
Miriam Gil Pascual

Supervisor:
Vicente Pelechano Ferragud

Adapting Interaction Obtrusiveness:
Making Ubiquitous Interactions Less
Obnoxious

M
ir

ia
m

 G
il

Pa
sc

ua
l

A Model Driven Engineering Approach

Miriam Gil Pascual

Adapting Interaction
Obtrusiveness: Making
Ubiquitous Interactions Less
Obnoxious
AModel Driven Engineering approach

PhD Thesis, July 2013

Miriam Gil Pascual

Adapting Interaction
Obtrusiveness: Making
Ubiquitous Interactions Less
Obnoxious
AModel Driven Engineering approach

PhD Thesis, July 2013

Adapting Interaction Obtrusiveness: Making Ubiquitous Interactions Less
Obnoxious. AModel Driven Engineering approach

This report was prepared by
MiriamGil Pascual

Supervisor
Dr. Vicente Pelechano Ferragud

Members of the Thesis Committee
Dr. José Bravo Rodríguez, Universidad de Castilla - LaMancha
Dr. Joan Josep Fons i Cors, Universitat Politècnica de València
Dr. Antonio Ruiz Cortés, Universidad de Sevilla
Dr. Diego López-de-Ipiña González-de-Artaza, Universidad de Deusto
Dr. Jesús Joaquín GarcíaMolina, Universidad deMurcia

Release date: 26-07-2013
Comments: A thesis submitted in partial fulfillment of the re-

quirements for the degree ofDoctor of Philosophy in
Computer Science at the Universitat Politècnica de
València.

Rights: c©MiriamGil, 2013

Centro de Investigación enMétodos de Producción de Software
Universitat Politècnica de València
Camí de Vera s/n, Edif. 1F
46022 - València, Spain
Tel: (+34) 963 877 007 (Ext. 83533)
Fax: (+34) 963 877 359
Web: http://www.pros.upv.es

Tomy parents.

Acknowledgements

This Ph.D. has been a long but fulfilling journey. This journey would
not have been possible to do without the invaluable support and encoura-
gement of a several. Without these supporters, especially the select I’m
about to mention, I may not have gotten to where I am today. I hope
they have learnt half as much from me as I have learnt from them.

Firstly, my supervisor Dr. Vicente Pelechano, thank you for being
such a great supervisor and also my friend. You are inspiring; your
passion for research is contagious and motivating; your “sixth sense” to
always be in the right path is unbelievable. You trusted in me from
the very beginning, when you didn’t even know me, and gave me the
chance to begin this road. We’ve laughed together and you’ve also been
kind when I’ve needed in the bad moments. Your feedback, support and
advice have been a privilege and a fundamental part to get to the end
of the trip. I cannot thank you enough. I am forever grateful. Thank
you Pele!

Secondly, I would like to thank Joan Fons, the first person I met in
the group. You convinced me to join our research group. From you,
I heard the word “pervasive” for the first time. You have shown me
the practical side of research. Your humor and friendly sarcasm have
allowed me to laugh and lighten this road. You always say that I’m
your “idol”, and the truth is that you’re also my “idol”.

ii Acknowledgements

I would also like to thank Pau Giner, who introduced me in the
research world. He was my mentor in my first years and assisted me
with the writing of my first research papers. With him, I discussed
the initial ideas which resulted in this thesis. His refreshing insights,
motivation and working spirit helped me to grow up as a researcher.
Although he hasn’t finished the road with me, I want him to know how
grateful I am to him.

My special gratitude to Ignacio Mansanet. We started working in
the research group at the same time and you have been my friend, con-
fidant, and support from that moment until now. We’ve laughed and
cried together. You have known the answer to every question I’ve ever
asked you regarding work and life. You have always been a tremendous
help no matter the task or circumstance. Thanks Nacho for being per-
sistent and encouraging, for believing in me, and for the many precious
memories along the way. For all these reasons and many, many more,
I’m eternally grateful.

Next, I’d like to thank Ismael Torres. You’ve also been my friend and
confidant during this journey. Among other things, you have showed
me the medicine to avoid stress and to be a little happier by swimming,
cycling, and running. Thanks Isma, for teaching me that with hard
work and persistence we can achieve all the goals that we propose, and
for encouraging me to do things that I thought I wasn’t capable to do.

Another stanch supporter and friend has been Bernardo Botella,
who studied the degree with me. Having joined our research group in
the final stages of my work, you have helped and supported me as much
as possible. I always enjoy talking about everything with you. Your
relaxed demeanor, patience, and warm and friendly heart have softened
the last potholes of this road. Thank you.

Thanks Estefańıa Serral and Pedro Valderas for your constructive
discussions about my work as well as your effort joining me to write
research papers to promote our work. Thanks to my “groupmates”
Vicky and Manoli for creating such a good athmosfere in our group,
and my “labmates” Maŕıa, Clara, Mario, Salva, and Pablo for the good
times we’ve spent together both in the lab and out of it. You all have

Acknowledgements iii

an incredible sense of humor; you have kept things light and me smiling.
Thanks Oscar for your great direction of our research center, and Ana
for all the time you’ve saved me with your work. I also would like to
thank all the members of the ProS research center, past and present, for
making this journey a pleasant one. Thank you all for your friendship,
support and interest in my work.

I have been fortunate to come across so many funny and good friends
from Benitatxell, Valencia and elsewhere, without whom life would be
bleak. This work has also been possible thanks to them, who have
contributed in one way or another to a rich and less stressful life and
helped me to enjoy the little free time this Ph.D. left me. Special thanks
go to Vanesa for twenty eight years of sharing everything with me, and
to Marta for being my conscience, my fan, phone comrade, etc.

Thanks to Javi, my little brother, for sharing with me your funny
vision of the world and for keeping me always smiling. You occupy a
special place in my soul. Even though the distance, I do care for you.
Thanks to my grandparents, for your love above all. And a very special
memory to my grandmother, although not having been able to see the
end of this thesis, I’m sure she’d be very proud.

Finally, my parents Joaquin and Teresa; words cannot truly express
how much I owe you both. You gave me life and have done nothing
but support me throughout it. Both have instilled many admirable
qualities in me and have given me a good foundation with which to
meet life. Thank you so much for your unstinting love, trust, help and
encouragement. This one’s for you!

Miriam

iv Acknowledgements

Agraïments

Aquesta tesi doctoral ha estat un viatge llarg, però satisfactori. Aquest
viatge no hauria estat possible fer-lo sense l’inestimable suport i à-
nims de moltes persones. Sense aquestes persones, i en especial d’unes
quantes que en parlaré, no haguera pogut arribar on sóc avúı. Sols
espere que elles hagen après la meitat de mi del que jo he après d’elles.

En primer lloc, al meu director de tesi Dr. Vicente Pelechano, grà-
cies per ser un excel·lent director i també el meu amic. Eres una ins-
piració per als demés; la teua passió per la investigació és contagiosa
i motivadora; el teu “sisé sentit” per a anar sempre pel camı́ correcte
és incrëıble. Vas confiar en mi des del primer moment, quan ni tan
sols em coneixies, i em vas donar l’oportunitat d’iniciar aquest camı́.
Hem rigut junts, compartit històries i viatges junts, i també has estat
comprensiu quan ho he necessitat en els mals moments. Els teus con-
sells, dedicació, disponibilitat i orientació han sigut un privilegi i una
part fonamental per a arribar al final del viatge. No puc agrair-te prou.
T’estaré eternament agräıda. Gràcies Pele!

En segon lloc, m’agradaria donar les gràcies a Joan Fons, la primera
persona que vaig conèixer al grup. Tu em vas convèncer per a unir-me
al nostre grup de recerca. De tu vaig sentir la paraula “pervasiu” per
primera vegada. Tu m’has mostrat el costat pràctic de la investigació.
El teu humor i sarcasme simpàtic m’han fet riure i alleugerir aquest

vi Agraïments

camı́. Sempre em dius que sóc la teua “́ıdola”, i la veritat és que tu
també ets el meu “́ıdol”.

També m’agradaria donar les gràcies a Pau Giner, qui em va intro-
duir al món de la recerca. Ell va ser el meu mentor en els primers anys i
em va ajudar amb la redacció dels primers treballs de recerca. Amb ell,
vaig parlar de les idees inicials que han donat lloc a aquesta tesi. Les
seves idees fresques, la seva motivació i el seu esperit de treball em van
ajudar a créixer com a investigadora. Tot i que no ha acabat el viatge
amb mi, vull que sàpiga que li estic molt agräıda.

Un agräıment molt especial a Ignacio Mansanet, pel teu entusiasme
en aquesta tesi en tot moment. Els dos començàrem a treballar en el
grup de recerca al mateix temps, i has estat el meu amic, confident i
suport des d’aquell moment fins ara. Hem rigut i plorat junts. Has
tingut resposta a cada pregunta que t’he fet ja fora sobre el treball o
la vida. Sempre has estat una enorme ajuda sense importar la tasca
o circumstància. Gràcies Nacho, per ser persistent i encoratjador, per
creure en mi, i per els molts preciosos moments que hem passat al llarg
del camı́. Per tots aquests motius i molts, molts més, t’estic eternament
agräıda.

A continuació, m’agradaria donar les gràcies a Ismael Torres. Tu
també has estat un bon amic i confident durant aquest viatge. En-
tre altres coses, m’has mostrat la medicina per a evitar l’estrès i ser
una mica més feliç nadant, anant en bici i corrent. Gràcies Isma, per
ensenyar-me que amb treball dur i perseverança podem aconseguir totes
les metes que ens proposem, i per animar-me a fer coses que mai haguera
pensat que jo era capaç de fer.

Una altre incondicional suport i amic ha sigut Bernardo Botella, qui
va estudiar l’enginyeria amb mi. A pesar d’haver-te incorporat al nostre
grup de recerca en l’etapa final de la meva tesi, m’has ajudat i recolzat
tant com t’ha sigut possible. Sempre gaudeixc parlant de tot amb tu.
La teva actitud relaxada, la teva paciència, i el teu cor càlid i acollidor
han suavitzat els últims clots del camı́. Gràcies.

Gràcies Estefańıa Serral i Pedro Valderas per les vostres discussions
constructives sobre el meu treball, aix́ı com l’esforç d’unir-se a mi per

Agraïments vii

escriure treballs de recerca per a promoure el nostre treball. Gràcies a
les meves companyes de grup Vicky i Manoli per crear tan bon ambient
dins del nostre grup, i als meus companys de laboratori Maŕıa, Clara,
Mario, Salva i Pablo, pels bons moments que hem passat junts, tant
al laboratori com fora d’ell. Tots vosaltres teniu un incrëıble sentit de
l’humor; heu mantés les coses lleugeres i a mi amb un somriure. Gràcies
Oscar per la teva genial direcció del nostre centre de recerca i Ana per
tot el temps que m’has estalviat en el teu treball. També m’agradaria
donar les gràcies a tots els membres del centre de recerca ProS, els
passats i els presents, per fer-me aquest viatge molt agradable. Gràcies
a tots per la vostra amistat, suport i interès en el meu treball.

Tinc la sort de tindre un bon grapat de divertits i bons amics de
Benitatxell, València i altres llocs, sense els quals la vida seria més
fosca. Aquest treball també ha sigut possible gràcies a ells, que han
contribüıt d’una manera o un altra a que la meua vida siga més plena i
menys estressant, i m’han ajudat a desconnectar de la feina i gaudir del
poc temps lliure que aquesta tesi m’ha deixat. Un agräıment especial
a Vanesa, per vint i vuit anys de compartir-ho tot amb mi malgrat la
distància, i a Marta per ser la meva consciència, la meva fan, camarada
de telèfon, etc.

Gràcies a Javi, el meu germà menut, per compartir amb mi la teua
visió divertida del món i per mantenir-me sempre somrient. Ocupes un
lloc especial en la meva ànima. Tot i que no vivim junts, em preocupe
per tu. Gràcies als meus avis, pel vostre afecte per damunt de tot. I
un record molt especial a la meua àvia, que encara que no hagi pogut
veure el final d’aquesta tesi, estic segura que n’estaria molt orgullosa.

Finalment, els meus pares Joaquin i Teresa; les paraules no poden
realment expressar quant vos dec a tots dos. Em donàreu la vida i no
heu fet altra cosa que recolzar-me al llarg d’ella. M’heu inculcat moltes
qualitats admirables i m’heu donat uns bons fonaments amb els que
afrontar la vida. Moltes gràcies pel vostre amor abundant, la vostra
confiança en mi, la vostra ajuda i el vostre suport constant. Aquesta
tesi és per a vosaltres!

Miriam

viii Agraïments

Abstract

In Ubiquitous Computing environments, people are surrounded by a lot
of embedded services. Since ubiquitous devices, such as mobile phones,
have become a key part of our everyday life, they enable users to be
always connected to the environment and interact with it. However,
unlike traditional desktop interactions where users are used to request
for information or input data, ubiquitous interactions have to face with
variable user’s environment, making demands on one of the most valu-
able resources of users: human attention. A challenge in the Ubiquitous
Computing paradigm is regulating the request for user’s attention. That
is, service interactions should behave in a considerate manner by taking
into account the degree in which each service intrudes the user’s mind
(i.e., the obtrusiveness degree).

In order to prevent service behavior from becoming overwhelming,
this work, based on Model Driven Engineering foundations and the Con-
siderate Computing principles, is devoted to design and develop services
that adapt their interactions according to user’s attention. The main
goal of the present thesis is to introduce considerate adaptation capabi-
lities in ubiquitous services to provide non-disturbing interactions. We
achieve this by means of a systematic method that covers from the ser-
vices’ design to their implementation and later adaptation of interaction
at runtime.

x Abstract

Models of obtrusiveness and interaction are used to define the inte-
raction obtrusiveness adaptation behavior in a technology-independent
way. These models drive the dynamic interaction adaptation by means
of an autonomic infrastructure that leverages them at runtime. This in-
frastructure is capable of detecting changing circumstances (e.g., changes
in user location, profile, activity, etc.), and planning and deploying inte-
raction modifications. When a change in the user’s situation is detected,
services are retargeted to make use of the appropriate interaction com-
ponents in an automated fashion. Under this autonomic infrastructure,
we leverage technology-independent models as if they were the policies
that drive the interaction adaptation in a considerate manner.

Furthermore, as user needs and preferences can change over time,
we make use of a reinforcement learning strategy in order to adjust the
initial obtrusiveness design in a way that maximizes the user’s experi-
ence. The initial interaction obtrusiveness design ensures a consistent
initial behavior according to the user needs at the moment. This de-
sign is then adapted for each service to the individual behavior and
preferences of users based on user’s feedback through experience. Also,
models can be further customized by end-users using a mobile interface
that allows them to change their own preferences manually.

The proposal has been applied in practice to evaluate it from the de-
signers and the end-users viewpoint. First, the design method has been
validated to show its usefulness in helping designers specify this kind
of services. Although the development of the services is not completely
automated, the guidance offered and the formalization of the involved
concepts were proven helpful for designers to develop unobtrusive ser-
vice interactions. Second, the interaction obtrusiveness adaptation has
put in practice with end-users in order to evaluate the user’s satisfaction
and experience. This validation turned out the relevance of considering
obtrusiveness aspects in the interaction adaptation process to enhance
user’s experience.

Resumen

La Computación Ubicua plantea proveer de inteligencia a nuestros en-
tornos ofreciendo servicios a los usuarios que permitan ayudarlos en su
vida cotidiana. Con la inclusión de dispositivos ubicuos en nuestra vida
(por ejemplo los dispositivos móviles), los usuarios hemos pasado a es-
tar siempre conectados al entorno, pudiendo interactuar con el. Sin em-
bargo, a diferencia de las interacciones de escritorio tradicionales donde
los usuarios eran quienes ped́ıan información o introdućıan datos, las
interacciones ubicuas tienen que lidiar con un entorno de los usuarios
variable, demandando uno de los recursos mas valiosos para los usua-
rios: la atención humana. De esta forma, un reto en el paradigma de
computación ubicua es regular las peticiones de atención del usuario.
Esto implica que las interacciones de los servicios debeŕıan comportarse
de una manera “considerada” teniendo en cuenta el grado en que cada
servicio se inmiscuye en la mente del usuario (el nivel de molestia).

Partiendo de las bases de la Ingenieŕıa Dirigida por Modelos (MDE)
y de los principios de la Computación Considerada, esta tesis se ori-
enta a diseñar y desarrollar servicios que sean capaces de adaptar sus
interacciones de acuerdo a la atención del usuario en cada momento. El
principal objetivo de esta tesis es introducir capacidades de adaptación
considerada en los servicios ubicuos para proporcionar interacciones que
no perturben al usuario. Esto lo conseguimos mediante un proceso de

xii Resumen

desarrollo que cubre desde el diseño de los servicios hasta su imple-
mentación, centrándose en los requisitos de adaptación de la interacción
particulares para cada usuario.

Para el diseño del comportamiento de la interacción en base al nivel
de molestia se han definido unos modelos de intromisión e interacción
independientes de la tecnoloǵıa. Estos modelos son los que posterior-
mente conducen la adaptación de la interacción dinámicamente, por
medio de una infraestructura autónoma que los usa en tiempo de ejecu-
ción. Esta infraestructura es capaz de detectar cambios en la situación
del usuario (por ejemplo cambios en su localización, su actividad, etc.)
y planear y ejecutar modificaciones en la interacción de los servicios.
Cuando se detecta un cambio del contexto del usuario, los servicios se
auto-adaptan para usar los componentes de interacción más apropiados
de acuerdo a la nueva situación y no molestar al usuario.

Además, como las necesidades y preferencias de los usuarios pueden
cambiar con el tiempo, nuestra aproximación utiliza la estrategia del
aprendizaje por refuerzo para ajustar los modelos de diseño iniciales de
forma que maximicemos la experiencia del usuario. El diseño inicial
de la interacción basado en el nivel de molestia nos asegura un com-
portamiento inicial consistente con las necesidades de los usuarios en
ese momento. Luego, este diseño se va refinando de acuerdo al com-
portamiento y preferencias de cada usuario por medio de su retroali-
mentación a través de la experiencia de uso. Además, también propor-
cionamos una interfaz móvil que permite a los usuarios finales persona-
lizarse de forma manual los modelos en base a sus propias preferencias.

El trabajo presentado en esta tesis se ha llevado a la práctica para su
evaluación desde el punto de vista de los diseñadores y de los usuarios
finales. Por una parte, el método de diseño se ha validado para compro-
bar que ayuda a los diseñadores a especificar este tipo de servicios. Pese
a que el proceso de desarrollo no ofrece una automatización completa,
las gúıas ofrecidas y la formalización de los conceptos implicados ha de-
mostrado ser útil a la hora de desarrollar servicios cuya interacción es
no molesta. Por otra parte, la adaptación de la interacción en base al
nivel de molestia se ha puesto en práctica con usuarios para evaluar su
satisfacción con el sistema y su experiencia de usuario. Esta validación

Resumen xiii

ha desvelado la importancia de considerar los aspectos de molestia en
el proceso de adaptación de la interacción para ayudar a mejorar la
experiencia de usuario.

xiv Resumen

Resum

La Computació Ubiqua planteja proveir d’intel·ligència als nostres en-
torns, oferint serveis als usuaris que permeten ajudar-los en la seva vida
quotidiana. Gràcies a la integració de dispositius ubics en la nostra vida
(com ara els dispositius mòbils), els usuaris hem passat a estar sempre
connectats a l’entorn i a interactuar amb ell. No obstant, a diferència
de les interaccions tradicionals d’escriptori on els usuaris eren els qui
demanaven informació o introdüıen dades, les interaccions ubiqües han
de fer front a un entorn dels usuaris variable. Açò esdevé en peticions a
un dels recursos més valuosos per al usuaris: la seva atenció. D’aquesta
manera, un repte en el paradigma de computació ubiqua és el de regu-
lar les peticions de l’atenció de l’usuari. Per tant, les interaccions dels
serveis haurien de comportar-se d’una manera “considerada”, tenint en
compte el grau en que cada servei s’immisceix en la ment de l’usuari (el
nivell de molèstia).

