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Abstract: We use a combination of conformal and quasi-conformal 
mappings to engineer isotropic electromagnetic devices that modify the 
omnidirectional radiation pattern of a point source. For TE waves, the 
designed devices are also non-magnetic. The flexibility offered by the 
proposed method is much higher than that achieved with conformal 
mappings. As a result, it is shown that complex radiation patterns can be 
achieved, which can combine high directivity in a desired number of 
arbitrary directions and isotropic radiation in other specified angular ranges. 
In addition, this technique enables us to control the power radiated in each 
direction to a certain extent. The obtained results are valid for any part of 
the spectrum. The potential of this method is illustrated with some 
examples. Finally, we study the frequency dependence of the considered 
devices and propose a practical dielectric implementation. 
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1. Introduction 

During the last decade, a variety of complex structures have been proposed to modify the 
radiation properties of electromagnetic sources. For instance, a near-zero refractive index slab 
selects only electromagnetic components impinging with a wave vector perpendicular to its 
interface, transforming an isotropic source into a highly directional beam [1]. Another 
approach is the use of photonic crystals, which are able to generate a set of directional beams 
from an omnidirectional embedded source, since propagation is allowed only in some 
preferred directions inside the crystal, related to the symmetries of the periodic structure. 
Moreover, inverse engineering can be employed to modify such periodic structure and achieve 
a desired radiation pattern that need not be symmetric [2]. In the last few years, plasmonic 
nanoantennas have also attracted considerable attention, as they enable us to extend many 
radio antenna concepts to the optical range with devices of reduced size. This includes 
achieving directional emission patterns, for which most works have focused on Yagi-Uda 
configurations for different purposes [3–6]. Simultaneously, transformation optics [7] has 
provided an alternative way to mold the radiation properties of antennas [8–18]. This 
technique makes it possible to design optical media that make light experience a virtual space, 
different from the physical one. Points in both spaces (which can be flat or curved) are related 
by a certain mapping that, together with the metric of those spaces, determines the properties 
of such optical media [7]. Different transformations have been proposed for a number of 
applications. These range from the conversion of the cylindrical waves emitted by a line 
source into four directional beams angularly spaced by 90° [9], to the transformation of more 
general optical sources that makes them behave as a different virtual source [10–12] and the 
design of ultra-directive or even invisible antennas [13–15]. The main drawback of this kind 
of devices is that anisotropic permittivities and permeabilities are required in general, which 
are difficult to implement. 

Recently, the use of conformal transformations [16] has been proposed for antenna 
engineering [17,18]. Such transformations have the advantage of requiring only isotropic 
media for their implementation and, for TE polarization (electric field pointing in the direction 
in which the problem is invariant), only non-magnetic media [7,17,18]. In [17], near-zero 
constitutive parameters arising from a conformal transformation are employed to transform an 
isotropic source into one, two or four directional beams. In a more general work, the Schwarz-
Christoffel transformation was used to map the circle onto a regular polygon with N sides 
[18]. The resulting device distributes equally the power of a point source located at the 
polygon center among N directional beams perpendicular to each polygon side. Thus, these 
techniques are limited to the design of symmetric antennas radiating in N discrete directions. 
In this work, we combine this kind of conformal transformations with quasi-conformal 
mappings to gain more flexibility in the design of radiation-pattern-shaping devices. Although 
the proposed devices were devised for the optical range, the results are valid for any part of 
the spectrum. Therefore, normalized distances (in terms of the free-space wavelength λ) are 
used throughout the text for the sake of generality. 

2. Quasi-conformal mappings for antennas 

Infinitesimal balls are just scaled and rotated when transformed by a conformal mapping. This 
is the reason why conformal mappings give rise to isotropic transformation media. Quasi-
conformal mappings transform infinitesimal balls to ellipsoids of bounded eccentricity. Thus, 
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transformation media resulting from a quasi-conformal mapping have a bounded anisotropy 
that can be neglected if it is small enough. Our goal is to change the omnidirectional radiation 
pattern of a two-dimensional point source. For this purpose, we will consider the 
transformation of the unit circle (normalized units) in a flat virtual space to another shape in 
flat physical space. The functionality of the device will be defined solely by the 
transformation we apply to the boundary of the considered domain in virtual space (the circle 
in this case). Thus, we are interested in finding a map that simplifies its implementation. 
Clearly, a conformal mapping fulfils our requirement as it gives rise to isotropic media. 
However, except for some specific cases, we do not have at our disposal a conformal 
transformation mapping the unit circle onto the desired shape. To overcome this problem, we 
will employ quasi-conformal mappings. Since most algorithms used in the calculation of 
quasi-conformal mappings transform a rectangular region into other shape, first it is necessary 
to transform the circle into a rectangle. The best way to do this is by using simple conformal 
transformations with known analytical expressions. Thus, we will follow a two-step method 
instead of a direct transformation. First, we will transform the unit circle to a square (with side 
length d = 2) by using a combination of a Möbius transformation mapping the circle to the 
half upper plane, followed by a Schwarz-Christoffel transformation mapping the half upper 
plane to the square. The complete transformation is given by Eq. (1): 

