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Abstract 
 

Terpenes, the largest group of secondary metabolites, are well known as constituents of 

essential oils, floral scents and defensive resins of aromatic plants, to which they impart their 

characteristic aromas and flavors. Terpene volatiles defend many species of plants, animals 

and microorganisms against predators, pathogens and competitors. Moreover, those 

compounds seem to serve as advertisements to attract pollinators and seed-dispersal agents as 

well as pest predators. The study of VOCs emitted during fruit development and after challenge 

with different biotic agents may help to determine the interactions of fleshy fruits not only with 

legitimate vertebrate dispersers and predators, but also with insects and microorganisms.  

 

Fleshy fruits are particularly rich in volatiles. In citrus fruits, monoterpenes are the main 

components of the essential oil glands of the peel, being D-limonene the most abundant one 

(up to 95% in orange fruits). This characteristic makes citrus a good model system for studying 

the function of terpenes in plants. Modern molecular biology now enable experiments to test 

terpenoid function by the use of genetically transformed organisms in which terpene levels have 

been manipulated. In this work, a plasmid harboring the complete cDNA of a citrus limonene 

synthase gene (CiTMTSE1) in antisense (AS) or sense (S) orientation was used to modify the 

expression and accumulation of D-limonene of sweet orange (Citrus sinensis L. Osb) plants. D-

limonene accumulation in AS fruits was dramatically reduced but the accumulation of other 

terpenoids was also modified, such as monoterpene alcohols, whose concentration increased in 

the peel of fruits. Genetically transformed plants were morphologically indistinguishable from 

wild-type (WT) and empty vector (EV) control plants.  

 

Transgenic fruits were challenged against a pest and different pathogens to test 

whether volatile profile alteration results in an improvement in the response of the fruit flavedo 

against them. Males of the Mediterranean fruit fly (Ceratitis capitata) exposed to AS fruits versus 

EV in wind tunnel assays were significantly more attracted to the odor of EV control fruits. In 

separate experiments with the green mould rot of citrus fruits and citrus canker caused by 

Penicillium digitatum and Xanthomonas axonopodis subsp. citri, respectively, transgenic fruits 

with a reduced content in D-limonene showed resistance to both pathogens. High D-limonene 

content in mature orange peels may be a signal for attractiveness of pests and microorganisms 

which might be likely involved in facilitating the access to the pulp of seed dispersal frugivores. 

 

A global gene expression analysis of the flavedo of AS transgenic fruits linked the 

decrease of D-limonene and monoterpene metabolism to the up-regulation of genes involved in 

the innate immunity response, including transcription factors together with Ca2+ entry into the 

cell and activation of MAPK cascades, contributing to activation of jasmonic acid (JA) signaling, 

which triggered the up-regulation of JA metabolism and drastically increased the accumulation 
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of JA in orange peels upon fungal challenge, explaining the resistance to necrotrophic fungi 

observed in AS fruits.  

 

These results indicate that limonene accumulation in the peel of citrus fruit appears to 

be involved in the successful trophic interaction between fruits, insects, and microorganisms 

and provide a much more comprehensive view of roles of terpenes in nature. It also represents 

a very promising alternative for increasing resistance or tolerance of plants to pathogens. 
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Resumen 
Los terpenos constituyen el mayor grupo de metabolitos secundarios, siendo 

componentes de las glándulas de aceites esenciales, de las flores y de las resinas defensivas 

de plantas aromáticas, a los que proporcionan sus aromas y sabores característicos. Los 

terpenos volátiles se asocian a la defensa de muchas especies de plantas, animales y 

microorganismos contra depredadores, patógenos y competidores. Por otra parte, estos 

compuestos parecen servir como señales para atraer a los polinizadores y agentes dispersores 

de semillas, así como a depredadores de plagas. El estudio de compuestos orgánicos volátiles 

emitidos durante el desarrollo del fruto y después del desafío con diferentes agentes bióticos 

puede ayudar a conocer las interacciones de los frutos carnosos no sólo con vertebrados 

dispersores y depredadores, sino también con insectos y microorganismos. 

 

Los frutos carnosos son particularmente ricos en volátiles. En los frutos cítricos, los 

monoterpenos son los principales componentes de las glándulas del aceite esencial de la 

cáscara (flavedo), siendo el D-limoneno el más abundante (hasta 95% en la naranja). Esta 

característica hace que los cítricos sean un buen sistema modelo para el estudio de la función 

de los terpenos en los frutos. La biología molecular moderna permite la realización de 

experimentos para comprobar la función de terpenos por medio del uso de organismos 

transformados genéticamente en los que se han manipulado los niveles de acumulación de 

dichos compuestos. En este trabajo, se ha utilizado un plásmido que alberga el cDNA completo 

del gen de una limoneno sintasa de cítricos (CiTMTSE1) en orientación antisentido (AS) o 

sentido (S) para modificar la expresión y la acumulación de D-limoneno en plantas de naranjo 

dulce (Citrus sinensis L. Osb.). La acumulación de D-limoneno en las frutas AS se redujo 

drásticamente pero la acumulación de otros terpenos también se modificó, afectando a 

compuestos tales como alcoholes monoterpenos, cuya concentración se incrementó en la 

cáscara de las frutas. Las plantas transformadas fueron morfológicamente indistinguibles de las 

plantas control (WT) y de las plantas transformadas con el vector vacío (EV). 

 

Los frutos transgénicos fueron desafiados con un insecto plaga y con diferentes 

patógenos para probar si la alteración de los niveles de acumulación de estos volátiles daba 

como resultado una mejora en la respuesta del flavedo frente a plagas y patógenos. Los 

machos de la mosca mediterránea de la fruta (Ceratitis capitata) expuestos a las frutas AS y EV 

en ensayos en túnel de viento fueron significativamente más atraídos por el aroma de los frutos 

control EV. En otros experimentos de desafío con el hongo de la podredumbre verde 

Penicillium digitatum y la bacteria causante de la cancrosis de los cítricos Xanthomonas 

axonopodis subsp. citri, las frutas transgénicas con un contenido reducido de D-limoneno 

mostraron elevada resistencia a estos patógenos. El alto contenido en D-limoneno en la 

cáscara de naranjas maduras puede ser una señal para la atracción de plagas y 

microorganismos que podrían estar involucrados en la facilitación del acceso a la pulpa de los 

frugívoros dispersores de semillas. 
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El análisis de la expresión génica global en el flavedo de las frutas transgénicas vinculó 

la disminución de D-limoneno y la reducción de la expresión de genes del metabolismo de 

monoterpenos con la activación de la expresión de genes implicados en inmunidad innata, 

incluyendo factores de transcripción, genes de quinasas implicadas en la entrada de Ca2+ en la 

célula y genes implicados en la activación de las cascadas de MAPKs, con la consiguiente 

activación de la ruta de señalización de ácido jasmónico (JA), lo que provocó la activación del 

metabolismo de JA y un aumentó drástico de la acumulación de JA en la cáscara de la naranja 

tras el desafío con P. digitatum, lo que explicaría la resistencia al menos a hongos necrotrofos 

observada en las frutas. 

 

Estos resultados indican que la acumulación de D-limoneno en la cáscara de la naranja 

estaría implicada en la interacción trófica entre las frutas, insectos y microorganismos, lo cual 

proporciona una visión mucho más amplia de las funciones de los terpenos en la naturaleza. 

También representa una alternativa muy prometedora para incrementar la resistencia o 

tolerancia de las plantas frente a patógenos y plagas. 
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Resum 
Els terpens constitueixen el major grup de metabòlits secundaris, i són components de 

les glàndules d'olis essencials, de les flors i de les resines defensives de plantes aromàtiques, 

als que proporcionen les seues aromes i sabors característics. Els terpens volàtils s'associen a 

la defensa de moltes espècies de plantes, animals i microorganismes contra depredadors, 

patògens i competidors. D'altra banda, aquests compostos pareixen servir com a senyals per 

atraure els pol·linitzadors i agents dispersors de llavors, així com a depredadors de plagues. 

L'estudi de compostos orgànics volàtils emesos durant el desenvolupament del fruit i després 

del desafiament amb diferents agents biòtics pot ajudar a conèixer les interaccions dels fruits 

carnosos no només amb vertebrats dispersors i depredadors, sinó també amb insectes i 

microorganismes. 

 

Els fruits carnosos són particularment rics en volàtils. En els fruits cítrics, els 

monoterpens són els principals components de les glàndules de l'oli essencial de la corfa 

(flavedo), sent el D-limonè el més abundant (fins a 95% a la taronja). Aquesta característica fa 

que els cítrics siguen un bon sistema model per a l'estudi de la funció dels terpens en els fruits. 

La biologia molecular moderna permet la realització d'experiments per comprovar la funció de 

terpens per mitjà de l'ús d'organismes transformats genèticament en els que s'han manipulat 

els nivells d'acumulació d'aquests compostos. En aquest treball, s'ha utilitzat un plasmidi que 

alberga el cDNA complet del gen d'una limonè sintasa de cítrics (CiTMTSE1) en orientació 

antisentit (AS) o sentit (S) per modificar l'expressió i l'acumulació de D-limonè en plantes de 

taronger dolç (Citrus sinensis L. Osb.). L'acumulació de D-limonè en les fruites AS es va reduir 

dràsticament però l'acumulació d'altres terpens també es va modificar, afectant compostos tals 

com alcohols monoterpens, la concentració dels quals va augmentar a la corfa de les fruites. 

Les plantes transformades van ser morfològicament indistingibles de les plantes control (WT) i 

de les plantes transformades amb el vector buit (EV). 

 

Els fruits transgènics van ser desafiats amb un insecte plaga i amb diferents patògens 

per a provar si l'alteració dels nivells d'acumulació d'aquests volàtils donava com a resultat una 

millora en la resposta del flavedo contra plagues i patògens. Els mascles de la mosca 

mediterrània de la fruita (Ceratitis capitata) exposats a les fruites AS i EV en assajos en túnel 

de vent van ser significativament més atrets per l'aroma dels fruits control EV. En altres 

experiments de desafiament amb el fong de la podridura verda, Penicillium digitatum, i el 

bacteri causant de la cancrosi dels cítrics, Xanthomonas axonopodis subsp. citri,, les fruites 

transgèniques amb un contingut reduït de D-limonè van mostrar elevada resistència a aquests 

patògens. L'alt contingut en D-limonè en les corfes de taronges madures pot ser un senyal per 

a l'atracció de plagues i microorganismes que podrien estar involucrats en la facilitació de 

l'accés a la polpa dels frugívors dispersors de llavors. 
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L'anàlisi de l'expressió gènica global en el flavedo de les fruites transgèniques va 

vincular la disminució de D-limonè i la reducció de l'expressió de gens del metabolisme de 

monoterpens amb l'activació de l'expressió de gens implicats en immunitat innata, incloent 

factors de transcripció, gens de quinases implicades en l'entrada de Ca2+ a la cèl·lula i gens 

implicats en l'activació de les cascades de MAPKs, amb la consegüent activació de la ruta de 

senyalització d'àcid jasmònic (JA), el que va provocar l'activació del metabolisme de JA i un 

augment dràstic de l'acumulació de JA a la corfa de la taronja després del desafiament amb P. 

digitatum, el que explicaria la resistència almenys a fongs necròtrofs observada en les fruites. 

 

Aquests resultats indiquen que l'acumulació de D-limonè en la corfa de la taronja 

estaria implicada en la interacció tròfica entre les fruites, insectes i microorganismes, la qual 

cosa proporciona una visió molt més àmplia de les funcions dels terpens en la naturalesa. 

També representa una alternativa molt prometedora per incrementar la resistència o tolerància 

de les plantes enfront de patògens i plagues. 
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1. INTRODUCTION 
 

Fruit aromas in mature fleshy fruits as signals of readiness for 

predation and seed dispersal 

 
New Phytologist (2013) 197 (1), 36-48 (doi: 10.1111/j.1469-8137.2012.04382.x) 

Ana Rodríguez, Berta Alquézar and Leandro Peña   

 

 

 
“… that a ripe strawberry or cherry is as pleasing to the eye as to the palate (…) will be admitted 

by every one. But this beauty serves merely as a guide to birds and beasts, in order that the 

fruit may be devoured and the matured seeds disseminated.” 

(Darwin, 1872).  
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Abstract 
 
The dispersal of seeds away from parent plants seems to be the underlying selective 

force in the evolution of fleshy fruits attractive to animals. Secondary metabolites, which are not 

essential compounds for plant survival, are involved in the interaction of fleshy fruits with seed 

dispersers and antagonists. Plant volatile organic compounds (VOCs) are secondary 

metabolites that play important roles in biotic interactions and in abiotic stress responses. They 

are usually accumulated at high levels in specific plant tissues and organs, such as fleshy fruits. 

The study of VOCs emitted during fruit development and after different biotic challenges may 

help to determine the interactions of fleshy fruits not only with legitimate vertebrate dispersers 

but also with insects and microorganisms. The knowledge on fruit VOCs could be used in 

agriculture to generate attraction or repellency to pests and resistance to pathogens in fruits. 

This review provides a view of specific fruit VOC blends as signals for either seed dispersal or 

predation through simple or complex trophic chains, which may have consequences for 

understanding the importance of biodiversity in wild areas. 
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1. Introduction. 

 
Besides phylogenetic and physiological constraints influencing fruit traits (Eriksson & 

Ehrlén, 1998, Whitehead & Poveda, 2011), the dispersal of seeds away from parent plants 

seems to be an important selective force in the evolution of fleshy fruits attractive to vertebrates 

(Van der Pijl, 1969, Snow, 1971). There is still little empirical evidence about the primary 

function of secondary metabolites in fleshy fruits, but it is widely assumed that they are involved 

in mediating two main goals, attracting seed dispersal organisms and avoiding consumption by 

seed predators. It is thought that the primary function of these specialized metabolites in 

immature fruit is to defend them against all types of potential consumers (Cipollini & Levey, 

1997, Mack, 2000). Other hypotheses such as direct nutritional benefits, defense tradeoff, 

attraction/association, seed germination inhibition, and influence on protein assimilation and gut 

retention time have been proposed additionally (Cipollini, 2000). Changes in secondary 

metabolites occur during ripening in combination with changes in size, texture, taste, aroma and 

color, however, their biological role and whether they have evolved under the selective 

pressures of frugivores is largely unknown. 

Fruit traits are perceived by animal frugivores in a hierarchical manner. The aroma and 

color are probably the first cues for the frugivore attraction at distance, once a frugivore contacts 

the fruit it perceives morphological traits, and finally fruit chemistry determines taste and 

digestibility. Visual signals have been extensively investigated lately and special attention has 

been paid to the function of anthocyanins in attracting mutualists and/or deterring antagonists 

(Schaefer, 2011, Valido et al., 2011). However, the role of ripe fruit volatiles as olfactory signals 

directed to legitimate dispersers and predators has been scarcely investigated. Only recently it 

has been shown that aroma and color in wild fig fruits (actually, flower-bearing receptacles 

called syconia) in Papua New Guinea have evolved in concert and as predicted by differences 

in the behavior, physiology and morphology of their bird and bat dispersers, indicating that 

differences among vertebrate frugivores have shaped the evolution of fruit traits. This evidence 

experimentally supports for the first time the existence of the seed dispersal syndromes, at least 

for fruit aroma and color (Lomáscolo et al., 2010).  

Plant volatile organic compounds (VOCs) comprise a wide diversity of low molecular 

weight secondary metabolites, with an appreciable vapor pressure under ambient conditions. 

Whereas some VOCs are probably common to almost all plants, others are specific to only one 

or a few related taxa. To the first type belong the so-called `green leaf´ volatiles (GLVs) 

because of their `fresh green´ odor. This group comprises short chain (C6) acyclic aldehydes, 

alcohols and their esters produced by plants from most taxa as a wound response via the 

enzymatic metabolism of polyunsaturated fatty acids. On the other hand, species- or genus-

specific VOCs have been described in some species, such as the sulfur-contaning VOCs of 

Alliaceae and Brassicaceae (Qualley & Dudareva, 2001). To understand the functional 

significance of VOCs in ripe fruits, it is necessary to know their biosynthesis and developmental 

regulation, their quantitative and qualitative accumulation and the responses triggered by VOCs 
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on organisms interacting with the fruit, including vertebrates, insects and microorganisms. In this 

review, we attempt to update and integrate all relevant references pertaining to this issue to 

obtain a clearer picture on the VOC biosynthetic patterns in fleshy fruits and on the putative 

roles of VOCs in the attraction or deterrence of seed dispersers and/or predators. 

 

1.1. VOCs in plants 
 

It is assumed that VOCs were originally antimicrobial compounds that later also served 

to combat pests, thus providing plants with a kind of immune system (Turlings & Tumlinson, 

1992). In vegetative tissues, VOC patterns have coevolved with phytophagous insects, and their 

chemical diversity has escalated, likely to gain improved defenses (Becerra & Venable, 1999). It 

has been proposed that the different VOCs could act synergistically, as in conifer resins, for 

simultaneous protection against pests and pathogens (Phillips & Croteau, 1999). Recent data 

have demonstrated that VOCs serve as signals for communication between plants and between 

distal parts within the same plant (Qualley & Dudareva, 2001). They are also involved in 

protecting the plant against abiotic stress, defending the plant against pests and pathogens, and 

attracting herbivore predators and pollinators (Gershenzon & Dudareva, 2007, Kessler et al., 

2008). It is well documented through genetic engineering experiments that specific terpenoid 

compounds emitted by leaves can intoxicate, repel or deter herbivores (Aharoni et al., 2003), or 

they may attract natural predators and parasitoids of damaging herbivores thus protecting 

plants from further damage (Kappers et al., 2005). It has also been demonstrated that specific 

volatile compounds emitted by flowers greatly contribute to the plant’s reproductive success and 

survival in natural ecosystems (Kessler et al., 2008).  

Our knowledge regarding VOCs synthesis and accumulation in fruits is much less 

extensive than that related to flowers and leaves. There are few references that have 

considered specific VOCs or VOC blends in mature fleshy fruits for attraction of legitimate 

disperser organisms (Lomáscolo et al., 2010) and no references considering VOCs in 

interactions with putative predators, probably due to the difficulties and complexities involved in 

measuring and analyzing VOC contents and emission from fruits under different developmental 

and environmental conditions in ecological contexts. In contrast, the importance of the 

interaction of fruit VOCs with specific insects or microorganisms in agricultural contexts has 

been a subject of extensive research due to its economic impact (Bruce et al., 2005), though 

there are few works on the interactions of fruit VOCs with vertebrates in crops (Borges et al., 

2011). 

 

1.1.1. VOCs in fleshy fruits 
 

In general, flowers and fruits release the widest variety of VOCs, with emission rates 

peaking before pollination and at ripening, respectively (Dudareva et al., 2004). Additionally, 

flowers, leaves and fruits often show different VOC profiles, suggesting that their functions in 
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different tissues or organs may be also different (Fig. 1, our unpublished results). For example, 

mono- and sesquiterpenes are major compounds of mango leaves and fruits, although specific 

VOCs can be ascribed to each tissue, such as esters that are not detected in leaves (Lalel et 

al., 2003, Silva et al., 2012). Similarly, important scent VOCs in ripe peach (linalool and C10 

lactones) are absent from leaves (Horvat & Chapman, 1990). Specific fruit and leaf VOCs have 

also been reported in citrus (Dugo & Di Giacomo, 2002) and in the wild Schinus molle (Maffei & 

Chialva, 1990). Based on principal component analysis, Oliveira et al. (2010) showed that the 

peel, pulp and leaves from different fig cultivars can be distinguished by their distinct abundance 

of monoterpenes, sesquiterpenes and aldehydes.  

VOCs in fruits are diverse, consisting of different chemical products comprising only 10-7-

10-4 of the fresh fruit weight (Jiang & Song, 2010). Hundreds of VOCs are identified in most 

fruits, and this diversity is partially responsible for the unique scent found in different fruit 

species and cultivars. The aroma properties of fruits depend upon the combination of VOCs 

produced and on the concentration and odor threshold of each in the blend. Most of them can 

be divided into four major classes according to their metabolic origin (Negre-Zakharov et al., 

2009): terpenoids (e.g. mono- and sesquiterpenes and apocarotenoids), 

phenylpropanoids/benzenoids (e.g. eugenol, benzaldehide), fatty acid derivatives (e.g. hexenal, 

hexenol) and amino acid derivatives (e.g. thiazole, 2- and 3-methylbutanal). Among them, 

 

 
Figure 1. Terpene volatile profile of different citrus tissues and organs: flower, peel from immature fruit, peel from 

mature fruit and leaf. Relative amount of sesquiterpene and monoterpene derived volatiles is presented as a 

percentage of each class with respect to the total. 
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terpenoids and lipid derivatives are likely the most abundant and expensive to produce in terms 

of energy and nutrients (Gershenzon & Dudareva, 2007). From a chemical view, these VOCs 

can be classified as esters, alcohols, aldehydes, ketones, lactones and terpenoids. 

To attract seed disseminators and thus to ensure reproductive and evolutionary 

success, many plants release diverse blends of VOCs from their fruits. With their huge number 

of compounds and high structural diversity, terpenoids are one of the largest classes of VOCs in 

fruits, especially monoterpenes, sesquiterpenes and irregular terpenes of low molecular weight. 

In lulo, myrtle, coriander, mango and citrus mature fruits, monoterpenes are the most 

representative type of volatiles, its content varying between 50 and almost 100% of the total 

VOCs (Table 1). Esters are also key contributors to the fruity aroma. For example, the ester 

fraction has been described as the determinant for the characteristic varietal aroma in apple 

cultivars and Lambrusco and hybrid grapes (Jiang & Song, 2010, Yang et al., 2011). In Ficus 

racemosa, esters dominate volatile profiles (86-94% of total) as it also occurs in F. benghalensis 

fruits during the night (Borges et al., 2011). Some other groups of minor volatiles in terms of 

concentration are also important for fruit scent. For example, apocarotenoids, also called 

norisoprenoids, derived from carotenoids by oxidative cleavage. Studies in tomato, melon, 

peach and watermelon indicate that the carotenoid profile has a clear impact on aroma via 

determining the suite of synthesized apocarotenoids (Lewinsohn et al., 2005, Rodrigo et al., 

2012). Other compounds such as sulfur volatiles, mainly arising as degradation products of 

cysteine, cystine, methionine, glutathione and some vitamins, are also characterized by their 

extremely low aroma thresholds (Du et al., 2011). VOCs derived from aminoacids are important 

flavor constituents of many ripe fruits, such as strawberries, tomato, melon and apples (Goff & 

Klee, 2006, Gonda et al., 2010). 

 

1.1.2. VOC changes during ripening  
 

The following examples, without being an extensive review of the published literature, 

illustrate how VOC profiles change during fruit ripening. VOCs production increases between 1 

and more than 1000 times during the maturation of most fruits (Table 1). Concomitantly, 

qualitative changes of VOC profile take place along ripening (Table 1). For example, short-

chained aldehydes, which provide the `green fresh´ odor, are abundant in numerous unripe 

green fruits, and their concentration decrease with ripening in fruits such as nectarines, guavas, 

apples, coriander, strawberries and kiwis. In other fruits, such as neutral grapes, few volatiles 

other than C6 compounds accumulate (Yang et al., 2011). In this case, VOCs with a green 

flavor increase until the period of ripening and then decrease. Monoterpene profile also changes 

during ripening of lulo, myrtle, coriander and citrus fruits (Table 1). For example, in oranges, 

there is a reduction in the linalool content as maturation progresses, whereas the limonene 

content increases from 30- to 100-fold between the green and the color break stages (Dugo & 

Di Giacomo, 2002, Rodríguez et al., 2011). In white guava, mono- and sesquiterpenes, which 

are absent in unripe fruit tissues, accumulate and increase during ripening (Soares et al., 2007). 
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The concentration of esters and lactones, responsible for the spicy floral and fruity scent 

of many fruits, increases extraordinarily along ripening. In apple, mango, strawberry, kiwi, 

papaya, guava and lulo fruits, ester production increases by a factor ranging from 1.3 to more 

than 2300 during maturation and, at the ripe stage, esters can account for up to 97% of total 

VOCs (Table 1). It is interesting to remark that, in the case of strawberries, apples and lulos, a 

burst in ester production has been associated with the onset of ripening (Suárez & Duque, 

1992, Menager et al., 2004, Villatoro et al., 2008, Table 1). In nectarines, lactones are 

characteristic of ripe fruits, their concentration increasing during maturation to reach up to 

45.7% of the total VOCs (Engel et al., 1988).  

Accumulation of low-strength ripeness-specific fruity aromas, such as apocarotenoids, 

sulfur volatiles and furan-related compounds, also increase along fruit ripening. In most 

carotenogenic fruits, the pigment profile changes during maturation, thus changing the 

apocarotenoid profile as well. In tomato, apocarotenoid VOCs are not emitted until relatively late 

in fruit ripening, and, during this process, the amount of apocarotenoids increases by a factor of 

40 (Mathieu et al., 2009). In peaches, the apocarotenoid level also increases during fruit 

ripening, representing approximately 40-60% of the total VOCs at the ripe stage (Aubert et al., 

2003, Brandi et al., 2011). In strawberries, most sulfur volatiles increase by as much as 100% 

with maturity (Du et al., 2011). Methyl sulfanyl compounds increase considerably in kiwi with 

ripening, being dimethyl sulfide one of the key components that differentiate the aroma of yellow 

and green cultivars (Garcia et al., 2012). Finally, furanone-derived compounds also increase in 

concentration with the maturation of some fruits. In peaches, furan-related VOC accumulation 

starts just before color change, and its concentration reaches its maximum at the ripe stage 

(Brandi et al., 2011). In strawberries, furan-derived compounds are not detected until the fruit 

reaches red color and their content increase by around 100-fold along maturation (Menager et 

al., 2004).  

In summary, the influence of the ripening stage on fruit scent is clearly evident, and it is 

well documented that VOC composition changes both quantitatively and qualitatively during 

maturation. Indeed, analysis of principal components has been successfully applied to 

discriminate between ripening stages depending on the presence/absence of some VOCs in 

many fruits such as apples (Villatoro et al., 2008), grapes (Yang et al., 2011), mangos (Lebrun 

et al., 2008), strawberries (Azodanlou et al., 2004), figs (Hodgkison et al., 2007) peaches and 

nectarines (Lavilla et al., 2002). Some of these VOC modulations have been related to aroma 

chemical changes associated with ripening. For example, sugars, the concentration of which 

increases with ripening, are precursors of furanones, and in tomatoes a direct relationship has 

been established between sucrose and VOC production (Zanor et al., 2009). Fatty acids are 

quantitatively the major precursors responsible for the synthesis of esters, aldehydes, alcohols 

and acids found in fleshy fruits. Because lipid biosynthesis and membrane fluidity increase 

during ripening, a wider assortment of lipid-derived precursors of aroma contributing VOCs is 

found in the tissues of fully ripe fruits (Sanz et al., 1997).  

  



 

 

Table 1. Changes in the total amount and in selected groups of volatile organic compounds during the development and ripening of different fleshy fruits.  
 
 

∞ , specific of ripening and or mature fruits  
* , -slight increase from the onset of ripening 
·/·,  Reduction in accumulation. 
X, Increase in accumulation. 
nd, non-detailed.

 Increase 
along 

ripening 

 
Aldehydes  Esters  Monoterpenes  Sesquiterpenes 

 
References 

   Change Total  Change Total  Change Total  Change Total   
Solanum vestissimum  > x 30  * 1.4  > x 6.0 75.0  > x 0.5 1.2  nd nd  (Suárez & Duque, 1992) 
Schinus molle ·/· 1.5  nd nd  nd nd  x 1.0 85.9  x 1.0 10.8  (Hosni et al., 2011) 
Myrtus communis x 3.0  nd nd  ·/· 3.3 0.1  x 0.9 71.6  ·/· 4.5 3.06  (Aidi Wannes et al., 2009) 
Coriandrum sativum x 30.7  ·/· 2.1 1.2  ·/· 14.7 2.4  x 1.6 90.4  ·/· 1.9 2.0  (Msaada et al., 2009) 
Psidium guajava x 2.9  ·/· 12.5 2.3  x 8.8 54.0  ∞ 10.0  ∞ 33.5  (Soares et al., 2007) 
Psidium salutare ·/· 2.2  nd nd  ·/· 1.2 2.5  ·/· 2.2 58.5  ·/· 2.6 20.0  (Pino & Queris, 2008) 
Mangifera indica nd  nd nd  x 44.6-∞ 7.7-38.4  ·/· 1.2-1.6 53.6-78.3  ·/· 1.9 7.9-10.8  (Lalel et al., 2003) 
Fragaria ananassa x 4.0-19.0  ·/· 60.3 0.5-4.2  x 1.3 78.0-91.0  x 3.3 nd  nd nd  (Menager et al., 2004, 

Azodanlou et al., 2004) 
Actinidia deliciosa x 5.6  ·/· 1.7-2.0 9.3-15.8  x 330-409 71.6-82.8  x 1.0-1.1 0.0-0.1  nd nd  (Garcia et al., 2012, Wang 

et al., 2011) 
Actinidia chinensis x 60-117  ·/· 1.1-x 1.6 0.3-0.7  x 1116-

2381 
76.0-83.0  x 1.0-4.4 0.0-0.9  nd nd  (Wang et al., 2011) 

Malus x domestica x 1-30  x 1.7-18.3 3.3-54.3  x 9-515 11.5-97.0  nd nd  nd nd  (Villatoro et al., 2008, Ortiz 
et al., 2011) 

Prunus persica  ·/· 1.0- 
4.6 

 ·/· 3.1-x 1.2 0.3  nd nd  ·/· 1.7- ∞ 0.3-40  nd nd  (Engel et al., 1988, Aubert 
et al., 2003) 

Carica papaya x 3.3  nd nd  x 1.6 50.8-95.1  ∞ 1.6  nd nd  (Almora et al., 2004, 
Fuggate et al., 2010) 

Capsicum annuum ·/· 1.2-1.3  x 1.3 13.8  ·/· 1.7 52.8  x 1.9 18.1  ·/· 1.4 10.4  (Forero et al., 2009) 
Solanum lycopersicum x 1.9-

1077.8 
 ·/· 2.7-x 5.5 13-82.0  nd nd  x 1.3-1.6 <0.1  nd nd  (Birtic et al., 2009, Ortiz-

Serrano & Gil, 2010) 
Ficus scortechinii x 18.0  nd nd  x 3.1 61.1  nd nd  ·/· 17.3 0.1  (Hodgkison et al., 2007) 
Ficus hispida x 30  nd nd  x 2.6 46.4  nd nd  ·/· 6.9 0.1  (Hodgkison et al., 2007) 
Ficus benghalensis                
Diurnal nd  nd   nd 13.34  nd 12.16  nd 35.86  (Borges et al., 2011) 
Nocturnal nd  nd 4.6  nd 46.9  nd 10.61  nd 6.67   
Ficus racemosa nd  nd 0.5-0.6  nd 85.6-93.2  nd 3.1-3.6  nd nd  (Borges et al., 2011) 
Citrus sinensis x 4.2  ·/· 48 0.48  ∞ 0.01  x 1.2 96  ·/· 8 0.34  (Rodríguez et al., 2011) 
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Additionally, recent molecular findings support the idea that de novo synthesis of VOCs 

is induced at ripening. Transcriptional regulation has been described for terpene, carotenoid, 

fatty acid and phenylpropanoid derived VOCs, and in most cases gene expression is induced 

upon ripening concomitantly with the production of important flavor compounds (Rodrigo et al., 

2012). Additionally, some genes have been shown to display a fruit-specific expression, as 

those involved in different steps of alcohol and ester biosynthesis in melon (Yahyaoui et al., 

2002, Manríquez et al., 2006). Expression of genes involved in the biosynthesis of aminoacid-

derived VOCs is also much higher in ripe fruits than in vegetative and unripe fruits (Gonda et al., 

2010). Similarly, sesquiterpene synthase activity is evident in the rind from ripe melon, while it is 

null in the flesh and unripe rind, where no sesquiterpenes accumulate (Portnoy et al., 2008). 

Moreover, sesquiterpene synthase genes are found to be transcriptionally regulated during fruit 

development and are likely to be associated with VOC differences responsible for the unique 

aroma of different melon varieties (Portnoy et al., 2008). It is common in VOCs that a single 

enzyme catalyzes the synthesis of multiple products from different substrates (Pichersky & 

Gang, 2000). Therefore, it has been proposed that this broad substrate specificity is the result of 

convergent evolution in which new enzymes with the same function have evolved independently 

in separate plant lineages from a shared pool of related enzymes with similar but not identical 

functions, providing an extraordinary versatility to VOC blend production patterns in specific 

plant tissues (Pichersky & Gang, 2000). 

 
1.2. Fruit VOCs and interactions with vertebrates 

 

Vertebrate seed dispersers of fleshy fruits are primarily birds and mammals, though 

fishes and some reptiles have also been described as minor seed dispersal agents (Fleming & 

Kress, 2011). It is generally assumed that 140 million years ago, when angiosperms probably 

originated, seeds were small and had very few dispersal attributes, indicating that dispersal was 

probably unassisted (Tiffney, 2004). Around the Tertiary (65 million years ago), plant and fruit 

sizes became larger, strongly affecting evolution of biotic dispersal via the production of fleshy 

fruits. At this stage probably began the radiation of mammals and birds in the Early Tertiary that 

mediated more efficient dispersal of larger seeds (Fleming & Kress, 2011).  

It is widely assumed that birds use primarily visual stimuli for detecting fleshy fruits 

because the smell sense is less developed in avian dispersers (Schaefer, 2011). Obviously, this 

is not the case of nocturnal birds, which have well-developed olfactory bulbs (Corlett, 2011). 

Moreover, recent works show that at least some birds are able to detect VOCs (Mardon et al., 

2010), and they use VOCs as cues to detect insect-infested trees (Mäntylä et al., 2008) or to 

recognize the fleshy fruits of figs (Borges et al., 2008, Borges et al., 2011). The VOC profiles in 

ripe fruits of different fig species are quite variable, and different VOC profiles have been 

observed in bat-dispersed versus bird-dispersed figs (Borges et al., 2008). Interestingly, in the 

case of Ficus benghalensis fruits, night VOCs, when seeds are dispersed by bats, are 

dominated by esters whereas diurnal VOCs, when figs are consumed by birds, have a greater 
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representation of terpenes (Borges et al., 2011). Without underestimating color cues, these 

evidences suggest that VOCs emitted by fig fruits are olfactory cues for either birds or bats. 

Bat attraction by fruit VOCs has been investigated in further detail. Different bat species 

are able to distinguish by smell and clearly prefer ripe over unripe fruits of different plant genera 

(Luft et al., 2003, Schlumpberger et al., 2006, Hodgkison et al., 2007). Other bat species are 

attracted by artificial fruits impregnated with essential oils of Piper gaudichaudianum and Ficus 

insipida (Bianconi et al., 2007). Among the diverse aromatic profiles of mature fruits from Ficus 

species (Table 1), bats use smell, as well as color, as one of the components of the bat 

syndrome dispersion (Lomáscolo et al., 2010). This evidence has been used to estimate the 

occurrence of bat vs. bird dispersal syndromes in 42 co-occuring Ficus species in Papua New 

Guinea. The results indicated that odor (and color) in figs have evolved as predicted by the 

selective pressures of their frugivores (Lomáscolo et al., 2010). In this study, VOC production 

was considered quantitatively and not qualitatively and, on average, the number and total peak 

area of VOCs was lower in bird-dispersed than in bat-dispersed figs, although the differences 

between these values were not statistically significant. It would be worth testing now whether 

specific VOCs of VOC mixtures are actually preferred by either bird or bat dispersers. 

Most frugivorous mammals rely on olfactory stimuli to detect ripe fruits. Dominy et al. 

(2001) proposed that early primates that were insectivorous and nocturnal were also frugivores, 

eating dull-colored and smelly fruits. Although most primates later acquired trichromatic vision, 

which permitted them to become more efficient in selecting ripe fruits, some primates still show 

extremely acute sensitivity to odors associated with fleshy fruits (Laska et al., 2006). 

Dichromatic white-faced capuchins rely on olfaction more than trichromatic individuals to detect 

fig fruits (Melin et al., 2009). Night monkeys (Aotus) could detect banana fruits by smell alone in 

laboratory trials, but diurnal monkeys could not (Bicca-Marques & Garber, 2004). Therefore, it is 

possible that odor cues remain important in primates (especially in nocturnal primates) to detect 

fleshy fruits, but it is reasonable to think that other senses such as sight or touch are used 

almost simultaneously to decide whether to eat a fruit (Dominy et al., 2001). Mammals other 

than primates with an extraordinary sense of smell, including rodents, also use VOCs to 

recognize fleshy fruits (Corlett, 2011).  

 

1.3. Fruit VOCs and interactions with insects 
 

Seed consumption by herbivorous invertebrates, mainly insects, dates back to the 

Devonian (approximately 416 million years ago). However, those insects were probably 

granivorous and contributed little to the evolution of fleshy fruits (Mack, 2000, Fleming & Kress, 

2011). Frugivore insects comprise mainly taxa from the orders Lepidoptera, Hemiptera, 

Coleoptera, Hymenoptera and Diptera (Sallabanks & Courtney, 1992). Fruit location is a key 

issue for feeding, mating and reproduction of specialist insects, and it involves the perception of 

a sequence of olfactory and visual cues (Schoonhoven et al., 2005). Generally, specialized 

insects are able to distinguish the VOCs emitted by vegetative tissues and unripe and ripe fruits; 

they are mainly attracted by particular VOC blends of ripe fleshy fruits and in some cases they 
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are repelled by green tissues (Vallat & Dorn, 2005, Piñero & Dorn, 2009). For example, the 

codling moth Cydia pomonella (Lepidoptera: Tortricidae) is attracted by mature apple fruits, but 

repelled by green fruits, likely through the emission of benzaldehyde and butyl acetate (Vallat & 

Dorn, 2005). The preference for mature fruits has also been shown for females of the oriental 

fruit moth (Cydia molesta; Lepidoptera: Tortricidae) in apple and peach fruits, while VOCs 

released by vegetative tissue are behaviorally ineffective (Piñero & Dorn, 2009). For Ceratitis 

capitata (Diptera: Tephritidae) females, the odor of ripe or almost ripe coffee drupes is more 

attractive than that of unripe drupes, leaves or stems (Prokopy & Vargas, 1996). 

Host-fruit recognition usually depends on specific blends of VOCs and not just on the 

detection of a single compound; however, some blend components are biologically more 

important than others for the interaction (Light et al., 2001, Reddy & Guerrero, 2004). Moreover, 

the recognition of a host plant by insects could occur by using either specific ratios of ubiquitous 

compounds or species-specific compounds (Bruce et al., 2005). For example, polyphagous 

insects like Anastrepha obliqua and C. capitata fruit flies (Diptera: Tephritidae) are attracted by 

different blends of monoterpene compounds emitted by mango and citrus fruits (Papadopoulos 

et al., 2006, Malo et al., 2012). In contrast, monophagous insects like the olive fly Bactrocera 

oleae (Diptera: Tephritidae) are attracted by a specific VOC blend present in ripening fruits and 

in leaves. Therefore, those specific VOC cues may have evolutionary significance for 

monophagous insects. In this context, the case of the monophagous apple maggot fly 

Rhagoletis pomonella (Diptera: Tephritidae) is particularly interesting, because this insect 

shifted from its ancestral host hawthorn (Crataegus spp.) to cultivated apple approximately 150 

years ago, and it has been shown that apple and hawthorn native flies use fruit VOCs to 

distinguish between both hosts (Linn et al., 2003). Genetic analysis of F2 and backcross hybrid 

insects indicate that differences in host choices based on VOC discrimination pertain to a few 

loci, imply cytonuclear gene interactions, and have resulted in reproductive isolation, which has 

facilitated sympatric insect speciation in the absence of geographic isolation (Dambroski et al., 

2005). 

Additionally, insects are sensitive to volatiles for social communication and some of 

them acquire host plant compounds to use them as sex pheromones or sex pheromone 

precursors (Bruce et al., 2005). Insects such as Tephritidae and Drosophilae Diptera release 

sex pheromones in response to host fruit chemical emissions that additionally enhance the 

response of insects to sex pheromones. For example, the combination of male pheromone and 

host fruit odor is more attractive to female papaya fruit flies, Toxotrypana curvicauda (Diptera: 

Tephritidae), than is either male pheromone or host fruit aroma alone (Landolt et al., 1992). 

Oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae) males are attracted to and feed on 

methyl eugenol, a VOC emitted by Terminalia catappa ripe fruits (Siderhurst & Jang, 2006). 

Males that have eaten methyl eugenol are more successful in courting and mating with females 

than males that have not (Shelly & Dewire, 1994). 
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1.4. Fruit VOCs and interactions with microbes 
 

Microbes are the most abundant frugivores of fleshy fruits, though they have been 

scarcely studied as such in ecological contexts (Levey, 2004). Fungi that naturally infect a wide 

range of wild fruits included Colletotrichum, Phomopsis, Cladosporium, Penicillium and 

Fusarium species predominantly (Tang et al., 2003, Tang et al., 2005). Coincidently these 

species cause the most conspicuous opportunistic diseases in commercial fleshy fruits. Fruit 

softening during ripening facilitates the establishment of opportunistic microbial infections. 

