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On a classical renorming construction of V. Klee

A. J. Guirao · V. Montesinos · V.
Zizler

To the memory of Victor Klee

Abstract We further develop a classical geometric construction of V. Klee
and show, typically, that if X is a nonreflexive Banach space with separable
dual, then X admits an equivalent norm | · | which is Fréchet differentiable,
locally uniformly rotund, its dual norm |·|∗ is uniformly Gâteaux differentiable,
the weak∗ and the norm topologies coincide on the sphere of (X∗, | · |∗) and,
yet, | · |∗ is not rotund. This proves (a stronger form of) a conjecture of V.
Klee.

Keywords strictly convex norm · locally uniformly rotund norm · Gâteaux
differentiable norm · Fréchet differentiable norm · renormings.
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1 Introduction

Differentiable norms on Banach spaces are most often obtained by constructing
dual norms with rotundity properties: Indeed, a classical result of Šmulyan [15]
implies that if (X, ∥ · ∥) is a Banach space and its dual norm ∥ · ∥∗ on X∗ is
rotund, then ∥ · ∥ is Gâteaux differentiable (see also, e.g., [3, Corollary 7.23]).
For sufficient conditions on a Banach space to have an equivalent norm such
that its dual norm is strictly convex, and for characterizations of this property,
see, e.g., [9], [13], [12], and [10].

The contribution of this note goes somehow into the opposite direction, explo-
ring the failure of the converse to this Šmulyan’s result.

The first construction of a Gâteaux differentiable norm whose dual norm is
not rotund was given in [7] and, independently, in [17]. Klee found, in op. cit.,
a geometric construction that, in the nonreflexive case, gave an application of
Šmulyan’s weak compactness result to the geometry of quotient spaces, pro-
viding in every nonreflexive separable Banach space an equivalent norm that
is Gâteaux differentiable and such that its dual norm is not rotund ([7, Pro-
position 3.3], see also [3, Exercise 8.63]). This in fact means that a separable
Banach space X is reflexive if and only if every equivalent Gâteaux differen-
tiable norm on X has rotund dual norm. We extend Klee’s result to spaces
that admit an equivalent Gâteaux differentiable norm (Corollary 2) (note that
every separable Banach space has this property [8], see, e.g., [3, Theorem 8.2]).
A modification of Klee’s construction is needed, as special “smooth” compact
sets in X used by him are no longer available in the new setting.

In this note we further develop this construction, extending the range of its
use in several directions —and proving, as a consequence, a stronger form of
a conjecture of V. Klee in op. cit.

The Fréchet version of the Šmulyan’s result above says that a dual locally uni-
formly rotund norm forces the predual norm on X to be Fréchet differentiable
(see, e.g., [3, Corollary 7.23]). Again, the converse fails, even up to renorming
and asking only for the strict convexity instead of local uniform rotundity of
the dual norm: Indeed, in [16] it was proved that, for any uncountable ordi-
nal µ, the (nonseparable) Banach space C[0, µ] admits a Fréchet differentiable
norm but admits no norm whose dual norm is rotund (see, e.g., [1, Theorems
VII.5.2(ii) and VII.5.4]).

Recently, it was proved in [4] that C[0, µ] admits an equivalent locally uniformly
rotund norm that is Fréchet differentiable. It seems to be unknown if the set
of such norms is dense in the set of all equivalent norms on this space.

Our results include, too, a discussion of the failure of this Fréchet version of this
Šmulyan’s result for separable spaces: It gives a relatively easy construction
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of a Fréchet differentiable and locally uniformly rotund norm on a separable
space whose dual norm is not rotund.

Overall, we believe that the results in this note may help in providing some
more insight in renorming theory, in the duality of smooth and rotund norms,
and in the geometry of quotient spaces in general, in case of nonreflexive spa-
ces. For example, a natural byproduct is that, even in the class of separable
Asplund spaces, the rotundity of the dual norm of X∗ is a relatively quite
strong notion, in the sense that it is not implied, in general, even by combined
Fréchet differentiability, local uniform rotundity and weak uniform rotundity
of its predual norm of X. This should be compared with the fact that every
separable Asplund space admits an equivalent norm that is Fréchet differentia-
ble, locally uniformly rotund, weakly uniformly rotund and whose dual norm
is locally uniformly rotund (see e.g. [3, Chapter 8]).