 
( ) ( )1 1

( ) 2 1 arcsin .
/ 2 |1/ 2 2 2

q w i F w i
F

π
π

  
= − − −     

  (1) 

F(φ|m) is the incomplete elliptic integral of the first kind, with amplitude φ and parameter 
m. We have expressed this two-dimensional transformation as a function of the complex 
variable w = w1 + iw2, with q = q1 + iq2. The refractive index that implements this 
transformation can be obtained as n1 = |dw/dq| [7]. As for the second step, we use a quasi-
conformal mapping z(q1,q2) = x + iy to transform the square to the desired final shape. The 
advantage of this kind of quasi-conformal transformations is that they always exist and that, 
they can be easily calculated numerically. We only need to be careful so that this 
transformation has a negligible associated anisotropy. For a TE two-dimensional problem, the 
implementation of the exact quasi-conformal mapping would require a permittivity ε = 
det(g

ij
)

-1/2
 and an anisotropic permeability with in-plane components µT and µL in each of the 

two principal directions, where g
ij
 is the contravariant metric in the curved coordinates we 

want to implement [19]. To measure the degree of anisotropy, α = max((µT/µL)
1/2

,(µL/µT)
1/2

) is 

usually taken as the anisotropy factor. If α is close to one, µT ≈µL ≈1 and the quasi-conformal 
mapping can be implemented with negligible error by using only a refractive index 
distribution n2

2
 = ε = det(g

ij
) 

-1/2
, as if our mapping were conformal. We will use a simple way 

of computing such quasi-conformal mappings, which is based on the solution of the inverse 
Laplace equation supplemented with sliding boundary conditions [20]. In this case, the four 
sides of the square are mapped to four disjoint specified pieces of the transformed square 
boundary. The complete transformation refractive index is then given by n = n1n2 [7]. In Fig. 1 
we illustrate the two steps of this transformation with an example. Conformal maps preserve 
angles, i.e., two curves meeting at a certain angle in virtual space are mapped to curves in 
physical space that meet at the same angle. Lines perpendicular to the unit circle boundary 
will be perpendicular to its transformed counterpart in physical space. 
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Fig. 1. Mapping of the unit circle to an arbitrary shape by using a conformal transformation 
q(w) followed by a quasi-conformal one z(q1,q2). 

Electromagnetic fields follow this transformation, so light rays emanating from a point 
source located at the center of the unit circle in original space will be normal to the 
transformed boundary in physical space as well. In order to shape the radiation diagram of the 
omnidirectional source, we have to orient each little piece of the transformed boundary so that 
it is perpendicular to the direction towards which we want to redirect the rays crossing that 
piece. This way we can engineer the angular distribution of the radiated power. This 
procedure is not exact because of the wave nature of light and the reflections appearing at the 
transformed circle boundary, since the transformation is not continuous at it. The other 
limitation is that we do not have full control of the density of rays crossing the transformed 
circle boundary. We can only decide where to map each fourth of the circle boundary so that 
we can distribute the radiated power among four desired sets of angular directions, but we 
cannot specify the angular distribution within each set. Despite the first limitation, the results 
achieved by this technique are quite accurate. In addition, the second limitation can be 
overcome to a certain extent as shown below, increasing the degree of control of the angular 
power distribution. 

3. Examples 

In this section we present three examples illustrating the potential of this technique. We will 
focus on TE waves so that the resulting devices can be implemented with a gradually 
changing refractive index distribution. As a first example, imagine that we want to divide the 
power radiated by the point source into four directional beams, each one propagating in an 
arbitrary direction. To this end, we should use a quasi-conformal mapping transforming each 
side of the square to a straight line perpendicular to each of these directions. For instance, let 

as suppose that those directions correspond to θ = 90°, θ = 180°, θ = −20°, and θ = −100°. In 
Fig. 2(a) we have depicted a possible choice for the boundary of the final device. Note that we 
have made use of the flexibility allowed by the quasi-conformal mapping technique in order 
to avoid steep vertices, which have been rounded. This way, the required refractive index n is 
always greater than zero. We will also apply this kind of smoothing to the next examples. In 
Fig. 2(b) we show how the calculated mapping transforms the grid in the w-plane depicted in 
Fig. 1 to the z-plane. The refractive index that implements such mapping is included in Fig. 
2(c). In this case, n ranges from 0.1 to 1.75, and α is approximately 1.04 so the anisotropy can 
be neglected. This also applies for the other examples analyzed below, for which similar 
values of α are obtained. To verify the behavior of the designed devices, we have performed 
numerical calculations with the commercially available software COMSOL Multiphysics, 
based on the finite element technique. Isotropic dielectric media have been used in all 
simulations (anisotropy neglected). In Fig. 2(d) we render the power flow distribution of a 
point source located in the transformed center of the circle. In addition, we have calculated the 
far-field distribution Efar(θ) radiated by the system. This enables us to evaluate the directivity, 
which can be defined as D = |Efar(θ)/Eomni|