Ripening is a developmental process usually associated with increased susceptibility to 

microbial infections in crops (Prusky, 1996) and in wild plants (Tang et al., 2003, Tang et al., 

2005). 

The effect of VOCs emitted by different plant organs and tissues on microorganisms, 

either as volatiles or through direct contact, has been widely investigated in crops and forest 

trees. Many studies indicate that VOCs are toxic to diverse fungi, yeasts and bacteria; however 

the studies were performed with individual compounds in vitro and sometimes these assays 

used levels far in excess of what is actually present in a fruit (Dorman & Deans, 2000, Daferera 

et al., 2003). For fleshy fruits of agricultural importance, it has been proposed that VOCs could 

be used as inhibitors of postharvest fruit spoilage (Archbold et al., 1997). However, when 

compounds able to control fungal or bacterial growth in vitro were tested in fruits, they were 

inefficient or even stimulated microbial growth. For example, (E)-2-hexenal vapor at different 

doses inhibited Botrytis cinerea spore germination and mycelial growth in Petri dishes, but the 

same doses of this compound applied on strawberry fruits enhanced fungus incidence during 

storage (Fallik et al., 1998) indicating that VOC toxicity experiments should be performed in 

planta. In orange fruits, D-limonene content is usually low in the exocarp during the 2 to 3 

months postanthesis, it dramatically increases when the green fruit develops seeds and 

remains at high level until the fruit becomes fully mature (Dugo & Di Giacomo, 2002). When 

oranges were engineered to accumulate very reduced levels of this monoterpene, they became 

resistant to the bacterium Xanthomonas citri subsp. citri, to Penicillium digitatum and other 

specialized fungi (Rodríguez et al., 2011). Therefore, D-limonene is required for pathogens to 

establish infections in mature oranges.  

 

1.5. VOCs as mediators of indirect interactions 
 

Recent works show that considering the third (and the fourth) partners within the 

community context converts a previously considered parasitism into a multispecies mutualism 

(Dunn et al., 2008, Palmer et al., 2010). In the fleshy fruit-frugivore context, the ecological 

importance of such interactions is difficult to predict because, in many cases it is not 

unequivocally known whether consumers are actually seed dispersal or predator agents under 

different environmental circumstances. Pulp feeder “antagonists” may have a positive effect on 

seed and seedling fate (Fedriani et al., 2012), seed predators may facilitate seed dispersal 

(Norconk et al., 1998), legitimate seed dispersal animals may have negative effects on plant 
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population dynamics (Loayza & Knight, 2010), and the interference between mammal seed 

dispersers and insect seed predators may ultimately benefit seed dispersal (Visser et al., 2011). 

Considering legitimate vertebrate frugivores and insects/microbes as competitors for the fleshy 

fruit, vertebrates should take the fruit earlier than microbes and/or pests for successful seed 

dispersal. 

 

1.5.1. Fruit VOCs and interactions among insects  
 
In spite of the high cost for the plants to produce VOCs in ripe fruits and the importance 

of ripe fruit aromas for the life cycle of specialized insect frugivores, as mentioned previously, 

insects are considered harmful to plant fitness and are much more involved in fruit and seed 

predation than in seed dispersal (Janzen, 1977). Fruit VOCs might be involved in indirect 

defense against insect consumers by attracting pest parasites. For example Leptopilina boulardi 

(Hymenoptera: Figitidae), a parasite of Drosophila melanogaster, is attracted to VOCs emitted 

by fly-infested banana or pear fruits but not to non-infested ones (Couty et al., 1999). VOCs 

emitted by coconut fruits infested by Aceria guerreronis (Acari: Eriophyidae) are more attractive 

for two mite predators (Neoseiulus baraki and Proctolaelaps bickleyi) than uninfected ones 

(Melo et al., 2011). While indirect defenses are widely documented in plant vegetative tissues 

(Heil, 2008), there are no reported cases of indirect defenses against pathogens in ripe fruits.  

 

1.5.2. Fruit VOCs and interactions with insects and vertebrates 
 

VOCs may be involved in vertebrates distinguishing between infested and uninfested 

fruits. In general, avian consumers prefer intact mature fruits and reject fleshy fruits infested by 

insects (Traveset et al., 1995, García et al., 1999). Deterrent effects of infested fruits on avian 

frugivores are considered an evolutionary necessity for insect frugivores to escape predation 

(Sallabanks & Courtney, 1992). In another scenario, legitimate seed dispersers may be 

attracted by VOCs from infested fruits and consume them without major problems (Drew, 1987, 

Valburg, 1992). In a recent work the attraction of birds to heavily insect-infested trees is directly 

correlated with the emission of several specific terpene VOCs by the trees (Mäntylä et al., 

2008). In these cases, insects would directly benefit birds by enhancing the nutrient content of 

the fruit and indirectly benefit host plants by facilitating vertebrate seed dispersal. Additionally, a 

recent review shows several examples of insects inhabiting seeds from wild ripe fruits that can 

survive passage through the entire digestive tract of seed dispersing vertebrates, including 

many bird species and also primates, which suggests that this process may also favor insect 

dispersal (Hernández, 2011). As described above, most mammals may primarily use the sense 

of smell instead of sight to locate fruits. There are references of ungulates, primates and 

rodents being attracted by fruits infested by insects (Redford et al., 1984, Rader & 

Krockenberger, 2007, Bravo, 2008), which suggests that they may be able to also distinguish 

VOCs of infested fruits. However, the results for any of the intervening elements of these 
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tritrophic interactions are often unpredictable and could conversely lead to killed larvae, 

destroyed seeds or toxicity for the vertebrate (Or & Ward, 2003).  

 

1.5.3. Fruit VOCs and interactions with microorganisms and insects 
 

Ripe fruit VOCs are also important in trophic interactions involving microbes and 

insects. Insects that feed on overripe, wounded or decomposing fruits commonly exploit VOCs 

induced by microbial action on damaged tissues for host finding (Hammons et al., 2009). The 

microbial detoxification of pulp secondary metabolites and the breakdown of carbohydrates 

refractory to insect digestive enzymes on one hand, and microbial dissemination on the other, 

may explain such mutualisms (Berenbaum, 1988). The Japanese beetle Popillia japonica 

(Scarabaecidae: Rutelinae) facilitates feeding of the green June beetle Cotinis nitida 

(Scarabaecidae: Cetoniinae) on grapes by biting through the skin and introducing yeasts in 

such wounds. Yeasts eliciting fermentation VOCs are exploited by both sexes of C. nitida for 

host finding (Hammons et al., 2009). Nitidulid sap beetles (Carpophylus humeralis; Coleoptera: 

Nitidulidae) are attracted to VOCs from fermenting fruits and vegetables (Nout & Bartelt, 1998). 

There are other insects that prefer damaged fruit, such as the Asian lady beetle Harmonia 

axyridis (Coleoptera: Coccinellidae) (Koch et al., 2004) or the medfly Ceratitis capitata 

(Papadopoulos et al., 2006). Fruit flies, such as Bactrocera tryoni and B. oleae, have symbiotic 

bacterial associations, which can improve the nutritive quality of their fruit diet and may play a 

role in detoxifying plant secondary chemicals (Fletcher, 1987). Recently, it has been 

demonstrated that specific odors from rotten fruits sexually attracted male fruit flies (Drosophila 

melanogaster; Diptera: Drosophiladae) (Grosjean et al., 2011). D. melanogaster larvae 

consume yeasts growing on rotting fruit and have evolved resistance to fermentation products. 

Ethanol is produced in overripe and rotten fruits through sugar fermentation by infecting 

microorganisms. Interestingly, it has been shown that alcohol protects D. melanogaster from 

endoparasitoid wasps, thus flies consuming alcohol do not need to activate the stereotypical 

antiwasp immune response. Therefore, fly larvae seek for ethanol containing food and likely use 

it as an antiwasp medicine (Milan et al., 2012). 

Many butterflies in tropical forests feed on fruits that have fallen to the ground. This 

substrate differs in many ways from floral nectar, and it has been established that fruit-feeding 

butterflies use specific VOC cues from the fruits and fermentation products to locate their food 

(Molleman et al., 2005, Sourakov et al., 2012). From the plant’s perspective, the presence of 

microbes and insects in damaged fruits for predation may favor the possibility of undamaged 

fruit to attract legitimate seed dispersers. Alternatively, VOC compounds emitted by wounded 

fruits may play an indirect role in plant defense by facilitating attraction of natural enemies of the 

damaging fungus and/or insect. 
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1.5.4. Fruit VOCs and interactions with microorganisms and 
vertebrates 

 

Little is known about whether VOCs emitted by ripe fleshy fruit infected by microbes are 

distinguished by vertebrates. Primates, rodents and bats have demonstrated sensitivity to ripe 

fruit-associated odors, such as those of esters, aldehydes and alcohols (Laska et al., 2006, 

Sánchez et al., 2008). Thus, it is possible that these frugivores are able to recognize rotten fruits 

through the VOCs emitted by the fruit, the microbe or both. The only volatiles from rotten fruits 

that have been studied with some detail for their interaction with vertebrates are alcohols, 

specifically ethanol. Dudley (2000) proposed that ethanol could represent an important sensory 

cue to primates because of its association with caloric and physiological rewards. Moreover, 

Dominy (2004) have suggested that the ethanol content (together with soft texture) could have 

been cues with strong adaptive advantages for primates, and the selection of fruits on this basis 

may be a long-standing trend in primate evolution. However, Levey (2004) concluded that 

frugivores usually prefer ripe, non-rotting fruits over damaged or rotting fruits (in which the 

concentration of ethanol is supposed to be higher). In Egyptian fruit bats, ethanol neither 

stimulated visits to nor ingestion of ripe fruit (Sánchez et al., 2008). Studies performed with wild 

individuals of several frugivorous and nectarivorous bat species have shown that these animals 

tolerate relatively high levels of ethanol without negative effects on their flight and echolocation 

performance (Orbach et al., 2010). These authors believe that frugivorous bats may be used to 

eating fruits rich in ethanol when other healthy fruits are unavailable. 

Most birds and small mammals prefer ripe, uninfected fruits to rotten fruits (Borowicz, 

1988, Cipollini & Stiles, 1993) except for some specialized rodents (Borowicz, 1988). The 

omnivorous diet of such rodents may be an adaptation for enhanced tolerance to microbes in 

rotten fruits and for efficient competition with most vertebrates for these resources. 

Nevertheless, rotten fruits are generally non toxic to vertebrates. When just rotten fruits are 

offered or ripe fruits are scarce, those are readily consumed (Borowicz, 1988, Cipollini & Stiles, 

1993, Levey, 2004, Sánchez et al., 2008). Therefore, microbes and vertebrates may not be 

strong competitors, especially when ripe fruit resources are limited. Microbes may benefit by 

being ingested by frugivores and dispersed in their feces (Abranches et al., 1998). From the 

plant’s perspective, there could be two different scenarios. Deterrence to microbes may be 

important for the fruit if those infected seeds may compromise their viability (Janzen, 1977), 

particularly in the case of small fruits from shrubs and small trees or in the case of seeds without 

coats. Neutral or attraction responses may be favored by ripe fruits when seed dispersal is not 

compromised, mainly in the cases of large fruits with large pericarps and/or coated seeds. 

Microbial infection and/or insect infestation would favor fruit crushing and/or abscission and then 

access of terrestrial animals to the fruit. 
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1.6. VOCs in fruit crops and agriculture 
 

Most VOC research has been conducted in agricultural species; it has contributed 

greatly to our understanding of the role of VOCs in plant-insect and plant-microbe interactions 

and it is providing many applied tools in agriculture. For example, the pear ester ethyl (2E, 4Z)-

2,4-decadienoate is highly attractive and used to monitor both males and females of the codling 

moth Cydia pomonella (Lepidoptera: Tortricidae) (Light et al., 2001). Field-trapping tests show 

that Argyresthia conjugella (Lepidoptera: Yponomeutidae) females are attracted to VOCs 

identified from rowanberries, and that a blend of 2-phenyl ethanol and anethole is sufficient to 

show a strong attraction (Bengtsson et al., 2006). In addition, identification of VOCs specifically 

emitted from infested fruits and attractive to natural enemies would allow the development of 

lures to be used in integrated pest control programs. Alternatively, based on the synergism 

between insect pheromones and VOCs, it has been suggested that mating disruption 

dispensers could be developed for certain pests using small amounts of expensive pheromonal 

ingredients and small amounts of inexpensive plant VOCs (Reddy & Guerrero, 2004). In 

addition, pheromone based mass annihilation strategies are nowadays successfully employed 

to control Diptera and Coleoptera insects in agriculture (Witzgall et al., 2010). These strategies, 

unlike detection and monitoring (where only a small proportion of a population needs to be 

sampled) requires the use of the most attractive lure and may become far more efficacious if 

lures include fruit VOCs involved in ovipositional and/or feeding cues. On the other hand, blends 

of VOCs emitted by non-hosts are usually neutral but they could be also repellent, though this 

aspect has been largely overlooked (Reddy & Guerrero, 2004). For example, the psyllid 

Diaphorina citri (Hemiptera: Psyllidae), transmission vector of the bacterium that causes the 

Huanglongbing (HLB) disease of citrus, is attracted to VOCs emitted by citrus host plants (Patt 

& Sétamou, 2010), while VOCs from the non-host guava have been shown to be repellent and 

also to inhibit the psyllid response to the normally attractive citrus odor (Rouseff et al., 2008, 

Onagbola et al., 2011). Identification of repellent VOC blends from guava leaves and fruits 

would allow developing strategies to control the psyllid population and thus HLB spreading. 

Finally, the growing number of reports on the involvement of specific VOCs in plant defense 

together with the current progress on the knowledge of their biosynthesis and regulation is 

allowing the use of plant genetic engineering for improving plant resistance to pests and 

diseases. For example, D-limonene production, which represents up to 97% of total VOCs in 

orange fruit peel, has been downregulated by overexpressing an antisense construct of a D-

limonene synthase gene (Rodríguez et al., 2011). Transgenic orange fruit peels with up to 85 

times reduced D-limonene accumulation were less attractant to males of the citrus pest medfly 

(Ceratitis capitata, Diptera: Tephritidae) and strongly resistant to fungal and bacterial pathogens 

(Rodríguez et al., 2011). This work illustrates how fruit VOC emissions can be manipulated 

providing novel strategies for pest and disease management without altering important 

agronomic traits. Our most recent results indicate that D-limonene upregulation is highly 

associated with a general depletion of defenses in mature fruit peels (our unpublished results), 
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suggesting that there is a tradeoff between costly production of monoterpenes for attraction of 

frugivores and decreased general defense. 

The foundations for the aromas associated with most fruits existed long before crop 

domestication (Goff & Klee, 2006). However, in recent times, breeding with the aim of improving 

yield, size and postharvest fruit shelf life has affected some original sensory qualities, including 

aromas. For example, in a commercial tomato cultivar, the modification in some VOCs 

concentration has been detected when comparing with a wild relative (Goff & Klee, 2006). In 

strawberry, marked differences in the production of specific sesqui- and monoterpenes between 

cultivated and wild strawberries species have been related with the activity of just one enzyme 

(Aharoni et al., 2004). The sesquiterpene profile also varies greatly in the rind of melons 

resulting from breeding programs (Portnoy et al., 2008).  

Some fruit tree crops, such as Malus (apples), Pyrus (pears) and Prunus (peachs, 

nectarines, plums, etc.) species, have been subjected to extensive breeding programs, but in 

general fruit trees have very long juvenile periods that have delayed the possibilities of 

producing new varieties through breeding, at least when comparing with annual crops. 

Consequently, varieties from Citrus (including oranges, lemons, mandarins, limes, grapefruits, 

etc.), and most (when not all) varieties from other tropical and subtropical fruit trees including 

some with highly odorous fruits (mango, guava, avocado, durian, passionfruit, breadfruit, 

pitanga, mangosteen, loquat, quince, etc.) are species, natural hybrids or budsport mutants 

selected in nature by men in more or less recent times. Within a given genus, VOC profiles 

could be similar, at least qualitatively, in ancestral types (maintained in germplasm banks) and 

in relatively recent cultivated hybrids (e.g., citrus types; Table 2) or could be variable among 

close species with drastic changes in some specific major compounds (e.g., Psidium species; 

Table1). 

 
1.7. Concluding remarks and future prospects 

 

As illustrated in this review, fruit VOC profiles are diverse, change during ripening, and 

have important effects on both mutualists and antagonists. Most research in this topic has been 

conducted so far in agricultural species and information regarding wild fruits is scarce, totally 

absent when pertaining to the role of VOCs in interactions with vertebrates, insects or microbes 

in nature. Therefore, it would be indispensable additional information on wild fruit VOCs and on 

their interaction with frugivores in order to assess their ecological relevance and to make any 

strong evolutionary inference about how aromas may have evolved due to selective pressure 

from surrounding living organisms. Moreover, there is still little information on how VOCs 

changes might affect species interaction. Wild and domesticated species and cultivars with 

different VOC profiles are excellent tools to investigate the importance of VOCs for fruit 

interactions with their frugivores. Moreover the possibility of generating mutants and transgenic 

plants affected in VOC biosynthetic or signal transduction pathways could allow determining key 

compounds involved in fruit-frugivore interactions.  
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Table 2. Changes(%) in the total amount of the volatile organic compounds in different ancestral, wild and natural hybrid 

Citrus types.  

  Monoterpenes  Sesquiterpenes 
  Total limonene  Total 

     

Ancestral species     

 Citrus grandis 50.3-100.0 48.9-95.6  Tr-4.5 

 Citrus medica 53.4-100.0 51.2-93.6  Tr-8.3 

 Citrus reticulata 90.6-100.0 87.4-91.7  Tr 

     

Wild species from subgenus Papeda    

 Citrus hystrix 55.3-100.0 2.8-14.2  Tr-3.1 

     

Hybrids     

 Citrus aurantium 82.9-100.0 80.1-95.8  Tr 

 Citrus paradisi 86.31-100 83.4-93.8  Tr-5.1 

 Citrus aurantifolia 69.7-94.9 38.4-50.0  5.36-12.87 

 Citrus clementina 85.1-100.0 83.0-95.1  Tr-2.2 

 Citrus bergamia 31.5-100 24.1-54.9  Tr-2.2 

 Citrus limon 71.6-100 59.6-76.2  Tr-3.0 

 Citrus junos 70.7-100.0 60.4-82.4  Tr-4.7 

 Citrus unshiu 42.8-100.0 41.2-90.7  Tr-2.7 

 Citrus sinensis 93.4-100.0 91.0-97.0  Tr-1.1 
Obtained from Dugo & Di Giacomo, 2002. 

Tr, traces. 

 

Information about fruit VOCs evolution and the influence of frugivores in this process is 

also scarce. Selective pressures on fruit VOC production and emission may be exerted not only 

by legitimate seed dispersal animals but also modulated and/or abolished by less apparent but 

often more common frugivore agents. Whether attraction of seed dispersal and fruit predator 

agents through fleshy ripe fruit-emitted VOCs is positive or detrimental for plant fitness, and 

therefore the net effect of these trophic interactions with multiple partners should be carefully 

considered and investigated. Seed predation could be a selective force on fruit VOC emission in 

some cases, as has been suggested for fruit color polymorphisms in Acacia ligulata (Whitney & 

Stanton, 2004). Therefore, to understand whether and to what extent diversification of VOCs in 

fleshy fruits has been shaped by frugivores will require overcoming the traditionally considered 

dichotomy of seed dispersers vs. seed predators and investigating the interactions among the 

multiple partners of the network as a whole. Additionally, a broad view of VOCs is necessary, 

together with other traits in each specific fruit species as integrated cues for frugivory, because 

it is unlikely that such different cues have evolved independently. Furthermore, it is necessary to 
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deep our understanding on how VOCs are perceived by frugivores animals and to what extent 

the response to odors are learned or innate, which may have important consequences when 

considering the presumed co-evolution of fleshy fruits and frugivores. As envisaged from this 

review the role of VOCs in species interaction may be quite complex due to multi-trophic, direct 

and indirect interactions, synergistic effects of compounds, etc, thus integrative studies are 

necessary that take into account the full fitness costs and benefits of particular traits.  

Unraveling how differences and singularities between fruit VOCs of different species, 

cultivars and mutants or transgenic plants are explained from a molecular and biochemical 

perspective and how they are linked to different direct and indirect trophic interactions will 

require multidisciplinary collaborative work from chemists, geneticists, ecologists and biologists 

in coming years. Comparative transcriptomic, proteomic and metabolomic datasets in both fruits 

and vertebrates/insects/microbes would provide new valuable data for clarifying these highly 

complex and interactive processes. Since not all studies accomplished to date were 

reproducible out of laboratory settings, it will be of major importance the ecological and/or 

agricultural realism of new experiments. In agricultural contexts, studies on fruit VOCs may help 

to develop potential alternatives to toxic synthetic agrochemicals for the control of devastating 

pests and diseases. In conclusion, future work can improve our basic understanding of plant 

ecology and evolution and may have important applications in agriculture. 
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2. Objectives 
 

1. To modify the D-limonene content in the peel of sweet orange fruits cv. Navelina and 

cv. Pineapple by using two genetic transformation strategies: 

a. Down-regulation of D-limonene and related terpenes by using a D-limonene 

synthase gene in antisense under the control of the constitutive promoter El2p35S 

b. Up-regulation of D-limonene and related terpenes by overexpression of a D-

limonene synthase gene under the control of the constitutive promoter El2p35S 

 

2. To perform the genotypic, phenotypic and biochemical analyses of the fruits from the 

genetically transformed plants.  

 

3. To determine the possible effects of down-regulation of D-limonene content in orange 

peels over an important citrus pest. 

 
4. To determine the possible effects of down-regulation of D-limonene content in orange 

peels over different specialized citrus pathogens. 

 
5. To study the transcriptome of antisense vs. empty vector control fruit peels by using 

cDNA microarrays to identify changes associated to the D-limonene down-regulation in 

orange fruits, putatively involved in defense responses against specialized pathogens. To 

analyze phytohormone accumulation and signaling before and after challenge inoculation 

to further elucidate the resistance mechanism. 
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Terpene downregulation in orange reveals the role 
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Abstract 
 

Plants use volatile terpene compounds as odor cues for communicating with the 

environment. Fleshy fruits are particularly rich in volatiles that deter herbivores and attract seed 

dispersal agents. We have investigated how terpenes in citrus fruit peels affect the interaction 

between the plant, insects and microorganisms. Because limonene represents up to 97% of the 

total volatiles in orange fruit peel, we chose to downregulate the expression of a limonene 

synthase gene in orange plants by introducing an antisense construct of this gene. Transgenic 

fruits showed reduced accumulation of limonene in the peel. When these fruits were challenged 

with either the fungus Penicillium digitatum or with the bacterium Xanthomonas citri subsp. citri, 

they showed marked resistance against these pathogens that were unable to infect the peel 

tissues. Moreover, males of the citrus pest Ceratitis capitata were less attracted to low 

limonene-expressing fruits than to control fruits. These results indicate that limonene 

accumulation in the peel of citrus fruit appears to be involved in the successful trophic 

interaction between fruits, insects and microorganisms. Terpene downregulation might be a 

strategy to generate broad-spectrum resistance against pests and pathogens in fleshy fruits 

from economically important crops. In addition, terpene engineering may be important for 

studying the basic ecological interactions between fruits, herbivores and pathogens. 
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Introduction 
 

Plants produce a wide variety of secondary metabolites, many of which are volatile 

compounds that are released by leaves, flowers, fruits and roots. These compounds serve as 

signals between plants and within distal parts of the same plant (Baldwin, et al., 2006). They are 

also involved in protecting the plant against abiotic stress (Gershenzon and Dudareva, 2007), 

defending the plant against pests and pathogens (Vickers, et al., 2009; Bednarek and Osbourn, 

2009), and attracting herbivore predators (Kessler and Baldwin, 2001; Degenhardt, et al., 2009) 

and pollinators (Kessler, et al., 2008). Volatile compounds that are emitted by flowers greatly 

contribute to the plant’s reproductive success and survival in natural ecosystems (Kessler, et 

al., 2008). In addition, fruits are generally rich in terpene compounds that determine their 

specific bouquet and may attract mutualists and repel antagonists, as in animal-pollinated 

flowers (Junker and Bluthgen, 2010). Flavor volatiles in plants (particularly in fruits) are linked to 

human selection of genotypes and their use for nutritional, health or industrial purposes (Goff 

and Klee, 2006). 

It is widely accepted that the primary function of terpene compounds in immature fruit is 

to defend against all types of potential consumers. Changes in these substances occur during 

maturation, in combination with changes in texture, taste and color. These changes are 

necessary to attract frugivorous animals for fruit predation and seed dispersal (Janzen, 1977; 

Herrera, 1982; Sallabanks and Courtney, 1992). Fruit traits are thought to evolve in response to 

the sum of selective pressures exerted by mutualists and antagonists (Whitney and Stanton, 

2004; Cazetta, et al., 2008). Nonetheless, proof that a specific fruit terpene acts as an attractant 

or repellent for specific pests or pathogens has not been obtained (Dudareva and Pichersky, 

2008). 

In the last decade, a series of important studies have been published on plant volatiles 

as repellents of pests and as attractants of herbivore predators (Aharoni, et al., 2003; Arimura, 

et al., 2000; De Moraes, et al., 2001). The results from these studies seem to suggest that it 

may be possible to modulate plant volatile emission through metabolic engineering to improve 

the plant’s defense against pests. The overexpression of the precursor for a linalool/nerolidol 

synthase from strawberry in transgenic Arabidopsis led to accumulation of high levels of linalool 

and consequently to the induction of resistance against aphids (Aharoni, et al., 2003). The 

overexpression of this transgene in mitochondria of Arabidopsis thaliana leads to the 

accumulation of nerolidol and a derived homoterpene, (E)-DMNT, which attract insect carnivore 

predators that are natural enemies of pest mites (Kappers, et al., 2005). In addition, the 

overexpression of the gene encoding a sesquiterpene synthase, TPS10, in transgenic 

Arabidopsis plants attracts parasitic wasps due to the emission of high levels of sesquiterpenes, 

which are normally released when the larvae of these wasps chew the leaves (Schnee, et al., 

2006). More recently, the overexpression of the gene of a trans-caryophyllene synthase from 

oregano in transgenic corn makes the roots attract nematodes that protect the plant from 

beetles (Degenhardt, et al., 2009). The transgenic overexpression of a precursor gene of a 
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pachulol synthase in tobacco together with the farnesyl diphosphate synthase, a precursor of 

sesquiterpenes, leads to high accumulations of pachulol and 13 other sesquiterpenes, which 

make the plants highly resistant to larvae of insect pests (Wu, et al., 2006). 

The role of different terpenoid compounds in pathogen resistance is well documented, 

particularly in forest trees, but the overexpression of precursors of these genes as a 

biotechnology strategy for plant protection has not yet been reported (Trapp and Croteau, 

2001). 

In summary, the use of metabolic engineering to induce resistance against biotic agents 

represents an alternative technology to the use of expensive and highly toxic fungicides, 

bactericides and pesticides. The use of this technology could also result in increased product 

quality. 

The external colored peel of citrus fruits, known as the flavedo, is embedded with 

thousands of oil glands containing terpene volatile compounds. (+)-Limonene is the most 

abundant of these compounds (97% of total terpene in orange fruits) (Dugo and Di Giacomo, 

2002). The extraordinarily high amount of limonene that accumulates in orange oil glands 

suggests an important biological role for this terpene compound in fruit aroma and in the plant’s 

interactions with the environment. Recently, cDNAs for monoterpene synthases have been 

isolated from citrus, including several (+)-limonene synthases (Lucker, et al., 2002; Shimada, et 

al., 2004). The genetic modification of tobacco plants with three of these monoterpene 

synthases and their subsequent combination in one plant by crossing, showed that it was 

possible to increase the amount and alter the composition of monoterpenoids produced in those 

plants (Lucker, et al., 2004).  

To determine whether the accumulation of limonene in fruits has a defensive function in 

planta, we manipulated the terpene content in oil glands with an antisense downregulation of 

the (+)-limonene synthase gene in mature sweet orange plants (Citrus sinensis L. Osb. cv. 

Navelina). Unexpectedly, transgenic fruits were resistant to economically important fungal and 

bacterial citrus pathogens and showed the repulsion of a major citrus insect pest. 

 

Results and Discussion 
 

Molecular characterization and volatile composition of transgenic 
plants 

 
Transgenic plants expressing a citrus limonene synthase gene (CitMTSE1) in the 

antisense orientation were generated, and integration of the transgene was confirmed by both 

PCR and Southern blot analyses of the genomic DNA (Supplemental Fig. S1). Antisense (AS) 

transformants and their fruits were visually indistinguishable from those transformed with an 

empty vector (EV) and wild-type plants. Moreover, fruit quality traits (weight and volume, color 

index, acidity, maturity index, juice volume and vitamin C content) were not affected by this 

genetic modification. The transgenic lines AS1, AS3, AS6 and AS7 were further investigated. 
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Total terpene profiles in fruit peels from the AS lines showed a range of phenotypes, 

with slight (AS6) to strong (AS1, AS3 and AS7) decreases in limonene accumulation compared 

to fruits from the EV control (Fig. 1). The accumulation of other monoterpenes, sesquiterpenes 

and monoterpene aldehydes also decreased, whereas the level of monoterpene alcohols 

increased. Thus, lines AS1, AS3 and AS7 produced at least 85 and 50 times less (+)-limonene 

and β-myrcene, respectively, than the EV control but increased the production of monoterpene 

alcohols (more than 10 times for β-citronellol and nerol) and some esters (more than three times 

for geranyl acetate)(Supplemental Table S1), likely due to a partial redirection of the pathway. 

Downregulation of monoterpenes other than limonene might be also explained by the formation 

of multiple products from a single monoterpene synthase (Lucker, et al., 2002; Shimada, et al., 

2004). 
 

 
 
Figure 1. Phenotypes of orange flavedo in antisense (AS) and control-treated (EV) Navelina sweet orange plants. (A) 

Relative amount of individual terpenes is presented as a percentage (given as a fraction of unity) area of each terpene 

with respect to the total terpene peak area for monoterpene hydrocarbons in the EV line, which was assigned an 

arbitrary value of one. Data represent mean values ± s.e.m. and are derived from at least five fruits per plant. (B,C) 

Representative total ion chromatograms (GC-MS) of the volatile profile for orange fruit flavedo from EV (B) and AS7 

transgenic plants (C). Peaks number one and IS correspond to limonene and the internal standard (2-octanol), 

respectively. 
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Response of citrus pathogens to limonene downregulation in 
transgenic fruits 

 
To test whether terpene downregulation confers resistance or susceptibility to different 

citrus pathogens, transgenic AS fruits were challenged with Penicillium digitatum (Pers.) Sacc, a 

fungus that causes the green mould rot in citrus fruits, and Xanthomonas citri subsp.citri (ex 

Hasse), the bacterium that causes citrus canker disease. Terpene downregulation in AS flavedo 

was confirmed in samples taken five days after inoculation (Supplemental Figs. S2 and S3). 

P. digitatum causes the most damaging post-harvest disease of citrus fruits worldwide. 

It does not cause the decay of other non-citrus fruits or vegetables. The etiology of the disease 

is well understood. Dormant Penicillium spores present on the fruit’s surface become active if 

the peel is injured. The spores germinate rapidly and colonize the injured tissue. Citrus fruit 

volatiles play an important role in host recognition by P. digitatum. Flavedo oil from several 

citrus species and volatiles emitted from injured oranges were reported to stimulate in vitro 

germination of P. digitatum conidia (Droby, et al., 2008). In the case of citrus fruit, volatiles are 

released from ruptured oil glands following mechanical wounding, facilitating the infection 

process (Droby, et al., 2008). Inhibitory effects have also been attributed to citrus 

monoterpenes, however, including limonene and derivatives (Ben-Yehoshua, et al., 2008). 

When mature AS and EV fruits were inoculated with P. digitatum, the percentage of 

infected wounds and wounds with spores in EV fruits eight days post-inoculation were 60.8% 

and 54.9%, respectively, but only 18.5% and 7.4%, in AS7 fruits. Results with AS1 and AS3 

lines were similar, with no significant difference found in the area under the disease progress 

curve (AUDPC) for infected wounds (P < 0.05, Fig. 2). To assess whether the reduced content 

of limonene and other terpenes causes an increased susceptibility to other non-pathogenic 

fungi, we inoculated AS and EV fruits with P. minioluteum. No infection occurred in either AS or 

EV fruits, indicating that general terpene downregulation does not alter the interaction with other 

non-specialized microorganisms.  
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To study whether the resistance phenotype was related to limonene downregulation or 

was indirectly induced as a consequence of increased monoterpene alcohols, P. digitatum 

challenge assays were performed in vitro with pure (+)-limonene and nerol. Results showed that 

both compounds had a pronounced stimulatory effect on germination of P. digitatum spores 

directly related to their concentration (Fig. 3). Germ tube elongation response was much higher 

with limonene at low concentrations, while nerol at high levels had just a slight inhibitory effect 

(Fig. 3). 

To provide further evidence that downregulation of limonene was directly responsible for 

the resistance response, AS and EV orange fruits were supplemented with limonene and then 

inoculated with P. digitatum. The percentage of infected wounds in EV and AS3 fruits four days 

post-inoculation were 77.3% and 80.0%, respectively. Results with AS7 were similar, with no 

significant difference found for infected wounds (P < 0.05, Fig. 4). This confirmed the critical 

importance of limonene accumulation levels on fruit susceptibility to P. digitatum. 

 

 

 

 

 
 
Figure 2. Transgenic expression of CitMTSE1 in the antisense orientation in orange plants confers fungal resistance. 

(A, B, C, D, E). Evolution of the disease caused by the fungus Penicillium digitatum in mature orange fruits inoculated 

with 1×104 spores mL-1: percentage of infected (A, B) and sporulated (C, D) wounds in orange fruits of EV and AS lines 

in two consecutive fruiting seasons—season 1 (A, C) and season 2 (B, D). Results are the average ± s.e.m. (n ≥ 10). 

dpi: days post-inoculation. *, P < 0.05 using Fisher’s Protected LSD test. We repeated all experiments at least twice 

and obtained similar results. (E) AS and EV fruits eight days after inoculation. 
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Figure 3. Effect of the monoterpenes limonene (A) and nerol (B) in Petri dish assay on percent germination ( � ) and 

growth ( █ ) of Penicillium digitatum. Results are average of three microscopic fields of different colonies containing at 

least thirty spores each ± s.e.m. (n = 15). Treatments with different letters are significantly different at P < 0.05 using 

Fisher’s Protected LSD test. (C) Images shown are light micrographs at 10x magnification of germinating spores in 

different concentrations of limonene. Scale bar indicate 100 μm. 
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We also challenged fruits with X. citri subsp. citri, an economically important citrus 

pathogen that reduces fruit yield and quality and causes quarantine restrictions for the 

movement of fresh fruit from affected areas (Graham, et al., 2004). This bacterium enters the 

host plant tissues through stomates and wounds and multiplies in the lesions in leaves, stems 

and mainly in the fruits. All above-ground tissues of the citrus plant are maximally susceptible to 

infection by X. citri subsp. citri during the last half of the expansion phase of growth (Graham, et 

al., 2004). The percentage of infected wounds in green fruits inoculated with the bacterium at 

four weeks post-inoculation was 65.7% in EV fruit, whereas few infections were observed in 

inoculated AS fruits (P < 0.05, Fig. 5). Peel pieces from lesions of inoculated AS and EV fruits 

yielded X. citri subsp. citri colonies when cultivated in an appropriate medium. This result 

suggests that the presence of a threshold amount of limonene may be necessary for the 

bacterium to establish infection in citrus fruits. However, we cannot rule out in this case that 

other up- or down-regulated compound/s in AS fruits may contribute to the resistance 

phenotype observed. 

 

 

 
 
 
 

 
 
Figure 4. Supplementation of pure limonene to the peel of EV and AS fruits confers early infection by the fungus 

Penicillium digitatum. (A, B) Evolution of the disease caused by the fungus P. digitatum in mature orange fruits 

inoculated with 1×104 spores mL-1. (A) percentage of infected wounds in orange fruits of EV and AS lines with 5 μL of 

limonene applied to the wound. Results are the average ± s.e.m. (n = 10). dpi: days post-inoculation. No significant 

differences were found at P < 0.05 using Fisher’s Protected LSD test. (B) AS and EV fruits four days after inoculation. 
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To assess whether or not this response is genotype-dependent, both pathogens were 

inoculated onto Pineapple sweet orange fruits with or without terpene downregulation. The 

results paralleled those of the Navelina sweet orange (Fig. 6 and Supplemental Table S2). This 

finding suggests that disease resistance is directly correlated with limonene downregulation. 

Thus, this control strategy could be extended to other citrus species and varieties that 

accumulate high levels of limonene in the flavedo, such as most sweet oranges, mandarins, 

grapefruits, and their hybrids. It would be worth testing whether this resistance phenotype could 

be extended to other important bacterial and fungal citrus pathogens. The relationship between 

terpenoid production and the activation of defense mechanisms is not fully understood and 

further research is required. Recent work has shown that glucosinolates, a group of secondary 

metabolites that are important for preventing damage caused by herbivores in brassicas, are 

required for the plant’s defense against certain pathogens (Clay, et al., 2009; Bednarek, et al., 

2009). 
 

 
 
Figure 5. Transgenic expression of CitMTSE1 in the antisense orientation in orange plants confers bacterial resistance. 

(A, B) Number of wounds with symptoms after inoculation of green mature orange EV and AS fruits with 106 CFU mL-1 

of the bacterium Xanthomonas citri subsp. citri in two consecutive seasons. Results are the average ± s.e.m. (n ≥ 10). *, 

P < 0.05 using Fisher’s Protected LSD test. We repeated all experiments at least twice and obtained similar results. (C) 

AS and EV fruits at four weeks post-inoculation. 
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Figure 6. Phenotypes and behavioral responses of orange flavedo to pathogens in antisense and control-treated (EV) 

Pineapple sweet orange plants. (A) Relative amounts of individual terpenes are presented as a percentage area relative 

to the total terpene peak area for monoterpene hydrocarbons in the EV line, which was assigned an arbitrary value of 

one. Data represent mean values ± s.e.m. and are derived from at least five fruits per plant. (B, C) Representative total 

ion chromatograms (GC-MS) of the volatile profile of orange fruit flavedo from EV (B) and AS11 transgenic plants (C). 

Peaks number one and IS correspond to limonene and the internal standard (2-octanol), respectively. (D) Number of 

infected wounds at four weeks after inoculation of EV and AS fruits with the bacterium Xanthomonas citri. (E) Evolution of 

the disease caused by the fungus Penicillium digitatum and the percentage of infected wounds in the orange fruits of the 

EV and AS lines. Results are average ± s.e.m. (n ≥ 20).*, P < 0.05 using Student’s t-test. 
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Response of a citrus insect pest to limonene downregulation in 
transgenic fruits 

 
There is evidence to suggest that limonene and other terpene compounds of the citrus 

peel confer partial resistance in fruits to the Mediterranean fruit fly, Ceratitis capitata 

(Wiedemann) (medfly), a major pest of citrus species worldwide (Papachristos and 

Papadopoulos, 2009), and to other tephritid pests (Back and Pemberton, 1915). We assessed 

the behavioral response of C. capitata to terpene downregulation in sweet orange fruits by no-

choice and two-choice flight tunnel assays. 

No-choice assays showed that the oviposition response of medfly females after three 

days of exposure to AS or EV fruits was similar (Supplemental Fig. S4), supporting the notion 

that medfly females are capable of counteracting the hypothetical deterrent effect induced by 

the high levels of essential oils that are present in orange flavedo. 