Prenent com a base l’Enginyeria Dirigida per Models (MDE) i els
principis de la Computació Considerada, aquesta tesi presenta un procés
de disseny i desenvolupament de serveis per a que aquests siguen capaços
d’adaptar les seues interaccions atenent a l’atenció de l’usuari en cada
moment. El principal objectiu d’aquesta tesi és introduir capacitats
d’adaptació considerada en els serveis ubics per a proporcionar inte-
raccions que no interrompin a l’usuari. Açò ho aconseguim mitjançant

xvi Resum

un procés de desenvolupament que cobreix des del disseny dels serveis
fins la seua implementació, centrant-se en els requeriments particulars
d’adaptació de la interacció per a cada usuari.

Per al disseny del comportament de la interacció en base al nivell de
molèstia, s’han definit uns models de intromissió i interacció indepen-
dents de tecnologia. Aquestos models són els que posteriorment guiaran
l’adaptació de la interacció dinàmicament, gràcies a una infraestructura
autònoma que els utilitza en temps d’execució. Aquesta infraestruc-
tura és capaç de detectar canvis en la situació de l’usuari (per exemple
canvis en la seua localització, activitat, etc.) i planejar i executar modi-
ficacions en la interacció dels serveis. Quan es detecta un canvi en el
context de l’usuari, els serveis s’auto-adapten per a utilitzar els compo-
nents d’interacció més apropiats d’acord a la nova situació i no molestar
a l’usuari.

A més a més, com que les necessitats i preferències dels usuaris
poden canviar en el temps, la nostra proposta utilitza una estratègia
d’aprenentatge per reforç per a ajustar els models de disseny inicials,
de forma que es maximitze l’experiència de l’usuari. El disseny inicial
de la interacció en funció del nivell de molèstia ens assegura un com-
portament inicial consistent en les necessitats dels usuaris amb aqueix
moment. Després, aquest disseny va refinant-se d’acord al comporta-
ment i preferències de cada usuari mitjançant la seva retroalimentació
a través de l’experiència d’ús. A més a més, també proporcionem una
interf́ıcie mòbil per a que els usuaris puguen personalitzar-se de forma
manual els models en base a les seues pròpies preferències.

El treball presentat en aquesta tesi s’ha dut a la pràctica per a la
seua avaluació des del punt de vista dels dissenyadors i dels usuaris fi-
nals. D’una banda, el mètode de disseny s’ha validat per a comprovar
que ajuda als dissenyadors a especificar aquest tipus de serveis. Tot i
que el procés de desenvolupament no proporciona una automatització
completa, les guies proporcionades i la formalització dels conceptes im-
plicats han mostrat la seua utilitat en el desenvolupament de serveis
amb una interacció no molesta. D’altra banda, l’adaptació de la inte-
racció en funció del nivell de molèstia ha estat aplicada en la pràctica
amb usuaris finals per a avaluar la seva satisfacció en el sistema i la

xvii

seva experiència d’ús. Aquesta validació ha revelat la importància de
considerar aspectes de molèstia en el procés d’adaptació de la interacció
per a ajudar a millorar l’experiència d’ús.

Contents
List of Figures xxiii
List of Tables xxviii
CHAPTER 1 Introduction 1
1.1 Motivation . 3
1.2 Problem statement . 5
1.3 Thesis goals . 6
1.4 Thesis approach . 7
1.5 Researchmethodology . 9
1.6 Thesis context . 10
1.7 Outline of this thesis . 11

CHAPTER 2 Background 13
2.1 Human-Computer Interaction 14

2.1.1 Designmethodologies 14
2.1.2 InteractionModalities 16
2.1.3 Multimodal interaction 18
2.1.4 Analysis and discussion 20

2.2 Context-Aware Computing 20
2.2.1 Context of use . 22
2.2.2 Context sensing . 24
2.2.3 Context models . 25
2.2.4 Context-Awareness as enabler for Autonomic Computing . 26
2.2.5 Reinforcement Learning 28
2.2.6 Analysis and discussion 29

CONTENTS xix

2.3 Considerate Computing 30
2.3.1 Receiving andmanaging interruptions 33
2.3.2 Contextual factors that influence interruption 35
2.3.3 Cognitive aspects of interruptions 36
2.3.4 Analysis and discussion 37

2.4 Conclusions . 38
CHAPTER 3 State of the Art 39
3.1 Analysis criteria . 40
3.2 Context-Aware User Interfaces 45

3.2.1 Analysis and discussion 52
3.3 Attentive User Interfaces 55

3.3.1 Analysis and discussion 61
3.4 Non-Intrusive Ubiquitous Computing 64

3.4.1 Analysis and discussion 69
3.5 Discussion of previous systems 73

3.5.1 Characteristics of our proposal 73
3.6 Conclusions . 75

CHAPTER 4 Overview of the Proposal 77
4.1 Point of view . 79
4.2 Main building blocks . 81
4.3 Systems’ infrastructure . 89
4.4 Evaluation of our approach 93
4.5 Conclusions . 96

CHAPTER 5 AFramework for InteractionObtrusivenessAdap-
tation 99

5.1 User-centered designmethod overview 101
5.1.1 Why amodeling approach? 101
5.1.2 Steps of the user-centered design process 104

5.2 Obtrusiveness requirements definition 106
5.2.1 User interviews and observations 107
5.2.2 Persona definition 108
5.2.3 Services and obtrusiveness definition 111

5.3 Modeling . 113

xx CONTENTS

5.3.1 Obtrusiveness modeling 113
5.3.2 Context modeling 118
5.3.3 Interaction variability modeling 122
5.3.4 Concrete interactionmodeling 128

5.4 Simulation . 132
5.4.1 Requirements for the evaluation 133
5.4.2 Fast-prototyping for interaction obtrusiveness adaptation . 134
5.4.3 Models refinement 139

5.5 Discussion of our designmethod 140
5.6 Conclusions . 143

CHAPTER 6 Self-Regulating InteractionsThroughModels atRun-
time 145

6.1 System implementation 147
6.1.1 Glue code generation 149

6.2 The self-regulating system 163
6.3 AdaptIO: an infrastructure for adapting interaction obtrusive-

ness . 168
6.3.1 The Autonomic Infrastructure 169

6.4 Deployment of the infrastructure 180
6.4.1 Server Side Subsystem 181
6.4.2 Client side subsystem: managed systems 182

6.5 Applying AdaptIO to non-adaptive services 186
6.6 Scalability evaluation . 188
6.7 Conclusions . 191

CHAPTER 7 Exploiting the User Feedback 193
7.1 Characterization of the obtrusiveness adaptation 195
7.2 The reinforcement learning strategy 198

7.2.1 Applying RL to our approach 199
7.2.2 Obtaining the Feedback 200
7.2.3 Running the Reinforcement Learning algorithm 201
7.2.4 Adjusting an obtrusiveness level 203
7.2.5 An application example 204

7.3 The customization interfaces for end-users 206
7.3.1 Obtrusiveness Personalization interface 209

CONTENTS xxi

7.3.2 User Situation Specification interface 214
7.4 Reinforcement evaluation 219

7.4.1 Case study description 220
7.4.2 Evaluation procedure and results 221

7.5 Conclusions . 222
CHAPTER 8 Validation of the proposal 225
8.1 Smart Home case study . 228

8.1.1 Design of the case study 228
8.1.2 Applying our designmethod 229
8.1.3 Evaluating the designmethod 238
8.1.4 Simulating the design 244

8.2 Adaptive Notifications case study 249
8.2.1 Design of the case study 250
8.2.2 Evaluating the User Experience 251
8.2.3 Evaluating the customization interfaces 256

8.3 Experiences applying our approach 260
8.3.1 User Routine Tasks: Smart Hotel 260
8.3.2 Smart Library . 263
8.3.3 HomeCare . 265

8.4 Discussion of the results 267
8.4.1 Benefits obtained 267
8.4.2 Limitations detected 269

8.5 Conclusions . 270
CHAPTER 9 Conclusions and FutureWork 271
9.1 Contributions . 272
9.2 Publications . 273

9.2.1 Relevance of the publications 276
9.3 Projects codirected . 279
9.4 Future work . 279
9.5 Final remarks . 281

Appendix 282
APPENDIXA Metamodels & Tool Support 283

xxii CONTENTS

A.1 The AdaptIOmodeling language 284
A.1.1 The personamodel metamodel 286
A.1.2 The obtrusiveness model metamodel 287
A.1.3 The featuremodel metamodel 289
A.1.4 The context model metamodel 297
A.1.5 The Android components metamodel 299
A.1.6 Relationships betweenmetamodels 300

A.2 Model-based validation . 301
A.2.1 Constraints onmodels 302
A.2.2 Reasoning on featuremodels with FAMA 303

APPENDIX B AdaptiveNotifications case study&Evaluation In-
struments 307

B.1 Adaptive Notifications case study 307
B.1.1 Applying our designmethod 307

B.2 Instruments used in the evaluations 315
B.2.1 Usability evaluation of the designmethod 316
B.2.2 User satisfaction evaluation 320
B.2.3 User experience evaluation 324
B.2.4 Customization interfaces evaluation 326

Bibliography 329

List of Figures
1.1 Overview of the ubiquitous environment. 3
1.2 Researchmethodology followed in this thesis. 10
2.1 Application domains involved in this work. 14
2.2 Concept of implicit and explicit HCI (Schmidt, 2013) 17
2.3 Input andoutput channels inmobilemultimodal interfaces (Chit-

taro, 2010). 20
2.4 Context feature space (Schmidt et al., 1999) 23
2.5 IBM’sMAPE referencemodel for autonomic control loops . . 28
2.6 A standard reinforcement learning interaction loop 30
3.1 Application domains involved in this work and their intersect-

ing subdomains. 40
3.2 The Cameleon RT architecture reference model (Balme et al.,

2004). 46
3.3 Architecture of FAME (Duarte and Carriço, 2006). 47
3.4 DynaMo-AIDDevelopment Process (Clerckx et al., 2008). . . 48
3.5 TheMASP Runtime Architecture (Blumendorf et al., 2010b). . 50
3.6 Generationprocessof theViMos framework (Hervás andBravo,

2011). 51
3.7 Channel seleccion in the ActiveMessenger process (Schmandt

et al., 2000). 56
3.8 Overview of the Notification Platform (Horvitz et al., 2003). . 57
3.9 Overviewof the framework reflecting theuser goals (McCrickard

and Chewar, 2003). 58
3.10 Equivalents of GUI elements in Attentive UI (Vertegaal et al.,

2006). 59

xxiv LISTOF FIGURES

3.11 The user-centered design process (Streefkerk et al., 2006). . . 60
3.12 AuraOrb (Altosaar et al., 2006). 61
3.13 Arquitecture of SenSay (Siewiorek et al., 2003). 65
3.14 Bayesian network learned (Horvitz et al., 2005). 66
3.15 The 3-axis wireless accelerometers (Ho and Intille, 2005). . . 67
3.16 Overall view of the non-intrusive computing (Chen and Black,

2008). 68
4.1 Example scenario where the attention demand is increased in

a gradual manner for amobile phone. 78
4.2 Types of interactive systems. 80
4.3 Main building blocks of our approach. 82
4.4 Steps of the obtrusiveness requirements definition phase. . . 83
4.5 Steps of themodeling phase. 84
4.6 Steps of the simulation phase. 86
4.7 Steps of the implementation phase. 87
4.8 Amore detailed look at the process to apply our approach. . . 90
4.9 Overview of the adaptation process. 91
5.1 The stages proposed in the user-centered development process. 101
5.2 The different tasks in the designmethod proposed. 105
5.3 The elements of a persona prioritized into three layers 109
5.4 Excerpt of a persona . 110
5.5 Conceptual framework used for the definition of implicit inter-

actions. 114
5.6 Services at different obtrusiveness level according to the Bob

persona . 116
5.7 OWLOntology classes (Serral, 2011). 121
5.8 An example of theOWL ontology context model. 122
5.9 Featuremodel of output interactionmodalities. 126
5.10 Concrete Interaction Components model. 130
5.11 Relationship between features and interaction components. . 131
5.12 Fast-prototyping evaluation applyingWizard ofOz techniques

andmock-ups. 135
5.13 The different tasks in the simulation stage. 136
5.14 Android prototype . 139

LISTOF FIGURES xxv

5.15 Problems of context condition discretization. 142
5.16 Context decomposition into features. 143
6.1 Example of how attentional resources of the user can call for

different system responses. 146
6.2 The different tasks in the implementation stage. 148
6.3 Graphical notation used to represent components of the An-

droid application framework 153
6.4 Service components model 154
6.5 Global schema of the elements generated by the transformation.156
6.6 Hierarchy for defining Android UIs 160
6.7 Different generations of the same service 164
6.8 (a) Self-regulating system and (b) adaptation process. 165
6.9 Runtime adaptation example. 166
6.10 Infrastructure components overview 170
6.11 Adaptation flow of the AdaptIO behavior 171
6.12 Implementation of themanaged system on iOS and Android. . 183
6.13 The components of themanaged system on Android. 185
6.14 Modifying a user’s tasks management system to be adaptive. . 188
6.15 Values of infrastructure performance. 190
7.1 Types of adaptations: (a) profile adaptations, (b) obtrusiveness

levels and transitions adaptations. 197
7.2 Ways of obtain explicit feedback from user. 200
7.3 Unobtrusive adaptation space for the healthcare service. . . . 205
7.4 Quality values for 20 iterations of the algorithm. 205
7.5 Updated unobtrusive adaptation space for the healthcare ser-

vice. 206
7.6 Main screen of theObtrusiveness Personalization interface. . . 209
7.7 Interfaces for changing the obtrusiveness level. 211
7.8 Main screen of the advanced features. 211
7.9 Profiles configuration screens. 212
7.10 Profile transitions screens. 213
7.11 Manage conditions screens. 214
7.12 Main screen of the User Situation Specification interface. . . . 215
7.13 Interfaces of the situation overview and specification options. 216

xxvi LISTOF FIGURES

7.14 Interfaces to define a location. 216
7.15 Interfaces to define time intervals. 217
7.16 Interfaces to define the free-form option. 217
7.17 Interfaces to capture locations. 219
7.18 Quality values for the behavior of the healthcare service. 222
8.1 A detailed persona . 230
8.2 Obtrusiveness level defined for each service in the Smart Home

case study. 233
8.3 Decomposition of interaction aspects using the FeatureModel. 236
8.4 Concrete UI components of a Smart Home system. 237
8.5 Summarized results. 246
8.6 Nasa TLX results . 248
8.7 Notificationmanagement system. 254
8.8 MeanUX values for both systems. 256
8.9 Summarized questionnaire of resutls. 259
8.10 Example scenario of a routine task adjusting the obtrusiveness

level . 261
8.11 Implication of the interaction resources with the attentional

demand . 262
8.12 Summarized results . 262
8.13 Obtrusiveness level defined for the services in the Smart Li-

brary scenario. 263
8.14 Detailed results . 265
8.15 Different interaction for the same service 266
8.16 Obtrusiveness level defined for the services in the SmartCare

scenario. 267
8.17 Summarized results . 267
9.1 Publications overview. 274
A.1 AdaptIO dashboard . 285
A.2 Personamodel metamodel 286
A.3 Persona editor . 287
A.4 Obtrusiveness model metamodel 288
A.5 Snapshot of the obtrusiveness modeling tool 289

LISTOF FIGURES xxvii

A.6 FeatureModel metamodel 290
A.7 Different representations for interface nodes 291
A.8 Featuremodel editor . 293
A.9 Changing the visualizationmode from the editor 293
A.10 Snapshot of aWeavingModel. 294
A.11 Configurationmodel metamodel 294
A.12 Featuremodel configurator editor 295
A.13 VariationsModel editor 295
A.14 Variations editor . 296
A.15 Editor to link interaction configurations to theunobtrusiveadap-

tation spaces . 296
A.16 Editor to link interaction configurations to a service in an ob-

trusiveness level . 297
A.17 Snapshop of the Protégé user interface 298
A.18 Android components metamodel 300
A.19 Graphical editor for Android components 300
A.20 Dependency relationships betweenmetamodels 301
A.21 FAMA operations for the FeatureModel 304
A.22 Output of themodel validation operation 305
A.23 Validationmessage of FAMA 305
B.1 A detailed persona . 308
B.2 Unobtrusive adaptation spaced defined for each service in the

Adaptive Notifications case study. 312
B.3 Featuremodel of output interactionmodalities. 314
B.4 Concrete Interaction Components model. 316

List of Tables
3.1 Relatedwork from the context-aware user interfaces perspec-

tive . 53
3.2 Related work from the attentive user interfaces perspective . 62
3.3 Relatedwork fromthenon-intrusiveubiquitous computingper-

spective . 70
3.4 Relatedwork fromthenon-intrusiveubiquitous computingper-

spective . 71
5.1 Service analysis for the Bob Persona 112
5.2 Summarized information of output modalities 124
7.1 Initial obtrusiveness level of services 221
8.1 Interaction features for each service in the unobtrusive adap-

tation space . 236
8.2 Linking between interaction features and concrete components 238
8.3 Descriptive statistics for eachmeasurement 243
8.4 Notifications received during the experiment. 253
9.1 Outline of the contributions and the publications achieved . . 277
B.1 Services’ analysis for theMatt Persona 310
B.2 Interaction features for each obtrusiveness level of the unob-

trusive adaptation spaces 315
B.3 Linking between interaction features and concrete components 316

1
Introduction
Readme first

The reasonable man adapts himself to the world: the unreasonable
one persists in trying to adapt the world to himself. Therefore all

progress depends on the unreasonable man.
—George Bernard Shaw (1856-1950). Maxims for Revolutionists.

The Ubiquitous Computing vision implies a radical paradigm shift in
the way users interact with systems (Weiser, 1999). One of its defining
traits is the pursuit of invisibility, with the purpose of achieving a calm
world where information seamlessly moves in and out of attention as
automation gives way to human interaction (Weiser and Brown, 1997).
In this vision, computing resources should become invisible to the user
in order to allow interaction with the system in a natural way. Over
the past 20 years, the radical miniaturization and embedding of infor-
mation, communication, and sensor electronics into almost everything,
have made possible to realize this Weiser’s vision, providing services
that ease people’s lives.

Currently, with the trend to connect every physical object ubiqui-
tously to the Internet (also known as the Internet of Things (Gershen-

2 CHAPTER 1. INTRODUCTION

feld et al., 2004)), the possibilities of interaction with the services of
the environment have broadened further. For example, customers in
a supermarket can be informed about meaningful information such as
special offers, friend’s opinions about a product or they can even com-
pare prices of products directly interacting with the physical products.
However, in an ubiquitous and mobile context where users are per-
manently connected to the environment, users may be disturbed often
(Chittaro, 2010; Schmidt et al., 2012). These problematic interactions
are symptoms of the lack of sophistication in their design, in a way that
constantly draw the user’s attention. This has raised the importance of
designing for the “user experience” (Hassenzahl and Tractingsky, 2006;
McCarthy and Wright, 2004).

According to the Considerate Computing vision (Gibbs, 2005), user
attention is a primary resource to be considered by software systems.
This resource is especially relevant in the Ubiquitous Computing para-
digm which promotes the natural interaction between the user and the
environment. Thus, ubiquitous services should behave in a considerate
manner, demanding user attention only when it is actually required a-
ccording to the user needs and context. As Neil Gershenfeld observed,
there’s a very real sense in which the things around us are infringing
a new kind of right that has not needed protection until now. We’re
spending more and more time responding to the demands of machines
(Gershenfeld, 2000).

This work deals with considerate ubiquitous service interactions,
which are interactions adaptive to the momentary attentive state of the
user. The challenge in an environment full of embedded services is to
provide the right information, at the right time and in the right way
for individual users (Fischer, 2001) avoiding to interrupt them in inop-
portune situations. If we do not provide support to help control these
interactions, users may be disturbed often having a negative impact
on their User eXperience (UX)(Law et al., 2009). In this thesis, we
tackle this problem by providing a user-centered approach to support
self-adaptive unobtrusive interactions in an ubiquitous and mobile con-
text.

The rest of this chapter is organized as follows: Section 1.1 explains

1.1Motivation 3

Things

Services

People

Figure 1.1: Overview of the ubiquitous environment.

the purpose of this work. Section 1.2 details the problem that the
present thesis resolves. Section 1.3 introduces the goals defined for this
work. Section 1.4 describes the approach followed in this thesis to fulfill
the detected goals. Section 1.5 introduces the research methodology
that has been followed in this work. Section 1.6 explains the context in
which the work of this thesis has been performed. Finally, Section 1.7
gives an overview of the structure of this document.

