ÍNDICE

1.	INTRODUCCIÓN				
	1.1 INTRODUCCIÓN GENERAL	17			
	1.1.1 Química Sostenible	17			
	1.1.2 Catálisis	22			
	1.1.2.1 Zeolitas	25			
	1.1.2.2 Materiales mesoporosos: MCM-41	40			
	1.1.2.3 Materiales MOF	42			
	1.1.2.4 Resinas	46			
	1.1.3 Biomasa y biorrefinerías	48			
2.	OBJETIVOS	57			
3.	FRAGANCIAS	63			
	3.1 INTRODUCCIÓN	65			
	3.1.1 Química Fina y la industria de fragancias	65			
	3.1.2 Catalizadores en la industria de Química Fina	70			
	3.1.3 Terpenos como materia prima: β-pineno (1)	73			
	3.1.4 Obtención y reordenamiento del epóxido de β-pineno (2)	77			
	3.1.5 Obtención de mirtanal (3)	81			
	3.1.6 Posibles estructuras y características de materiales que				
	pueden emplearse como catalizadores sólidos para la reacción				
	de isomerización del epóxido de β-pineno en mirtanal (3)	87			
	3.1.6.1 Zeolitas	88			
	3.1.6.2 Materiales MOF	91			
	3.2 RESULTADOS EXPERIMENTALES	95			
	3.2.1 Preparación del epóxido de β -pineno (2) a partir de β -pineno				
	(1)	95			
	3.2.2 Transformación del epóxido de β -pineno (2) en mirtanal (3) en				
	reactores de tanque agitado	97			
	3.2.2.1 Estudio de la actividad catalítica de diferentes materiales				
	para el reordenamiento del epóxido de β-pineno (2) y	07			
	optimización de las condiciones de reacción	97			
	3.2.2.2 Selección del catalizador para la transformación del epóxido de β-pineno (2) en mirtanal (3) en reactores de				
	. , , , , , , , , , , , , , , , , , , ,	106			
	tanque agitado	TOO			

3.2.2.3		en la transformación del epóxido de β-pineno (2) en	118
	3.2.2.4	1 Transformación del epóxido de 6-pineno (2) en miratnal	123
	3.2.2.5	Aislamiento y purificaciónpor destilación de mirtanal (3) resultante de la reacción de transposición del epóxido de	123
		в-pineno (2)	129
	3.3 CONCLUSIO	ONES	129
	3.4 PROCEDIM	mirtanal en reactores de tanque agitado 3.2.2.4 Transformación del epóxido de β-pineno (2) en miratnal (3) en un reactor de lecho fijo con flujo contínuo 3.2.2.5 Aislamiento y purificaciónpor destilación de mirtanal (3) resultante de la reacción de transposición del epóxido de β-pineno (2) CONCLUSIONES PROCEDIMIENTOS EXPERIMENTALES 3.4.1 Reactivos de partida y catalizadores empleados 3.4.2 Técnicas de caracterización y análisis de los compuestos obtenidos 3.4.3 Preparación del epóxido de β-pineno (2) 3.4.4 Reacción de isomerización del epóxido de β-pineno (2) para obtener mirtanal (3) OMBUSTIBLES INTRODUCCIÓN 4.1.1 Combustibles fósiles 4.1.3 Procesos de obtención de biocombustible líquido a partir de biomasa 4.1.3.1 Obtención de combustible líquido a partir de disoluciones acuosas de azúcares y alcoholes 4.1.3.2 Obtención de queroseno a partir de ácido levulínico: Ruta C ₉ 4.1.3.3 Obtención de queroseno a partir de ácido levulínico vía yvalerolactona (GVL): Ruta C ₄ 4.1.3.4 Obtención de combustible líquido tipo éster a partir de ácido valérico 4.1.3.5 Síntesis de polifurilalcanos 1.1.4 Furfural como molécula plataforma para obtener biocombustibles a partir de biomasa 1.1.5 Obtención de 5-metilfurfural (9) como molécula plataforma para obtener biocombustibles a partir de biomasa 1.1.6 Uso y adaptación de compuestos furánicos para obtener	132
			132
	ok	ptenidos	133
			134
	ok	otener mirtanal (3)	137
4.	BIOCOMBUSTII	BLES	143
	4.1. INTRODUC	CCIÓN	145
			145
			151
			165
	4.1.3.	· · · · · · · · · · · · · · · · · · ·	465
	4.1.3.		165
		levulínico: Ruta C ₉	171
	4.1.3.	·	174
	4.1.3.		1,4
	4.4.0		176
	4.1.3.	Sintesis de polifurilalcanos	177
		,	404
		•	181
	ра	ra obtener biocombustibles a partir de biomasa	188
		so y adaptación de compuestos furánicos para obtener ocombustibles	190