It has been suggested that the acquisition of a certain aroma in the flavedo is 

responsible for increased mating success of medfly males, as demonstrated by exposing entire 

rooms of mass-reared medfly males to the aroma of orange oil (Shelly, et al., 2008). Flight 

tunnel assays with medfly males exposed to different pure synthetic compounds ((+)-limonene, 

nerol and citronellol) in disk assays revealed a preference for these monoterpenes over control 

water, being limonene the most attractant one (Supplemental Fig. S5). Accordingly, we 

examined how the behavioral response of medfly males could be affected by the modification of 

the terpene profile in AS fruits. Flight tunnel assays with medfly males exposed to AS and EV 

fruits showed that males were more attracted to EV than to AS fruits in green (19% vs. 5%, P < 

0.05, Supplemental Fig. S6) and mature fruits (32% vs. 2%, P < 0.05, Fig. 7), suggesting that 

limonene emission attracts the male flies. Moreover, when medfly males in the field were 

exposed to AS vs. EV fruits together (Supplemental Movie S1, online), they were strongly 

attracted to and landed preferentially on EV fruits. The addition of pure limonene to the peel of 

mature AS fruits confirmed that this compound was responsible for this behavior in cage 

assays, because AS fruits were so attractive as EV fruits to medfly males under these 

conditions (Fig. 8). This olfactory-mediated flight behavior might decrease the mating success of 

those medfly males exposed to AS fruit in the field.  
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Figure 7. Terpene-mediated response of Ceratitis capitata males exposed to AS and EV fruits in flight tunnel assays. (A) 

Mean percentage of flies landing on AS and EV control fruits. Results are average ± s.e.m. (n = 10). *, P < 0.05 using 

Student’s t-test. We repeated all experiments with two different AS lines and obtained similar results. (B) Terpene-

mediated landing of flies on EV (left) and AS7 (right) fruits. (C) Relative amounts of individual terpenes are presented as a 

percentage area of each terpene with respect to the total terpene peak area for monoterpene hydrocarbons in the EV 

line, which was assigned an arbitrary value of one. Data represent mean values ± s.e.m. and are derived from at least 

five fruits per plant. 
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The effects of limonene downregulation in fruit flavedo on medfly attraction and fungal 

and bacterial infections strongly indicate that the high accumulation of this monoterpene in the 

peel of citrus fruits is required for the success of the fruit. In nature, limonene content is usually 

low in orange fruits during the two-three months post-anthesis; it then drastically increases 

when the fruit is still green but contains seeds and remains at high level until the fruit becomes 

fully mature (Fig. 9)(Dugo and Di Giacomo, 2002; Kekelidze, et al., 1989). In contrast to the 

view that animal-dispersers of fleshy fruit seeds compete with microbes for food resources 

(Janzen, 1977; Herrera, 1982; Cipollini and Levey, 1997), our data indicate that once a fruit has 

completely developed seeds, it advertises its condition to potential legitimate dispersers by 

inducing changes in terpene volatile signals, which also serve to attract specialized insects and 

microorganisms. In this way they could indirectly increase seed dispersal by providing a 

nutritional benefit to vertebrates that eat insect-infested or pathogen-infected fruits (Sallabanks 

and Courtney, 1992; Cazetta, et al., 2008). Dispersal could occur when the terpene-rich peel 

barrier is broken, making the seeds more accessible to terrestrial mammals, or by releasing 

volatiles that attract specialized vertebrates. This peel would otherwise be toxic or a deterrent 

for seed dispersing animals. It has been recently reported that the attraction of birds to heavily 

insect-infested trees is directly correlated with the emission of several specific terpene 

compounds (Mäntylä, et al., 2008) 

 

 
 
Figure 8. Terpene-mediated response of Ceratitis capitata males exposed to AS and EV fruits in cage assays. (A) 

Mean percentage of flies landing on AS and EV control fruits. Results are average ± s.e.m. (n = 10). *, P < 0.05 using 

Student’s t-test. (B) Mean percentage of flies landing on AS supplemented with 100 μL of pure limonene (L) and EV 

control fruits. Results are average ± s.e.m. (n = 10). No significant differences were found at P < 0.05 using Student’s t-

test. We repeated all experiments with two different AS lines and obtained similar results. 
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Our results provide a more comprehensive view of the potential co-evolution of fruit 

terpene volatiles that act as signals in multiple trophic chains for insect herbivores and 

pathogens and seed-dispersing vertebrates. Moreover, these results demonstrate for the first 

time that genetic engineering of volatile terpenoids represents a promising method for 

developing broad-spectrum resistance or tolerance to pests and pathogens in fleshy fruits and 

potentially in other economically important crops. 

 

Materials and Methods 
 

Citrus transformation  
 
Mature transformants from Citrus sinensis L. Osbeck plants (cv. ‘Navelina’ and 

‘Pineapple’) were generated as previously described (Rodríguez, et al., 2008). A binary vector 

(pBI121FLM) was constructed containing the limonene synthase gene from satsuma mandarin 

(Citrus unshiu Mark.) (CitMTSE1, accession AB110636) in an antisense orientation (AS) under 

the control of the Cauliflower mosaic virus (CaMV) 35S promoter and the nopaline synthase 

gene (NOS) terminator using standard restriction and ligation DNA techniques. The T-DNA of 

this binary vector also included the neomycin phosphotransferase II gene (nptII) driven by the 

NOS promoter and terminator sequences (Supplemental Fig. 1A). The binary plasmid 

pBI121FLM was used as the vector system for transforming empty vector (EV) control plants 

(Supplemental Fig. 1B). 

 

 
Figure 9. Evolution of citrus peel volatiles during EV and AS fruit development. (A) Limonene (LIM) variation. (B) 

Citronellol (CIT) and nerol (NER) variation. 
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PCR and Southern blot analysis 
 

Standard PCR techniques were used to detect the limonene synthase gene construct 

sequence. The primers used were 5’-ATCTCCACTGACGTAAGGGATGACG -3’ (p35S) and 5’- 

ATGTCTTCTTGCATTAATCCCT-3’ (CitMTSE1). Reactions were performed in 25 μL containing 1 

μL of DNA (50 ngµL-1), 200 μM dNTPs, 3 mM MgCl2, 50 mM KCl, 20 mM Tris-HCl pH 8.4, 0.25 

μM of each primer and 0.5 U of Taq DNA polymerase (Roche). Reactions were subjected to 35 

cycles of 0.5 min at 95 °C, 0.5 min at 58 °C and 2 min at 72 °C for the CitMTSE1 gene. 

Amplified DNA was detected with ultraviolet (UV) light after electrophoresis on 1% agarose-

ethidium bromide gels. Genomic DNA was isolated from leaves as previously described 

(Dellaporta, et al., 1983). To detect CitMTSE1, Southern blot experiments were performed on 

samples digested with 20 μg of HindIII, separated on 1% agarose gels and blotted onto nylon 

membranes (Hybond-N+, Amersham Pharmacia). Filters were probed with digoxigenin-labeled 

(DIG-11-dUTP) (Roche Diagnostics) fragments of the 35S promoter prepared by PCR, fixed by 

UV irradiation and detected by chemiluminescence with the CSPD substrate (disodium 3-(4-

methoxyspiro {1,2-dioxetane-3,2’-(5’-chloro)tricyclo [3.3.1.13,7]decan}-4-yl)phenyl phosphate) 

(Roche Diagnostics). 

 

Chemicals  
 
Synthetic compounds used in the assays and as references for identification of the 

citrus volatiles were: (R)-(+)-limonene (99%), nerol (97%), citronellol (95%) and 2-octanol all 

supplied by Sigma–Aldrich. 

 

Extraction of volatiles and GC-MS analysis 
 

Flavedo tissue was obtained from orange fruits, immediately frozen in liquid nitrogen 

and stored at -80 ºC until extraction. A Thermo Trace GC Ultra coupled to a Thermo DSQ mass 

spectrometer with electron ionization mode (EI) at 70 eV was used. Frozen ground material 

(200 mg) was weighed in screw-cap Pyrex tubes and then immediately 3 mL of cold pentane 

and 25 µg of 2-octanol were added as an internal standard. Samples were homogenized on ice 

for 30 s with a Yellowline homogenizer (model DI 25). The suspension was vortexed for 15 s, 

and 3 mL of MilliQ water were added. The sample was further vortexed for 30 s and centrifuged 

at 1800 g for 10 min at 4 ºC. The organic phase was recovered with a Pasteur pipette, and the 

aqueous phase re-extracted two more times with 3 mL of pentane. A 2-µL aliquot of the pooled 

organic phases was directly injected into the GC-MS for volatile analysis; at least two 

extractions for each sample were performed.  
The ion source and the transfer line were set to 200 ºC and 260 ºC, respectively. 

Volatile compounds were separated on a HP-INNOWax (Agilent J&C Columns) column (30 m x 

0.25 mm i.d. x 0.25 µm film). The column temperatures were programmed as follows: 40 ºC for 
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5 min, raised to 150 ºC at 5 ºCmin-1, then raised to 250 ºC at 20 ºCmin-1 and held for 2 min at 

250 ºC. The injector temperature was 220 ºC. Helium was the carrier gas at 1.5 mLmin-1 in the 

splitless mode. Electron impact mass spectra were recorded in the 30-400 amu range with a 

scanning speed of 0.5 scans-1. Compounds were identified by matching the acquired mass 

spectra with those stored in the reference libraries (Wiley6 and NIST) or from authentic standard 

compounds when available. 

Data were quantified by integrating the peak areas of total ion chromatograms (TIC) and 

normalizing to the recovery rate of the internal standard (2-octanol). The data in Figs. 1, 6, 7 

and Supplemental Figs. S2 and S3 represent relative amounts of individual terpenes and are 

presented as a percentage area of each terpene (given as a fraction of unity) with respect to the 

total terpene peak area for monoterpene hydrocarbons in the EV line, which was assigned an 

arbitrary value of one. The data in Supplemental Tables S1 and S2 represent fold-changes for 

each volatile in the AS lines relative to the EV line. Negative values indicate a decrease and 

positive values an increase of the specific volatile with respect to the reference EV line. Values 

represent at least two independent experiments and are shown as means ± standard error 

(s.e.m). 

 

Inoculation of fruit with Penicillium digitatum and P. minioluteum  
 
AS and EV mature oranges (Citrus sinensis L. Osbeck) cvs. ‘Navelina’ and ‘Pineapple’ 

were used throughout this study. P. digitatum isolate NAV-7 and P. minioluteum isolate GAA-2 

were obtained from the culture collection of the Laboratory of Pathology, Postharvest 

Technology Center, IVIA. Fruits were used immediately after harvest and were surface 

disinfected (1-min immersion in a sodium hypochlorite solution (4 gL-1)), rinsed with fresh water, 

and left to air dry at room temperature before inoculation. 

The concentration of the spore suspension was measured with a hemocytometer and 

adjusted to 1×104 spores mL-1 by dilution with sterile water. Fruit inoculation with P. digitatum or 

P. minioluteum was conducted as described previously (Palou, et al., 2001). Spore suspensions 

were prepared from 7 to 10-day old cultures on potato dextrose agar (PDA, Difco, Detroit, USA) 

incubated in the dark at 25 ºC. Spores were removed from sporulating colonies with a sterile 

loop and suspended in Tween 80 (0.05% w/v) in sterile distilled water. After vigorous agitation 

for 3 min in a vortex mixer, the remaining mycelial fragments were removed by filtration through 

two layers of cheesecloth. 

A Petri dish assay system was developed to assess the effect of different 

concentrations of synthetic compounds limonene and nerol on spore germination and germ tube 

development as previously described (Droby, et al., 2008).  

Oranges were inoculated by immersing a stainless steel rod with a probe tip 1 mm in 

width and 2 mm in length into the spore suspension and wounding the rind once in the equator. 

The wound penetrated the albedo tissue but not the juice sacs, simulating natural infection. 

Three different rind sites around the equator of each fruit were inoculated. Different fruits were 
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used for each fungus. For the assays of limonene supplementation, 5 µL of the pure compound 

were allowed to penetrate in the wound and the same procedure for inoculation was performed. 

For each season and treatment, replicates of 10 to 25 fruit per transgenic line were used. 

Inoculated fruit were placed on plastic cavity trays on open cardboard trays that prevent fruit 

contact and incubated at 20ºC and 80% RH for two weeks. Disease incidence and sporulation, 

which are considered to be the number of infected wounds and sporulated infections, 

respectively, and disease severity, which is measured by the lesion diameter, were checked 

daily. Severity values were used to calculate the area under the disease progress curve 

(AUDPC (de Capdeville, et al., 2002)). Data on disease severity (AUDPC) and arcsine-

transformed data on the percentage of infected wounds and sporulated lesions were subjected 

to the analysis of variance using Statgraphics v.5.1 software (Manugistics Inc., Rockville, USA). 

When appropriate, Fisher’s Protected Least Significant Difference (LSD) test (P < 0.05) was 

used to separate the means. 

 

Inoculation of fruit with Xanthomonas citri subsp. citri  
 
AS and EV green oranges, the most susceptible developmental stage, (Citrus sinensis 

L. Osbeck) cvs. ‘Navelina’ and ‘Pineapple’ were used throughout this study. Fruits were used 

immediately after harvest and were ethanol-surface-disinfected, rinsed with fresh water, and left 

to air dry at room temperature before inoculation. The inoculum was prepared with strain 306 of 

X. citri subsp. citri at 106 CFU mL-1 isolated in Brazil and obtained from the culture collection of 

the Laboratory of Bacteriology, IVIA. Inoculations were performed as previously reported 

(Viloria, et al., 2004). Fruits were inoculated using a 1-mL syringe without a needle with 

phosphate buffered bacterial suspensions at 106 CFU mL-1 obtained from an overnight culture in 

Nutrient Broth (NB) (Difco) or with phosphate buffer alone as control. Using a stainless steel rod 

equipped with a top, all lesions were ensured to be 1-mm depth; all wounds penetrated the 

flavedo tissue. Fruits were punctured at 5-8 inoculation points. Lesions were evaluated at 7, 15 

and 30 days after inoculation. Between fifteen and twenty fruits per repetition of each transgenic 

line were used. 

Inoculated fruits were placed in plastic trays covered with transparent film in a 

temperature and humidity controlled incubator (28ºC/80% RH, respectively) for four weeks until 

symptoms of an infection halo and canker lesions were visible. Disease incidence was 

estimated by measuring the number of developed lesions, the number of fruits with a developed 

halo and the diameter of this halo. Fisher’s Protected Least Significant Difference (LSD) test (P 

< 0.05) was used to evaluate the data on the percentage of infected wounds. 

 

Insect assays  
 
Larvae and adults of Ceratitis capitata were obtained from a laboratory population 

maintained at IVIA since 2002. Larvae were reared on an artificial diet as previously described 
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(San Andrés, et al., 2007). After emergence, adults were kept in ventilated Perspex cages 

(20x20x20cm) and fed with a mixture of sugar and hydrolyzed yeast (Biokar Diagnostics Co., 

Pantin, France) (4:1, w:w) and water until they were five days old. Larvae and adult flies were 

maintained in an environmental chamber at 25ºC ± 2°C, 60% ± 10% RH and 16:8 h (L: D) 

photoperiod.  

No-choice assays were performed in an insecticide-free greenhouse at 26 ± 2 ºC day 

temperatures, with a relative humidity between 60%-80%. The experimental arena consisted of 

aluminum framed cages of 150x150x90 cm covered with gauze. Groups of 100 five-day-old 

adults (50 males and 50 females) were released inside each cage containing a single plant with 

one fruit. Flies were fed as described before and allowed to lay eggs for three days.  

For two-choice flight assays, a laboratory Plexiglass tunnel model OLFM-WT (Analytical 

Research Systems, Gainesville, Florida, USA) measuring 180x60x60 cm producing a laminar 

flow of air was used to compare AS against EV fruit. Air was pulled through the chamber at 0.2 

msec-1 connected to the downwind end. Air exiting the chamber was directly removed. In 

addition, this tunnel contained inlet and outlet vents to bring new air into the room from the 

outside and remove air from the room to the outside. Fruits were placed in the upwind end of 

the tunnel, and flies were released at the downwind opening. For two-choice cage assays, 

cages measuring 50x30x30 cm were used to compare AS against EV fruit. For paper assays, 

30 µL of pure compounds were applied to 8-cm-diameter filter paper disks. For each assay, 50 

five-day-old medfly males were released from the downwind end of the flight tunnel or inside the 

cages and allowed to respond freely between 20 and 30 min. Both EV and AS fruits were 

placed in the peel eight times with a 2-mm long steel rod. All assays were performed at 25 ± 

2°C, under fluorescent lights (2,000 lux). In cage assays, 100 µL of synthetic limonene was 

used to cover the AS fruit. Ten to twenty replications were conducted in all experiments.  

The oviposition response, number of punctures per fruit, number of pupae per fruit and 

percentage of emergence data from no-choice assays were compared using Mann-Whitney U 

test (P < 0.05), and a t-test of arcsine-transformed data was performed to examine the mean 

percentage of male medflies landing on the transgenic (AS) and control (EV) fruits in the two-

choice assays.  
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Supplemental Files Chapter 1 
 

 
Supplemental Figure S1. Molecular analyses of Navelina (AS1-AS7) and Pineapple (AS11) citrus plants transformed 

with the limonene synthase gene in an antisense orientation. (A, B) Map of the T-DNA region of the binary vector used 

to transform AS (A) and EV plants (B). LB, left T-DNA border region; RB, right T-DNA border region; nptII, gene 

conferring kanamycin resistance under the control of the NOS promoter and terminator regions; CitMTSE1, limonene 

synthase gene in antisense orientation under control of the CaMV35S promoter and NOS terminator. (C) PCR analysis. 

(D) Southern blot analysis indicating the loci number of the transgene. The 35S promoter was used as probe. M: DNA 

molecular weight markers II and VI from Roche Applied Science. 

 

 

 
Supplemental Figure S2. Relative amounts of individual terpenes in fruits used for the assays, presented as a 

percentage area (fraction of unity) of each terpene with respect to the total terpene peak area for monoterpene 

hydrocarbons in the EV line, which was assigned an arbitrary value of one in Penicillium digitatum assays. Data 

represent mean values ± s.e.m. and are derived from at least five fruits per plant. 
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Supplemental Figure S3. Relative amounts of individual terpenes in fruits used for the assays, presented as a 

percentage area (fraction of unity) of each terpene with respect to the total terpene peak area for monoterpene 

hydrocarbons in the EV line, which was assigned an arbitrary value of one in Xanthomonas citri subsp. citri assays. 

Data represent mean values ± s.e.m. and are derived from at least five fruits per plant. 

 

 

 

 

 
Supplemental Figure S4. Oviposition response of Ceratitis capitata females in no-choice assays after three days of 

exposure to the orange odor of AS and EV plants. (A) Number of punctures per fruit. (B) Number of pupae per fruit. (C) 

Percentage of emergence. Results are average ± s.e.m. (n = 5). No significant differences were found at P < 0.05, using 

a Mann-Whitney U test. We repeated all experiments at least twice and obtained similar results. 
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Supplemental Figure S5. Terpene-mediated response of Ceratitis capitata males exposed to pure synthetic 

monoterpene compounds in flight tunnel assays. (A) Mean percentage of flies landing on paper disks supplemented 

with 30 μL of water or pure synthetic compounds. Results are average ± s.e.m. (n = 10). Treatments with different 

letters are significantly different at P < 0.05 using Fisher’s Protected LSD test. (B) Terpene-mediated landing of flies on 

limonene (LIM), nerol (NER) or water control (C) disks. 

 

 

 
Supplemental Figure S6. Terpene-mediated response of Ceratitis capitata males exposed to AS and EV green fruits in 

flight tunnel assays. (A) Mean percentage of flies landing on AS and EV control fruits. Results are average ± s.e.m. (n = 

5). *, P < 0.05 using a Mann-Whitney U test. (B) Terpene-mediated landing of flies on AS (left) and EV (right) fruits. 
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Supplemental Table S1. Fold-change of volatiles in AS transgenics compared to EV control Navelina sweet orange 

mature flavedo. The level of accumulation of individual volatiles in EV flavedo was arbitrarily set to 1.0. Negative values 

indicate decreases and positive values reflect increases of the specific volatile with respect to the reference EV line. 

Data represent mean values ± s.e.m. and are derived from at least five fruits per plant. 

 
Compounds Transgenic line  

AS1 AS3 AS6 AS7 EV 
MEAN S.E.M. MEAN S.E.M. MEAN S.E.M

. 
MEAN S.E.

M. 
 

Monoterpenes          
Hydrocarbons          

Sabinene  - 8.72 0.01 - 5.71 0.00 - 2.07 0.01 -6.82 0.02  

δ-3-carene nd  nd  - 1.08 0.08 nd   

β-myrcene - 51.02 0.00 - 57.38 0.00 - 1.38 0.01 - 82.69 0.01  

D-Limonene - 90.88 0.00 - 107.39 0.00 - 1.33 0.07 - 85.95 0.00  

Ocimene - 3.28 0.07 - 1.84 0.32 1.63 0.42 - 3.07 0.10  

α-terpinolene nd  nd  - 1.06 0.33 nd   

Relative (%) 43.5 45.3 95.8 49.7 96.0 

          

Aldehydes          

Z-citral - 3.02 0.05 - 5.65 0.07 - 1.28 0.16 - 5.33 0.05  

E-citral* nd  nd  - 1.19 0.17 nd   

Citronellal -1.31 0.21 - 1.16 0.26 -1.15 0.12 -1.48 0.21  

Perilla aldehyde nd  nd  - 1.23 0.10 nd   

Relative (%) 3.6 3.0 0.5 2.7 0.5 

          

Alcohols          

E-sabinene hydrate - 10.07 0.00 - 6.20 0.04 - 1.61 0.07 - 7.71 0.03  

Z-sabinene hydrate - 26.65 0.04 - 11.64 0.09 - 1.40 0.13 - 3.98 0.02  

Linalool 1.07 0.27 1.05 0.02 1.40 0.36 - 2.02 0.03  

1-octanol - 1.91 0.29 -1.20 0.35 1.22 0.37 1.10 0.32  

4-terpineol  - 4.66 0.04 - 1.87 0.03 - 1.42 0.02 - 3.92 0.00  

E-p-mentha-2,8-dienol nd  nd  1.64 0.03 - 12.22 0.08  

α-terpineol - 21.23 0.01 - 11.78 0.03 -1.41 0.02 -15.77 0.02  

β-citronellol 18.65 3.88 10.45 1.26 3 0.45 11.43 0.28  

Nerol 14.71 2.09 9.98 2.64 4.45 2.84 16.57 4.70  

E-carveol nd  nd  - 1.06 0.31 nd 0.00  

Geraniol 3.95 0.24 4.61 0.90 1.61 0.82 4.45 2.88  

Z-carveol nd  nd  1.68 0.51 nd   

Relative (%) 34.5 31.7 1.6 21.7 0.9 

          

Esters          

Neryl acetate* p  p  nd  p   

Geranyl acetate 3.25 1.47 3.85 0.87 1.49 0.60 3.65 0.92  

Perilla acetate nd  nd  nd  nd   

Limonen-10-yl acetate nd  nd  nd  nd   

Relative (%) 7.9 7.2 0.01 8.3 0.01 

          

Sesquiterpenes           

Hydrocarbons              

α-copaene nd  nd  - 4.57 0.22 nd   

β-cubebene nd  nd  - 2.36 0.11 - 44.50 0.02  
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Germacrene D nd  nd  - 1.81 0.32 nd   

β-elemene - 3.51 0.00 - 1.81 0.30 1.11 0.04 - 1.30 0.19  

α-caryophyllene - 7.46 0.02 - 11.58 0.03 - 3.09 0.03 - 5.33 0.04  

β-farnesene nd  - 6.96 0.14 - 1.86 0.54 nd   

Valencene - 1.89 0.16 - 1.39 0.35 1.08 0.24 - 1.34 0.01  

δ-Cadinene - 6.08 0.00 - 5.45 0.01 -1.29 0.00 - 5.71 0.00  

α-muurolene nd  nd  nd  nd   

β-sesquiphellandrene - 3.47 0.07 - 1.95 0.24 1.28 1.01 1.02 0.04  

Relative (%) 4 5.4 0.4 6.7 0.4 

          

Aldehydes          

β-sinensal - 6.27 0.09 - 12.30 0.02 - 2.64 0.07 - 6.75 0.05  

α-sinensal - 4.93 0.03 - 3.41 0.08 1.23 0.07 - 4.46 0.02  

Relative (%) 0.6 0.8 0.1 0.7 0.1 

          

Alcohols          

d-nerolidol  nd  nd  -4.32 0.23 nd   

Elemol - 44.76 0.02 nd  - 2.23 0.21 nd   

Relative (%) 0.5 0 0.01 0 0.02 

          

Aliphatic aldehydes           

Octanal - 35.58 0.00 - 38.16 0.00 - 1.90 0.03 - 20.34 0.01  

Nonanal - 15.12 0.00 - 22.68 0.00 -1.90 0.00 -9.94 0.00  

Decanal - 10.57 0.02 - 11.58 0.01 - 1.44 0.07 - 6.39 0.06  

Undecanal - 5.95 0.05 - 9.62 0.10 - 1.75 0.06 - 5.28 0.05  

2-decenal nd  nd  - 1.15 0.53 nd   

Relative (%) 3.3 3 1.3 5.5 1.8 

          

Others/Irregular          

(+)-Isopiperitenone nd  nd  -1.58 0.63 nd   

Z-limonene oxide nd  nd  1.29 0.29 nd   

E-limonene oxide - 6.07 0.07 nd  - 1.07 0.26 - 7.47 0.13  

Caryophyllene oxide 1.11 0.12 - 1.07 0.29 1.94 0.28 2.36 0.63  

β-cyclocitral 1.37 0.65 - 1.23 0.26 1.02 0.51 1.17 0.83  

Relative (%) 1.0 1.2 0.2 1.9 0.2 

nd: non-detectable 

p: present (impossible to quantify fold-change because it is not present in EV plants)  

* Compound differing from EV (E-citral) and AS plants (Neryl acetate) 
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Supplemental Table S2. Fold-change of volatiles in AS transgenics compared to EV control Pineapple sweet orange 

mature flavedo. The level of accumulation of individual volatiles in EV flavedo was arbitrarily set to 1.0. Negative values 

indicate decreases and positive values reflect increases in the specific volatile with respect to the reference EV line. 

Data represent the mean values ± s.e.m. and are derived from at least five fruits per plant. 

 Transgenic line  

 AS11 EV 
Compounds MEAN S.E.M.  

    
Monoterpenes     

Hydrocarbons    

Sabinene - 16.13 0.00  

β-myrcene - 33.46 0.00  

D-Limonene - 32.48 0.00  

Ocimene - 1.83 0.03  

α-terpinolene nd   

Relative (%) 51.6 97.2 

    

Aldehydes    

Z-citral - 1.84   

E-citral* nd   

Citronellal - 1.03 0.04  

Perilla aldehyde nd   

Relative (%) 1.4 0.1 

    

Alcohols    

E-sabinene hydrate - 6.76 0.03  

Z-sabinene hydrate nd   

Linalool 2.23 0.02  

1-octanol nd   

4-terpineol nd   

a-terpineol - 15.74 0.00  

β-citronellol 13.73 0.57  

Nerol 5.49 0.31  

E-carveol nd   

Geraniol 2.47 0.15  

E-p-mentha-2,8-dienol nd   

p-mentha-1(7),8(10)-dien-9-ol nd   

Relative (%) 37.6 1.0 

    

Esters    

Citronellyl acetate p   

Neryl acetate* p   

Geranyl acetate p   

Limonen-10-yl acetate nd   

Relative (%) 6.3 0.01 

    

Sesquiterpenes     

Hydrocarbons    

α-copaene - 5.24 0.02  

β-cubebene nd   

Germacrene D nd   
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α-gurjunene nd   

β-elemene nd   

β-selinene nd   

α-caryophyllene nd   

β-caryophyllene - 1.82 0.01  

Z-β-farnesene nd   

Valencene - 30.48 0.00  

α-selinene nd   

Germacrene B nd   

δ-cadinene - 10.34 0.00  

Relative (%) 0.7 0.7 

    

Aldehydes    

β-sinensal nd   

α-sinensal - 2.43 0.06  

Relative (%) 0.2 0.2 

    

Alcohols    

d-nerolidol  nd   

Elemol - 6.87 0.00  

Relative (%) 0.03 0.04 

    

Aliphatic aldehydes     

Octanal - 3.63 0.01  

Nonanal nd   

Decanal - 18.66 0.00  

2-decenal nd   

Decadienal nd   

Relative (%) 1.4 0.4 

   

Others   

(+)-isopiperitenone - 4.09 0.00  

E-limonene oxide - 3.70 0.01  

Caryophyllene oxide nd   

β-cyclocitral nd   

Cyclohexane, 2-ethenyl-1,1-dimethyl-3- 
methylene- 

nd   

Z-3-hexen-1-ol  -1.55 0.00  

Relative (%) 0.2 0.2 

nd: non-detectable 

p: present (impossible to quantify fold-change because it is not present in EV plants)  

* Compound differing from EV (E-citral) and AS plants (Neryl acetate) 
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4. RESULTS: CHAPTER 2 
The monoterpene limonene in orange peels 
attracts pests and microorganisms 

 
Plant signaling & behavior (2011) 6, 1820-1823 (doi: 10.4161/psb.6.11.16980) 

Rodríguez A, San Andrés V, Cervera M, Redondo A, Alquézar B, Shimada T, 

Gadea J, Rodrigo MJ, Zacarías L, Palou L, López MM, Castañera P, Peña L 

 
Addendum to: Rodríguez A, San Andrés V, Cervera M, Redondo A, Alquézar B, Shimada T, et 

al. Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions 

with insect herbivores and pathogens. Plant Physiol 2011; 156:793-802; PMID:21525333; DOI: 

dx.doi.org/10.1104/pp.111.176545. 

 

 
 
 
 



 

68 
 

 
 



Results: Chapter 2 

69 
 

Abstract 
Plant volatiles include terpenoids, which are generally involved in plant defense, 

repelling pests and pathogens and attracting insects for herbivore control, pollination and seed 

dispersal. Orange fruits accumulate the monoterpene limonene at high levels in the oil glands of 

their fruit peels. When limonene production was downregulated in orange fruits by the 

transgenic expression of a limonene synthase (CitMTSE1) in the antisense configuration, these 

fruits were resistant to the fungus Penicillium digitatum (Pers.) Sacc. and the bacterium 

Xanthomonas citri subsp. citri and were less attractive to the medfly pest Ceratitis capitata. 

These responses were reversed when the antisense transgenic orange fruits were treated with 

limonene. To gain more insight into the role of the limonene concentration in fruit responses to 

pests and pathogens, we attempted to overexpress CitMTSE1 in the sense configuration in 

transgenic orange fruits. Only slight increases in the amount of limonene were found in sense 

transgenic fruits, maybe due to the detrimental effect that excessive limonene accumulation 

would have on plant development. Collectively, these results suggest that when limonene 

reaches peak levels as the fruit develops, it becomes a signal for pest and pathogen attraction, 

which facilitate access to the fruit for pulp consumers and seed dispersers. 
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Introduction 
 
In recent years, large efforts have been made to understand the biosynthetic pathways 

regulating the production of terpene volatiles in plants as well as the metabolism and 

physiological effects of these compounds.1 Evaluating volatile emission as a language for 

communication between plants and the environment is gaining increasing interest.  

Upon maturation, fleshy fruits modify their color, taste, texture and aroma to become 

more attractive to frugivore animals for seed dispersal. The volatile content and emission 

profiles undergo drastic changes during fruit development and maturation, but little is known 

about the roles of specific volatiles in interactions with herbivores and other seed-dispersing 

agents. Regarding the impact of specialized insect pests and pathogens on fleshy fruits, most 

studies have focused largely on pests and pathogens as competitors of seed dispersers.2-4 A 

broader exploration of the pathogen–plant–vertebrate relationship from the perspective of 

evolutionary ecology is enticing. 

The monoterpene limonene represents up to 97% of the total volatiles in orange fruit 

peel. Previously, we have shown that overexpression of an antisense (AS) construct of a 

limonene synthase gene from mandarin (CitMTSE1) in transgenic oranges resulted in a 

downregulation of their synthesis and reduced accumulation of limonene as well as other 

related monoterpenes, and increased amounts of monoterpene alcohols such as nerol, geraniol 

and citronellol.5 AS fruits showed a marked resistance against the fungus Penicillium digitatum 

(Pers.) Sacc. and the bacterium Xanthomonas citri subsp. citri, two important citrus fruit 

pathogens, which were unable to infect transgenic peel tissues. In addition, males of one of the 

most polyphagous pests of citrus fruits, Ceratitis capitata, were much less attracted to the AS 

fruits than empty vector (EV) control fruits.5 Interestingly, the resistant/less attractant phenotype 

was fully reversed when AS fruits were treated with exogenous limonene (and not with nerol or 

citronellol), indicating that limonene accumulation in the orange peel modulates fruit interactions 

with insects and microorganisms. 

 

Results and discussion 
 

To determine whether the constitutive increase in the production of limonene could lead 

to a higher level of attraction of C. capitata and greater susceptibility to the tested pathogens, 

transgenic orange plants overexpressing the same limonene synthase gene from mandarin 

(CitMTSE1)6 in the sense orientation were generated (Fig. 1A-D). Limonene synthase transcript 

accumulation was higher in sense (S) than in EV lines (Fig. 1D). However, total terpenes 

profiling in fruit peels from the sense lines showed very slight increases in limonene 

accumulation compared to fruits from the EV control line (Fig. 1E). Although we found increases 

of more than four-fold in the levels of some monoterpenes, such as α-terpinolene and δ-3-

carene, in leaf tissues in S lines compared to EV controls, none of the S lines showed an 
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increase in limonene in fruit peels of more than 1.4 times, and the levels of related mono- and 

sesquiterpenoid compounds remained basically unaltered (Supplementary Table 1).  

 

Further, fruits of the S lines were challenged with P. digitatum and X. citri subsp. citri. 

When mature S and EV orange fruits cv. Pineapple were inoculated with P. digitatum, the 

percentage of infected wounds and wounds with spores in EV fruits 10 d postinoculation were 

90.66% and 86.66%, respectively, as compared with 82.05% and 71.79%, respectively, in S 

fruits (Fig. 2A-D). S fruits also showed a response similar to that of EV fruits when challenged 

with X. citri subsp. citri; the percentage of infected wounds at 4 weeks postinoculation in green 

fruits inoculated with the bacterium was 80.83% in EV fruits and 88.09% in S fruits (Fig. 2E, F) 

and no significant differences were found, with P<0.05. Similar results were obtained for the S 

and EV lines from another transformation experiment with the Navelina orange cultivar (data not 

shown).  

 
 
Figure 1. Molecular analyses and phenotypes of orange flavedo in sense (S) and control-treated (EV) Pineapple sweet 

orange plants. (A, B) Map of the T-DNA region of the binary vector used to transform S (A) and EV plants (B). LB, left 

T-DNA border region; RB, right T-DNA border region; nptII, gene conferring kanamycin resistance under the control of 

the NOS promoter and terminator regions; CitMTSE1, limonene synthase gene in sense orientation under control of 

the CaMV35S promoter and the NOS terminator. (C) Southern blot analysis indicating the loci number of the 

transgene. The 35S promoter was used as a probe. M: DNA molecular weight marker II from Roche Applied Science. 

(D) Northern blot analysis of total RNA extracted from flavedo of transgenic plants. RNA was separated by 

electrophoresis on a formaldehyde-containing agarose gel, transferred to a nylon membrane, and hybridized with a 

whole limonene synthase gene-specific RNA probe under stringent conditions (upper panel). Ethidium bromide staining 

of the same gel showing that equivalent amounts of RNA were loaded in the different lanes (lower panel). (E) The 

relative amounts of individual terpenes are presented as the percent (given as a fraction of unity) areas of each 

terpene with respect to the total terpene peak area for monoterpene hydrocarbons in the EV line, which was assigned 

an arbitrary value of one. The data represent the mean values ± SEM and were derived from at least five fruits per 

plant. 
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Attempts to overexpress terpenoids in transgenic plants have resulted in enhanced 

accumulation of the expected compound in several cases,7-9 but the growth and/or development 

of these plants were usually affected, with the strength of the phenotype being correlated with 

the accumulation level of the transgenically produced terpenoid.10-12 S orange lines did not show 

noticeable changes in plant and fruit morphology compared to controls. It may be possible that 

S lines did not overproduce limonene because such high levels of production could be 

 

 
Figure 2. Transgenic expression of CitMTSE1 in the sense orientation in orange plants did not modify susceptibility to 

fungal and bacterial infections. A to D, Evolution of the disease caused by the fungus Penicillium digitatum in mature 

orange fruits inoculated with 1x104 spores mL-1: percentage of infected (A) and sporulated (B) wounds in orange fruits of 

the EV and S lines. The results are the average ± SEM (n ≥ 20). dpi, days postinoculation. (C, D) S and EV fruits 10 d 

after inoculation. E to F, Evolution of the disease caused by the bacterium Xanthomonas citri subsp. citri in green mature 

orange fruits using 106 CFU mL-1. (E) Number of wounds with symptoms in EV and S fruits. The results are the average 

± SEM (n ≥ 10). (F) S and EV fruits at 4 weeks postinoculation. We repeated all experiments several times during two 

consecutive seasons and obtained similar results. No significant differences were found at P < 0.05 using Student’s t-

test. 
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detrimental to orange development. Following this rationale, S lines would accumulate limonene 

to those maximum levels that would not compromise cell and plant viability. It may be also 

hypothesized that under normal growing conditions, oil glands synthesize and accumulate near-

saturating concentrations of limonene (and/or its geranyl diphosphate precursor) and 

overexpression of limonene synthase is not able to increase further the large amount of 

limonene occurring in the oil glands. 

Our results together with the fact that in nature limonene reaches peak levels in fruit 

peels at the end of the growth phase, when fruits are still green but the seeds are fully 

developed, suggest that such high limonene doses exert an important signal effect to attract 

insect pests and microbial pathogens that break the peel barrier to facilitate eating of the fruit 

pulp by vertebrate consumers and seed dispersers. 

Volatiles are important determinants of the overall aroma properties and taste of fruits.13 

The compounds that are produced during the first period of fruit growth make eating by 

vertebrates an unpleasant experience. It is generally accepted that a primary function of 

secondary metabolites in immature fruits is defense from pathogens and pre-dispersal seed 

predators.2,4 The consumption of immature fruits would always be detrimental or repulsive 

because the seeds are not yet viable.4 By the end of the first period of growth, when seeds are 

developed, the goal is to make the fruit as appealing as possible so that seed dispersal can 

occur. In that phase, volatiles become an important part of the attractiveness to animals and a 

signal of readiness for seed dispersal.14 The identification of the limonene as a key compound in 

citrus fruits involved in pathogen interactions as well as insect attraction and its likely effect on 

seed dispersal could greatly increase our knowledge about fresh fruit trophic interactions. Just 

as in the pollination of flowers by insects, these interactions are complex and fine-tuned among 

the different organisms involved. We showed here that terpene engineering may be important 

for studying the basic ecological interactions between fruits, herbivores and pathogens. 

Determining how vertebrate dispersers fit into this tritrophic framework will provide new 

perspectives on these interactions. 
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Supplemental Files Chapter 2 

 
Supplementary Table 1. Fold-change of volatiles in S transgenics compared to EV control Pineapple sweet orange 

mature flavedo. The level of accumulation of individual volatiles in EV flavedo was arbitrarily set to 1.0. Negative values 

indicate decreases and positive values reflect increases in the specific volatile with respect to the reference EV line. 

Data represent the mean values ± s.e.m. and are derived from at least five fruits per plant. 

 
 Transgenic line  

 S13 EV 
Compounds MEAN S.E.M.  

    
Monoterpenes     

Hydrocarbons    

Sabinene - 1.32 0.05  

β-myrcene 1.41 0.11  

D-Limonene 1.38 0.14  

Ocimene 1.77 0.33  

α-terpinolene 2.18 0.13  

Relative (%) 97.51 97.40 

    

Aldehydes    

Z-citral 1.31 0.10  

E-citral 1.35 0.09  

Citronellal 1.18 0.09  

Perilla aldehyde 1.00 0.14  

Relative (%) 0.19 0.21 

    

Alcohols    

E-sabinene hydrate - 1.26 0.10  

Z-sabinene hydrate - 1.08 0.10  

Linalool 1.33 0.11  

1-octanol 1.32 0.05  

4-terpineol 1.10 0.27  

α-terpineol 1.37 0.13  

β-citronellol - 1.34 0.05  

Nerol -1.74 0.04  

E-carveol 1.35 0.04  

Geraniol 1.16 0.05  

E-p-mentha-2,8-dienol -1.16 0.12  

p-mentha-1(7),8(10)-dien-9-ol 1.05 0.09  

Relative (%) 0.80 0.87 

    

Esters    

Citronellyl acetate nd   

Neryl acetate nd   

Geranyl acetate nd   

Limonen-10-yl acetate 1.08 0.14  

Relative (%) 0.01 0.01 
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Sesquiterpenes     

Hydrocarbons    

α-copaene 1.34 0.13  

β-cubebene 1.54 0.08  

Germacrene D 1.75 0.02  

α-gurjunene 1.63 0.09  

β-elemene 1.94 0.29  

β-selinene 1.93 0.42  

α-caryophyllene 1.35 0.06  

β-caryophyllene 1.18 0.02  

Z-β-farnesene - 1.17 0.09  

Valencene 1.61 0.11  

α-selinene 1.83 0.07  

Germacrene B 1.07 0.07  

δ-cadinene 1.35 0.09  

Relative (%) 0.85 0.75 

    

Aldehydes    

β-sinensal - 1,13 0.02  

α-sinensal - 1.28 0.07  

Relative (%) 0.02 0.04 

    

Alcohols    

d-nerolidol  - 1.33 0.18  

Elemol 1.37 0.07  

Relative (%) 0.04 0.04 

    

Aliphatic aldehydes     

Octanal 1.26 0.09  

Nonanal 1.18 0.07  

Decanal 1.20 0.01  

2-decenal 1.52 0.13  

Decadienal 1.20 0.06  

Relative (%) 0.37 0.41 

   

Others   

(+)-isopiperitenone 1.39 0.09  

E-limonene oxide 1.10 0.09  

Caryophyllene oxide 1.61 0.08  

β-cyclocitral nd   

Cyclohexane, 2-ethenyl-1,1-dimethyl-3- 
methylene- 

1.11 0.13  

Z-3-hexen-1-ol  -1.04 0.04  

Relative (%) 0.08 0.12 

nd: non-detectable 
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Abstract 

 

Terpenoid volatiles are isoprene compounds that are emitted by plants to communicate 

with the environment. In addition to their function in repelling herbivores and attracting 

carnivorous predators in green tissues, the presumed primary function of terpenoid volatiles 

released from fruits is the attraction of seed-dispersing animals. Orange fruit primarily 

accumulates terpenes in mature peel oil glands, with D-limonene accounting for approximately 

97% of the terpene content. In a previous report, we showed that the antisense downregulation 

of a D-limonene synthase gene alters monoterpene levels in orange fruit peels leading to 

resistance against Penicillium digitatum infection. A global gene expression analysis of 

transgenic fruits expressing antisense vs. empty vector constructs revealed that the 

downregulation of D-limonene upregulated genes involved in the innate immune response, 

including transcription factors likely involved in jasmonic acid (JA) signaling and secondary 

metabolite biosynthesis, which triggered the upregulation of JA metabolism and drastically 

increased the accumulation of JA in orange peels upon fungal challenge, explaining the 

resistance to necrotroph fungi observed in antisense fruits. In nature, D-limonene levels 

increase in orange fruit once the seeds are fully viable. The inverse correlation between the 

increase in D-limonene content and the decrease in the jasmonate-mediated defense response 

suggests that D-limonene promotes the infection by microorganisms that are likely involved in 

facilitating access to the pulp for seed-dispersing frugivores. 
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Introduction 
 
Plants are sessile organisms that produce and emit a vast array of volatile organic 

compounds (VOCs) to communicate between parts of the same plant and with other plants. It is 

generally accepted that the original role of these compounds in nature is related to defense 

functions (Degenhardt et al., 2003). Most VOCs are terpenoids, fatty acid degradation 

compounds, phenylpropanoids and amino acid-derived products. Among these, terpenoids are 

likely to be the most abundant and expensive to produce (Gershenzon, 1994). Terpenoids are 

also isoprenoid-derived compounds as they are synthesized through the condensation of C5 

isoprene units, a process that is catalyzed by a wide diversity of terpene synthases (TPS) using 

geranyl diphosphate (GPP) and farnesyl diphosphate (FDP) as substrates. These reactions give 

rise to the C5 hemiterpenes, the C10 monoterpenes and the C15 sesquiterpenes (Dudareva et 

al., 2006). 