As the main result of this paper we formulate the following theorem, that shows
the main practical applications of the construction. Later we shall discuss how
to obtain further variants of this result.

Theorem 1 Let X be a subspace of a weakly compactly generated nonreflexive
Banach space. Then
(a) There exists an equivalent locally uniformly rotund and Gâteaux differen-
tiable norm on X such that its dual norm on X∗ is not rotund.
(b) If X is moreover an Asplund space, then there exists an equivalent Fréchet
differentiable and locally uniformly rotund norm on X such that its dual norm
on X∗ is not rotund but the weak∗ and the norm topology on its dual unit
sphere coincide.
(c) If X∗ is separable, then there exists a Fréchet differentiable, locally uni-
formly rotund and weakly uniformly rotund equivalent norm on X whose dual
norm is not rotund but the weak∗ and the norm topologies on its dual unit
sphere coincide.

As we mentioned above, part (a) of Theorem 1 solves in the positive a conjec-
ture of Klee. The following corollary extends the result of the same author in
[7, Proposition 3.3], who proved it for separable spaces.

Corollary 2 A Banach space X with a Gâteaux differentiable norm is refle-
xive if and only if any equivalent Gâteaux differentiable norm on X has rotund
dual norm.

Proof of Corollary 2 If X is reflexive and | · |0 is an equivalent Gâteaux
differentiable norm on X, then its dual norm is rotund by the Šmulyan’s
lemma. Assume now that X is not reflexive. If | · |0 is a Gâteaux differentiable
norm on X whose dual norm is not rotund, we are done. If, on the contrary,
| · |∗0 is rotund, then (following the notation in the proof of Theorem 1), the
norm ∥ · ∥∗ is also rotund, hence ∥ · ∥ is Gâteaux differentiable. The rest is the
same as the proof of Theorem 1. ⊓⊔
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Our notation is standard. Given a Banach space X, we denote by BX (SX)
the closed unit ball (respectively, the unit sphere) of X. If ∥ ·∥ is the norm of a
Banach space X, we denote by ∥ · ∥∗ the corresponding dual norm on X∗. Put
Γ (S) for the absolutely convex hull (i.e., the convex and symmetric hull) of a
set S ⊂ X, and Γ (S) for the closed absolutely convex hull of S. Recall that
the Minkowski functional pB of a symmetric convex body B ⊂ X is defined
by pB(x) = inf{λ > 0 : x ∈ λB}, for x ∈ X. The convex body B is said to
be Gâteaux (Fréchet) smooth whenever pB is Gâteaux (respectively, Fréchet)
differentiable at X \ {0}. Given a set S ⊂ X, the (absolute) polar set S◦ is
the subset of X∗ defined by S◦ = {x∗ ∈ X∗ : |⟨x∗, x⟩| ≤ 1, for all x ∈ S}. A
Banach space X is called weakly compactly generated (WCG, in short) if there
is a weakly compact set K ⊂ X so that the closed linear hull of K equals X.
Let (X, ∥ · ∥) be a Banach space. The norm ∥ · ∥ is called rotund (also called
strictly convex) whenever x = y if ∥x∥ = ∥y∥ = ∥(1/2)(x+ y)∥ = 1. The norm
∥·∥ is called locally uniformly rotund (in short LUR) if ∥xn−x∥ → 0 whenever
xn, x ∈ SX are such that ∥xn+x∥ → 2. The norm ∥·∥ is called weakly uniformly
rotund (in short WUR) if xn − yn → 0 in the weak topology of X whenever
xn, yn ∈ SX are such that ∥xn + yn∥ → 2. Note that it follows from the
Šmulyan’s lemma that a norm is WUR if, and only if, its dual norm is uniformly
Gâteaux differentiable (see, e.g., [1, Theorem II.6.7]). A Banach space X is
called an Asplund space if every separable subspace of X has separable dual.
For other nondefined concepts we refer, e.g., to [3].

2 A modification of Klee’s construction

Let (X, | · |0) be a Banach space such that | · |∗0 is rotund. Fix x0 ∈ X such
that |x0|0 = 1 and put x∗

0 for the (unique) element in X∗ such that |x∗
0|∗0 = 1

and ⟨x∗
0, x0⟩ = 1. (See Figure 1.)