4.2. RESULTAD	OOS EXPERIMENTALES	193
4.2.1 Di	seño y descripción del "Proceso Sylvan"	193
4.2.1.	1 Etapa de hidroxialquilación/alquilación de 2-metilfurano	
	(8) con compuestos carbonílicos	198
4.2.1.	2 Etapa de hidrodesoxigenación del precursor difuránico	199
4.2.2 Sí	ntesis del precursor furánico	200
4.2.2.	1 Reacción de hidroxialquilación/alquilación de Sylvan (8)	
	con butanal (6a)	201
4.2.2.	2 Reacción de hidroxialquilación/alquilación de Sylvan (8) y	
	4-oxopentanal (11) (reacción de trimerización de Sylvan)	234
4.2.2.	3 Reacción de hidroxialquilación/alquilación de Sylvan (8) y	
	5-metilfurfural (9)	254
4.2.2.		
	con aldehídos alifáticos	259
4.2.2.	- · · · · · · · · · · · · · · · · · · ·	233
7.2.2.	con cetonas	263
4.2.2.		279
4.2.2.	o Discusion de resultados	213
4.2.3 Re	eacción de hidrodesoxigenación del precursor furánico	284
4.2.3.		
	(10a)	286
4.2.3.		
_	pentanona (12)	293
4.2.3.		301
	4 Mecanismo de hidrodesxogenación	310
4.2.3.		327
4.2.3.		331
4.2.3.	o integración del Froceso sylvan en una bionejmena	331
4.3. CONCLUS	IONES	334
A A PROCEDIA	MIENTOS EXPERIMENTALES	339
4.4. TROCEDIN	MENTOS EXI ENIMENTALES	333
4.4.1 Re	eactivos de partida y catalizadores empleados	339
4.4.2 Té	ecnicas de caracterización y análisis de los compuestos	
ok	otenidos	340
4.4.3 Re	eacción de hidroxialquilación/alquilación	342
4.4.3.1		
	con butanal (6a)	342
4.4.3.2	Reacción de hidroxialquilación/alquilación de Sylvan (8)	
	con 4-oxopentanal (11) (reacción de trimerización de	
	Sylvan)	347

	4.4.3.3	Reacción de hidroxialquilación/alquilación de Sylvan (8) con 5-metilfurfural (9)	354
	4.4.3.4	Reacción de hidroxialquilación/alquilación de Sylvan (8) con aldehídos alifáticos	356
	4.4.3.5	Reacción de hidroxialquilación/alquilación de Sylvan (8) con cetonas	364
	4.4.4 Rea	cción de hidrodesoxigenación del precursor furánico	375
	4.4.4.1	Procedimiento general para la preparación de los catalizadores empleados en la reacción de hidrodesoxigenación	375
	4.4.4.2	Puesta a punto y procedimiento del reactor de lecho fijo de flujo continuo para la etapa de hidrodesoxigenación	376
	4.4.4.3	Procedimiento general para el estudio de la reacción de hidrodesoxigenación de 1,1-bis(5-metil-2-furanil)butano	
	4.4.4.4	(10a) Procedimiento general para el estudio de la reacción de hidrodesoxigenación de 5,5'-bis(5-metil-2-furanil)-2-	383
		pentanona (12)	384
	4.4.4.5	Procedimiento general para el estudio de la reacción de hidrodesoxigenación de diferentes precursores de diesel	385
	4.4.4.6	Mecanismo de hidrodesoxigenación	386
5.	BIBLIOGRAFÍA		393
6.	ANEXOS		403
		ción y nomenclatura de los compuestos	403
	Anexo II. Índice o		411
	Anexo III. Índice Anexo IV. Índice	•	416 423
		de abreviaturas y acrónimos	435
7.	RESUMEN, RESU	M, ABSTRACT	439
8.	PUBLICACIONES	Y PATENTES	443