1.1 Motivation
Emerging ubiquitous technologies have opened a new way of accessing
up-to-date information (about weather forecasts, current market prices,
etc.) and environmental services (a shopping service, a tourism service,
etc.), since the use of ubiquitous devices and things (e.g., mobile phones,
tablets, TVs, a washing machine, etc.) is widespread nowadays (see
Fig.1.1). Unlike desktop software that assumes a full user attention,

4 CHAPTER 1. INTRODUCTION

a static view of the user environment and stable operating conditions
where the user initiates the interactions, mobile and ubiquitous envi-
ronments highlight the importance of letting the user concentrate on
his/her tasks by adapting the services to changing user contexts (Hall-
steinsen et al., 2012).

Imagine a future in which your fridge announces to you the recipes
that can be prepared with the available goods, your TV tells you that
your favorite program is beginning and asks you to record it, your mo-
bile agenda is remembering you a meeting to attend; and all of this is
happening at the same time. Clearly, living in such an ubiquitous en-
vironment on a daily basis may be annoying as users can be frequently
interrupted inappropriately (Patterson et al., 2008; Chen and Black,
2008). Conversely, if these services behave in a completely invisible
manner (without requiring human input or informing the user), users
can feel that their environment is out of their control, which is also
undesirable (Tedre, 2006).

With more and more digital services being added to our surroun-
dings, they might be embedded in the actual activities of everyday life
resulting in calm technology that moves back and forth between the cen-
ter and the periphery of human attention (Weiser and Brown, 1997).
Since user attention is a valuable but limited resource, ubiquitous ser-
vices must behave in a considerate manner (Gibbs, 2005), requiring user
attention only when it is actually necessary. For example, a conside-
rate library service knows that when a package of books arrives to the
library, the completion of the reception task has to be done without
notifying the librarian if s/he is attending customers.

The work of Presto (Giner et al., 2010) (a context-aware mobile
platform that allows to support different workflows by interacting with
the physical environment) highlighted that much of user demands were
not related to functional issues, but related with the degree to which
interaction intrudes the user’s mind (i.e., the obtrusiveness level) ins-
tead. Moreover, in many cases, the appropriate obtrusiveness level for
interaction with a given service depends on the context and must be
changed during runtime. These requirements introduce complexity in
the development of mobile and ubiquitous software.

1.2 Problem statement 5

While software engineering is continuously developing methods, tools
and best practices, considerate interaction design is still a creative pro-
cess and yet not suitably supported by engineering practices (Blumen-
dorf et al., 2010a). Existing research addressed issues related to how
humans initiate interaction with systems, but we now increasingly ob-
serve ubiquitous system designs that also approach humans. Within
this reversed interaction, human attention (more than processor speed,
communication bandwidth, screen limitations, etc.) becomes the sin-
gle most critical resource in ubiquitous system design (Ferscha, 2012).
Thus, ubiquitous services need to be designed in a way that are capa-
ble of being aware of the current user’s attentional situation and adapt
their interaction with the user according to these attentional resources.

Facing the development of adaptive interactions in terms of obtru-
siveness poses the challenge to both express the increasingly complex
obtrusiveness and interaction concepts, and to handle the interaction
adaptation at runtime. In an environment where the possible com-
binations of context are constantly increasing, the implementation of
ad-hoc solutions to cover all possible combinations is not feasible. In
addition, ubiquitous and mobile computing involves a great diversity of
technologies and platforms to cover all the possible interactions with the
ubiquitous devices that surround users. This heterogeneity forces the
developer to know the details of each platform and develop the services
according to its capabilities. From a software engineering perspective,
there is a need for a user-centered and systematic development method
that can free designers and developers from technological details and
allow them to regulate the services’ interaction obtrusiveness according
to the attentional resources of users.

1.2 Problem statement
The adaptation of services’ interaction obtrusiveness in an ubiquitous
and mobile context has not been fully investigated. The previous dis-
cussion indicates that various problems need to be addressed. The work
presented in this thesis seeks to improve the design and development of

6 CHAPTER 1. INTRODUCTION

considerate interactions in the Ubiquitous Computing. This challenge
is faced from an engineering perspective by considering requirements,
design and runtime stages. In particular, the challenges that this thesis
addresses can be stated by the following three research questions:

Research question 1. How to capture and manage user’s attentional
resources in order to model considerate interactions?

Research question 2. How to regulate the interaction obtrusiveness
adaptation at runtime in order to provide considerate interactions
according to user’s situational context?

Research question 3. How to adapt the a priori designed interaction
obtrusiveness adaptation to support the changing user preferences
over time?

These research questions are analyzed and answered in the following
sections.

1.3 Thesis goals
The main goals of this thesis have been developed to answer the three
research questions presented above. Next, we summarize the main con-
tributions of our research work.

First of all, regarding research question 1, one of the main goals
of this work is the management of user’s attentional resources as a the-
oretical and practical principle for designing considerate interactions in
the ubiquitous computing domain. Current user interfaces modeling
techniques do not provide support for specifying the dynamic manage-
ment of the human attention (e.g., not disturbing the user when s/he is
engaged in a relevant task). In the present work, user’s attention is the
focus on designing interactions since it is a limited resource that must
be conserved (Gibbs, 2005). In order to manage the obtrusive nature
of services’ interactions according to user’s attention, it is required to
define what information and capabilities our users require and how to

1.3 Thesis goals 7

provide this information in terms of obtrusiveness. Additionally, from
a software engineering perspective, there is a need for the clear defini-
tion of the concepts to be captured and the modeling primitives
to capture them. In order to face this problem, we define a user-
centered design method to capture and manage interaction
obtrusiveness requirements to model considerate interactions.

Regarding research question 2, another goal of this work is to
regulate the services’ interaction obtrusiveness automatically at run-
time in order to provide considerate interactions according to the user’s
situational context. To achieve this, we leverage the design models at
runtime to drive the autonomic adaptation of interaction obtrusiveness.
That is, we keep the same model representation at runtime that is used
at design time. This allows interaction obtrusiveness to be adapted
in a technology-independent manner. A self-regulating autonomic
infrastructure is defined in order to automatically regulate the inte-
raction of the different services to the momentary attentive state of the
user following the principles of Autonomic Computing (Kephart and
Chess, 2003).

Regarding research question 3, one of the goals of the present
work is to adapt the a priori design models in order to support the
changing user preferences and needs over time. To adjust and improve
the initial obtrusiveness design automatically at runtime, we exploit the
user’s feedback in two ways. First, we follow a reinforcement learning
strategy (Sutton and Barto, 1998a) in which our system implicitly learns
from user feedback through experience. Specifically, an obtrusiveness
learning system is defined in order to automatically adapt the inte-
raction obtrusiveness in a way that maximizes the user’s satisfaction for
a long-term use. This system is built upon the self-regulating infras-
tructure to adjust its behavior according to the new user preferences.
Second, we provide customization interfaces to allow end-users to
change their own obtrusiveness preferences manually. By means of this
capability, we integrate the user in the self-adaptation loop.

The presented contributions form the main building blocks of the
AdaptIO (Adaptive Interaction Obtrusiveness) framework. This frame-
work is intended to build ubiquitous and mobile systems capable of

8 CHAPTER 1. INTRODUCTION

adapting its services’ interaction obtrusiveness according to the user’s
situational context with the primary goal of enhance the user’s experi-
ence. We aim to facilitate designers and developers to build this kind
of systems by putting the user in the focus of the design.

1.4 Thesis approach
This work is based on Model Driven Engineering (MDE) (Schmidt,
2006) principles in order to design and develop a considerate interaction
adaptation of services in a systematic way. MDE proposes the use of
models to specify the desired aspects of a system at different levels of
abstraction and in a declarative way. A model is a simplification of
a system, built with an intended goal in mind, that should be able
to answer questions in place of the actual system (Bezivin and Gerbe,
2001). The use of models (such as model of planes in a wind tunnel or
models of software systems) in engineering has a twofold benefit. First,
models guide the development of a system. Second, models allow to
reason about the system avoiding to deal with technological details.

Sottet in (Sottet et al., 2006) reported the problem of the increasing
combinations of users, services, situations and devices to be coped with
ad-hod solutions and stressed the relevance of MDE for the modeling of
interaction in Ubiquitous Computing systems. Model-based approaches
have been developed over the last years introducing well defined deve-
lopment processes to bridge the gap between ubiquitous computing and
software engineering. However, interaction design has been often ig-
nored or treated as a secondary concern. Also, we have to include the
consideration of user attention aspects and its management as a design
principle. In this context, model-driven approaches are growing influ-
ence, owing to the promise of yielding more orderly and manageable
concepts with enhanced traceability (Constantine, 2009). In this work,
we build up on the central ideas of model-driven development (models
as first-order citizens) and interaction design (user needs as the focus of
the design) to specify and support a considerate interaction adaptation
according to user’s attention. Specifically, our approach provides the

1.5 Researchmethodology 9

following contributions:

A user-centered design method has been defined in order to
specify the obtrusiveness degree of services’ interactions according to
the user’s attentional resources and context. In our method, the users’
needs drive the design of the services, providing users with persona-
lized services and avoiding overwhelming them. The method has been
designed based on the principles of interaction design (Cooper et al.,
2007) in order to enhance the user experience.

A self-regulating autonomic infrastructure is defined in order
to regulate the degree of obtrusiveness required for each service auto-
matically at runtime. This infrastructure exploits the design models at
runtime to support the dynamic interaction obtrusiveness adaptation
according to the different users’ situations.

An obtrusiveness learning system is provided in order to read-
just the obtrusiveness of services according to user’s behavior. It fo-
llows a reinforcement learning strategy in order to implicitly adapt the
designed interaction obtrusiveness adaptation according to user’s feed-
back, in a way that maximizes the user’s satisfaction for a long-term use.
Also, customization interfaces are provided to allow users to explicitly
change the obtrusiveness design.

1.5 Researchmethodology
In order to perform the work of this thesis, we have carried out a research
project following the design methodology for performing research in in-
formation systems as described by (March and Smith, 1995) and (Vaish-
navi and Kuechler, 2004). Design research involves the analysis of the
use and performance of designed artifacts to understand, explain and,
very frequently, to improve on the behavior of aspects of Information
Systems (Vaishnavi and Kuechler, 2004).

The design cycle consists of 5 process steps: (1) awareness of the
problem, (2) solution suggestion, (3) development, (4) evaluation, and
(5) conclusion. The design cycle is an iterative process; knowledge pro-

10 CHAPTER 1. INTRODUCTION

Problem
awareness

Solution
suggestion

State of the
art review

Design
method

System
for learning

Conclusions
Requirements

of model
de�nition

Evaluation
of the

proposal

Step 1 Step 2 Step 3 and 4 Step 5

Infrastructure
for adaptation

Figure 1.2: Research methodology followed in this thesis.

duced in the process by constructing and evaluating new artifacts is
used as input for a better awareness of the problem. Following the
cycle defined in the design research methodology, we started with the
awareness of the problem (see Fig. 1.2): we identified the problem to
be resolved and we stated it clearly.

Next, we performed the second step which is comprised of the su-
ggestion of a solution to the problem, and comparing the improvements
that this solution introduces with already existing solutions. To do
this, the most relevant approaches from similar application domains
were studied in detail. Once the solution to the problem was described,
we planned to develop and validate it (steps 3 and 4). These steps are
performed in several phases (see Fig. 1.2). The tasks carried out in the
step 3 were intended to characterize considerate service’s interaction
adaptation, define techniques for its design, adaptation at runtime, and
learning through experience, providing tool support for each one. When
the solution was developed, we evaluated the obtained artifacts of the
different phases performed in step 3 and validated the whole approach
by applying it to a case study (step 4).

Finally, we analyzed the results of our research work in order to ob-
tain several conclusions as well as to delimitate areas for further research
(step 5).

1.7 Outline of this thesis 11

1.6 Thesis context
This thesis has been developed in the context of the research center
Centro de Investigación en Métodos de Producción de Software1 of the
Universitat Politècnica de València2. The work that has made the de-
velopment of this thesis possible is in the context of the following re-
search government projects:

• EVERYWARE: Construcción de software adaptativo para la inte-
gración de personas, servicios y cosas usando modelos en tiempo
de ejecución. CICYT project referenced as TIN2010-18011.

• SESAMO: Construcción de Servicios Software a partir de Mode-
los. CICYT project referenced as TIN2007-62894.

• “Internet de las Cosas como soporte a Procesos de Negocio”. Prime-
ros proyectos de Investigación de la UPV, referenced as PAID-06-
09 number 2920.

1.7 Outline of this thesis
This thesis is presented in nine chapters including this one and two
appendices. As a guide to the organization of the remainder of this
thesis:

Chapter 2 introduces the main fields that are related to the work that
is presented in this thesis in order to provide the reader with a
basic background for understanding the overall thesis work.

Chapter 3 presents initiatives that face similar problems or provide
solutions to some pieces of this work. These initiatives are ana-
lyzed and compared to the work presented in this thesis.

1http://www.pros.upv.es
2http://www.upv.es

12 CHAPTER 1. INTRODUCTION

Chapter 4 gives an overview of the thesis work. This overview covers
the main building blocks of the approach as well as the process
to apply it. In addition, the chapter also introduces how the
approach has been evaluated throughout several experiments.

Chapter 5 presents the user-centered design method that is defined
to specify the interaction obtrusiveness adaptation of ubiquitous
services, and describes the process to be followed at design time.

Chapter 6 describes the mechanisms provided to exploit the design
models at runtime and achieve a dynamic interaction obtrusive-
ness adaptation according to user’s situational context. This chap-
ter presents the self-regulating autonomic infrastructure that deals
with the dynamic service interaction adaptations.

Chapter 7 presents how the design models can be adjusted at runtime
to support the changing user preferences and needs over time by
learning it through experience. Also, it introduces the customiza-
tion tools to allow end-users personalize their obtrusiveness prefe-
rences manually.

Chapter 8 details how the proposal has been validated by means of
several experiments throughout case studies.

Chapter 9 summarizes the main contributions and publications of this
work. In addition, this chapter provides some insights about fur-
ther work.

Appendix A provides more detail on the specification of the defined
modeling language and the tool support to design this kind of
systems.

Appendix B shows further details about the case studies used to vali-
date our proposal, and the instruments used in the experiments.

2
Background
The essentials to understand this thesis

Sometimes the problem is to discover what the problem is.
—Gordon Glegg (1969). The Design of Design.

This work deals with the design and development of ubiquitous ser-
vices that can adapt their interaction at runtime in terms of obtrusive-
ness according to each user’s situation. As it is shown in Fig. 2.1, this
work is placed in the intersection of three research areas that have some
aspects in common. These disciplines are: Human-Computer Interac-
tion, Context-Aware Computing and Considerate Computing.

This work relies on different concepts and technologies from these
areas. In order to clarify the foundations in which our approach relies
and provide a basic background for understanding the overall thesis
work, different concepts and techniques are introduced in this chapter.
Specifically, the rest of this chapter is organized as follows: Section 2.1
provides the main characteristics of the Human-Computer Interaction
area. Section 2.2 provides an overview of the Context-Aware Computing
area and its principles. Section 2.3 presents the foundations of the

14 CHAPTER 2. BACKGROUND

H
u
m
an
-C
om

pu
ter

In
te
ra
ct

io
n

Context-A
w
a
re

Com
putin

g

Considerate Com
pu
tin

g

Ubiquitous
interaction

obtrusiveness
adaptation

Figure 2.1: Application domains involved in this work.

Considerate Computing paradigm for the development of user interfaces
and introduces strategies to minimize interruptions. Finally, Section 2.4
concludes the chapter.

2.1 Human-Computer Interaction
Human-Computer Interaction (HCI) is the study of the interaction be-
tween people (users) and computers (Dix et al., 2003). Such interaction
is mainly done at the user interface. HCI is inherently multidisciplinary.
Among the disciplines involved in HCI, engineering and design methods
are relevant. The basic goal of HCI is to improve interactions between
users and computers by making computers more usable and receptive
to the user’s needs.

2.1.1 Designmethodologies

2.1 Human-Computer Interaction 15

A number of diverse methodologies outlining techniques for human–com-
puter interaction design have emerged since the rise of the field in the
1980s. Most design methodologies stem from a model for how users,
designers, and technical systems interact. Early methodologies, for ex-
ample, treated users’ cognitive processes as predictable and quantifiable
and encouraged design practitioners to look to cognitive science results
in areas such as memory and attention when designing user interfaces.
Modern models tend to focus on a constant feedback and conversation
between users, designers, and engineers and push for technical systems
to be wrapped around the types of experiences users want to have,
rather than wrapping user experience around a completed system. The
most important methodologies are the following:

• Task-based design: The main idea behind the method is that
a firm understanding of the users’ tasks is the proper basis for
interactive systems development. With a systematic process of
building systems to support users in their tasks, a higher level
of usable and useful systems can be achieved by both expert and
novice designers. (van Welie, 2001).

• Activity-centered design: Activity-centered design is used in
HCI to define and study the context in which human interactions
with computers take place. Activity-centered design focuses on
understanding activities in these contexts. It claims that humans
adapt to the tools at hand, and understanding the activities that
people perform with a set of tools can more favorably influence
the design of those tools (Norman, 2005).

• Scenario-based design: This design states that scenarios in
HCI help us to understand and to create computer systems and
applications as artifacts of human activity. In scenario-based de-
sign, descriptions of how people accomplish tasks are a primary
working design representation. Software design is fundamentally
about envisioning and facilitating new ways of doing things and
new things to do (Carroll, 2000).

• Goal-directed design: Goal-directed design is an interaction

16 CHAPTER 2. BACKGROUND

design methodology created by Cooper (Cooper et al., 2007) that
identifies the goals and behaviors of users, and the goals of a
business, and directly translates these into design. “Goals are not
the same thing as tasks. A goal is an end condition, whereas a
task is an intermediate process needed to achieve the goal. . . The
goal is a steady thing. The tasks are transient,” he says.

• User-centered design: User-centered design (UCD) is a mo-
dern, widely practiced design philosophy rooted in the idea that
users must take center-stage in the design of any computer sys-
tem. Users, designers and technical practitioners work together
to articulate the wants, needs and limitations of the user and cre-
ate a system that addresses these elements. Often, user-centered
design projects are informed by ethnographic studies of the envi-
ronments in which users will be interacting with the system (Mao
et al., 2001).

This work is based on the user-centered design methodology.

2.1.2 InteractionModalities
Broadly speaking, there are two extremes of interaction from the inten-
tion of the user viewpoint: one in which the user interacts consciously
and explicitly with the system; and at the other extreme, the user inte-
racts unconsciously or implicitly. In between, there are various degrees
of each kind. Figure 2.2 outlines an interaction model taking implicit
and explicit human-computer interaction into account.

Explicit Interaction. In this case, a user interacts with a software
application directly by manipulating a GUI, running a command
in a command window or issuing a voice command. In short, the
user intentionally performs some action. Most interaction with
computers, both of the static and mobile variety, is explicit by
nature.

Implicit Interaction. Implicit interaction (Schmidt, 2000) is a more
recent development and occurs when a user’s subconscious actions

2.1 Human-Computer Interaction 17

Figure 2.2: Concept of implicit and explicit HCI (Schmidt, 2013)

indicate a preference that may be interpreted as an interaction.
It is difficult to capture and subject to error, but it offers useful
possibilities in the mobile domain. As a practical example, con-
sider the case of a smart refrigerator. The refrigerator is aware of
what products are put inside it. By not returning a product inside
could be interpreted by the refrigerator as an indication of a lack
of the product. Therefore, the refrigerator could deduce that the
user runs out of that product and it could add the product to the
shopping list.

Implicit interaction is closely related to user’s context (Tamminen
et al., 2004) and some knowledge of the prevailing context is almost es-
sential if designers want to incorporate it into their applications (O’Grady
et al., 2008). Also, this type of interactions are an inevitable part of
what some like to call “smart” products, products whose actions con-
tain some degree of agency, of activity, that occurs without the explicit
behest or awareness of the user (Ju, 2008).