Let H := {x ∈ X : ⟨x∗
0, x⟩ = 0} (a closed hyperplane of X), and let Y be a

closed hyperplane of H. Observe that X = H ⊕ span{x0} (both algebraically
and topologically). Let P : X → H (Q : X → span{x0}) be the canonical
projection on H (respectively, on span{x0}) associated to the decomposition
X = H ⊕ span{x0}.
The norm ∥ · ∥
We may define then an equivalent norm ∥ · ∥ on X by the formula

∥x∥2 := |Px|20 + |Qx|20, for all x ∈ X. (1)

It is easy to check that

(∥x∗∥∗)2 := (|x∗�H |∗0)2 + (|x∗�sp{x0} |∗0)2, for all x∗ ∈ X∗. (2)

The sets A and B, and the norm |∥ · |∥
Let p ∈ H be such that dist (p, Y ) ≥ 2. Denote by x∗

1 and x∗
2 the continuous

linear functionals in Y ⊥ (⊂ X∗) defined by

⟨x∗
1, x0⟩ = ⟨x∗

1, p⟩ = 1, and ⟨x∗
2, x0⟩ = ⟨x∗

2,−p⟩ = 1. (3)
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Set

M := max{∥x∗
1∥∗, ∥x∗

2∥∗}. (4)

The set x0 + Y together with the point p define a translate of a hyperplane,
precisely (x∗

1)
−1(1). Denote by W1 the halfspace containing 0 defined by this

hyperplane. Analogously, x0 + Y together with −p define a translate of a
hyperplane, precisely (x∗

2)
−1(1). Let W2 be the associated halfspace containing

0.

Proposition 3 There exists a bounded symmetric closed convex body B in X
such that B ⊂ W1 ∩W2, dist (x0 + Y,B) = 0, and (x0 + Y ) ∩B = ∅.

Proof. The construction of B is done in two steps. First, since Y is not
reflexive, we may find, by James’ weak compactness theorem, an element y∗0 ∈
S(Y ∗,∥·∥∗) not attaining its norm on B(Y,∥·∥). For n ∈ N let Cn := {y ∈ B(Y,∥·∥) :
⟨y∗0 , y⟩ ≥ 1−1/n}. We obtain in this way a decreasing sequence {Cn} of closed
convex subsets of B(Y,∥·∥) with the property that

∩∞
n=1 Cn = ∅.

Put C0 := B(H,∥·∥) and let (see Figure 1)

H

x0 + Y

C1 + (1 − 1/2)x0

C2 + (1 − 1/4)x0

p

W1

W2

h∗
0

= 1

Y

A

0

x0

C0

−p

C2

h∗
0
|Y = y∗

0

Fig. 1 Construction of the set A

A := Γ

( ∞∪
n=0

(
Cn + (1− 2−n)x0

))
.

This set is bounded, closed and absolutely convex. It is clear that A has a
nonempty interior. Moreover, (x0 + Y ) ∩ A = ∅. This can be seen as follows:
Assume that for some y ∈ Y we have x := x0 + y ∈ A. Then ⟨x∗

0, x⟩ = 1.

Find a sequence {xn} in Γ
(∪∞

n=0

(
Cn + (1− 2−n)x0

))
that converges to x.

For n ∈ N, put xn =
∑mn

i=0 γn,i(cn,i + (1 − 2−i)x0), where cn,i ∈ Ci for all
i = 0, 1, 2, . . . ,mn and

∑mn

i=0 |γn,i| ≤ 1. Since ⟨x∗
0, xn⟩ → 1, it is clear that,

without loss of generality, we may assume, for all n big enough, that γn,i ≥
0 for all i = 1, 2, . . . ,mn, that

∑mn

i=0 γn,i = 1, that {dn} converges, where
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dn :=
∑mn

i=0 γn,ici for all n ∈ N, and even that dn can be chosen in Cn. This
contradicts the fact that

∩∞
n=1 Cn = ∅.

For the second step, let At := A ∩ (x∗
0)

−1(t) for t ∈ (−1, 1). Let

B0 :=
1

2M
B(X,∥·∥), (5)

where M was defined in (4).
Put (see Figure 2)

B :=
∪

t∈(−1,1)

At + (1− |t|)B0, (6)

where B0 was defined in (5).

x0 + Y

p

0

x0

−p
At + (1 − |t|)B0

Fig. 2 Construction of the set B

Note that B is included in W1∩W2, as can be shown by using an argument as
above, this time for each t ∈ (−1, 1) and for each x ∈ B satisfying ⟨x∗

0, x⟩ = t.