In green tissues, terpenoid synthesis is either induced upon wounding or occurs 

constitutively; terpenes can be then stored in specific organs or tissues where they would be 

most effective in defense responses, such as leaf trichomes, resin ducts and lacticifers, pockets 

near the epidermis or in secretory cavities in citrus species (Langenheim, 1994; Turner et al., 

2000; Trapp and Croteau, 2001; Voo et al., 2012). Genetic engineering experiments have 

demonstrated that specific terpenoid compounds emitted by leaves can intoxicate, repel or 

deter herbivores (Aharoni et al., 2003; Wu et al., 2006), or they may attract the natural predators 

and parasitoids of damaging herbivores to protect plants from further damage (Kappers et al., 

2005; Schnee et al., 2006). These terpenoids are naturally found in complex mixtures, and it 

has been proposed that they can act synergistically, as in conifer resin, for simultaneous 

protection against pests and pathogens (Phillips and Croteau, 1999). Although fatty acid 

degradation products (such as jasmonates) and phenylpropanoids (such as salicylates) as well 

as their volatile and non-volatile precursors are clearly involved in many induced defense 

responses against pests and pathogens (Glazebrook, 2005), much less is known regarding the 

participation of terpenoid volatiles in the defense against microorganisms in plants and 

regarding the possible interactions of these terpenoids with phytohormones. 

In contrast to their function in leaves, when released from flowers and fruits, the main 

function of terpenoid volatiles is in the attraction of pollinators (Pichersky and Gershenzon, 

2002; Kessler et al., 2008; Junker and Blüthgen, 2010; Schiestl, 2010) and seed-dispersing 

animals (Lomáscolo et al., 2010; Rodríguez et al., 2011b), respectively. Fruit maturation and 

ripening are usually associated with large increases in the synthesis and accumulation of 

specific flavored volatiles, which are proposed to function as signals for seed dispersal 

(Auldridge et al., 2006; Goff and Klee, 2006; Rodríguez et al., 2013). 

Upon wounding, plant responses to biotic stresses are orchestrated locally and 

systemically by signaling molecules. Among these molecules, the jasmonates regulate 

defenses against arthropod herbivores and necrotroph fungal pathogens as well as biotrophic 

pathogens, such as some mildews (Ellis and Turner, 2001; Stintzi et al., 2001; Kessler et al., 
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2004; Li et al., 2005; Wasternack, 2007; Browse and Howe, 2008). In addition to jasmonates, 

molecules such as salicylic acid (SA) and ethylene (ET) are major synergistic or antagonistic 

regulators of plant innate immunity. Plants produce a specific blend of these alarm signals after 

pathogen or pest attacks and the production of these alarm signals vary greatly in quantity, 

composition and timing. These signals activate differential sets of defense-related genes that 

eventually determine the nature of the defense response against the attacker (Reymond and 

Farmer, 1998; Rojo et al., 2003; De Vos et al., 2005). All genes that encode enzymes involved 

in the biosynthesis of jasmonates are jasmonic acid (JA)-inducible (Wasternack, 2006), 

indicating that JA biosynthesis is regulated by positive feedback. The precursor for the 

biosynthesis of JA is α-linolenic acid. The activity of the 13-lipoxygenase (LOX), allene oxide 

synthase (AOS) and allene oxide cyclase (AOC) enzymes converts α-linolenic acid to cis-(+)-

12-oxophytodienoic acid (OPDA). OPDA reductase 3 (OPR3) catalyzes the reduction of OPDA 

(and dinor-OPDA) to oxo-pentenyl-cycloheptane-octanoic acid (OPC-8), which, in turn, 

undergoes three rounds of β-oxidation leading to jasmonyl-CoA (JA-CoA) formation. JA-CoA is 

then cleaved by a putative thioesterase yielding (+)-7-iso-JA, which equilibrates to the more 

stable (-)-JA (Wasternack and Kombrink, 2010). 

The exogenous application of jasmonates on plants and the existence of mutant and/or 

transgenic plants that are altered in JA biosynthesis or signaling have led to altered 

susceptibility or resistance to pathogens. For example, Arabidopsis mutants defective in JA 

perception (e.g. coi1) or biosynthesis (e.g. aos and dad1) are susceptible to pathogen infections 

(Feys et al., 1994; Xie et al., 1998; Park et al., 2002; Turner et al., 2002). In contrast, mutants 

(e.g., cev1, ap2c1) with constitutive or wound-induced activation of the JA pathway exhibit 

enhanced resistance to fungal pathogens and pests and phenotypes characteristic of JA-treated 

plants (Ellis and Turner, 2001; Ellis et al., 2002; Schweighofer et al., 2007). Impaired JA 

biosynthesis or signaling is generally associated with decreased levels of defensive 

compounds, including VOCs, and reduced plant biomass and/or fitness under insect attack 

(Howe et al., 1996; Halitschke and Baldwin, 2004).  

Sweet orange (Citrus sinensis (L) Osb.) is a perennial tree species that is exposed to 

recurrent biotic and abiotic challenges during its decades of growth in orchards. Orange fruits 

undergo a non-climacteric maturation process in which the biochemistry, physiology and 

structure of the organ are altered to complete the release of mature seeds. These changes 

typically include fruit growth and texture modification; color change through the degradation of 

chlorophylls and a parallel induction of carotenogenesis in the peel (flavedo) and pulp; flavonoid 

accumulation in the pulp; increases and decreases in the sugar and acid contents, respectively; 

and global accumulation and selective emission of volatile terpenoids (Spiegel-Roy and 

Goldschmidt, 1996). In nature, D-limonene accumulates gradually in the oil glands of the peel 

during fruit development and reaches its maximum level shortly before the breaker stage; 

followed by a steady decline during maturation (Attaway et al., 1967; Kekelidze et al., 1989; 

Rodríguez et al., 2011b). The high amount of D-limonene that accumulates in orange peels has 
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a tremendous metabolic cost, suggesting an important biological role for this terpene and other 

related compounds in the interactions between fruits and the biotic environment. 

Previously, we examined the biological role of D-limonene, by manipulating oil gland 

chemistry via the antisense overexpression of a D-limonene synthase gene from Satsuma 

mandarin in orange fruits. Compared to empty vector (EV) controls, fruit peels from antisense 

transformants (AS) showed a dramatic reduction in D-limonene accumulation; decreased levels 

of other monoterpenes, sesquiterpenes and monoterpene aldehydes; and increased levels of 

monoterpene alcohols. When challenged with the necrotroph fungus Penicillium digitatum 

(Pers.:Fr.), the causal agent of green mold rot, AS-transformed fruits were highly resistant to 

fungal infection. Because full susceptibility to P. digitatum infection was restored when AS fruits 

were supplemented with D-limonene but not other monoterpene alcohols, indicating that D-

limonene accumulation in the orange peel was required for the successful progress of this plant-

pathogen interaction (Rodríguez et al., 2011a; Rodríguez et al., 2011b). Green mold rot is the 

most important postharvest disease of citrus fruit worldwide, accounting for up to 60-80% of 

total losses during postharvest life of the fruit. P. digitatum is considered to be a specialist 

pathogen of citrus fruits that efficiently infects the peel through injuries in which ubiquitous 

fungal spores germinate and rapidly colonize the surrounding areas (Droby et al., 2008). The 

control of this pathogen relies heavily on the use of synthetic chemicals, but concerns regarding 

their potential negative effects on human health and also the generation of fungicide-resistant 

strains has encouraged finding alternatives, such as the generation of citrus trees with fruits that 

are genetically resistant to the pathogen. 

In this work, to better understand the mechanism underlying the constitutive resistance 

to P. digitatum conferred by the reduction of limonene in AS orange fruits, we analyzed the 

pattern of fruit growth and the morphological and biochemical developmental characteristics, 

and performed a global analysis of gene expression using a 20K citrus microarray. The study is 

supplemented by examining the possible involvement of key hormone signals such as those 

eliciting JA accumulation in the fruit peel. We report here the reduced level of D-limonene in AS 

fruits is tightly associated with the constitutive activation of defense response signaling 

cascades and the accumulation of JA rapidly after inoculation. Together, our results establish 

for the first time a correlation between increased volatile terpene content and the decline of JA-

mediated defense responses in a fleshy fruit during maturation, which would facilitate 

necrotroph fungal infections in citrus fruits. 

 

Results 
 

Downregulation of a D-limonene synthase gene leads to fungal 
resistance in the flavedo of transgenic orange fruits 

 
It is generally accepted that flavedo of Citrus fruit is the entrance for fungal colonization 

and offer higher resistance to P. digitatum infection than the albedo (inner white area without oil 
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glands) (Kavanagh and Wood, 1967; Ballester et al., 2006). To examine the contribution of 

flavedo terpenes and the albedo to the susceptibility of orange fruit to infection, the flavedo of 

orange fruits was partially peeled off and the remaining fruit was left on the bench at room 

temperature to facilitate the germination of ubiquitous fungal spores. Whereas EV control fruits 

were infected by several fungi by the third day after peeling, samples from AS3 and AS7 

antisense lines became infected to a much lower extent by the seventh day. This experiment 

was repeated monthly from August to December over two consecutive fruiting seasons with 

identical results that were independent of the developmental stage of the fruit (Supplemental 

Fig. S1) and the orange cultivar tested (Navelina, Fig. 1; Pineapple, results not shown). During 

the first week after peeling, fungal infection was exclusively restricted to wounded flavedo areas 

(Fig. 1A and B), and resistance was linked to very low D-limonene levels in the oil glands of AS 

transformants (Fig. 1C and D, Supplemental Table SI). The infecting fungi were morphologically 

identified as P. digitatum, P. italicum and Aspergillus sp. (Fig. 1E to H). Therefore, D-limonene 

and related terpenes produced in the flavedo of EV control fruits appeared to act as the primary 

inducers of fungal germination and growth (see also Rodríguez et al., 2011b). 

 

Morphological and biochemical characteristics of the orange fruit 
flavedo were not altered in transformants showing constitutive 
downregulation of the D-limonene synthase gene 

 

D-limonene accounts for approximately 97% of the total terpenes in oil glands from the 

flavedo of orange fruit (Dugo and Di Giacomo, 2002). To assess whether changes in D-

limonene and other mono- and sesquiterpenoid accumulation in AS vs. EV transgenic fruits 

(Rodríguez et al., 2011b) could have affected peel morphology, the number and size of oil 

glands in green and mature flavedo from transgenic Navelina and Pineapple oranges were 

determined. As shown in Fig. 2A and B, as well as Supplemental Fig. S2A and B, oil glands 

increased in size as fruit grows, but they were comparable in number and diameter in AS and 

EV fruits. Moreover, peel thickness was also similar between AS and EV samples at the 

different developmental stages that were analyzed (Fig. 2C and Supplemental Fig. S2C).  
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Figure 1. Fungal infection in partially peeled D-limonene transgenic (AS) and EV control fruits. (A, B) Disease incidence 

at five days after peeling in EV lines compared to AS lines in green (A) and mature (B) fruits. (C, D) The relative amount 

of individual terpenes is presented as a percentage area (given as a fraction of unity) of each terpene with respect to the 

total terpene peak area for monoterpene hydrocarbons in the EV line, which was assigned an arbitrary value of one in 

green (C) and mature (D) flavedo. Data represent mean values ± s.e.m. and are derived from at least five fruits per plant. 

(E, F) Magnification of fruits in EV (E) and AS7 lines (F). The red arrows indicate flavedo-infected zones of EV fruit. (G, H) 

Microscopic identification of fungi-infected fruits. Images shown are light micrographs of Aspergillus sp. (G) at 20x 

magnification and Penicillium sp. (H) at 40x magnification. Scale bars indicate 100 mm and 50 mm, respectively. 
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We then tested whether the transgenic manipulation of monoterpene biosynthesis in 

fruits may have induced a metabolic diversion and affected the levels of other related 

isoprenoids that share common precursors, particularly those important during the development 

of orange fruit, such as chlorophylls or carotenoids (Supplemental Fig. S3). Chlorophyll and 

total carotenoid contents in EV control green and mature flavedo from Navelina oranges were 

similar to those found in AS7 and AS3 flavedo (Fig. 3). The degreening of the fruits followed the 

same pattern in AS and EV control lines (Supplemental Fig. S1). Chlorophyll and carotenoid 

values were also similar in EV and AS fruits from the Pineapple orange (Supplemental Fig. S4). 

In addition, the percentage of individual xanthophylls and carotenes remained at nearly the 

same level in both EV and AS lines (Supplemental Fig. S5). Taken together, these results 

confirmed that fruit growth and development were not substantially altered by the drastic 

changes in monoterpene accumulation; thus, other factors must be responsible for the 

increased disease resistance found in the peel of D-limonene antisense plants. 

 
 

 
 
Figure 2. Characteristics of green (70 mm diameter) and mature (90 mm diameter) flavedo in antisense (AS) and 

control (EV) Navelina sweet orange plants. (A, B) Secretory oil gland number and size in green and mature flavedo. 

(C) Peel thickness in mature fruits. No significant differences were found at P < 0.05 using Fisher’s Protected LSD 

test at each stage. (D) The relative amount of individual terpenes is presented as a percentage area (given as a 

fraction of unity) of each terpene with respect to the total terpene peak area for monoterpene hydrocarbons in the 

EV line, which was assigned an arbitrary value of one in the mature flavedo. Data represent mean values ± s.e.m. 

and are derived from at least five fruits per plant. 
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D-limonene downregulation induced the expression of genes 
involved in the innate immune response against pathogens 

 
To understand the mechanisms underlying the induced resistance of AS orange fruits to 

P. digitatum and other fungi, large-scale gene expression analysis was carried out using a 20k 

citrus cDNA microarray (Martinez-Godoy et al., 2008). Using intact mature flavedo tissue, gene 

expression in the AS3 and AS7 lines was compared to that of two independent EV control lines. 

The ectopic upregulation or downregulation of genes involved in eliciting defense responses 

against herbivores and plant pests usually results in phenotypic aberrations because such 

genes are also important for growth and development (Bedon et al., 2010; Kallenbach et al., 

2010; Yang et al., 2012). As AS orange plants and fruits were visually indistinguishable from EV 

controls, we hypothesized that the impact of D-limonene synthase downregulation on the 

general transcript profile would not be very high quantitatively. Then, common genes from both 

AS lines showing at least a 1.6-fold expression change vs. EV lines were identified as 

 
 
Figure 3. Total chlorophyll and carotenoid content in green and mature flavedo of Navelina sweet orange plants. No 

chlorophyll was detected in the flavedo of mature fruits. Data represent mean values ± s.e.m. and are derived from at 

least ten fruits per plant. No significant differences were found at P < 0.05 using Fisher’s Protected LSD test in each 

stage. 
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differentially expressed (Table I). We found differential gene expression in the AS3 line, with 

82.9% of genes upregulated (Supplemental Table SIIA). Among the genes deregulated in the 

AS7 line, 93% were upregulated (Supplemental Table SIIB). To elucidate key processes that 

were altered in AS fruits, functional enrichment categories were searched for the full robust set 

of differentially expressed genes (Fig. 4, schematic representation of the full figure). Based on 

gene ontology (GO) terms, the genes downregulated in the flavedo of AS fruits were primarily 

involved in biological processes associated with secondary metabolism (Fig. 4). Antisense 

downregulation of the D-limonene synthase gene was found to reduce the transcription of nine 

genes, of which four encode enzymes that would be required for volatile terpenoid biosynthesis, 

such as a monoterpene (R)-limonene synthase gene and a putative germacrene-D synthase 

gene whose expression was reduced four-fold in the AS vs. EV samples in the microarray 

analysis (Fig. 5A) and ten- and five-fold in qRT-PCR analyses, respectively, in the AS3 line 

(Supplemental Fig. S6).  

 
Table I. Common genes differentially expressed genes in the intact mature flavedo of two independent transgenic AS 

Navelina sweet orange plants (vs. EV plants). 

 
UP-REGULATED GENES 
 

Description Citrus unigene 
AS3 
fold-

change  

AS7 
fold-

change 
Most similar Ath 

gene 
 
Defense response 
 

Cyclic nucleotide regulated ion channel 
(CNGC2) 

aC32102F03EF_c 2.03 1.88 AT5G15410 

Cyclic nucleotide regulated ion channel 
(CNGC2) 

aCL5832Contig1 3.60 2.90 AT5G15410 

Disease resistance protein (NBS-LRR 
class) 

aCL5233Contig1 1.75 2.12 AT3G14460 

Harpin-induced family protein 
(YLS9)/HIN1 family protein 

aCL2389Contig2 2.06 1.63 AT2G35980 

Nonspecific lipid transfer protein 1 (LTP1)  aCL4Contig13 3.31 3.46 AT2G38540 
Phenylalanine ammonia-lyase 1 (PAL1)  aCL1166Contig2 3.47 1.96 AT2G37040 
Protein phosphatase 2C, putative (PP2C) aCL683Contig1 2.33 3.41 AT2G30020 
Similar to zinc finger (CCCH-type) family 
protein (CZF1) 

aC31603G11EF_c 2.38 3.53 AT2G40140 

Chalcone synthase/naringenin-chalcone 
synthase 

aCL27Contig2 1.85 1.94 AT5G13930 

Encodes a member of the ERF subfamily 
B-3 of ERF/AP2 (ATERF-6) 

aCL337Contig1 1.63 3.43 AT4G17490 

R2R3-MYB family transcription factor 
(MYB73) 

aCL693Contig1 3.18 2.34 AT4G37260 

No apical meristem (NAM) family protein 
(NAC72) 

aCL35Contig5 2.02 1.99 AT4G27410 

Sodium-inducible calcium-binding protein 
(ACP1) 

aCL1345Contig2 1.75 3.97 AT5G49480 

Vacuolar processing enzyme gamma aCL554Contig1 1.62 2.11 AT4G32940 
Peptidase U7 family protein (SPPA) aCL27Contig1 1.84 1.66 AT1G73990 
Putative serine/threonine kinase SRK2F aC04002A03SK_c 1.61 1.76 AT4G40010 
Ser-thr protein kinase aCL5546Contig1 1.62 1.75 AT2G40270 

 
cellular component organization and biogenesis 
 

Eukaryotic translation initiation factor 
SUI1 

aCL1184Contig4 1.99 1.78 AT5G54940 

FAD-binding domain containing protein aCL246Contig1 4.10 2.43 AT2G34790 
Heavy-metal-associated domain-
containing protein 

aCL2730Contig1 2.21 1.67 AT4G08570 

Histone H1-3 (HIS1-3) aCL517Contig2 2.62 1.69 AT2G18050 
Peptidase S41 family protein similar to aCL7817Contig1 1.87 2.02 AT3G57680 
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PSII D1 protein processing enzyme 
Cellulose synthase family protein aCL1355Contig1 1.73 1.82 AT2G32540 

 
Other 
 

CCR4-not transcription complex protein aCL206Contig1 3.26 3.61 AT5G22250 
Strictosidine synthase family protein aC31201B02EF_c 2.09 1.90 AT3G59530 
WD-40 repeat family protein aCL6446Contig1 2.19 1.90 AT1G53090 
DC1 domain-containing protein aCL2160Contig1 1.71 1.78 AT1G60420 
Copper chaperone (CCH)-related aCL4708Contig1 1.68 1.90 AT5G63530 

 
Unknown 
 

3-oxo-5-alpha-steroid 4-dehydrogenase 
family protein 

aC01011F03SK_c 2.14 2.26 AT5G16010 

Calcium-binding protein (CML4)  aCL7914Contig1 2.09 1.71 AT1G21550 
Calmodulin aCL535Contig3 2.85 2.93 AT3G10190 
Calcium-binding EF hand family protein aCL8972Contig1 1.67 1.81 AT1G05150 
Chac-like family protein aCL283Contig1 1.71 1.91 AT4G31290 
Chac-like family protein aC05802B02SK_c 1.87 2.79 AT4G31290 
Esterase/lipase/thioesterase family 
protein 

aCL5939Contig1 2.07 1.75 AT1G54570 

Expressed protein aC08031A08SK_c 2.03 2.08 AT5G41110 
Expressed protein aCL8468Contig1 1.87 2.13 AT1G69760 
Expressed protein aCL6840Contig1 2.68 2.26 AT3G52740 
UDP-glucoronosyl/UDP glucosyl 
transferase family protein 

aC02002E10SK_c 1.87 2.04 AT3G02100 

UDP-glucoronosyl/UDP-glucosyl 
transferase family protein 

aCL5570Contig1 2.85 1.95 AT2G36970 

Remorin-like protein aCL1490Contig1 1.82 1.69 AT2G41870 
ATP-sulfurylase 1 (APS1) aCL438Contig2 1.73 1.70 AT3G22890 
No similar protein found aCL8681Contig1 5.08 2.57  
No similar protein found aC08007E01SK_c 4.64 9.66  
No similar protein found aCL50Contig2 3.38 2.56  
No similar protein found aCL1714Contig1 2.44 3.83  
No similar protein found aC03007D01SK_c 2.39 1.87  
No similar protein found aCL101Contig2 2.28 1.65  
No similar protein found aC08007C02SK_c 2.24 1.99  
No similar protein found aC31006C04EF_c 2.13 1.84  
No similar protein found aC31206E07EF_c 2.08 1.86  
No similar protein found aCL4787Contig1 2.06 1.83  
No similar protein found aC31807H02EF_c 2.03 2.09  
No similar protein found aC31305G08EF_c 1.97 1.97  
No similar protein found aC19003E02T7_c 1.90 1.82  
No similar protein found aCL2819Contig1 1.85 2.80  
No similar protein found aC18001E11Rv_c 1.66 1.94  
No similar protein found aC19006C07T7_c 1.61 2.62  

     

DOWN-REGULATED GENES 
 

Description Citrus unigene 
AS3 
fold-

change  

AS7 
fold-

change  
Most similar Ath 

gene 
 
Secondary metabolic process 
 

ATTPS-CIN | Encodes the monoterpene 
1,8-cineole synthase. Highly similar to (R)-
limonene synthase 1 

aC02013A08SK_c -4.65 -4.68 AT3G25820 

ATTPS-CIN | Encodes the monoterpene 
1,8-cineole synthase. Highly similar to (R)-
limonene synthase 1  

aCL2450Contig1 -3.48 -3.12 AT3G25820 

Encodes a sesquiterpene synthase 
(germacrene-D synthase) 

aCL4874Contig1 -4.03 -5.48 AT5G23960 

Flavonol 3-O-methyltransferase 1 / Caffeic 
acid 

aCL38Contig8 -3.01 -2.41 AT5G54160 

 
cellular component organization and biogenesis 
 
 
 

TIP1;3 | major intrinsic family protein / 
MIP family protein. Aquaporin 

aCL824Contig2 -1.94 
 

-2.40 
 

AT4G01470 
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Unknown 
 

Alcohol dehydrogenase aC34109F01EF_c -2.27 -2.20 AT5G42250 
O-methyltransferase family 2 protein, 
similar to caffeic acid O-
methyltransferase 

aCL3052Contig1 -1.82 -2.27 AT4G35160 

O-methyltransferase family 2 protein, 
similar to caffeic acid O-
methyltransferase 

aCL4905Contig1 -1.72 -2.32 AT4G35160 

F4H5.19 protein aC20001E01SK_c -3.55 -3.13 AT1G06720 
     

 

 

Conversely, the biological processes that were over-represented in the AS flavedo 

compared with the EV controls were primarily associated with defense responses against biotic 

stresses, including defense responses to fungus and bacteria and the response to wounding 

(Fig. 4, schematic representation of the full figure). Fatiscan analysis allowed us to perceive a 

clear connection between the downregulation of secondary metabolism and upregulation of the 

response to biotic stresses at a global level. At least half of the 58 upregulated genes in both AS 

 
 
Figure 4. Antisense downregulation of the D-limonene synthase gene causes the downregulation of genes required for 

monoterpenoid biosynthesis and the upregulation of genes related to different defense responses in plants. A 

hierarchical view of gene ontology (GO) biological categories significantly deregulated in the intact flavedo of AS7 plants 

compared with EV control plants. Significant categories (adjusted P < 0.05) are shown using color scaling according to 

their significance level and to up- (red) or down-regulation (blue). Other categories required to complete the hierarchy 

are shown in white. A similar graph was obtained for AS3 plants. 
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lines were related to defense. Most of the other upregulated genes had unknown functions or 

did not match any known protein-coding gene in the databases. Increases in cytoplasmic 

calcium mediated by calcium influx (Nicaise et al., 2009) are critical for triggering defense 

pathways in plant cells. The expression of two cyclic nucleotide-regulated ion channel genes 

that are likely to be involved in cellular calcium entry was two to three times higher in the AS3 

and AS7 lines than in the EV lines (Fig. 5; Table I). Several genes coding for calcium-binding 

proteins, including at least one calmodulin, were also upregulated in the AS lines (Table I). This 

calmodulin-like protein gene was confirmed to be upregulated by approximately two-fold in 

further qRT-PCR analysis (Supplemental Fig. S6). Calcium signals are sensed by calcium-

dependent protein kinases (CDPK). Together with mitogen-activating protein kinases (MAPK), 

CDPK are essential elements for reprogramming transcriptional cascades that underlie the 

immune response in plants and animals (Akira et al., 2006; Boudsocq et al., 2010). Although 

putative CDPK genes, such as homologs of CDPK19 or CPK7, and MAPK genes, such as a 

homolog of MPK3 or MKK9, were found to be slightly upregulated (more than 1.5-fold) in one of 

the AS lines (Fig. 5; Supplemental Tables SIIA and SIIB). The citrus homolog of the early 

response YLS9 gene (also known as NHL10) (Zipfel et al., 2004) was found to be upregulated 

approximately two-fold in AS3 and AS7 fruits (Table I). It has also been shown that several 

CPKs strongly induce YLS9 (Boudsocq et al., 2010). Our results indicate that defense cascades 

were activated in terpene-downregulated orange fruits. Moreover, a putative protein 

phosphatase 2C gene that directly regulates several MAPKs (Schweighofer et al., 2007) was 

found to be strongly induced (by three-fold) in both AS lines (Fig. 5B; Table I). 

The target genes of these signaling cascades include transcription factors (TFs) 

belonging to Zn finger (CCCH-type), MYC, ERF/AP2, MYB, WRKY and NAC family transcription 

factors, which have been associated with a suite of diverse mechanism leading to defense 

responses (Fujita et al., 2006) and were found to be upregulated in both AS lines (Fig. 5B; 

Table I; Supplemental Tables SIIA and SIIB). Citrus homologs of R2R3-MYB73 and ATERF6 

were constitutively upregulated in the flavedo of AS lines and confirmed to be upregulated by 

three- and seven-fold, respectively, by qRT-PCR analyses (Fig. 5B; Supplemental Fig. S6). 

Genes encoding putative WRKY6 and WRKY33 transcription factors were induced more than 

four- and two-fold, respectively, but this was only observed in line AS7 (Fig. 5B; Supplemental 

Table SIIB). Moreover, several “no apical meristem (NAC domain)” genes were upregulated by 

approximately two-fold in both lines (Fig. 5B; Table I; Supplemental Tables SIIA and SIIB). Most 

of these TFs have been related to the JA-mediated elicitation of secondary metabolism and 

defense (Bedon et al., 2010; De Geyter et al., 2012). 

Additionally, a large proportion of the remaining misregulated genes in either AS line or 

that were common to both of them could be linked to the phenylpropanoid biosynthetic pathway. 

Congruently, several FAD-binding domain-containing proteins were upregulated by more than 

two-fold in AS lines (Fig. 5C, Supplemental Table SII). Although homologs of CHS (Chalcone 

synthase) and PAL1 (Phenylalanine ammonia-lyase 1) genes were upregulated by 

approximately two-fold in both AS lines, several OMT1 (flavonol O-methyltransferases) 
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homologs were clearly downregulated by up to three-fold (Fig. 5C; Table I; Supplemental Table 

SII). PAL1 was confirmed to be upregulated by four- to seven-fold in qRT-PCR analyses 

(Supplemental Fig. S6). This finding is consistent with the well-known role of some of the 

upregulated TFs as positive and negative regulators of enzymes required for the biosynthesis of 

phenylpropanoids (Grotewold, 2005). 

Other defense related genes, such as LTP1 (nonspecific lipid transfer protein 1) and 

NBS-LRR (nucleotide-binding site–leucine-rich repeat), were highly induced in the AS lines 

(Table I; Supplemental Table SII). LTP1 was confirmed to be upregulated by four-fold in 

subsequent qRT-PCR analyses (Supplemental Fig. S6), suggesting its possible involvement in 

the induction of disease resistance responses in AS citrus fruits (Table I; Fig. 5B). Regarding 

cell wall organization and biogenesis, several homologs of cellulose synthase and other 

xyloglucan endotransglycosylase genes were found to be upregulated in both AS3 and AS7 

fruits (Supplemental Tables SIIA and SIIB). Genes for other enzymes putatively involved in 

starch biosynthesis or electron transport were also upregulated (Supplemental Tables SIIA and 

SIIB; Table I). Overall, these results indicate that terpene downregulation activates constitutive 

defense responses in the fruit flavedo. 
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Figure 5. Graphical representation of the genes that were differentially expressed in the flavedo of intact oranges. (A) Genes 

involved in the terpenoid metabolic process that were downregulated in transgenic orange plants. (B) Defense-related genes 

that were upregulated in transgenic orange plants. (C) Genes involved in the phenylpropanoid biosynthetic process that were 

misregulated in transgenic orange plants. Numbers in squares indicate the ratio of expression in AS fruits compared to EV 

fruits. Blank square: gene not detected. The most similar Arabidopsis thaliana gene functions are listed at the right side of the 

squares. TPS-CIN-LS: Monoterpene synthase similar to Limonene synthase; TPS21-GER: Sesquiterpene synthase similar to 

Germacrene-D synthase; TPS03-OCI: Terpene synthase similar to β-ocimene/α-pharnesene synthase; CDPKs: Calcium-

dependent protein kinases (CPK7, CDPK19, SRK2F, ORG-1); MAPKs: Mitogen-activated protein kinases (MKK9, MPK3); 

CNGC2: Cyclic nucleotide-regulated ion channel; PP2C: Protein phosphatase 2C (AP2C1); YLS9: Harpin-induced family 

protein (YLS9); Zn finger CCCH type family protein (CZF1); MYC: Basic helix-loop-helix (bHLH) protein (RAP-1); ERF/AP2: 

Ethylene response factor/AP2 domain (ATERF-6, ATERF-4); MYB: Members of the MYB family transcription factor (MYB73, 

MYB TF, MYBR2); WRKY: Members of the WRKY family transcription factor (WRKY6, WRKY33, WRKY41); NAC: No apical 

meristem (NAM) family protein (NAC72, ANAC029, ANAC002); LTP1: Nonspecific lipid transfer protein 1; FAD: Flavin 

adenine dinucleotide-binding proteins (MEE23, FAD-binding); CHS: Chalcone synthase; PAL1: Phenylalanine ammonia-lyase 

1; Flavonol 3-O-methyltransferase (OMT1). 
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Downregulation of D-limonene and related terpenes triggered the 
accumulation of JA in orange peels upon fungal inoculation 

 
Because the upregulation of specific TFs such as those described above has been 

linked to wound-, pathogen- and herbivore-induced JA accumulation, JA, together with SA and 

ABA levels, were quantified in the flavedo of AS and EV lines before and after inoculation with 

P. digitatum to assess whether these defense signaling molecules were activated or repressed 

by D-limonene downregulation. Whereas low levels of JA were observed in AS fruits before 

fungal inoculation (compared to EV controls), an approximately 7- to 20-fold increase in JA 

content was observed in AS flavedo 2 h after wounding (from 45 to 327 ng/g FW in the AS3 line 

and from 15 to 323 ng/g FW in the AS7 line) (Fig. 6A), reaching levels higher than those of 

flavedo of EV controls. A small decrease in JA levels was observed in the EV control samples 

after wounding (from 252 to 170 ng/g FW), indicating that fungal infection have a minimal effect 

on JA levels in these fruits. Moreover, the EV controls accumulated less JA than the AS 

samples after fungal inoculation (Fig. 6A), indicating that Penicillium infection enhanced JA 

content in AS fruits. These results were consistent in different independent transgenic lines over 

several months of two consecutive fruiting seasons (Supplemental Fig. S7). Our results 

suggested that the downregulation of D-limonene and related terpenes in AS fruits induced the 

accumulation of JA upon inoculation, which was the most likely in vivo regulator of resistance 

against necrotroph fungi in AS orange fruits. Conversely, high D-limonene contents in EV fruits 

might be related to the lack or depletion of jasmonate-mediated defense responses. 

The SA content was constitutively low in all samples but increased in the flavedo of both 

AS and EV lines 2 h after inoculation; however, SA reached much higher levels in EV samples 

(nine-fold) compared to AS samples (six-fold in AS3) (Fig. 6B). The attenuated increases of SA 

in AS samples observed upon inoculation may be related to the inhibitory effect of JA, as 

antagonistic interactions between these two compounds are common and well documented in 

plants (Glazebrook, 2005). ABA levels were slightly reduced in AS samples when compared 

with EV controls, although they were strongly decreased in all samples after inoculation (Fig. 

6C). These results might be better explained by the crosstalk of ABA with JA and/or SA 

signaling pathways and may not be directly related to constitutive monoterpene downregulation 

(Anderson et al., 2004; Flors et al., 2008). 
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The AS fruit response to fungal challenge inoculation mimics the 

exogenous application of JA to regular fruit resulting in protection against 
P. digitatum and the upregulation of genes of the JA biosynthesis and 
signaling pathways 

 
Pretreatment of plants with exogenous jasmonates such as methyl jasmonate or JA has 

been shown to induce protection against different necrotroph pathogens in many plants, 

including Arabidopsis and grapefruit (Citrus paradisi Macf.) (Thomma et al., 1998; Droby et al., 

1999). To examine the effect of the exogenous application of JA on induced resistance in citrus  

 
 
Figure 6. Phytohormone measurement in the flavedo of AS transgenic and EV control plants. The content of jasmonic acid 

(A, JA), salicylic acid (B, SA) and abscisic acid (C, ABA) were measured before (0 h) and after (2 h) fungal inoculation. 

Data represent mean values ± s.e.m. and are derived from at least six fruits per plant. Different letters indicate significant 

differences at P < 0.05 using Fisher’s Protected LSD test. 
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fruits, ordinary untransformed Navelina oranges and clementine mandarins were wounded, and 

either water (W) or JA were immediately applied to the wounds, and then fruits were inoculated 

with P. digitatum. Pretreatment with JA conferred significant levels of induced resistance, as 

shown by the reduced percentage of infection in pretreated fruits three and four days after 

challenge inoculation (Fig. 7; Supplemental Fig. S8). 

 

To verify that the observed resistance was directly related to the application of JA, the 

upregulation of several genes of the JA biosynthesis (such as sweet orange homologs of LOX, 

AOS and AOC) and signaling (such as sweet orange homologs of COI1, MYC2 and PDF1.2) 

pathways was analyzed by qRT-PCR in AS and EV fruits before and after fungal inoculation. 

Transcript levels of AOS, coding for the bottleneck enzyme of the pathway (Schaller, 2001), 

were rapidly induced in both “inoculated + W” and “inoculated + JA” samples 2 h after 

treatment; but levels of AOS transcripts were much higher in JA- than in W-treated plants (6.8- 

vs. 3.1-fold changes, respectively) (Fig. 8A), indicating that exogenous application of JA 

positively boosted JA biosynthesis. Among TFs acting downstream of JA in the stress 

responses, the bHLHzip-type transcription factor AtMYC2, a master switch in JA signaling, is 

essential regulating networks that modulate phytohormone and secondary metabolism in plants 

(De Geyter et al., 2012; Wasternack and Hause, 2013). Additionally, AtMYC2 negatively 

 
 

Figure 7. Exogenous application of jasmonic acid (JA) in the control orange plants confers fungal resistance. (A, B) 

Evolution of the disease caused by the fungus Penicillium digitatum in mature orange fruits inoculated with 1×105 

spores mL-1 and treated with water (W) or jasmonic acid (JA). (A) Percentage of infected wounds in inoculated points 

three and four days after inoculation. The results are the average ± s.e.m. (n ≥ 19). dpi: days post-inoculation. *, P < 

0.05 using Student’s t-test. We repeated all experiments at least twice and obtained similar results. (B) Control fruits 

four days after inoculation. 
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regulates the defensin gene PDF1.2 (Lorenzo et al., 2004). The sweet orange homolog of 

MYC2 was upregulated in JA-treated samples whereas PDF1.2 was downregulated in both W- 

and JA- treated fruits. No differences were found in the relative expression of the other genes 

analyzed (Fig. 8A). 

Next, we investigated whether such genes were misregulated in the transgenic AS vs. 

EV control fruits. Before inoculation with P. digitatum, most genes of the JA pathway showed 

only slight, non-significant differences in expression, which was consistent with the microarray 

data. Significant downregulation was found only in the case of the PDF1.2 gene in AS7 (Fig. 

8B). One explanation for the discrepancy in basal JA accumulation (but not JA pathway gene 

expression) between AS and EV fruits is likely related to the post-transcriptional or post-

translational modification of certain enzymes in the JA biosynthesis pathway, affecting enzyme 

abundance and/or activity (Yang et al., 2012). 

After inoculation with P. digitatum, AS samples showed a marked AOS activation (6.1- 

and 5.9-fold changes in AS3 and AS7, respectively), an increase in MYC2 expression (1.8- and 

2.3-fold change) and a slight decrease in PDF1.2 expression, similar values to those found in 

JA-treated untransformed fruits (Fig. 8C). Collectively, the upregulation of JA biosynthetic and 

signaling genes and the drastically increased JA levels upon inoculation mostly explain the 

resistant phenotype shown by AS fruits against fungal infection.  

To assess whether the upregulation of JA metabolism upon challenge inoculation 

altered isoprenoid pathways in both JA-treated and AS fruits, the expression of sweet orange 

homologs of 1-deoxyxylulose 5-phosphate synthase (DXS), geranylgeranyl diphosphate 

synthase (GGDP), geranyl diphosphate synthase (GDP) and farnesyl diphosphate synthase 

(FDP) was analyzed by qRT-PCR in “inoculated + W” and “inoculated + JA” EV fruits and in EV 

vs. AS fruits before and after fungal challenge. Inoculation upregulated GGDP in control fruits, 

but JA application enhanced this effect (Fig. 9A). This gene was constitutively upregulated in 

AS7 but not in AS3 compared to EV control samples (Fig. 9B), but it was 2 h after inoculation 

when its expression dramatically increased, by more than ten-fold, in both AS lines (Fig. 9C). 
No significant differences were found in the expression of the other prenyl transferase genes in 

JA-treated and in transgenic AS fruits either exposed or not exposed to fungal challenge when 

compared to corresponding controls (Fig. 9A to C). Therefore, enhanced JA perception and 

signaling in AS fruits upon inoculation additionally triggered alterations in the expression of 

GGDP and likely in isoprenoid metabolism. 
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Figure 8. Quantitative real-time PCR analyses of genes involved in jasmonic acid (JA) biosynthesis (sweet orange 

homologs of LOX, AOS and AOC) and signaling (sweet orange homologs of COI1, MYC2 and PDF1.2) before and after 

fungal challenge inoculation. Differential expression of these genes in regular untransformed fruits without (C+W-2h) or 

with application of JA (C+JA-2h) (A) and in different independent transgenic lines without application of JA (B, C) was 

measured before (0 h) and after (2 h) Penicillium digitatum inoculation. Expression of each gene was analyzed in at 

least 12 independent technical replicates using four different 96-well plates. Fold-change was calculated in relation to 

two independent regular and EV control lines before inoculation, to which an arbitrary value of one was assigned. 