Mobile interaction
As the use of mobile devices is widespread nowadays, the design of mo-
bile interactions is taken importance. Chittaro (Chittaro, 2010) stated

18 CHAPTER 2. BACKGROUND

the aspects that distinguishes mobile interactions from interaction with
desktop systems. These aspects difficult to build effective user interfaces
for mobile users. Specifically, these aspects are the following.

• Hardware. Mobile devices are limited in their input-output ca-
pabilities (screen, keyboard, buttons, sound, etc.).

• Perceptual. The physical parameters (illumination, noise, tem-
perature and humidity, vibration and motion, etc.) of the mobile
user’s environment are extremely variable.

• Motor. Mobile conditions can impair user’s ability to fine control
his/her voluntary movements or to take specific postures (e.g.,
standing).

• Social. Social norms related to different environments may make
it impossible or unadvisable to use certain modalities (e.g., keep-
ing sound on at a conference is not tolerated).

• Cognitive. People in mobility conditions can devote only a very
limited attention to interacting with applications on the device.

These issues could be faced by offering a wide repertoire of modali-
ties (and combinations of modalities) to the mobile user, allowing the
user to choose those that are socially accepted, easier to perceive and
easier to operate in the context s/he is. In this way, multimodality
can be a key factor for a better design of mobile interfaces. We take
this factor into account to adapt services’ interactions and minimize
obtrusiveness.

2.1.3 Multimodal interaction
Multimodal interaction provides the user with multiple modes of inter-
facing with a system. A multimodal interface provides several distinct
tools for input and output data.

Sharon Oviatt (Oviatt, 1999) offered a more practical definition,
saying that multimodal systems coordinate the processing of combined

2.1 Human-Computer Interaction 19

natural input modalities—such as speech, touch, hand gestures, eye
gaze, and head and body movements—with multimedia system output.
Matthew Turk and George Robertson (Turk and Robertson, 2000) fur-
ther refined the difference between multimedia and multimodal systems,
saying that multimedia research focuses on the media, while multimodal
research focuses on human perceptual channels. They added that mul-
timodal output uses different modalities, such as visual display, audio,
and tactile feedback, to engage human perceptual, cognitive, and com-
munication skills in understanding what is being presented. Multimodal
interaction systems can use various modalities independently, simulta-
neously, or by tightly coupling them.

Niels Ole Bernsen (Bernsen, 1994) presented a taxonomy of generic
output modalities and their combinations. Zeljko Obrenovic and Dusan
Starcevic (Obrenovic et al., 2007) proposed a generic modeling frame-
work for specifying multimodal HCI. All the definitions of multimodal
interaction remain on three different concepts:

Modality. It refers to the type of communication channel used to con-
vey or acquire information (e.g., visual, auditory, haptic, etc.).
It also covers the way an idea is expressed or perceived, or the
manner an action is performed (Nigay and Coutaz, 1993).

Mode. It refers to a state that determines the way information is in-
terpreted to extract or convey meaning (Nigay and Coutaz, 1993).

Multimedia. It focuses on the medium or technology rather than the
application or user (e.g., sound clip attached to a presentation).
Some examples of media channels are: text, graphics, animation,
audio, video, etc. (Buxton, 1990).

Figure 2.3 summarizes the many channels that can be currently ex-
ploited to send and receive information from a mobile device. Choosing
the appropriate modality or combination of modalities can help in re-
ducing the attentional demand.

In multimodal interactions, multimodal fusion combines the signals
of the individual modalities. In addition to combining modalities, the

20 CHAPTER 2. BACKGROUND

Figure 2.3: Input and output channels in mobile multimodal inter-
faces (Chittaro, 2010).

fusion extracts semantics and converts the different channels into a com-
mon representation. For example, both speech and haptic input may
open the route guidance screen in a navigation device by triggering a
specific event. Whereas multimodal fusion is beyond the scope of this
work, our approach supports multimodal interaction by considering dif-
ferent modalities in the interaction adaptation.

2.1.4 Analysis and discussion
Traditionally, Human-Computer Interaction has been often ignored or
treated as a secondary concern when developing software or proposing
software engineering methods (Constantine, 2009). Interaction design
is still a creative process and yet not suitably supported by engineering
practices. Instead of placing users and use at the center of developmen-
tal and methodological focus, the dominant modeling languages and
methods have relegated them to the periphery.

Furthermore, engineering multimodal mobile interfaces would help
designers to address the challenges that mobile interaction presents.
With this work, we attempt to fill the gap between software engineering
and interaction design by placing users (i.e., human resources) at the

2.2 Context-Aware Computing 21

focus of the multimodal interaction adaptation design.

2.2 Context-Aware Computing
The idea of Context-Aware Computing comes from the vision of Mark
Weiser about the Ubiquitous Computing. Weiser envisioned Ubiqui-
tous Computing (UbiComp for short) as a world where computation and
communication would be conveniently at hand and distributed through-
out our everyday environment (Weiser, 1999). Pervasive Computing
(PerCom) (Hansmann et al., 2001), Ambient Intelligence (AmI) (Aarts
et al., 2002) or Everyware (Greenfield, 2006) are some of the paradigms
that share this goal.

In addition to drawing the fundamental concepts of ubiquitous com-
puting by“vanishing computers into the background”, Weiser also shaped
the concepts of context-aware computing: “. . . computers will come
invisible to common awareness. People will simply use them uncons-
ciously to accomplish everyday tasks”. He painted a picture of com-
puters knowing their location, being able to capture information and
retrieve context-based information, and offering seamless interaction to
support the user’s current tasks. Thus, context-aware computing is in-
deed often related to the research on ubiquitous computing (Dourish,
2004).

In this way, to realize such ubiquitous computing systems with opti-
mal usability, i.e. transparency of use, context-aware behavior is seen as
the key enabling factor. Computers already pervade our everyday life -
in our phones, fridges, TVs, toasters, alarm clocks, watches, etc - but
to fully disappear, as in the Weiser’s vision of ubiquitous computing,
they have to anticipate the user’s needs in a particular situation and
act proactively to provide appropriate assistance (Schmidt, 2013). This
capability requires means to be aware of its surroundings, i.e. context-
awareness.

In his 1994 paper at the Workshop on Mobile Computing Systems
and Applications (WMCSA), Bill Schilit et al. (Schilit et al., 1994)

22 CHAPTER 2. BACKGROUND

introduced the concept of context-aware computing and described it as
follows:

“Such context-aware software adapts according to the lo-
cation of use, the collection of nearby people, hosts, and ac-
cessible devices, as well as to changes to such things over
time. A system with these capabilities can examine the
computing environment and react to changes to the envi-
ronment.”

The basic idea is that mobile devices can provide different services
in different contexts. In addition, they proposed three general cate-
gories describing context: user context, physical context, and computing
context. Here, the user context describes the situation from the user’s
viewpoint, including components such as the user’s activity and social
factors. Physical context includes information of the physical environ-
ment, which can be gained with sensor-based measurements. Comput-
ing context includes the device connectivity and available computing
and application recourses.

The term context is widely used with very different meanings. Until
now, there is no unequivocal definition of the concept of context. There
are several definitions of context in the literature, but the most used
definition in ubicomp was introduced by Dey (Dey and Abowd, 2000):

“Context is any information that can be used to charac-
terize the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction be-
tween a user and an application, including the user and ap-
plication themselves.”

For practical purposes, context is often hierarchically structured des-
cribing the relevant features (Schmidt et al., 1999). An example of the
feature space is shown in Figure 2.4. By means of this structured space,
it becomes easier to link contexts in the real world to adaptations in the
system. The advantage of a feature space is that by looking at a set of

2.2 Context-Aware Computing 23

Figure 2.4: Context feature space (Schmidt et al., 1999)

parameters, it can be easily determined if a situation matches a context
or not. Knowing which are the factors that should influence the system
behavior, one can start to look at how these factors can be determined
in the devices. In many cases, this will require sensors that allow the
provision of context.

2.2.1 Context of use
There is a wide variety of information that can be gathered to support
the feature space. However, most of the approaches define the context
of use by three classes of entities (Calvary et al., 2003):

• User. The users of the system who are intended to use the system.
In particular, his perceptual, cognitive and action disabilities.

• Platform. The computational and interaction device that can be
used for interacting with the system. Examples, in terms of re-
sources, include memory size, network bandwidth, screen size, in-
put and output capabilities, and so on.

24 CHAPTER 2. BACKGROUND

• Environment. The physical environment where the interaction can
take place such as noisy environment, lighting conditions, location
information, time information, etc.

Under software engineering considerations two kinds can be distin-
guished (Calvary et al., 2003): predictive contexts of use that are fore-
seen at design time; and effective contexts of use that really occur at
runtime. Both, the predictive context of use we handle at design time,
as well as the effective context of use at runtime are addressed in this
work.

2.2.2 Context sensing
A wide variety of sensors are used to acquire contextual information
(Mäntyjärvi and Seppänen, 2002; Mostefaoui et al., 2004; Hinckley et al.,
2005; Maiden, 2009). Important sensors used are GPS (for location and
speed), light and vision (to detect objects and activities), microphones
(for information about noise, activities, and talking), accelerometers
and gyroscopes (for movement, device orientation, and vibration), mag-
netic field sensors (as a compass to determine orientation), proximity
and touch sensing (to detect explicit and implicit user interaction), sen-
sors for temperature and humidity (to assess the environment), and
air pressure/barometric pressure. There are also sensors to detect the
physiological context of the user (e.g. galvanic skin response1, EEG,
and ECG).

The challenge to determine context is not only a matter of capture,
but also presents a significant inferring challenge. Determining the con-
text with a sufficient confidence summons advanced techniques, and
numerous approaches to analyze the data have been proposed. Chen
(Chen, 2004) presented three different approaches on how to acquire
contextual information. Concerning the way data is captured, sensors
can be classified in three groups (Indulska and Sutton, 2003).

Physical sensors. These are the most frequently used type of sensors.

1Galvanic skin response measures the resistance between two electrodes on the
skin. The value measured is dependent on how dry the skin is.

2.2 Context-Aware Computing 25

Many hardware sensors are available nowadays which are capable
of capturing almost any physical data. Some examples of physical
sensors have been described above.

Virtual sensors. Virtual sensors source context data from software
applications or services. For example, it is possible to determine
an employee’s location not only by using tracking systems (physi-
cal sensors) but also by a virtual sensor, e.g., by browsing an elec-
tronic calendar, a travel-booking system, emails, etc., for location
information.

Logical sensors. These sensors make use of a couple of information
sources, and combine physical and virtual sensors with additional
information from databases or various other sources in order to
solve higher tasks. For example, a logical sensor can be cons-
tructed to detect an employee’s current position by analyzing lo-
gins at desktop PCs and a database mapping of devices to location
information

In this work, we make use of physical and virtual sensors.

2.2.3 Contextmodels
In order to define and store context data in a machine processable form,
a context model is needed. There are several context modeling ap-
proaches (Bettini et al., 2010) such as key-value models, markup scheme
models, graphical models, object oriented models, logic based models, and
ontology based models. However the evaluation presented in (Strang and
Linnhoff-Popien, 2004) shows that ontologies are the most expressive
models and fulfill most of the requirements.

Thus, in order to capture and reason about context, we use ontolo-
gies. In a widely-quoted definition, an ontology is “a specification of a
conceptualization” (Gruber, 1993). An ontology is a formal representa-
tion of a set of concepts within a domain and the relationships between
those concepts. Thus, it allows a programmer to specify in an open and
meaningful way the concepts and relationships that collectively charac-
terize some domain.

26 CHAPTER 2. BACKGROUND

An ontology mainly contains the following elements:

• Classes: which are all kinds of existences or concepts. A class
usually refers to a collection or a category of objects sharing some
common character and well accepted under common sense.

• Attributes: properties that identify a class itself from other classes.

• Relationships: a relation between two ontology classes interprets
how the two classes, more precisely the objects of these classes, are
related. Typically a relation is a particular connection between
two classes that specifies how an object is connected to the other
in an ontology.

• Individuals: instances or objects of the defined classes. All the
objects under a category are named as “individuals” of this class.

Numerous tools are available to define declarative representations
and to publish and share ontologies developed by the World Wide Web
Consortium, e.g., the Resource Description Language (RDF)2 and the
Web Ontology Language (OWL)3.

2.2.4 Context-Awareness as enabler for Autonomic Computing
Context-awareness its a property that enables the vision of Autonomic
Computing. In 2003, Kephart and Chess (Kephart and Chess, 2003)
warned that the dream of interconnectivity of computing systems and
devices could become the “nightmare of pervasive computing” in which
architects are unable to anticipate, design and maintain the complexity
of interactions, leaving such issues to be dealt with at runtime. They
stated that the only option is Autonomic Computing.

Specifically, Autonomic Computing refers to the self-managing charac-
teristics of distributed computing resources, adapting to unpredictable
changes while hiding intrinsic complexity to operators and users (Horn,

2http://www.w3.org/RDF
3http://www.w3.org/TR/owl-features/

2.2 Context-Aware Computing 27

2001). Started by IBM in 2001, this initiative ultimately aims to de-
velop computer systems capable of self-management, to overcome the
rapidly growing complexity of computing systems management, and to
reduce the barrier that complexity poses to further growth.

In a self-managing autonomic system, the human operator takes on a
new role: instead of controlling the system directly, s/he defines general
policies and rules that guide the self-management process. For this
process, IBM defined the following four functional properties (Kephart
and Chess, 2003):

• Self-configuration. Automatic configuration of components.

• Self-healing. Automatic discovery, and correction of faults.

• Self-optimization. Automatic monitoring and control of re-
sources to ensure the optimal functioning with respect to the de-
fined requirements.

• Self-protection. Proactive identification and protection from
arbitrary attacks.

To achieve autonomic computing, IBM suggested a reference model
for autonomic control loops which is sometimes called the MAPE-K
(Monitor, Analyse, Plan, Execute, Knowledge) loop and is depicted in
Figure 2.5. This loop is composed by an autonomic manager software
element and a (hardware or software) managed element. The autonomic
manager continually executes a monitor-analyze-plan-execute loop in
which it observes sensor readings, analyzes and plans an appropriate
management decision, and then executes that decision via effectors. A
central knowledge base, accessible by the other components, contains
knowledge pertaining to the likely effectiveness of various possible mana-
gement decisions in achieving the manager’s overall policy objectives.
Typically, such knowledge takes the form of an explicit system model.

Even though the purpose and thus the behavior of autonomic sys-
tems vary from system to system, every autonomic system should be
able to exhibit a minimum set of properties to achieve its purpose:

28 CHAPTER 2. BACKGROUND

Knowledge ExecuteMonitor

Analyze Plan

Autonomic Manager

Sensor readings Effectors

Sensor readings Effectors

Managed element

Figure 2.5: IBM’s MAPE reference model for autonomic control loops

Automatic. This essentially means being able to self-control its in-
ternal functions and operations. As such, an autonomic system
must be self-contained and able to start-up and operate without
any manual intervention or external help. Again, the knowledge
required to bootstrap the system (know-how) must be inherent to
the system.

Adaptive. An autonomic system must be able to change its operation
(i.e., its configuration, state and functions). This will allow the
system to cope with temporal and spatial changes in its opera-
tional context either long term (environment customization/opti-
mization) or short term (exceptional conditions such as malicious
attacks, faults, etc.).

Aware. An autonomic system must be able to monitor (sense) its ope-
rational context as well as its internal state in order to be able
to assess if its current operation serves its purpose. Awareness
will control adaptation of its operational behavior in response to
context or state changes.

One important aspect to be considered in these systems is the diffi-
culty of engineering a sufficiently accurate knowledge module that can

2.2 Context-Aware Computing 29

achieve acceptable performance in deployed systems (Tesauro, 2007).
Tesauro highlighted this problem, especially for model-based approaches,
since today’s computing systems are continually evolving and periodic
redesign of the knowledge modules are necessary. To overcome this
knowledge bottleneck he proposed to apply learning techniques.

2.2.5 Reinforcement Learning
Pattie Maes argued that to gain trust in context-aware systems, the
end user must be involved in the specification of the system’s behavior,
but s/he usually cannot directly program it (Maes, 1994). In addition,
user’s habits evolve through time (Byun and Cheverst, 2001a), imply-
ing the need of repeated modifications of the context-aware knowledge.
Learning techniques has been proposed as a possible solution for those
problems. In particular, reinforcement learning has been considered as
a solution for getting “in context” qualitative feedback from the user.

Reinforcement Learning (RL) (Sutton and Barto, 1998a) is an ap-
proach where an agent acts in an environment and learns from its previ-
ous experiences to maximize the sum of rewards received from its action
selection. The reward is classically a continuous function between -1 and
1. 1 corresponds to satisfaction, -1 disapproval and 0 means no opinion.

RL is used to establish policies obtained from observing management
actions. At its most basic, it learns policies by trying actions in various
system states and reviewing the consequences of each action (Sutton and
Barto, 1998a). In RL’s normal operation, illustrated in Figure 2.6, an
agent learns effective decision-making policies through an online trial-
and-error process in which it interacts with an environment. Assuming
time progresses in discrete steps, each interaction consists of:

• observing the environment’s current state st at time t,

• performing some legal action at in state st, and

• receiving a reward rt (a numerical value that the user would like
to maximize) followed by an observed transition to a new state
st+1.

30 CHAPTER 2. BACKGROUND

Agent

Action

System

Reward

State

Figure 2.6: A standard reinforcement learning interaction loop

The advantage of reinforcement learning is that it does not require
an explicit model of the system being managed, hence its use in auto-
nomic computing (Littman et al., 2004; Dowling et al., 2006). However
it suffers from poor scalability in trying to represent large state spaces,
which also impacts on its time to train. To this end, a number of hybrid
models have been proposed which either speed up training or introduce
domain knowledge to reduce the state space (Tesauro, 2007; Whiteson
and Stone, 2006).

2.2.6 Analysis and discussion
Summarizing the results from context-aware computing, the goal of us-
ing context information is to make interaction with a system more rele-
vant, useful and robust. Once the system has recognized in which con-
text an interaction takes place, this information can be used to change,
trigger, and adapt the behavior of applications and systems.

However, usually the attentional resources of the user have not been
considered to design context-aware systems. This result in interruptions
at inopportune moments. In this work, we use the context in a different
way in order to minimize interruptions to the user. We consider the
attentional demand (e.g., human limitations) as a first class concept in
order to adapt the services.

2.3 Considerate Computing 31

Furthermore, we integrate the autonomic computing principles for
building context-aware services. Autonomously regulating the obtru-
siveness of context-aware services based on context information and
obtrusiveness models provides high potential for offering more non-
disturbing services to the user.

2.3 Considerate Computing
“Humanity has connected itself through roughly three billion networked
telephones, computers, traffic lights -even refrigerators and picture fra-
mes- because these things make life more comfortable and keep us avail-
able to those we care about. So although we could simply turn off the
phones, close the e-mail program, and shut the office door when it is
time for a meeting, we usually do not. We just endure the consequences”
(Gibbs, 2005).

Today, increasing numbers of users are surrounded by multiple ubiqui-
tous computing devices, such as mobile phones, PDAs and so on. These
devices bombard users with requests for attention, regardless of the cost
of interruptions (Vertegaal, 2003). Numerous studies have shown that
when people are unexpectedly interrupted, they not only work less effi-
ciently but also make more mistakes. Eric Horvitz of Microsoft Research
stated: “If we could just give our computers and phones some under-
standing of the limits of human attention and memory, it would make
them seem a lot more thoughtful and courteous”.

Researchers are becoming aware of the fact that user attention is a
limited resource that must be conserved. To this end, the Considerate
Computing paradigm aims at avoiding overloading the user by adapting
system behavior based on the sensed user attention focus. Considerate
systems generally calculate the cost in terms of user attention and the
benefit in terms of subjective or objective performance factors, in order
to predict acceptability and select the optimal timing of the interrup-
tions.

Designers and engineers should design computing devices that nego-

32 CHAPTER 2. BACKGROUND

tiate rather than impose the volume and timing of their communications
with the user. Cooper and Reimann’s About Face 3 describe some of
the most important characteristics of considerate interactive products:

“Take an interest. Are deferential. Are forthcoming. Use
common sense. Anticipate people’s needs. Are conscien-
tious. Don’t burden you with their personal problems. Keep
you informed. Are perceptive. Are self-confident. Don’t ask
a lot of questions. Take responsability. Know when to bend
the rules.” (Cooper et al., 2007)

For example, a mobile phone that behaves like a considerate person
knows that, after you have completed a call with a number that is not in
your contacts, you may want to save the number, and provides an easy
and obvious way to do so. An inconsiderate phone forces you to scribble
the number on the back of your hand as you go into your contacts to
create a new entry.