2
 for a two-dimensional TE problem, where Eomni is 

the electric far field radiated by a two-dimensional point source in any direction. In Fig. 2(e) 
we have depicted D in polar coordinates for this first example. We can observe that the 
radiation pattern consists of four well-defined narrow beams in the desired directions (with a 
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maximum angle deviation of 0.1°). The directivity in each of these directions is very similar 
and is higher than 6 (7.8 dB), with a half-power beamwidth BW between 10° and 13°. For 
comparison purposes, we simulated the exact implementation of the device (anisotropy not 
neglected). No appreciable differences were observed, as corresponds to small values of α. 
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Fig. 2. Control of beam direction: Conversion of an omnidirectional radiation pattern into four 
narrow beams pointing at any desired direction. (a) Desired boundary of the transformed circle. 
(b) Resulting quasi-conformal mapping. (c) Refractive index. Simulated (d) power flow, and 
(e) directivity for the isotropic implementation (red) and exact implementation (blue). 

In the second example we show that this technique is not restricted to four-beam antennas 
and that the power radiated in each direction can be controlled to a certain extent. In this case, 
imagine that we want to have five beams instead of four, radiating in the directions θ = 0°, θ = 

90°, θ = 150°, θ = −90°, and θ = −150°. Moreover, we want the beams associated with the 

directions θ = 150° and θ = −150° to have a smaller directivity than the other ones. These 
specifications can be accomplished by assigning the left side of the square in the q-plane to 
two segments in the z-plane, one of them perpendicular to the direction θ = 150° and the other 

one to the direction θ = −150°, while leaving the other three square sides unchanged [Fig. 
3(a)]. Since the device is symmetric with respect to the horizontal axis, we know that the 
beams exiting each of the smaller segments will carry the same power, approximately a 
quarter of the power carried by each of the other three beams. As in the previous example, the 
resulting mapping, required refractive index, power flow distribution and directivity are 
shown in Figs. 3(b)–3(e). The maximum directivity is 3.62 dB for the two secondary lobes 
and it is between 9.03 dB and 9.2 dB for the main lobes. The refractive index ranges from 0.2 
to 1.3. 

As a last example, we show that we can also engineer the device to have isotropic 
radiation within a certain angular range, and not only a set of directional beams. For instance, 
suppose that we want to have three main lobes radiating in the directions corresponding to θ = 

0°, θ = 180°, and θ = −90°, and that we want an isotropic radiation in a 60° angular region 
defined by the interval θ ϵ [60°, 120°]. To achieve this, we can transform the upper side of the 
square in the q-plane to a circular boundary, while leaving the other three square sides with 
the same orientation [see Fig. 4(a)]. This circular boundary must be an arc subtending an 
angle of 60° in order to distribute the power uniformly in the desired range. According to Fig. 
4(a), the radius r of the circle should be r = 1/sin(30) = 2. The mapping, refractive index 
(varying between 0.2 and 1.32) and directivity are shown in Figs. 4(b)–4(d). 
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Fig. 3. Control of the number and power of beams: Conversion of an omnidirectional radiation 
pattern into five narrow beams with different power levels. (a) Desired boundary of the 
transformed circle. (b) Resulting quasi-conformal mapping. (c) Refractive index. Simulated (d) 
power flow, and (e) directivity. 

For the directional beams, the directivity achieves maximum values of 9.4 dB (θ = 0° and 

θ = 180°) and 10.1 dB (θ = −90°), with beamwidths of 9.8°. We have included in Fig. 4(e) a 
detail of the directivity in the region where we desire an isotropic radiation. 
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Fig. 4. Generation of a radiation pattern combining high directivity in some directions and 
isotropic radiation in a desired angular range from an omnidirectional source. (a) Desired 
boundary of the transformed circle. (b) Resulting quasi-conformal mapping. (c) Refractive 
index. (d)–(e) Simulated directivity. 

There appears a little ripple with amplitude ∆ ≈0.7 dB owing to reflections at the boundary 
and the fact that the density of rays is higher at the center of the arc, as shown in Fig. 4(b). 
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Nevertheless, the directivity is higher than 2 dB approximately between 70° and 110° with a 
beamwidth of around 52°. This last value is somewhat smaller than expected because of the 
reasons mentioned above and could be corrected by considering a higher angular region in the 
specifications or by optimizing the radius of curvature of the mapping boundary, which in 
general could provide a path for engineering a large variety of radiation patterns. 