Different letters indicate significant differences in the expression of each gene at P < 0.05 using Fisher’s Protected LSD 

test. LOX, Lipoxygenase; AOS, Allene oxide synthase; AOC, Allene oxide cyclase; COI1, Coronatine-insensitive 1; 

MYC2, bHLHzip-type transcription factor; PDF1.2, Defensin-like gene. 
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Discussion 
 

Terpenoids are ecologically important molecules (Degenhardt et al., 2003) due to 

various properties such as their volatility, flavor/aroma and toxicity, which give them important 

roles in plant defense, plant-to-plant communication and pollinator attraction (Pichersky and 

Gershenzon, 2002). Transgenic plants with modified terpenoid production can contribute to 

fundamental studies aimed to understand their function in plant/environment relationships 

 
 
Figure 9. Quantitative real-time PCR analyses of genes involved in terpenoid biosynthesis (sweet orange homologs 

of DXS, GGDP, GDP and FDP) before and after fungal challenge inoculation. Differential expression of these genes 

in regular untransformed fruits without (C+W-2h) or with application of jasmonic acid (JA) (C+JA-2h) (A) and in 

different independent transgenic lines without application of JA (B, C) was measured before (0 h) and after (2 h) 

Penicillium digitatum inoculation. Expression of each gene was analyzed in at least 12 independent technical 

replicates using four different 96-well plates. Fold-change was calculated in relation to two independent regular and 

EV control lines before inoculation, to which an arbitrary value of one was assigned. Different letters indicate 

significant differences in the expression of each gene at P < 0.05 using Fisher’s Protected LSD test. DXS, 1-

deoxyxylulose 5-phosphate synthase; GDP, Geranyl diphosphate synthase; FDP, Farnesyl diphosphate synthase; 

GGDP, Geranylgeranyl diphosphate synthase. 
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(Aharoni et al., 2005). In a previous study, we showed that the transgenic downregulation of a 

D-limonene synthase gene led to a dramatic reduction in the levels of D-limonene and other 

monoterpene and sesquiterpene hydrocarbons whereas monoterpene alcohols, such as nerol 

or citronellol, were substantially increased. Consequently, fruits were more resistant to P. 

digitatum and bacterial pathogens (Rodríguez et al., 2011a; Rodríguez et al., 2011b). 

Resistance to P. digitatum was related to D-limonene down-regulation and not to the increased 

accumulation of monoterpene alcohols, as in vitro assays with pure (+)-limonene, nerol or 

citronellol showed that these compounds were not toxic to the fungus but, instead, had a 

pronounced stimulatory effect on the germination of P. digitatum spores that was directly related 

to the concentration of the pure compound used. 

Microarray-mediated transcriptional profiling has been successful in identifying 

constitutively activated defense signaling pathways in the flavedo of AS citrus fruit potentially 

related to the increased fungal resistance. Characteristic CDPK and MAPK cascades were 

upregulated in AS samples in addition to early response and protein phosphatase kinase 

targets (Asai et al., 2002; Boudsocq et al., 2010) that phosphorylate TFs belonging to the R2R3-

MYB, MYC, WRKY, ERF/AP2 and NAC domains, and the Zn finger (CCCH-type) families, 

which likely participate in defense (Wang et al., 2008; Guo et al., 2009; Birkenbihl and 

Somssich, 2011; De Geyter et al., 2012). Recently, many of these TFs, often JA-activated 

themselves, have been related to the JA-modulated regulation of defense and elicitation of 

secondary metabolism. For example, the homolog MYB14 (as well as other members of the 

R2R3-MYB TF family with a conserved EAR motif) is activated in the conifer trees Picea glauca 

(white spruce) and Pinus taeda (loblolly pine) after JA application (or wounding when 

overexpressed transgenically) and contributes to the accumulation of terpenoids and broad 

defense responses (Bedon et al., 2010). WRKY33, a JA- or pathogen-inducible TF, is required 

for the MPK3/MPK6-induction of biosynthesis of the major defense compound camalexin in 

Arabidopsis thaliana (Mao et al., 2011), and the silencing of WRKY3 or WRKY6 generates 

plants highly vulnerable to herbivores by impairing JA accumulation and the synthesis of 

sesquiterpene volatiles in Nicotiana attenuata (Skibbe et al., 2008). 

Microarray results suggested that the coordinated upregulation of these TFs together 

with Ca2+ entry into the cell and activation of MAPK cascades could contribute to defense of 

orange fruits against fungal infection through the activation of the JA metabolism (Wasternack 

and Hause, 2013). Consistent with these results, the accumulation of JA and transcripts 

encoding the sweet orange homologs of AOS and MYC2 dramatically increased in AS fruits 

after inoculation with P. digitatum, mimicking the response of untransformed orange fruits to JA 

treatment. Although almost all enzymes involved in the biosynthesis pathway of JA have been 

identified and characterized, the signaling pathways regulating the production of JA remain 

largely unknown (Yang et al., 2012). For example, in Arabidopsis the expression of AOS is 

activated by a variety of signals, including wounding, JA, OPDA and SA, and the regulation of 

the expression of the AOS protein exerts a major control on JA signaling (Laudert and Weiler, 

1998). However, the overexpression of Arabidopsis AOS in transgenic Arabidopsis and tobacco 



Results: Chapter 3 

103 
 

plants did not alter the basal level of JA. These transgenic plants produced higher levels of JA 

only after wounding when compared to wounded, untransformed plants, suggesting that the 

accumulation of AOS might be a way of controlling defense responses when actually required, 

at least in these plants (Laudert et al., 2000). It might also be possible that plants counter-

regulates the production of higher amounts of these signaling molecules through yet unknown 

mechanisms. Regarding MYC2, AtMYC2, together with AtMYC3 and AtMYC4, activates JA 

responses in Arabidopsis (Fernández-Calvo et al., 2011). Nevertheless, the overexpression of 

AtMYC2 does not promote a constitutive response to JA in the absence of the hormonal signal, 

suggesting that additional JA-regulated factors cooperate with AtMYC2 in the activation of the 

responses to this hormone (Lorenzo et al., 2004). Additionally, AtMYC2 plays a central role in 

priming against pathogens during induced systemic resistance (Stein et al., 2008). In orange 

fruits, D-limonene downregulation was not accompanied by massive constitutive changes in the 

transcriptomic profile. Instead, it seems that mild induction of defense-related genes was able to 

prime fruits for JA-mediated defense upon challenge inoculation. Defense responses are vital 

but costly for the plant. Thus, plants may activate different inducible mechanisms depending on 

the attacker rather than maintaining them continuously. These mechanisms are subjected to 

tight regulation because their rapid activation may be vital for a successful defense (Pozo et al., 

2004; De Geyter et al., 2012). One of these inducible mechanisms involves the accumulation of 

JAs that play a major role in basal and induced resistance against necrotroph pathogens in 

addition to their role in plant-herbivore interactions. The JA signal needs to persist as long as 

the plant is under attack. However, multiple regulatory mechanisms have been also developed 

to keep such energy-consuming responses silent under normal conditions (Glazebrook, 2005; 

Wasternack, 2007). Such a precise modulation of JA-mediated defense responses seems to be 

modulated by the D-limonene accumulated in oil glands of orange fruits. 

A second mechanism by which D-limonene downregulation may activate defenses 

against pathogens is through the upregulation of disease resistance/LRR protein genes family 

(Chen et al., 2002) or other genes that code for proteins that are either antimicrobial themselves 

or that catalyze the production of antimicrobial compounds such as LTP1, which was 

upregulated in AS lines and is predicted to be a member of the PR-14 pathogenesis-related 

protein family. Various LTPs have been shown to have in vitro antimicrobial activity against 

fungi and bacteria (Sels et al., 2008). LTP1 is localized in the cell wall and binds calmodulin in a 

Ca2+-independent manner (Thoma et al., 1994; Wang et al., 2004). The endogenous 

overexpression of three LTP-like genes in A. thaliana resulted in enhanced tolerance to Botrytis 

cinerea (Chassot et al., 2007). Moreover, transgenic A. thaliana plants overexpressing a barley 

LTP1 gene exhibited enhanced resistance against Pseudomonas syringae pv. tomato and B. 

cinerea (Jung et al., 2005). 

To understand the basis of the induction of resistance against P. digitatum in citrus 

fruits, Ballester et al. (2011) using a 12K citrus cDNA microarray studied transcriptional changes 

in elicited fruits. Elicitation consisted of inoculation with the fungus followed by a curing 

treatment one day later (37 ºC for three days with high RH) that strongly reduced the incidence 
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of green mold in oranges. Several days after infection, the most highly induced genes belonged 

to the phenylpropanoid and ET pathways. Although wounding, infection and successive curing 

treatments would likely cause the upregulation of many stress-responsive genes, including 

those from both pathways, the expression of PAL1, the first gene in the phenylpropanoid 

pathway, was consistently increased in elicited fruits along with other downstream genes. We 

show here that some genes of the phenylpropanoid pathway, such as PAL1, together with CHS, 

were constitutively activated in the flavedo of D-limonene AS fruits before inoculation with P. 

digitatum. Other putative genes of the pathway, such as C4H, CAD and REF8, were also 

slightly (approximately 1.5-fold) upregulated in our transcriptional profiling analyses, although 

several O-methyltransferases were downregulated in the case of AS fruits. Elicited and AS fruits 

showed altered phenylpropanoid biosynthetic pathways. However, elicitation and curing had no 

effects on JA metabolism, suggesting that enhanced JA levels and signaling in AS fruits upon 

inoculation were a direct consequence of drastic changes in monoterpene levels and the 

constitutive induction of defense responses that primed the fruits for resistance.  

Transgenic plants with constitutive changes in terpenoid or JA production often present 

altered phenotypes compared to their corresponding wild-type counterparts (Estévez et al., 

2001; Aharoni et al., 2003; Glazebrook, 2005; Wu et al., 2006). One possible explanation for the 

growth retardation phenotype in these transgenic lines is the depletion of the precursors, which 

may lead to reductions in the levels of essential compounds. These compounds include growth 

regulators and other vital components such as carotenoids, chlorophyll and quinones. However, 

transgenic orange fruits with strong D-limonene synthase downregulation did not exhibit growth 

retardation or changes in chlorophyll/carotenoid levels when compared to control fruits. Oil 

gland and peel morphology were also not affected by the drastic reduction of D-limonene levels 

in AS peels. Congruently, prenyl transferase genes were not consistently misregulated in AS 

fruits before fungal challenge inoculation. These results indicate that in orange fruits, neither a 

reduction in D-limonene nor its metabolic consequences caused morphological alterations or 

other pleiotropic effects. In the same sense, the constitutive upregulation of TFs, such as MYBs 

or WRKYs, was sufficiently moderated in AS oranges to avoid the diversion of resources away 

from fruit growth and development. Such phenotypical alteration conversely occurred in 

transgenic plants either upregulating or downregulating genes encoding similar TFs (Bedon et 

al., 2010; Kallenbach et al., 2010; Yang et al., 2012).  

The application of JA or related members of the octadecanoid pathway to plant leaves 

mediates the induction of VOCs, increases the level of certain toxins and upregulates defense 

gene expression (Baldwin, 1998; Dicke et al., 1999; Thaler, 1999). Many of the VOCs induced 

in response to mechanical damage or herbivory are fatty acid degradation products that share 

precursors with jasmonates. In addition, a tight correlation between MYC2 and terpenoids has 

recently been demonstated, as MYC2 positively regulates sesquiterpene (and likely 

monoterpene) biosynthesis in Arabidopsis (Hong et al., 2012). Whether D-limonene 

downregulation and subsequent JA metabolism activation upon inoculation lead to changes in 

the isoprenoid and defense-related pathways in orange fruits remains to be investigated. 
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However, this is plausible as we showed here that GGPD was dramatically upregulated in AS 

fruits after fungal inoculation as well as in JA-treated untransformed fruits. 

The downregulation of a D-limonene synthase gene in orange flavedo triggers innate 

immunity defense cascades linked to the activation of the jasmonate signaling pathway and a 

consequent strong resistance to necrotroph pathogens. The molecular basis for this crosstalk 

between D-limonene downregulation and the signaling pathways that mediate pathogen 

resistance is unknown. Recent findings have shown that glucosinolates, which are another 

group of secondary metabolites previously identified as important VOCs involved in the 

avoidance of herbivory damage in Brassicaceae, are required for the plant defense response 

against fungal and bacterial pathogens in leaves; specifically, glucosinolates are essential for 

the MAMP-triggered callose innate immune response to both adapted and non-adapted 

pathogens (Bednarek et al., 2009; Clay et al., 2009). In the present study, the drop in D-

limonene accumulation in AS plants produced an increase in the constitutive defense-related 

genes leading to the accumulation of JA upon inoculation. Because AS fruits exhibited a broad 

resistance to different pathogens (Rodríguez et al., 2011b; results not shown), it would be 

interesting to test whether JA metabolism could also be activated by such different pathogens 

and/or under distinct plant-pathogen-pest interaction scenarios. 

 In nature, the D-limonene concentration is lower in the first stages of orange 

development. However, once the fruit has almost attained its final size and the seeds are fully 

viable, D-limonene levels drastically increase, and it becomes the predominant constituent of 

flavedo oil glands until fruit maturation (Dugo and Di Giacomo, 2002; Flamini and Cioni, 2010; 

Rodríguez et al., 2011b). We have shown here that high D-limonene and related terpene levels 

are tightly associated with a general depletion of defense-related genes. Because an increase 

in D-limonene occurs once the seed is formed and this coincides with a general enhanced 

susceptibility to opportunistic pathogens (Rodríguez et al., 2011b), our results indicate that the 

high accumulation of D-limonene and related terpenes might be a signal that attracts frugivores, 

including microorganisms. As the accumulation of D-limonene at high levels in flavedo of 

mature fruits is common to all Citrus species, including relatives and ancestral types (Dugo and 

Di Giacomo, 2002), our results may also indicate that P. digitatum and other microorganisms 

have acted to shape the evolution of D-limonene content in citrus fruit peel. Whether this 

additionally serves to attract legitimate vertebrate dispersers or facilitates their access to the 

fruit pulp and seeds requires further investigation. 

 

Materials and methods  
 
Plant material 
  
Fruits of independent lines of Navelina and Pineapple sweet orange plants (Citrus 

sinensis L. Osbeck) at different developmental stages (August and December; see 
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Supplemental Fig. 1) were harvested over three consecutive years. To determine the oil gland 

size and number in orange peels, a defined area of 200 mm2 along the equator of the fruit was 

measured using 10 fruits for each developmental stage. Gland density was measured using 

fruits of 70 and 90 mm in diameter (green and mature Navelina flavedo, respectively) and 60 

and 80 mm in diameter (green and mature pineapple flavedo, respectively). Images were taken 

with a Leica DFC490 digital camera mounted on a magnifying glass, and secretory glands 

visible on the surface were counted and measured using the UTHSCSA ImageTool software 

(version 3.0, Department of Dental Diagnostic Science at The University of Texas Health 

Science Center, San Antonio, Texas). For all fruit, gland density was expressed as number of 

glands per cm2. Peel thickness was measured with a caliper (as both flavedo and albedo or 

flavedo only) in four different sections around the equator of 10 mature fruits.  

For the analysis of chlorophyll and total carotenoid content, the flavedo tissue (outer 

colored part of the fruit peel) was separated from the fruits. The flavedo was frozen in liquid 

nitrogen, ground to a fine powder and stored at -80 °C until analysis. The data for oil gland 

diameter, oil gland number, chlorophyll and carotenoid content are presented as the means ± 

s.e.m. of 10 replicate samples. 

For phytohormone quantification in fruit flavedo, mature fruits that were 90 mm in 

diameter were used. Flavedo samples were excised with a razor blade before (0 h) and after (2 

h) inoculating the fruit in the equatorial region with a stainless steel rod as described in 

(Rodríguez et al., 2011b). Data were obtained from the analysis of at least six fruits per line, and 

this analysis was repeated several times during the fruiting season and over two consecutive 

years. 

 

Fungal assays 
 
For the experiments of natural infection by fungi, fruits were harvested monthly during a 

five-month period for two consecutive years. Ten fruits per independent transgenic line were 

used for each experiment. Fruits were partially peeled and put into plastic trays for germination 

of ubiquitous spores. Observations were made daily for the appearance and progress of 

symptoms. Samples placed on slides for microscopic identification were obtained from fungi-

infected fruits. 

For the assays of jasmonic acid (JA) supplementation to the regular Navelina sweet 

orange control and Clementine mandarins (Citrus clementina Hort. ex Tan.) fruits, 25 µL of a 

100 µM jasmonic acid (JA, Sigma-Aldrich) aqueous solution containing 0.1% Tween-20 (Sigma-

Aldrich) as surfactant were allowed to penetrate in the wound and the same procedure for 

inoculation and incubation described before (Rodríguez et al., 2011b) was followed. Inoculation 

was performed with 1×105 spores mL-1. For control treatment, a solution of water supplemented 

with Tween-20 (0.1% v/v) was used. For each treatment, replicates of at least 18 and 30 fruits 

per line were used with orange and clementines, respectively. Disease incidence was estimated 

as the number of infected wounds per total number of inoculated points.  
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Chlorophyll and total carotenoid extraction and quantification 
 
Fruit pigments were extracted as described previously (Rodrigo et al., 2003). The 

chlorophyll (a + b) content was determined by measuring the absorbance at 644 and 662 nm 

and calculated according to the Smith and Benitez equations (Smith and Benitez, 1955). After 

chlorophyll measurements, the pigment ethereal solution was dried and saponified using a 10% 

methanolic KOH solution. The carotenoids were subsequently re-extracted with diethyl ether 

until the hypophase was colorless. An aliquot of the ethereal extract was used for quantification 

of total carotenoid content. The total carotenoid content was calculated by measuring the 

absorbance of the saponified extracts at 450 nm using the extinction coefficient of β-carotene, 

E1% = 2500 (Davies, 1976). The samples were dried under N2 and kept at -20 °C until high-

performance liquid chromatography (HPLC) analysis. All operations were carried out on ice 

under dim light to prevent photodegradation, isomerizations, and structural changes in the 

carotenoids.  

 

HPLC of Carotenoids 
 
For HPLC analysis of carotenoids, the peels of fruits at two maturation stages were 

selected as follows: fruits harvested in August (green) and fruits harvested in December 

(mature). The samples were prepared for HPLC by dissolving the dried residues in 

MeOH:acetone (2:1, v/v). Chromatography was carried out using a Waters liquid 

chromatography system equipped with a 600E pump, a model 996 photodiode array detector 

and Millennium Chromatography Manager software (version 2.0) (Waters, Barcelona, Spain) as 

described previously (Rodrigo et al., 2004). A C30 carotenoid column (250 mm x 4.6 mm, 5 µm) 

coupled to a C30 guard column (20 mm x 4.0 mm, 5 µm) (YMC Europe GMBH, Schermbeck, 

Germany) were used with MeOH, water, and methyl tertbutyl ether. Carotenoid pigments were 

analyzed by HPLC using a ternary gradient elution that was reported previously (Rouseff et al., 

1996). The photodiode array detector was set to scan from 250 to 540 nm throughout the entire 

elution profile. The area of each peak was obtained, and the percentage of each individual 

carotenoid was calculated over the total area of carotenoid peaks, as integrated by the Maxplot 

chromatogram. Each sample was extracted twice, and two replicate injections from each 

extraction were performed. The β-carotene and α-carotene standards were obtained from 

Sigma-Aldrich (Madrid, Spain). The β-cryptoxanthin, lutein, and zeaxanthin standards were 

obtained from Extrasynthese (Lyon, France).  
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Extraction of Volatiles and Gas Chromatography-Mass 
Spectrometry Analysis 

 
Flavedo tissue was obtained from orange fruits, immediately frozen in liquid nitrogen, 

and stored at -80 ºC until extraction. A Thermo Trace GC Ultra coupled to a Thermo DSQ mass 

spectrometer with the electron ionization mode set at 70 eV was used. Extraction and analysis 

was carried out as described before (Rodríguez et al., 2011b). Frozen ground material (200 mg) 

was weighed in screw-cap Pyrex tubes and then 3 mL of cold pentane and 25 µg of 2-octanol 

(Fluka) were immediately added as an internal standard. Samples were homogenized on ice for 

30 s with a Yellowline homogenizer (model DI 25). The suspension was vortexed for 15 s, and 3 

mL of MilliQ water was added. The sample was further vortexed for 30 s and centrifuged at 

1,800 g for 10 min at 4 ºC. The organic phase was recovered with a Pasteur pipette, and the 

aqueous phase was re-extracted two more times with 3 mL of pentane. A 2-µL aliquot of the 

pooled organic phases was directly injected into the GC-MS for volatile analysis; at least two 

extractions for each sample were performed. 

The ion source and the transfer line were set to 200 ºC and 260 ºC, respectively. 

Volatile compounds were separated on an HP-INNOWax (Agilent J&C Columns) column (30 m 

x 0.25 mm i.d. x 0.25 µm film). The column temperatures were programmed as follows: 40 ºC 

for 5 min, raised to 150 ºC at 5 ºC min-1, then raised to 250 ºC at 20 ºC min-1 and held for 2 min 

at 250 ºC. The injector temperature was 220 ºC. Helium was the carrier gas at 1.5 mL min-1 in 

the splitless mode. Electron impact mass spectra were recorded in the 30 to 400 amu range 

with a scanning speed of 0.5 scans-1. Compounds were identified by matching the acquired 

mass spectra with those stored in the reference libraries (Wiley6 and the National Institute of 

Standards and Technology) or from authentic standard compounds when available. Data were 

quantified by integrating the peak areas of total ion chromatograms and normalizing to the 

recovery rate of the internal standard (2-octanol). The data in Fig. 1, Fig. 2, Supplemental Table 

SI and Supplemental Fig. S2 represent the relative amounts of individual terpenes and are 

presented as the percentage area of each terpene (given as a fraction of unity) with respect to 

the total terpene peak area for monoterpene hydrocarbons in the EV line, which was assigned 

an arbitrary value of one. 

 

RNA extraction 
 
Total RNA was isolated from flavedo as previously described (Rodrigo et al., 2004). For 

quantitative real time RT-PCR analyses, RNA was cleaned up with the RNeasy mini kit 

(QIAGEN) and treated with DNase I (Rnase-Free DNase Set; QIAGEN) following the 

manufacturer’s instructions. RNA was quantified using a Nanodrop spectrophotometer. 
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Microarray experimental design, hybridization, data acquisition and 
data analysis 

  
Microarray experiments were performed with the mature orange flavedo (90 mm in 

diameter) of two independent AS and two EV transgenic lines, comparing transgenic vs. control 

samples on the same slide. Three plants per line were used in every experiment. The total RNA 

from each line was duplicated for dye swap labeling. 

Gene expression analysis was conducted using a citrus cDNA microarray containing 

21,081 putative unigenes (Martinez-Godoy et al., 2008). Microarray labeling, hybridization and 

scanning were performed as described previously (Forment et al., 2005). Microarray slides were 

scanned with a GenePix 4000B scanner (Molecular Devices, USA) using GenePix 6.0 image 

acquisition software. Spots with a net intensity in both channels that was lower than the median 

spot signal background plus two standard deviations were not used for further analysis. Data 

were normalized using an intensity-based Lowess function, a normalization procedure based on 

robust local regression, to accommodate different types of dye biases and the use of control 

sequences spotted on the array (Yang et al., 2002) and analyzed only for features with at least 

three values. Differentially expressed genes were identified using the one-class SAM test 

(Tusher et al., 2001). A common set of genes was identified based on the overlap between the 

lists from each transgenic line. A gene was considered to be differentially expressed if the false 

discovery rate (FDR) was < 5%, and it had at least a 1.6-fold average change in expression 

between AS and EV plants.  

 

Functional categorization of differentially expressed genes 
 
Genes that were differentially expressed were grouped into gene ontology (GO) 

categories according to their biological function. Because very limited functional information is 

available for the sequences represented on the citrus genome array, the transcripts were 

annotated by finding orthologs in Arabidopsis thaliana using The Arabidopsis Information 

Resource (TAIR). 

Results from Fatiscan analyses (Al-Shahrour et al., 2007) were used to represent 

statistically significant GO biological processes from levels 3 to 9. GO categories were grouped 

into five main groups (Table I), including “Defense response”, which covers GO categories such 

as defense response, response to biotic stimulus, immune response, plant-type hypersensitive 

response and death, response to abiotic stimulus, response to stress, response to chemical 

stimulus, response to endogenous stimulus and response to external stimulus; “Cellular 

component organization and biogenesis”, which covers GO categories such as establishment of 

localization, cellular component organization and biogenesis, plant type cell wall organization 

and cell communication; “Other”, which covers GO categories such as cellular metabolic 

process, primary metabolic process, regulation of biological process, regulation of transcription, 
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macromolecule metabolic process, regulation of biological quality and nitrogen compound 

metabolic process; “Secondary metabolic process”, which covers GO categories such as 

monoterpenoid biosynthetic process, sesquiterpenoid biosynthetic process and 

phenylpropanoid biosynthetic process; and “Unknown”, which covers genes without a match in 

the databases. 

 

Quantitative Real-Time RT-PCR 
 
Expression of selected genes chosen from microarray analyses was estimated by 

quantitative real-time RT-PCR using the SYBR Green assay and the LightCycler480 System 

(Roche) equipped with LightCycler 480 v.1.5 Software. The genes selected were LS, Limonene 

synthase; GER, Germacrene-D synthase; CALMOD, Calmodulin; MYB, MYB73 transcription 

factor; PAL1, Phenylalanine ammonia-lyase 1; LTP1, Nonspecific lipid transfer protein 1; and 

ERF, Ethylene response factor (ATERF-6). For jasmonic acid and terpenoid biosynthesis, the 

homolog genes from citrus, LOX, Lipoxygenase; AOS, Allene oxide synthase; AOC, Allene 

oxide ciclase; COI1, Coronatine-insensitive 1; MYC2, bHLHzip-type MYC transcription factor, 

PDF1.2, Defensin-like gene; DXS, 1-deoxyxylulose 5-phosphate synthase; GGDP, 

Geranylgeranyl diphosphate synthase; GDP, Geranyl diphosphate synthase; and FDP, Farnesyl 

diphosphate synthase were selected. The primers were designed based on the corresponding 

sequences available in the database of the CFGP 

(http://bioinfo.ibmcp.upv.es/genomics/cfgpDB) (Supplemental Table SIII). 

For the microarray genes selected, one-step RT-PCR was carried out with 25 ng of 

DNase-treated RNA by adding 1.6 units of Superscript II Reverse Transcriptase (Invitrogen), 0.8 

units of Protector Rnase Inhibitor (Roche), 6.25 µL of Power SYBR Green PCR Master Mix 

(Applied Biosystems), and optimized amounts of gene-specific primers (Supplemental Table SII) 

in a total volume of 12.5 µL. Incubations were carried out as follows: 45 ºC for 30 min, 95 ºC for 

10 min, followed by 40 cycles of 95 ºC for 15 s, 60 ºC for 40 s, and 70 ºC for 15 s. Fluorescence 

intensities were acquired during the 70 ºC  step. 

For the JA and terpenoid biosynthesis genes selected, two-step RT-PCR was carried 

out. First-strand cDNA was synthesized from 1 µg total RNA using Superscript II Reverse 

Transcriptase following the manufacturer’s protocol. cDNA samples were diluted 1:5 with 

nuclease-free water before analysis and 2 µL of this dilution was used for the subsequent steps. 

Reactions were carried out with 10 µL of LightCycler® 480 DNA SYBR Green I Master (Roche) 

and 2 µL of gene-specific primers (Supplemental Table SIII) in a total volume of 20 µL. 

Incubations were carried out as follows: 95 ºC for 10 min, followed by 40 cycles of 95 ºC for 10 

s, 60 ºC for 10 s, and 72 ºC for 20 s. Fluorescence intensities were acquired during the 72 ºC 

step.  

The specificity of the amplification reactions was assessed by post-amplification 

dissociation curves. To transform the fluorescence intensity measurements into relative mRNA 

http://bioinfo.ibmcp.upv.es/genomics/cfgpDB
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levels, a standard curve was generated with a 10-fold dilution series of an RNA sample. 

Relative mRNA levels were normalized to the citrus actin gene (GenBank Acc: CX289161) 

following the efficiency method (Pfaffl, 2001). 

Induction values of one-fold were arbitrarily assigned to the control sample before 

inoculation. The quantification of each transcript in each cDNA source was accomplished using 

at least nine independent technical replicates (using at least three different 96-well plates) with 

two AS and two EV control independent lines. Means ± s.e.m. were calculated. 

 

Phytohormone quantification 
 
Hormone extraction and analysis were carried out as described in Durgbanshi et al. 

(2005) with slight modifications. Briefly, 0.5 g of frozen plant material was extracted in 5 mL of 

distilled water after spiking with a mixture of d6-ABA, d6-SA and dihydrojasmonic acid as internal 

standards. After centrifugation at 4000 g at 4 ºC, supernatants were recovered and the pH was 

adjusted to 3.0 with 30% acetic acid. The acidified water extract was partitioned twice with 3 mL 

of di-ethyl ether. The organic upper layer was recovered and evaporated under vacuum in a 

centrifuge concentrator (Speed Vac, Jouan, Saint Herblain Cedex, France). The dry residue 

was then resuspended in a 10% MeOH solution by gentle sonication. The resulting solution was 

filtered through regenerated cellulose 0.22 µm membrane syringe filters (Albet S.A., Barcelona, 

Spain) and directly injected into the HPLC system (Waters Alliance 2695, Waters Corp., Milford, 

MA, USA). Separations were carried out on a C18 column (Kromasil 100, 5 µm particle size, 

100×2.1 mm, Scharlab, Barcelona, Spain) using a gradient of MeOH:H2O supplemented with 

0.01% acetic acid at a flow rate of 300 µL min−1. Hormones were quantified with a Quattro LC 

triple quadrupole mass spectrometer (Micromass, Manchester, UK) connected online to the 

output of the column through an orthogonal Z-spray electrospray ion source (Arbona et al., 

2010).  

 

Statistical analysis 
 

Data on characterization of orange peels, quantitative RT-PCR, phytohormone levels or 

arcsine-transformed data on the percentage of infected wounds in JA assays were subjected to 

the analysis of variance using Statgraphics v.5.1 software (Manugistics Inc., Rockville, USA). A 

t-test or Fisher’s Protected Least Significant Difference (LSD) test (P < 0.05) were used to 

separate the means, when appropriate. 
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Supplemental Figure S2. Phenotypes of green (60 mm diameter) and mature (80 mm diameter) flavedo in antisense 

(AS) and control (EV) Pineapple sweet orange plants. (A, B) Secretory oil gland number and size in green and mature 

flavedo. (C) Peel thickness in mature fruits. No significant differences were found at P < 0.05 using Student’s t-test in 

each stage. (D) The relative amount of individual terpenes is presented as a percentage area (given as a fraction of 

unity) of each terpene with respect to the total terpene peak area for monoterpene hydrocarbons in the EV line, which 

was assigned an arbitrary value of one in mature flavedo. Data represent mean values ± s.e.m and are derived from at 

least six fruits per plant. 
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Supplemental Figure S4. Total chlorophyll and carotenoid content in Pineapple sweet orange plants in green and 

mature flavedo. No chlorophyll was detected in the flavedo of mature fruits. Data represent mean values ± s.e.m. and 

are derived from at least ten fruits per plant. No significant differences were found at P < 0.05 using Student’s t-test  in 

each stage. 
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Supplemental Figure S6. Quantitative real-time PCR analyses of selected genes showing differential expression of 

several genes identified by microarray analyses with two independent transgenic lines. The expression of each gene 

was analyzed in at least nine independent technical replicates using three different 96-well plates. Fold-change was 

calculated in relation to two independent EV lines, to which an arbitrary value of 1 was assigned. LS, Limonene 

synthase; GER, Germacrene-D synthase; CALMOD, Calmodulin; MYB, MYB73 transcription factor; PAL1, 

Phenylalanine ammonia-lyase 1; LTP1, Nonspecific lipid transfer protein 1; ERF, Ethylene response factor (ATERF-6). 

 
 
Supplemental Figure S7. Phytohormone measurement in the flavedo of AS transgenic and EV control plants. The 

content of jasmonic acid (JA) was measured before (0 h) and after (2 h) fungal inoculation. Data represent mean 

values ± s.e.m. and are derived from at least six fruits per plant. Different letters indicate significant differences at P < 

0.05 using Fisher’s Protected LSD test. 

 
 
Supplemental Fig S8. Exogenous application of jasmonic acid (JA) in the control mandarin plants confers fungal 

resistance. Evolution of the disease caused by the fungus Penicillium digitatum in mature Satsuma mandarin fruits 

inoculated with 1×105 spores mL-1 and treated with water (W) or jasmonic acid (JA). Percentage of infected wounds in 

inoculated points three and four days after inoculation. The results are the average ± s.e.m. (n ≥ 30). dpi: days post-

inoculation. *, P < 0.05 using Student’s t-test. We repeated all experiments at least twice and obtained similar results. 



 

 

 
 
 
 
 
 
 
 
 
 

Supplemental Table SI. Monoterpene accumulation in AS and EV control fruits. The relative amounts of individual terpenes are presented as the percent (given as a fraction of unity) areas of each 

terpene with respect to the total terpene peak area for monoterpene hydrocarbons in the EV line, which was assigned an arbitrary value of one in green and mature flavedo. The data represent the 

mean values ± s.e.m. and were derived from at least five fruits per plant. 

 

 
GREEN FLAVEDO MATURE FLAVEDO 

AS3 AS7 EV AS3 AS7 EV 

α-terpinolene 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00012 ± 0.00008 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00091 ± 0.00028 

β-ocimene 0.00140 ± 0.00079 0.00101 ± 0.00070 0.00441 ± 0.00010 0.00046 ± 0.00027 0.00023 ± 0.00001 0.00076 ± 0.00020 
Limonene 0.01880 ± 0.00495 0.01537 ± 0.00097 0.90418 ± 0.01451 0.00881 ± 0.00032 0.01125 ± 0.00050 0.96091 ± 0.16870 

β-myrcene 0.00170 ± 0.00104 0.00139 ± 0.00090 0.01799 ± 0.00041 0.00028 ± 0.00003 0.00019 ± 0.00010 0.01564 ± 0.00297 

δ-3-carene - - - 0.00000 ± 0.00000 0.00000 ± 0.00000 0.00189 ± 0.00107 
Sabinene 0.02365 ± 0.01880 0.01621 ± 0.01341 0.07329 ± 0.00676 0.00362 ± 0.00000 0.00288 ± 0.00053 0.01988 ± 0.00472 
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Supplemental Table SII.  
A) Differentially expressed genes in AS3 line 