Since user attention is a valuable but limited resource, an environ-
ment full of embedded services must behave in a considerate manner,
demanding user attention only when it is actually required. The in-
crease of information overflow and continuous request for user atten-
tion (Horvitz et al., 2003) make interruptions a common occurrence
in ubiquitous environments. A few researchers have attempted to de-
fine interruptions and establish a taxonomy that describes the different
issues surrounding interruptions (Ginsburg, 2004). McFarlane (Mcfar-
lane, 1997; McFarlane, 1999; McFarlane and Latorella, 2002) and La-
torella (Latorella, 1998) defined the concept of human-computer inter-
ruption as follows:

Interruption. An interruption can be defined as an unanticipated re-
quest for task switching from a person, an object, or an event while
multitasking. Interruptions typically request immediate attention
and insist on action, and reduce productive focus.

Disruption. If an interruption is allowed to distract the user into ac-
tion, it escalates into disruption (Jackson et al., 2001). Thus,

2.3 Considerate Computing 33

disruption is defined as the negative effects on a primary task
from interruptions requiring transition and reallocation of atten-
tion focus from one activity to another.

Distraction. Distraction affects people’s memories. On returning to a
suspended activity, it is possible for them to have forgotten where
they were in the activity. As a result, they may not restart from
where they left off but will recommence at a different point of
entry (Preece et al., 1994).

McFarlane (Mcfarlane, 1997; McFarlane, 1999; McFarlane and La-
torella, 2002) developed a taxonomy of human interruption, as a tool
for answering interruptions research questions. The taxonomy lists eight
dimensions of human interruption. Manipulating each dimension can
influence the disruptive effects of interruptions. These dimensions and
examples of the dimensions are the following:

• Source of interruption: self; another person; computer.

• Individual characteristic of person receiving interruption: limita-
tions of: perceptual processors, cognitive processors, motor pro-
cessors, memory, focus of consciousness, processing streams; will-
ingness and ability to be interrupted.

• Method of coordination: immediate; negotiated; mediated; schedu-
led.

• Meaning of Interruption: alert; stop; divert attention (task-swit-
ching); distribute attention (task-sharing); remind; communicate
information.

• Method of expression: physical (i.e., verbal); type (i.e., by pur-
pose).

• Channel of conveyance: face-to-face; mediated by a person; me-
diated by a machine.

• Human activity changed by interruption: conscious or subcon-
scious; individual activities; joint activities.

34 CHAPTER 2. BACKGROUND

• Effect of interruption: change in activity; change in memory;
change in awareness; change in focus of attention; loss of control
over activity.

2.3.1 Receiving andmanaging interruptions
Generally, interruptions in the ubiquitous computing take the form

of notifications that are received on the various devices that a user may
possess or perceive in his/her environment (Ramchurn et al., 2004). To
this end, the four main ways identified by McFarlane to disrupt someone
are (mentioned above as methods of coordination):

• Immediate: the person must leave current task to attend to
interruption. It requires the attention of the user immediately
without any other choice.

• Negotiated: the interruption is announced to the person, and
then the person decides when to attend to it. It allows the user
to choose the moment when they will deal with the interrupting
activity that needs attention.

• Mediated: the interruption is announced to the person’s per-
sonal digital assistant (or another third party), which determines
when the best time is to interrupt the person. It alerts the user
on another device rather than the one on which it was supposed
to be delivered.

• Scheduled: the person is interrupted during prearranged times
only.

Whatever the form in which a message is received, there are four
possible responses to it (Clark, 1996):

1. Take-up with full compliance. Handle the interruption immedi-
ately.

2. Take-up with alteration. Acknowledge the interruption and agree
to handle it later.

2.3 Considerate Computing 35

3. Decline. Explicitly refuse to handle the interruption.

4. Withdraw. Implicitly refuse to handle the interruption by ignoring
it.

In each of the above responses, some degree of mental processing by
the user is involved in deciding what course of action to take. In most
cases the answer depends on the preferences of the user with respect to
the information available about the content of the notification.

2.3.2 Contextual factors that influence interruption
According to Ho and Intille (Ho and Intille, 2005), there are at least
11 factors that impact the perceived burden of an interruption. These
factors are:

• Activity of the user. The activity the user was engaged in during
the interruption.

• Utility of the message. The importance of the message to the user.

• Emotional state of the user. The mindset of the user, the time of
disruption, and the relationship the user has with the interrupting
interface or device.

• Modality of interruption. The medium of delivery, or choice of
interface.

• Frequency of interruption. The rate at which interruptions are
occurring.

• Task efficiency rate. The time it takes to comprehend the inter-
ruption task and the expected length of the task.

• Authority level. The perceived control a user has over the interface
or device.

• Previous and future activities. The tasks the user was previously
involved in and might engage in during the future.

36 CHAPTER 2. BACKGROUND

• Social engagement of the user. The user’s role in the current
activity

• Social expectation of group behavior. Activities and expected re-
action to interruption of nearby people.

• History and likelihood of response. The type of pattern the user
follows when an interruption occurs.

Fischer et al. (Fischer et al., 2010) also introduced the distinction
between local and relational contextual factors.

Local contextual factors. These factors describe the individual’s con-
text at the moment of the interruption. They have been distin-
guished into two categories: cognitive and social factors (Grandhi
and Jones, 2009). Cognitive factors that have been studied include
the person’s mental workload when interrupted, or the person’s
current activity. Social factors are those that discern the impact
of the social surrounding on the interruptibility of the interrupted
person, e.g., the presence of other people, or the impact of specific
organizational or cultural norms of the place where the person is
interrupted on how interruptions are managed.

Relational contextual factors. These factors take into account pro-
perties of the interruption itself. Fischer et al. (Fischer et al.,
2010) suggest that relational factors should be taken into account
in addition to local contextual factors when trying to estimate a
person’s receptivity. The consideration of who (sender/source),
the what (content), and the characteristics of the channel the in-
terruption is delivered in (in what channel) may impact recep-
tivity or the management of the interruption. Lastly, what effect
the interruption may have could also be an important factor in
predicting receptivity.

2.3.3 Cognitive aspects of interruptions

2.3 Considerate Computing 37

Numerous studies have investigated the disruptive effects of interrup-
tions. It is well known that interruptions affect behavior. These effects
are related to limitations in a person’s cognitive abilities to work dur-
ing interruptions. In the following subsections, we discuss the cognitive
aspects of visual attention and task switching as the effects of interrup-
tions.

Visual attention
Attention can be regarded as a cognitive selection process, depending
heavily on the user goals and tasks (Wood et al., 2006). Attention
can either be voluntarily directed towards or involuntary grabbed by
objects, sounds or movement in the environment. The challenge is how
to make sure the user is focusing the limited attentional resources on the
right task. In order to make accurate estimates on user attention, we
need a system that can sense, model and adapt to the attentive states
of the user.

Research in this direction has been addressed under the term of
Attentive Interfaces; interfaces that can prioritize information presen-
tation based on reasoning about information processing resources (i.e.
attention) (Vertegaal, 2003; Jameson, 2002). These interfaces model
momentary attentive states of the user based on sensing techniques.
Adaptations in system behavior are guided by sensing gaze direction,
body posture, hand posture and speech (Vertegaal, 2002; Zhai, 2003).

Task switching
Usually, interruptions can cause task switching. Interruptions can be
caused by the environment (distraction), by the system (notification)
or by the user (changing attentional focus). After finishing the other
or secondary task, the user returns to the original task. According
to Oulasvirta and Saariluoma (Oulasvirta and Saariluoma, 2004), in
the case of task-switching, information must be saved into long-term
working memory before the switch occurs, if the interrupted task is to

38 CHAPTER 2. BACKGROUND

be resumed at a later time.

Task switching influences attention in two ways. First, the inter-
ruption of a task causes attention to be distracted away from that task.
Depending on user goals, this is either an unwanted distraction from
the primary task or an attraction to valued and necessary information
(McCrickard and Chewar, 2003). Unwanted interruption has negative
consequences for task performance, causing disorientation on part of the
user (Nagata, 2003). Second, research indicates that the process itself
of switching between tasks places high demand on attention, thereby
increasing cognitive workload. In addition, a switch between tasks is
more disruptive than sequential finishing of tasks and thereby affects
performance (Neerincx et al., 2000).

2.3.4 Analysis and discussion
Existing researches have been presented with the same goal: make the
software behave like a considerate human being. Commonly, interactive
products irritate us because they are not considerate, not because they
lack features.

However, the existing considerate systems are primarily focused on
issues of perception and interpretation of attention, not too much con-
cern is spent on the nature of the resultant actions. In addition, exis-
ting approaches provide conceptual frameworks to obtain design guides,
but they lack of tools for the development of this kind of systems and
methodological guidance.

The conclusion is that these initiatives are almost exclusively focused
on evaluating the adequate timing for interruptions, while interaction
adaptation that addressed in this work has received few attention.

2.4 Conclusions
The purpose of this chapter was to provide a brief introduction to the
existing background on top of which this work is built on. The analy-

2.4 Conclusions 39

sis has considered three application domains: Human-Computer Inter-
action, Context-Aware Computing and Considerate Computing. This
work is aimed at providing development support for systems that fit
in these three areas. Thus, much of the technologies and techniques
introduced are applied in the following chapters. A detailed analysis of
the proposals that are more close to the goal of this work is provided in
Chapter 3.

40 CHAPTER 2. BACKGROUND

3
State of the Art
Understanding the need

All intelligent thoughts have already been though; what is necessary is
only try to think them again.

—JohannWolfgang von Goethe (1749-1832).

This chapter introduces the most important approaches that sup-
port the design, development and runtime support of service’s inter-
action obtrusiveness adaptation. Once we have analyzed in Chapter
2 the general application domains in which this work fits, we analyze
the specific proposals in these domains that are closely related to our
approach. This analysis allows us to determine the way in which each
proposal addresses the aspects that are central in our approach.

The ubiquitous interaction obtrusiveness adaptation can be consid-
ered in the intersection of Human-Computer Interaction, Context-Aware
Computing and Considerate Computing domains. Figure 3.1 illustrates
these different research areas that are relevant to the present work and
their subdomains situated in the intersection of the main areas. In par-
ticular, the approaches considered deal with systems that fulfill most of

42 CHAPTER 3. STATEOF THE ART

H
u

m
an

-C
om

pute
r

In
te

ra
ct

io

n

Context-A
w

are
Com

putin
g

Considerate Computing

Ubiquitous
interaction

obtrusiveness
adaptation

Context-Aware
User Interfaces

Attentive
User

Interfaces
Non-Intrusive

Computing

Figure 3.1: Application domains involved in this work and their intersecting
subdomains.

the features that characterize our approach. We identified three research
areas where interaction obtrusiveness adaptation fits in some aspects:
Context-Aware User Interfaces, Attentive User Interfaces, and Non-
Intrusive Computing. Relevant approaches in these areas have been
analyzed and discussed in this chapter.

Next, we first introduce a set of important dimensions to character-
ize and classify the different approaches. Then, Section 3.2, Section 3.3,
and Section 3.4 describe the approaches related with our work that are
placed on each one of the introduced subdomains. For each one of the
subdomains, we provide an analysis and discussion of it at the end of
each section. After this analysis, in Section 3.5, we present a discussion
about the existing literature and explain the most important benefits
of our approach. Finally, Section 3.6 concludes the chapter.

3.1 Analysis criteria

3.1 Analysis criteria 43

In order to classify the different approaches and determine to what
extent they can support the interaction obtrusiveness adaptation of ser-
vices, we have identified the basic issues to consider, according to which
we will study the current approaches. In this section, we define the cri-
terion and potential dimensions to be fulfilled when developing this kind
of systems. These dimensions have been defined from previous criteria
in the literature. However, there is no specific criterion for interaction
obtrusiveness adaptation. Therefore, we identified the relevant dimen-
sions in previous criteria and adjusted a set of dimensions according to
the focus of this research.

According to the existing research in the design and development
of adaptive user interfaces, there are a number of related work that
present criteria to be applied to various user interface adaptation as-
pects (Höök, 2000; Dey and Häkkilä, 2008; Paramythis et al., 2010;
Paternò et al., 2012). For example, Höök defined a design criterion for
intelligent user interfaces (Höök, 2000), Dey and Häkkilä defined several
design guidelines to build context-aware applications (Dey and Häkkilä,
2008), Paramythis et al. defined a layered evaluation of adaptive sys-
tems and presented an evaluation criterion in terms of adaptation phases
(Paramythis et al., 2010), and Paterno et al. (Paternò et al., 2012) de-
fined a UI adaptation-oriented criterion. In particular, we present the
criteria in a three groups following the division of (Paternò et al., 2012).
It is worth pointing out that different grouping criteria can be also used.
However, the selected criteria is specifically focused on user interface
adaptation, which is close related to the requirements to achieve the in-
teraction obtrusiveness adaptation of services. Due to our work is based
on the foundations of model-driven engineering, we have also included
dimensions of this paradigm. The UI adaptation-oriented criteria with
their dimensions are the following:

Technical criteria. Criteria that can be objectively measured by just
considering the support offered by the system. According to this
criteria, the following dimensions have been identified:

• Flexibility in adaptation. Adaptation approaches may
be adaptive, adaptable, or based on a mixed-initiative. This

44 CHAPTER 3. STATEOF THE ART

dimension determines the degree of adaptation of the system
from adaptability (allow users to customize their system from
a predefined set of parameters) to adaptivity (automatically
perform adaptations without a deliberate user request), while
mixed-initiative approaches are a mix of both.

• Multimodality support. This dimension refers to the pos-
sibility to support a ”graceful combination of several modal-
ities”.

• Integration capabilities. It describes if the system sup-
ports a consistent view of users, services, and devices to pro-
vide a seamless integration of all the components and allows
all entities to interact with each other in an easy way.

• Use of models at runtime. This dimension simply indi-
cates whether the approach uses models at runtime or not.

• Customizability of the adaptive behavior. The aim of
this dimension is to understand the extent of user control
over the adaptive process, namely the user’s ability to con-
trol both the circumstances that lead to triggering adapta-
tion, and how adaptation is actually performed and applied.
It ranges from only controlled by the system (the system de-
cides what is going to be adapted) to explicitly controlled
by the end-users (the end-users keep the control about what
have to be changed and in which conditions), or by both.

• Support for open/extensible adaptation at runtime.
This dimension evaluates whether it is possible to introduce
new adaptation rules at runtime, or the system is not open to
support dynamically the addition of new adaptive behavior.

• Required training. This dimension describes whether or
not the system requires a period of training before it can be
run. It has been identified to avoid the cold-start problem
(Serral, 2011).

User-oriented criteria. Criteria that refer to the involvement of the
user on a number of aspects connected with adaptation. The
relevant dimensions identified for this criteria are the following:

3.1 Analysis criteria 45

• User preferences support. This dimension indicates whe-
ther or not the approach takes into account the user prefer-
ences in the specification of the system behavior, and there-
fore, in the adaptation process.

• Obtrusiveness of the adaptation. With this dimension
we want to understand to what extent the adaptation ex-
ploits an appropriate level of obtrusiveness depending on the
current context. Thus, this dimension indicates whether or
not the approach takes into account obtrusiveness aspects to
define the interaction adaptation.

• User participation in the specification. This dimension
refers to the degree of user participation in the system specifi-
cation. It indicates if the approach has an active involvement
of users in the system specification.

• Personalization for individual needs. This dimension
indicates whether the system supports a dynamic personal-
ization based on user preferences after the system is deployed.

Modeling-related criteria. Criteria related to the adaptation which
is specifically related to the activity of modeling. The extracted
dimensions for this criteria are the following:

• Tool support. With this dimension we want to check if
tools are provided for specifying the system at design time
(e.g., adaptation rules, interaction components, etc.), for per-
forming adaptation at runtime, and for customizing adapta-
tion rules at runtime.

• Well-defined methodology support. This dimension in-
dicates if there is a clear definition of the activities involved
to specify the system and their coordination in order to in-
tegrate all the parts into a unified design.

• Adaptive behavior modeling. This dimension aims to
check the technique that the approach uses for specifying
the adaptive behavior.

46 CHAPTER 3. STATEOF THE ART

• Adaptation rules definition. This dimension simply indi-
cates the way in which the approach specifies the adaptation
rules.

The presented dimensions are summed up for each related work
using a table. In order to better study the differences between each
work and the goals of this thesis, we have grouped the identified key
dimensions according to the confronted research questions into three
blocks. Thus, for each one of the different approaches, we present the
following information:

Dimensions related with the user-centered design method :

• User preferences support

• Adaptive behavior modeling

• Obtrusiveness of the adaptation

• Tool support

• Well-defined methodology support

• User participation in the specification

Dimensions related with the runtime support for interaction
obtrusiveness adaptation:

• Flexibility in adaptation

• Multimodality support

• Integration capabilities

• Adaptation rules definition

• Use of models at runtime

• Required training

Dimensions related with the runtime obtrusiveness learning :

• Customizability of the adaptive behavior

• Personalization for individual needs

3.2 Context-Aware User Interfaces 47

• Support for open/extensible adaptation at runtime

As well as the above explained dimensions, this table also includes
the application domain property to characterize the domains in which
the approaches are applied and check whether they are independent of
the domain. Next, we describe the most important approaches related
with our work paying special attention on the key dimensions identified
above.

3.2 Context-Aware User Interfaces
Context-Aware User Interfaces (Schmidt, 2013) use context to make
interactions more relevant and useful for creating a user experience that
is tailored specifically to each context. They may include both output
and input as well as various modalities.

Different modeling languages have been proposed in this area to for-
malize distinct aspects of the user interface and the interaction. Calvary
et al. in (Calvary et al., 2003) give an overview of different modeling
approaches to deal with user interfaces supporting multiple targets such
as PDA’s, work stations, etc. Other approaches such as UsiXML (Lim-
bourg et al., 2004) or TERESA (Mori et al., 2004) define domain-specific
languages that are designed from the beginning to deal with the descrip-
tion of user interfaces in a device-independent manner. An extension of
UML, named CUP 2.0 (den Bergh and Coninx, 2006) was introduced
for high-level modeling of context-sensitive interactive applications. All
these approaches use the models to generate multiple variants of static,
final user interface code, which is then executed. Conversely, our re-
search focus is the dynamic interaction adaptation at runtime. Relevant
proposals in this direction are introduced below.

Cameleon-RT. Cameleon-RT (Balme et al., 2004) is a conceptual ar-
chitecture reference model constructed to define the problem space
of user interfaces released in ubiquitous computing environments.
Their reference model covers user interface distribution, migra-

48 CHAPTER 3. STATEOF THE ART

Figure 3.2: The Cameleon RT architecture reference model (Balme et al.,
2004).

tion, and plasticity (adaptable to context and still usable).

As shown in Figure 3.2, the architecture defines three layers of
abstraction. The platform layer includes the physical hardware
and the legacy operating systems. The DMP-middleware layer
provides a context infrastructure for context management, a plat-
form manager and the interaction toolkit to support resource dis-
covery, and an open-adaptation manager that supports the UI
adaptation. The interactive systems (including a Meta-User In-
terface) are contained in the top layer. This Meta-User Interface
provides metadata about the user interfaces of all of the DMP-
middleware components and allows users to control the state of
them.

Framework for Adaptive Multimodal Environments (FAME).
FAME (Duarte and Carriço, 2006) is a model-based Framework
for Adaptive Multimodal Environments. The framework’s objec-
tive is to guide the development of adaptive multimodal applica-
tions. The architecture proposed by FAME (see Fig. 3.3) uses a set
of models to describe relevant attributes and behaviors regarding
user, platform and environment. The information stored in these

3.2 Context-Aware User Interfaces 49

Figure 3.3: Architecture of FAME (Duarte and Carriço, 2006).

models, combined with user inputs and application state changes,
is used to adapt the input and output capabilities of the interface.
It introduces a behavioral matrix to assist in the adaptation rules
development. The matrix reflects the behavioral dimensions in
which a user can interact with an adaptable component. A set of
guidelines systematizes the development process.