That B has a nonempty interior is clear, since it contains A. To check that B
is convex and symmetric is easy; it is enough to deal with elements in sets of
the form At + (1− |t|)B0, t ∈ (−1, 1).

Let us prove now that B is indeed closed. To this end, let x ∈ B, and let {xn}
be a sequence in B that converges to x. For n ∈ N, let tn ∈ (−1, 1) be such
that xn ∈ Atn + (1− |tn|)B0. Without loss of generality we may assume that
xn ∈ Atn + (1 − |tn|)B0, say xn = atn + (1 − |tn|)bn, where atn ∈ Atn and
bn ∈ B0 for all n ∈ N, and that {tn} converges to some t ∈ [−1, 1].
We shall consider two cases.

1. Suppose first that t ∈ (−1, 1). If tn ≤ t frequently, we may assume that
tn ≤ t for all n ∈ N, and we fix z ∈ A such that ⟨x∗

0, z⟩ > t. Otherwise,
we may assume that tn > t for all n ∈ N, and we fix z ∈ A such that
⟨x∗

0, z⟩ < t. For n ∈ N and λn ∈ [0, 1], put yn := λnatn + (1 − λn)z in
such a way that ⟨x∗

0, yn⟩ = t. This implies that λntn + (1 − λn)f(z) = t
for all n ∈ N, so λn → 1. The element yn, as a convex combination of
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two elements in A, belongs to A, too, so it belongs to At. It follows that
yn + (1 − |t|)bn ∈ At + (1 − |t|)B0 for n ∈ N. As it is easy to show, the
sequence {yn + (1− |t|)bn} converges to x, so x ∈ At + (1− |t|)B0 (⊂ B).

2. Suppose now that t ∈ {−1, 1}, say t = 1. It follows that atn → x, so x ∈ A,
and ⟨x∗

0, atn⟩ → ⟨x∗
0, x⟩, hence ⟨x∗

0, x⟩ = 1. By the first part of the proof,
this is a contradiction with the fact that

∩∞
n=1 Cn = ∅. The argument for

t = −1 is similar. ⊓⊔

Define an equivalent norm |∥ · |∥ on X by

|∥ · |∥ := pB , (7)

where pB is the Minkowski functional of the set B defined in (6).

Some more constructions

The norm |∥·|∥ on X defined in (7) has the property that x∗
1 and x∗

2 introduced
in (3) define two distinct supporting hyperplanes to B(X/Y,|∥·|∥) at x0 + Y ,
hence the dual norm |∥ · |∥∗ is not rotund. This was the conclusion reached in
[7, Proposition 3.3].

Let h∗
0 (∈ H∗) be a Hahn-Banach extension of y∗0 to H (this extension is

unique, by a result of Phelps [11], although this is irrelevant here). Define an
extension z∗0 ∈ X∗ of h∗

0 to X by letting ⟨z∗0 , x0⟩ = 0. Observe that ∥z∗0∥∗ = 1.
Put

u∗ :=
1√
2
(x∗

0 + z∗0). (8)

Note that ∥u∗∥∗ = 1.

Let y∗∗0 ∈ S(Y ∗∗,∥·∥∗∗) be such that ⟨y∗∗0 , y∗0⟩ = 1. Put

u∗∗ := x0 + y∗∗0 , (9)

and note that ∥u∗∗∥∗∗ =
√
2 and ⟨u∗∗, u∗⟩ =

√
2, so u∗∗ attains its ∥ ·∥∗∗-norm

on B(X∗,∥·∥∗) at u
∗. There exists a net {ci}i∈I in B(Y,∥·∥) such that ci

w∗

−→ y∗∗0 .

If ci ∈ Cn\Cn+1, put di := ci+(1−2−n)x0. Therefore di
w∗

−→ u∗∗, so u∗∗ ∈ B◦◦.
This implies that |∥u∗∗|∥∗∗ ≤ 1. Observe, too, that ⟨u∗∗, x∗

1⟩ = ⟨u∗∗, x∗
2⟩ = 1,

so in fact |∥u∗∗|∥∗∗ = 1 and u∗∗ attains its |∥ · |∥∗∗-norm at any of the point of
the segment [x∗

1, x
∗
2]. In particular, [x∗

1, x
∗
2] ⊂ S(X∗,|∥·|∥∗).

