

Scheduling local and remote memory in
cluster computers

MÓNICA SERRANO GÓMEZ

Universitat Politècnica de València

Departamento de Informática

de Sistemas y Computadores

Scheduling Local and Remote Memory in Cluster

Computers

A thesis submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Engineering)

Author

Mónica Serrano Gómez

Advisors

Dr. Julio Sahuquillo Borrás

Dr. Houcine Hassan Mohamed

July 2013

Collection Doctoral Thesis

© Mónica Serrano Gómez

First Edition, 2014

© of the present edition: Editorial Universitat Politècnica de València
 Telf.: 963 877 012 / www.lalibreria.upv.es

ISBN: 978-84-9048-219-3 (CD version)

Any unauthorized copying, distribution, marketing, editing, and in general any other exploitation, for
whatever reason, of this piece of work or any part thereof, is strictly prohibited without the authors’
expressed and written permission.

Acknowledgements

This dissertation is mainly oriented to big machines, which already have the leading

role through several sections of this document. Nevertheless, I can not put the work

of big people to one side, so I would like to dedicate this modest part of the text to all

of them. I am grateful to all those people who have shared their time and knowledge

with me during all the steps of my research. On one hand, this thesis could not have

been possible without the professional support of my Advisors, Julio Sahuquillo and

Houcine Hassan, as well as the dedication of Salvador Petit, whose contributions to

our meetings and technical advise have been essential to the developing of my work.

Additionally, I show my gratitude to José Duato for its great work in our research

group. On the other hand, I would like to highlight the human support, which has

been as important as the technical support to get here. Working in a field in which

most of the efforts are made to study performance indexes, a high human performance

is very appreciated and encouraging. Thanks to my parents, colleagues, and friends

to help my to grow as a better person while I was trying to do my best as a better

researcher.

iii

Abstract

Cluster computers represent a cost-effective alternative solution to supercomputers. In

these systems, it is common to constrain the memory address space of a given proces-

sor to the local motherboard. Constraining the system in this way is much cheaper

than using a full-fledged shared memory implementation among motherboards. How-

ever, memory usage among motherboards may be unfairly balanced depending on the

memory requirements of the applications running on each motherboard. This situa-

tion can lead to disk-swapping, which severely degrades system performance, although

there may be unused memory on other motherboards. A straightforward solution is

to increase the amount of available memory in each motherboard, but the cost of this

solution may become prohibitive.

On the other hand, remote memory access (RMA) hardware provides fast interconnects

among the motherboards of a cluster computer. In recent works, this characteristic has

been used to extend the addressable memory space of selected motherboards. In this

work, the baseline machine uses this capability as a fast mechanism to allow the local

OS to access to DRAM memory installed in a remote motherboard. In this context,

efficient memory scheduling becomes a major concern since main memory latencies

have a strong impact on the overall execution time of the applications, provided that

remote memory accesses may be several orders of magnitude higher than local accesses.

Additionally, changing the memory distribution is a slow process which may involve

several motherboards, hence the memory scheduler needs to make sure that the target

distribution provides better performance than the current one. This dissertation aims

to address the aforementioned issues by proposing several memory scheduling policies.

First, an ideal algorithm and a heuristic strategy to assign main memory from the dif-

ferent memory regions are presented. Additionally, a Quality of Service control mech-

anism has been devised in order to prevent unacceptable performance degradation for

the running applications. The ideal algorithm finds the optimal memory distribution

but its computational cost is prohibitive for a high number of applications. This draw-

back is handled by the heuristic strategy, which approximates the best local and remote

memory distribution among applications at an acceptable computational cost.

The previous algorithms are based on profiling. To deal with this potential shortcoming

we focus on analytical solutions. This dissertation proposes an analytical model that

v

vi

estimates the execution time of a given application for a given memory distribution.

This technique is used as a performance predictor that provides the input to a memory

scheduler. The estimates are used by the memory scheduler to dynamically choose

the optimal target memory distribution for each application running in the system in

order to achieve the best overall performance.

Scheduling at a higher granularity allows simpler scheduler policies. This work studies

the feasibility of scheduling at OS page granularity. A conventional hardware-based

block interleaving and an OS-based page interleaving have been assumed as the base-

line schemes. From the comparison of the two baseline schemes, we have concluded

that only the performance of some applications is significantly affected by page-based

interleaving. The reasons that cause this impact on performance have been studied

and have provided the basis for the design of two OS-based memory allocation policies.

The first one, namely on-demand (OD), is a simple strategy that works by placing new

pages in local memory until this region is full, thus benefiting from the premise that

most of the accessed pages are requested and allocated before than the least accessed

ones to improve the performance. Nevertheless, in the absence of this premise for some

benchmarks, OD performs worse. The second policy, namely Most-accessed in-local

(Mail), is proposed to avoid this problem.

Resumen

Los clústers de computadores representan una solución alternativa a los supercomputa-

dores. En este tipo de sistemas, se suele restringir el espacio de direccionamiento de

memoria de un procesador dado a la placa madre local. Restringir el sistema de esta

manera es mucho más barato que usar una implementación de memoria compartida

entre las placas. Sin embargo, las diferentes necesidades de memoria de las aplicaciones

que se ejecutan en cada placa pueden dar lugar a un desequilibrio en el uso de memoria

entre las placas. Esta situación puede desencadenar intercambios de datos con el disco,

los cuales degradan notablemente las prestaciones del sistema, a pesar de que pueda

haber memoria no utilizada en otras placas. Una solución directa consiste en aumentar

la cantidad de memoria disponible en cada placa, pero el coste de esta solución puede

ser prohibitivo.

Por otra parte, el hardware de acceso a memoria remota (RMA) es una forma de

facilitar interconexiones rápidas entre las placas de un clúster de computadores. En

trabajos recientes, esta caracteŕıstica se ha usado para aumentar el espacio de direc-

cionamiento en ciertas placas. En este trabajo, la máquina base usa esta capacidad

como mecanismo rápido para permitir al sistema operativo local acceder a la memoria

DRAM instalada en una placa remota. En este contexto, una planificación de memo-

ria eficiente constituye una cuestión cŕıtica, ya que las latencias de memoria tienen

un impacto importante sobre el tiempo de ejecución global de las aplicaciones, debido

a que las latencias de memoria remota pueden ser varios órdenes de magnitud más

altas que los accesos locales. Además, el hecho de cambiar la distribución de memoria

es un proceso lento que puede involucrar a varias placas, aśı pues, el planificador de

memoria ha de asegurarse de que la distribución objetivo proporciona mejores presta-

ciones que la actual. La presente disertación pretende abordar los asuntos mencionados

anteriormente mediante la propuesta de varias poĺıticas de planificación de memoria.

En primer lugar, se presenta un algoritmo ideal y una estrategia heuŕıstica para asignar

memoria principal ubicada en las diferentes regiones de memoria. Adicionalmente, se

ha diseñado un mecanismo de control de Calidad de Servicio para evitar que las presta-

ciones de las aplicaciones en ejecución se degraden de forma inadmisible. El algoritmo

ideal encuentra la distribución de memoria óptima pero su complejidad computacional

vii

viii

es prohibitiva dado un alto número de aplicaciones. De este inconveniente se encarga

la estrategia heuŕıstica, la cual se aproxima a la mejor distribución de memoria local

y remota con un coste computacional aceptable.

Los algoritmos anteriores se basan en profiling. Para tratar este defecto potencial,

nos centramos en soluciones anaĺıticas. Esta disertación propone un modelo anaĺıtico

que estima el tiempo de ejecución de una aplicación dada para cierta distribución de

memoria. Dicha técnica se usa como un predictor de prestaciones que proporciona la

información de entrada a un planificador de memoria. El planificador de memoria usa

las estimaciones para elegir dinámicamente la distribución de memoria objetivo óptima

para cada aplicación que se esté ejecutando en el sistema, de forma que se alcancen las

mejores prestaciones globales.

La planificación a granularidad más alta permite poĺıticas de planificación más simples.

Este trabajo estudia la viabilidad de planificar a nivel de granularidad de página del

sistema operativo. Un entrelazado convencional basado en hardware a nivel de bloque

y un entrelazado a nivel de página de sistema operativo se han tomado como esquemas

de referencia. De la comparación de ambos esquemas de referencia, hemos concluido

que solo algunas aplicaciones se ven afectadas de forma significativa por el uso del

entrelazado a nivel de página. Las razones que causan este impacto en las prestaciones

han sido estudiadas y han definido la base para el diseño de dos poĺıticas de distribución

de memoria basadas en sistema operativo. La primera se denomina on-demand (OD),

y es una estrategia simple que funciona colocando las páginas nuevas en memoria

local hasta que dicha región se llena, de manera que se beneficia de la premisa de que

las páginas más accedidas se piden y se ubican antes que las menos accedidas para

mejorar las prestaciones. Sin embargo, ante la ausencia de dicha premisa para algunos

de los benchmarks, OD funciona peor. La segunda poĺıtica, denominada Most-accessed

in-local (Mail), se propone con el objetivo de evitar este problema.

Resum

Els clústers d’ordinadors representen una solució alternativa als superordinadors. En

aquest tipus de sistemes, se sol restringir l’espai d’adreçament de memòria d’un pro-

cessador donat a la placa mare local. Restringir el sistema d’aquesta manera és molt

més barat que usar una implementació de memòria compartida entre les plaques. No

obstant això, les diferents necessitats de memòria de les aplicacions que s’executen en

cada placa poden donar lloc a un desequilibri en l’ús de memòria entre les plaques.

Aquesta situació pot desencadenar intercanvis de dades amb el disc, els quals degraden

notablement les prestacions del sistema, tot i que puga haver-hi memòria no utilitzada

en altres plaques. Una solució directa consisteix a augmentar la quantitat de memòria

disponible en cada placa, però el cost d’aquesta solució pot ser prohibitiu.

D’altra banda, el hardware d’accés a memòria remota (RMA) és una forma de facilitar

interconnexions ràpides entre les plaques d’un clúster de computadors. En treballs re-

cents, aquesta caracteŕıstica s’ha usat per a augmentar l’espai d’adreçament en certes

plaques. En aquest treball, la màquina base fa servir aquesta capacitat com a me-

canisme ràpid per a permetre al sistema operatiu local accedir a la memòria DRAM

instal·lada en una placa remota. En aquest context, una planificació de memòria efi-

cient constitueix una qüestió cŕıtica, ja que les latències de memòria tenen un impacte

important sobre el temps d’execució global de les aplicacions, pel fet que les latències

de memòria remota poden ser diversos ordres de magnitud més altes que els accessos

locals. A més, el fet de canviar la distribució de memòria és un procés lent que pot

involucrar a diverses plaques, aix́ı doncs, el planificador de memòria ha d’assegurar-se

que la distribució objectiu proporciona millors prestacions que l’actual. La present dis-

sertació pretén abordar els assumptes esmentats anteriorment mitjançant la proposta

de diverses poĺıtiques de planificació de memòria.

En primer lloc, es presenta un algorisme ideal i una estratègia heuŕıstica per a assignar

memòria principal situada en les diferents regions de memòria. Addicionalment, s’ha

dissenyat un mecanisme de control de Qualitat de Servei per tal d’evitar que les presta-

cions de les aplicacions en execució es degraden de forma inadmissible. L’algorisme

ideal troba la distribució de memòria òptima però la seua complexitat computacional

és prohibitiva donat un alt nombre d’aplicacions. D’aquest inconvenient s’encarrega

ix

l’estratègia heuŕıstica, la qual s’aproxima a la millor distribució de memòria local i

remota amb un cost computacional acceptable.

Els algorismes anteriors es basen en profiling. Per tractar aquest defecte potencial, ens

centrem en solucions anaĺıtiques. Aquesta dissertació proposa un model anaĺıtic que

estima el temps d’execució d’una aplicació donada per a certa distribució de memòria.

Aquesta tècnica s’usa com un predictor de prestacions que proporciona la informació

d’entrada a un planificador de memòria. El planificador de memòria usa les estimacions

per a triar dinàmicament la distribució de memòria objectiu òptima per a cadascuna

de les aplicacions que s’estan executant en el sistema, de manera que s’aconseguisquen

les millors prestacions globals.

La planificació a granularitat més alta permet poĺıtiques de planificació més simples.

Aquest treball estudia la viabilitat de planificar a nivell de granularitat de pàgina

del sistema operatiu. Un entrellaçat convencional basat en hardware a nivell de bloc

i un entrellaçat a nivell de pàgina de sistema operatiu s’han pres com a esquemes

de referència. De la comparació de tots dos esquemes de referència, hem conclòs

que solament algunes aplicacions es veuen afectades de forma significativa per l’ús de

l’entrellaçat a nivell de pàgina. Les raons que causen aquest impacte en les prestacions

han estat estudiades i han definit la base per al disseny de dues poĺıtiques de distribució

de memòria basades en sistema operatiu. La primera es denomina on-demand (OD), i

és una estratègia simple que funciona col·locant les pàgines noves en memòria local fins

que aquesta regió s’omple, de manera que es beneficia de la premissa que les pàgines

més accedides es demanen i se situen abans que les menys accedides per tal de millorar

les prestacions. No obstant això, davant l’absència d’aquesta premissa per a alguns

dels benchmarks, OD funciona pitjor. La segona poĺıtica, denominada Most-accessed

in-local (Mail), es proposa amb l’objectiu d’evitar aquest problema.

Contents

List of Figures xv

List of Tables xvii

Abbreviations and Acronyms xix

1 Introduction 1

1.1 Background on Parallel Computing Architectures 2

1.1.1 Message-passing Communication Model 3

1.1.2 Shared Memory Architectures . 3

1.1.3 Multicore Processors . 6

1.1.4 Cluster Computers . 6

1.2 Motivation . 7

1.3 Objectives of the Thesis . 9

1.4 Contributions of the Thesis . 10

1.5 Thesis Outline . 11

2 Related Work 13

2.1 Introduction . 14

2.2 Proposals Focusing on the Use of Remote Memory for Swapping 14

2.3 Proposals Focusing on Estimating Memory System Performance 18

2.4 Proposals on Memory System Aware Scheduling 20

2.5 Summary . 21

3 System Model and Experimental Framework 23

3.1 Target System . 24

3.1.1 Cluster . 24

3.1.2 Standard HyperTransport . 25

3.1.3 Connecting Motherboards to Access Remote Memory 25

3.2 System Model . 26

3.2.1 System Model Characteristics . 26

3.2.2 Memory Regions . 26

3.2.3 Memory Scheduling . 27

3.3 Workloads . 28

xi

Contents xii

3.3.1 Stream . 28

3.3.1.1 Determining the Stream Array Size 29

3.3.2 SPLASH-2 . 30

3.3.2.1 Describing the Selected SPLASH2 Benchmarks and their
Problem Sizes . 32

3.3.3 SPEC CPU2006 . 34

3.4 Simulation Tool . 36

3.4.1 Multi2Sim . 36

3.4.1.1 Simulation Features . 37

3.4.2 Simulation Tool Extensions . 40

3.5 Summary . 42

4 Scheduling Policy based on a Cost-effective Heuristic 43

4.1 Analysis and Impact on Performance of Memory Distribution 45

4.2 Concurrent Execution of Several Applications 46

4.2.1 Quality of Service Definition . 48

4.2.2 Two Concurrent Applications . 49

4.2.2.1 Complete Usage of Remote Memory 49

4.2.2.2 Partial Usage of Remote Memory 52

4.2.3 Extending the Analysis to More Applications 54

4.3 Proposed Memory Scheduler . 57

4.3.1 SPP Remote Memory Scheduler 57

4.3.2 Remote Memory Scheduling Heuristic 60

4.3.2.1 Working Examples . 62

4.3.2.2 Cost Analysis . 63

4.3.3 Local Memory Assignment . 64

4.4 Summary . 64

5 Scheduling Policy based on a Performance Predictor 67

5.1 Performance Model . 69

5.1.1 Analytical Model . 69

5.1.2 Estimating Performance . 71

5.2 Validating the Model . 72

5.3 Summary . 73

6 Scheduling Policy based on page granularity 75

6.1 Memory Allocation Granularity and Memory Interleaving 77

6.2 Proposed Page-granularity Policies . 77

6.3 Performance Analysis of the Interleaved Memory Schemes 78

6.4 On-demand Memory Allocation . 82

6.5 Mail Memory Allocation . 86

6.6 Summary . 90

7 Conclusions 91

Contents xiii

7.1 Contributions . 92

7.2 Future Work . 94

7.3 Publications . 96

References 99

List of Figures

1.1 Basic structure of a centralized SMP. Source [1]. 4

1.2 Basic architecture of a DSM. Source [1]. 5

3.1 Prototype pictures. 24

3.2 System model. 27

4.1 Impact on performance (IPC) when assigning local and remote memory. 47

4.2 IPC degradation when varying the percentage of assigned remote memory. 48

4.3 Overall IPC for couples of applications. Stream versus FFT and Cholesky. 50

4.4 Overall IPC for couples of applications. Radix versus FFT and Cholesky. 51

4.5 Overall IPC for different memory assignments assuming a 60% of remote
memory usage. 53

4.6 Overall IPC for different memory assignments for three concurrent ap-
plications (I). 55

4.7 Overall IPC for different memory assignments for three concurrent ap-
plications (II). 56

4.8 SPP algorithm to distribute remote memory among n applications. . . . 58

4.9 Heuristic to distribute remote memory among n applications. 61

4.10 Algorithm to distribute local memory among n applications. 65

5.1 Model Validation. Detailed cycle-by-cycle simulation vs model. 73

6.1 Interleaved memory configuration. Performance metrics. 80

6.2 Interleaved memory configuration. Memory subsystem behavior. 81

6.3 Block interleave versus On-demand. 83

6.4 Local and Remote MM first accesses distribution along time. The best
performing benchmarks under OD. 84

6.5 Local and Remote MM first accesses distribution along time. The worst
performing benchmarks under OD. 85

6.6 Mail versus on-demand. 87

6.7 Accumulated percentage of main memory accesses. The best performing
benchmarks under OD. 88

6.8 Accumulated percentage of main memory accesses. The worst perform-
ing benchmarks under OD. 89

xv

List of Tables

3.1 Machine Parameters. 28

3.2 Stream size fine grain analysis. 31

3.3 Splash2 benchmarks characteristics and associated memory stress. . . . 32

3.4 Command-line arguments for the SPEC2006 Integer benchmarks. 35

3.5 Command-line arguments for the SPEC2006 Floating-point benchmarks. 35

4.1 Impact on IPC for different memory distributions. 45

4.2 Studied memory distributions. 49

4.3 Working example without QoS constraints: ~QoS = (100, 100, 100). . . . 62

4.4 Working example with QoS restrictions: ~QoS = (20, 55, 70). 63

4.5 Computational cost comparison. 64

5.1 Performance predictor working example. 72

xvii

Abbreviations and Acronyms

AMD Advanced Micro Devices

ATM Asynchronous Transfer Mode

BI Block-level Interleaved

CAMP Cache Aware performance model for Multi-core Processors

CMP Chip MultiProcessors

CPU Central Processing Unit

DI Distributed Intensity

DIO Distributed Intensity Online

DLM Distributed Large Memory

DSM Distributed Shared Memory

DRAM Dynamic Random Access Memory

ELF Executable and Linkable Format

GPU Graphics Processing Unit

IPC Instructions Per Cycle

IQ Instruction Queue

ISA Instruction Set Architecture

L Local memory

LA Least Accessed pages

Lb Local to board memory

LRU Least Recently Used

LSQ Load and Store Queue

MA Most Accessed pages

Mail Most Accessed in local

xix

Abbreviations and Acronyms xx

MICEMemO Model and Iterative Compilation for Effective Memory Optimization

MM Main Memory

MPKI Misses Per Kilo-Instruction

MSHR Miss Status Hold Register

NUMA Non-Uniform Memory Access

OD On Demand

OS Operting System

PC Personal Computer

PI Page-level Interleaved

PNR Parallel Network RAM

QoS Quality of Service

R Remote memory

RMA Remote Memory Access

SMP Symmetric (shared-Memory) MultiProcessor

SPP Set of Possible Permutations

TLB Translation Lookaside Buffer

VLSI Very-Large-Scale Integration

Chapter 1

Introduction

This chapter introduces some concepts and presents the motivation for the work de-

veloped in this thesis. First, some basic notions about parallel computers are given in

order to introduce the system to which this work is targeted. Then, it is shown how

the described system is affected by the problem of memory unbalance and the high

latencies required to access certain memory regions. Finally, it is summarized how the

rest of this dissertation deals with this problem through different memory scheduling

proposals.