Description Citrus unigene fold-
change 

q-
value(%) Most similar Ath gene 

no annotation available aCL5425Contig1 7.17 0.00  
no annotation available aC08009G11SK_c 6.37 0.00  
no annotation available aCL8681Contig1 5.08 3.23  
no annotation available aC08007E01SK_c 4.64 0.00  
FAD-binding domain-containing protein aCL246Contig1 4.10 0.00 AT2G34790 
calcium-binding EF hand family protein aCL7645Contig1 3.93 0.00 AT2G44310 
cyclic nucleotide-regulated ion channel (CNGC2) aCL5832Contig1 3.60 0.00 AT5G15410 
signal transducer of phototropic response 
(RPT2) 

aCL1254Contig1 3.56 0.57 AT2G30520 

Putative xyloglucan endotransglycosylase aC05133B06SK_c 3.47 0.00 AT4G30270 
phenylalanine ammonia-lyase 1 (PAL1) aCL1166Contig2 3.47 0.00 AT2G37040 
no annotation available aCL50Contig2 3.38 0.00  
Putative trehalose-6-phosphate synthase aCL5366Contig1 3.35 0.00 AT1G68020 
nonspecific lipid transfer protein 1 (LTP1) aCL4Contig13 3.31 0.00 AT2G38540 
CCR4-NOT transcription complex protein aCL206Contig1 3.26 0.00 AT5G22250 
expressed protein aC18025G03Rv_c 3.21 1.06 AT4G35560 
R2R3-MYB family transcription factor (MYB73) aCL693Contig1 3.18 0.00 AT4G37260 
Putative membrane transporter aCL854Contig2 3.17 0.00 AT2G43330 
no annotation available aC04005G08SK_c 3.07 0.92  
transducin family protein / WD-40 repeat family 
protein 

aC18019A01Rv_c 2.97 0.00 AT4G34280 

protein phosphatase 2C PP2C aCL393Contig1 2.96 0.00 AT5G53140 
no annotation available aC18018D09Rv_c 2.93 3.23  
beta-amylase (Glycosyl  hydrolase family 14) aCL5Contig5 2.90 0.00 AT3G23920 
no annotation available aC05808F01SK_c 2.89 0.00  
calmodulin aCL535Contig3 2.85 0.00 AT3G10190 
Putative glucosyltransferase aCL5570Contig1 2.85 0.00 AT2G36970 
zinc finger (B-box type) family protein aCL3547Contig1 2.75 0.00 AT3G21150 
phosphomannose isomerase type I family 
protein 

aCL1387Contig1 2.73 0.00 AT3G02570 

no annotation available aCL5263Contig1 2.71 0.00  
expressed protein aCL6840Contig1 2.68 0.00 AT3G52740 
Dehydration responsive element binding protein 
(AP2 domain) 

aCL51Contig5 2.63 0.00 AT1G46768 

Stress-inducible H1 histone-like protein (HIS1-3) aCL517Contig2 2.62 0.00 AT2G18050 
Putative trehalose-6-phosphate synthase aCL9275Contig1 2.59 0.00 AT1G68020 
no annotation available aCL1714Contig1 2.44 0.00  
no annotation available aC03007D01SK_c 2.39 0.00  
zinc finger (CCCH-type) family protein (CZF1) aC31603G11EF_c 2.38 0.00 AT2G40140 
Protein phosphatase 2C aCL683Contig1 2.33 0.00 AT2G30020 
no annotation available aCL26Contig2 2.31 0.00  
no annotation available aCL101Contig2 2.28 0.00  
no annotation available aC06023B09SK_c 2.28 0.00 AT2G24540 
no annotation available aC08007C02SK_c 2.24 0.00  
heavy-metal-associated domain-containing 
protein 

aCL2730Contig1 2.21 0.00 AT4G08570 

no annotation available aC08002C02SK_c 2.20 1.36  
WD-40 repeat family protein / phytochrome A-
related 

aCL6446Contig1 2.19 0.00 AT1G53090 

no annotation available aC01020E10SK_c 2.17 0.00  
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autophagy 8h (APG8h) aC18016G09Rv_c 2.15 3.23 AT3G06420 
similar to glucose-1-phosphate 
adenylyltransferase large subunit 2 (APL2) 

aCL9143Contig1 2.14 0.00 AT2G21590 

3-oxo-5-alpha-steroid 4-dehydrogenase family 
protein 

aC01011F03SK_c 2.14 0.00 AT5G16010 

L-allo-threonine aldolase-related protein aC08036F01SK_c 2.13 0.00 AT1G08630 
no annotation available aC31006C04EF_c 2.13 0.00  
fringe-related protein aCL5584Contig1 2.11 0.46 AT1G05280 
expressed protein aCL3900Contig1 2.10 0.00 AT5G20790 
expressed protein aCL1991Contig1 2.10 0.00 AT2G15020 
calcium-binding protein aCL7914Contig1 2.09 0.00 AT1G21550 
strictosidine synthase family protein aC31201B02EF_c 2.09 0.00 AT3G59530 
no annotation available aCL123Contig3 2.09 0.00  
no annotation available aC31206E07EF_c 2.08 0.00  
esterase/lipase/thioesterase family protein aCL5939Contig1 2.07 0.00 AT1G54570 
harpin-induced family protein (YLS9) / HIN1 
family protein 

aCL2389Contig2 2.06 0.00 AT2G35980 

no annotation available aCL4787Contig1 2.06 0.00  
Putative NAC domain protein NAC29 aCL1571Contig2 2.06 0.00 AT1G69490 
no annotation available aC08018E12SK_c 2.05 0.00  
no annotation available aC31807H02EF_c 2.03 0.00  
expressed protein aC08031A08SK_c 2.03 0.00 AT5G41110 
No apical meristem (NAM) family protein 
(NAC72) 

aC32102F03EF_c 2.03 0.00 AT5G15410 

No apical meristem (NAM) family protein 
(NAC72) 

aCL35Contig5 2.02 0.00 AT4G27410 

no annotation available aC01018F12SK_c 2.01 0.00  
Mitogen-activated protein kinase (WNK4) aCL8779Contig1 2.01 1.36 AT5G58350 
no annotation available aCL5112Contig1 1.99 0.00 AT3G07565 
BZip transcription factor aCL9402Contig1 1.99 0.00 AT2G46270 
Translation initiation factor-like protein aCL1184Contig4 1.99 0.00 AT5G54940 
no annotation available aC31305G08EF_c 1.97 0.00  
no annotation available aC16015A05SK_c 1.94 0.00  
zinc finger (C3HC4-type RING finger) aCL9084Contig1 1.92 0.17 AT1G18660 
homeobox-leucine zipper protein 7 (HB-7) aCL5941Contig1 1.92 0.00 AT2G46680 
Syringolide-induced protein 19-1-5 aCL107Contig2 1.91 0.00 AT4G25810 
Putative calcium-transporting ATPase 13 aC18021G04Rv_c 1.91 2.81 AT3G22910 
no annotation available aC19003E02T7_c 1.90 0.00  
Beta-amylase (Glycosyl  hydrolase family 14) aCL5Contig21 1.89 0.00 AT3G23920 
bZIP protein HY5 (HY5) aC08022H08SK_c 1.88 0.00 AT5G11260 
reverse transcriptase aC02002E11SK_c 1.88 0.00 AT4G29090 
UDP-glucosyltransferase HRA25 aC02002E10SK_c 1.87 0.74 AT3G02100 
expressed protein aCL8468Contig1 1.87 0.00 AT1G69760 
Putative protease aCL7817Contig1 1.87 0.00 AT3G57680 
ChaC-like family protein-like aC05802B02SK_c 1.87 0.00 AT4G31290 
no annotation available aC34009E05EF_c 1.85 0.00  
Chalcone synthase/naringenin-chalcone 
synthase 

aCL27Contig2 1.85 0.00 AT5G13930 

no annotation available aCL2819Contig1 1.85 0.00  
Protein phosphatase 2C aCL143Contig2 1.85 0.00 AT3G11410 
peptidase U7 family protein aCL27Contig1 1.84 0.00 AT1G73990 
expressed protein aCL2203Contig2 1.84 0.00 AT5G02020 
no annotation available aCL2606Contig1 1.84 0.00  
CBL-interacting protein kinase 14 (CIPK14) aCL2213Contig1 1.83 0.00 AT5G01820 
remorin family protein aCL1490Contig1 1.82 0.00 AT2G41870 
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nodulin family protein aC08023C08SK_c 1.82 0.00 AT1G74780 
digalactosyldiacylglycerol synthase 1 (DGD1) aCL2418Contig1 1.82 0.00 AT3G11670 
similar to amino acid transporter family protein aCL5219Contig1 1.82 0.57 AT3G30390 
Granule-bound starch synthase 1 aCL60Contig1 1.81 0.00 AT1G32900 
alcohol oxidase-related aC08034C10SK_c 1.81 4.32 AT4G28570 
expressed protein aCL6738Contig1 1.81 0.57 AT5G24690 
Serine/threonine protein kinase aC02026D10SK_c 1.80 0.74 AT5G47750 
expressed protein aCL1020Contig1 1.80 0.00 AT4G29780 
no annotation available aCL2116Contig1 1.79 0.00  
Root iron transporter protein IRT1 aC34108F04EF_c 1.79 0.00 AT4G19690 
bZIP transcription factor family protein aCL3546Contig1 1.78 0.17 AT3G62420 
no annotation available aCL5461Contig1 1.78 0.00  
zinc finger (B-box type) family protein / salt-
tolerance protein (STO)) 

aC31709D11EF_c 1.77 0.00 AT1G06040 

ABA-responsive element-binding protein 2 
(AREB2) 

aCL474Contig1 1.76 0.00 AT3G19290 

isoflavone reductase aC34008H08EF_c 1.76 0.00 AT4G39230 
Glycosyl transferase-like protein aCL3226Contig1 1.75 0.00 AT3G28340 
disease resistance protein (NBS-LRR class) aCL5233Contig1 1.75 0.57 AT3G14460 
sodium-inducible calcium-binding protein (ACP1) aCL1345Contig2 1.75 0.00 AT5G49480 
WRKY family transcription factor aC04005E02SK_c 1.73 0.17 AT4G01720 
early-responsive to dehydration stress protein 
(ERD4) 

aCL5413Contig1 1.73 0.00 AT1G30360 

sulfate adenylyltransferase 1 / ATP-sulfurylase 1 
(APS1) 

aCL438Contig2 1.73 0.00 AT3G22890 

Beta-D-galactosidase aC31805H10EF_c 1.73 0.00 AT4G36360 
protein phosphatase 2C, PP2C aCL5289Contig1 1.73 0.00 AT5G59220 
no annotation available aC03006F07SK_c 1.73 0.00  
cellulose synthase family protein aCL1355Contig1 1.73 0.00 AT2G32540 
30S ribosomal protein S1 aCL5730Contig1 1.72 4.32 AT5G30510 
CCAAT-binding transcription factor (CBF-B/NF-
YA) family protein 

aC08029D05SK_c 1.72 1.78 AT5G12840 

disease resistance protein (TIR-NBS-LRR class) aCL7525Contig1 1.72 0.74 AT5G36930 
no apical meristem (NAM) family protein aC31402A11EF_c 1.72 0.17 AT2G27300 
ChaC-like family protein aCL283Contig1 1.71 0.00 AT4G31290 
protein kinase, putative, similar to protein kinase 
ATMRK1 

aCL7535Contig1 1.71 0.00 AT3G22750 

DC1 domain-containing protein aCL2160Contig1 1.71 0.00 AT1G60420 
no annotation available aC01011A04SK_c 1.70 0.74  
cytochrome P450 98A3, putative (CYP98A3) aCL627Contig1 1.70 0.00 AT2G40890 
T-complex protein 11 aCL3898Contig1 1.69 0.00 AT1G22930 
pectinesterase aCL3119Contig1 1.69 3.23 AT3G10720 
no annotation available aC03010H04SK_c 1.69 0.00  
ChaC-like family protein aC31807B06EF_c 1.68 0.00 AT4G31290 
Sesquiterpene synthase (Valencene synthase) aCL7292Contig1 1.68 0.00 AT5G23960 
no annotation available aC04027B03SK_c 1.68 0.92  
copper chaperone (CCH)-related aCL4708Contig1 1.68 0.17 AT5G63530 
calcium-binding EF hand family protein aCL8972Contig1 1.67 0.00 AT1G05150 
Xyloglucan galactosyltransferase KATAMARI 1 aC08005B05SK_c 1.67 0.00 AT2G20370 
no annotation available aCL986Contig2 1.67 0.00  
no annotation available aC18001E11Rv_c 1.66 0.00  
Cystinosin homolog aCL1587Contig1 1.66 0.00 AT5G40670 
Putative BP-5 protein aC02020G06SK_c 1.66 1.78 AT1G09530 
no annotation available aC02019F06SK_c 1.66 1.36  
no annotation available aCL5559Contig1 1.65 2.81  
expressed protein aC02027C10SK_c 1.65 0.74 AT3G14850 
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Homeodomain leucine zipper protein HDZ2 aC31108D05EF_c 1.63 0.00 AT3G01470 
similar to MA3 domain-containing protein aCL8107Contig1 1.63 0.00 AT4G24800 
Encodes a member of the ERF subfamily B-3 of 
ERF/AP2 (ATERF-6) 

aCL337Contig1 1.63 0.74 AT4G17490 

Plasma membrane intrinsic protein 2-2 aCL102Contig2 1.63 0.00 AT3G54820 
cation efflux family protein aCL1011Contig2 1.62 0.46 AT2G39450 
Ser-thr protein kinase aCL5546Contig1 1.62 1.78 AT2G40270 
Centromere protein-like aC08027B06SK_c 1.62 1.78 AT3G55060 
Encodes a member of the ERF subfamily B-1 
(AP2 domain) (ATERF-4) 

aCL524Contig2 1.62 0.00 AT3G15210 

Vacuolar processing enzyme precursor aCL554Contig1 1.62 0.00 AT4G32940 
Chlorophyllide a oxygenase aCL7904Contig1 1.62 0.57 AT1G44446 
no annotation available aCL1Contig26 1.62 0.00  
no annotation available aC19006C07T7_c 1.61 0.17  
no annotation available aC18004D10Rv_c 1.61 0.74  
Hydroquinone glucosyltransferase aCL1737Contig1 1.61 0.00 AT4G01070 
Putative serine/threonine kinase SRK2F aC04002A03SK_c 1.61 0.00 AT4G40010 
Cytochrome P450 90A1 aCL1811Contig1 1.60 0.17 AT5G05690 
no annotation available aCL7401Contig1 1.60 1.36  
no annotation available aC08012C07SK_c 1.60 0.92  
zinc finger (C3HC4-type RING finger) family 
protein 

aC08031G10SK_c 1.60 0.92 AT2G44950 

Topoisomerase-like protein aCL6553Contig1 1.60 0.00 AT5G63190 
Zinc finger protein CONSTANS-LIKE 5 aC31501E05EF_c 1.59 0.17 AT5G57660 
expressed protein aC08034B11SK_c 1.59 0.00 AT1G73650 
BPF-1 protein aC08031A03SK_c 1.59 0.00 AT1G07540 
ANAC029 | no apical meristem (NAM) aCL1571Contig1 1.59 0.00 AT1G69490 
early-responsive to dehydration stress protein 
(ERD4) 

aCL3691Contig1 1.59 0.00 AT1G30360 

MYB transcription factor aC20001D01SK_c 1.58 0.57 AT2G38090 
no annotation available aC31801G05EF_c 1.58 0.00  
BTB/POZ domain-containing protein aC05146H05SK_c 1.58 1.78 AT1G55760 
Sesquiterpene synthase (Germacrene-D 
synthase) 

aCL6701Contig1 1.57 0.00 AT5G23960 

protein phosphatase 2C, PP2C aCL1106Contig1 1.57 0.00 AT3G51370 
senescence-associated family protein aCL3777Contig1 1.57 1.06 AT5G66170 
zinc finger (C2H2 type) family protein aCL382Contig2 1.56 0.00 AT3G49930 
ethylene receptor 1 (ETR1) aCL3291Contig1 1.56 0.46 AT1G66340 
Putative phosphatase aCL4964Contig1 1.56 0.57 AT1G73010 
Disease resistance protein, LRR aCL9146Contig1 1.56 1.36 AT1G74180 
SP2G aCL6873Contig1 1.56 1.78 AT1G18100 
Plasma membrane aquaporin aCL3500Contig1 1.56 0.00 AT2G45960 
Calcium homeostasis regulator CHoR1 aCL6545Contig1 1.55 2.81 AT3G55250 
zinc finger (C3HC4-type RING finger) family 
protein 

aC02003G02SK_c 1.55 3.23 AT5G08750 

Putative ripening-related protein aCL1973Contig2 1.55 0.00 AT5G02230 
Biotin synthase aC04033D07SK_c 1.55 0.57 AT2G43360 
similar to DRE-binding protein (DREB2B) aC34205B09EF_c 1.55 1.06 AT5G05410 
basic helix-loop-helix (bHLH) family protein aC04033B02SK_c 1.55 0.00 AT5G08130 
Proline-rich protein aCL2832Contig1 1.54 0.00 AT4G16380 
Calcium-dependent protein kinase-like (CRK1). aCL6018Contig1 1.54 0.74 AT2G41140 
no annotation available aC31702G12EF_c 1.54 0.00  
kinase interacting family protein aCL8404Contig1 1.54 1.36 AT3G22790 
expressed protein aC08031B06SK_c 1.53 0.57 AT5G42760 
pectin methylesterase aCL1691Contig1 1.53 0.17 AT1G11580 
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no annotation available aCL6Contig2 1.53 0.46  
DNA helicase-like aC02023C11SK_c 1.53 2.81 AT5G35970 
expressed protein aCL9415Contig1 1.53 0.74 AT3G12685 
aspartyl protease family protein aCL1990Contig1 1.53 0.46 AT5G37540 
CPRD2 protein aCL1084Contig1 1.53 2.81 AT4G20820 
Cinnamate 4-hydroxylase CYP73 aCL959Contig1 1.53 0.00 AT2G30490 
expressed protein aCL4845Contig1 1.52 2.81 AT3G52910 
SPX (SYG1/Pho81/XPR1) domain-containing 
protein 

aCL8920Contig1 1.52 0.00 AT2G26660 

no annotation available aC08010B11SK_c 1.52 4.32  
Hydroxyisourate hydrolase (glycosyl hydrolase 
family 1) 

aCL3841Contig1 1.52 2.81 AT1G02850 

no annotation available aCL2956Contig1 1.52 1.78  
Aquaporin aCL58Contig7 1.52 0.00 AT4G00430 
Plasma intrinsic protein 2,2 aCL1621Contig2 1.52 0.00 AT2G37170 
expressed protein, NuLL aCL82Contig1 1.51 1.06 AT4G32020 
Cinnamyl alcohol dehydrogenase aCL1474Contig1 1.51 0.00 AT5G19440 
Wts2L aCL818Contig1 1.51 0.17 AT2G47140 
Sesquiterpene synthase (Valencene synthase) aC06019E08SK_c 1.51 0.00 AT5G23960 
Inositol-3-phosphate synthase aCL25Contig1 1.51 0.00 AT2G22240 
Homocysteine S-methyltransferase 3 aCL373Contig1 1.51 0.00 AT3G22740 
Calcium-dependent protein kinase 8 (CDPK19). 
Strong similarity to CPK7 

aCL3679Contig1 1.51 0.57 AT5G19450 

Sugar transport protein 14 aCL7536Contig1 1.51 0.17 AT1G77210 
thioredoxin family protein aC18019E01Rv_c 1.51 2.81 AT1G08570 
Putative glycine hydroxymethyltransferase aCL7087Contig1 1.50 0.92 AT5G26780 
no annotation available aC06007C08SK_c 1.50 0.00  
PHD finger family protein aCL4634Contig1 1.50 4.32 AT3G52100 
Cinnamoyl-CoA reductase-like protein aCL8119Contig1 1.50 0.00 AT4G30470 
expressed protein aCL8860Contig1 1.50 0.46 AT3G21200 
no annotation available aCL39Contig3 1.50 0.17  
expressed protein aC31103F04EF_c 1.50 0.74 AT2G01050 
CBL-interacting protein kinase 12 (CIPK12) aCL5678Contig1 1.49 0.00 AT4G18700 
Xylem cysteine proteinase 1 precursor aCL6325Contig1 1.49 0.00 AT4G35350 
no annotation available aC03005D04SK_c 1.49 1.36  
NAC family protein (ANAC002) aCL943Contig3 1.49 0.00 AT1G01720 
myb family transcription factor aCL5971Contig1 1.49 0.00 AT5G17300 
Rho-GTPase-activating protein-like aCL9082Contig1 1.49 0.00 AT4G35750 
Putative CONSTANS-like B-box zinc finger 
protein 

aCL5350Contig1 1.49 0.57 AT4G38960 

calcium-binding EF hand family protein aC08007C09SK_c 1.48 0.17 AT3G10300 
MADS-box protein (AGL62) aCL8174Contig1 1.48 0.74 AT5G60440 
AT-rich element binding factor 3 aCL3481Contig1 1.48 0.00 AT1G01360 
no annotation available aC08007A08SK_c 1.48 3.23  
Putative auxin-regulated protein aCL1903Contig2 1.48 0.74 AT3G60690 
hydrolase, alpha/beta fold family protein aC18005G11Rv_c 1.48 1.06 AT3G09690 
Inositol-3-phosphate synthase aC31301D12EF_c 1.48 0.00 AT2G22240 
glycosyltransferase family protein 1 aC03003F06SK_c 1.48 1.36 AT4G01210 
no annotation available aC07012E11SK_c 1.48 0.57  
expressed protein aCL1583Contig1 1.48 0.57 AT1G54680 
expressed protein aCL375Contig2 1.48 0.17 AT2G46080 
Ribonuclease 2 precursor aCL3877Contig1 1.48 2.81 AT2G39780 
no annotation available aC31302G05EF_c 1.47 0.46  
ABC1 family protein aCL9230Contig1 1.47 0.00 AT1G71810 
Putative ripening-related bZIP protein aCL3553Contig1 1.47 0.00 AT1G45249 
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histone H4 aCL1120Contig1 1.47 0.92 AT5G59690 
Peripheral-type benzodiazepine receptor aCL1112Contig2 1.47 0.74 AT2G47770 
Anthranilate N-benzoyltransferase aC18024F04Rv_c 1.47 4.32 AT5G48930 
Limonoid UDP-glucosyltransferase aC08034F10SK_c 1.47 1.06 AT3G21560 
NBS-LRR resistance-like protein B8 aC20002B03SK_c 1.47 0.00 AT3G14460 
Methylthioribose kinase aCL3452Contig2 1.47 0.00 AT1G49820 
octicosapeptide/Phox/Bem1p (PB1) aC34205A08EF_c 1.46 0.74 AT1G70640 
VQ motif-containing protein aCL1812Contig2 1.46 0.00 AT3G56880 
Similarity to transcription regulator aCL3613Contig1 1.46 4.32 AT5G18230 
Starch branching enzyme aC02008F01SK_c 1.46 0.00 AT5G03650 
Amine oxidase aC01017A05SK_c 1.46 0.17 AT4G12290 
Galactinol synthase aCL381Contig1 1.46 0.17 AT1G56600 
heat shock transcription factor family protein aC31704F01EF_c 1.46 0.74 AT5G45710 
Expressed protein aCL2075Contig1 1.46 0.17 AT5G19160 
Pectinesterase aCL2737Contig1 1.46 1.06 AT5G53370 
Chitinase CHI1 aCL371Contig2 1.46 0.17 AT3G54420 
bZIP transcription factor, putative (bZIP69) aCL816Contig1 1.45 1.36 AT1G06070 
Callose synthase 1 catalytic subunit aCL6983Contig1 1.45 0.74 AT1G05570 
no annotation available aC01008D06SK_c 1.45 0.00  
Lecithine cholesterol acyltransferase-like protein aCL558Contig1 1.45 1.36 AT1G27480 
Catalase aC31003C03EF_c 1.45 0.00 AT1G20620 
expressed protein aC31703H01EF_c 1.45 1.06 AT2G38780 
no annotation available aCL8020Contig1 1.45 1.36  
thiamin pyrophosphokinase aCL410Contig2 1.45 3.23 AT1G02880 
chorismate mutase, chloroplast (CM1) aC04013E01SK_c 1.45 0.46 AT3G29200 
WRKY6 aCL1201Contig2 1.45 2.81 AT1G62300 
Glucose-1-phosphate adenylyltransferase small 
subunit 2 

aCL5827Contig1 1.45 0.17 AT5G48300 

Glucosyltransferase NTGT2 aCL678Contig4 1.45 0.00 AT1G05530 
Similarity to auxin-independent growth promoter aCL3382Contig1 1.44 0.92 AT5G65470 
expressed protein aCL4109Contig1 1.44 1.78 AT3G21190 
no annotation available aCL7161Contig1 1.44 0.74  
Permease 1 aCL1822Contig1 1.44 1.06 AT5G62890 
expressed protein aC07007G05SK_c 1.44 0.00 AT4G22000 
ROPGEF1 aC31805A07EF_c 1.44 0.17 AT4G38430 
octicosapeptide/Phox/Bem1p (PB1) domain-
containing protein 

aC31501D04EF_c 1.44 0.00 AT4G05150 

Oxylase-like protein aCL4163Contig1 1.44 0.17 AT3G19000 
Nucleotide sugar epimerase-like protein aCL1692Contig1 1.44 0.57 AT4G30440 
S-adenosyl-L-methionine synthetase 1 aCL414Contig2 1.43 0.17 AT3G17390 
sulfate transporter aC19008G08T7_c 1.43 0.00 AT4G02700 
vacuolar sorting receptor aC06001G12SK_c 1.43 0.74 AT1G30900 
potassium channel tetramerisation domain-
containing protein 

aC05054G10SK_c 1.43 1.06 AT5G41330 

no annotation available aCL6647Contig1 1.43 1.06  
protein kinase family protein aCL9409Contig1 1.43 4.32 AT5G47740 
no annotation available aC05070A03SK_c 1.43 0.17  
no annotation available aC07001C09SK_c 1.43 0.74  
Putative beta-1,3-glucanase (glycosyl hydrolase 
family 17) 

aCL2349Contig1 1.43 0.74 AT2G16230 

A.thaliana gene induced upon wounding stress aC31809E04EF_c 1.43 0.74 AT4G24220 
Putative bacterial blight resistance protein LRR aC31006A01EF_c 1.43 1.36 AT3G49670 
no annotation available aC01013F10SK_c 1.43 0.17  
Starch phosphorylase type H aC08037B01SK_c 1.43 1.36 AT3G46970 
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Alkaline alpha galactosidase II aC34008C07EF_c 1.42 0.57 AT3G57520 
Clathrin binding protein-like aCL3017Contig1 1.42 1.36 AT5G11710 
Pectin methylesterase aCL4116Contig2 1.42 0.46 AT5G53370 
Similarity to transporter protein aCL7628Contig1 1.42 0.00 AT3G25410 
Sulfate transporter 2 aCL5087Contig1 1.42 1.36 AT1G22150 
Flavonoid-3'-hydroxylase aCL893Contig1 1.42 1.36 AT5G07990 
expressed protein aCL9316Contig1 1.42 0.74 AT5G02580 
expressed protein aCL37Contig1 1.42 1.36 AT1G05340 
no annotation available aCL4149Contig1 1.42 4.32  
no annotation available aC16012C10SK_c 1.42 4.32  
Putative O-methyltransferase aC02001E07SK_c 1.41 0.74 AT4G02405 
Carboxypeptidase type III aC31806B06EF_c 1.41 0.46 AT3G10410 
Serine/threonine specific protein kinase-like aC31701B09EF_c 1.41 3.23 AT5G15080 
Chloride channel protein CLC-c aCL8241Contig1 1.41 4.32 AT5G49890 
copine-related aCL4759Contig1 1.41 3.23 AT5G14420 
SOS2-like protein kinase (CIPK6) aCL717Contig1 1.41 0.46 AT4G30960 
no annotation available aCL8147Contig1 1.40 3.23  
Reductase 2 aC31004B03EF_c 1.40 0.57 AT1G59950 
expressed protein aC03004F01SK_c 1.40 0.74 AT5G67390 
expressed protein aCL5420Contig1 1.40 0.57 AT4G15545 
Peroxidase precursor aCL36Contig2 1.40 0.74 AT4G21960 
expressed protein aCL8195Contig1 1.40 0.74 AT1G73390 
Glucosyl transferase aCL1582Contig1 1.40 0.17 AT3G11340 
Catalase aCL63Contig3 1.40 0.00 AT4G35090 
Heat shock factor protein HSF24 aCL432Contig1 1.40 0.00 AT4G36990 
no annotation available aC18015B09Rv_c 1.40 2.81  
Putative carbonyl reductase aC31710C05EF_c 1.40 1.36 AT3G61220 
Acid invertase (Glycosyl hydrolases family 32) aCL2322Contig1 1.40 0.00 AT1G12240 
disease resistance protein (TIR-NBS-LRR class) aC31704B11EF_c 1.40 4.32 AT3G44400 
no annotation available aCL1329Contig1 1.39 2.81  
Histone H3.3 aCL1455Contig1 1.39 0.17 AT5G10980 
no annotation available aC07011B02SK_c 1.39 1.36  
no annotation available aCL8567Contig1 1.39 1.06  
SAC1-like protein AtSAC1b aCL36Contig1 1.39 1.78 AT3G51460 
no annotation available aKN0AAI1CD03FM2_c 1.39 4.32  
Salt tolerance zinc finger protein aCL146Contig3 1.39 0.92 AT1G27730 
Purple acid phosphatase-like aCL4001Contig1 1.39 3.23 AT3G10150 
Clavaminate synthase-like protein aCL7936Contig1 1.39 0.74 AT3G21360 
Guanylate kinase-like protein aCL2233Contig1 1.39 0.74 AT3G57550 
Endoxyloglucan transferase aCL156Contig1 1.39 0.74 AT1G14720 
Callose synthase catalytic subunit-like protein aC18005G07Rv_c 1.39 1.06 AT5G13000 
expressed protein aCL5426Contig1 1.39 1.36 AT4G36630 
expressed protein aC02002C08SK_c 1.39 0.46 AT1G31940 
Hydroquinone glucosyltransferase aC16012D02SK_c 1.39 2.81 AT4G01070 
no annotation available aCL9308Contig1 1.39 2.81  
Putative hexose transporter aC20008H02SK_c 1.38 0.74 AT4G35300 
expressed protein aCL2430Contig1 1.38 2.81 AT1G78110 
Phosphoenolpyruvate carboxylase 2 aCL4972Contig1 1.38 0.92 AT1G53310 
Cystatin-like protein aCL1198Contig1 1.38 1.06 AT5G47550 
NAC domain protein NAC19 aCL35Contig3 1.38 0.74 AT1G52890 
Aluminum-induced protein aC31305F09EF_c 1.38 1.36 AT5G19140 
Profilin-3 aCL1323Contig1 1.38 0.92 AT4G29340 
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no annotation available aC08019G01SK_c 1.38 2.81  
AMP-binding protein aCL5216Contig1 1.38 0.17 AT5G16340 
cysteine proteinase, putative / AALP protein 
(AALP) 

aCL13Contig5 1.38 0.46 AT5G60360 

Pyrophosphate-dependent phosphofructokinase 
beta subunit 

aC06008H03SK_c 1.38 1.36 AT1G12000 

shikimate kinase-related aC08031D04SK_c 1.38 0.46 AT2G35500 
NADC homolog aC34205E07EF_c 1.38 3.23 AT2G01350 
Two-component response regulator-like APRR5 aCL4006Contig1 1.38 1.36 AT5G24470 
late embryogenesis abundant 3 family protein aCL6Contig4 1.37 0.57 AT4G02380 
FAD linked oxidase family protein aCL3809Contig1 1.37 1.36 AT5G06580 
glycosyl hydrolase family 3 protein aCL3345Contig1 1.37 4.32 AT1G78060 
CCAAT-box binding transcription factor subunit 
B (AHAP3) family 

aCL1964Contig1 1.37 3.23 AT4G14540 

zinc finger (C3HC4-type RING finger) family 
protein 

aCL8939Contig1 1.37 0.74 AT5G57740 

no annotation available aC08006H05SK_c 1.37 1.78  
Metal tolerance protein C1 aC20001A04SK_c 1.37 0.92 AT2G47830 
MipC aCL165Contig1 1.37 0.57 AT5G60660 
late embryogenesis abundant 3 family protein aCL6Contig22 1.37 1.06 AT4G02380 
basic helix-loop-helix (bHLH) protein (RAP-1) aC04028A10SK_c 1.37 0.46 AT1G32640 
expressed protein aCL2009Contig1 1.37 1.36 AT1G27100 
Tonoplast dicarboxylate transporter aCL5Contig3 1.37 1.06 AT5G47560 
haloacid dehalogenase-like hydrolase family 
protein 

aC31501F12EF_c 1.37 1.06 AT2G41250 

similar to glycosyl transferase family 48 protein aCL2860Contig1 1.37 3.23 AT1G05570 
copper chaperone (CCH)-related aCL5712Contig1 1.36 0.17 AT5G63530 
glyceraldehyde 3-phosphate dehydrogenase aCL218Contig2 1.36 1.36 AT1G16300 
no annotation available aC04019C10SK_c 1.36 2.81  
late embryogenesis abundant 3 family protein aCL6Contig5 1.36 0.74 AT4G02380 
Putative membrane transporter aCL854Contig2 1.36 0.46 AT2G43330 
zinc finger (AN1-like) family protein aCL511Contig7 1.36 1.78 AT2G27580 
Thiazole biosynthetic enzyme, chloroplast 
precursor 

aCL1030Contig1 1.36 2.81 AT5G54770 

Low temperature-induced protein lt101.1 aC21001B11Rv_c 1.36 0.46 AT2G38905 
Putative succinate dehydrogenase flavoprotein 
alpha subunit 

aC08015F02SK_c 1.36 2.81 AT5G66760 

no annotation available aCL20Contig4 1.36 0.74  
MYB-like DNA-binding protein aC06013H06SK_c 1.36 1.06 AT5G13820 
Cinnamoyl-CoA reductase aCL653Contig1 1.36 0.57 AT2G23910 
ADP-glucose pyrophosphorylase small subunit aC31305H08EF_c 1.36 1.36 AT5G48300 
WRKY transcription factor NtEIG-D48 aCL2048Contig1 1.36 1.78 AT4G24240 
expressed protein aIC0AAA32DG11RM1_c 1.36 2.81 AT5G62950 
Aquaporin PIP1.3 aCL58Contig3 1.36 0.17 AT4G00430 
plectin-related aCL5463Contig1 1.36 4.32 AT2G26770 
Carbonic anhydrase aCL871Contig1 1.35 2.81 AT3G01500 
L-asparaginase aCL506Contig2 1.35 0.74 AT3G16150 
expressed protein aCL1108Contig1 1.35 0.74 AT1G55340 
expressed protein aCL4644Contig1 1.35 1.06 AT1G67785 
heat shock protein-related aCL2011Contig1 1.35 2.81 AT5G57710 
Flavonol synthase/flavanone 3-hydroxylase aCL336Contig1 1.35 1.06 AT5G08640 
expressed protein aCL1118Contig2 1.35 1.36 AT1G50120 
expressed protein aCL7570Contig1 1.35 1.06 AT4G27020 
no annotation available aCL9431Contig1 1.35 2.81  
no annotation available aCL1112Contig1 1.35 0.92  
expressed protein aCL5894Contig1 1.35 4.32 AT1G21680 
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BZIP transcription facto aCL3570Contig2 1.35 1.36 AT1G42990 
Glutathione-conjugate transporter AtMRP4 aCL4731Contig1 1.35 1.78 AT2G47800 
expressed protein aC08033G08SK_c 1.35 2.81 AT2G44010 
70kD heat shock protein aC34105F11EF_c 1.34 0.74 AT2G32120 
Phi-1 protein aCL1406Contig1 1.34 1.36 AT4G08950 
Peroxisomal (S)-2-hydroxy-acid oxidase aCL2300Contig1 1.34 1.36 AT3G14420 
lipid transfer protein 4 (LTP4) aCL3Contig25 1.34 1.78 AT5G59310 
Type IIIa membrane protein cp-wap13 aC08013B09SK_c 1.34 0.92 AT3G02230 
calmodulin-7 (CAM7) aCL13Contig1 1.34 4.32 AT3G43810 
Kinase-like protein aCL5503Contig1 1.34 1.36 AT5G63320 
Cinnamyl-alcohol dehydrogenase 1 aCL1427Contig1 1.34 0.74 AT3G19450 
Hydroxyproline-rich glycoprotein aCL150Contig2 1.34 1.78 AT3G22440 
Abscisic acid-induced-like protein aC31106H02EF_c 1.34 1.36 AT5G50720 
no annotation available aC04035C12SK_c 1.34 1.36  
Putative histone H2A aCL4564Contig1 1.34 4.32 AT5G02560 
Anthraniloyal-CoA: methanol anthraniloyal 
transferase 

aC31206H01EF_c 1.34 3.23 AT5G17540 

no annotation available aC04027F11SK_c 1.34 3.23  
expressed protein aCL59Contig3 1.34 0.74 AT2G27830 
C2 domain-containing protein aCL2978Contig1 1.34 0.74 AT4G11610 
no annotation available aC02013H01SK_c 1.33 1.78  
Ser/Thr protein kinase (CIPK3) aC06015C02SK_c 1.33 1.36 AT2G26980 
Receptor-kinase isolog (LRR-RLK) aC20007G06SK_c 1.33 1.78 AT1G60630 
Expressed protein aCL8735Contig1 1.33 0.74 AT2G31190 
Early nodulin-like protein 2 precursor aCL931Contig1 1.33 0.17 AT4G27520 
UDP-glucosyltransferase HRA25 aCL7527Contig1 1.33 1.78 AT3G02100 
no annotation available aC31207F04EF_c 1.33 0.92  
no annotation available aCL4356Contig1 1.33 1.36  
similar to phosphatidate cytidylyltransferase aC31803H08EF_c 1.33 1.36 AT4G22340 
glutathione S-transferase C-terminal domain-
containing protein 

aCL350Contig1 1.33 3.23 AT5G44000 

no annotation available aCL3756Contig1 1.33 1.78  
S-adenosyl-L-methionine:delta24-sterol-C- 
methyltransferase 

aCL6040Contig1 1.33 1.06 AT5G13710 

expressed protein aCL266Contig1 1.33 1.36 AT5G51510 
expressed protein aCL4174Contig1 1.33 1.36 AT2G43780 
nitrate transporter (NTP3) aC06008E06SK_c 1.33 1.06 AT3G21670 
acyl-(acyl-carrier-protein) desaturase / stearoyl-
ACP desaturase (SSI2) 

aCL8721Contig1 1.32 2.81 AT2G43710 

chalcone synthase / naringenin-chalcone 
synthase 

aC31807C06EF_c 1.32 3.23 AT5G13930 

hydroxyproline-rich glycoprotein family protein, aC06005F09SK_c 1.32 0.92 AT1G23040 
Putative kinesin light chain aC02010B05SK_c 1.32 1.06 AT1G27500 
cytochrome b6f complex subunit (petM) aCL42Contig1 1.32 1.78 AT2G26500 
BZIP transcription factor protein aCL3570Contig1 1.32 2.81 AT1G42990 
Pyrophosphate-energized vacuolar membrane 
proton pump 

aC32007A12EF_c 1.32 1.36 AT1G15690 

Alcohol acyl transferase aC06011E10SK_c 1.32 4.32 AT5G17540 
Proteophosphoglycan 5 aCL5627Contig1 1.32 3.23  
Protein phosphatase-2C aKN0AAP12YJ01FM1_c 1.32 3.23 AT3G62260 
Putative ethylene response factor ERF3a (AP2 
domain) 

aCL1567Contig2 1.32 1.36 AT5G44210 

delta-8 sphingolipid desaturase aCL4105Contig1 1.32 0.92 AT2G46210 
calcium-binding EF hand family protein aCL26Contig5 1.32 1.06 AT5G39670 
expressed protein aC05133F03SK_c 1.32 1.06 AT1G10740 
Ferritin-3, chloroplast precursor aCL859Contig1 1.32 1.36 AT5G01600 



Results: Chapter 3 
 
 

136 
 

expressed protein aCL598Contig1 1.32 1.36 AT4G01670 
Serine/threonine protein kinase aC06005C08SK_c 1.32 1.78 AT5G47750 
expressed protein aC34009A08EF_c 1.32 0.74 AT4G02920 
Cinnamoyl CoA reductase aCL8388Contig1 1.32 1.36 AT1G15950 
transducin family protein / WD-40 repeat family 
protein 

aC04028G03SK_c 1.32 1.36 AT5G49430 

no annotation available aC02011B12SK_c 1.32 0.57  
harpin-induced family protein / HIN1 family 
protein 

aCL1271Contig1 1.31 3.23 AT3G11660 

Heat shock protein 101 aCL7935Contig1 1.31 3.23 AT1G74310 
Tubulin beta-2 chain aC31804C06EF_c 1.31 0.92 AT5G12250 
expressed protein aCL5508Contig1 1.31 1.36 AT5G13240 
Putative peroxisomal membrane protein aC08036G02SK_c 1.31 2.81 AT1G52870 
Putative early light induced protein aCL5Contig15 1.31 1.78 AT3G22840 
expressed protein aCL2576Contig1 1.31 1.78 AT5G18130 
adhesin-related aC31501F04EF_c 1.31 4.32 AT1G20970 
Zinc finger, C3HC4 type aCL128Contig2 1.31 2.81 AT5G22000 
HyuC-like protein aC31401C02EF_c 1.31 1.78 AT4G20070 
Serine/threonine-protein phosphatase BSL3 aC18009G03Rv_c 1.31 2.81 AT2G27210 
5-methyltetrahydropteroyltriglutamate--
homocysteine methyltransferase 

aCL90Contig4 1.31 1.36 AT5G17920 

expressed protein aCL225Contig1 1.31 1.36 AT2G27385 
zinc finger (GATA type) family protein aC31706D05EF_c 1.31 3.23 AT3G54810 
copine-related aCL57Contig2 1.31 1.06 AT5G14420 
Putative inorganic pyrophosphatase aCL3796Contig1 1.30 1.36 AT3G53620 
no annotation available aCL5494Contig1 1.30 2.81  
ABC transporter-like protein aCL3233Contig1 1.30 3.23 AT5G02270 
Hydroxyproline-rich glycoprotein aC31604D08EF_c 1.30 1.36 AT3G22440 
no annotation available aC08007E09SK_c 1.30 2.81  
40S ribosomal protein S24 aCL3908Contig1 1.30 3.23 AT3G04920 
4-coumarate:CoA ligase 2 aCL7230Contig1 1.30 1.36 AT1G51680 
Glucose-6-phosphate/phosphate-translocator 
precursor 

aCL2727Contig1 1.30 1.36 AT1G61800 

Proline-rich protein aCL1641Contig1 1.30 3.23 AT5G15780 
zinc finger (C3HC4-type RING finger) family 
protein 

aCL703Contig1 1.30 1.78 AT5G59550 

Allene oxide synthase aCL6896Contig1 1.30 2.81 AT5G42650 
Cytochrome P450-like protein aCL1058Contig1 1.30 2.81 AT3G56630 
ARIADNE-like protein ARI7 aCL2811Contig1 1.30 2.81 AT2G31510 
Glutamine synthetase aCL86Contig1 1.29 2.81 AT5G37600 
expressed protein aCL5491Contig1 1.29 4.32 AT4G10080 
Glycine dehydrogenase [decarboxylating] aCL105Contig2 1.29 1.78 AT4G33010 
expressed protein aCL3774Contig1 1.29 1.06 AT2G05620 
Putative callose synthase 1 catalytic subunit aCL6722Contig1 1.29 3.23 AT4G04970 
disease resistance-responsive protein-related aC06008D06SK_c 1.29 2.81 AT1G58170 
UDP-glucose glucosyltransferase aC34108E04EF_c 1.29 0.74 AT4G34135 
Plasma membrane H+ ATPase aCL1735Contig1 1.29 1.36 AT2G24520 
Aspartic proteinase 4 aCL958Contig1 1.29 1.36 AT1G11910 
Histone H2B aCL225Contig3 1.29 3.23 AT5G59910 
Putative glutathione S-transferase T3 aCL803Contig1 1.29 3.23 AT2G29420 
Putative receptor protein kinase LRR aCL4613Contig1 1.29 2.81 AT2G26330 
protein kinase family protein aCL6258Contig1 1.29 1.36 AT5G60550 
Nodulin-like protein aCL696Contig1 1.28 0.74 AT1G80530 
no annotation available aC05808E03SK_c 1.28 1.36  
no annotation available aIC0AAA94AE10RM1_c 1.28 4.32  
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Hydroxycinnamoyl CoA quinate transferase aCL5400Contig1 1.28 3.23 AT5G48930 
MYB Transcription factor (MYBR2) aCL795Contig2 1.28 4.32 AT3G16350 
Lectin-like protein kinase aC08036G07SK_c 1.28 2.81 AT5G06740 
Leaf protein aC31601F12EF_c 1.28 2.81 AT5G21222 
expressed protein aC31802F07EF_c 1.28 3.23 AT5G53420 
Putative allantoinase aC31504H10EF_c 1.28 2.81 AT4G04955 
rubber elongation factor (REF) family protein aCL1Contig22 1.28 2.81 AT1G67360 
Probable pyridoxin biosynthesis PDX1-like 
protein 2 

aCL901Contig2 1.28 3.23 AT3G16050 

Putative lipase aCL2971Contig1 1.27 4.32 AT3G48460 
Eukaryotic peptide chain release factor subunit 
1-3 

aCL351Contig1 1.27 3.23 AT3G26618 

expressed protein aC18007A06Rv_c 1.27 1.06 AT1G15780 
similar to expressed protein aCL5741Contig1 1.27 1.78 AT5G45030 
ubiquitin-specific protease 3 (UBP3) aCL8124Contig1 1.27 4.32 AT4G39910 
no annotation available aC01011D03SK_c 1.27 3.23  
COBRA protein precursor aCL648Contig2 1.27 1.36 AT5G60920 
nucleoporin interacting component family protein aC02004G03SK_c 1.27 1.36 AT2G41620 
no annotation available aC04028G06SK_c 1.27 1.78  
Glucose-6-phosphate/phosphate-translocator 
precursor 

aC06024H01SK_c 1.26 1.36 AT1G61800 

expressed protein aCL5778Contig1 1.26 3.23 AT1G07090 
Glutamine synthetase aCL109Contig1 1.26 1.78 AT5G37600 
Purple acid phosphatase-like protein aCL3990Contig1 1.26 1.78 AT3G20500 
Putative mitochondrial ATP synthase aIC0AAA53CB11RM1_c 1.26 4.32 AT3G52300 
Chloroplast lipocalin aC02003B07SK_c 1.26 4.32 AT3G47860 
similar to leucine-rich repeat family protein aC31304F02EF_c 1.26 3.23 AT1G78230 
no annotation available aC32106F08EF_c 1.26 3.23  
DEAD-Box RNA helicase-like protein aCL4154Contig1 1.26 2.81 AT3G22330 
COBRA-like protein 7 precursor aCL1086Contig1 1.26 4.32 AT4G16120 
no annotation available aC02013F03SK_c 1.26 3.23  
Cellulose synthase aC03001C04Rv_c 1.26 3.23 AT4G39350 
galactosyltransferase family protein aC32107E12EF_c 1.26 4.32 AT3G06440 
L1 protein aCL2360Contig1 1.25 2.81 AT3G63490 
no annotation available aC16015B08SK_c 1.25 4.32  
Beta 1,4 N-acetylglucosaminyltransferase aC18019G01Rv_c 1.25 1.78 AT1G12990 
similar to RNA recognition motif (RRM)-
containing protein 