Two levels are identified in the architecture of FAME. The inner
level (Adaptation Module) is responsible for updating the mod-
els and generating the system actions. The outer level (Adaptive
Multimodal System) is responsible for the multimodal fusion of
user inputs, the transmission of the application specific generated
events to the adaptation core, the execution of the multimodal
fission of the system actions, and the determination of the presen-
tation’s layout.

The adaptation is based on three different classes of inputs: user
actions (from the input devices), application generated events and
device changes, and environmental changes (acquired by sensors).
The adaptation rules are defined in a behavioral matrix for each

50 CHAPTER 3. STATEOF THE ART

Figure 3.4: DynaMo-AID Development Process (Clerckx et al., 2008).

adaptable component. There are three values in each cell of the
behavioral matrix: the first element defines the current rules in
use; the second element stores the number of times the rule has
been applied; and the third element defines a threshold for rule
activation.

DynaMo-AID. DynaMo-AID (Dynamic Model-Based User Interface
Development) (Clerckx et al., 2008) is a design process and a
runtime architecture to develop context-aware user interfaces that
support dynamic context changes. DynaMo-AID is part of the
Dygimes (Coninx et al., 2003) User Interface Creation Framework.

Figure 3.4 shows an overview of the DynaMo-AID development
process. The process begins with the specification of models, then,
a supporting tool generates a prototype taking into account these
models, and after evaluating the prototype, the models can be

3.2 Context-Aware User Interfaces 51

updated until the designer is satisfied with the user interface. Fi-
nally, the user interface can be deployed on the target platform.

The design process is composed by: a context-sensitive task model ;
dialog models that are extracted from the context-sensitive task
model; a context model denoting what kind of context information
can influence a context change; a context-sensitive dialog model
that connects the context model and the dialog models; a pre-
sentation model that describes how the interaction should be pre-
sented to the user; and the context-sensitive interface model that
is the union of the previously model components. Also, the task
model is annotated with Modality Interaction Constraints to sup-
port the appropriate modalities for each task at runtime.

XUL-based User Interface Framework. Butter et al. (Butter et al.,
2007) developed a XUL-based user interface framework to adapt
mobile user interfaces to the different screen resolutions and input
capabilities of the heterogeneous mobile devices. This framework
is an extension to XUL that allows the easy creation of applica-
tions which adapt themselves to different devices and user context.
XUL is implemented as a XML dialect; it allows graphical user
interfaces to be written in a similar manner to web pages. It
relies on multiple existing Web standards and Web technologies,
including CSS, JavaScript, and DOM.

This framework is based on a XUL renderer for different Java
configurations/platforms and control the user interface via plain
Java classes. To match the current context with the appropriate
appearance (specified using Cascading Style Sheets), XUL is ex-
tended to allow loading a CSS depending on a pre-specified user
context. Then, the selection of the relevant stylesheets is done
dynamically so the layout and appearance of the UI changes au-
tomatically if the user context changes.

The Multi-Access Service Platform (MASP). MASP (Blumendorf
et al., 2010b) is a model-based runtime system for the creation of
Ubiquitous User Interfaces. It is based on a set of models to
adapt the user interfaces dynamically to the current context of

52 CHAPTER 3. STATEOF THE ART

Figure 3.5: The MASP Runtime Architecture (Blumendorf et al., 2010b).

the user. MASP separates four levels of abstraction: Task and
Domain Model, Abstract Interaction Model, Concrete Interaction
Model, and the final user interface derived from the modeled in-
formation.

Figure 3.5 shows an overview of the MASP architecture compre-
hending the set of models, their relationships as well as the compo-
nents to provide advanced functionality. While the Service Model
allows interaction with backend systems, the Task and Domain
Model describe the basic concepts of the underlying user inter-
face. Based on these concepts, the interaction model (Abstract,
Concrete Input, and Concrete Presentation Model) define the ac-
tual communication with the user. A Context Model provides
interaction-relevant context information, while a Fusion and Dis-
tribution Models allow the definition of fusion and distribution
rules to support multimodal and distributed interfaces. Finally, a
Layouting Model allows the definition of layout constraints.

3.2 Context-Aware User Interfaces 53

Figure 3.6: Generation process of the ViMos framework (Hervás and Bravo,
2011).

MASP is based on a client-server architecture. The resources are
connected via channels and each user interface delivered to a re-
source is adapted according to the capabilities of the resource.
Multimodality is supported by a distribution component and a
fusion component.

Visualization Mosaics (ViMos). The ViMos framework (Hervás and
Bravo, 2011) is an infrastructure to generate context-powered in-
formation visualization services dynamically. ViMoS is an infor-
mation visualization service that applies context-awareness to pro-
vide adapted information to the user through embedded devices
in the environment. The displayed views are called mosaics, that
are developed as user interface widgets.

Figure 3.6 shows the mosaic generation process to generate user
interfaces at runtime. This process uses the COIVA architecture
(Hervas, 2009) which provides the information needed to gener-
ate the user interface dynamically. COIVA includes a reasoning
engine that hastens the start-up process, enabling the automatic
generation of ontological individuals. The process that follows
the ViMos framework is the following: first, it acquires the con-

54 CHAPTER 3. STATEOF THE ART

text situation by means of a sub-model of valid individuals; then,
the significant items of content to be offered to the user are se-
lected for a specific visualization service; after that, the design
patterns for that visualization service are also selected; next, the
ViMos broker selects the container widgets (information pieces)
that are appropriate for visualizing the candidate data and the
mosaic is designed; finally, ViMos recognizes general events that
cause changes in an information piece or in the general view.

3.2.1 Analysis and discussion
The different approaches in the context-aware user interfaces field are
mainly focused on adapting the user interfaces to the technical limita-
tions of the device (e.g., screen resolution). These proposals normally
define the adaptation space in terms of the environment (e.g., loca-
tion), the user (e.g., user disabilities), and the platform (e.g., screen
size). Conversely, our approach introduces the notion of obtrusiveness
to manage the attentional resources of the user by defining the adapta-
tion space in terms of obtrusiveness. We address a different issue that
is more related to human limitations (e.g., user attention).

Table 3.1 shows a comparison of the presented approaches. The
table shows to which extent the different approaches cope with the
identified key dimensions to characterize the interaction obtrusiveness
adaptation of services. All the introduced approaches have the capacity
of adapting the user interfaces dynamically at runtime (see flexibility in
adaptation row).

Regarding the user-centered design method, some of them (DynaMo
and XUL) do not take into account the user preferences in the specifi-
cation of the adaptive behavior. Each one of the approaches specifies
the adaptive behavior of the system (i.e., variability) in a different way
(e.g., by using conceptual graphs, interaction models, ontologies, etc.).
However, all of the solutions manage adaptations at the concrete user
interface level, turning them into complex descriptions since they are
expressed as manipulations to the user interface models. Our approach
introduces the feature model to define the variability on the interaction

3.2 Context-Aware User Interfaces 55

Property CAMELEON FAME DynaMo XUL MASP ViMos

User pref. yes yes no no yes yes
support

Adap. behav. conceptual interaction interface CSS interactionvisualization
modeling graphs model model models ontology

Obtrusiv. of no no no no no attention
adaptation level

Tool no no yes no yes yes
support

Well-defined no yes yes no no no
methodology

User no no no no no no
participation

Flexibility in adaptive adaptive adaptive adaptive adaptive adaptive
adaptation

Multimod. no high no no high no
support support support support support

Integration systems users & services services users,
capabilities & devices devices & devices devices & devices services

& devices

Adaptation graph of behavioral annotated context adaptation behavior
rules situations matrix constraints tags model rules

Runtime no no no no yes no
models

Training no no no no no no

Customizab. no system no no no no

Personaliz. no yes no no no no
indiv. needs

Open no no for no no no
adaptation devices

Table 3.1: Related work from the context-aware user interfaces perspective

specification. In this way, we exploit the commonalities and differences
of interaction features, hiding much of the complexity in the definition
of the adaptation space.

Although some of the techniques have tool support to help designers
in the specification of the system, only two of them (FAME and Dy-
naMo) provide a well-defined methodology that guide designers in the

56 CHAPTER 3. STATEOF THE ART

system definition at each step of the process. Also, none of them are
based on a user-centered design in which the user participates in the
design process by evaluating the system before development and giving
feedback to improve it. Conversely, our approach provides a well-defined
methodology supported by the appropriate tools letting users partici-
pate in the system design by means of a simulation phase. In this phase,
the users evaluate the design and give feedback to designers in order to
improve the initial design.

With regard to the runtime interaction obtrusiveness adaptation,
only two of the presented approaches (FAME and MASP) support a
multimodal interaction adaptation. Also, only ViMos supports a con-
sistent view of users, services and devices by means of an ontological
description of them (see Integration capabilities row). Our approach
provides an integration of users, services and devices by means of the
autonomic infrastructure that allows all entities to interact with each
other in an easy way. In order to specify the adaptation rules that trig-
ger the interaction adaptation, the proposals use various mechanisms
such as a graph of situations, a behavioral matrix, annotated constraints
in the interface model, context tags in the CSS, an adaptation model
composed by context situations and adaptations, and behavior rules.
Conversely, our approach defines the adaptation rules by means of tran-
sitions in the unobtrusive adaptation space. In this way, designers can
define how the interaction style should be adapted according to user’s
attentional resources by making use of declarative specifications.

In order to adapt the user interfaces at runtime, most of the ap-
proaches mainly aim at the utilization of the static design models to
support the generation of user interfaces at runtime. The connection
between the models and the system is implicitly hidden within the im-
plementation and they do not interpret the models explicitly. Contrary
to the others, MASP interprets the models at runtime to address the
dynamics of user interface adaptation. Our approach also leverages the
design models at runtime to support the dynamic interaction obtrusive-
ness adaptation. However, our approach also modifies these models at
runtime in order to improve the initial design to achieve a better user ex-
perience. In this way, the interaction adaptation can be re-adjusted over

3.3 Attentive User Interfaces 57

time while the system is being executed and it is re-adapted while run-
ning. As the different approaches define the adaptation rules a-priori,
they do not need training to adapt the system (see training row).

Since the presented approaches are mainly concerned with adapta-
tion aspects, they lack of learning capacity to improve the initial adap-
tation design over time (see learning rows). Only FAME supports the
learning of user preferences by storing the past user interactions. How-
ever the learning technique is not specified.

3.3 Attentive User Interfaces
Computing interfaces that are sensitive to the user’s attention are called
Attentive User Interfaces (AUIs) (Vertegaal, 2003). Attentive User In-
terfaces can also be used to display information in a way that increase
the effectiveness of the interaction by generating only the relevant infor-
mation (Huberman and Wu, 2007). Roel Vertegaal of Queen’s Univer-
sity has been pioneering the design of user interfaces that are attentive
to their users. These attentive user interfaces aims to optimize the al-
location of the attentive resources of users and systems. Cues of user
attention are applied to make devices more sociable and efficient and to
increase the bandwidth of user communication with and via computers.
Relevant research in this area is detailed below.

Active Messenger. The Active Messenger (AM) project (Schmandt
et al., 2000) is a server-based agent that manages the user’s in-
coming e-mail messages, prioritizes them, and forwards them to
the available communication channels (e.g., pagers, fax machines,
phones, etc.) in order to minimize interruption in the deliver. The
forwarding rules are specified in a user preference file and can be
modified by the agent to adjust to the user’s current situation.
First, the agent sends the message to the first channel and checks
the status of the message and the channel. If the user has not
read the message after a certain time, the agent sends it to the
next appropriate channel that is available, and so forth.

58 CHAPTER 3. STATEOF THE ART

Figure 3.7: Channel seleccion in the Active Messenger process (Schmandt
et al., 2000).

The agent process is based on a single Perl script. Each channel
is added as a new module with a configuration file that the user
edits during setup to express his/her preferences. This file could
be updated via a Web-based interface. In this file, the user can
also define channel sequence: rules that map each class of message
to a set of devices or delivery mechanisms. Figure 3.7 shows an
example of the channel selection process.

Models of attention in computing and communication. Horvitz
et al. (Horvitz et al., 2003) proposed the use of Bayesian mod-
els to sense and reason about the user’s attention in order to
identify ideal decisions in messaging, interaction, and computa-
tion. They constructed by hand and learned from data Bayesian
models, working to reveal current or future attention under un-
certainty from an ongoing stream of clues. Bayesian attentional
models take as inputs sensors that provide streams of evidence

3.3 Attentive User Interfaces 59

Figure 3.8: Overview of the Notification Platform (Horvitz et al., 2003).

about attention and provide a means for computing probability
distributions over a user’s attention and intentions.

Also, they presented the Notification Platform (NP) in order that
computers and communication systems have awareness of the value
and costs of relaying messages, alerts, and calls to users. The No-
tification Platform system modulates the flow of messages from
multiple sources to devices by performing ongoing decision anal-
yses (see Fig. 3.8). These analyses balance the expected value of
information with the attention-sensitive costs of disruption. The
system employs a probabilistic model of attention and executes
ongoing decision analyses about ideal alerting, fidelity, and rout-
ing.

A Framework for designing attentive notification systems.
McCrickard and Chewar (McCrickard and Chewar, 2003) pre-
sented a theoretical framework for designing attentive notifica-
tion systems (ANS) by means of modeling user notification goals.
They stated that the success of a notification system hinges on
accurately supporting attention allocation between tasks, while
simultaneously enabling utility through access to additional infor-
mation. They recognize four general sources of utility that can

60 CHAPTER 3. STATEOF THE ART

Figure 3.9: Overview of the framework reflecting the user goals (McCrickard
and Chewar, 2003).

result from associated user goals: comprehension, reaction, inter-
ruption, and satisfaction. The first three general goals can be
viewed as critical parameters that can be benchmarked to reveal
design process.

Figure 3.9 shows the framework that depicts the three critical
parameters. The axis scales correspond to the level of importance
for user places on benefits resulting from each parameter. This
framework provides the foundation for a conceptual model of user
notification goals that can improve design decisions for notification
systems.

A Framework for Attentive User Interfaces. Vertegaal et al.
(Vertegaal et al., 2006) presented a framework for augmenting
user attention through attentive user interfaces. They extended
the GUI elements to interactions with ubiquitous remote devices,
drawing parallels with the role of attention in human turn taking.
This is shown in Fig 3.10. Windows and icons are supplanted
by graceful increases and decreases of information resolution be-
tween devices in the foreground and background of user attention;
devices sense whether they are in the focus of user attention by ob-
serving presence and eye contact; menus and alerts are replaced by

3.3 Attentive User Interfaces 61

Figure 3.10: Equivalents of GUI elements in Attentive UI (Vertegaal et al.,
2006).

a negotiated turn taking process between users and devices. Such
characteristics and behaviors define an attentive user interface.

The framework is based on five key properties of AUIs: (1) Sensing
attention by tracking user’s physical proximity, body orientation
and eye fixations; (2) Reasoning about attention by statistically
modeling simple interactive behavior of users; (3) Communication
of attention to other people and devices; (4) Gradual negotiation
of turns to determine the availability of the user for interruption;
and (5) Augmentation of focus with the goal of augmenting the
attention of their users.

Personal attentive user interfaces. Streefkerk et al. (Streefkerk
et al., 2006) proposed the design of personal attentive user inter-
faces (PAUI) for which the content and style of information pre-
sentation were based on models of relevant cognitive, task, context
and user aspects. They presented a user-centered design (UCD)
method for the iterative development and validation of the pro-
posed PAUI. The relevant cognitive aspects considered were at-
tention, working memory, task switching, and situation awareness.
Regarding to task aspects, they analyzed information access, pri-
oritization, and notification. Context aspects taken into account
were location, time and environment. Finally, the relevant user
aspects were preferences, duties, expertise and individual differ-
ences.

62 CHAPTER 3. STATEOF THE ART

Figure 3.11: The user-centered design process (Streefkerk et al., 2006).

The approach was based on the usability engineering approach
which incorporates scenario-based design (Carroll, 2000). The
process (shown in Fig 3.11) starts with the definition of a concept,
which is a general description of the proposed system. Then, a
scenario is drafted from the relevant usage context. From this
scenario, collaboration styles are defined, which indicate how the
system interacts with the user. Next, user requirements are de-
rived. These requirements will be based on the relevant cognitive,
task, and context aspects. Finally, collaboration styles and user
requirements form the basis of the features. Assessment of the
collaboration styles, user requirements and features is done by
validating them to objective quality criteria, such as established
HCI metrics.

AuraOrb. AuraOrb (Altosaar et al., 2006) is an ambient notification
appliance that deploys progressive turn taking techniques to min-
imize notification disruption (see Fig 3.12). It uses information
about user interest to determine its notification strategy. To de-
tect user interest, AuraOrb uses eye contact sensing in an initially

3.3 Attentive User Interfaces 63

Figure 3.12: AuraOrb (Altosaar et al., 2006).

ambient light display. When eye contact is detected, AuraOrb dis-
plays the subject heading of the notification, i.e., in the center of
the user’s attention. Touching the orb causes the associated mes-
sage to be displayed on the user’s last attended computer screen.
When user interest is lost, AuraOrb automatically reverts back to
its idle state.

The design principles that guided the development of AuraOrb
were: 1) avoid foreground display, 2) sense user interest across
devices, and 3) negotiate user attention.

3.3.1 Analysis and discussion
The different approaches in the attentive user interfaces area are mainly
focused on detecting or inferring user attention for enhancing comput-
ing and communication systems. One of the main problems that may
arise is that the sensing technologies used for sensing attention may
be invasive. Also, as mentioned in (Vertegaal et al., 2006), the most
pressing issue related to these sensing technologies of attentive user in-
terfaces is privacy. It is difficult to safeguard privacy of the user when
devices routinely sense, store and relay information about their identity,
location, activities, and communications with other people.

Table 3.2 shows a comparison of the presented approaches. All these

64 CHAPTER 3. STATEOF THE ART

Property AM NP ANS AUI PAUI AuraOrb

User pref. yes yes yes yes yes yes
support

Adap. behav. no bayesian no no scenarios no
modeling inference

model

Obtrusiv. of yes yes yes yes yes yes
adaptation

Tool no no no no no no
support

Well-defined no no no no yes no
methodology

User yes no no no yes no
participation

Flexibility in adaptive adaptive adaptive - adaptive adaptive
adaptation

Multimod. no no no no no no
support support support support support support support

Integration users & users, users & users & users & users
capabilities devices services presentation devices features

& devices modes

Adaptation configuration decision attention- prioritycollaboration behavior
rules files model utility models styles rules

Runtime no no no no no no
models

Training no no no no no no

Customizab. no no no no no no

Personaliz. manually manually no no no no
indiv. needs

Open no no no no no no
adaptation

Domain e-mail incoming ambient - police workstation
messages messages & alarm office

Table 3.2: Related work from the attentive user interfaces perspective

approaches define systems and frameworks to manage user’s attention
(see obtrusiveness of adaptation row) and adapt interactions to the cur-
rent attentive state of the user according to user preferences (see user

3.3 Attentive User Interfaces 65

pref. support row). Variability modeling is partially supported in two
approaches (NP and PAUI) by means of creating probabilistic atten-
tional models and scenarios based on context (see adap. behav. mod-
eling row). However, none of the approaches provide neither modeling
languages nor tools for the development of this kind of attentive user
interfaces. They lack of methodological guidance (only PAUI provides
a design process) and do not provide tool support for the easy system
specification. Also, only PAUI follows a user-centered design process
where the user participates in the design specification. Conversely, our
approach provides a well-defined methodology and tools for the design
and development of interaction obtrusiveness adaptation of services in
a declarative manner by following a user-centered design process.

While these approaches explore how to mitigate the problem of in-
terruptions by adapting the interaction to the different communication
channels (see flexibility in adaptation row), they work over a limited
set of message sources and delivery channels. Also, they are limited to
one communication channel at a time (multimodality is not supported).
Conversely, our work aims to give the capability of interaction adapta-
tion to the different pervasive and mobile services in a centralized way to
preserve user attention, and provides a multimodal interaction delivery
by means of different interaction modalities.