1

Chapter 1. Introduction 2

1.1 Background on Parallel Computing Architectures

For over a decade, the growth in performance and capability of computer systems has

been explosive, mainly due to the advance of the underlying VLSI technology, which

allows larger and larger numbers of components to fit on a chip and clock rates to

increase. This fact translates the raw potential of the technology into greater per-

formance and expanded capability of the computer system. This change has been

mainly achieved thanks to parallelism. A larger volume of resources means that more

operations can be done at once, in parallel. Parallel computer architecture is about

organizing these resources so that they work well together. All kind of systems have

implemented parallelism more and more effectively to gain performance, and the level

at which parallelism is exploited continues to rise. The other key character is stor-

age. The data that is operated at an ever faster rate must be held somewhere in the

machine. Thus, parallel processing is deeply related with data locality and communi-

cation. These changing relationships are the main concerns to design the various levels

of a computer system so as to maximize performance and programmability within the

limits imposed by technology and cost at any particular time.

Parallelism is an interesting perspective from which to understand computer archi-

tecture because it applies at all levels of design, it interacts with essentially all other

architectural concepts, and it presents a unique dependence on the underlying technol-

ogy. In particular, the basic issues of locality, bandwidth, latency, and synchronization

arise at many levels of the design of parallel computer systems. The trade-offs must

be resolved in the context of real application workloads.

There is a wide range of architectural styles of parallel machines [2]. Throughout the

following sections we will only describe those which are essential to the understanding

of the work discussed in this dissertation.

Chapter 1. Introduction 3

1.1.1 Message-passing Communication Model

The demand for even more computer power to deal with high-performance computing

has been continuously increasing during the last decades, and message-passing based

systems have been one of the commonly used approaches.

The address space consists of multiple private address spaces that are logically disjoint

and cannot be addressed by a remote processor. In such multiprocessors, the same

physical address on two different processors refers to two different locations in two

different memories. Each processor-memory pair is essentially a separate computer.

Initially, such computers were built with different processing nodes and specialized

interconnection networks. In such a multiprocessor system (with multiple address

spaces), communication of data is done by explicitly passing messages among the pro-

cessors. Therefore, these multiprocessors are called message-passing multiprocessors.

This approach is highly scalable with the number of processors (e.g., BlueGene/P can

be scaled up to 884,736-processors [1]). A major drawback of the message-passing

model is that it complicates the programming of parallel applications.

1.1.2 Shared Memory Architectures

To overcome the drawbacks of message-passing model, the industry has moved to

shared memory systems for small to medium number of processors.

Shared memory architectures constitute one of the most important classes of parallel

machines. The key property of this class is that communication occurs implicitly as

a result of conventional memory access instructions, i.e., loads and stores. This kind

of architectures have existed since the early 60s, and still today they have a role in

almost every segment of the computer industry. Shared memory multiprocessors serve

to provide better throughput on multiprogrammed workloads, as well as to support

parallel programs. Thus, they are naturally found across a wide scaling range, from a

few processors to perhaps hundreds.

Chapter 1. Introduction 4

This kind of systems can be classified in two main categories. In the first category,

Symmetric Shared-Memory Multiprocessors (SMP), multiple processor-cache subsys-

tems share the same physical memory, typically connected by one or more buses or a

switch. The key architectural property is the uniform access time to all the main mem-

ory from all the processors. Figure 1.1 shows a block diagram of a typical SMP. This

type of symmetric shared-memory architecture is currently by far the most popular

organization [1].

Figure 1.1: Basic structure of a centralized SMP. Source [1].

These systems are relatively expensive and they do not scale to large sizes (e.g., larger

than 16 nodes) since they use a common shared bus to access to main memory. Projects

working on shared memory with coherent cache, like the NUMAChip by Dolphin In-

terconnect Solutions [3], suffer from limited scalability introduced by the coherence

protocol. Thus, a major concern is that the access to remote memory becomes afford-

able and efficient both regarding to latency and price.

To support larger processor counts, memory must be distributed among the processors

rather than centralized; otherwise the memory system would not be able to support the

Chapter 1. Introduction 5

bandwidth demands of a larger number of processors without incurring excessively long

access latency. This fact justifies the arisen of the second category of Shared Memory

Architectures: Distributed Shared Memory (DSM) [4]. DSMs provide a virtual address

space shared among processes running on loosely coupled processors. The physically

separate memories can be addressed as one logically shared address space, meaning that

a memory reference can be made by any processor to any memory location, assuming

that it has the correct access rights. Figure 1.2 shows what these multiprocessors look

like. With the rapid increase in processor performance and the associated increase in

the memory bandwidth requirements, the size of a multiprocessor for which distributed

memory is preferred continues to shrink.

Figure 1.2: Basic architecture of a DSM. Source [1].

Distributing the memory among the nodes has two major benefits. First, it is a cost-

effective way to scale the memory bandwidth if most of the accesses are performed to

the local memory in the node. Second, it reduces the latency of the accesses to the

local memory. These two advantages make distributed memory attractive at smaller

processor counts as processors get even faster and require more memory bandwidth and

lower memory latency. The key disadvantages for a distributed-memory architecture

Chapter 1. Introduction 6

are that communicating data between processors becomes somewhat more complex,

and that it requires more software effort to take advantage of the increased memory

bandwidth supplied by distributed memories.

1.1.3 Multicore Processors

On the other hand, technology constraints have moved chip manufacturers from com-

plex cores to simpler multicore based processors [5]. Starting in the 1990s, the in-

creasing capacity of a single chip allowed designers to place multiple processors on a

single die. In such a design, the multiple cores typically share some resources, such

as a second or third-level cache or memory and I/O buses. Recent processors, in-

cluding the IBM Power5, the Sun T1, and the Intel Pentium D and Xeon-MP, are

multicore and multithreaded. Just as using multiple copies of a microprocessor in a

multiprocessor leverages a design investment through replication, a multicore achieves

the same advantage by relying more on replication than the alternative of building a

wider superscalar.

1.1.4 Cluster Computers

Cluster computers present an alternative solution to supercomputers offering a good

tradeoff between price and performance. These systems currently constitute an impor-

tant segment of the market since they can use free software and provide good perfor-

mance for a wide diversity of applications such as high-performance parallel computing,

e-business, or user applications running concurrently.

These systems consist of a set of interconnected motherboards. Each motherboard can

be seen as a block of a cluster and hosts a number of processors (usually multicore),

which is expected to dramatically grow with future technologies.

Their affordable price and their potential computational power has led clusters to

grow in popularity to the detriment of conventional supercomputers. Nevertheless,

the shared memory space that can be seen by a processor is limited to the available

Chapter 1. Introduction 7

memory within the motherboard. We refer to this kind of machine as a cluster of

DSMs or the original machine.

This work is a part of a wider research project working on a real cluster of DSMs where

the main goal is to devise new memory scheduling algorithms targeted to this machine.

1.2 Motivation

Large scientific parallel applications and a wide set of commercial applications (e.g.,

query processing databases) demand large amounts of memory space. Current parallel

computing platforms schedule jobs without fully knowing their memory requirements.

This leads to unbalanced memory allocation in which some nodes are overloaded.

Consequently, the contents of memory must be swapped out to a storage device in

those motherboards whose memory requirements exceed their memory capacity. Thus,

system performance is severely degraded while the memory in other motherboards may

be underused.

A straightforward solution to address the previous shortcoming is to oversize DRAM

memory in the nodes; however, this solution may become prohibitive as this device is

one of the most expensive resources on high performance computers. IBM z series [6]

and HP Integrity Superdome [7] mainframes are examples of shared-memory machines

with an amount of expensive memory that can be as large as two Terabytes.

On the contrary, the solution proposed in this work is able to perform without extra

resources because it takes advantage of free or unused memory on a remote mother-

board of the system in order to increase the available memory for a local application.

In fact, our approach may even do better than oversizing, both in terms of performance

and hardware cost. See the example below:

Take a node with an amount of memory X, in which an application re-

quiring an amount Z, X < Z, is running. Let’s analyze the implications

which would have each of the two choices above. i) Increasing the node’s

Chapter 1. Introduction 8

local memory up to Y, being Y < Z, would imply to borrow the memory

exceeding Y from hard disk.

ii) On the other hand, just taking Z −X from another board (which does

not need it) would avoid accessing to the hard disk, whose latency is several

orders of magnitude greater than accessing to main memory.

The latter choice (ii) is a cheap solution compared to upgrading the installed memory,

as it saves the cost of adding memory to all the motherboards. In addition, the fact

of avoiding disk swapping will lead to better performance.

This dissertation assumes that the target system is provided with two main capabilities.

First, the local OS is able to see the remote memory installed in other motherboards.

Second, the access to remote memory is performed through a fast interconnection

mechanism. For this purpose, Remote Memory Access (RMA) hardware[8] is installed

in the original machine. RMA mechanisms allow the access to memory in remote

motherboards with reasonable latencies [9], that is, like in shared memory systems,

the application address space is allowed to span beyond a motherboard. Therefore,

the resulting system will require an OS-level allocation protocol to reserve remote

segments of memory. Following this protocol, an operating system running on a given

motherboard will ensure that each allocated segment of remote memory can be only

accessed by one motherboard.

High-end systems like BlueGene/L [10], BlueGene/P [11], Cray XT, etc. [12] include

RMA hardware as a mechanism to reduce the communication latency even when using

the message passing programming model. Although RMA is currently only a feature

of modern high-end systems, it is expected to find commodity implementations in the

near future [9].

With regard to the memory coherence issue in the system, most applications take

advantage of having more memory resources but do not need additional computing

nodes other than those included in the local board. So, as they do not use processors in

the remote board, they can perform without memory coherence [13, 14] in that board.

Chapter 1. Introduction 9

In other words, coherence is activated within the board (i.e., intra-motherboard) but

it is not among different motherboards (i.e., inter-motherboards).

We will refer to such a system as the baseline machine. The research on this manuscript

is focused on scheduling policies to efficiently handle local and remote memory on the

baseline machine.

1.3 Objectives of the Thesis

The execution time of a huge amount of current applications mainly depends on how

efficiently the system handles the memory accesses. In the target system, memory

management is a critical issue for performance since the main memory used by the

applications can reside in three main locations which have widely different memory

latencies, i) in the same node as the processor running the application (Local to Node

or L), ii) in other node of the local motherboard (Local to Board or Lb), and iii) in a

remote motherboard (Remote or R). Notice that in this scenario the additional mem-

ory availability comes at expense of much longer latencies, thus an efficient memory

scheduling is required to improve the performance of a given set of applications.

The main objective of this dissertation is to devise efficient memory scheduling algo-

rithms that assign memory (local and remote) to applications in order to provide the

best system performance, while guaranteeing a minimum quality of service QoS to

each application.

This general objective can be in turn divided in sub-objectives. First, the behavior of

the different applications must be characterized from the main memory perspective,

taking into account the number of accessed pages, how likely each page is accessed, the

working set size, etc. Second, based on this characterization this dissertation pursues to

design memory schedulers to deal with performance. Two different types of algorithms

will be devised. On one hand, the algorithms based on information taken from a

previous profile and, on the other hand, the policies that use run-time information.

Chapter 1. Introduction 10

In addition, the impact of considering different memory-item granularities (e.g. block

size or page size) from the scheduling point of view will be analyzed.

1.4 Contributions of the Thesis

In this dissertation, several memory scheduling policies have been proposed to effi-

ciently handle the memory used by the applications running in cluster computers. The

main memory of these systems is assumed to be divided in three main locations (i.e.,

L, Lb, R) whose access latencies widely differ. In this scenario, all the proposals are

focused on improving the overall performance of the system. The contributions of this

thesis can be summarized as follows:

• An Ideal algorithm and a simple and Cost-effective Heuristic are devised to stat-

ically schedule the local and remote memory of the target machine while taking

into account quality of service(QoS) constraints.

• A Performance Predictor that allows the memory scheduler to dynamically choose

the optimal memory distribution is implemented.

• Two memory scheduling policies, namely on-demand (OD) and Most-accessed

in-local (Mail), which work at page granularity are devised.

Regarding to the first major contribution, as a first step we study the impact of the

accesses to the different memory regions in the system performance for different types

of workload. Results show important performance drops when a given application ac-

cesses the remote memory region. A wide variability in the impact on performance is

exhibited among the different applications analyzed in the experiments. From the re-

sults of this analysis, an Ideal memory scheduling algorithm (namely SPP) is designed.

SPP is fed by an off-line profile of the benchmarks for different memory distributions,

from which it schedules memory among applications, while guaranteeing a minimum

QoS to each application. The implementation of the ideal SPP is infeasible due to

its cost. To deal with this drawback we devise a Cost-effective memory scheduling

Chapter 1. Introduction 11

Heuristic. In both cases, we assume that the distribution of local and remote memory

assigned to an application is set statically by interleaving memory addresses at cache

block size level (64B).

With respect to the second major contribution, the proposed predictor dynamically

estimates the performance of the benchmarks by measuring their utilization of the

system resources during the execution. The devised Performance Predictor is driven

by a novel analytical model fed by simple hardware counters, available in most current

processors, which gather the amount of microprocessor cycles spent in computation,

memory access, and network resources usage. The estimates of the Performance Pre-

dictor constitute the input to the memory scheduler, which uses this information to

choose at run-time the optimal (from the system performance point of view) target

memory distribution for each application running in the system.

Finally, the operating system (i.e., the scheduler) manages memory at page level gran-

ularity. Thus, to ease the scheduler job, we investigated the feasibility of supporting

interleaved memory at OS page granularity. Results show that this solution does not

impact on the performance of most of the benchmarks. Based on this observation we

looked for the reasons of performance drops in those benchmarks showing worse perfor-

mance when working at page granularity. The results of this analysis led us to propose

two memory allocation policies. The OD policy first places the requested pages in local

memory, once this memory region is full, the subsequent memory pages are placed in

remote memory. However, OD shows some performance drawbacks, which are solved

by the Mail allocation policy.

1.5 Thesis Outline

The rest of this dissertation is structured as follows. Chapter 2 includes some related

work dealing with three main issues: remote memory mainly used as a swapping area to

avoid access to disk, models to estimate the memory system performance, and memory

system aware scheduling techniques. Chapter 3 presents the system prototype and the

Chapter 1. Introduction 12

model of the system, the simulation framework and the workloads selected for the ex-

periments. Chapter 4 describes and evaluates a simple static scheduling policy referred

to as Cost-effective Heuristic. Chapter 5 presents a Performance Predictor which en-

hances the scheduling algorithm presented in Chapter 4 by dynamically estimating the

performance for a given memory distribution. Chapter 6 introduces scheduling policies

based on page granularity. Finally, Chapter 7 presents some concluding remarks.

Chapter 2

Related Work

In this chapter, some work related with this thesis is discussed. The cited approaches

are classified in three sections depending on whether they propose the use remote

memory as an improvement of disk swapping, address the problem of estimating the

memory system performance by means of different performance models, or deal with

the scheduling of memory resources to mitigate latencies and thus enhancing the per-

formance.

13

Chapter 2. Related Work 14

2.1 Introduction

Many works have been performed considering local and remote memory, but their focus

differs from the considered in this work. In this chapter we classify this work in three

main categories according to the specific problem of the system that they address.

Papers in the first category mainly focus on the use of remote memory as an alternative

and relatively fast (compared to hard disks) memory device for swapping purposes,

instead of using remote memory to extend the local main memory address space.

The second category groups papers addressing the problem of estimating performance

when accessing shared memory structures, mainly concentrating on memory con-

tention. Nevertheless, none of the proposed performance models considers remote

memory access.

Finally, the latter category briefly describes a set of papers dealing with the usage of

scheduling mechanisms which intend to reduce contention points when accessing to

shared resources to enhance performance.

2.2 Proposals Focusing on the Use of Remote Memory

for Swapping

Different research papers dealing with remote memory allocation and mostly related to

memory swap can be found in the literature. The referred papers use remote memory

for swapping over cluster nodes and present their approaches as an improvement of

disk swapping.

In [15] authors develop a software-based prototype by extending the Xen hypervisor to

emulate a disaggregated memory design wherein remote pages are swapped into local

memory on-demand upon access. This design is presented as a cost-effective way to

scale memory capacity. Their results reveal that low-latency remote memory calls for

a different regime of replacement policies than conventional disk paging and show the

synergy between disaggregated memory and content-based page sharing. They find

Chapter 2. Related Work 15

that a combination of remote and local memory distribution provides higher work-

load consolidation opportunity and performance-per-cost than either technique alone.

Their study also shows that disaggregated memory provides similar response time per-

formance at a lower cost compared to scaling out on multiple compute blades, thus

demonstrating the feasibility of the software infrastructure required for disaggregated

memory.

Midorikawa et al. propose the distributed large memory system (DLM), which is

a user-level software-only solution that provides very large virtual memory by using

remote memory distributed over the nodes in a cluster [16]. The performance of DLM

programs that access remote memory is compared to ordinary programs that use local

memory. The results of STREAM, NPB and Himeno benchmarks show that the DLM

achieves better performance than other remote paging schemes using a block swap

device to access remote memory. To obtain high performance, the DLM can tune its

parameters independently from kernel swap parameters. In addition to performance,

DLM offers the advantages of easy availability and high portability, because it does

not need special hardware.