4. Frequency dependence and implementation 

The performance of the proposed devices should be frequency-independent, provided that 
non-dispersive materials are employed for their implementation. However, there exists a 
limiting upper wavelength for which the performance of the device begins to deteriorate 
significantly. This is due to the fact that we used concepts of ray optics in the design of our 
device (see discussion above). Thus, its behavior should be closer to the desired one at shorter 
wavelengths. To analyze the frequency dependence of the proposed devices we focused on the 
example of Fig. 3. In Figs. 5(a)–5(f) we depict the simulated directivity of this device at 
different wavelengths. We used the size d of the square side (Fig. 1) as the reference length, 
since the lateral size of the device is of the order of d (the results in Fig. 3 correspond to d = 
6.6λ). As expected, we observe an improvement of all features at shorter wavelengths. 
Specifically, for sizes of d larger than 20λ the performance is optimal, reaching directivities 
around 13 dB and half-power beamwidths as small as 4°. On the other hand, for d = 4λ the 
secondary lobes do not point at the desired direction and the directivity is quite low. As an 
approximate rule, we found that the behavior of the device is acceptable for sizes down to 5λ. 
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Fig. 5. (a)–(f) Directivity of the device in Fig. 3 at different wavelengths. (g)–(h) Refractive 
index and directivity of a modified version of the device in Fig. 3. 

Regarding the practical realization of the device, the main difficulty stems from the need 
for refractive indices below unity. Nonetheless, there are several ways to synthesize this kind 
of media, depending on the wavelength of operation. At optical frequencies, it is possible to 
use a metal-dielectric composite that, in the effective medium regime, can be regarded as a 
continuous medium with an effective refractive index between those of the constitutive 
materials. By spatially changing the filling ratio of both constituents, the desired index profile 
can be achieved [21]. In addition, there exist natural media that posses a resonant permittivity 
at some frequencies and could be structured in a similar manner to achieve the sought index 
distribution. For instance, the permittivity of SiC takes values between zero and one in the 
midinfrared [22]. At microwaves, the desired properties can be attained by employing 
metamaterials made up of resonant elements exhibiting effective permittivities lower than 
unity [14]. In all cases, the desired properties are achieved in a narrow band, either due to the 
dispersive nature of the employed materials (metals, SiC) or the resonant behavior of the 
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constituent elements. To solve this problem, we can modify the original device so that the 
required refractive index is always greater than one and only dielectric materials are required 
for its implementation. For this purpose, we followed three steps. First, we reduced the size of 
the transformed circle to raise the resulting refractive index distribution (intuitively, light must 
travel a shorter distance in the same time, so the refractive index must be larger). Second, we 
multiplied the whole refractive index distribution by a constant factor F. This should not alter 
the device response in the ray optics approximation, although high values of F could seriously 
affect its properties. Finally, the refractive index was set to one in the regions where it still 
was below unity. These regions, as well as F, must be small enough so that the device 
performance is not affected. Continuing with the previous example, a modified version of the 
device was obtained by reducing its size by a factor of 0.7 and multiplying the resulting index 
distribution by 1.5. This gave rise to a refractive index distribution greater than one, except in 
small areas close to the corners, in which the index was set to one. The resulting profile for a 
device size of the order of 10λ is shown in Fig. 5(g). It ranges from 1 to 2.7 and could be 
implemented by milling holes with varying density or size in a dielectric medium [23]. A 
good directivity is achieved [Fig. 5(h)], somewhat lower than that of the original device [Fig. 
5(d)]. It is worth mentioning that the unavoidable discretization of the refractive index profile 
sets a lower bound for the wavelength of operation, which must be large enough so that the 
medium is effectively continuous. Despite these limitations, a dielectric implementation 
should lead to a broadband device, in contrast to the approaches based on photonic crystals or 
plasmonic nanoantennas, which are usually narrowband due to its resonant nature. 

5. Conclusions 

We have shown how to engineer antenna radiation patterns in several ways with the aid of 
quasi-conformal mappings that result in isotropic and non-magnetic devices. As compared to 
previous works based on conformal transformations this technique provides us with a higher 
degree of control, allowing us to divide the power into highly directional beams in a set of 
desired directions and isotropic radiation in other angular ranges. More complex radiation 
patterns could be achieved by combining the presented ideas. The flexibility offered by quasi-
conformal mappings enables us to avoid zero-index regions. In addition, we have analyzed the 
frequency dependence of the proposed devices, finding that they behave well for lateral sizes 
down to 5λ. Finally, we have proposed a feasible implementation that only requires isotropic 
dielectric media with refractive index values above unity. 
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