The norm | · |
Our last step in the construction of the sought norm is to use the equation

| · |2 = |∥ · |∥2 + ∥ · ∥2 (10)

to define a new equivalent norm | · | on X. This is the norm on which to test
the announced result and its variants.



8 A. J. Guirao et al.

3 Proof of Theorem 1

We prove here the main result of our note.

Proof of Theorem 1, part (a)
First of all, every weakly compactly generated space admits an equivalent
norm that is LUR and its dual norm is rotund (see, e.g. [1, Theorems II.4.1,
VII.I.16 and Corollary VII.1.11]). This will be the norm | · |0 to start with in
the construction done in Section 2.

From (2) it follows, by a standard convexity argument, that ∥ · ∥ is LUR and
that ∥ · ∥∗ is rotund. By the Šmulyan Lemma, ∥ · ∥ is Gâteaux differentiable.

Let us show that |∥ · |∥ defined in (7) is Gâteaux differentiable, too. To this
end, assume that x∗ and y∗ are two non-zero functionals in X∗ that support
B at some point x ∈ B. By the definition of B in (6), there exists t ∈ (−1, 1)
such that x ∈ At + (1− |t|)B0. Then x∗ and y∗ support At + (1− |t|)B0 at x.
Since

(pt :=) p
(At+(1−|t|)B0)◦

= p(At)◦ + p((1−|t|)B0)◦ , (11)

and p((1−|t|)B0)◦ is rotund, so it is pt, and we get x∗ = y∗. This proves that
|∥ · |∥ is Gâteaux differentiable.

It is straightforward then that | · |, defined in (10), is Gâteaux differentiable,
too. It is also LUR (see, e.g., [1, Fact II.2.3]). In order to prove that | · |∗ is not
rotund we need some basic facts and some (easy) computations, that we record
below for the sake of completeness. First of all, if (X1, ∥ · ∥1) and (X2, ∥ · ∥2)
are two Banach spaces, and

(X, ∥ · ∥) := (X1, ∥ · ∥1)⊕2 (X2, ∥ · ∥2),

then (X∗, ∥ · ∥∗) is isometric to (X∗
1 , ∥ · ∥∗1)⊕2 (X

∗
2 , ∥ · ∥∗2). The isometry

φ : (X∗
1 , ∥ · ∥∗1)⊕2 (X

∗
2 , ∥ · ∥∗2) → (X∗, ∥ · ∥∗)

is given by

φ(x∗
1, x

∗
2)(x1, x2) = ⟨x∗

1, x1⟩+ ⟨x∗
2, x2⟩,

for x1 ∈ X1, x2 ∈ X2, x
∗
1 ∈ X∗

1 , x
∗
2 ∈ X∗

2 . We shall identify from now on the
two spaces (X∗

1 , ∥ · ∥∗1)⊕2 (X
∗
2 , ∥ · ∥∗2) and (X∗, ∥ · ∥∗).

Consider, as a particular case, the two Banach spaces (X, |∥ · |∥) and (X, ∥ · ∥)
defined above, and let (Z, ∥ · ∥2) := (X, ∥ · ∥) ⊕2 (X, |∥ · |∥). Denote by ∆ the
diagonal of X×X. Certainly, the space (∆, ∥·∥2) is isometric, via the mapping
D : ∆ → X given by D(x, x) = x for all x ∈ X, to the space (X, | · |), where
| · | has been defined in (10); thus, D∗ : (X∗, | · |∗) → (Z∗, ∥ · ∥∗2)/∆⊥ is again
an isometry. Note that (Z∗, ∥ · ∥∗2) = (X∗, |∥ · |∥∗)⊕2 (X

∗, ∥ · ∥∗). For x∗ ∈ X∗,
and being D∗x∗ an element of a quotient space, we have

|x∗|∗ = ∥D∗x∗∥∗2 = inf{∥(z∗1 , z∗2)∥∗2 : z∗1 , z∗2 ∈ Z∗, q(z∗1 , z
∗
2) = D∗x∗}, (12)
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where q : Z∗ → Z∗/∆ is the canonical quotient mapping. Observe, too, that
q(z∗1 , z