Another work of Midorikawa [17] proposes a page size control methodology that esti-

mates a working data set and changes page size to each processing part of an application

when running to prevent memory server thrashing. Adaptive page size is performed by

unified transmission of multiple basic minimum pages. It also supports a transmission

of a transient fragmented large page generated when page size is changed from small to

large. Users can set favorite basic minimum page size and initial start page size when

they run their programs if they do not want to use the default values. This is a simple

and effective methodology that is applicable to various page-based memory accessing

systems, like distributed shared memory and general paging systems, especially for

applications with various memory access patterns.

Shuang et al. design a remote paging system for remote memory utilization in Infini-

Band clusters [18]. They aim to benefit from the low latency and high bandwidth of

Infiniband networks to reduce the latency gap between access to local memory and re-

mote memory in modern clusters. Remote idle memory is presented as a resource that

Chapter 2. Related Work 16

can be exploited to reduce the memory pressure on individual nodes. They explain

that the fact of adding an additional level in the memory hierarchy between local mem-

ory and the disk leads to dramatic performance improvements specially for memory

intensive applications. Their work presents the design and implementation of a high

performance networking block device over InfiniBand fabric, which serves as a swap

device of a virtual memory system for efficient page transfer to/from remote memory

servers. They demonstrate that, under their implementation, quicksort performs 1.45

times slower than local memory system, and up to 21 times faster than local disk.

Finally, they identify that the host overhead is a key issue for further performance

improvement of remote paging over high performance interconnects clusters.

In [19], the use of remote memory for virtual memory swapping in a cluster computer is

described. The system, which is called LocaSwap, uses a lightweight kernel-to-kernel

communications channel for fast and efficient data transfer. It utilizes an Ethernet

network to interconnect PCs into a cluster. Performance tests are made to compare the

proposed system to normal hard disk swapping. Performance results show considerable

improvement over the use of hard disks. In particular, the random read performance is

significantly better with local swap. Finally, given a fixed number of reads, LocaSwap’s

time is only slightly affected by the size of remote memory while hard disk performance

degrades linearly as the size of the swap space increases.

Oleszkiewicz et al. propose a peer-to-peer solution called Parallel Network RAM

(PNR) [20] which allows parallel jobs to utilize idle remote memory. In this scheme,

each node requests memory resources and provides memory for other nodes through

a local manager (super-peer). This manager is in charge of coordinating the alloca-

tion of network RAM of several nodes and ensuring that load is evenly distributed to

the nodes hosting parallel processes belonging to the same parallel job. PNR allows

more jobs to execute concurrently without resorting to disk paging and it makes a

more efficient use of the available RAM resources in a cluster, especially in clusters

with unbalanced resource utilization. It reduces the computational, communication

and synchronization overhead typically involved in parallel applications. This leads to

decrease average response time and to achieve higher system throughput.

Chapter 2. Related Work 17

Jeon et al. present a user-level remote memory system [21] that processes large graph

data when main memory space is insufficient to store application data. They exploit the

efficient low-latency, high-performance feature of InfiniBand networks as well as the use

of Remote Direct Memory Access operations to reduce the access time gap/bandwidth

between local main memory and remote memory. In this way, the proposed remote

memory design not only improves disk-paging systems but also achieves performance

results comparable to that of main memory without requiring any special algorithm

for remote memory. In this paper, authors also present their implementation based on

remote memory to deal with large data sets.

In [22] Krishnan et al. describe and evaluate the scalability of linear algebra kernels

based on a remote memory access approach. They discuss the performance and scal-

ability of two popular parallel linear algebra kernels – matrix multiplication and LU

factorization. Their design is targeted to an architectural model based on a cluster

of multiprocessor nodes with a network that supports remote memory access (RMA)

communication between nodes. Experimental results using large scale systems (Linux-

InfiniBand cluster, Cray XT) demonstrate consistent performance advantages over

ScaLAPACK suite, the leading implementation of parallel linear algebra algorithms

used today.

Oguchi et al. [23] explain a method by means of which nodes executing applications

dynamically acquire extra memory from remote nodes through an ATM network. The

idle nodes are statically selected and called memory servers. When the amount of

memory used in the local node exceeds the value of a parameter that limits the memory

usage, part of the memory contents are swapped out (following a LRU algorithm) to the

available memory in remote idle nodes. Each time the local node tries to access an item

that has been swapped out, a page fault occurs. Then it calculates by means of a hash

function which memory server has to send the requested item back. This technique

is considerably better than using a hard disk as a swapping device. However, using

dynamic remote memory acquisition with simple swapping leads to a high number

of page faults when the memory usage limit parameter is small. To address this

Chapter 2. Related Work 18

drawback, authors propose another dynamic acquisition method with remote memory

update operations which restricts memory swapping and achieves better performance.

Also in the context of parallel data mining in ATM-connected PC clusters, Oguchi et

al. [24] investigate the feasibility of using the available memory of remote nodes as

a swap area when some nodes need to swap out their real memory contents. They

analyze the association rule mining problem, which has a peculiar use of main memory

as it allocates many small data areas in main memory accessed almost at random. The

number of those areas multiplies to be enormous during the execution, leading to a

dynamically changing requirement of memory space and swapping out to a secondary

storage system. Consequently, the performance of the system severely degrades. In this

sense, a method of remote memory utilization with update operations which improves

the use of a hard disk as a swapping device is proposed and extended with a dynamic

decision mechanism for remote memory availability. Finally, the migration process

is evaluated, concluding that the overhead of memory contents migration is almost

negligible unless the interval of monitoring the amount of available memory is too

short.

2.3 Proposals Focusing on Estimating Memory System

Performance

Some research papers can be found in the bibliography focusing on performance models

mainly constrained by the memory system. Unlike this thesis, no remote memory is

considered and most of them concentrate on estimating contention when accessing

shared memory structures (e.g. caches or local memory).

Pingjing et al. [25] propose the use of memory optimization methods to alleviate the

impact of the memory wall on performance of the programs. There are two main

kinds of optimization methods to compute optimal optimization parameters: static

or model-driven approaches, and empirical or execution-driven methods. The latter is

more effective but quite time consuming. For this reason, authors devise a combination

Chapter 2. Related Work 19

of model driven and empirical optimization methods: Combining Model and Iterative

Compilation for Effective Memory Optimization (MICEMemO). This approach utilizes

apriori information from hardware performance counters collected from a few runs of

the program to narrow the optimization space, and then uses genetic algorithms to

select good optimization parameters. Experimental results demonstrate that MICE-

MemO can greatly reduce memory access time, and the influence ratio for memory

reference.

To determine the behavior of several applications sharing cache memory a multicore

processor, Xie. et al. [26] propose an animal-based classification algorithm which

can accurately predict when cache sharing interference problems may arise and con-

sequently apply dynamic cache partitioning techniques. They implement the solution

on hardware to allow dynamic classification of applications behaviors. Their pro-

posal consists of a simple dynamic cache partitioning policy performing slightly better

while incurring a lower implementation cost than the Utility-based Cache Partitioning

scheme.

Xu et al. [27] propose CAMP, a fast and accurate shared cache aware performance

model that estimates the performance degradation due to cache contention of processes

running on CMPs. They use non-linear equilibrium equations in a least-recently-

used (LRU) or pseudo-LRU last-level cache, taking into account process reuse distance

histograms, cache access frequencies, and cache miss rate of each process to predict

its effective cache size when sharing cache with other processes, allowing instruction

throughput estimation. They also propose an easy-to-use method of obtaining the

reuse distance histograms of a process that uses only commonly available hardware

performance counters, without offline simulation or modification to commodity hard-

ware or operating system. CAMP achieves an average performance prediction error of

1.57%.

In [28] the authors apply machine learning techniques to predict the performance on

multicore processors with reasonable accuracy. These techniques do not require spe-

cialized hardware support and can reduce the time devoted to performance prediction,

thus amortizing the time investment in training the algorithm to build the model. In

Chapter 2. Related Work 20

their study, they show that a number of key solo-run program attributes can be used

to predict paired-run performance. The paired run involves the contention for shared

resources between co-running programs, mainly focusing on L2 caches.

2.4 Proposals on Memory System Aware Scheduling

As proposed in this work, scheduling resources can help mitigate latencies. Many

research work focusing on scheduling has concentrated on reducing contention points

of the system to enhance the performance. These points appear when accessing to

shared resources (e.g. caches, main memory controller, main memory modules, etc).

A representative work on these topics is the paper by Zhuravlev et. al [29]. This work

presents a comprehensive analysis of contention-mitigating techniques and identify the

contention points that impact on performance degradation. The study is experimen-

tally performed in an Intel Xeon X3565 quad-core processor. To mitigate performance

degradation due to contention points they propose two scheduling algorithms DI and

DIO that distribute threads such that the miss rate is evenly distributed among caches,

with the aim of minimizing the cache miss rate. They conclude that the highest im-

pact on performance is on improving quality of service or performance isolation for

individual applications, and not on improving performance of a workload as a whole.

An interesting work is the paper by Dong et al. [30] that proposes a 3D system with

different memory latencies (on-chip and off-chip). They address the problem at the

memory controller side, which can be pure hardware-based or OS-assisted, depending

on the migration granularity. The memory controller includes a component to act as a

scheduler, and is able to decide which information should be stored on-chip and which

one in the off-chip memory.

Antonopoulos et al. [31, 32] make a wide research on bandwidth-aware multicore

scheduling to mitigate the performance penalties due to memory contention. In this

sense, they propose several scheduling policies based on the memory bus bandwidth

consumption of the processes running at the same time (from now on co-runners).

Chapter 2. Related Work 21

In [31], the bus bandwidth consumption values are obtained by modifying the source

code of the running applications, while in [32], less intrusive implementations based on

processor performance information are explored. In both cases, the proposed policies

try to match the total bandwidth requirements of the co-runners to the peak memory

bus bandwidth. In a posterior work addressing SMP clusters [33], Koukis et al. take

into account the network bandwidth as well.

Finally, the novelty in the work of Nikolopoulos [34] is the fact that it deals with the

remote memory access issue. This paper presents a methodology for quantifying remote

memory access contention on hardware cache-coherent DSM multiprocessors. To this

end, the number of accesses from each node to each page in memory is collected in

hardware page reference counters (available in many commercial DSM systems) during

the execution of the program. From this information, the methodology estimates the

fraction of execution time wasted in contention. Additionally, an algorithm which

balances the remote memory accesses across the DSM nodes to reduce the execution

time of parallel applications is proposed. The proposed technique consists in detecting

potential hot spots in pages and resolving contention on them using dynamic page

migration. This algorithm is evaluated on a 128-processor Origin2000, proving that it

is able to alleviate contention and reduce the parallel execution time of six application

benchmarks by 19–34%.

2.5 Summary

In this chapter, some previous work dealing with the memory handling issue in cluster

computers has been presented. They range from the use of remote memory as an

alternative to disk swapping, to the addressing of the memory-aware performance

estimation problem, as well as the usage of scheduling techniques to improve the system

performance.

The novelties of the work proposed in this thesis with respect to the cited works reside

in three key aspects: i) the use of remote memory not as a swapping device but as

an extension of the main memory installed in a given local motherboard, which can

Chapter 2. Related Work 22

be seen by the OS running in this local board; ii) the focus on both local and remote

memory to devise a performance estimation model of the system (beyond the cache

level or just the local memory, as other authors do), and iii) a memory scheduler which

distributes local and remote memory among the running applications depending on

their memory requirements while guaranteeing the requested QoS for all of them.

Chapter 3

System Model and Experimental

Framework

As a preface to the main proposals devised in this dissertation, the hardware and

software framework in which the work is conceived are presented in this chapter.

Our research concentrates on the domain of cluster computers, specifically focused in an

efficient management of their memory resources to improve the system performance.

The target system consists of a high performance cluster machine which has been

equipped with specific hardware capabilities as well as OS memory allocation protocols

to span main memory storage beyond the local motherboard.

The system was modeled on a extended version of the Multi2Sim simulation framework,

and several benchmarks suites were selected to carry out the experiments. Both the

simulation tool and the workloads are described in detail through this chapter.

23

Chapter 3. System Model and Experimental Framework 24

3.1 Target System

3.1.1 Cluster

This work was originally initiated with the aim of enhancing main memory manage-

ment in a cluster-based machine prototype. A cluster machine with the required hard-

ware/software capabilities was being prototyped in conjunction with researchers from

the University of Heidelberg [9], which designed the RMA connection cards. The ma-

chine (see Figure 3.1) consists of 64 motherboards, each one including four quad-core

2.0GHz Opteron processors in a 4-node NUMA system (one processor per node), and

an amount of 16GB RAM memory per motherboard. This work is mainly targeted

at analyzing and scheduling the main memory physically distributed among the OS

(i.e., processes) running in different motherboards. We assume that extra memory is

available in a remote motherboard and focus on scheduling strategies to enhance the

system performance.

In this cluster machine, an application can both use its local memory and allocate

memory in remote motherboards.

Figure 3.1: Prototype pictures.

Chapter 3. System Model and Experimental Framework 25

3.1.2 Standard HyperTransport

HyperTransport is used by AMD Opteron [35] to interconnect the processors in a

motherboard. In these systems, each processor requires to know where a given memory

request must be forwarded. This is achieved by including in each processor a set of

registers configured at the initialization phase that reflect the system physical memory

distribution. In this way, when a processor issues a memory operation (load or store)

on a given memory location, the processor compares the requested address with the

contents of the mentioned registers and then, depending on the results, a memory

request is forwarded to the memory controller handling the memory address. The

action of forwarding the memory operation involves the generation of a HyperTransport

message.

3.1.3 Connecting Motherboards to Access Remote Memory

A process must be able to access not only the memory installed on its board but also

the memory installed in other boards. To this end, additional hardware support is

required to provide fast access. The so-called RMA (Remote Memory Access) hard-

ware implements the required functionality. This hardware component is seen by the

processors in the motherboard as a new memory controller. However, the RMA does

not act as a typical memory controller since it has no memory banks directly connected

to it, otherwise it relies on the memory banks installed in other nodes of the cluster.

To enable the functionality, the registers mentioned above must be reconfigured so

that some of the memory accesses (i.e., those accessing the memory installed in other

motherboard) are directly forwarded to the RMA, which converts those accesses into

remote accesses. The RMA has a regular HyperTransport interface to the local node

and a High Node Count HyperTransport [36] interface to the rest of the cluster and it

is attached to the motherboard in the cluster by means of HTX compatible cards [8].

Chapter 3. System Model and Experimental Framework 26

3.2 System Model

3.2.1 System Model Characteristics

To focus the research, we concentrate the analysis and scheduling policies in two boards,

that is, we use a scaled system consisting of two motherboards, each one composed of

a 2-node NUMA system as shown in Figure 3.2. As can be seen, each node includes a

processor with private caches (i.e., L1 and L2), its memory controller and the associated

RAM memory.

3.2.2 Memory Regions

Three different regions of memory in the system have been considered:

• Local to Node: Memory located in the processor in which the application is

launched.

• Local to Board: Memory located on the same board but attached to the other

processor.

• Remote: Memory located in the other motherboard.

Figure 3.2 shows the modeled system. The cluster computer consists of two boards,

namely local and remote, connected by means of a high speed interconnection network

and the RMA to keep a low access time to remote memory.

The local board models two nodes which are composed of a single-issue processor and

local memory, while DRAM memory is the only resource used from the remote board

and has not been represented. Remote memory is assumed to be partitioned into two

parts: i) a portion which is used by the processors in the motherboard, and ii) the

exceeding memory is considered to be available for the OS installed in other boards.

In other words, the local OS is able to see both the local and the remote memory. The

machine parameters concerning both the processor and the memory that have been

considered for experimental purposes are summarized in Table 3.1.

Chapter 3. System Model and Experimental Framework 27

Figure 3.2: System model.

3.2.3 Memory Scheduling

As the memory regions in the system (i.e., Local to Node, Local to Board, Remote)

present different latencies, performance of a given application strongly depends on

how its assigned memory is distributed among these regions. Since each application

contributes with its performance to the global performance, a memory scheduler is re-

quired to maximize the global performance. This memory scheduler must be aware not

only of the characteristics (i.e., latency, bandwidth) of the different memory regions

Chapter 3. System Model and Experimental Framework 28

Table 3.1: Machine Parameters.

Component Parameter
Issue width single issue
Issue policy out-of-order
L1 cache: size, #ways, line size 64KB, 2, 64B
L1 cache latency 1 cc
L2 cache: size, #ways, line size 1MB, 16, 64B
L2 cache latency 6 cc
Local memory latency 100 cc
Remote memory latency 410 cc

but also of the memory requirements of the running applications. For example, allo-

cating by 25% of the available remote memory to a memory-intensive application could

yield to worse performance than allocating the whole remote memory to an application

showing good cache locality.

To choose a good distribution of the different memory regions among the running

applications, the scheduler requires information about the expected performance for a

given memory distribution. This dissertation focuses on the design of efficient memory-

aware scheduling policies.

3.3 Workloads

The benchmark suites executed in the experimental evaluations are SPEC CPU2006

[37, 38] and SPLASH2 [39]. Additionally, we have executed the Stream benchmark

[40], since its memory features have been considered of interest for the purpose of this

research. A brief description of these programs is given next, citing the command-line

arguments for each benchmark.

3.3.1 Stream

The STREAM benchmark is a synthetic benchmark program, written in standard

Fortran 77 (with a corresponding version in C). It measures the performances of four

long vector operations: (i)Copy measures transfer rates in the absence of arithmetic;

Chapter 3. System Model and Experimental Framework 29

(ii)Scale adds a simple arithmetic operation; (iii)Sum adds a third operand to al-

low multiple load/store ports on vector machines to be tested; and (iv)Triad allows

chained/overlapped/fused multiply/add operations.

These operations are representative of the “building blocks” of long vector operations.

The array sizes are defined so that each array is larger than the cache size of the machine

to be tested, and the code is structured so that data re-use is not performed. The intent

of STREAM is not to suggest that “real” applications have no data re-use, but rather

to decouple the measurement of the memory subsystem from the hypothetical “peak”

performance of the machine.

3.3.1.1 Determining the Stream Array Size

Before using Stream in our experiments, a study to select the most suitable problem

size for the simulations was performed. To this end, a simple system with only one

motherboard containing two processing nodes (node 0 and node 1) and the main mem-

ory allocated in one of these two nodes was defined. Stream benchmark was executed

in such a system varying two parameters:

• the local node (where the application runs) and the remote node (the other node

in the system)

• the node which contains the main memory

The two configuration alternatives in such a system are listed below:

i) Application is running in node 0 and the main memory is located in node 0.

ii) Application is running in node 0 and the main memory is located in node 1.