aCL1191Contig1 1.25 3.23 AT4G00830 

Putative ubiquinol--cytochrome-c reductase aCL6255Contig1 1.25 1.78 AT1G15120 
MYB-like DNA-binding protein aCL5608Contig1 1.25 3.23 AT5G13820 
expressed protein aCL1553Contig1 1.24 1.36 AT1G80000 
Putative carbonyl reductase aCL4319Contig1 1.24 2.81 AT3G61220 
nonspecific lipid transfer protein 1 (LTP1) aCL155Contig1 1.24 4.32 AT2G38540 
WRKY family transcription factor (SPF1) aCL1506Contig1 1.24 3.23 AT2G38470 
Histone deacetylase-like protein aCL3308Contig1 1.24 3.23 AT5G61060 
calcium-dependent protein kinase, putative / 
CDPK 

aCL8407Contig1 1.24 2.81 AT3G56760 

Putative GTP-binding protein aC04026C08SK_c 1.23 4.32 AT1G06400 
no annotation available aC04016E12SK_c 1.23 4.32  
AAA-type ATPase-like protein aCL580Contig2 1.23 3.23 AT5G17760 
Flavonol sulfotransferase-like aCL7291Contig1 1.23 4.32 AT2G03760 
Putative membrane related protein CP5 aC01009H02SK_c 1.23 2.81 AT1G64720 
expressed protein aC31705E05EF_c 1.23 2.81 AT2G46550 
expressed protein aC04013G12SK_c 1.23 4.32 AT5G47680 
no annotation available aCL5268Contig1 1.22 4.32  
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Trehalose-6-phosphate synthase aC31403D05EF_c 1.22 3.23 AT1G68020 
Glycine-rich RNA-binding protein aCL5Contig23 1.22 4.32 AT2G21660 
expressed protein aC32201A09EF_c 1.22 2.81 AT1G11700 
expressed protein aCL1096Contig1 1.22 1.78 AT3G52610 
CLB1 aCL2037Contig1 1.21 4.32 AT3G61050 
no annotation available aC19009F02T7_c -8.17 1.78  
geranylgeranyl pyrophosphate synthase 
(GGPS1) 

aCL960Contig1 -6.25 0.00 AT4G36810 

ATTPS-CIN | Encodes the monoterpene 1,8-
cineole synthase. Highly similar to (R)-limonene 
synthase 1 

aC02013A08SK_c -4.65 0.00 AT3G25820 

annexin 4 (ANN4) aC20005D02SK_c -4.64 0.00 AT2G38750 
Sesquiterpene synthase (germacrene-D 
synthase) 

aCL4874Contig1 -4.03 0.00 AT5G23960 

expressed protein aC20001E01SK_c -3.55 0.00 AT1G06720 
ATTPS-CIN | Encodes the monoterpene 1,8-
cineole synthase. Highly similar to (R)-limonene 
synthase 1 

aCL2450Contig1 -3.48 0.00 AT3G25820 

acetolactate synthase small subunit aC16018D09SK_c -3.18 0.00 AT2G31810 
(E)-beta-ocimene/alpha-farnesene synthase 
activity 

aCL2450Contig2 -3.15 0.00 AT4G16740 

expressed protein aCL1Contig8 -3.12 0.92 AT5G13220 
flavonol 3-O-methyltransferase 1 / caffeic acid aCL38Contig8 -3.01 0.00 AT5G54160 
expressed protein aCL2040Contig3 -2.89 0.00 AT1G19180 
tryptophan synthase aC31005F03EF_c -2.84 0.00 AT5G28237 
flavonol 3-O-methyltransferase 1 / caffeic acid aCL4936Contig1 -2.71 0.18 AT5G54160 
expressed protein aCL132Contig1 -2.64 0.00 AT1G19180 
glutamate receptor family protein (GLR3.3) aCL3255Contig1 -2.48 0.00 AT1G42540 
tryptophan synthase, beta subunit aCL626Contig1 -2.37 0.46 AT5G28237 
alcohol dehydrogenase aC34109F01EF_c -2.27 0.00 AT5G42250 
allene oxide synthase (AOS) aCL1628Contig2 -2.18 0.00 AT5G42650 
Plastidic ATP/ADP transporter aCL694Contig1 -2.16 0.00 AT1G80300 
protein kinase family protein aC05804D11SK_c -2.10 0.46 AT3G51550 
hydroperoxide lyase (HPL1) aCL5513Contig1 -2.08 0.00 AT4G15440 
early-responsive to dehydration protein-related aCL7793Contig1 -1.99 0.18 AT4G22120 
ABC transporter family protein aCL862Contig1 -1.98 0.00 AT1G17840 
potassium transporter (KUP1) aC31804F08EF_c -1.97 0.00 AT2G30070 
esterase/lipase/thioesterase family protein aCL4614Contig1 -1.95 0.00 AT5G22460 
TIP1;3 | major intrinsic family protein aCL824Contig2 -1.94 0.00 AT4G01470 
COP9 signalosome complex subunit 1 aCL2021Contig1 -1.93 0.00 AT3G61140 
Ribose-phosphate pyrophosphokinase 1 aCL2448Contig1 -1.92 0.00 AT2G35390 
WD-40 repeat family protein aCL7691Contig1 -1.87 0.00 AT1G58230 
esterase/lipase/thioesterase family protein aCL8342Contig1 -1.87 0.00 AT2G39420 
DNAJ heat shock N-terminal domain-containing 
protein 

aCL3788Contig1 -1.86 0.00 AT1G56300 

annexin 4 (ANN4) aC31701H09EF_c -1.85 0.00 AT2G38750 
ACC oxidase aC31605B08EF_c -1.85 0.00 AT1G05010 
Putative dioxygenase aCL8911Contig1 -1.84 3.23 AT4G15093 
late embryogenesis abundant protein aCL1327Contig1 -1.84 1.78 AT1G01470 
O-methyltransferase family 2 protein aCL3052Contig1 -1.82 0.00 AT4G35160 
pentatricopeptide (PPR) repeat-containing 
protein 

aC02025C07SK_c -1.80 0.00 AT5G59600 

flavonol 3-O-methyltransferase 1 / caffeic acid aCL38Contig7 -1.78 0.00 AT5G54160 
annexin 2 (ANN2) aCL296Contig1 -1.77 0.00 AT5G65020 
aldo/keto reductase aC31810E10EF_c -1.77 0.00 AT1G59950 
expressed protein aCL7402Contig1 -1.76 0.00 AT2G26070 
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ABC transporter family protein aCL862Contig2 -1.73 0.00 AT1G17840 
Nodulin-26 aCL824Contig1 -1.73 1.49 AT3G26520 
GmCK2p aCL395Contig1 -1.73 0.00 AT4G09760 
O-methyltransferase family 2 protein aCL4905Contig1 -1.72 0.00 AT4G35160 
Anthranilate N-benzoyltransferase-like protein aCL253Contig1 -1.71 0.18 AT5G01210 
CYP82C1p aCL1683Contig1 -1.70 0.46 AT4G31940 
no apical meristem (NAM) family protein aC19004C08T7_c -1.69 0.18 AT3G04070 
Putative exostoses aCL8580Contig1 -1.68 0.00 AT5G04500 
dehydration-responsive protein-related aCL4197Contig1 -1.68 0.00 AT1G78240 
1-deoxy-D-xylulose 5-phosphate synthase aC31504D11EF_c -1.67 0.00 AT4G15560 
SET domain-containing protein aC08026D10SK_c -1.66 0.81 AT5G17240 
pyridoxal-dependent decarboxylase family 
protein 

aC04032H01SK_c -1.63 0.00 AT1G27980 

omega-3 fatty acid desaturase aCL5Contig18 -1.63 0.18 AT5G05580 
amino acid transporter family protein aCL4668Contig1 -1.62 0.00 AT4G38250 
no annotation available aC01012H12SK_c -1.61 4.32  
glycosyl hydrolase family 17 protein aCL168Contig3 -1.60 0.00 AT2G27500 
26.5 kDa class I small heat shock protein-like 
(HSP26.5-P) 

aCL5468Contig1 -1.59 1.49 AT1G52560 

SET domain-containing protein aC08037B11SK_c -1.59 0.00 AT5G17240 
no annotation available aC19003F01T7_c -1.59 0.81  
similar to raffinose synthase family protein aCL6554Contig1 -1.58 1.49 AT4G01970 
protein kinase family protein aC31502A04EF_c -1.58 0.00 AT5G63940 
no annotation available aCL913Contig1 -1.58 0.00  
hypoxia-responsive family protein aCL1469Contig3 -1.58 0.81 AT3G05550 
C2 domain-containing protein aCL61Contig1 -1.57 0.00 AT5G23950 
Putative exostoses aCL6247Contig1 -1.56 0.92 AT5G04500 
Sphingosine-1-phosphate lyase aCL4647Contig1 -1.56 0.81 AT1G27980 
sugar transporter family protein aC18005D05Rv_c -1.56 3.23 AT5G13740 
flavonol 3-O-methyltransferase 1 / caffeic acid aCL38Contig2 -1.55 0.81 AT5G54160 
basic helix-loop-helix (bHLH) family protein aCL2806Contig1 -1.55 0.00 AT5G57150 
no annotation available aCL8Contig9 -1.55 2.81  
acetolactate synthase small subunit aC05065C02SK_c -1.54 0.18 AT5G16290 
similar to protease inhibitor/seed storage/lipid 
transfer protein 

aCL2501Contig1 -1.54 0.18 AT4G33550 

expressed protein aCL3940Contig1 -1.54 2.81 AT1G55230 
mitochondrial substrate carrier family protein aCL536Contig1 -1.54 1.78 AT2G22500 
ABC transporter family protein aC34101E02EF_c -1.51 0.81 AT1G66950 
no annotation available aCL4456Contig1 -1.51 0.92  
photosystem I reaction center subunit XI aCL2872Contig1 -1.50 3.23 AT4G12800 
photoassimilate-responsive protein-related aCL4667Contig1 -1.50 2.81 AT3G54040 
expressed protein aCL5398Contig1 -1.48 1.49 AT4G37300 
Monooxygenase-like aCL360Contig2 -1.47 1.06 AT5G11330 
basic helix-loop-helix (bHLH) family protein, 
bHLH protein 

aCL7106Contig1 -1.47 0.57 AT4G17880 

protein kinase family protein aCL5363Contig1 -1.47 1.49 AT1G77280 
no annotation available aC18013E09Rv_c -1.46 0.00  
no annotation available aC19007C04T7_c -1.46 1.78  
HNH endonuclease domain-containing protein aC01018D02SK_c -1.45 0.18 AT2G23840 
similar to sugar transporter family protein aC34005E02EF_c -1.45 1.49 AT5G13750 
ABC transporter family protein aCL387Contig3 -1.45 0.00 AT1G66950 
flavonoid 3'-monooxygenase / flavonoid 3'-
hydroxylase (F3'H) 

aCL945Contig1 -1.44 0.81 AT5G07990 

expressed protein aCL1844Contig1 -1.44 0.92 AT3G04350 
DNAJ heat shock N-terminal domain-containing 
protein 

aCL5139Contig1 -1.44 3.23 AT3G14200 
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CER1 protein, putative (WAX2) aCL2973Contig1 -1.43 1.78 AT5G57800 
beta-ketoacyl-CoA synthase family protein aC32009D10EF_c -1.43 0.92 AT5G04530 
CER1 protein, putative (WAX2) aC06013B05SK_c -1.43 0.92 AT5G57800 
flavonoid 3'-monooxygenase / flavonoid 3'-
hydroxylase (F3'H) 

aCL9318Contig1 -1.42 1.78 AT5G07990 

AAA-type ATPase family protein aCL6434Contig1 -1.41 4.32 AT3G24530 
respiratory burst oxidase protein C (RbohC) aCL503Contig1 -1.41 0.92 AT5G51060 
CER1 protein, putative (WAX2) aCL8782Contig1 -1.40 3.23 AT5G57800 
ammonium transporter 1 aCL630Contig1 -1.40 3.23 AT4G13510 
UDP-glucoronosyl/UDP-glucosyl transferase 
family protein 

aCL7446Contig1 -1.39 2.81 AT3G11340 

expressed protein aCL2976Contig1 -1.39 0.46 AT2G47485 
UDP-glucoronosyl/UDP-glucosyl transferase 
family protein 

aC02002B09SK_c -1.38 4.32 AT3G11340 

haloacid dehalogenase-like hydrolase family 
protein 

aCL8075Contig1 -1.37 3.23 AT5G59480 

bZIP transcription factor family protein aC08036D08SK_c -1.37 1.78 AT1G75390 
no annotation available aCL131Contig4 -1.35 4.32  
no annotation available aCL3Contig24 -1.34 4.32  
40S ribosomal protein S24 (RPS24A) aCL1696Contig1 -1.33 3.23 AT3G04920 
disease resistance protein (TIR-NBS-LRR class) aC05076B08SK_c -1.33 1.49 AT4G19520 
Carbonic anhydrase aCL3993Contig1 -1.32 2.81 AT5G14740 
WRKY family transcription factor aCL9018Contig1 -1.29 3.23 AT5G13080 
phytosulfokines-related aCL499Contig1 -1.28 3.23 AT3G44735 
no annotation available aC02003A12SK_c -1.28 4.32  
 
 
B) Differentially expressed genes in the AS7 line 

Description Citrus unigene 
fold-

change 
(real) 

q-
value(%) Most similar Ath gene 

no annotation available  aC05807D09SK_c 13.55 0.00  
no annotation available aC08007E01SK_c 9.66 0.00  
Sugar transporter family protein aCL854Contig1 4.68 0.70 AT2G43330 
monooxygenase, putative (MO2) aCL54Contig2 4.27 0.00 AT4G38540 
transducin family protein / WD-40 repeat family 
protein 

aCL5544Contig1 4.23 0.70 AT3G06880 

no annotation available aC19001H06T7_c 4.22 0.00  
WRKY6 aCL1201Contig2 4.18 0.00 AT1G62300 
Sodium-inducible calcium-binding protein 
(ACP1)  

aCL1345Contig2 3.97 0.00 AT5G49480 

no annotation available aCL1714Contig1 3.83 0.00  
Putative CCR4-associated factor (CAF1) aCL206Contig1 3.61 0.00 AT5G22250 
zinc finger (CCCH-type) family protein (CZF1) aC31603G11EF_c 3.53 0.00 AT2G40140 
CYP81E8 aCL866Contig1 3.49 0.00 AT4G37370 
nonspecific lipid transfer protein 1 (LTP1) aCL4Contig13 3.46 0.00 AT2G38540 
Encodes a member of the ERF subfamily B-3 of 
ERF/AP2 (ATERF-6) 

aCL337Contig1 3.43 0.00 AT4G17490 

Protein phosphatase 2C, putative / PP2C aCL683Contig1 3.41 0.00 AT2G30020 
no annotation available aC19008H07T7_c 3.39 0.70  
geranylgeranyl pyrophosphate synthase 
(GGPS1)  

aCL960Contig1 3.38 0.00 AT4G36810 

cytochrome P450 71B10 aCL3183Contig1 3.29 0.00 AT5G57260 
WRKY family transcription factor, AR41 aCL775Contig1 3.02 0.00 AT4G23810 
calmodulin, putative, similar to calmodulin 
NtCaM13  

aCL535Contig3 2.93 0.00 AT3G10190 

cyclic nucleotide-regulated ion channel (CNGC2) aCL5832Contig1 2.90 0.00 AT5G15410 
basic helix-loop-helix (bHLH) family protein aCL2806Contig1 2.86 0.70 AT5G57150 
multidrug resistant (MDR) ABC transporter aCL5595Contig1 2.81 3.56 AT3G62150 

http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aC05807D09SK_c)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aC08007E01SK_c)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aC19001H06T7_c)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=WRKY%20transcription%20factor%206%20(unigene%20aCL1201Contig2)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=Putative%20CCR4-associated%20factor%20(unigene%20aCL206Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=CYP81E8%20(unigene%20aCL866Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aC19001H06T7_c)
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FAD-binding domain-containing protein aCL246Contig2 2.80 0.70 AT4G20820 
no annotation available aCL2819Contig1 2.80 0.00  
ChaC-like family protein aC05802B02SK_c 2.79 0.00 AT4G31290 
zinc finger (AN1-like) family protein aCL511Contig7 2.77 0.00 AT2G27580 
WRKY family transcription factor (SPF1) aCL1506Contig1 2.76 0.00 AT2G38470 
sulfate transporter aC19008G08T7_c 2.76 0.00 AT4G02700 
cytochrome P450 family protein aCL3370Contig1 2.74 3.25 AT3G26310 
glutathione S-conjugate ABC transporter (MRP2) aC18021E02Rv_c 2.70 3.56 AT2G34660 
no annotation available aC19006C07T7_c 2.62 3.25  
expressed protein aCL1Contig8 2.59 0.00 AT5G13220 
no annotation available aCL8681Contig1 2.57 0.70  
no annotation available aCL50Contig2 2.56 0.43  
non-symbiotic hemoglobin 1 (HB1) (GLB1) aC16013D01SK_c 2.55 0.70 AT2G16060 
sigA-binding protein aCL4628Contig1 2.49 0.70 AT3G56710 
FAD-binding domain-containing protein aCL246Contig1 2.43 0.70 AT2G34790 
serine-glyoxylate aminotransferase-related aCL1561Contig3 2.42 3.56 AT2G13360 
sulfate transporter (ST1) aC34107H08EF_c 2.39 0.00 AT3G51895 
UDP-glucoronosyl/UDP-glucosyl transferase 
family protein 

aCL7446Contig1 2.38 3.07 AT3G11340 

potassium channel tetramerisation domain-
containing protein 

aC05054G10SK_c 2.35 0.70 AT5G41330 

UDP-glucoronosyl/UDP-glucosyl transferase 
family protein 

aC02002B09SK_c 2.35 3.25 AT3G11340 

R2R3-MYB family transcription factor (MYB73) aCL693Contig1 2.34 0.70 AT4G37260 
Probable adenylate kinase 2 - chloroplast 
precursor 

aCL3168Contig1 2.33 4.30 AT5G47840 

expressed protein aCL6840Contig1 2.26 0.00 AT3G52740 
similar to nucellin protein, putative  aC04016D07SK_c 2.26 0.70 AT4G33490 
3-oxo-5-alpha-steroid 4-dehydrogenase family 
protein 

aC01011F03SK_c 2.26 0.70 AT5G16010 

Cytochrome P450-like protein aC16013D12SK_c 2.25 0.70 AT4G31940 
no annotation available aCL2956Contig1 2.25 2.05  
no annotation available aC05065F06SK_c 2.24 1.09  
ABC transporter family protein aCL5223Contig1 2.14 4.30 AT5G09930 
expressed protein aCL8468Contig1 2.13 0.00 AT1G69760 
heavy-metal-associated domain-containing 
protein 

aC31605A08EF_c 2.12 0.70 AT5G48290 

Salt tolerance zinc finger protein aCL146Contig3 2.12 0.00 AT1G27730 
disease resistance protein (NBS-LRR class) aCL5233Contig1 2.12 2.16 AT3G14460 
vacuolar processing enzyme gamma aCL554Contig1 2.11 0.00 AT4G32940 
no annotation available aC31806D03EF_c 2.10 3.56  
ankyrin repeat family protein aC31704F08EF_c 2.09 0.00 AT1G07710 
no annotation available aC31807H02EF_c 2.09 0.00  
expressed protein aC08031A08SK_c 2.08 3.25 AT5G41110 
aldehyde dehydrogenase, putative (ALDH) aC18012D10Rv_c 2.08 3.25 AT1G44170 
expressed protein aCL6679Contig1 2.08 3.56 AT1G59710 
Transcription factor WRKY1  aCL2927Contig1 2.07 0.00 AT1G80840 
zinc finger (AN1-like) family protein aCL511Contig2 2.04 0.70 AT2G27580 
UDP-glucoronosyl/UDP-glucosyl transferase 
family protein 

aC02002E10SK_c 2.04 0.70 AT3G02100 

Similar to metallo-beta-lactamase family protein aC08035F02SK_c 2.04 0.00 AT1G61010 
similar to protein kinase family protein aCL9409Contig1 2.03 0.00 AT5G47740 
ERD1 protein - chloroplast precursor aCL4690Contig1 2.03 0.00 AT5G51070 
Anthranilate N-benzoyltransferase aC18024F04Rv_c 2.03 3.25 AT5G48930 
peptidase S41 family protein aCL7817Contig1 2.02 0.70 AT3G57680 
3-dehydroquinate dehydratase / shikimate 
dehydrogenase isoform 2 

aC20009A07SK_c 2.02 0.00 AT3G06350 

no annotation available aCL1184Contig3 2.02 3.07  
nodulin MtN21 family protein aCL8434Contig1 2.01 0.00 AT1G68170 
no annotation available aC05810F08SK_c 2.01 3.56  
expressed protein aC19009D03T7_c 2.00 3.56 AT5G65960 
late embryogenesis abundant 3 family protein aCL6Contig4 2.00 0.70 AT4G02380 

http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
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No apical meristem (NAM) family protein 
(NAC72) 

aCL35Contig5 1.99 0.00 AT4G27410 

no annotation available aC08007C02SK_c 1.99 0.00  
no annotation available aCL5242Contig1 1.98 3.56  
late embryogenesis abundant 3 family protein aCL6Contig5 1.98 0.00 AT4G02380 
calcium-binding EF hand family protein aC08007C09SK_c 1.97 0.00 AT3G10300 
no annotation available aC31305G08EF_c 1.97 0.70  
no annotation available aCL1329Contig1 1.97 0.00  
phenylalanine ammonia-lyase 1 (PAL1) aCL1166Contig2 1.96 0.70 AT2G37040 
UDP-glucoronosyl/UDP-glucosyl transferase 
family protein 

aCL5570Contig1 1.95 3.56 AT2G36970 

late embryogenesis abundant 3 family protein aCL6Contig22 1.94 0.43 AT4G02380 
chalcone synthase / naringenin-chalcone 
synthase 

aCL27Contig2 1.94 0.00 AT5G13930 

no annotation available aC18001E11Rv_c 1.94 0.00  
C2 domain-containing protein, contains similarity 
to CLB1 

aCL9264Contig1 1.93 1.09 AT5G47710 

ChaC-like family protein aCL283Contig1 1.91 0.00 AT4G31290 
amino acid transporter family protein aCL358Contig2 1.90 0.70 AT3G56200 
strictosidine synthase family protein aC31201B02EF_c 1.90 0.70 AT3G59530 
2-nitropropane dioxygenase family / NPD family aCL1003Contig1 1.90 1.09 AT5G64250 
WD-40 repeat family protein / phytochrome A-
related 

aCL6446Contig1 1.90 0.43 AT1G53090 

copper chaperone (CCH)-related aCL4708Contig1 1.90 0.00 AT5G63530 
ChaC-like family protein aC31807B06EF_c 1.89 0.00 AT4G31290 
cyclic nucleotide-regulated ion channel (CNGC2) aC32102F03EF_c 1.88 0.00 AT5G15410 
WRKY transcription factor NtEIG-D48 aCL2048Contig1 1.88 0.70 AT4G24240 
expressed protein aCL8222Contig1 1.88 0.00 AT3G61870 
SYNC1 protein aCL1665Contig1 1.87 0.00 AT2G25460 
MYB Transcription factor (MYBR2) aCL795Contig2 1.87 0.00 AT3G16350 
cytochrome P450 monooxygenase aCL4922Contig1 1.87 0.00 AT4G31940 
no annotation available aC03007D01SK_c 1.87 3.07  
Rubisco activase aC05804A10SK_c 1.86 0.70 AT2G39730 
no annotation available aC31206E07EF_c 1.86 2.16  
F-box family protein (FBL3) aC05056H07SK_c 1.86 0.00 AT5G01720 
Putative ripening-related protein  aCL1973Contig2 1.85 0.70 AT5G02230 
Lectin like protein aCL2577Contig1 1.85 3.07 AT4G19840 
no annotation available aC31006C04EF_c 1.84 0.70  
no annotation available aCL4787Contig1 1.83 0.00  
respiratory burst oxidase protein D (RbohD) / 
NADPH oxidase 

aCL7567Contig1 1.82 0.00 AT5G47910 

cellulose synthase family protein aCL1355Contig1 1.82 0.00 AT2G32540 
no annotation available aC19003E02T7_c 1.82 0.70  
Ribulose bisphosphate carboxylase/oxygenase 
activase 1  

aCL48Contig2 1.82 0.70 AT2G39730 

similar to branched-chain amino acid 
aminotransferase 5 (BCAT5) 

aCL3102Contig1 1.82 0.70 AT1G10070 

no annotation available aC04035C12SK_c 1.81 0.00  
MADS-box protein (AGL62) aCL8174Contig1 1.81 3.25 AT5G60440 
Homogentisate geranylgeranyl transferase aCL895Contig3 1.81 0.00 AT2G18950 
MYB70 aCL891Contig1 1.81 3.07 AT2G23290 
calcium-binding EF hand family protein aCL8972Contig1 1.81 2.16 AT1G05150 
ATPDX2  aCL8162Contig1 1.80 0.70 AT5G60540 
expressed protein aC04027F02SK_c 1.80 3.25 AT3G07090 
expressed protein aCL5746Contig1 1.80 0.00 AT1G29950 
epsin N-terminal homology (ENTH) domain-
containing protein 

aCL8521Contig1 1.79 0.70 AT5G35200 

expressed protein aCL59Contig3 1.79 0.00 AT2G27830 
signal recognition particle 54 kDa protein aCL4168Contig1 1.79 0.70 AT5G03940 
S-receptor kinase-like protein 3 aC01014F11SK_c 1.79 0.70 AT1G11410 
Alkaline/neutral invertase aC02006E05SK_c 1.78 0.70 AT5G22510 
eukaryotic translation initiation factor SUI1 aCL1184Contig4 1.78 0.00 AT5G54940 

http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
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DC1 domain-containing protein aCL2160Contig1 1.78 0.70 AT1G60420 
protein kinase family protein (ORG-1) aCL6565Contig1 1.78 0.70 AT5G53450 
expressed protein aC05133F03SK_c 1.78 0.70 AT1G10740 
bromo-adjacent homology (BAH) domain-
containing protein 

aCL1560Contig1 1.77 3.25 AT1G68580 

Callose synthase 1 catalytic subunit aCL6983Contig1 1.77 3.25 AT1G05570 
Putative serine/threonine kinase SRK2F aC04002A03SK_c 1.76 0.00 AT4G40010 
glycine-rich RNA-binding protein aCL2713Contig1 1.76 2.16 AT5G04280 
ANAC029 | no apical meristem (NAM) aCL1571Contig1 1.75 3.56 AT1G69490 
Ser-thr protein kinase aCL5546Contig1 1.75 3.25 AT2G40270 
esterase/lipase/thioesterase family protein aCL5939Contig1 1.75 0.00 AT1G54570 
Guanylate kinase-like protein aCL2233Contig1 1.75 3.07 AT3G57550 
F-box family protein aCL4535Contig1 1.74 3.56 AT3G07870 
amine oxidase family protein aCL7309Contig1 1.74 3.07 AT1G65840 
expressed protein aCL1055Contig1 1.74 0.00 AT2G26530 
no annotation available aC31207F04EF_c 1.74 0.70  
translation initiation factor IF-2 aCL1666Contig1 1.73 0.00 AT1G17220 
sugar transporter family protein aC18005D05Rv_c 1.73 2.05 AT5G13740 
chloroplast thylakoidal processing peptidase aC20009E09SK_c 1.73 0.00 AT2G30440 
expressed protein aC34203C04EF_c 1.73 0.00 AT1G55480 
Putative phosphatase  aCL4964Contig1 1.72 3.25 AT1G73010 
no annotation available aCL1802Contig1 1.72 3.25  
WD-40 repeat family protein aC02012C02SK_c 1.71 3.07 AT5G67320 
calcium-binding protein aCL7914Contig1 1.71 0.70 AT1G21550 
Putative allantoinase aC31504H10EF_c 1.70 0.00 AT4G04955 
Rieske (2Fe-2S) domain-containing protein aCL1765Contig1 1.70 0.70 AT4G25650 
sulfate adenylyltransferase 1 / ATP-sulfurylase 1 
(APS1) 

aCL438Contig2 1.70 0.00 AT3G22890 

DNA helicase-like  aC02023C11SK_c 1.70 3.25 AT5G35970 
histone H1-3 (HIS1-3) aCL517Contig2 1.69 2.05 AT2G18050 
expressed protein aC01005C06SK_c 1.69 4.30 AT5G67370 
mitogen-activated protein kinase kinase 
(MAPKK), putative (MKK9) 

aCL2719Contig1 1.69 2.05 AT1G73500 

remorin family protein aCL1490Contig1 1.69 3.25 AT2G41870 
phytochrome A signal transduction 1 (PAT1) aCL5064Contig1 1.69 0.43 AT5G48150 
expressed protein aCL1081Contig2 1.69 0.43 AT3G19970 
WRKY family transcription factor 
WRKY3/WRKY70 

aCL6828Contig1 1.68 0.00 AT3G56400 

Putative serine/threonine-specific protein kinase  aCL5214Contig1 1.67 4.30 AT2G33580 
copper chaperone (CCH)-related aCL2730Contig1 1.67 0.70 AT4G08570 
no annotation available aCL4637Contig1 1.67 0.70  
Peptidase family U7 aCL27Contig1 1.66 0.00 AT1G73990 
transducin family protein / WD-40 repeat family 
protein 

aC34008F06EF_c 1.65 0.00 AT3G06880 

no annotation available aCL101Contig2 1.65 0.00  
oxidoreductase, 2OG-Fe(II) oxygenase family 
protein 

aC34009B09EF_c 1.65 0.00 AT4G10490 

Glutamate decarboxylase 4a  aCL505Contig2 1.64 1.09 AT2G02010 
expressed protein aCL2400Contig1 1.64 0.00 AT1G32740 
Fe-superoxide dismutase 1 aCL14Contig2 1.63 3.56 AT5G51100 
Calcium-transporting ATPase 8 - plasma 
membrane-type  

aC31103C11EF_c 1.63 0.70 AT3G21180 

harpin-induced family protein (YLS9) / HIN1 
family protein 

aCL2389Contig2 1.63 0.00 AT2G35980 

PDR12 | ABC transporter family involved in 
resistant to lead 

aCL912Contig1 1.63 0.70 AT1G15520 

amino acid transporter family protein aCL1103Contig1 1.63 4.30 AT5G23810 
basic helix-loop-helix (bHLH) protein (RAP-1) aC04028A10SK_c 1.63 0.00 AT1G32640 
NAC family protein (ANAC002) aCL943Contig3 1.63 0.70 AT1G01720 
expressed protein aCL2976Contig1 1.63 4.30 AT2G47485 
expressed protein aCL8373Contig1 1.63 0.43 AT2G26310 
Similarity to calmodulin-binding protein aCL9279Contig1 1.63 3.25 AT5G62570 
no annotation available aC19005E05T7_c 1.62 4.30  

http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
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SAMT aCL32Contig2 1.62 4.30 AT1G19640 
ferredoxin, chloroplast (PETF) aCL6164Contig1 1.62 3.25 AT1G60950 
Allantoinase aC34001D12EF_c 1.62 3.25 AT4G04955 
no annotation available aC08039B09SK_c 1.61 3.25  
pseudo-response regulator 5 (APRR5) aCL4006Contig1 1.61 0.70 AT5G24470 
AAA-type ATPase family protein aCL2094Contig1 1.60 3.07 AT3G50930 
Glutathione-conjugate transporter AtMRP4 aCL4731Contig1 1.60 0.00 AT2G47800 
zinc finger (CCCH-type) family protein aCL8680Contig1 1.60 0.00 AT3G55980 
Putative AMP-binding protein aC21001D05Rv_c 1.59 2.16 AT1G20510 
10-hydroxygeraniol oxidoreductase aCL85Contig3 1.59 0.70 AT4G37990 
mitogen-activated protein kinase (MPK3) aC31603C04EF_c 1.59 0.70 AT3G45640 
no annotation available aCL5472Contig1 1.58 0.70  
(PB1) domain-containing protein/(TPR)-
containing protein 

aCL9297Contig1 1.58 4.30 AT2G25290 

Histone H3.3 aCL1455Contig1 1.57 0.00 AT5G10980 
early-responsive to dehydration stress protein 
(ERD4) 

aCL3691Contig1 1.57 0.70 AT1G30360 

Trehalose-6-phosphate synthase aC31403D05EF_c 1.57 0.00 AT1G68020 
Receptor-protein kinase-like protein aC05804D11SK_c 1.57 4.30 AT3G51550 
Xyloglucan galactosyltransferase KATAMARI 1  aC08005B05SK_c 1.56 0.70 AT2G20370 
Syntaxin 121  aCL706Contig1 1.56 3.25 AT3G11820 
similar to mechanosensitive ion channel domain-
containing protein 

aCL4892Contig1 1.55 3.07 AT5G10490 

calmodulin-7 (CAM7) aCL13Contig1 1.54 0.70 AT3G43810 
MATE efflux family protein aCL312Contig2 1.54 0.70 AT3G21690 
photosystem II reaction center W (PsbW) 
protein-related 

aCL1139Contig1 1.54 3.07 AT2G30570 

epsin N-terminal homology (ENTH) domain-
containing protein 

aC18009A10Rv_c 1.54 3.07 AT5G35200 

drought-responsive family protein aCL2867Contig1 1.53 3.25 AT5G26990 
floral homeotic protein APETALA2 (AP2) aC01019D09SK_c 1.53 3.56 AT4G36920 
arogenate dehydrogenase aCL5052Contig1 1.53 3.56 AT5G34930 
no annotation available aC32105H05EF_c 1.53 3.25  
no annotation available aCL749Contig1 1.52 4.30  
hydrolase, alpha/beta fold family protein aCL3417Contig1 1.52 3.56 AT4G24160 
ABC transporter family protein aCL5695Contig1 1.52 0.70 AT5G64840 
Cinnamyl alcohol dehydrogenase aCL1474Contig1 1.51 0.00 AT5G19440 
Calmodulin-domain protein kinase isoform 7 
(CPK7) 

aC31501A07EF_c 1.51 0.70 AT5G12480 

photosystem I reaction center subunit VI aCL2388Contig1 1.51 0.70 AT1G52230 
Aldo/keto reductase aC31204A08EF_c 1.51 3.07 AT1G59960 
chloride channel protein (CLC-c) aCL8241Contig1 1.51 0.70 AT5G49890 
disease resistance protein B8  (NBS-LRR class) aC20002B03SK_c 1.51 2.16 AT3G14460 
aldo/keto reductase aCL2708Contig1 1.51 3.07 AT1G06690 
(PB1) domain-containing protein/(TPR)-
containing protein 

aC34205A08EF_c 1.51 3.25 AT1G70640 

no annotation available aC08007G11SK_c 1.51 3.25  
no annotation available aCL6488Contig1 1.51 3.07  
no annotation available aC31808D06EF_c 1.51 2.05  
no annotation available aC31109H05EF_c 1.50 2.05  
Tonoplast dicarboxylate transporter aCL5Contig3 1.49 4.30 AT5G47560 
expressed protein aCL37Contig1 1.49 0.70 AT1G05340 
elongation factor Tu family protein aC02027E05SK_c 1.49 3.07 AT1G62750 
2-oxoglutarate-dependent dioxygenase aCL322Contig1 1.49 0.70 AT1G03400 
cytochrome P450 98A3, putative (CYP98A3) aCL627Contig1 1.49 2.05 AT2G40890 
zinc finger (B-box type) family protein / salt-
tolerance protein (STO) 

aC31709D11EF_c 1.49 0.00 AT1G06040 

lectin protein kinase aC31504F06EF_c 1.49 3.56 AT4G04960 
Kinase-like protein aCL5503Contig1 1.48 0.00 AT5G63320 
mitochondrial substrate carrier family protein aCL4488Contig1 1.48 3.25 AT3G05290 
aldehyde dehydrogenase (ALDH1a) aCL4476Contig1 1.48 0.70 AT3G24503 
no apical meristem (NAM) family protein aCL8380Contig1 1.48 0.70 AT4G35580 

http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
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MybSt1 aCL973Contig1 1.48 2.05 AT5G47390 
Glucosyl transferase aCL1582Contig1 1.47 0.70 AT3G11340 
Putative peroxisomal membrane protein  aC08036G02SK_c 1.47 0.70 AT1G52870 
Hexose transporter aCL605Contig2 1.47 0.70 AT5G26340 
short-chain dehydrogenase/reductase (SDR) 
family protein 

aCL818Contig1 1.47 0.70 AT2G47140 

Putative CONSTANS-like B-box zinc finger 
protein 

aCL5350Contig1 1.47 3.56 AT4G38960 

calcium-binding EF hand family protein aCL26Contig5 1.47 3.25 AT5G39670 
ribulose bisphosphate carboxylase small chain 
3B 

aCL43Contig3 1.47 3.56 AT5G38410 

VQ motif-containing protein aCL1812Contig2 1.47 3.07 AT3G56880 
short-chain dehydrogenase/reductase (SDR) 
family protein 

aCL4319Contig1 1.47 0.00 AT3G61220 

family II extracellular lipase 1 (EXL1) aCL5964Contig1 1.46 1.09 AT1G75880 
L-allo-threonine aldolase-related protein aC08036F01SK_c 1.46 1.09 AT1G08630 
Receptor-like protein kinase  aCL5636Contig1 1.46 0.70 AT5G48380 
Encodes a plant small ubiquitin-like modifier 
(SUMO) E3 ligase 

aCL5857Contig1 1.45 3.25 AT5G60410 

Limonoid UDP-glucosyltransferase  aC08034F10SK_c 1.45 3.56 AT3G21560 
Histidine amino acid transporter aCL4429Contig1 1.44 3.07 AT5G40780 
Serine hydroxymethyltransferase - mitochondrial 
precursor  

aC31004H06EF_c 1.44 0.70 AT4G37930 

ABA induced protein phosphatase 2C,  PP2C  aCL5289Contig1 1.44 0.70 AT5G59220 
expressed protein aC08034B11SK_c 1.44 3.25 AT1G73650 
expressed protein aC31103F09EF_c 1.43 4.30 AT4G19400 
Chloroplast photosystem II 10 kDa protein aCL148Contig1 1.43 4.30 AT1G79040 
nitrate transporter (NTP3) aC06008E06SK_c 1.43 0.00 AT3G21670 
myb family transcription factor aCL3396Contig1 1.43 3.07 AT1G72650 
no annotation available aCL2116Contig1 1.43 3.56  
Cystathionine gamma synthase aCL52Contig3 1.43 3.56 AT3G01120 
Putative choline kinase aC01005A10SK_c 1.43 3.25 AT2G26830 
short-chain dehydrogenase/reductase (SDR) 
family protein 

aC31710C05EF_c 1.43 4.30 AT3G61220 

leucine-rich repeat family protein / protein kinase 
family protein 

aC34003H08EF_c 1.42 3.07 AT3G14840 

Granule-bound starch synthase 1  aCL60Contig1 1.42 3.25 AT1G32900 
calmodulin-binding protein aCL7706Contig1 1.42 1.09 AT2G24300 
NAC domain protein NAC19 aCL35Contig3 1.42 3.07 AT1G52890 
expressed protein aCL407Contig1 1.42 3.25 AT3G52710 
fatty acid elongase 3-ketoacyl-CoA synthase 1 
(KCS1) 

aCL5151Contig1 1.42 0.70 AT1G01120 

Putative carbonyl reductase aC34104H11EF_c 1.42 3.25 AT3G61220 
cysteine proteinase, putative / AALP protein 
(AALP) 

aCL13Contig5 1.42 0.00 AT5G60360 

matrixin family protein aCL258Contig1 1.42 0.70 AT1G24140 
expressed protein aCL375Contig2 1.42 4.30 AT2G46080 
Oxygen evolving enhancer protein 1 precursor aCL117Contig2 1.41 4.30 AT3G50820 
no annotation available aC01013F10SK_c 1.41 2.16  
no annotation available aC08020F03SK_c 1.41 2.16  
ABC transporter family protein aCL4569Contig1 1.41 2.05 AT1G65410 
HSP70 family protein aC34105F11EF_c 1.41 3.25 AT2G32120 
expressed protein aCL3829Contig1 1.41 3.25 AT2G25770 
hydroxyproline-rich glycoprotein family protein aCL4860Contig1 1.41 0.70 AT4G01050 
no annotation available aCL5627Contig1 1.41 3.07  
expressed protein aCL3774Contig1 1.41 0.70 AT2G05620 
copper transporter family protein aCL1547Contig1 1.41 3.56 AT5G20650 
expressed protein aCL4348Contig1 1.41 3.07 AT4G28910 
Sesquiterpene synthase, (α)-humulene aCL6701Contig1 1.41 0.70 AT5G23960 
no annotation available aCL4390Contig1 1.41 3.07  
Putative peroxisomal membrane protein aCL4716Contig1 1.40 0.70 AT1G52870 
hydroxyproline-rich glycoprotein family protein aCL4147Contig1 1.40 3.25 AT4G01050 
protein transport protein-related aC05076F06SK_c 1.40 3.25 AT5G27220 

http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
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Ankyrin-like protein  aCL6038Contig1 1.40 2.05 AT3G12360 
Allyl alcohol dehydrogenase aCL160Contig1 1.40 3.25 AT5G16990 
Putative phosphoglycerate mutase aCL4870Contig1 1.39 4.30 AT1G22170 
allene oxide synthase (AOS) aCL6896Contig1 1.39 3.56 AT5G42650 
no annotation available aIC0AAA94AE10RM1_c 1.39 2.05  
Pyridoxine biosynthesis protein  aCL409Contig1 1.39 2.05 AT5G01410 
Callose synthase catalytic subunit-like protein aC18005G07Rv_c 1.39 4.30 AT5G13000 
no annotation available aC05808E03SK_c 1.38 3.07  
no annotation available aC07011B02SK_c 1.38 3.25  
Putative phosphatase aCL5757Contig1 1.38 0.70 AT2G32150 
Fe-superoxide dismutase 1 aCL8011Contig1 1.38 4.30 AT5G51100 
Putative 3-deoxy-D-arabino-heptulosonate 7-
phosphate synthase 3 

aCL214Contig1 1.38 4.30 AT1G22410 

Putative ethylene response factor ERF3 
subfamily B-1 (AP2 domain) 

aCL1567Contig2 1.38 0.70 AT5G44210 

MYB-like DNA-binding protein 1 aCL5608Contig1 1.38 0.70 AT5G13820 
no annotation available aCL3953Contig1 1.38 3.25  
MATE efflux family protein aC04016G09SK_c 1.38 3.56 AT1G33090 
expressed protein aC03003E07SK_c 1.37 3.56 AT1G16720 
Neutral invertase  aCL3327Contig1 1.37 3.25 AT1G56560 
similar to bZIP family transcription factor (OBF4) aCL7528Contig1 1.37 3.25 AT5G65210 
expressed protein aCL4644Contig1 1.37 3.25 AT1G67785 
similar to ethylene-inducible ER33 protein aCL4367Contig1 1.37 4.30 AT1G05710 
no annotation available aC16016F07SK_c 1.36 2.16  
Aldo/keto reductase AKR  aKN0AAA3BG09ZM1_c 1.36 4.30 AT1G60710 
ATP-binding-cassette transporter (ABC1) aCL4433Contig1 1.36 3.25 AT4G04770 
Putative long chain acyl-CoA synthetase aCL8561Contig1 1.36 4.30 AT2G04350 
Alanine--glyoxylate aminotransferase 2 homolog 
3 

aCL5650Contig1 1.36 0.70 AT3G08860 

leucine-rich repeat family protein  aC05146H12SK_c 1.36 3.25 AT5G48380 
beta-fructosidase Glycosyl hydrolases family 32  aCL2322Contig1 1.35 2.16 AT1G12240 
Dicyanin aCL12Contig4 1.35 0.70 AT5G26330 
expressed protein aCL2009Contig1 1.35 3.07 AT1G27100 
expressed protein aC31009E09EF_c 1.34 2.16 AT1G62250 
2-isopropylmalate synthase aCL9432Contig1 1.34 0.70 AT1G18500 
expressed protein aCL2425Contig1 1.33 0.70 AT5G49820 
S-adenosyl-L-methionine:delta24-sterol-C- 
methyltransferase 

aCL6040Contig1 1.33 3.25 AT5G13710 

2-nitropropane dioxygenase family  aCL1003Contig2 1.32 3.25 AT5G64250 
Aspartic proteinase 4 aCL958Contig1 1.32 3.56 AT1G11910 
Putative pantothenate kinase 4  aC16012A08SK_c 1.32 3.56 AT4G32180 
no annotation available aC34201H06EF_c 1.32 3.56 AT3G13480 
BTB/POZ domain-containing protein aCL1109Contig1 1.32 4.30 AT3G61600 
inositol-3-phosphate synthase  aCL25Contig1 1.31 3.25 AT2G22240 
expressed protein aCL3642Contig2 1.31 3.07 AT4G38060 
encodes a member of the ERF subfamily B-4 
(AP2 domain) 

aC16018F01SK_c 1.31 3.56 AT5G64750 

expressed protein aCL5699Contig1 1.31 3.25 AT2G48110 
similar to epoxide hydrolase aCL1400Contig1 1.30 4.30 AT5G53050 
phosphatidate cytidylyltransferase family protein aC01008H04SK_c 1.30 4.30 AT3G45040 
axial regulator YABBY1 (YABBY1) aC31702D12EF_c 1.29 4.30 AT2G45190 
NADPH-dependent FMN reductase family 
protein 

aCL4551Contig1 1.29 0.70 AT3G27890 

cinnamoyl-CoA reductase-related aCL653Contig1 1.29 3.25 AT2G23910 
expressed protein aCL9065Contig1 1.28 3.07 AT4G27390 
expressed protein aC31001D12EF_c 1.28 4.30 AT5G24690 
expressed protein aCL225Contig1 1.28 3.25 AT2G27385 
adenylate kinase family protein aCL903Contig2 1.26 3.56 AT2G37250 
Beta-1 -3-glucanase precursor (glycosyl 
hydrolase family 17) 

aCL20Contig7 1.26 3.25 AT3G57270 

nitrogen fixation NifU-like family protein aCL1518Contig1 1.25 3.56 AT5G49940 

http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
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http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL1714Contig1)