A common factor in all of these approaches is that they support a
consistent view of the status of users (see integration capabilities row) to
provide a personal interaction. Some of them support different devices
or presentation modes, and can integrate different services. Moreover,
in order to define the adaptation rules, the different approaches use dif-
ferent kind of mechanisms (from configuration files to behavior rules, see
adaptation rules row), and none of them require a training period be-
fore deployment since the behavior is defined at design time. However,
the adaptation provided by these proposals is not based on models at
runtime (see runtime models row). Generally, they have a system com-
ponent that analyses the user’s context and took the decisions based on
the adaptation rules. Our approach leverages the design models at run-
time as if they were the policies that drive the interaction obtrusiveness
adaptations. In this way, the design effort made at design time is not

66 CHAPTER 3. STATEOF THE ART

only useful for producing the system but also provides a richer semantic
base for self-adaptation during runtime.

Regarding the learning over time, some of the proposals (AM and
NP) allow users to update his/her own preferences manually by means
of a user interface (see personaliz. indiv. needs row). However, this is
not the research focus of these approaches. Finally, it is worth notic-
ing that most of the approaches are tailored for specific domains, such
as workstations or e-mail messages and cannot interoperate with each
other.

3.4 Non-Intrusive Ubiquitous Computing
In a strongly connected ubiquitous computing environment, users face
a large number of interactions. Some of them are desired while others
are not, usually depending on how busy the users are and what those
interactions are about. These are contributing to feelings of information
overload and unexpected interruptions in undesired situations, such as
delivering a private picture to the whiteboard during a meeting. Thus,
the focus of the Non-Intrusive Computing is helping users to control
these interactions and devices in order to avoid their frustration. The
approaches studied from this area are detailed below.

Toward More Sensitive Mobile Phones. Hinckley and Horvitz
(Hinckley and Horvitz, 2001) described sensing and interaction
techniques intended to help designers make mobile phones more
polite and less distracting. They modeled interruptibility by con-
sidering the user’s likelihood of response and the previous and
current activity.

Three sensors necessary to detect these factors were built in a
mobile computing device: a two-axis linear accelerometer for tilt
sensing, a capacitive touch sensor to detect if the user was hold-
ing the device, and an infrared proximity sensor that detected if
the head was in close proximity to the device. The experiments
performed include choosing an appropriate notification modality

3.4 Non-Intrusive Ubiquitous Computing 67

Figure 3.13: Arquitecture of SenSay (Siewiorek et al., 2003).

for an incoming call and reducing attentional demands to answer
the calls.

SenSay: A Context-Aware Mobile Phone. SenSay (sensing &
say ing) (Siewiorek et al., 2003) is a context-aware mobile phone
that modifies its behavior based on the user’s state and surround-
ings. It adapts the phone outputs to dynamically changing envi-
ronmental and physiological states and also provides the remote
caller information of the current context of the phone user.

To provide context information SenSay uses light, motion, and mi-
crophone sensors. The sensors are placed on various parts of the
human body with a central hub, called the sensor box, mounted
on the waist. SenSay introduces the following four states: unin-
terruptible, idle, active, and the default state, normal. A number
of phone actions are associated with each state. For example, in
the uninterruptible state, the ringer is turned off. SenSay can ei-
ther eliminate unwanted interruptions or actively notify the user
of an incoming call by adjusting ringer and vibrate settings. It
also has the ability to relay the user’s contextual information to
the caller when the user is unavailable. The components of SenSay
are shown in Fig. 3.13.

Minimising Intrusiveness in Pervasive Computing Environ-

68 CHAPTER 3. STATEOF THE ART

ments. Ramchurn et al. (Ramchurn et al., 2004) proposed an
agent-based negotiation system for managing intrusiveness in a
meeting environment. It mainly concerns how to display a mes-
sage when there is a meeting. This system defers the handling of
messages to software agents that represent their owners.

The system operation is the following: assuming that participants
have their own devices, such as a personal laptop; they also share
some public devices, such as a whiteboard in the meeting room.
Displaying a message on a public device is more intrusive than
displaying it on a private device, as all participants can see the
whiteboard but not the screen of a laptop. Each user has an
agent maintaining the user’s interests and making decisions for
him. When a message arrives for a user, the agent checks with
other agents to see if they are interested in this message. If so, the
message will be displayed on a public device; otherwise, it goes to
a private device.

Bayesphone. Bayesphone (Horvitz et al., 2005) is a call handling sys-
tem that predicts whether users will attend meetings on their
calendar and the cost of being interrupted by incoming calls. It
is composed by two applications: 1) a desktop application that
performs inference, cost-benefit analyses, and value of informa-
tion precomputation of ideal real-time actions and inquiries, and
2) a mobile application that downloads the precomputed policy
file from the desktop via a device synchronization program.

The desktop application analyzes each meeting, making inferences
with a Bayesian network models for both attendance and inter-
ruptability (see an example in Fig. 3.14). The client application
considers these inferences along with the costs of deferral of calls
from callers in different groups, the expected cost of interruption
with taking of calls for each forthcoming meeting, and the history
of incoming calls in the user’s call log. Finally, it precomputes the
ideal call-handling actions and interactions for each meeting.

Reducing the Perceived Burden of Interruptions. In this study (Ho
and Intille, 2005), a context-aware mobile computing device was

3.4 Non-Intrusive Ubiquitous Computing 69

Figure 3.14: Bayesian network learned (Horvitz et al., 2005).

Figure 3.15: The 3-axis wireless accelerometers (Ho and Intille, 2005).

developed that automatically detects postural and ambulatory ac-
tivity transitions in real-time using wireless accelerometers (see
Fig. 3.15). This device was used to experimentally measure the
receptivity of interruptions delivered at activity transitions rela-
tive to those delivered at random times.

The hypothesis was the possibility that prompts from mobile de-
vices may be perceived as less disruptive if they are presented
at times when the user is transitioning between different physical

70 CHAPTER 3. STATEOF THE ART

Figure 3.16: Overall view of the non-intrusive computing (Chen and Black,
2008).

activities. The experiment was motivated by the casual obser-
vation that a transition between two different physical activities
may strongly correlate with a task switch, and a task switch may
be a better time to prompt the user with an interruption than an
otherwise random time.

In the study, notifications that were delivered during activity tran-
sitions were generally found to be more easily accepted by the par-
ticipants. In the case of everyday activities, user engagement in
activities was expected to be lower when transitioning between ac-
tivities, resulting in a high acceptability of notifications. Thereby
suggesting a viable strategy for context-aware message delivery in
sensor-enabled mobile computing devices.

A Quantitative Approach to Non-Intrusive Computing. Chen
and Black (Chen and Black, 2008) proposed an approach to make
ubiquitous computing non-intrusive so that users can focus on
their tasks. They addressed the problem of intrusion of interac-
tions directly by means of models of importance and willingness
to better choose the appropriate communication mechanism to
deliver the message.

Specifically, the proposed model involves four essential factors in
two stages: importance and willingness in the filter stage and effec-

3.4 Non-Intrusive Ubiquitous Computing 71

tiveness and overtness in the delivery stage. They quantify these
factors and link the two stages through the net importance. Fig-
ure 3.16 summarizes the modeling of the non-intrusive computing
approach.

Context-Aware Mobile Phone Profiles. Valtonen et al. (Valto-
nen et al., 2009) presented a context-aware, proactive and adap-
tive phone-profile control system that automatically adapts the
profile to the best alternative base on the current context. The
system is based on fuzzy control and allows an automatic control
of the active phone profile based on place, time, and weekday.

The control starts with fuzzification in which each membership
function receives a degree of membership. The system can then
use all the input variables’ fuzzy sets in fuzzy reasoning, giving
a phone profile as a fuzzy set. The system constantly analyzes
the user’s context and proactively adjusts the active phone profile
according to the learned rules when it recognizes a context change.

Building Personalized Mobile Phone Interruption Models.
Rosenthal et al. (Rosenthal et al., 2011) proposed a method to
learn when to turn off and on the phone volume to avoid phone
interruptions. Specifically, they presented a phone volume appli-
cation that classifies users’ interruptability and adjusts the vol-
ume accordingly. They introduced an experience sampling tech-
nique that asked users to predict their costs of interruption and
used these predictions to approximate a cost model and determine
when to actually ask for preferences.

They used the interruptibility preference data collected via expe-
rience sampling to build a classifier to determine when users want
their phone to ring (i.e., when they are interruptible).

In this research direction, Apple has recently introduced the don’t
disturb feature on iOS 6 allowing users to schedule the periods of time
when the phone has to be silenced. The fact that a company leader in
the mobile devices field emphasizes the interruption problem and tries

72 CHAPTER 3. STATEOF THE ART

to make a first attempt to solve it is an indicator that more research is
needed.

3.4.1 Analysis and discussion
Research in the non-intrusive computing area has been mainly focused
on reducing the perceived burden of interruptions. However, the dif-
ferent approaches are almost exclusively focused on evaluating the ade-
quate timing for interruptions (i.e., the right time), while user interface
adaptation or presentation mode has received few attention. Conversely,
our approach analyzes the current context of the user and adapts the
interaction in terms of obtrusiveness according to it (i.e., the right way).

Table 3.3 and Table 3.4 shows the compared dimensions of the dif-
ferent proposals presented in this section. Most of the approaches pre-
sented provide support to user preferences to adapt the system accord-
ing to each user. The description of the system’s adaptive behavior is
carried out in a different way by using scenario-based descriptions, state
diagrams, a set of known candidates or fuzzy sets. Some approaches
(MIPCE and Bayesphone) do not explicitly specify the variability of the
system since they support the variability by making inferences. Also,
most of the approaches support the obtrusiveness by means of intrusion
or interruptibility models that generally model the cost of interrupting
the user. Conversely, our approach models the obtrusiveness by taking
into account the initiative and attention level of users.

None of the approaches provide tools to describe the system (see
tool support row). Moreover, they are not supported by a well-defined
methodology to define the system. In some approaches, the user par-
ticipates in the system specification implicitly (see user participation
row) by means of the training period; thereby, these systems require a
training period (see training row).

All the approaches that provide adaptation capabilities possess an
adaptive behavior. However, none of the approaches support multi-
modality (see multimod. support row) because they are focused on
evaluating when interrupting the user. Conversely, our approach is
focused on how interrupting the user according to context. Regarding

3.4 Non-Intrusive Ubiquitous Computing 73

Property TMSMP SenSay MIPCE Bayesphone

User pref. no yes yes yes
support

Adap. behav. scenarios state no no
modeling description diagram

Obtrusiv. of level of interruptability intrusion interruptability
adaptation intrusiveness states level models

Tool no no no no
support

Well-defined no no no no
methodology

User no no no yes
participation

Flexibility in adaptive adaptive adaptive adaptive
adaptation

Multimod. no no no no
support support support support support

Integration no no users & users &
capabilities devices devices

Adaptation hardcoded transition negotiation cost-benefit
rules rules algorithm policies

Runtime no no no no
models

Training no no no yes

Customizab. no no system system

Personaliz. no manually manually manually
ind. needs

Open no no no no
adaptation

Domain phone phone meeting phone
calls calls environment calls

Table 3.3: Related work from the non-intrusive ubiquitous computing per-
spective

the integration capabilities, most of the approaches support a consistent
view of users, however, only three of them support different devices.

These proposals offer different mechanisms for describing the adap-
tation rules: hardcoding the rules at code-level, defining transition rules

74 CHAPTER 3. STATEOF THE ART

Property RPBI QANIC CAMPP BPMPIM

User pref. yes yes yes yes
support

Adap. behav. - known fuzzy -
modeling candidates sets

Obtrusiv. of interruption intrusion no interruptibility
adaptation level level cost

Tool no no no no
support

Well-defined no no no no
methodology

User yes no no yes
participation

Flexibility in - adaptive adaptive -
adaptation

Multimod. no no no no
support support support support support

Integration users users & users users
capabilities devices

Adaptation - comparison IF-THEN -
rules model rules

Runtime no no no no
models

Training yes no no yes

Customizab. system no system system

Personaliz. no no manually & automatically
indiv. needs automatically

Open no no no no
adaptation

Domain proactive IM phone phone
messages system profiles calls, SMS

Table 3.4: Related work from the non-intrusive ubiquitous computing per-
spective

in the state diagram, providing a negotiation algorithm to determine the
most appropriate device, using cost-benefit policies, using a comparison
model, or by means of IF-THEN rules. However, none of them use these
models at runtime to provide the adaptation of the system.

3.5 Discussion of previous systems 75

Finally, some of the approaches use learning techniques to adapt the
system. However, the control of the learning is made only by the system,
without letting the user to have a control over the system. Conversely,
our approach allows users to change the behavior of the system by
means of end-user interfaces that update the design models. Also, only
CAMPP and BPMPIM learn the new user preferences automatically
by means of the user’s context and training data. However, none of the
approaches support unknown environments.

It is worth noticing that all the application domains of the ap-
proaches are limited to phone calls or SMS messages. Our approach
integrates different ubiquitous services to give them interaction adapta-
tion capabilities in terms of obtrusiveness.

3.5 Discussion of previous systems
Previous systems spend much effort on exploring various aspects of in-
teraction adaptation and intrusiveness of ubiquitous systems. However,
they address the two aspects independently. Also, service integration
is not often considered. Hence, existing systems are mostly limited to
a particular application domain. Most of these approaches also lack of
a well-defined methodology that guides designers in the system specifi-
cation, and they are not supported by tools. This makes the systems
difficult to design, evolve and maintain. They support user preferences,
however, few of them allow the user participation in the system specifi-
cation. We consider these missing points for defining our approach. In
the following section, we describe the characteristics of our proposal.

3.5.1 Characteristics of our proposal
Based on the lacks of the related approaches, our proposal provides the
following characteristics:

Introduction of the obtrusiveness aspects in the interaction
adaptation. A distinguishing aspect of our work is the consider-

76 CHAPTER 3. STATEOF THE ART

ation of the interaction obtrusiveness as a first-class concept. We
introduce obtrusiveness requirements in the adaptation process,
while other approaches focused on modeling context-aware user
interfaces do not consider this factor.

User needs drive the adaptation. This work follows a user-
centered design method in which user needs drive the design of the
system providing users with personalized services and avoiding in-
formation overload. In this way, we enhance the user experience
by adjusting the interaction of services according to the atten-
tional resources of each user.

A well-defined interaction obtrusiveness adaptation techno-
logically independent. Most of the research in Attentive User
Interfaces present theoretical frameworks for designing attentive
notification systems; however, they lack methodological support
and guidance to develop this kind of systems. This work provides
a set of well-defined steps in order to develop interaction obtru-
siveness adaptation and to make this attentive notification vision
a reality.

By means of using feature models, we define (1) the commonalities
and differences of the different contexts in terms of the interaction
features that each context supports, and (2) the constraints for
their selection allowing a multimodal interaction. Moreover, as
models are technology-independent, we can adapt the interaction
of the various mobile devices that a user can possess, regardless
of the platform.

A runtime infrastructure to achieve the dynamic adaptation.
Previous research in non-intrusive computing is focused on min-
imizing interruptions that generally work over a limited set of
message sources and one delivery channel at a time. We propose
an infrastructure that aims to give the capability of interaction
adaptation to the different pervasive and mobile services, allow-
ing different interaction components to be composed, i.e., it is not
limited to one interaction mechanism at a time. In addition, as

3.6 Conclusions 77

we use the design models at runtime, interaction adaptation is
performed from the first moment the system is running, avoiding
having to have training data and cold-starts.

A learning system to adjust the a-priori designed adaptations.
Some of the presented approaches relies on the designer knowledge
to capture all the situations that influence the adaptation of sys-
tems for all users. This can lead to innacuracy and ambiguity
in the adaptations. Another approaches that learn automatically
how to adapt the system, do not allow users to have a control
over the system. Our approach addresses these two challenges by
providing a learning system capable of re-adjusting at runtime the
initial models specified at design time. Furthermore, we provide
customization interfaces to let the user change the behavior of the
system and to have control over adaptations.

3.6 Conclusions
This chapter presents the state of the art in the disciplines that are re-
lated to this work. These areas are really active these days with many
initiatives. However, there is a lack of proposals to provide mechanisms
that allow the development of services’ interaction obtrusiveness adap-
tation within the three application domains. Modeling languages are
used only to describe context-aware user interfaces which do not take
into account user attention. Towards creating systems that adapt their
level of intrusiveness to the context of use, researchers and designers face
a design challenge in terms of creating devices that sense user’s state
and attention in order to calculate the better time for interruptions.

The present work provides a modeling language to support the de-
sign and development of ubiquitous and mobile services that can be
adapted to the attentional demand. With the modeling language, we
can describe by means of graphical notation the user interface elements
that are involved in the adaptation process, and the circumstances un-
der which they must be adapted. Since many approaches address the

78 CHAPTER 3. STATEOF THE ART

problem of detecting or inferring attention as well as user’s state, our
approach is not focused on capturing this information but describing
the way interaction is adapted according to this.

The insufficiencies in the previous systems guide the design and
construction of our interaction obtrusiveness adaptation approach. The
next chapter gives an overview of our proposed approach.

4
Overview of the Proposal
The big picture

Everything has been composed, just not yet written down.
—Letter to LeopoldMozart (1780).

With the advanced capabilities of ubiquitous devices (e.g., mobile
phones, tablets, TVs) such as connectivity, positioning systems, sen-
sors, advanced interaction mechanisms, new valuable services can be
provided. For example, customers in a supermarket can be informed
about meaningful information such as special offers, friend’s opinions
about the product or they can even compare prices of products directly
interacting with the physical products. As a result of these innovations,
the way users interact with services is changing (Schmidt et al., 2012).
Traditionally, users in their desktop environments are used to explic-
itly request for information or input data. Today’s ubiquitous access to
services embedded in the user’s environment enables the use of implicit
interactions (Ju and Leifer, 2008); those that occur without the explicit
behest or awareness of the user. For example, a user can return a book
in a library by simply leaving the book in the return box.

80 CHAPTER 4. OVERVIEWOF THE PROPOSAL

Attention
Background Foreground

- +

Vibra feedback Speech feedback

Notification:
Meeting at
17:00 PM

The user is notified demanding
his/her attention in a gradual
manner

Figure 4.1: Example scenario where the attention demand is increased in a
gradual manner for a mobile phone.

Furthermore, ubiquitous devices accompany their users throughout
the entire day and many interactions occur when users are actively en-
gaged in other tasks, resulting in unwanted interruptions (Gibbs, 2005).
Thus, systems should be able of dynamically adapting interactions in
terms of obtrusiveness to the current context of the user in order not
to interrupt him/her. For example, as illustrated in Fig. 4.1, a user
can be notified in a gradual manner, instead of immediately interrupt
his/her ongoing activity. For achieving this, the attention demand can
be increased as the deadline of a notification approaches: first a non-
intrusive mark on the screen can be used to indicate that a notification
exists, then a soft vibration can be delivered, and finally, auditory feed-
back (speech or sound) is produced if the user is not still aware of it.
These design and runtime requirements introduce complexity in the de-
velopment of ubiquitous services.

This thesis faces this development of interaction obtrusiveness adap-
tation in ubiquitous and mobile contexts by considering their analysis,
design, development, and runtime adaptation. The idea of the approach
that we propose in this thesis is to combine model-driven techniques
and the core issues of interaction design to provide ubiquitous devices
with user-centered self-adaptive capabilities in terms of obtrusiveness.
Firstly, models are used to centralize the knowledge of the system and
capture the rationale behind it. Models cope with complexity through

4.1 Point of view 81

abstractions and are used both to specify the dynamic interaction vari-
ability and to drive runtime interaction adaptations. Secondly, the prin-
ciples of interaction design are used to manage user attention require-
ments (i.e., obtrusiveness aspects) and adaptation concerns in terms of
obtrusiveness. In this way, the design is driven by human needs with
the goal of achieving a better user experience.

The remainder of this chapter provides a high-level view of the build-
ing blocks involved in our approach, and Chapters 5-7 provide more
detailed discussion of the methods involved in each of these building
blocks. Specifically, this chapter is structured as follows. Section 4.1
introduces the types of systems we address in this work. In Section
4.2, we identify and overview the main building blocks of the approach
and present the process to apply this approach. In Section 4.3, we
introduce the systems’ infrastructure to leverage the design models at
runtime. Then, we show how the approach has been put into practice
and evaluated by means of a case study-based evaluation in Section 4.4.
Finally, Section 4.5 concludes the chapter.