Note that when the local node is not the node that contains the main memory of the

system, the application needs to access memory out of its local node when the required

data is not in cache memory. Consequently, this situation yields to worse performance

Chapter 3. System Model and Experimental Framework 30

than executing the application in the node which contains the main memory of the sys-

tem. An experiment associated to each of the two aforementioned cases was executed.

In this scenario, the performance difference between cases i and ii was calculated. This

mechanism was carried out for different array sizes, looking for the smallest size, sizex,

which fulfilled the following requirements:

• Achieving the highest performance difference between cases i and ii.

• Leading to a performance difference between sizex and the immediately following

size, sizex+1, as similar as possible (i.e., stabilization) for consecutive sizes.

First, a coarse grain study was performed to reduce the search range for the array size.

Once the Stream array size was delimited within a range from 55000 (i.e., size1) to

495000 (i.e., size9) elements, we carried out a fine grain analysis among nine array sizes

(with a difference of 55000 between each size and the following) within this interval

whose results are shown in Table 3.2. From these results, concluded that 275000 is the

most suitable problem size (i.e., size5) for our simulations, since it is the smallest array

size which leads to performance difference stabilization between two consecutive prob-

lem sizes (the performance difference achieved by sizes 275000 and 330000 is the most

similar). The smallest suitable size has been chosen as simulation time considerably

grows with the array size.

3.3.2 SPLASH-2

SPLASH-2 suite is composed of a set of 11 shared-memory, multi-threaded bench-

marks, which are classified as kernels or applications. SPLASH2 benchmarks perform

computations, synchronizations, and communication, stressing processor cores, mem-

ory hierarchy, and interconnection networks. They constitute a widely used evaluation

tool for the research community.

For simulation purposes, a set of three SPLASH2 benchmarks have been chosen for

our experiments. Our work focuses in memory access, thus the benchmark parameters

which are considered in order to select the set of executed workloads are:

Chapter 3. System Model and Experimental Framework 31

Table 3.2: Stream size fine grain analysis.

x log2 array size local node memorynode performance difference (%)

1 55000 0
0

26.73
1

2 110000 0
0

25.89
1

3 165000 0
0

26.08
1

4 220000 0
0

26.23
1

5 275000 0
0

26.32
1

6 330000 0
0

26.38
1

7 385000 0
0

26.42
1

8 440000 0
0

26.46
1

9 495000 0
0

26.48
1

• Number of executed instructions (#instr).

• Number of executed memory read (#loads) instructions.

• Number of executed memory write (#stores) instructions.

• Cache Miss Rate (Cachemiss rate).

All the benchmarks of the suite have been evaluated in terms of the memory criterion

defined in equation 3.1, which aims to quantify the amount of memory stress performed

by a given benchmark during its execution.

memory stress =
#loads + #stores

#instr
× Cachemiss rate (3.1)

The quotient #loads + #stores
#instr

is the percentage of memory instructions executed. Since

most accesses hit the cache, we multiply this term by the cache miss rate in order

to obtain the fraction of memory reference instructions issued by the processor that

effectively access to main memory.

For each benchmark, the memory stress has been calculated (see Table 3.3). Those

benchmarks performing a higher memory stress are the most suitable for our study.

Chapter 3. System Model and Experimental Framework 32

From the results of this evaluation, we conclude that the best SPLASH2 workloads

for our goal are Radix (memory stress = 0.636), FFT (memory stress = 0.240), and

Cholesky (memory stress = 0.1982), since they achieve the highest values for the

established criterion.

Table 3.3: Splash2 benchmarks characteristics and associated memory stress.

Benchmark #instr #loads #writes mem. instr. (%) cachemiss rate memory stress

Barnes 2002,79 406,85 499,72 0,36 0,05 0.0180

Cholesky 539,17 313,29 284,61 0,26 36,0 0.182

FFT 34,79 111,86 12,06 0,2 0,7 0.24

FMM 1250,02 28,03 7,03 0,21 97,9 0.051

LU 494,05 4,07 208,9 0,31 1,2 0.034

Ocean 379,93 2,88 79,95 0,27 8,3 0.167

Radiosity 2832,47 226,23 152,19 0,28 0,24 0.047

Radix 50,99 38,58 59,57 0,37 63,6 0.636

Raytrace 829,32 104,00 81,27 0,35 0,11 0.122

Volrend 754,77 48,00 35,25 0,28 16,7 0.101

Water-Nsq 460,52 81,89 72,31 0,25 0,63 0.025

Water-Sp 435,42 18,93 32,73 0,24 63,5 0.022

3.3.2.1 Describing the Selected SPLASH2 Benchmarks and their Problem

Sizes

All the SPLASH2 benchmarks provide command-line arguments or configuration files

to specify the input size. Since the problem size can be flexibly tuned to provide reason-

able simulation times, programs are run until completion. In this section, each selected

SPLASH2 benchmark is briefly described and the used command-line arguments are

specified for each case.

FFT

The FFT kernel is a complex, one-dimensional version of the Six-Step FFT [41]. Several

command-line parameters must be specified: the number of points to transform, the

number of processors, the log base 2 of the cache line size, and the number of cache

lines. Both the number of data points and the number of processors must be a power

of 2.

Chapter 3. System Model and Experimental Framework 33

The method for choosing the most suitable matrix size (i.e., number of points to trans-

form) for FFT benchmark has been the same as the one explained in Section 3.3.1.1

for Stream benchmark, whose detailed results were shown for illustrative purposes.

The same methodology has been used to obtain the problem sizes of the remaining

SPLASH2 benchmarks (i.e., Radix and Cholesky)

From the problem size study of FFT, we selected 216 = 65536 total complex data

points transformed.

Regarding the rest of the command line options, we have used the following:

• 1 processor (default value)

• 1024 cache lines.

• 26 = 64 cache line length in bytes.

Radix

The RADIX kernel implements an integer radix sort based on the method described

in [42]. Several command line parameters can be specified. The number of keys to

sort, the radix for sorting, and the number of processors are those parameters that are

normally changed. The radix used for sorting must be a power of 2. The values of

these parameters are listed below:

• 1 processor (default value)

• Radix for sorting (Must be power of 2)= 1024 (default value)

• Number of keys to sort (Must be power of 2)= 524288= 1M/2

– The value of this parameter used for evaluation in [39] is 1M integers. How-

ever, when executing the application with this size, we got excessively large

simulation times, while minimal performance differences appear in compar-

ison studies with respect to 500K integers, which has been the used value

in this work.

Chapter 3. System Model and Experimental Framework 34

• Maximum key value= 524288(default value). Integer keys k are generated such

that 0 <= k <= 524288.

Cholesky

The blocked sparse Cholesky factorization kernel factors a sparse matrix into the prod-

uct of a lower triangular matrix and its transpose.

The size of the cache (in bytes) should be specified on the command line, as well as

the number of processors being used. The postpass partition size should be kept at

the default value of 32.

• Postpass partition size= 32(default value)

• Cache size in bytes= 65536

• 1 processor (default value)

• Input file= tk15.O

3.3.3 SPEC CPU2006

SPEC CPU2006 focuses on performance of the processor (CPU), the memory architec-

ture, and the compilers. This suite has some main advantages over other benchmarks

suites: i) it is developed from actual end-user applications (the benchmarks are not

synthetic), ii) it is widely supported by vendors, and iii) it is highly portable.

The suite is formed by 29 single-threaded benchmarks, classified as integer or floating-

point. Integer benchmarks (see Table 3.4) are written in C or in C++, and include

compression, compilation, artificial intelligence algorithms, XML Processing, or path-

finding algorithms, among others. Floating-point benchmarks (see Table 3.5) are

written in C, C++, Fortran or a mixture of C and Fortran, and deal with physics

simulation, image processing, weather prediction, speech recognition, etc. For each

benchmark, three input data sets with different sizes are provided, named test, train,

and ref.

Chapter 3. System Model and Experimental Framework 35

Table 3.4: Command-line arguments for the SPEC2006 Integer benchmarks.

Integer Benchmark Arguments
400.perlbench checkspam.pl 2500 5 25 11 150 1 1 1 1
401.bzip2 input.source 280
403.gcc 166.i -o 166.s

429.mcf inp.in

445.gobmk - -quiet - -mode gtp < trevord.tst

456.hmmer - -fixed 0 - -mean 500 - -num 500000 - -sd 350 - -seed 0 retro.hmm

458.sjeng ref.txt

462.libquantum 1397 8
464.h264ref -d sss encoder main.cfg

471.omnetpp omnetpp.ini

473.astar rivers.cfg

483.xalancbmk -v t5.xml xalanc.xsl

Table 3.5: Command-line arguments for the SPEC2006 Floating-point benchmarks.

Floating-point Arguments
410.bwaves −
416.gamess < triazolium.config

433.milc < su3imp.in

434.zeusmp −
435.gromacs -silent -deffnm gromacs -nice 0
436.cactusADM benchADM.par

437.leslie3d < leslie3d.in

444.namd - -input namd.input - -iterations 38 - -output namd.out

447.dealII 23
450.soplex -m3500 ref.mps

453.povray SPEC-benchmark-ref.ini

454.calculix -i hyperviscoplastic

459.GemsFDTD −
465.tonto −
470.lbm 3000 reference.dat 0 0 100 100 130 ldc.of

481.wrf −
482.sphinx3 ctlfile . args.an4

All the benchmarks in the SPEC2006 suite are used in this thesis to evaluate several

memory distributions under different memory scheduling policies. For simulation pur-

poses, a set of the first 750M committed uops has been considered a representative

execution of the benchmarks, thus we have run detailed simulations for each bench-

mark until this point and the computed the final statistics. The files for the input

data are taken from the ref set. For each benchmark, Table 3.4 and Table 3.5 list the

command-line arguments used for its execution.

Chapter 3. System Model and Experimental Framework 36

3.4 Simulation Tool

The selected simulator must be able to model current processors in order to provide

representative results. Current microprocessors are really complex, thus the simulator

should provide a relatively easy to understand interface as well as facilitating the

extraction of statistics results. The fact of including some development support such

as debugging or graphic trace tools is also useful for implementation and checking the

validity of the implementation. Finally, the simulator must be able to execute current

industry-standardized, intensive workloads and the benchmark suites most widely used

by the research community. Among the available simulators, we have chosen Multi2Sim

simulation framework, which was originally developed in our research group and is

used by many researchers in companies and universities around the world. Multi2Sim

is a detailed cycle-by-cycle execution driven simulator for superscalar, multithreaded,

multicore, and graphics processors [43].

3.4.1 Multi2Sim

Multi2Sim project is as a free and open-source tool which shares its settled and ongo-

ing research activities with the community. With the main simulator and its satellite

tools published on its website [44], the project intends to create a unified, automated,

and publicly accessible methodology for computer architects to evaluate their alterna-

tive design proposals. The integration eliminates the need to individually carry out

frequent and routine activities, such as setting up tedious simulation infrastructures or

architectural exploration scripts. The open-source nature of Multi2Sim and its com-

plete documentation brings the architecture of state-of-the-art processors closer to new

researchers, and allows instructors to use it as a pedagogical tool to teach, illustrate,

and evaluate a wide range of CPU/GPU-related concepts. Multi2Sim is an application-

only simulator, which allows one or more applications to be run on top of it without

booting a guest operating system first. Its main characteristics are listed below.

Chapter 3. System Model and Experimental Framework 37

3.4.1.1 Simulation Features

Superscalar Pipelines

Multi2Sim supports a cycle-based simulation of superscalar pipelines, modeling in-

struction fetch, decode, issue, write-back, and commit stages. The model features

detailed microarchitectural structures such as the reorder buffer, load/store queues,

register file, or trace cache. The pipeline front-end supports different types of branch

prediction and micro-instruction decoding, while the back-end implements out-of-order

and speculative execution.

Multithreading

A multithreaded pipeline model supports execution of multiple programs or one parallel

application spawning child threads. The multithreaded processor shares a common

pool of functional units among hardware threads. The rest of the pipeline resources

can be configured as private or shared among hardware threads. Multi2Sim supports

models for coarse-grain, fine-grain, and simultaneous multithreading.

Multicore

Superscalar and multithreaded pipelines are replicated a configurable number of times

forming models of multicore processors. Cores communicate through the memory

hierarchy with transactions triggered by the memory coherence protocol.

Graphics Processing Units

A cycle-based simulation model is provided for state-of-the-art AMD and NVIDIA

Graphics Processing Units (GPUs). Multi2Sim can run unmodified OpenCL programs,

intercepting OpenCL function calls, transferring control to a custom runtime, and

launching simulation of OpenCL device kernels. Original host and kernel binaries can

run on Multi2Sim without an actual GPU being installed on the system.

Memory Hierarchy

The memory hierarchy is modeled with an event-driven simulation of cache memories,

organized with a configurable number of cache levels, geometries, and latencies. An

implementation of the MOESI protocol handles coherence between caches from differ-

ent cores. The model also features directories for caches and main memory. The upper

Chapter 3. System Model and Experimental Framework 38

level caches can belong to different threads, different cores, or a subset of them, and

they can be both instructions and data caches. Even if one instruction cache and one

data cache are connected to a unified cache at the lower level, coherence is maintained

among them (which is required in the case of, for example, self-modifying code).

Interconnection Networks

Components in the memory hierarchy communicate through interconnection networks,

with configurable topologies, link bandwidths, routing algorithms, and virtual chan-

nels. An automatic cycle detection mechanism warns about possible deadlock condition

in networks.

Heterogeneous Computing

Multi2Sim integrates models for different CPU and GPU architectures, all of them

simulated at the ISA level for high accuracy purposes. This integration allows re-

searchers to evaluate configurations of state-of-the-art commercial processors, where

heterogeneous processing devices are encapsulated in the same die.

Context Scheduling

Multi2Sim introduces the concept of context scheduling after version 2.3.3, similar

to the idea of process scheduling in an operating system. The scheduler is aimed at

mapping software contexts to processing nodes (hardware threads) to run them. There

are two types of context scheduling: static and dynamic.

Simulation Paradigm

The simulation paradigm can be divided into two main modules: the functional sim-

ulation and the timing or detailed simulation. The functional simulation is just an

emulation of the input program. Given an executable ELF (Executable and Linkable

Format) file, the functional simulator provides the same behavior as if the program

was executed natively on an x86 machine. The detailed simulator provides a model of

the hardware structures of an x86-based machine; it provides timing and usage statis-

tics for each hardware component, depending on the instruction flow supplied by the

functional simulator.

Chapter 3. System Model and Experimental Framework 39

Statistics Reports

Multi2Sim offers the possibility of generating several statistics reports, global or spe-

cific, with all kind of variables which can be used at researching tasks.

The CPU Statistics Summary of a program simulation on Multi2Sim reports informa-

tion such as Total simulation time in seconds, Total number of simulated instructions,

Quotient of Instructions and Time, Maximum number of active contexts during the

simulation, Maximum amount of memory in bytes used in total by all contexts during

the simulation, Number of CPU cycles simulated, Quotient of Instructions and Cycles,

Percentage of branches correctly predicted, or Quotient of Cycles and Time.

On the other hand, a detailed report about the stages of the processor pipeline can

be obtained. The statistics are classified by thread and execution node. There are

global results for all the stages of the pipeline, and specific results for either hardware

structures (reorder buffer, instructions queues, branch target buffer) or each single

pipeline stage.

The memory hierarchy statistics contains one section per cache, main memory module,

and interconnect. For each interconnect, the statistics report includes those sections

and variables specified in the description for the network. The information related

to the caches include accesses, misses, hits, reads, writes, etc. Likewise, the inter-

connection network simulation report is composed of transfers, messages, bandwidth,

utilization, among others.

As the simulation framework grows, the configuration files and results reports format

are improved, as well as more detailed, usable and graphic new debugging tools are

added.

The simulation environment provides user-friendly and easy to use debugging tools.

For instance, the pipeline debugger is used to view graphical timing diagrams for

detailed simulations, in which the pipeline state can be traced cycle by cycle with

a representation of executed macroinstructions and uops. This tool is based on the

ncurses library, which allows graphical representations on terminals by using plain text

characters.

Chapter 3. System Model and Experimental Framework 40

In addition, the Multi2Sim GPU model has its own pipeline debugger. The GPU

pipeline debugger is a tool that provides analysis of OpenCL code run on Multi2Sim’s

GPU architectural simulator. Using a graphical user interface, the pipeline debugger

acts as a visual aid in testing code and conceptualizing the architecture of the simulator

itself. Its primary function is to observe the state of the GPU pipeline, providing

features such as simulation pausing, stepping through cycles, and viewing properties

of in-flight instructions.

Multi2Sim uses INI files format for all of its input and output files, such as detailed

simulation statistics reports, context configuration or cache hierarchy configuration

files.

Finally, Multi2Sim has been adapted to provide those statistics that McPAT requires in

its input file. McPAT is an integrated power, area, and timing modeling framework that

supports comprehensive design space exploration for multicore and manycore processor

configurations ranging from 90nm to 22nm and beyond. Though the processor models

provided by McPAT and Multi2Sim are not exactly the same, still some common

configurations can be obtained to estimate the global energy dissipated for a given

benchmark execution.

3.4.2 Simulation Tool Extensions

As mentioned above, Multi2Sim is an open source simulation framework. All the

scheduling policies proposed in this work as well as the underlying processor and system

architectures on which they have been evaluated, have been modeled on an extensively

modified version of the Multi2Sim simulator. Among the main developed extensions

are:

In Order Execution

The Issue stage of the processor pipeline has been extended with the possibility of

choosing an in-order execution paradigm, since Multi2Sim natively only simulates out-

of-order execution processors. If an in-order execution is chosen, we control the different

Chapter 3. System Model and Experimental Framework 41

queues, that is, instruction queue (IQ) and load and store queue (LSQ), so that the

oldest instruction (i.e., the one which owns the lowest sequence number) is issued first.

Memory Network Hierarchy

A memory network hierarchy which fits our local and remote memory access model has

been devised. The available interconnection elements of Multi2Sim have been adapted

to simulate our memory system. A network node has been placed for each cache

memory and each main memory module. Then different network configurations have

been used to simulate the connections between them, taking into account the message

sizes and the goal latencies for each cache level and the three considered memory

regions (i.e., L, Lb, and R).

Memory Management Unit

The memory management unit has been completed with some additional functionalities

related to different memory placement and replacement policies in order to analyze how

to keep the most accessed pages in the local memory region and thus improving the

system performance. In this context, we have devised our own Translation Lookaside

Buffer (TLB) and implemented several page-granularity memory distribution schemes

as well as some main memory scheduling algorithms.

Memory Size

As Multi2Sim assumes a non-limited main memory space, a mechanism to constrain

that size and determine the available memory size has been included for each execution

and single application.

Quality of Service

On the other hand, Quality of Service control methods have been implemented to

avoid situations in which the performance of an application is damaged under a given

threshold value.

