fashion, and where possible, measure the counter-drop port
response. In the case where the coupling is so strong that Qr � Q, which may happen if the
rings are intentionally designed for this purpose, then simplified expressions can be found as
well, which are more practial than Eqs. (4). If this is the case then splitting is very evident
showing two clearly defined peaks around each resonance frequency. Table 1 summarizes the
three operation regimes and the expressions to use in each case.

4. Results

From the experimental data shown in Fig. 2, we have chosen three consecutive resonances
which show quite different behavior in terms of extinction ratio and degree of splitting. The
results obtained from the method described in section 3 for each resonance are also shown in
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Fig. 2, and the corresponding theoretical curves are shown in the insets, where a good agreement
is observed. It is worth noting that the coupling constants and the loss show small variations
among resonances, being R the one showing much higher variability (reaching one order of
magnitude). This is expected from the nature of backscattering, and is a demonstration of the
validity of our model. The asymmetry of the shape of peaks 1 and 3, which is not reproduced
in the theory, can be explained by sudden variations in the reflection coefficient along the width
of the resonance, which was not considered in the model.

The maximum reflection coefficient measured is 0.18%, which corresponds to Qr ∼ 25 000.
This means that for this waveguide section and quasi-TE polarization, resonances with Q-
factors higher than 104 will be affected by backscattering. If one requires pure resonances with
higher Q-factors, waveguides with weaker backscattering are needed, which can be achieved
by using quasi-TM polarization or by widening the channel.[9]

Table 1. Summary of expressions for calculating Q-factors of ring-resonators working un-
der different backscattering regimes

Weak coupling Intermediate coupling Strong coupling

(Qr � Q) (Qr ∼ Q) (Qr � Q)

Q = 1/Δω ′
FWHM,D

1 Q (Eq. (4a)) Q = 1/Δω ′
FWHM

Qr (Eq. (4b)) Qr (Eq. (4b)) Qr = 1/Δsplitting 2

1Full-width at half maximum of the drop port

2Peak to peak distance

5. Conclusion

We have described an analytical model and a fitting procedure that allows extraction of all the
key parameters of a silicon microring resonator with two coupling points. These parameters
are the two coupling constants, propagation loss and the backscattering coefficient. With this
method, we demonstrate that variations of the backscattering parameter are the cause of the
strong variations in the shape of different resonances of the same microring. All these parame-
ters can be extracted from simple measurements using a standard transmission characterization
setup, and the experimental results from a ring resonator are succesfully fitted to the analytical
model.
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#151377 - $15.00 USD Received 22 Jul 2011; revised 23 Sep 2011; accepted 1 Oct 2011; published 22 Nov 2011
(C) 2011 OSA 5 December 2011 / Vol. 19,  No. 25 / OPTICS EXPRESS  24985