Results: Chapter 3 
 

147 
 

heat shock factor protein, putative (HSF6) aCL800Contig1 1.25 4.30 AT5G62020 
Sesquiterpene synthase (germacrene-D 
synthase) 

aCL4874Contig1 -5.48 0.00 AT5G23960 

ATTPS-CIN | Encodes the monoterpene 1,8-
cineole synthase. Highly similar to (R)-limonene 
synthase 1 

aC02013A08SK_c -4.68 0.00 AT3G25820 

expressed protein aC20001E01SK_c -3.13 0.00 AT1G06720 
ATTPS-CIN | Encodes the monoterpene 1,8-
cineole synthase. Highly similar to (R)-limonene 
synthase 1 

aCL2450Contig1 -3.12 0.00 AT3G25820 

no annotation available aC01014H01SK_c -2.86 0.92  
no annotation available aCL8Contig9 -2.55 1.09  
TIP1;3 | major intrinsic family protein. Aquaporin aC04032D05SK_c -2.43 0.92 AT4G01470 
flavonol 3-O-methyltransferase 1 / caffeic acid aCL38Contig8 -2.41 2.16 AT5G54160 
TIP1;3 | major intrinsic family protein. Aquaporin  aCL824Contig2 -2.40 2.16 AT4G01470 
similar to caffeic acid O-methyltransferase aCL4905Contig1 -2.32 0.92 AT4G35160 
Sesquiterpene synthase, (-)-germacrene D 
synthase 

aC32102B11EF_c -2.30 0.43 AT3G14490 

similar to caffeic acid O-methyltransferase aCL3052Contig1 -2.27 1.09 AT4G35160 
no annotation available aKN0AAA2AC02ZM1_c -2.26 1.09  
Alcohol dehydrogenase aC34109F01EF_c -2.20 0.00 AT5G42250 
Monooxygenase-like aCL360Contig2 -2.08 4.30 AT5G11330 
NAD-dependent epimerase/dehydratase family 
protein 

aCL2200Contig1 -1.81 3.07 AT3G23820 

26.5 kDa class I small heat shock protein-like 
(HSP26.5-P) 

aCL5468Contig1 -1.78 0.92 AT1G52560 

no annotation available aC03008B02SK_c -1.78 3.07  
flavonoid 3'-monooxygenase / flavonoid 3'-
hydroxylase (F3'H) 

aCL9318Contig1 -1.66 3.25 AT5G07990 

cytochrome P450 family protein, flavonoid 3',5'-
hydroxylase 

aCL796Contig1 -1.59 0.43 AT4G12300 

Ras-related protein RGP1 aCL5312Contig1) -1.53 4.30 AT5G47960 
Extensin-like protein aCL3701Contig1 -1.51 3.25 AT1G62510 
Invertase inhibitor precursor aCL7849Contig1 -1.49 3.07 AT1G47960 
Pectinesterase PPE8B precursor aCL1321Contig2 -1.47 0.92 AT3G43270 
Cytosolic class II low molecular weight heat 
shock protein 

aCL186Contig2 -1.34 2.16 AT5G12020 

ankyrin repeat family protein aIC0AAA47BE04RM1_c -1.33 2.16 AT4G19660 
 

http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aC01014H01SK_c)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aCL8Contig9)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=Putative%20aquaporin%20TIP1.3%20(unigene%20aC04032D05SK_c)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=(-)-germacrene%20D%20synthase%20(unigene%20aC32102B11EF_c)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=(-)-germacrene%20D%20synthase%20(unigene%20aC32102B11EF_c)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aKN0AAA2AC02ZM1_c)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=Alcohol%20dehydrogenase%20(unigene%20aC34109F01EF_c)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=Monooxygenase-like%20(unigene%20aCL360Contig2)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=no%20annotation%20available%20(unigene%20aC03008B02SK_c)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=Ras-related%20protein%20RGP1%20(unigene%20aCL5312Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=Extensin-like%20protein%20(unigene%20aCL3701Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=Invertase%20inhibitor%20precursor%20(unigene%20aCL7849Contig1)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=Pectinesterase%20PPE8B%20precursor%20(unigene%20aCL1321Contig2)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=Cytosolic%20class%20II%20low%20molecular%20weight%20heat%20shock%20protein%20(unigene%20aCL186Contig2)
http://genome-www4.stanford.edu/cgi-bin/SMD/source/sourceResult?choice=Gene&option=Name&criteria=Cytosolic%20class%20II%20low%20molecular%20weight%20heat%20shock%20protein%20(unigene%20aCL186Contig2)
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Supplemental Table SIII. Primers designed for quantitative real-time RT-PCR to evaluate the expression of genes 

selected from microarray analyses and from jasmonic acid and terpenoid pathways. 

Citrus 
unigene/Accesion 
number 

Putative gene Primer name Primer sequence (5’ – 3’) 

Primer 
amountb 

(µL) 

Amplicon 
size (bp) 

aC02013A08SK_c Limonene synthase (LS) 
qLS-F AGTCACTGAATAGCAACTATACG 3 

107 
qLS-R CTGATCCAGAGGCTCGGTTA 0.5 

aCL4874Contig1 
Germacrene-D synthase 

(GER) 

qGER-F AGAAGCGATGAAGAATCAAGTTA 3 
100 

qGER-R TAATGCAACCGTCATGTACTC 0.5 

aCL535Contig3 Calmodulin (CALMOD) 
qCALMOD-F CCTCCATTTAACGCTCAACC 3 

141 
qCALMOD-R TTCTCGATGAGTTTCATTTCCG 0.5 

aCL693Contig1 
MYB73 Transcription 

Factor (MYB) 

qMYB-F GAGATGATAAGGAAAGAAGTGAGAAACTA 3 
119 

qMYB-R TCAGCCTTGTTAATCCCGATAC 0.5 

aCL1166Contig2 
Phenylalanine ammonia-

lyase 1 (PAL1) 

qPAL1-F TGTTACACAAAGAATGAACTTATTTACAAATC 3 
101 

qPAL1-R AGGGAGGACATTTCCACCTA 0.5 

aCL4Contig13 
Nonspecific lipid transfer 

protein 1 (LTP1) 

qLTP1-F GTGATATGGACTCTCCTAGGT 0.5 
102 

qLTP1-R TATATGAGAATCGTGGCAAGGG 0.5 

aCL337Contig1 
Ethylene response factor 

subfamily B-3 (ERF6) 

qERF-F CTCTGCATCTTCAGATCGTAG 0.5 
101 

qERF-R TATTAGTGGGTTGCGGTGTA 0.5 

CX289161 Actin 
ACT-F CATGAAGTGTGATGTGGATATTAG 0.5 

106 
ACT-R TGATTTCCTTGCTCATACGG 3 

aCL241Contig1 Lipoxygenase (LOX) 
LOX-F GCAACATTGCCACTGAAGATCCATC 2 

103 
LOX-R GTAGCTTGAATCTGGGAAGGGAAGG 2 

aCL5987Contig1 
Allene oxide synthase 

(AOS) 

AOS-F GTTTCAGCTCGCTCCGTTAC 2 
209 

AOS-R TGGCAAATACGAGGTTGTGA 2 

aCL1411Contig1 
Allene oxide ciclase 

(AOC) 

AOC-F GAAGGGTGACCGGTTTGAAGC 2 
105 

AOC-R ACGGCCAAGTACGTGTCTTCG 2 

aCL3569Contig1 
Coronatine-insensitive 1 

(COI1) 

COI1-F GGTCTTGTCTCGCAAAGAGG 2 
115 

COI1-R TGGCACCAATACACTCCAGA 2 

aCL1923Contig1 bHLHzip-type TF (MYC2) 
MYC2-F GGTGACCATGAGCTCCAACTG 2 

172 
MYC2-R GGCCGAAGAGAGATTTGGCTA 2 

acL6968Contig1 
Defensin-like gene 

(PDF1.2) 

PDF-F CAGTGGCAGAAGCAAAACAA 2 
136 

PDF-R CCGGGGAAGTCGTAGTGGC 2 

aCL303Contig1 

1-deoxyxylulose 5-

phosphate synthase 

(DXS) 

DXS-F2 CCATGAGGAAGACTTCGGGG 2 

121 
DXS-R2 ACAGCCATACCAAGACCAGC 2 

aIC0AAA32AB11R

M1_c 

Geranyl diphosphate 

synthase (GDP) 

GDP-F2 GACAAGAGAACTGGCCGTGA 2 
100 

GDP-R2 AAGTGCACGCCTTGACTTTG 2 

aCL9351Contig1 
Farnesyl diphosphate 

synthase (FDP) 

FDP-F GCTGCTGAATGATCCTGCATTT 2 
103 

FDP-R TAGCCCTCGGTTCAGCTTTC 2 

aCL960Contig1 

Geranygeranyl 

diphosphate syntase 

(GGDP) 

GGDP-F2 AGGAGGTGGGAGTGAGAAGG 2 

144 
GGDP-R2 ACTTCCCTGAGCTTGAAGGC 2 

a. Oligonucleotides were designed using LightCycler Probe Design Software 1.0 

b. Optimized amounts of a 5 µM oligonucleotide solution 
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6. General discussion and outlook 

6.1. The language of volatiles  
 

Plant volatile signaling in multitrophic interactions has become one of the more 

fascinating and fastest growing fields of research in recent years. Volatile organic compounds 

act as a language that plants use for their communication and interactions with the surrounding 

environment. These volatiles, released mainly from leaves, flowers, and fruits into the 

atmosphere and from roots into the soil, defend plants against herbivores and pathogens or 

provide a reproductive advantage by attracting pest predators, pollinators and seed dispersers 

(Pichersky and Gershenzon, 2002). Flowering species release diverse blends of volatile 

compounds from their flowers and fruits in addition to visual and tactile cues to attract 

pollinators and seed disseminators, thus ensuring reproductive success (Dudareva et al., 2006). 

Of the various plant organs, flowers in scented species and fleshy fruits produce the most 

diverse and the highest amount of volatile compounds, which peak when flowers are ready for 

pollination and fruits are fully mature (see Table I, Introduction). Volatile compounds emitted 

from fruits determine their overall aroma properties and taste, and consequently could play an 

important role in the attraction of animal seed dispersers and predators (Goff and Klee, 2006). 

 

6.2. Fruit volatiles and seed dispersers 
 

Fleshy fruits are made to be eaten (Schaefer and Ruxton, 2011). A fruit is the ripened 

ovary of a flowering plant that contains the seeds. Fleshy fruits seem to have evolved as a way 

of ensuring dispersal of larger seeds over longer distances than those normally achieved by 

abiotic means (Bolmgren and Eriksson, 2010). Although the primary biological function of fruits 

was to protect seeds, fleshy fruits evolved to attract frugivores. To do so, fruits have been 

selected during evolution for the manifestation of a number of characters, one of which is 

pleasant flavor. Fruit flavor affects animals’ perception of a specific type of fruit. It is therefore 

important for the reproductive success of flowering plants (Lin et al., 2010). Fruits are the result 

of an evolutionary triad between plants, seed dispersers, and fruit predators like insects and 

microbes (which are the most abundant and ubiquitous frugivores but often the least obvious 

ones to humans). Seed dispersers and fruit predators impose conflicting selective pressures on 

the design of fleshy fruits. Ideally, fruits should be attractive to the former and at the same time 

repellent to the latter.  

As outlined in this work, biochemistry rather than physical defense is the first barrier that 

plants use to mediate their interactions with fleshy fruit consumers. Plants produce a wide 

diversity of chemical compounds; many of them influence the feeding behavior of pollinators, 

seed dispersers, herbivores and their predators. Fruit biochemistry differs from the biochemistry 

of other plant organs (leaf, root) in that the fruit must balance the conflicting demands of 

defense against unwanted consumers and attraction of beneficial consumers (i.e., seed 
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dispersers and pollinators). When seeds are not yet able to germinate in a developing fruit, the 

fruit is termed unripe or immature. At this stage, any consumption of the fruit is detrimental to 

plant fitness; there is no need to attract but it is actually preferably to repel seed dispersers. 

Only when the seeds attain their ability to germinate, does the fruit become ripe or mature from 

the perspective of the plant. At this point, however, the fruit is not necessarily ripe from the 

perspective of a fruit-eating animal. Legitimate seed dispersers typically eat fleshy fruits as a 

nutritional reward for dispersing an enclosed seed(s). Although the balance between defense 

and attraction shifts towards increasing attraction during fruit ontogeny, fruit traits associated 

with ripening might also have evolved to screen out frugivores that do not disperse seeds. It is 

clear that fleshy fruit-bearing plants have evolved several characteristics to attract vertebrate 

seed dispersers. Whether these same characters also attract seed predators is a matter of 

discussion nowadays (Schaefer and Ruxton, 2011). In addition, separating vertebrate seed 

dispersers from vertebrate seed predators is not always easy; many vertebrates are both. 

Furthermore, insects and microorganisms, previously considered detrimental for fleshy fruits, 

may facilitate seed dispersal through positive interactions with vertebrates. 

The various physiological and biochemical changes of fleshy fruits during maturation 

can thus be understood with reference to the fluctuations in the relative importance of defense 

and attraction. Remarkably, not all the changes induced during ripening evolved because they 

fulfill a communicative function; phylogenetic and physiological constraints should no be 

overlooked. However, because increased risk of seed death is associated with consumption of 

a not totally mature fruit, plants would clearly benefit from deterring unwanted fruit consumers 

by communicating to them. Consequently, fruit texture, color, smell, and taste are all important 

cues that can indicate the ripening stage of a fruit. As a rule of thumb, nutritional contents of fruit 

pulp increase during fruit ripening, the contents of deterrent secondary metabolites decrease, 

while the contents of pigments, aromatic compounds, and volatile flavor compounds increase, 

although there are many species-specific and component-specific variations to this pattern 

(Schaefer and Ruxton, 2011). Furthermore, a substance that is deterrent to one consumer does 

not necessarily deter another. In summary, attractive pulp constituents increase during ripening, 

whereas deterrent components decrease concomitantly; a pattern that reflects plants’ shift in 

interest from protecting fruits when seeds are immature to promoting their consumption by seed 

dispersers once they are mature. 

To gain insight on the role of volatile organic compounds from the peel of fleshy fruits in 

interactions with pests and microorganisms, sweet orange plants (C. sinensis L. Osb.) have 

been transformed with the full-length cDNA of a D-limonene synthase gene from satsuma 

mandarin (C. unshiu Marc.) in antisense (AS) or sense (S) orientation to down- or up-regulate, 

respectively, D-limonene expression in orange fruits. In contrast to the view that animal 

dispersers of seeds from fleshy fruit compete with microbes for food resources (Janzen, 1977; 

Cipollini and Levey, 1997), our data indicate that once a fruit has completely developed seeds, it 

advertises its condition to potential legitimate dispersers by inducing changes promoting the 

accumulation of specific terpene volatile signals, which also serve as a ripening signal to 
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specialized insects and microorganisms. In this way, they could indirectly increase seed 

dispersal by providing a nutritional benefit to vertebrates that eat insect-infested or pathogen-

infected fruits (Cazetta et al., 2008). Dispersal could occur when the terpene-rich peel barrier is 

broken or soften, making the seeds more accessible to terrestrial mammals, or by releasing 

other volatiles that attract specialized vertebrates. This peel would otherwise be toxic or 

deterrent for seed-dispersing animals. It has been recently reported that the attraction of birds to 

heavily insect-infested trees is directly correlated with the emission of several specific terpene 

compounds (Mäntylä et al., 2008). Basic information on which volatiles attract which foragers 

and on the range that they are perceived is lacking. Given the high specificity of olfactory 

communication, it is possible that olfactory-guided seed dispersers and fruit predators use 

distinct volatiles to locate fruits. As such, olfactory communication might be much more specific 

than visual communication (Schaefer and Ruxton, 2011). 

 

6.3. Fruit volatiles and insects  
 

Understanding insect-plant volatile interactions is of interest not only from an ecological 

and evolutionary perspective but also for the development of novel crop protection strategies, 

for example by engineering or selecting crop plant variants for endogenous volatile-mediated 

repellency or less-attraction to insect pests. 

In an ecological context, insects must be able to monitor ratios and blends of volatiles 

and also determine whether these emanate from their host plant (Bruce et al., 2005). The insect 

may recognize the correct blend against a background of physiologically active components that 

would be constantly emitted by non-host plants. In addition, learning behavior involving central 

processing can occur when a particular blend of volatiles becomes associated with a more 

abundant or more rewarding host (Bruce et al., 2005). We have shown here that D-limonene is 

used by Ceratitis capitata males as a necessary attractant to localize citrus fruits. Moreover, 

certain insects sequester or otherwise acquire host plant compounds and use them as sex 

pheromones or sex pheromone precursors. Other insects produce or release sex pheromones 

in response to particular host plant cues. By these means, host plants may be used by insects 

to regulate or mediate sexual communication, as in the case of Ceratitis capitata and citrus 

fruits (Landolt and Phillips, 1997). In preliminary studies in a field experiment that is being 

performed in a plot in Vila-real (Castellón) with D-limonene synthase AS and empty vector (EV) 

transgenic orange trees, we have found that EV control fruits are additionally more attractive to 

C. capitata females for oviposition, as these fruits presented much more medfly larvae than did 

AS fruits. Furthermore, medfly parasitoids were only found in control fruits (Rodríguez et al., 

unpublished results). This indicated that D-limonene was also used by medfly females to select 

oranges as oviposition substrates. 
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6.4. Fruit volatiles and microorganisms 
 

The lack of basic knowledge on citrus molecular genetics and on the biology of citrus 

pathogens plus the difficulties of working with a genetically complex tree species make very 

difficult to produce new improved transgenic genotypes of real agricultural importance (Peña et 

al., 2008). There are citrus regions seriously threatened by diseases caused by fungi and 

bacteria. Looking for resistance against bacteria such as Candidatus Liberibacter spp. or 

Xanthomonas citri subsp. citri or against fungi such as Phyllosticta citricarpa or Penicillium 

digitatum is a major priority for the most important citrus industries in the world, including those 

from China, Brazil and U.S.A. Probably, the only opportunity for getting durable and sustainable 

resistance against these diseases could come from the incorporation of transgenes able to 

efficiently protect the most relevant and widely known scion and rootstock genotypes grown in 

these areas against bacteria/fungi and/or their vectors (Peña et al., 2008). 

We have shown here that the down-regulation of D-limonene in orange peels leads to 

fruit resistance against Penicillium digitatum and Xanthomonas citri subsp. citri under laboratory 

conditions. These results encouraged us to study possible resistance of AS fruits to Citrus black 

spot (CBS), a fungal disease caused by Phyllosticta citricarpa, which has a high economic 

impact on citriculture, depreciating the commercial value of fruit intended for the fresh fruit 

market, reducing crop productivity due to premature fruit fall, and increasing considerably the 

costs of production. This disease occurs in many areas where citrus is cultivated, including Asia, 

Australia, South America, Southern Africa, Central America, the Caribbean region and more 

recently also North America (EPPO, 2009). It is a quarantine disease for the European Union. 

To investigate the role of D-limonene and related volatile organic compounds in the 

development of P. citricarpa in citrus hosts, AS orange fruits were challenged with this fungus in 

a P2 laboratory at the IVIA. Preliminary results showed that AS fruits were resistant to this 

pathogen compared to wild-type and EV control fruits (Rodríguez et al., unpublished data). Due 

to the importance of this disease in Brazil, Fundecitrus (Fundo de defesa da citricultura) has 

signed an agreement with the IVIA to import, propagate, plant and investigate the performance 

of the transgenic AS, S and EV trees and their fruits in the field in the states of São Paulo and 

Paraná. Brazil is an ideal place to perform such field challenge assays because P. citricarpa is 

epidemic in many citrus areas. Transgenic trees are being propagated and we are waiting for 

the approval of the CTNBio (Comissiao Técnica Nacional de Biosegurança), likely along this 

year, to establish the trials first in two localities of São Paulo State. Trees will be inoculated 

using symptomatic fruits to be located in the top of the trees and additionally using infected 

rotting leaves distributed in the soil. Infection and its symptomathology will be followed 

periodically by visual inspections. 

Food plants and the fungi that colonize their fruiting parts (seeds and fruit) have been 

co-evolving for millennia. These fungal infections may result in various sorts of deterioration of 

seeds, ranging from decrease in germinability to complete spoilage. In our experience, the 

presence of impermeable seed coats in citrus seeds strongly prevents embryo infection and 

consequent deterioration. Even when the fruits (and their seeds) were completely infected by P. 
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digitatum, protected seeds were able to germinate and produce viable and fully normal plants 

after sowing them. In cases of severe infection of the seeds, there was a general decrease in 

the percentage of germination, but most of them were able to germinate at least under 

controlled greenhouse conditions (more than 50 % of the seeds were still viable). Conversely, 

peeled seeds were 100% deteriorated after P. digitatum infection (Peris et al., unpublished 

results), indicating that the seed coat may function as a barrier to microorganisms (Dalling et al., 

2011) and perhaps also to frugivore predators (Paulsen et al., 2013). 

 

6.5. Fruit volatiles in multitrophic interactions 
 

It is thought that vertebrate seed dispersers often reject fruits because of the presence 

of insects or microbes and/or the unpleasant taste caused by them. Nevertheless, in another 

scenario, insects can indirectly increase seed dispersal by providing a nutritional benefit to 

vertebrates that eat insect-infested fruits. As long as insects themselves haven’t already killed 

or deteriorated the seeds, the presence of insects in fruits could also increase plant fitness by 

reducing seed predation (due to bitter tasting toxins) (Sallabanks and Courtney, 1992). More 

common is the finding that insect presence in seeds increases vertebrate seed predation. 

Several studies have found vertebrate seed predators selectively choosing seeds that contain 

insects, presumably for the same reasons that some vertebrate seed dispersers prefer insect-

infested fruits (Sallabanks and Courtney, 1992).  

Insects can promote fruit abortion by introducing fungi that cause plants to abort fruits. 

The introduction of microbes by insects may directly affect fruit and seed development. 

Moreover, microorganism may enter the fruit through wounds performed in the peel without the 

intervention of insects. Bacteria and fungi introduced into fruits can themselves make fruit pulps 

distasteful. However, by introducing microbes, insects may indirectly increase seed predation or 

dispersal if vertebrate seed predators/dispersers prefer microbe-infested mature fruits. Thus, 

microorganisms in the fruit exocarp or pulp can be either detrimental, neutral, or possibly even 

beneficial to plant fitness. The characteristic smell of rotting fruits attracts a large suite of 

animals including seed dispersers (Schaefer and Ruxton, 2011). In the case of citrus, a series 

of field experiments were performed to address whether fruit infected by fungi or bacteria is 

rejected or not by vertebrate frugivores, including small mammals and birds. 

In a field trial at the IVIA, 150 mature fruits detached from clementine mandarin trees 

were numbered and arranged in the soil in random blocks to allow different frugivore agents to 

freely act on them. Approximately 46% of the fruits were attacked only by fungi or bacteria and 

none of these fruits was subsequently attacked by any other frugivore agent. When mammals or 

birds were implicated in the action on the detached fruits, 27% of the fruits eaten by mammals 

or birds had been previously attacked by fungi or bacteria while only 10% of the intact fruits 

were eaten by mammals or birds without previous action of microbes. This experiment was 

repeated with 180 numbered fruits in the clementine trees leaving them to freely fall down, 

obtaining similar results (41% of fruits attacked only by fungi or bacteria; 18% of fruits eaten by 

mammals or birds that had been previously attacked by fungi or bacteria; and 9.3% of fruits 
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eaten by mammals or birds without previous action of microbes). These results indicate that 

vertebrate frugivores did not show a preference for intact fruit but they ate either infected or 

uninfected fruits equally. We predict that similar cases will be found more commonly in the 

interactions among fleshy fruits, microorganisms and seed dispersers or predators in nature. 

The role of fruit volatiles in attracting animals in general and seed dispersers in particular is not 

well known. The various volatiles and gaseous plant hormones whose concentrations change 

during ripening may be informative cues or even signals of fruit quality to attract frugivores for 

seed dispersal. 

 

6.6. Metabolic engineering of volatiles in relation to fruit flavor 
 
Relevant information on fruit flavor compounds and their biosynthesis has been 

generated in recent years by using molecular and biochemical approaches. Albeit limited, the 

information gathered up to date regarding genes and metabolic pathways that generate fruit 

flavors has been crucial for the manipulation of aroma compounds in crops. Genes that directly 

influence fruit flavor formation have been identified for the main metabolic pathways in tomato, 

strawberry and melon fruits (Aharoni and Lewinsohn, 2010). Consequently, it has been possible 

to redirect and enhance the biosynthesis of fruit flavor compounds through modern 

biotechnological tools (Davidovich-Rikanati et al., 2007). Apart from this almost unexplored 

area, numerous attempts have been made to modify volatile content and emission formation in 

whole plants (basically Arabidopsis) via metabolic engineering to alter interactions with insect 

pests and their predators (Lücker et al., 2006; Aharoni et al., 2005).  

The content and emission of volatiles in fruits, vegetables and herbs may have 

important influence on the performance of many plant species. As extensive breeding programs 

have been undertaken to maximize certain attributes of foodstuff – for example, overall yield 

(i.e. size), total solids, sugar content, or pigmentation – less attention have been devoted to 

enhancing or even maintaining volatile production. A result of this is that many current cultivars 

of domesticated plant species produce less volatiles than their wild relatives or earlier cultivars 

(Dudareva and Pichersky, 2008). The novel biotechnological advances can be used to restore 

the “lost” aromas of fruits. 

Since markets of developed countries demand fresh fruit of increasing quality and with 

less agrochemical treatments, and also better and richer juices, more research is needed 

focused in understanding the genetic control of metabolic pathways regulating terpene/essential 

oil biosynthesis with the aim of improving fruit aroma. Apart from the sensations perceived by 

our taste such as sweetness, bitterness, sourness and saltiness, the unique “flavors” associated 

with food are contributed by aromas perceived through smell. Aroma is the description of 

sensations induced by volatile compounds via the olfactory bulb in the nose cavity and 

processed in the brain; it involves thousands of different volatiles providing various kinds of 

floral, fruity, minty, woody, mushroom, etc. sensations (Schwab et al., 2008). Although some 

aromas are prominently defined by a single molecule, most aromas consist of complex mixtures 



General discussion and outlook 
 

157 
 

of volatiles. The contribution of each component to the overall aroma of our foods differs 

according to their perception thresholds, synergism with, and masking of, other components.  

Citrus fruits are appreciated for their organoleptic quality and health benefits, and each 

citrus type, such as orange, grapefruit, lemon or mandarin, has a unique and special flavor. The 

aroma of oranges is derived from a mixture of different volatiles, including alcohols, aldehydes, 

ketones, terpenes/hydrocarbons and esters. Most of the knowledge gained so far on aroma of 

the citrus fruit comes from studies with oranges, grapefruit and mandarins, mainly from 

analyzing the flavor of pasteurized juices rather than from fresh fruits or juices (Buettner and 

Schieberle, 2001; Perez-Cacho and Rouseff, 2008a; Perez-Cacho and Rouseff, 2008b). Recent 

studies have proposed that the pleasant aroma of orange juice is formed by a mixture of at least 

36 different volatiles that include 14 aldehydes, 7 esters, 6 alcohols, 5 terpenes and 4 ketones 

(Perez-Cacho and Rouseff, 2008b).  

Human perception of aroma is determined by sensory evaluation test panels. In order to 

assess the effect of modulating the D-limonene content (and related terpenes) in AS and S vs. 

EV orange fruits, we have conducted a sensory panel of orange juice aromas consisting of 

more than sixty untrained panelists in two consecutive years. Panelists were asked to select for 

aroma intensity and the preferred sample from two juices (the AS or S juice vs. the control 

juice). Panelists were instructed to inhale the vapors from a pair of vials and to choose the 

sample that they found more intense and then the preferred one. In these tests, panelists did 

not find differences in the intensity of AS vs. EV juices, neither they showed preference for any 

of them. However, when they were offered S vs. EV control juices, panelists found a “great” 

intensity in the juice aroma of S fruits and preferred it over the control juice (Rodríguez et al., 

unpublished results).  

In another test, panelists were offered to select the preferred juice aroma among the 

three samples (AS, S and EV control). In this case, sensory evaluation tests comparing the 

three juices and rating them on a 9-point hedonic scale were performed. No significant 

differences were found between control and AS juices whereas panelists preferred the S over 

the control juice with a P=0.0001 (Rodríguez et al., unpublished results). 

It is important to note that genetic engineering of fruit flavor is not restricted to the 

incorporation of new flavors or enhancing existing ones but also includes the removal of 

undesirable metabolites that generate “off-flavors”.  

 

6.7. Plant volatile research 
 
Transgenic plants with modified terpenoid profile can provide a valuable tool for 

studying the biosynthesis and regulation of these compounds and their ecological functions in 

plant-environment interactions (Yu and Utsumi, 2009). In general, the bioengineering of volatiles 

can be achieved either through the modification of existing pathways (e.g., upregulation of one 

or more steps or redirection of flux to a desirable compound by blockage of competing 

pathways) or by the introduction of new gene(s) or branchways normally not found in the host 
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plant. In contrast to metabolic engineering of volatiles from vegetative tissues to study the effect 

of altered emission profiles on insect and insect predator behavior, the impact of changes in 

floral and fruit aromas on insect or animal attraction has been scarcely investigated. Metabolic 

engineering often yield unpredictable results, highlighting our lack of comprehensive 

understanding of plant metabolic networks and their regulation, including our rudimentary 

knowledge concerning network organization, subcellular localization of enzymes involved, 

competing pathways, metabolic channeling, flux-controlling steps and possible feedback 

control. The widely reported negative effects of terpenoid engineering on plant growth and 

development could be overcome by better spatial and temporal control of transgene expression.  

Recent use of large-scale sequencing, transcriptomic and metabolomic approaches in 

plant volatile research resulted in isolation of new biosynthetic genes and contributed to 

increase our understanding of the regulatory properties of the pathways involved in volatile 

formation (Aharoni and Lewinsohn, 2010). Moreover, the role of volatile profiles in host 

responses to pathogen infection and pest damage are essential to clarify the mechanisms of 

plant-pest-microbe interactions and to develop novel strategies for therapy. Furthermore, 

transgenic plants and fruits with altered volatile profiles and showing different responses to 

pathogens and pests may be used to elucidate volatile-mediated resistance mechanisms, as we 

have shown in this work. 

The booming of functional genomics technologies that increase the resolution and 

coverage of genome, transcriptome, proteome, metabolome, as well as interactome analysis 

offers unprecedent ways for listing all the possible players involved in the regulation of plant 

volatile metabolism. The development of functional genomics is also a direct consequence of 

recent and forthcoming publication of the genome sequences of several fruit trees, leading to 

new perspectives in genomic research and in functional analysis of genes putatively involved in 

the production of volatiles, further providing insights into their regulation.  

The challenge of producing safe agricultural products will remain at the forefront of 

scientific endeavors. Development of agricultural goods ensuring food safety, enhanced 

nutritional content, and with good agronomic qualities are requisites for the agriculture of the 

XXIth century, and research on plant-produced volatiles can play an important role to afford 

them. Despite the complexity of plant volatile production and their interaction with the 

environment, an integrated approach of laboratory- and field-based experiments can help 

delineate the intricate relationships of emitted volatiles as chemical cues for other plants, 

insects, microbes and vertebrates. Moreover, the use of mutants or transgenic plants (sense, 

antisense or RNAi-silenced) could help to determine the key compounds involved in such 

multitrophic interactions.  

Little is known about the function of individual compounds emitted by plants in their 

interactions with the biotic environment in nature. The signaling cascades involved in perception 

of volatile compounds by the receptors and/or induction of their biosynthesis in the emitters are 

still unclear, and the evolutionary and ecological relevance of plant volatile emission and 

perception awaits further investigation. The identification of key compounds involved in volatile-
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induced plant defenses against microorganisms, as well as in insect attraction and their effects 

on insect behavior in field studies, will greatly contribute to target selection for detailed studies 

of such form of communication. Major challenges lay in the development of novel model 

systems and in the ecological realism of experimental settings since very few studies performed 

to date were carried out under natural conditions. However, both approaches have limitations 

when afforded separately: the laboratory experiment (e.g. ex situ or in vitro) does not truly 

reflect the system as a whole and removes the sample out of its contextual environment, 

whereas the field experiment (e.g., in situ or ambient) may not yield detailed information, 

incorporates many variables, or may simply be impractical to study (Beck, 2012).  

The knowledge derived from this work could be used for the development of increased 

pest repellence and disease resistance, improved processing of fruit products and enhanced 

organoleptic properties of fruit crops. 
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7. Conclusions 
 

1. It has been proven that it is feasible to modulate the accumulation of D-limonene and 

related terpenes in the peel of sweet orange fruits by genetic engineering. Either up- or 

down-regulation of D-limonene synthase in orange peels did not lead to adverse 

pleiotropic alterations in fruit development and biochemistry, neither in juice/pulp quality. 

Down-regulation of D-limonene in AS lines led to the accumulation of less monoterpene 

and sesquiterpene hydrocarbons, while increased the production of monoterpene 

alcohols and some esters.  

2. This metabolic modification represents a promising method for developing broad-

spectrum resistance to pests. Males of an important citrus pest, the medfly, were more 

attracted to EV control than to AS fruits suggesting that less D-limonene accumulation 

in AS fruits might decrease the mating success of medfly in the field and, consequently, 

the oviposition response of the females. 

3. This metabolic modification represents a promising method for developing broad-

spectrum resistance to pathogens in fleshy fruits. AS fruits were more resistant to fungal 

and bacterial diseases when inoculated either with P.digitatum or X.citri subsp. citri, 

respectively. The use of metabolic engineering of volatile organic compounds to induce 

resistance against biotic agents represents an alternative technology to the use of 

expensive and highly toxic fungicides, bactericides, and pesticides.  

4. A large-scale gene expression analysis showed that defense cascades were activated 

in AS orange fruits while genes related to secondary metabolism were down-regulated. 

The results indicated that the activation of MAPK cascades together with the 

upregulation of TFs related to defense responses in plants and the accumulation of the 

sweet orange homologs of AOS and MYC2 after wounding in AS fruits, could contribute 

to the strong resistance response against necrotrophic pathogens through the activation 

of the JA metabolism. Results suggested that induction of defense-related genes was 

able to prime fruits for JA-mediated defense upon challenge inoculation. 

5. Upon maturation or ripening, terpene metabolism is usually altered in many 

economically important fruit crops. Our results suggest that altering the levels of certain 

abundant terpenes in the peel of mature fruits through genetic engineering of crop-

specific terpene synthase/s may be used as a strategy to generate resistance to pests 

and pathogens to other fruit crops. 

6. It seems that S lines could accumulate D-limonene to maximum levels that would not 

compromise cell and plant viability. Oil glands synthesize and accumulate near-

saturating concentrations of D-limonene and overexpression of limonene synthase was 

not able to increase further the large amount of D-limonene occurring in oil glands. 
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7. The effects of D-limonene downregulation in the flavedo of AS orange fruits on medfly 

attraction and fungal and bacterial infections strongly indicate that the high 

accumulation of this monoterpene in the peel of citrus EV control and S fruits is used for 

informing to specialized insects and microorganisms, and also likely to potential 

legitimate dispersers, that the fruit has completely developed seeds and it is ready for 

consumption. 

8. Transgenic plants with modified terpenoid production could contribute to fundamental 

studies aimed at understanding their function in fruit-frugivore relationships. 
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