Chapter 3. System Model and Experimental Framework 42

3.5 Summary

This chapter has introduced the system model and experimental framework of the

thesis. First, the target system has been presented. The baseline cluster machine

and the interconnection network technology have been detailed to finally describe the

mechanism by means of which the main memory of a remote motherboard of the cluster

is accessed. Then, the system model has been explained, in particular the memory

subsystem and the different main memory regions. Finally, the experimental framework

has been defined. On one hand, the different workloads executed in the experimental

evaluations have been briefly presented, including the command-line arguments for

their execution. On the other hand, the Multi2Sim simulation framework and our

extensions to this tool have been described.

Chapter 4

Scheduling Policy based on a

Cost-effective Heuristic

The execution time of a huge amount of current applications mainly depends on how

efficiently the system handles memory accesses. In the system described in Section 3.1,

memory management is a critical performance issue since the memory used by the

applications can reside in three main locations (i.e., L, Lb, R) that have different

latencies. Notice that, in this way, obtaining additional DRAM memory suffers from

higher latencies for remote memory. Thus, an efficient memory scheduling is required

to obtain the best performance in this scenario.

In this context, this chapter proposes two memory scheduling algorithms (an ideal

algorithm and a heuristic strategy) that assign memory from the three memory lo-

cations mentioned above to applications in order to provide the best overall system

performance, while guaranteeing a minimum quality of service (QoS) to each applica-

tion. To this end, we first explore how the application performance behaves depending

on its memory requirements in order to identify critical aspects that could help the

design of memory scheduling algorithms. In other words, we analyze, through different

workloads, how the distribution of memory accesses among the three different memory

locations impacts on the applications performance.

43

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 44

We assume that the distribution of local and remote memory assigned to an application

is set statically by interleaving the memory addresses at cache block size level (64B).

Consequently, the memory controllers are configured when the system boots to support

a given distribution.

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 45

4.1 Analysis and Impact on Performance of Memory Dis-

tribution

This section analyzes the impact on performance when varying the memory distribution

across the three memory regions (L, Lb, R). Four benchmarks have been used to carry

out the experiments: Stream [40] and three kernels (Radix, FFT and Cholesky) from

the SPLASH-2 benchmark suite [39]. Stream is a benchmark designed to stress the

memory hierarchy, while the selected SPLASH-2 kernels have been chosen because they

perform the highest number of memory accesses of the benchmark suite.

First, we study the case that only the DRAM installed in the local board (i.e., L and Lb)

is allocated to an application. The performance (i.e., IPC) has been analyzed varying

the percentage of Lb with respect to the total assignment (i.e., L + Lb). Figure 4.1(a)

shows the results. Since only L and Lb modules are assigned, it is enough to represent

the Lb percentage in the X axis. For instance, a value of 75 in the X axis corresponds to

an assignment of Lb = 75% and L = 25%. Notice that the distribution of local memory

assignment may have a strong impact on the performance of some benchmarks while

others are slightly affected. Stream is the most sensitive benchmark since its IPC

degrades about 42% when all its memory is assigned to the Lb memory region, while

FFT performance degrades about 27%, and Radix and Cholesky performance hardly

degrades.

Table 4.1: Impact on IPC for different memory distributions.

Memory Distribution IPC
L(%) Lb(%) (L+Lb)(%) R(%) Stream FFT Radix Cholesky

50 25 75 25 0,06 0,42 0,73 0,85
25 50 0,06 0,40 0,72 0,85

33,3 33,3 66,7 33,3 0,06 0,39 0,71 0,84
66,7 0 0,06 0,39 0,70 0,84

50 0 50 50 0,05 0,29 0,60 0,78
33,3 16,7 0,05 0,29 0,59 0,77

25 0 25 75 0,04 0,22 0,50 0,71
0 25 0,04 0,22 0,50 0,71

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 46

In the second scenario, the impact of allocating remote memory is explored. Table

4.1 shows the performance results for eight different memory distributions. Notice

that the performance slightly differs when varying the memory distribution of L and

Lb while maintaining their accumulated value (dark cell) constant. This means that

the execution time is dominated by the much slower remote memory. For instance,

for L + Lb = 75%, Stream gets the same IPC (0.06) in both cases. This is because

remote memory has a latency about one order of magnitude higher than local memory.

From these results, we can conclude that, when assigning remote modules, the memory

distribution within the board (L and Lb) has a negligible impact on performance. Con-

sequently, to study the effect of remote memory, a single value is enough to represent

both local memory regions (i.e., L + Lb column).

Figure 4.1(b) shows the adverse impact on performance as the percentage of assigned

remote memory grows with respect to the total memory assignment (i.e., L+ Lb+ R).

The initial points in the Y axis correspond to the lowest performance of each application

in Fig. 4.1(a). Values in the X axis represent the percentage of remote memory

assignment. For instance, X = 25 means that R = 25% and L + Lb = 75%. Three

different performance behaviors can be appreciated. Stream performance dramatically

degrades with the assigned remote memory until around 25%, where it stabilizes. On

the other hand, performance of both Radix and Cholesky constantly decreases in almost

a linear way. Finally, FFT behavior falls in between these two trends. Its performance

strongly drops until R = 60% and then it smoothly decreases.

4.2 Concurrent Execution of Several Applications

When running several applications, it may happen that the amount of remote memory

allocated to a given application yields to unacceptable performance for that application.

This section first presents a Quality of Service (QoS) parameter to deal with such

situations. This parameter specifies the maximum acceptable performance degradation

for an application.

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 47

(a) Impact on IPC when assigning L and Lb

(b) Impact on IPC when assigning R

Figure 4.1: Impact on performance (IPC) when assigning local and remote memory.

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 48

Figure 4.2: IPC degradation when varying the percentage of assigned remote mem-
ory.

4.2.1 Quality of Service Definition

Figure 4.2 shows the IPC degradation caused by assigning a given X% of remote

memory and calculated as IPC(R = 0%) − IPC(R = X%). The origin point means

that no remote memory is assigned so there is no performance degradation. Notice that

since performance always degrades as R increases, this figure can be used to define the

maximum percentage of remote memory that can be allocated to an application in order

to to guarantee an acceptable (QoS) performance. For instance, if the maximum IPC

degradation permitted for FFT is 0.35, the scheduler will not assign more than 40% of

remote memory to this benchmark (see label Q35). On the other hand, if the percentage

of remote memory allocated to Cholesky is less than 50%, then its IPC degradation

will be below 0.18 (see label R50). Therefore, there is a bidirectional relationship

between performance degradation and percentage of assigned remote memory. Due

to this equivalence, from now on, the maximum percentage of remote memory that

is permitted to be assigned to a given application will be referred to as its QoS, and

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 49

Table 4.2: Studied memory distributions.

Application
Case A Case B Case C Case D Case E

(L+Lb) R (L+Lb) R (L+Lb) R (L+Lb) R (L+Lb) R

A1 100% 0% 75% 25% 50% 50% 25% 75% 0% 100%
A2 0% 100% 25% 75% 50% 50% 75% 25% 100% 0%

this value will be used by the devised memory schedulers for controlling the system

performance.

4.2.2 Two Concurrent Applications

Once the QoS has been defined, we analyze the impact of the memory distribution on

the performance of several concurrent applications. In this section, the study focuses

on two applications. Two cases are analyzed: in the first one, the whole remote memory

is allocated, and in the second one, only a fraction of it.

4.2.2.1 Complete Usage of Remote Memory

This study assumes that all the memory installed in two motherboards (local and re-

mote) is used by two applications and that there is enough memory to support their

whole working set. Five memory distributions have been evaluated varying the per-

centage of remote memory assigned to each application from 0% to 100% in fractions

of 25%, as shown in Table 4.2. For instance, case B means that the memory assign-

ment for application A1 is R=25% and L+Lb=75% while the application A2 allocates

R=75% and L+Lb=25%. Using these distributions, the performance of each applica-

tion as well as the combined performance are shown in Figure 4.3 and Figure 4.4.

Since remote memory is shared between both applications, if one of them uses R =

X%, then the other one shall use R = 100% − X%. For instance, in Figure 4.3

(a) if Stream consumes R = 25% then FFT will use the remaining R = 75%. The

dashed line stands for the total system performance. The highest point represents

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 50

(a) Stream vs FFT

(b) Stream vs Cholesky

Figure 4.3: Overall IPC for couples of applications.
Stream versus FFT and Cholesky.

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 51

(a) Radix vs FFT

(b) Radix vs Cholesky

Figure 4.4: Overall IPC for couples of applications.
Radix versus FFT and Cholesky.

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 52

the maximum performance achieved by both workloads; however, reaching this point

might imply poor and unacceptable performance for some applications. This situation

can be controlled by defining a QoS for each application as stated above. For instance,

if Stream QoS is set to 16% and FFT QoS is set to 95% (see labels Stream16% and

FFT95% in Figure 4.3 (a)), the scheduler will select the distribution corresponding

to the aggregated IPC = 0.45 (i.e., Stream consumes R = 5% and FFT uses the

remaining R = 95%), since it is the best performance falling in the interval [0.35, 0.45]

defined by the QoS restrictions of both benchmarks. Consequently, the IPC of Stream

will be five times higher than its worst case (0.25 versus 0.05).

Notice that as the distribution of R changes, the performance of one application in-

creases while the performance of the other drops. Since this fact happens at different

rates, the maximum performance is reached when the application that decreases perfor-

mance at the highest rate (i.e., the most sensitive one) only accesses local memory. This

application can be easily identified by looking its IPC degradation value for R = 100

in Figure 4.2. For example, if the two co-running applications are Stream and FFT,

their IPC values will be 0.21 and 0.50, respectively. Thus, the maximum aggregated

IPC is obtained when all the remote memory is assigned to Stream.

4.2.2.2 Partial Usage of Remote Memory

This section analyzes the case where the applications use all the local memory but

only a fraction of the available memory in the remote motherboard. For illustrative

purposes, we consider the scenario where 60% of remote memory is used by the local

applications. That is, if an application uses X% of remote memory, the other one will

use 60%−X%. Notice that since the amount of remote memory consumed is less than

100%, the overall performance should be better than in the previous study.

Figure 4.5 shows the results for two couples of benchmarks: Stream and FFT (Figure

4.5 (a)), and Radix and FFT (Figure 4.5 (b)). To plot the IPC, both applications

have been profiled for different percentages of remote memory, the extreme points and

two intermediate values (i.e., 0%, 20%, 40% and 60%). As in the previous case, the

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 53

(a) Stream vs FFT

(b) Radix vs FFT

Figure 4.5: Overall IPC for different memory assignments assuming a 60% of remote
memory usage.

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 54

maximum system performance comes at the expense of unacceptable performance for a

given application. For instance, in Figure 4.5 (a), the best system performance (about

0.73) is achieved when assigning the remote memory (i.e., R = 60%) only to Stream,

thus clearly damaging its performance. Again, the QoS must be considered to avoid

the performance degradation.

In summary, allocating a fraction of remote memory is analogous to allocating all the

remote memory, since the only difference lies on the range of memory that is assigned,

which is narrower, thus this is a particular case of the previous one. The same reasoning

can be applied to the QoS parameters, where the maximum range of assigned remote

memory is also limited in extent.

4.2.3 Extending the Analysis to More Applications

This section extends the analysis for a number of applications higher than two. Four

different mixes have been evaluated and represented in Figure 4.6 and Figure 4.7:

mix1= {Stream, FFT, Cholesky}, mix2= {Stream, FFT, Radix}, mix3= {Stream,

Radix, Cholesky}, and mix4= {FFT, Radix, Cholesky}. The mixing criterion has

consisted in making all the possible combinations of the three benchmarks in sets of

three elements. In these plots, values of X and Z axes refer to the percentage of remote

memory assigned to two of the three applications, and 100%−(X%+Z%) corresponds

to the remote memory assigned to the third application. The Y-axis stands for the total

system performance and its highest point shows the maximum performance achieved

in the system. As in the previous analysis, the maximum is reached when all the

remote memory is assigned to only one application. This application can be chosen

as discussed in Section 4.2.2.1. For example, when running mix1 (see Figure 4.6(a)),

the maximum IPC (1.75) is achieved when the whole remote memory is assigned to

Stream. For this mix, the maximum performance leads to very poor performance for

this application. Again, this fact can be controlled by means of the QoS parameter.

For example, by setting the QoS of Stream about 15%, its IPC will not drop below 0.1

(see Figure 4.1(b)). In Figure 4.6(a), this is equivalent to remove the columns that do

not fulfill the required QoS for Stream (i.e., from Z = 25% to Z = 100%).

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 55

(a) Stream vs FFT vs Cholesky

(b) Stream vs FFT vs Radix

Figure 4.6: Overall IPC for different memory assignments
for three concurrent applications (I).

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 56

(a) Stream vs Radix vs Cholesky

(b) FFT vs Radix vs Cholesky

Figure 4.7: Overall IPC for different memory assignments
for three concurrent applications (II).

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 57

4.3 Proposed Memory Scheduler

This section presents the memory allocation algorithm devised from the previous anal-

ysis. The aim of the algorithm is to distribute the available memory in the three

memory regions among n applications running on the nodes of a given local board.

This work assumes a static approach where the performance of each application has

been profiled off-line varying R for a few points. This profile is provided as an input

to the algorithm.

For the sake of clarity, the algorithm is split in two main parts: remote memory assign-

ment and local memory assignment. Remote memory can be assigned by two different

algorithms: ideal and heuristic. The former one, referred to as SPP (set of possible

permutations) provides the best distribution but it requires a high computational cost,

as it is based on an exhaustive search. SPP is useful as a reference to identify the

maximum achievable IPC. The heuristic algorithm implements a cost-effective heuris-

tic that reduces the computational cost of SPP in a (n − 1)! factor while providing

memory distributions close to or the same as SPP.

4.3.1 SPP Remote Memory Scheduler

Figure 4.8 describes the SPP remote memory scheduler. The algorithm first checks if

there is a need to use remote memory, that is, if the application requires more memory

than the available DRAM in its motherboard (see LABEL 1). On such a case, it makes

a search of the optimal remote memory distribution that maximizes the aggregated IPC

of all the applications (see LABEL 2). After that, it allocates the remote memory for

each application following this distribution (see LABEL 3).

A tuple RM composed of n values (RM0, RM1, ..., RMn−1) is used to represent a

given remote memory distribution among applications, where each value RMi is the

percentage of remote memory assigned to i application. Thus, the sum of the values

of a given tuple is 100%. The algorithm has been designed with a QoS parameter to

avoid unacceptable performance; that is, it must be fulfilled that the remote memory

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 58

1: Algorithm: SPP remote memory scheduler with QoS constraint
2: Data:
3: n: number of running applications in the system
4: L: Available local memory
5: R: Available remote memory
6: Mi: Remaining memory required by i application
7: QoSi: maximum allowed remote memory for i application
8: P : Set of all the possible permutations of n integers from 0 to n− 1
9: IPCesti(x): IPC estimation based on the profiled points of a given memory

assignment x to app. i

10: RMi: Percentage of remote memory assigned to i application. Initially, all its
components are null

11:

12: LABEL 1 : CHECK IF THERE IS ENOUGH MEMORY IN THE
MOTHERBOARD

13: if ΣMi,∀i=0..n−1 > L then
14:

15: LABEL 2 : FIND THE OPTIMAL REMOTE MEMORY DISTRIBU-
TION

16: maxIPC ← 0
17: for all p ∈ P do
18: permIPC ← 0
19: AM ← 0%
20: for j = 0 to n− 1 do
21: RMpj

←MIN(QoSpj
, 100% −AM)

22: permIPC ← permIPC + IPCestpj
(RMpj

)
23: AM ← AM + RMpj

24: if AM = 100% then
25: exit
26: end if
27: end for
28: if permIPC > maxIPC then
29: max← RM

30: maxIPC ← permIPC

31: end if
32: end for
33:

34: LABEL 3 : ALLOCATE REMOTE MEMORY
35: for i = 0 to n− 1 do
36: Allocate RMi ×R in remote motherboard to i application
37: Mi ←Mi −RMi ×R

38: end for
39: end if

Figure 4.8: SPP algorithm to distribute remote memory among n applications.

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 59

assigned to i application must be lower or equal than its QoSi (i.e., RMi ≤ QoSi ∀ i

application).

The results discussed in Section 4.2 showed that the best performance is achieved

when assigning the maximum allowed QoSi to the i application with the least IPC

contribution. The simplest case arises when the remote memory is only distributed

between two concurrent applications, A0 and A1. In this case, there are only two

choices: assigning as much remote memory as possible to A0 and the remaining to A1,

and vice-versa.

For a higher number of applications, the algorithm uses a priority vector, where the

position of a given application in the vector indicates the order in which remote mem-

ory is assigned. For instance, let us consider a system executing three concurrent

applications with a priority vector ~p = (A0, A1, A2) and a quality of service vector

~QoS = (30, 40, 50). The priority vector states that the remote memory is first as-

signed to application A0, then to A1, and finally to application A2. Thus, the assigned

remote memory is defined as ~RM = (30, 40, 30). In contrast, for a priority vector

~p = (A1, A2, A0), the algorithm provides ~RM = (10, 40, 50). That is, in the latter

case, the remote memory is first assigned to A1, then to A2, and finally to A0.

The set P of possible combinations of the priority vector for n applications matches the

set of all the possible permutations of n integers from 0 to n−1. For example, for n = 3

the set is composed of P = {(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)}. This

set is used by the SPP algorithm and can be obtained with the Steinhaus-Johnson-

Trotter algorithm [45] whose computational cost is n!

Regarding the profile size, note that when plotting IPC as a function of the assigned

remote memory, the curve looks sufficiently defined using five points. Thus, although

the curve could be better defined with more points, its potential benefits would not

be compensated with the cost of profiling the additional points. Therefore, the IPC

profile of the proposed algorithms consists of the values obtained with five (0%, 25%,

50%, 75% and 100%) remote memory assignments for each application.

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 60

The algorithm also estimates the IPC of a given memory assignment when it falls in

between two profiled values (e.g., 20%). This estimation can be done in two main ways:

i) by using the value of the closest profiled point and ii) by using an approximation

method. A linear approximation shows a good tradeoff between speed and accuracy

since it can be quickly computed (i.e., just a multiplication and a sum operation are

required). Of course, more accurate results could be obtained with complex methods

like quadratic approximation. Once the optimal remote memory distribution has been

found, the remote memory is allocated to applications, and the assigned memory Mi

is updated. Finally, the pending memory is assigned to the local board as discussed

later (see Section 4.3.3).

4.3.2 Remote Memory Scheduling Heuristic

The heuristic presented in Figure 4.9 provides a remote memory distribution close to

the optimal. As in the previous case, the heuristic relies on the profiled values and

takes into account that the best memory performance is achieved when assigning the

maximum allowed remote memory to the application with the least IPC contribution.