∗
2) = D∗x∗ if, and only if, z∗1 + z∗2 = x∗. So, (12) becomes

|x∗|∗ = inf

{(
(∥z∗1∥∗)2 + (|∥z∗2 |∥∗)2

)1/2
: z∗1 , z∗2 ∈ Z∗, z∗1 + z∗2 = x∗

}
. (13)

Put
v∗1 := (x∗

1 +
√
2u∗)/

√
3, and v∗2 := (x∗

2 +
√
2u∗)/

√
3. (14)

We recall in the following table some facts previously obtained that will be
used below; note in passing that (|u∗∗|∗∗)2 = (|∥u∗∗|∥∗∗)2 + (∥u∗∗∥∗∗)2.

|∥x∗
1|∥∗ = 1 |∥x∗

2|∥∗ = 1 [x∗
1, x

∗
2] ⊂ S(X∗,|∥·|∥∗)

∥u∗∥∗ = 1

∥u∗∗∥∗∗ =
√
2 |∥u∗∗|∥∗∗ = 1 |u∗∗|∗∗ =

√
3

⟨u∗∗, x∗
1⟩ = 1 ⟨u∗∗, x∗

2⟩ = 1 ⟨u∗∗, u∗⟩ =
√
2

⟨u∗∗, v∗1⟩ =
√
3 ⟨u∗∗, v∗2⟩ =

√
3

We shall show that

[v∗1 , v
∗
2 ] ⊂ B(X∗,|·|∗) (15)

u∗∗attains its | · |∗∗-norm at each point of [v∗1 , v
∗
2 ]. (16)

Indeed, according to (13) and (14), we have

(|v∗1 |∗)2 ≤ (|∥x∗
1|∥∗)2/3 + 2(∥u∗∥∗)2/3 = 1.

The same is true for v∗2 , so [v∗1 , v
∗
2 ] ⊂ B(X∗,|·|∗). This shows (15). Moreover, for

t ∈ [0, 1],

⟨u∗∗, (1− t)v∗1 + tv∗2⟩ = (1− t)
√
3 + t

√
3 =

√
3 = |u∗∗|∗∗.

This shows (16). As a byproduct, [v∗1 , v
∗
2 ] ⊂ S(X∗,|·|∗), proving that | · |∗ is not

rotund. ⊓⊔

Proof of Theorem 1, part (b)
First of all, any Asplund weakly compactly generated Banach space admits an
equivalent norm that is, together with its dual norm, LUR ([2], see also, e.g.,
[1, Theorem VII.1.14]). This will be now the norm | · |0 to start with in the
construction done in Section 2.

By (2) and a standard convexity argument, it follows that both norms ∥ · ∥
and ∥ · ∥∗ are also LUR (in particular, ∥ · ∥ is Fréchet differentiable).

Let us show that |∥ · |∥ is Fréchet differentiable, too. Observe first that the
rotund dual norm pt on X∗ defined in (11) has the property that w∗ and
the pt-topology coincide on the unit sphere defined by pt. Indeed, since At

is bounded, pA◦
t
is a ∥ · ∥∗-continuous seminorm on X∗ and, by assumption,

p((1−|t|)B0)◦ is an equivalent LUR norm on X∗. It is routine to check that

any net {x∗
α} ⊂ S(X∗, pt) such that x∗

α
ω∗

−→ x∗ ∈ S(X∗, pt), will satisfy that
p((1−|t|)B0)◦(x

∗
α − x∗) → 0. Therefore, pt(x

∗
α − x∗) → 0.
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Now, take x ∈ B such that |∥x|∥ = 1. Let x∗ ∈ X∗ be such that |∥x∗|∥∗ = 1 and
x∗(x) = 1. For n ∈ N, let x∗

n ∈ X∗ be such that |∥x∗
n|∥∗ = 1 and x∗

n(x) → 1.
There exists t ∈ (−1, 1) such that x ∈ At + (1− |t|)B0. By convexity, we
deduce that pt(x

∗
n) → 1. Since pt is rotund, its predual norm is Gâteaux

differentiable and, by the Šmulyan Lemma (see, e.g., [1, Theorem 1.4]), (x∗ −
x∗
n)

w∗

−→ 0. Since w∗ and the pt-topology coincide on the unit sphere defined
by pt, we deduce that pt(x

∗ − x∗
n) → 0, so |∥x∗

n − x∗|∥∗ → 0. The Fréchet
differentiability of |∥ · |∥ at x follows by using again the Šmulyan Lemma.