As the SPP algorithm, the heuristic is only applied if there is not enough local memory

(see LABEL 1). In this case, it selects the application whose IPC is the least affected

by the remote memory assignment, that is, the minimum value between its QoS and

the remote memory still pending to be assigned (i.e. 100% −AM) in the system (see

LABEL 2). Then, the heuristic calculates and assigns the percentage of remote memory

(RMpenalized) that corresponds to the application selected above (see LABEL 3). The

process of assigning remote memory to applications continues until the total remote

memory required among the running applications has been assigned. Finally, once

the corresponding percentages have been obtained, the remote memory is allocated to

applications (LABEL 4).

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 61

1: Algorithm: Remote memory scheduling heuristic with QoS constraint
2:

3: n: number of running applications in the system
4: L: Available local memory
5: R: Available remote memory
6: Mi: Remaining memory required by i application
7: QoSi: maximum allowed remote memory for i application
8: IPCesti(x): IPC estimation based on the profiled points of a given memory

assignment x to app. i

9: RMi: Percentage of remote memory assigned to i application. Initially, all its
components are null

10:

11: LABEL 1 : CHECK IF THERE IS ENOUGH MEMORY IN THE
MOTHERBOARD

12: if ΣMi,∀i=0..n−1 > L then
13:

14: AM ← 0%
15: while AM < 100% do
16: LABEL 2 : FIND THE APPLICATION LEAST AFFECTED BY

REMOTE MEMORY
17: minimpact←∞
18: for i = 0 to n− 1 do
19: if RMi = 0% then
20: assig ←MIN(QoSi, 100% −AM)
21: impact← IPCesti(0) − IPCesti(assig)
22: if impact < minimpact then
23: minimpact← impact

24: penalized← i

25: end if
26: end if
27: end for
28: LABEL 3 : REMOTE MEMORY ASSIGNMENT TO THE LEAST

AFFECTED APP.
29: RMpenalized ←MIN(QoSpenalized, 100% −AM)
30: AM ← AM + RMpenalized

31: end while
32:

33: LABEL 4 : ALLOCATE REMOTE MEMORY
34: for i = 0 to n− 1 do
35: Allocate RMi ×R in remote motherboard to process i
36: Mi ←Mi −RMi ×R

37: end for
38: end if

Figure 4.9: Heuristic to distribute remote memory among n applications.

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 62

4.3.2.1 Working Examples

Let us discuss how the heuristic performs through two working examples: i) no appli-

cation has any QoS constraint, and ii) the applications have QoS requirements. Each

working example analyzes four cases or mixes (see Section 4.2.3), each one composed

of three benchmarks.

The simplest example arises when the algorithm works with no QoS constraint, that

is, all the applications have their QoS parameter equal to 100%. Table 4.3 shows the

mixes and how the heuristic solves each particular case (see column Assigned R). In

this example, the overall IPC corresponds to the value of the highest bar of each graph

illustrated in Figure 4.6 and Figure 4.7.

When the applications have QoS requirements and the sum of these values is equal to

100%, the only thing that the heuristic has to do is assigning a percentage of remote

memory equal to its QoS to each application. On the other hand, when the sum of

the QoS values is greater than 100%, at least one application will receive an amount

of remote memory less than its QoS.

The second working example focuses in the latter behavior. Table 4.4 shows the QoS

of the mixes and how the heuristic solves each case. Notice that the QoS vector

Table 4.3: Working example without QoS constraints: ~QoS = (100, 100, 100).

Mix Applications Quality of Service(%) Assigned R(%) Overall IPC

Stream 100 100
1 FFT 100 0 1.773

Cholesky 100 0

Stream 100 100
2 FFT 100 0 1.756

Radix 100 0

Stream 100 100
3 Radix 100 0 1.952

Cholesky 100 0

FFT 100 0
4 Radix 100 0 2.371

Cholesky 100 100

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 63

Table 4.4: Working example with QoS restrictions: ~QoS = (20, 55, 70).

Mix Applications Quality of Service(%) Assigned R(%) Overall IPC

Stream 20 20
1 FFT 55 10 1.542

Cholesky 70 70

Stream 20 20
2 FFT 55 10 1.332

Radix 70 70

Stream 20 20
3 Radix 55 10 1.721

Cholesky 70 70

FFT 20 0
4 Radix 55 30 2.207

Cholesky 70 70

in the four cases is ~QoS = (20, 55, 70), so the sum of its components is not only

greater than 100% but also these values do not correspond to any profiled point,

so the algorithm must estimate them. To this end, it has been assumed that the

algorithm approximates to the closest profiled point. For the first three mixes, the best

remote memory distribution vector is ~RM = (20, 10, 70). The estimated overall IPC

for these situations is approximated to the profiled remote memory percentages 25%,

0% and 75%, respectively. For mix 4, the heuristic provides a memory distribution of

~RM = (0, 30, 70), whose overall IPC is estimated by means of the values of the profiled

points 0%, 25% and 75%, respectively.

4.3.2.2 Cost Analysis

The SPP algorithm carries out a thorough search among the set of the possible remote

memory assignments (i.e., n!) to find out the combination that optimizes the overall

IPC. This set grows factorially with the number of applications running on the system

so it leads to prohibitive computational costs for large sets. On the contrary, the devised

heuristic algorithm finds an optimal or near-optimal remote memory distribution but

largely reduces the computational cost by performing a reduced search.

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 64

Table 4.5: Computational cost comparison.

Algorithm # Cases Cost/case Total cost

SPP n! n n× n!
Heuristic n n n× n

Table 4.5 shows the computational costs of both schedulers. The SPP algorithm it-

erates through n! different cases of n-cost each. As a result of the limitation in the

number of possible remote memory assignments explored, the proposed heuristic re-

duces the number of analyzed cases from n! to n, thus noticeably improving the total

computational cost of the SPP algorithm.

To sum up, the proposed heuristic reduces the computational cost in a factor of (n− 1)!

while providing reasonable performance since all the QoS of the applications are satis-

fied. On the contrary, the SPP algorithm might provide better performance for some

mixes but at the expense of a much higher computational cost.

4.3.3 Local Memory Assignment

Once the remote memory has been scheduled to applications by one of the studied

schedulers, the local memory must be assigned to complete the memory allocation.

Figure 4.10 shows the local memory scheduler. For each application and following a

circular order, the scheduler looks for free memory in each node of the local mother-

board, beginning by the node where the application is running on. This process goes

on until the required memory has been completely assigned to applications.

4.4 Summary

This chapter has presented an ideal algorithm and a heuristic strategy to assign main

memory, which can be located in three main regions (local to node, local to board,

or remote), among applications running on a RMA-interconnected cluster. With this

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 65

1: Algorithm: Local memory scheduler
2:

3: Data:
4: n: number of running applications in the system
5: Mi: Remaining memory required by i application
6: Li: Memory available in node i

7: for i = 0 to n− 1 do
8: if Mi > 0% then
9: j ← i

10: repeat
11: toAlloc←MIN(Mi, Lj)
12: Mi ←Mi − toAlloc

13: Lj ← Lj − toAlloc

14: j ← (j + 1)MOD(n)
15: until Mi = 0%
16: end if
17: end for

Figure 4.10: Algorithm to distribute local memory among n applications.

aim, three main steps have been followed to design these schedulers. For each one,

different conclusions can be drawn.

First, since benchmarks have different memory requirements, the impact on perfor-

mance of each application when varying the memory distribution among regions (L,

Lb, and R) has been studied. This study has shown that, i) the memory distribution

between L and Lb can impact on performance when no R memory is allocated, ii) the

previous distribution has a slight effect on performance when R memory is allocated,

and iii) performance degradation widely varies among applications when allocating R

memory.

Second, the system performance when several benchmarks running concurrently com-

pete for memory, has been analyzed. This study has shown that the total performance

is benefited when R memory is assigned (as much as possible) first to the application

that least degrades its performance, then to the second one, and so on. However, this

assignment strategy can lead to unacceptable performance degradation for some appli-

cations. Hence, a quality of service parameter has been defined for each application.

From these studies, two memory scheduling algorithms have been presented. SSP,

which is an ideal algorithm that makes a search of the optimal memory distribution

Chapter 4. Scheduling Policy based on a Cost-effective Heuristic 66

for all the applications, and a heuristic strategy that approximates the best local and

remote memory distribution among applications has been presented. The heuristic

has been designed to guarantee a minimum QoS performance for each benchmark

while optimizing the global system performance. Results have shown that the memory

distribution provided by the heuristic is close or the same as the optimal distribution

found by the ideal algorithm (SPP), whose computational cost is prohibitive for a high

number of applications.

A summary of the work presented in this chapter has been published in [46].

Chapter 5

Scheduling Policy based on a

Performance Predictor

In the previous chapters we have discussed the importance of properly balancing the

main memory resources among the applications running in cluster computers. In par-

ticular, the impact on performance may be significant when RMA hardware is used to

extend the addressable memory space of selected motherboards to the memory installed

in a remote motherboard of the same cluster.

In this context, the memory scheduler is in charge of finding a suitable distribution

of local and remote memory that maximizes the performance and guarantees a target

QoS among the applications. Changing the memory distribution is a slow process that

involves several motherboards, thus the memory scheduler needs to make sure that a

new distribution provides better performance than the current one.

To estimate the expected performance of a given memory distribution, the memory

schedulers described in Chapter 4 performed an off-line profiling of the benchmarks for

different memory distributions. On the contrary, the scheduling solution presented in

this chapter dynamically predicts at run-time the performance of the benchmarks by

measuring their utilization of the system resources during the execution. The proposed

predictor is driven by a novel performance model fed by simple hardware counters,

67

Chapter 5. Scheduling Policy based on a Performance Predictor 68

which are typically available in most current processors, that measures the distribution

of the execution time devoted to the processor, memory, and network resources.

Chapter 5. Scheduling Policy based on a Performance Predictor 69

5.1 Performance Model

A system whose running applications can be executed with different memory distribu-

tions (L, Lb, R) needs a mechanism to determine which memory distribution should be

assigned to each application. This section presents a methodology for predicting the

impact on performance of the different memory distributions, and then, the predictions

are used to guide the assignment of memory regions to applications in order to meet

memory constraints and achieve the best performance.

This work assumes that the predictor evaluates a set of possible memory distributions.

In particular, for experimental purposes we evaluated seven distributions (three sam-

ples and four estimated cases) since this number of data points is enough to define the

performance of each application among the complete set of possible memory distribu-

tions [46]. An analytical method is proposed to predict the performance (execution

time) of a running application A when having a memory assignment {L = X, Lb = Y,

R = Z}.

The modeled application-to-memory assignment prediction mechanism makes use of

the performance counters available in current processors to track the number of cycles

spent by each considered event during a full scheduling quantum.

5.1.1 Analytical Model

The execution time of a given application can be estimated from two main components,

as stated by equation 5.1.

Tex = CDispatch + Cmem stalls (5.1)

Each Cx is the number of processor cycles spent on x activity. As the dispatch width

has been assumed to be 1, the execution time can be expressed as the sum of the

number of dispatched instructions (i.e., CDispatch) plus the number of stall cycles due

to memory accesses (i.e., Cmem stalls). This simplified model assumes that no stall

Chapter 5. Scheduling Policy based on a Performance Predictor 70

due to branch misprediction arises. In order to relax the huge memory latency due

to an access to a remote motherboard, memory instructions are allowed to execute in

parallel. That is, a look-up free cache has been assumed. The cache considers a 8-entry

MSHR (Miss Status Hold Register).

In the devised model, stalls due to a lack of free entries in the load-store queue (LSQ)

will become critical for performance, mainly in those benchmarks having a high rate of

memory accesses. On the other hand, the dispatch stage will remain stalled during the

execution of a load instruction in the case of in-order execution. This includes both

the accesses to caches (e.g. L2 caches) and to the main memory, with their respective

access times as well as the delays related to the network or structural hazards.

To project the IPC, the performance model breaks down the memory components of

the execution time into memory region-dependent (i.e., CL, CLb, CR) and memory

region-independent components (i.e., Ccaches):

Cmem stalls = CL + CLb + CR + Ccaches (5.2)

CL, CLb, and CR refer to the number of cycles spent on each memory region, that is,

Local, Local to Board, and Remote. Each C<region> includes the cycles spent by the

operations accessing to this memory region.

In particular, stalls due to the main memory region and caches access time have been

taken into account.

The Main memory access time includes both the cycles spent in the data read

from main memory and the message transfer through the memory network.

The Caches access time considers L2 accesses and stalls due to L1 accesses and

dependent instructions. During these kind of accesses, no memory module is

accessed, thus having the same value regardless the memory distribution. Then

Caches access time is considered region-independent.

Chapter 5. Scheduling Policy based on a Performance Predictor 71

The final equation used by the performance predictor is 5.3:

Tex = CDispatch + CL + CLb + CR + Ccaches (5.3)

5.1.2 Estimating Performance

The model assumes that the implemented target machine provides the required per-

formance counters to obtain the values for the variables of equation 5.3. Notice that

network traffic is taken into account, so congestion is also quantified.

The predictor requires to run each benchmark three times to gather the required values

to project the performance. Each sample is associated with the execution time, i.e.,

Tex, obtained when all the memory accesses are performed in one single region, that

is, i) all the accesses to local memory region (i.e., Tex,L=100%), ii) all the accesses to

the other node in the local motherboard memory region (i.e., Tex,Lb=100%), and iii) all

the accesses to remote memory region (i.e., Tex,R=100%):

Sample 1 (L = 100%, Lb = 0%, R = 0%): Tex,L=100% = CL(L=100%) + Ccaches

Sample 2 (L = 0%, Lb = 100%, R = 0%): Tex,Lb=100% = CLb(Lb=100%) + Ccaches

Sample 3 (L = 0%, Lb = 0%, R = 100%): Tex,R=100% = CR(R=100%) + Ccaches

To predict the execution time for a given memory distribution, the predictor calculates

a weighted execution time, Tex estimated, from the three samples. It takes each not null

memory region component C<region> of each of the samples and multiplies it by the

fraction f<region> of accesses of the destination memory region:

Tex estimated = CL(L=100%) ·(fL)+CLb(Lb=100%) ·(fLb)+CR(R=100%) ·(fR)+Ccaches (5.4)

For any given memory distribution, equation 5.4 can be used to predict its execution

time given the gathered components for the three samples. This provides a mechanism

Chapter 5. Scheduling Policy based on a Performance Predictor 72

to identify the optimal memory distribution to run a given execution phase with min-

imal performance loss. So this prediction will be an input for the memory scheduler.

Table 5.1 shows an example for FFT. The first column C<region> provides the time

gathered for the three samples. Then using these values, the execution time for

the memory distribution (50%, 50%, 0) is estimated as specified in column f<region>.

The contribution of each region to the execution time is shown in the last column

C<region> weighted. The last row shows the total estimated execution time as 2774807.8

cycles. To verify the accuracy of the model, we compared its estimate against the time

obtained from the detailed simulation that was 2774931. Thus the model has obtained

an estimate which deviates less than 0.005% from the target value.

Table 5.1: Performance predictor working example.

C<region> f<region> C<region> weighted

Sample1 44687 0.5 22343.5
Sample2 62236 0.5 31118
Sample3 166757 0 0
Ccaches 2721346.3

tex estimated 2774807.8

5.2 Validating the Model

This section analyzes the prediction accuracy. Different experiments were launched

with mixes consisting of four benchmarks (FFT, Cholesky, Radix, and Stream) for the

following eight memory distributions: i)(100%, 0%, 0%), ii)(50%, 50%, 0%), iii)(0%,

100%, 0%), iv)(75%, 0%, 25%), v)(50%, 25%, 25%), vi)(50%, 0%, 50%), vii)(25%, 0%,

75%), viii)(0%, 0%, 100%). Then, we have taken the components of the three samples

(i, iii, and viii) and applied the model to each benchmark to obtain the execution time

for each remaining memory distributions. Finally, the Instructions Per Cycle (IPC)

has been calculated for each case.

The devised predictor has been validated by comparing its estimates against the per-

formance results obtained by the execution of the benchmarks.

Chapter 5. Scheduling Policy based on a Performance Predictor 73

Figure 5.1: Model Validation. Detailed cycle-by-cycle simulation vs model.

Figure 5.1 shows the comparison of the simulated performance results (sim) against

the values calculated by the performance predictor (model). Both model and detailed

cycle-by-cycle simulation curves are overlapped, because the model provides a deviation

lower than 5% in the worst case, being near to 0% for some of the benchmarks, for

instance, FFT.

5.3 Summary

This chapter has presented a performance predictor which is able to estimate the

execution time for a given memory distribution of an application. We first carried

out a study to determine the events considered by our model, and classified them as

memory-region dependent and independent. The model assumes that the number of

cycles spent in each considered event is obtained from some hardware counters of the

target machine.

Chapter 5. Scheduling Policy based on a Performance Predictor 74

The performance predictor provides the input to a memory scheduling mechanism

which, fed by the estimated performance values, is able to dynamically choose the

optimum target memory distribution for each application concurrently running in the

system in order to achieve the best overall performance.

The validation study shows that the dynamic predictor is very accurate, since its

deviation from the real results is always lower than 5% and very close to 0% in several

studied cases.

The main conclusions and results if the work discussed in this chapter has been pub-

lished in [47].

Chapter 6

Scheduling Policy based on page

granularity

Cluster systems typically support interleaved memory at cache-block granularity. As

the operating system manages memory at page level granularity, this chapter studies

the impact on the system performance when working at this granularity to distribute

memory pages among the memory regions (i.e., local or remote). This behavior is

analyzed and compared to a typical interleaved memory distribution at cache block

level granularity.

Experimental results show that simply supporting interleaved memory at OS page

granularity is a feasible solution that does not impact on the performance of most of the

benchmarks. Based on this observation we have investigated the reasons of performance

drops in those benchmarks showing unacceptable performance when working at page

granularity.

The results of this analysis have led us to propose two memory allocation policies,

namely on-demand (OD) and Most-accessed in-local (Mail). The OD policy first places

the requested pages in local memory, once this memory region is full, the subsequent

memory pages are placed in remote memory. This policy shows good performance when

the most accessed pages are requested and allocated before than the least accessed ones,

75

Chapter 6. Scheduling Policy based on page granularity 76

which as proven in this work, is the most common case. Nevertheless, this strategy has

poor performance when a noticeable amount of the least accessed pages are requested

before than the most accessed ones. This performance drawback is solved by the Mail

allocation policy by using profile information to guide the allocation of new pages.

This chapter also characterizes the behavior of the entire SPEC CPU2006 benchmark

suite [37] under several memory allocation schemes. A set of metrics such as the execu-

tion time, misses per kilo-instruction, and the distribution of L1 accesses are analyzed

in order to provide a sound understanding of the effects of the memory behavior in the

system performance.

The analysis allows us to classify the applications based on their behavior for a given

memory distribution. The different memory distributions affect the execution time of

a given application in different ways; thus, it is important that the scheduler is able to

estimate how a given memory distribution impacts on performance. In this way, this

knowledge could prevent the memory scheduler from choosing a memory distribution

that could damage not only the performance of an application but also the overall

system performance.

Chapter 6. Scheduling Policy based on page granularity 77

6.1 Memory Allocation Granularity and Memory Inter-

leaving

This chapter focuses on memory allocation policies working at OS page granularity.

For performance comparison purposes we have modeled a typical system implementing

interleaved memory at cache block granularity. In addition, since the proposed schemes

work at page granularity, we have modeled a page-level interleaved scheme to check

how sensitive the applications are to the granularity size of the interleaved schemes.

Below we discuss the interleaved schemes.

• Block-level interleaved. This scheme referred to as BI assumes that cache

blocks are allocated to local and remote memory in an interleaved way (e.g.

even blocks are in local memory and odd cache blocks in remote memory). This

scheme has been assumed as baseline since it is the typically implemented in

current systems.

• Page-level interleaved. This scheme, namely PI, also allocates memory in an

interleaved way but at OS page granularity. The idea behind this scheme is to

explore if performance can be acceptable in most benchmarks when working at

this coarse granularity. This scheme has been also considered as baseline, since

the proposed strategies work at the same granularity.

6.2 Proposed Page-granularity Policies

Next we discuss the proposed page-granularity memory allocation policies, namely on-

demand and Most-accessed in-local scheduler. All the policies that work at page level

use the virtual memory subsystem to assign a given memory page to one of the two

memory regions. That is, whenever a new virtual page is allocated, its physical frame

is set depending on which region is chosen by the specific memory allocation policy.

• On-demand. This proposal, referred to as OD, allocates memory at OS page

granularity. It starts allocating pages in local memory, and when the requested

Chapter 6. Scheduling Policy based on page granularity 78

pages exceed the local memory capacity, it allocates pages in remote memory

which works as an extension of the local memory. Since local and remote mem-

ories are both considered as main memory, no swap is performed between both

regions in this scheme. In other words, a cache miss whose requested block is

found in remote memory is not handled as a page fault by the OS.

• Most-accessed in-local. This scheme will be referred to as Mail. This proposal

tries to improve the performance of the OD scheme by determining which pages

should be allocated in local memory. The Mail scheme works as a scheduler that

places those pages which are responsible for more cache misses in local memory

and the remaining ones in remote memory. In this chapter, we analyze the

performance benefits of this scheme when working in a static way.

6.3 Performance Analysis of the Interleaved Memory Schemes

This section explores how the granularity size can impact on the system performance.

Figure 6.1(a) shows, for each benchmark, the normalized execution time of the PI

policy with respect to the BI scheme.

This plot shows the sensitiveness of each benchmark to the granularity of the inter-

leaving. The wider the differences, the more sensitive a given benchmark is. Results

show that the execution time of more than half of the benchmarks is not or is scarcely

affected when working at page granularity while the execution time of some of them

(about one third) grows when working at such large granularity.

The performance penalty widely differs among those benchmarks penalized by large

granularities. According to this performance degradation benchmarks can be classified

as high degradation, medium degradation and low degradation. For instance, we can

include in high degradation (i.e., between 50% and 75%) the gcc and h264ref bench-

marks, in medium degradation (i.e., between 25% and 50%) the perlbench, gobmk, and

xalankbmk benchmarks, and in low degradation (i.e., between 2% and 25%) bench-

marks like soplex, calculix, tonto, omnetpp, bzip2, dealII, povray, and GemsFDTD.

Chapter 6. Scheduling Policy based on page granularity 79

As observed in Figure 6.1(b), benchmarks in the latter group present good performance

regardless the interleaving size, since all of them except bzip2 achieve a Cycles per

Instruction (CPI) value close to 1. Notice that a CPI value close to 1 represents a near

optimal performance, as we have modeled a single-issue processor.

Since a perfect branch predictor is considered, performance drops mainly come from the

memory subsystem. To analyze the memory subsystem behavior of both interleaving

schemes we explored the cache hierarchy. Figure 6.2(a) shows, for each benchmark and

interleaving, the distribution of load instructions (memory read requests) accesses to

the L1 data cache. The results of such loads are classified in hits, delayed hits (i.e.,

a hit in a block that is being fetched either from L2 or main memory), and misses.

We differentiate hits from delayed hits since the latter present a variable latency that

may range from main memory latency to a latency close to the one of a conventional

hit. Notice that all the benchmarks whose CPI value is below 1.5 present a hit ratio

(without considering delayed hits) greater than 0.9.

It can be observed that working at page granularity (PI scheme) increases the number

of delayed hits with respect to the BI scheme in some of the benchmarks. The longer the

latency of these additional delayed hits, the stronger the impact on performance. Since

remote memory accesses present the longest latencies, they have potentially greater

impact on the performance. To analyze this fact, we measured those Read Misses

Per Kilo-Instruction (RMPKI) in L2 (L2 is the last level cache so a L2 miss incurs a

main memory access) that access to Remote Memory (L2 RMPKIRM). Figure 6.2(b)

shows that the benchmarks whose PI performance degradation (see Figure 6.1(a)) is

higher than 25% (i.e., gcc, h264ref, perlbench, gobmk, and xalankbmk) are those which

present a larger L2 RMPKIRM increase with respect to BI. On the other hand, there

are some benchmarks such as str, gamess, gromacs, libquantum, zeusmp, namd, and

sphinx3 whose L2 RMPKIRM is below 0.01 for both interleavings. Thus, the impact

of the memory interleaving scheme on these benchmarks is negligible. Finally, note

that although the L2 RMPKIRM of some benchmarks like tonto, omnetpp, dealII,

and povray also noticeably grows, their CPI and hit ratio values (see Figure 6.1(b) and

Figure 6.2(a)) compensate the performance impact of the growing L2 RMPKIRM .

Chapter 6. Scheduling Policy based on page granularity 80

(a) Normalized execution time

(b) Cycles per instruction

Figure 6.1: Interleaved memory configuration.
Performance metrics.

Chapter 6. Scheduling Policy based on page granularity 81

(a) Distribution of L1 cache read accesses

(b) L2 read misses per kilo-instruction accessing remote memory

Figure 6.2: Interleaved memory configuration.
Memory subsystem behavior.

Chapter 6. Scheduling Policy based on page granularity 82

In summary, with respect to the BI scheme, the PI impact on performance is noticeable

only for a few benchmarks. The main reason of this performance drop is the increase

in the number of L1 delayed hits that must wait until the block that is being fetched

(delayed hit) comes from remote memory.

6.4 On-demand Memory Allocation

To avoid the increase of L2 misses accessing to remote memory, we have devised the

OD or On-demand memory allocation policy, which places the first accessed pages in

local memory as discussed in Section 6.1. This scheme is based on the assumption that

the pages that are accessed first will be likely accessed during the whole execution.

Thus, if these pages are placed in local memory, the number of accesses to remote

memory will be noticeably reduced.

This section analyzes the performance of the OD policy compared to the BI memory

organization scheme. The BI scheme assumes, by design, that a half of the working

set is allocated to local memory and the other half to remote memory. Therefore, for

fair comparison purposes, the devised OD scheme also implements this assumption. In

this way, the working set allocated to each memory region is roughly the same as the

baseline scheme. For the on-demand policy, this means that the local memory is full

when 50% of the accessed pages are brought into memory. From now on, we will refer

to this scheme as on-demand 50 or simply OD-50.

Figure 6.3 shows, for each benchmark, the normalized execution time of the OD-50

policy with respect to the BI scheme. Note that an on-demand distribution does

not only avoid the performance problems of page interleaving, but also improves the

performance achieved by BI in 7 benchmarks.

Performance improvements reach values up to 25% in some cases (bzip2, cactusADM,

and astar). The only exception showing significant worse performance for the OD-50

policy is the hmmer benchmark.

Chapter 6. Scheduling Policy based on page granularity 83

Figure 6.3: Block interleave versus On-demand.

We explored the reason behind the variations of OD-50 performance results across the

different benchmarks by studying the characteristics of the pages that are allocated

to local or remote memory as the execution time advances. The impact of each page

on performance mainly depends on its temporal locality quantified as the number of

times that it is accessed (i.e., L2 misses accessing that page) and its latency (if it is

local or remote). For illustrative purposes, we analyzed this behavior and plotted the

results for two of the best performing benchmarks with the OD-50 policy (astar and

bzip2) and another two benchmarks which do not take advantage from this allocation

strategy (hmmer and wrf).

To check how applications take advantage of temporal locality in the OD-50 scheme,

pages are classified as most accessed or MA (those 50% of pages which are responsible

of more L2 misses) and least accessed or LA (the remaining ones). Figure 6.4 and

Figure 6.5 plot the accumulated distribution of MA and LA memory pages as they are

brought into memory by the OD-50 scheme. To plot the results only the first access

to a given page was considered. Each of the 10 steps in the X axis are equally large in

the number of L2 misses (i.e., main memory accesses) but not in time. Depending on

whether the local memory is full or not, the OD-50 scheme places that page in remote

or local memory, respectively. Notice that this decision only considers the first access

to that page since no page replacement is performed.

Chapter 6. Scheduling Policy based on page granularity 84

(a) astar

(b) bzip2

Figure 6.4: Local and Remote MM first accesses distribution along time.
The best performing benchmarks under OD.

Chapter 6. Scheduling Policy based on page granularity 85

(a) hmmer

(b) wrf

Figure 6.5: Local and Remote MM first accesses distribution along time.
The worst performing benchmarks under OD.

Chapter 6. Scheduling Policy based on page granularity 86

Since both memory regions have the same size, the dashed lines in Figures 6.4 and

6.5 represent the situation where the local memory is full, so subsequent allocated

pages will be placed in remote memory. According to temporal locality and OD-50,

the more MA pages are allocated in local memory sooner, the better the performance.

The ideal situation would happen when all the MA pages are allocated before the

dashed line in local memory and all the LA pages after the dashed line in remote

memory. In other words, the MA curve grows until the dashed line and then remains

constant; from then on, the LA curve starts to grow. As observed, astar ’s plot (Figure

6.4(a)) resembles the described ideal situation. This can be corroborated by looking at

Figure 6.3 which shows that this benchmark reaches the best on-demand performance

compared to BI. Bzip2 ’s (see Figure 6.4(a)) distribution also presents a similar plot,

but some LA pages are allocated to local memory, so the on-demand distribution can

be improved. In contrast, for hmmer and wrf, which present the worst performance,

the distribution shows a high number of LA page allocations before the dashed line

(Figures 6.5(a) and 6.5(b)), thus a lot of MA pages are allocated to remote memory,

so damaging the performance.

6.5 Mail Memory Allocation

As observed in Figure 6.4 and Figure 6.5, the memory pages distribution obtained by

the on-demand policy can be improved even for some of the best performing bench-

marks (e.g., bzip2). The key is to place the memory pages with the highest number of

main memory accesses in the local region. To this end, we devised the Most-accessed

in-local (Mail) allocation policy. With the aim of exploring the impact on performance

of the Mail policy, profiling information is used, to discern MA from LA pages.

Figure 6.6 shows the normalized execution time of Mail with respect to the OD policy.

As in previous experiments, we assume that the memory is split in two equally sized

regions. As expected, there are several benchmarks whose performance is improved by

Mail. In some cases, this improvement reaches 25% (xalancbmk, bzip2, and hmmer).

The fact that those benchmarks presenting and on-demand distribution close to the

Chapter 6. Scheduling Policy based on page granularity 87

optimal like astar (see Figure 6.4(a)), take scarce benefit from the Mail policy was also

foreseeable.

Figure 6.6: Mail versus on-demand.

To understand why some benchmarks are more sensitive to the improved page distri-

bution applied by Mail, Figure 6.7 and Figure 6.8 plot, for the same four benchmarks

analyzed in Section 6.4, the accumulated distribution of L2 misses (i.e., main memory

accesses) ordered along the X axis from the most accessed to the least accessed page.

For example, Figure 6.8(a) shows that for hmmer, the 20% most accessed pages are

responsible of around a 100% of its L2 misses. Thus, hmmer performance is greatly

improved by the Mail scheme, which places the most accessed pages in the local memory

region. On the other hand, although wrf also benefits from the Mail distribution, its

performance improvement is smaller, since the L2 misses are not concentrated in a small

set of pages, as shown in Figure 6.8(b). Nevertheless, its performance improvement

with the Mail allocation policy is by 15%.

Chapter 6. Scheduling Policy based on page granularity 88

(a) astar

(b) bzip2

Figure 6.7: Accumulated percentage of main memory accesses.
The best performing benchmarks under OD.

Chapter 6. Scheduling Policy based on page granularity 89

(a) hmmer

(b) wrf

Figure 6.8: Accumulated percentage of main memory accesses.
The worst performing benchmarks under OD.

Chapter 6. Scheduling Policy based on page granularity 90

6.6 Summary

In this chapter, we have compared the performance of conventional hardware-based

block interleaving between local and remote memory with the performance of OS-

based page interleaving. We have found that only some applications are significantly

affected by page-based interleaving. Thus, we have investigated the reasons that cause

this impact on performance in order to design better OS-based memory allocation

policies.

The results of this study show two interesting observations. First, we have found that

most memory accesses are not evenly distributed among pages but a small subset of

pages are responsible of most of the accesses. Second, the most accessed pages are

usually requested during the first half of the execution time.

Based on this observations , we have proposed two memory allocation policies, namely

on-demand (OD) and Most-accessed in-local (Mail). The first one is a simple strategy

that works by placing new pages in local memory until this region is full. Consequently,

it performs better when the most accessed pages are requested and allocated before

than the least accessed ones, which is the common case, as proven in this work. Exper-

imental results show that OD policy reaches around 25% performance improvement for

some benchmarks with respect to a typical block interleaving memory system. How-

ever, under the OD policy, some benchmarks still allocate a large percentage of the

least accessed pages to local memory. In contrast, the Mail allocation policy avoids this

problem by using profile information to guide the allocation of new pages. Under this

scheme, all the benchmarks show better performance than under block interleaving,

and in some cases the performance offered by OD is improved as much as 25%.

Preliminar results of the work discussed in this chapter have been published in [48].

Chapter 7

Conclusions

Several memory scheduling policies have been proposed in this dissertation addressing

cluster computers. These systems have been assumed to have three main memory

regions whose access can incur widely different latencies. The aim of the proposed

schedulers is to improve the overall performance in this scenario. In this chapter,

the main contributions on each of these memory scheduling schemes are summarized,

followed by a discussion about future working directions and an enumeration of the

scientific publications related to this thesis.

91

Chapter 7. Conclusions 92

7.1 Contributions

The devised memory schedulers have been presented in chapters four to six. The base-

line system consists of main memory located in three main regions: local to node (L),

local to board (Lb), and remote (R). In addition, it is assumed that a fast intercon-

nection mechanism allows the access to remote memory.

In Chapter 4, an ideal algorithm and a heuristic strategy to assign main memory from

the different memory regions have been proposed. Conclusions in this chapter address

three main issues: i) analysis of memory requirements for individual applications,

ii) performance interferences between different co-runners, and iii) a heuristic whose

performance is close to an optimal scheduler.

• Regarding the first issue, the study has shown that, i) the memory distribution

between L and Lb can impact on performance when no R memory is allocated,

ii) the previous distribution has a slight effect on the performance when R is

allocated, and iii) performance degradation widely varies among applications

when allocating R memory.

• With respect to the second issue, this study has shown that the total perfor-

mance is benefited when as much remote memory as possible is assigned with

the following pattern: first to the application that least degrades its performance,

then to the second one, and so on. However, this assignment strategy can lead to

unacceptable performance degradation for some applications. Hence, a quality

of service parameter has been defined for each application.

• Finally, regarding the latter issue, two memory scheduling algorithms have been

proposed. An ideal algorithm, namely SSP, which makes a search of the optimal

memory distribution for all the applications, and a heuristic strategy guaran-

teeing QoS that approximates the best local and remote memory distribution

among applications have been presented. Results have shown that the memory

Chapter 7. Conclusions 93

distribution provided by the heuristic is close or the same as the optimal distri-

bution found by SPP, whose computational cost is prohibitive for a high number

of applications.

In Chapter 5, an analytical model which is used as a performance predictor was devised

to estimate the execution time of a given application for a given memory distribution.

We first carried out a study to determine the main variables (associated to simulation

events) of the model, and classified them as memory-region dependent and indepen-

dent. The model assumes that the number of cycles spent in each considered event

is obtained from some hardware counters of the target machine. The model is used

to provide the input to a memory scheduler, which using this input, is able to dy-

namically choose the optimal target memory distribution for each application running

in the system in order to achieve the best overall performance. The validation study

shows that the dynamic predictor is very accurate, since its deviation from the real

results is always lower than 5% and close to 0% across the experiments.

Finally, in Chapter 6 we have studied the feasibility of scheduling at OS page granu-

larity instead of accessing memory at cache block size granularity. We compared the

performance of conventional hardware-based block interleaving (between local and re-

mote memory) with the performance of OS-based page interleaving. We found that

only some applications are significantly affected by page-based interleaving. Thus,

we investigated the reasons that cause this impact on performance in order to design

better OS-based memory allocation policies. Based on the results, we have proposed

two memory allocation policies, namely on-demand (OD) and Most-accessed in-local

(Mail). The first one is a simple strategy that works by placing new pages in local

memory until this region is full. Thus, it performs better when the most accessed pages

are requested and allocated before than the least accessed ones, which is the common

case, as proven in this chapter. Experimental results showed that OD policy reaches

around 25% performance improvement for some benchmarks with respect to a typical

block interleaving memory system. However, under the OD policy, some benchmarks

still allocate a large percentage of the least accessed pages to local memory. In con-

trast, the Mail allocation policy avoids this problem by using profile information to

Chapter 7. Conclusions 94

guide the allocation of new pages. Under this scheme, all the benchmarks show better

performance than under block interleaving, and in some cases the performance offered

by OD is improved as much as 25%.

7.2 Future Work

In the memory scheduling policies proposed in this thesis, the optimum memory dis-

tribution is assumed to be such that implies the lowest number of remote memory

accesses, thus achieving better performance than a baseline memory distribution (i.e.,

a non-scheduled memory distribution).

As an extension of this idea, for future work on the topic of memory scheduling in

cluster computers, we plan to design a dynamic memory scheduler aware of the most

and the least accessed pages during the execution, using this information with the aim

of suitably allocating them so that the main memory access time is minimized. That

is, the most accessed pages will be allocated in the local memory region and the least

accessed pages in the remote memory region. In this way, the scheduler can decrease

the remote memory accesses as much as possible.

An important scheduling feature that must be addressed is the page migration problem,

that is, pages in remote memory will be allowed to migrate to local memory, which

can incur replacement of local pages. Page migrations involve some OS actions that

may increase the overall execution time. Nevertheless, in most of cases, the time spent

in page migration may be critical, especially for those workloads which change its

memory access patterns through the execution. For instance, a memory page may

be considered poorly accessed by the memory scheduler and hence allocated in the

remote memory region in a given instant of the execution. After that, the accesses

to that memory page (at a remote memory latency cost) may become more and more

frequent leading to a bottleneck and severely damaging the overall system performance.