Since ∥ · ∥ and |∥ · |∥ are Fréchet differentiable, we may assert that | · | defined
in (10) is also Fréchet differentiable. It is also LUR, due to the way it was
defined and the fact that ∥ · ∥ is LUR. That | · |∗ is not rotund was shown in
the proof of Theorem 1, part (a).

To prove the statement on coincidence of the topologies, let q : (Z∗, ∥ · ∥∗2) →
(X∗, | · |∗) be the canonical quotient mapping (see the construction at the
fourth paragraph in the proof of part (a)). Assume that {x∗

i }i∈I is a net in
S(X∗,|·|∗) that w∗-converges to an element x∗ ∈ S(X∗,|·|∗). Choose elements
z∗i ∈ S(Z∗,∥·∥∗

2)
such that q(z∗i ) = x∗

i for i ∈ I. Take an arbitrary subnet
{z∗ij}j∈J of {z∗i }i∈I ; it has a w∗-cluster point z∗ ∈ B(Z∗,∥·∥∗

2)
. Since q(z∗) = x∗,

we get ∥z∗∥∗2 ≥ 1, hence ∥z∗∥∗2 = 1 and so z∗ is a Hahn–Banach extension of
x∗ to Z. Since (Z∗, ∥ · ∥∗2) is rotund (it is even LUR, see above in this proof),
this extension is unique ([11], see also, e.g., [3, Exercise 7.69]). It follows that
the net {z∗i }i∈I is w∗-convergent to z∗. Due to the fact that (Z∗, ∥·∥∗2) is LUR,
we get ∥z∗i − z∗∥∗2 → 0 (see, e.g., [3, Exercise 8.45]), hence |x∗

i − x∗|∗ → 0. ⊓⊔

Proof of Theorem 1, part (c).
This follows from the fact (see, e.g., [1, Theorem II.7.1 (ii)]) that every Banach
space with a separable dual has an equivalent LUR and WUR norm | · |0 such
that | · |∗0 is LUR.
Then the sought properties are carried on by the norm | · | defined in (10)
thanks to the way ∥ · ∥, |∥ · |∥, and | · |, were defined, the use of [1, Propositions
II.1.2 and II.1.3] for the LUR and rotundity properties respectively, and [1,
Proposition II.6.2] for the WUR property. ⊓⊔

Remarks

1. By using the same method of proof, the following extension of Theorem 1
can be proved:
Let (X, | · |0) be a nonreflexive Banach space.
(a) If | · |∗0 is rotund, then there exists an equivalent Gâteaux differentiable
norm | · | on X such that its dual norm on X∗ is not rotund. If, in addition,
X has a norm that is rotund, then | · | can even be taken to be rotund.
(b) If | · |∗0 is LUR, then there exists an equivalent Fréchet differentiable
and LUR norm | · | on X such that | · |∗ is not rotund. Moreover, the norm
and w∗ topologies agree on S(X∗,|·|∗).
To show (a), note that (i) in case the Banach space X has a dual rotund
norm, then the set of all equivalent norms on X having a rotund dual norm
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is residual in the space of all equivalent norms on X (endowed with the
metric of uniform convergence on the unit ball of X, a Baire space, see,
e.g., [1, Section II.4]), and (ii) if X has a rotund norm, then the set of
all rotund equivalent norms on X is residual in the space of all equivalent
norms on X (for both results, see, e.g., [1, Theorem II.4.1]). Therefore,
we may start the construction of the norm | · | from a norm | · |0 that is,
simultaneously, rotund and having a rotund dual norm. It is clear that | · |
so constructed is, also, rotund.
Part (b) follows from the result of Haydon quoted in Remark 2. Indeed,
we may assume then that both norms | · |0 and | · |∗0 are LUR. By (2) and
a standard convexity argument, it follows that both norms ∥ · ∥ and ∥ · ∥∗
are also LUR (in particular, ∥ · ∥ is Fréchet differentiable). The rest of the
proof is the same as to the proof of Theorem 1.
Part (a) of the extension stated above applies, for example, to the class
of weakly countably determined Banach spaces (see, e.g., [1, Theorems
VII.1.16 and II.4.1]), since those spaces have always an equivalent norm
that is LUR and such that its dual norm is rotund.