Consequently, an alternative memory scheduling mechanism needs to be designed to

keep track of the number of memory accesses to a given page in order to decide if either

this page should stay in its current memory region or migrate to another region, from

Chapter 7. Conclusions 95

the performance point of view. More precisely, the baseline machine will be provided

with page migration capabilities and several page memory placement and replacement

techniques will be devised and evaluated.

The design of some of the aforementioned improvements opens new opportunities in

the ground of efficient memory management in cluster computers. In fact, we are cur-

rently addressing these issues. Some memory data structures to keep dynamic track of

the information about number of memory accesses, time since creation, last access, or

current memory region for a given memory page have been already implemented on the

baseline machine. In particular, it becomes an interesting research opportunity to de-

sign efficient memory page migration mechanisms. Regarding memory page placement,

several techniques have been devised. The goal is to move a remote memory page to the

local memory region when it has reached a given threshold estimated as the maximum

number of accesses such that it is considered too frequently accessed to be remote. In

some cases, the fact that a memory page reaches the threshold may be not enough to

make the right placement decision, hence more specific requirements with higher level

of difficulty (and thus more computational cost) should be taken into account. This

remote-to-local or placement migration, in turn, may imply a local memory eviction

(i.e., replacement) when there is no free space in the local region. Several techniques

have been drafted to select the victim local page. A simple strategy will be applying

the LRU (i.e., Least Recently Use) criterion. A more sophisticated technique may be

to implement a victim pages register which efficiently combines LRU with additional

information about the number of accesses for a given memory page, providing a limited

set of memory pages among which a victim can be chosen at low computational cost.

Finally, the combination of several techniques (e.g., Not Frequently Used plus Aging

[49]) offers another alternative to study.

In this scenario, new challenges arise, as it is not enough to focus on decreasing the

number of remote memory accesses but also to minimize the number of page migrations

since, as stated above, placements and replacements are expensive from the execution

time point of view. Hence, each of the alternatives must be evaluated in order to

Chapter 7. Conclusions 96

achieve a number of remote accesses–number of migrations tradeoff which leads to the

optimal overall system performance.

In summary, scheduling of local and remote memory in cluster computes is still an

interesting topic that can help to increase the overall performance in current systems,

mainly by exploiting issues aimed at dynamizing the scheduling mechanism and ad-

justing the scheduling techniques to the specific memory access pattern exhibited by

the applications.

7.3 Publications

The following list enumerates the papers related with this dissertation that have been

published in specialized international conferences or journals.

• M. Serrano, J. Sahuquillo, S. Petit, H. Hassan, and J. Duato, “A Cost-Effective

Heuristic to Schedule Local and Remote Memory in Cluster Computers”, in The

Journal of Supercomputing, volume 59, issue 3, pages 1533-1551, 2012.

• M. Serrano, J. Sahuquillo, H. Hassan, S. Petit, and J. Duato, “A Schedul-

ing Heuristic to Handle Local and Remote Memory in Cluster Computers”, in

Proceedings of the 12th IEEE International Conference on High Performance

Computing and Communications (HPCC), pages 35-42, Melbourne (Australia),

September 2010.

• M. Serrano, J. Sahuquillo, H. Hassan, S. Petit, and J. Duato, “A Cluster Com-

puter Performance Predictor for Memory Scheduling”, in Proceedings of the 11th

International Conference on Algorithms and Architectures for Parallel Processing

(ICA3PP), pages 353-362, Melbourne (Australia), October 2011.

• M. Serrano, S. Petit, J. Sahuquillo, R. Ubal, H. Hassan, and J. Duato, “Page-

Based Memory Allocation Policies of Local and Remote Memory in Cluster Com-

puters”, in Proceedings of the 18th International Conference on Parallel and Dis-

tributed Systems (ICPADS), pages 612-619, Singapore (Singapore), December

2012.

Chapter 7. Conclusions 97

In addition, other related papers have been published in domestic conferences:

• M. Serrano, J. Sahuquillo, H. Hassan, S. Petit, and J. Duato, “Una Heuŕıstica

de Planificación de Memoria Local y Remota en Clústers de Computadores”, in

Actas de las XXI Jornadas de Paralelismo (JP), pages 357-364, València, Spain,

September 2010.

• M. Serrano, J. Sahuquillo, H. Hassan, S. Petit, and J. Duato, “Predictor de

Prestaciones para la Planificación de Memoria en Clústers de Computadores”,

in Actas de las XXIII Jornadas de Paralelismo (JP), pages 400-405, Elx, Spain,

September 2012.

All the works listed above are exclusively related with this thesis, and none of them are

or will be used as supporting material for other theses. The specific contributions of the

Ph.D. candidate reside mostly in the implementation of the proposed techniques, the

setup and execution of most simulation experiments, and the writing of the paper drafts

describing the work. Along these processes, the coauthors have repeatedly provided

useful hints and advices, which the Ph.D. candidate has then applied to make the work

evolve into its final version. All the conference papers listed above were presented and

defended by the Ph.D. candidate.

Finally, the acquired skills by the Ph.D. candidate during the development of this

work, have been also applied at laboratory sessions in the Advanced Computer Archi-

tectures Course of the Computer Engineer Degree offered by the School of Computer

Engineering atUniversidad Politécnica de Valencia during the 2010-2011, 2011-2012

and 2012-2013 academic years as established in her FPU fellowship from the Spanish

Ministry of Education (Training Program for University Teachers). Related with the

theoretical and practical contents of this course, the following paper was published in

collaboration with other members of the research group.

• C. Gómez, M. Serrano, M. E. Gómez, and J. Sahuquillo, “Una Nueva Metodoloǵıa

para el Estudio de Procesadores Realistas en las Titulaciones de Informática”,

Chapter 7. Conclusions 98

in Actas de las XXIII Jornadas de Paralelismo (JP), pages 507-512, Elx, Spain,

September 2012.

References

[1] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fourth Edition: A

Quantitative Approach. 2006.

[2] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer Architecture - a

Hardware / Software Approach. 1999.

[3] Numascale’s NumaConnectTMtechnology [online]. Available from: http://www.

numachip.com.

[4] J. Protic, M. Tomasevic, and V. Milutinovic. Distributed Shared Memory: Con-

cepts and Systems. Parallel Distributed Technology: Systems Applications, IEEE,

4(2):63–71, 1996.

[5] D. Geer. Industry Trends: Chip Makers Turn to Multicore Processors. IEEE

Computer, 38(5):11–13, 2005.

[6] IBM System z [online]. Available from: http://www.ibm.com/systems/z.

[7] HP Integrity Servers [online]. Available from: http://h20341.www2.hp.com.

[8] H. Litz, H. Fröening, M. Nuessle, and U. Brüening. A HyperTransport Network

Interface Controller for Ultra-low Latency Message Transfers. HyperTransport

Consortium White Paper, 2007.

[9] M. Nussle, M. Scherer, and U. Bruning. A Resource Optimized Remote-Memory-

Access Architecture for Low-latency Communication. In Proceedings of the Inter-

national Conference on Parallel Processing, 2009.

99

References 100

[10] M. Blocksome, C. Archer, T. Inglett, P. McCarthy, M. Mundy, J. Ratterman,

A. Sidelnik, B. Smith, G. Almási, J. Castanos, D. Lieber, J. Moreira, S. Krish-

namoorthy, V. Tipparaju, and J. Nieplocha. Design and Implementation of a One-

sided Communication Interface for the IBM eServer Blue Gene R©supercomputer.

In Proceedings of the ACM/IEEE conference on Supercomputing, 2006.

[11] S. Kumar, G. Dózsa, G. Almasi, P. Heidelberger, D. Chen, M. Giampapa,

M. Blocksome, A. Faraj, J. Parker, J. Ratterman, B. E. Smith, and C. Archer. The

Deep Computing Messaging Framework: Generalized Scalable Message Passing on

the Blue Gene/P Supercomputer. In Proceedings of the 22nd Annual International

Conference on Supercomputing, 2008.

[12] V. Tipparaju, A. Kot, J. Nieplocha, M.T. Bruggencate, and N. Chrisochoides.

Evaluation of Remote Memory Access Communication on the Cray XT3. In

Proceedings of the 21st IEEE International Parallel and Distributed Processing

Symposium, 2007.

[13] J. Gray, D. T. Liu, M. Nieto-Santisteban, A. S. Szalay, D. J. DeWitt, and

G. Heber. Scientific Data Management in the Coming Decade. ACM SIGMOD

Record, 34(4):34–41, 2005.

[14] The Official Gaussian Website [online]. Available from: http://www.gaussian.

com.

[15] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan, and

T. F. Wenisch. System-level implications of disaggregated memory. In Proceed-

ings of the IEEE 18th International Symposium on High-Performance Computer

Architecture, 2012.

[16] H. Midorikawa, M. Kurokawa, R. Himeno, and M. Sato. DLM: A Distributed

Large Memory System using remote memory swapping over cluster nodes. In

Proceedings of the IEEE International Conference on Cluster Computing, 2008.

[17] H. Midorikawa and J. Uchiyama. Automatic Adaptive Page-Size Control for Re-

mote Memory Paging. In Proceedings of the 12th IEEE/ACM International Sym-

posium on Cluster, Cloud and Grid Computing, 2012.

References 101

[18] S. Liang, R. Noronha, and D. K. Panda. Swapping to Remote Memory over

InfiniBand: An Approach using a High Performance Network Block Device. In

Proceedings of the IEEE International Conference on Cluster Computing, 2005.

[19] P. Werstein, X. Jia, and Z. Huang. A Remote Memory Swapping System for

Cluster Computers. In Proceedings of the 8th International Conference on Parallel

and Distributed Computing, Applications and Technologies, 2007.

[20] J. Oleszkiewicz, L. Xiao, and Y. Liu. Parallel Network RAM: Effectively Utilizing

Global Cluster Memory for Large Data-Intensive Parallel Programs. In Proceed-

ings of the International Conference on Parallel Processing, 2004.

[21] K. Jeon, H. Han, S. Kim, H. Eom, H.Y. Yeom, and Y. Lee. Large Graph Processing

Based on Remote Memory System. In Proceedings of the 12th IEEE International

Conference on High Performance Computing and Communications, 2010.

[22] KM. rishnan, R.R. Lewis, and A. Vishnu. Scaling Linear Algebra Kernels Using

Remote Memory Access. In Proceedings of the 39th International Conference on

Parallel Processing Workshops, 2010.

[23] M. Oguchi and M. Kitsuregawa. Dynamic Remote Memory Acquisition for Par-

allel Data Mining on ATM-connected PC Cluster. In Proceedings of the 13th

International Conference on Supercomputing, 1999.

[24] M. Oguchi and M. Kitsuregawa. Using Available Remote Memory Dynamically for

Parallel Data Mining Application on ATM-Connected PC Cluster. In Proceedings

of the 14th International Parallel & Distributed Processing Symposium, 2000.

[25] P. Lu, Y. Che, and Z. Wang. A Framework for Effective Memory Optimization

of High Performance Computing Applications. In Proceedings of the 11th IEEE

International Conference on High Performance Computing and Communications,

2009.

[26] Y. Xie and G. H. Loh. Dynamic Classification of Program Memory Behaviors in

CMPs. 2nd Workshop on Chip Multiprocessor Memory Systems and Interconnects

References 102

in conjunction with the 35th International Symposium on Computer Architecture,

2008.

[27] C. Xu, X. Chen, R. P. Dick, and Z. M. Mao. Cache Contention and Application

Performance Prediction for Multi-core Systems. In Proceedings of the IEEE In-

ternational Symposium on Performance Analysis of Systems and Software, 2010.

[28] J.K. Rai, A. Negi, R. Wankar, and K.D. Nayak. Performance Prediction on Multi-

core Processors. In Proceedings of the International Conference on Computational

Intelligence and Communication Networks, 2010.

[29] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing Shared Resource Con-

tention in Multicore Processors via Scheduling. In Proceedings of the 15th In-

ternational Conference on Architectural Support for Programming Languages and

Operating Systems, 2010.

[30] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi. Simple but Effective

Heterogeneous Main Memory with On-Chip Memory Controller Support. In Pro-

ceedings of the ACM/IEEE International Conference for High Performance Com-

puting, Networking, Storage and Analysis, 2010.

[31] C. D. Antonopoulos, D.S. Nikolopoulos, and T.S. Papatheodorou. Scheduling

Algorithms with Bus Bandwidth Considerations for SMPs. In Proceedings of the

International Conference on Parallel Processing, 2003.

[32] C. D. Antonopoulos, D. S. Nikolopoulos, and T. S. Papatheodorou. Realistic

Workload Scheduling Policies for Taming the Memory Bandwidth Bottleneck of

SMPs. In Proceedings of the 11th International Conference on High Performance

Computing. 2004.

[33] E. Koukis and N. Koziris. Memory and Network Bandwidth Aware Scheduling

of Multiprogrammed Workloads on Clusters of SMPs. In Proceedings of the 12th

International Conference on Parallel and Distributed Systems, 2006.

References 103

[34] D. S. Nikolopoulos. Quantifying and Resolving Remote Memory Access Con-

tention on Hardware DSM Multiprocessors. In Proceedings of the International

Parallel and Distributed Processing Symposium, 2002.

[35] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. The AMD Opteron

Processor for Multiprocessor Servers. IEEE Micro, 23(2):66–76, 2003.

[36] J. Duato, F. Silla, and S. Yalamanchili. Extending HyperTransport Protocol

for Improved Scalability. In Proceedings of the 1st International Workshop on

HyperTransport Research and Applications, 2009.

[37] SPEC CPU2006 Benchmark Descriptions. SACM SIGARCH Computer Architec-

ture News, 34(4):1–17, 2006.

[38] C. D. Spradling. SPEC CPU2006 Benchmark Tools. SIGARCH Computer Archi-

tecture News, 35, 2007.

[39] S. Cameron Woo, M. Ohara, E. Torrie, J. Pal Singh, and A. Gupta. The SPLASH-

2 Programs: Characterization and Methodological Considerations. In Proceedings

of the 22nd annual International Symposium on Computer architecture, 1995.

[40] J. D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance

Computers. Technical report, University of Virginia, Charlottesville, Virginia,

1991-2007. A continually updated technical report. Available from: http://www.

cs.virginia.edu/stream/.

[41] D. H. Bailey. FFTs in External or Hierarchical Memory. In Proceedings of the

ACM/IEEE conference on Supercomputing, 1989.

[42] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. Greg Plaxton, S. J. Smith,

and M. Zagha. A Comparison of Sorting Algorithms for the Connection Machine

CM-2. Commun. ACM, 39(12es):273–297, 1996.

[43] R. Ubal, J. Sahuquillo, S. Petit, and P. López. Multi2Sim: A Simulation Frame-

work to Evaluate Multicore-Multithreaded Processors. In Proceedings of the 19th

International Symposium on Computer Architecture and High Performance Com-

puting, 2007.

References 104

[44] Multi2Sim: A CPU-GPU Simulator for Heterogeneous Computing [online]. Avail-

able from: http://www.multi2sim.org/.

[45] A. Levitin. Introduction to The Design and Analysis of Algorithms. Addison

Wesley, 2003.

[46] M. Serrano, J. Sahuquillo, S. Petit, H. Hassan, and J. Duato. A Cost-effective

Heuristic to Schedule Local and Remote Memory in Cluster Computers. The

Journal of Supercomputing, 59(3):1533–1551, 2012.

[47] M. Serrano, J. Sahuquillo, H. Hassan, S. Petit, and J. Duato. A Cluster Com-

puter Performance Predictor for Memory Scheduling. In Proceedings of the 11th

International Conference on Algorithms and Architectures for Parallel Processing,

Part II, pages 353–362, 2011.

[48] M. Serrano, S. Petit, J. Sahuquillo, R. Ubal, H. Hassan, and J. Duato. Page-Based

Memory Allocation Policies of Local and Remote Memory in Cluster Computers.

In Proceedings of the 18th International Conference on Parallel and Distributed

Systems, pages 612–619, 2012.

[49] A. S. Tanenbaum and A. S. Woodhull. Operating Systems - Design and Imple-

mentation (3. ed.). Pearson Education, 2006.

	Portada
	Créditos
	Acknowledgements
	Abstract
	Resumen
	Resum
	Contents
	List of Figures
	List of Tables
	Abbreviations and Acronyms
	Chapter 1. Introduction
	1.1 Background on Parallel Computing Architectures
	1.1.1 Message-passing Communication Model
	1.1.2 Shared Memory Architectures
	1.1.3 Multicore Processors
	1.1.4 Cluster Computers

	1.2 Motivation
	1.3 Objectives of the Thesis
	1.4 Contributions of the Thesis
	1.5 Thesis Outline

	Chapter 2. Related Work
	2.1 Introduction
	2.2 Proposals Focusing on the Use of Remote Memory for Swapping
	2.3 Proposals Focusing on Estimating Memory System Performance
	2.4 Proposals on Memory System Aware Scheduling
	2.5 Summary

	Chapter 3. System Model and Experimental Framework
	3.1 Target System
	3.1.1 Cluster
	3.1.2 Standard HyperTransport
	3.1.3 Connecting Motherboards to Access Remote Memory

	3.2 System Model
	3.2.1 System Model Characteristics
	3.2.2 Memory Regions
	3.2.3 Memory Scheduling

	3.3 Workloads
	3.3.1 Stream
	3.3.2 SPLASH-2
	3.3.3 SPEC CPU2006

	3.4 Simulation Tool
	3.4.1 Multi2Sim
	3.4.2 Simulation Tool Extensions

	3.5 Summary

	Chapter 4. Scheduling Policy based on a Cost-effective Heuristic
	4.1 Analysis and Impact on Performance of Memory Distribution
	4.2 Concurrent Execution of Several Applications
	4.2.1 Quality of Service Definition
	4.2.2 Two Concurrent Applications
	4.2.3 Extending the Analysis to More Applications

	4.3 Proposed Memory Scheduler
	4.3.1 SPP Remote Memory Scheduler
	4.3.2 Remote Memory Scheduling Heuristic
	4.3.3 Local Memory Assignment

	4.4 Summary

	Chapter 5. Scheduling Policy based on a Performance Predictor
	5.1 Performance Model
	5.1.1 Analytical Model
	5.1.2 Estimating Performance

	5.2 Validating the Model
	5.3 Summary

	Chapter 6. Scheduling Policy based on page granularity
	6.1 Memory Allocation Granularity and Memory Interleaving
	6.2 Proposed Page-granularity Policies
	6.3 Performance Analysis of the Interleaved Memory Schemes
	6.4 On-demand Memory Allocation
	6.5 Mail Memory Allocation
	6.6 Summary

	Chapter 7. Conclusions
	7.1 Contributions
	7.2 Future Work
	7.3 Publications

	References