2. Note that Haydon showed in [6] that a Banach space X admits an equiva-
lent LUR norm such that its dual norm is again LUR whenever X admits
an equivalent norm whose dual is LUR. In [5], it is also proved that there
exists a Banach space X such that the dual norm is rotund although no
rotund equivalent norm can be found on X.

3. Observe that, by modifying slightly the basic construction, we may con-
clude that, in a nonreflexive Banach space X which admits an equivalent
LUR (rotund) dual norm, the set of norms on X that are simultaneously
Fréchet (respectively Gâteaux) differentiable, and that have a dual non-
rotund norm, is dense in the set of all equivalent norms on X.
Indeed, assume first that (X, | · |0) is a nonreflexive Banach space such that
|·|∗0 is rotund. As it was mentioned in Remark 1, the set of equivalent norms
on X whose dual norms are rotund is residual in the set of all equivalent
norms on X endowed with the metric of uniform convergence on the unit
ball of the space. In particular, given an arbitrary equivalent norm | · |1 on
X and ε > 0, we may find an equivalent norm (call it again | · |0) such that
ρ(| · |0, | · |1) < ε and that its dual norm is rotund. This time, instead of
defining the norm ∥ · ∥ by using the projections P and Q (see Section 2),
we just put ∥ · ∥ := | · |0. Now we can build, instead of B, a set Bε with the
same properties there and such that (1−ε)B(X,∥·∥) ⊂ Bε ⊂ (1+ε)B(X,∥·∥).
For this, Bε should be constructed (we follow the notation in Section 2)
by letting Cn := {y ∈ (ε/2)B(Y,∥·∥) : ⟨y∗0 , y⟩ ≥ (ε/2)− 1/n}, for n ∈ N big
enough, putting

Aε := Γ
(
A ∪ (1− ε)B(X,∥·∥)

)
,

and

Bε :=
∪

t∈(−1,1)

Aε,t + ε(1− |t|)B0,

where Aε,t = Aε ∩ (x∗
0)

−1(t), for t ∈ (−1, 1).
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Observe that Bε is not necessarily included in W1∩W2. However, for ε > 0
there exists n ∈ N such that the continuous functionals x∗

1,ε and x∗
2,ε in

Y ⊥, given by x∗
1,ε(x0) = x∗

2,ε(x0) = 1 and x∗
2,ε(−p) = x∗

1,ε(p) = n−1, define,
analogously as x∗

1 and x∗
2 did, sets W ε

1 and W ε
2 such that Bε ⊂ W ε

1 ∩W ε
2 .

This set Bε defines a norm |∥ · |∥ε := pBε . This is now the norm needed.
The rest of the proof is similar to the former one. This time we do not
obtain strict convexity for |∥ · |∥.
For the Fréchet case, let us recall that in case that (X∗, | · |∗0) is LUR, the
set of equivalent norms in X that have a dual LUR norm is residual (see
[1, Theorem II.4.1]). Since X has an equivalent LUR norm ([6]), the set
of equivalent LUR norms in X is again residual ([1, Theorem II.4.1]). An
appeal to the Baire category theorem shows that the set of equivalent LUR
norms in X that have a dual LUR norm is residual, too. This allows to
take, given any equivalent norm | · |1 in X, an equivalent norm in this class
(called again | · |0), as close to | · |1 as we wish, and start the construction
above.

4. The results in this paper should be compared with the (simple) fact that if
the norm ∥ · ∥ of X as well as its dual norm are both Fréchet differentiable,
then the norm ∥ · ∥ as well as its dual norm are both LUR (see e.g. [3,
Exercise 8.5]).

Open problem [S. Troyanski] For the class of Banach spaces with uncondi-
tional basis, a characterization of those spaces admitting an equivalent norm
whose dual norm is strictly convex was provided in [13]. It is not known whet-
her a Banach space with an unconditional basis such that its norm is Gâteaux
differentiable has an equivalent norm whose dual norm is strictly convex.
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