4.1 Point of view
According to the canonical models of human-computer interaction, the
information flows from a system through a person and back through
the system again based on a feedback loop. Within this feedback loop,
Dubberly et al. (Dubberly et al., 2009) have distinguished the types
of interactive systems based on its degree of interaction with the user.
Specifically, the following types of systems can be provided (see Fig.
4.2):

Linear system. These systems are those that only react to input, for
example, when the supermarket door opens automatically as you
step in front of it. The design of these systems follows the input-
output pattern, it means, the output function is fixed.

Self-regulating system. These systems are a specific type of closed-
loop systems (single loop) that have a goal to regulate. The goal

82 CHAPTER 4. OVERVIEWOF THE PROPOSAL

input outputprocess

Linear system

measure act

Self-regulating system

compare

environment

disturbance

goal

measure act

Learning system

compare

environment

disturbance

(set) goal

compare

goal

actmeasure

Figure 4.2: Types of interactive systems.

defines a relationship between the system and its environment,
which the system seeks to attain and maintain. A simple self-
regulating system cannot adjust its designed goal; its goal can be
adjusted only by something external to the system.

Learning system. These systems nest a first self-regulating system
inside a second self-regulating system, where the second system
measures the effect of the first system on the environment and
adjusts the first system’s goal according to how well its own goal
is being met. The second system adjusts the goal of the first based
on external action.

We consider all these degrees of interactivity in this thesis. First, a
linear system is proposed when we design a fixed degree of obtrusiveness
for the interaction with a specific service according to each user’s needs
and preferences. This is what we call personalization in terms of

4.2Main building blocks 83

obtrusiveness. Second, a self-regulating system is provided when the
system dynamically regulates the degree of obtrusiveness required for
a service according to the user’s situational context. This is what we
call self-adaptation in terms of obtrusiveness: a system’s capability
to gather information about user’s current situation, to evaluate this
information and to change its obtrusiveness behavior according to the
current situation. Third, a learning system is proposed to automatically
adjust the self-regulating system design according to the changing user
needs and preferences over time. This is what we call self-adjusting
for improving the obtrusiveness design.

To represent the knowledge of each one of these systems, we based
them on models. Models are used as powerful tools for interaction de-
sign in order to represent complex phenomena with a useful abstraction
(Cooper et al., 2007). They organize the knowledge required for the
behavior of our services by means of the explicit modeling of interac-
tion variability and obtrusiveness dependencies. In this way, designers
can focus on these requirements at a high level of abstraction, deferring
technological decisions and implementation issues. In addition, these
models are created following a user-centered design (Mao et al., 2001)
in which user needs drive their design. This allows us to design for
users.

Also, the self-adaptation and self-adjusting capabilities of interac-
tive systems require the system to infer knowledge from the current sit-
uation to trigger an appropriate response (self-adaptation) and change
the designed models during runtime (self-adjusting). Following the Au-
tonomic Computing principles (Kephart and Chess, 2003), the sys-
tem makes decisions on its own, using high-level policies; it constantly
check and optimize its status and automatically adapt itself to chang-
ing conditions. To achieve this autonomic behavior, we leverage the
models produced at design time as if they were the high-level policies
that drive the autonomic behavior of the system at runtime. Runtime
models have been proven to provide a richer semantic base for run-
time decision-making in order to achieve system adaptation, since they
provide up-to-date and exact information about the runtime system
(France and Rumpe, 2007).

84 CHAPTER 4. OVERVIEWOF THE PROPOSAL

User-centered design

Obtrusiveness
requirements

de�nition
Modeling Simulation

Re�nement

Development Deployment

System
implementation

Self-regulating
system

Learning
system

D
e

si
g

n
 t

im
e

R
u

n
-tim

e

Figure 4.3: Main building blocks of our approach.

4.2 Main building blocks
Figure 4.3 shows the overall view of the proposed approach decomposed
in the main building blocks. The framework can be considered as the
collection of two subsystems: from a methodological perspective the
approach is divided in two phases; design time and runtime. At design
time, the user obtrusiveness requirements are defined and the models
that specify the interaction obtrusiveness behavior are built. Then, the
designed obtrusiveness is put into practice to obtain feedback from the
users and refine the models. When no further changes are required,
the system specification is used to guide the development of the final
system. At runtime, following the self-regulating strategy, these models
are queried in response to context events to produce the adaptation of
the interaction in terms of obtrusiveness. This adaptation is adjusted
to the changing user preferences over time by means of the learning
strategy. The main building blocks of the approach, the steps involved

4.2Main building blocks 85

User-centered design

Obtrusiveness
requirements

de�nition

Obtrusiveness requirements de�nition

Personas
de�nition

User
interviews

Services

Level of
obtrusiveness

S1 S2 S3

1

User
researcher

Questionnaires Persona modeler
Step

Manual process

Tool support

Figure 4.4: Steps of the obtrusiveness requirements definition phase.

in each one of them and the tool support are the following.

Obtrusiveness requirements definition. In order to provide user-
centered services adaptive to user’s attentional resources, user
preferences and needs have to be detected and analyzed. In the
pre-design phase, the design team (user researcher) employs ethno-
graphic field study techniques (user interviews and observa-
tions) to gather qualitative data about the potential users. The
main outcome of these studies is a set of behavior patterns of users
that are going to drive the definition of personas (Brown,
2010) (user profiles). Specifically, personas are user archetypes
used to represent the relevant information of the audience such as
behaviors, attitudes, goals, motivations, etc. identified during the
interviews and observations. From the definition of personas, de-
signers determine what information and capabilities our personas
require to achieve their needs and how this information is pro-
vided in terms of obtrusiveness. This is performed by detecting
the services of the system and their level of obtrusiveness
according to the user context. By establishing the degree of user
attention that a service needs, we avoid developing overwhelm-

86 CHAPTER 4. OVERVIEWOF THE PROPOSAL

User-centered design

Obtrusiveness
modeling

Modeling

S1 S2

Interaction
variability
modeling

Concrete
interaction
model

Context
modeling

Concrete
interaction
modeling

2

Obtrusiveness
modeler

Step

Manual process

Tool support

Interaction
designer/

Analyst
Moskitt4SPL

Progégé
editor

From the
persona
model

Semi-automated
process

Modeling

Figure 4.5: Steps of the modeling phase.

ing services. These concepts are expressed together in the models
created in the next stage. Figure 4.4 illustrates the process to
be followed to define the obtrusiveness requirements. More de-
tail regarding the analysis and specification of these concepts is
provided in Chapter 5.

Tool support. To make the user interviews, designers follow
a set of questionnaires. Then, the Persona Modeler is used to
define the personas and specify the services required and their
obtrusiveness level.

Modeling. Once the user requirements are captured, the different mod-
els that characterize interaction obtrusiveness adaptation are de-
fined and the mappings among these models are specified in this
stage. Specifically, designers model the obtrusiveness by defin-
ing an unobtrusive adaptation space to capture the attentional de-
mand required for each service. In this model, the transitions that
define how the obtrusiveness of a service can change at runtime

4.2Main building blocks 87

are also defined. These transitions link user situations (composed
by context events) with changes in the obtrusiveness. In order to
formalize the context and capture the state of the user’s environ-
ment to trigger transitions, analysts model the context.

Also, to model the interaction variability according to each
degree of obtrusiveness, we use feature models. This allows inter-
action designers to describe the commonalities and variabilities
between interaction modalities available that are going to give
support to the different levels of obtrusiveness defined. As feature
models are used to model interaction in an abstract manner, de-
signers have to define the concrete interaction components of the
target platform that support the interaction modalities defined
by features. This is done by using a concrete interaction model in
the concrete interaction modeling step. Figure 4.5 illustrates
the process to be followed to define the models of the modeling
phase. More detail regarding the specification of these models is
provided in Chapter 5.

Tool support. To model the obtrusiveness, we provide an Obtru-
siveness Modeler tool. Using this tool, the unobtrusive adaptation
space is partially generated from the persona specification and
manually completed using this graphical tool. The Protégé-OWL
editor is used for modeling the context in a graphical manner. Fi-
nally, MOSKitt4SPL, a free open-source tool, is used to create the
feature model, the concrete interaction model and the mappings
between them.

Simulation. Once designers consider that the behavior defined for
adaptation is the one desired, several iterations with end-users are
performed in order to improve and refine the obtrusiveness design.
Thus, before efforts are put into development, fast-prototyping is
applied to validate the user satisfaction with the interaction ob-
trusiveness adaptation defined for services. First, the design team
define validation scenarios in order to illustrate the way in-
teraction is adapted in terms of obtrusiveness. According to these
scenarios, designers define the screen mock-ups needed to sup-

88 CHAPTER 4. OVERVIEWOF THE PROPOSAL

User-centered design Re�nement

Simulation

Validation
scenarios
de�nition

Screen
mock-ups
de�nition

Video
creation

User
Experience
evaluation

3

Design
team

Scenario
template

Obtrusiveness
modeler

Video editing
software

Questionnaires

From the
models

speci�cation

Simulation

Step

Manual process

Tool support

Semi-automated
process

Figure 4.6: Steps of the simulation phase.

port the different services in the obtrusiveness levels. These mock-
ups can be obtained automatically from the models defined.

Then, the design team define rapid video prototypes (Kuniavsky,
2010) to create conceptual videos of the proposed obtrusive-
ness adaptation. With these videos, end-users are capable to see
enough details of the considerate interaction adaptation of services
according to each situation. They provide a quick exploration of
the user experience by using our system. Also, we use Wizard-of-
Oz prototyping (Dahlbäck et al., 1993) to simulate the interaction
adaptation effect on users and evaluate the user experience.
In this way, the user is immersed in an environment that behaves
like a working system with obtrusiveness adaptation capabilities,
but it is much easier to produce. Finally, once designers obtain
the feedback from users, they refine the models to better fit

4.2Main building blocks 89

Development

System
implementation

System implementation4

Interface
generation

Service
components
generation

Business
logic
implement.

From the
models

Developer

Obtrusiveness
modeler

Step

Manual process

Tool support

Automated
process

Figure 4.7: Steps of the implementation phase.

with the user needs and preferences. Figure 4.6 illustrates the
process to be followed to simulate the system design. Chapter 5
provides the guidelines to perform the simulation.

Tool support. Scenario templates are used to define the vali-
dation scenarios. Based on these scenarios and using the Obtru-
siveness Modeler, the different screen mock-ups to support each
interaction can be obtained automatically from the models de-
fined. Then, for the video creation any editing software can be
used. Finally, the user experience is evaluated through user satis-
faction questionnaires.

System implementation. Once the models have been adjusted to fit
with the real user needs, a final adaptive software solution can
be obtained. Following the Model-Driven Engineering develop-
ment, the derivation of a software solution from the system spec-
ification is produced automatically. From the models obtained in
the modeling stage, developers can generate the service com-
ponents (in conjunction with service architectural models) and
generate the different variants of the user interfaces to
support the interaction with the services. In particular, we make
use of code generation techniques in this work to automate the de-
velopment of the user interfaces for different target technologies.

90 CHAPTER 4. OVERVIEWOF THE PROPOSAL

Then, developers should implement the business logic of each ser-
vice taking into account several considerations in the interaction
layer of the services to enable the adaptation capabilities. These
considerations are related to the functionality to be adapted and
the infrastructure required for the communication between our
self-regulating system and the services. Figure 4.7 illustrates the
process to be followed to implement the system.The derivation of
a software solution is described in Chapter 6.

Tool support. The service components and the user interfaces
can be generated automatically using the Obtrusiveness Modeler
by means of code generation capabilities.

Self-regulating system. The design models capture the knowledge
required to provide service interactions with the appropriate ob-
trusiveness. However, in order to allow an autonomic and adaptive
considerate behavior, the system must itself regulate the interac-
tion provided for each service according to the different user situ-
ations. Since the adaptation in our approach is driven by models
at runtime, a model-based autonomic infrastructure is provided
to support a self-adaptive interaction obtrusiveness of services in
the ubiquitous computing domain. This infrastructure exploits
the design models at runtime to determine how the interaction
should be adapted in terms of obtrusiveness. Thus, to deploy
the self-regulating system, analysts have to save the models
into the infrastructure folder and run its components. This self-
regulating system is further explained in Chapter 6.

Tool support. To deploy the self-regulating system, analysts use
AdaptIO featuring a deployment strategy.

Learning system. As the self-regulating system is based on an ob-
trusiveness behavior defined at design time, these decisions made
at design time may change over time since user needs and prefer-
ences can change. In order to adjust these decisions, we provide
a learning system. This system is in charge of re-adjusting the
obtrusiveness of services according to users’ behavior automati-
cally at runtime. To do this, it follows a reinforcement learning

4.3 Systems’ infrastructure 91

approach for self-adjusting the designed interaction obtrusiveness
according to user’s feedback, in a way that maximizes user’s sat-
isfaction for a long-term use. To deploy the learning system,
analysts have to run its components. In addition, we also pro-
vide customization interfaces to allow users to set up his/her new
obtrusiveness preferences explicitly, as they are who better know
his/her preferences. Further detail regarding the learning strategy
is provided in Chapter 7.

Tool support. To deploy the learning system, analysts use Adap-
tIO featuring a deployment strategy.

Figure 4.8 shows a more detailed diagram of the process, including
the name of the activity, a description, the stakeholder involved, the
tool support and the deliverables produced.

The above building blocks constitute the AdaptIO framework, with
the goal of facilitating the building of ubiquitous systems capable of
adapting its interaction obtrusiveness according to user’s context. With
this building blocks we provide support to interaction designers and
developers from system design to execution.

It is worth noticing that the steps of the modeling phase do not
need to be performed by the designer strictly sequentially. Models can
be edited during the whole design process. Further detail regarding the
steps of the obtrusiveness requirements definition, the modeling, and the
simulation phases is provided in Chapter 5. The system implementation
phase is described in Chapter 6 together with the self-regulating system
and its deployment. Finally, the learning system is detailed in Chapter
7 and tool support is described in Appendix A.

4.3 Systems’ infrastructure
To support the interaction obtrusiveness adaptation by following the
process explained in Section 4.2, we provide two systems that leverage
the design models at runtime at different degree: interpretation and
modification.

92 CHAPTER 4. OVERVIEWOF THE PROPOSAL

Activity Description Stakeholder Tool support Deliverable

Interaction obtrusiveness adaptation process

User interviews
and observations

Understand user needs and
behavior, potential users,
motivations, environments,
context

User researcher Questionnaires Document
Behavior patterns
of users

Persona
de�nition

Services and
obtrusiveness
de�nition

Interaction
variability
modeling

Obtrusiveness
modeling

Context
modeling

Concrete
interaction
modeling

Validation
scenarios
de�nition

Screen
mock-ups
de�nition

Video
creation

User
eXperience
evaluation

Models
re�nement

Interface
generation

Business logic
implementation

Self-regulating
system
deployment

Learning
system
deployment

System
running

O
b

tr
u

si
ve

n
e

ss

re
q

u
ir

e
m

e
n

ts
 d

e
�

n
it

io
n

M

o
d

e
lin

g

Si
m

u
la

ti
o

n

Sy
st

e
m

im
p

le
m

e
n

ta
ti

o
n

D

e
p

lo
ym

e
n

t

De�ne user archetypes/pro�les,
scenarios, motivations, goals,
demographic information

User researcher,
interaction
designer

Persona modeler Model
Persona model

User researcher,
interaction
designer

Persona modelerDe�ne the services that our
personas require and the degree
of obtrusiveness that they need

Interaction
designer

Interaction
designer

Obtrusiveness
modeler

Model
Obtrusiveness
model

Moskitt4SPL Model
Feature
model

De�ne the interaction resources
available and the constraints for
their selection to select feasible
interaction con�gurations

Model the level of obtrusiveness
that support each service
according to each persona

Model
Context
model

Protégé
ontology editor

AnalystSpecify the context of the
adaptive system

Moskitt4SPL Model
Concrete
interaction
components
model

Interaction
designer

De�ne the concrete interaction
components of the target
platform that support the
available interaction resources

Document
Scenarios

Design team

Design team

Design team

Design team

Interaction
designer

System
developer

System
developer

Analyst

Analyst

Analyst

De�ne mini scripts that describe
situations where the interaction
obtrusiveness adaptation is
needed

Scenario
template

Create a video prototype to
envision how the obtrusiveness
adaptation could work

Video editing
software

Resource
Screen mock-ups

Resource
Video prototype

Document
User feedback

Model
Re�ned
models

De�ne screen-mockups to
simulate the proposed scenarios

Obtrusiveness
modeler

Questionnaires

Obtrusiveness
modeler &
Moskitt4SPL

Evaluate the user experience
of the designed interaction
obtrusiveness adaptation

Re�ne the designed models
according to the user feedback

Generate the different user
interfaces to support the
interaction adaptation at runtime

Resource
User interfaces

Resource
User interfaces

Obtrusiveness
modeler

Integrate the interaction layer of
the services with our
self-regulating system

Development
platform &
adaptation
considerations

Deploy the self-regulating
system in the target platform

Deploy the learning
system in the target platform

Resource
Deployed
self-regulating
system

Resource
Deployed
learning system

Resource
Running
system

AdaptIO
featuring a
deployment
strategy

AdaptIO
featuring a
deployment
strategy

Run the system AdaptIO
featuring a
running strategy

Model
Persona model

Service compon.
generation

System
developer

Generate the different
components of the services

Resource
Service
components

Obtrusiveness
modeler

Figure 4.8: A more detailed look at the process to apply our approach.

4.3 Systems’ infrastructure 93

Obtrusiveness
model

Adaptation process

Managed
system

Runtime
adaptation

Meeting
at 17:00!

New context event

Context
model

Interaction
variability model

Concrete
interaction model

Pervasive environment

1 2

3

4

Insert event/
check user situation Changes in

user situation

Change in the
obtrusiveness level

Change
request

Calculate new
interaction con�guration

Push new
con�gurationS1

S2

S3

Monitor Analize

Plan

Execute

Figure 4.9: Overview of the adaptation process.

At the interpretation level, the models are queried at runtime in
order to calculate the interaction obtrusiveness adaptation according to
context changes. At the modification level, the models are updated in
order to adjust them to the new user needs and preferences over time.
As the models are exploited at runtime, changes in them do not require
an explicit regeneration, rebuildment, retestment, and redeployment of
the system1. Specifically, the provided systems are the following:

Self-regulating system. The design models capture the knowledge
required to provide interactions with the appropriate obtrusive-
ness for each situation. In order to make our user-centered obtru-
siveness interaction adaptation a reality, we define a model-based
autonomic infrastructure. This infrastructure exploits the design
models at runtime to support self-adaptive interaction obtrusive-
ness of services in the ubiquitous computing domain. Specifi-
cally, our infrastructure is based on the IBM reference model for
self-management (IBM, 2006), which is called MAPE-K (Monitor,
Analyze, Plan, Execute, Knowledge).

The overall adaptation steps are outlined in Figure 4.9. When a

1http://www.theenterprisearchitect.eu/archive/2010/06/28/model-driven-
development-code-generation-or-model-interpretation

94 CHAPTER 4. OVERVIEWOF THE PROPOSAL

context monitor senses a new context event, it inserts the change
in the context model and checks if the user situation has changed
and some adaptation needs to be made. If so, the obtrusiveness
model is checked to see if any obtrusiveness adaptation has to be
triggered according to the new user situation. A change request
is generated with the new obtrusiveness level. With this change
request, the necessary modifications to the interaction resources
are calculated in terms of increments and decrements with respect
to the last obtrusiveness configuration. Also, the new interaction
configuration is translated to the concrete interaction components
of the underlying managed system. Finally, the infrastructure
pushes the new interaction configuration to the managed system
in order to apply the adaptation. More detail about this infras-
tructure and its implementation is covered in Chapter 6.

Learning system. In order to improve the initial obtrusiveness de-
sign and adapt the obtrusiveness degree for each service to the new
user preferences, we follow a Reinforcement Learning (RL) strat-
egy (Sutton and Barto, 1998a). Following this strategy, our in-
frastructure learns from user feedback after interacting with a ser-
vice in an obtrusiveness level. Depending on the received feedback
(positive or negative), the current obtrusiveness level of a service is
rewarded or punished. In this way, if negative feedback is received
continuously for a given service in an obtrusiveness level, it means
that the user is unsatisfied with the design and the system will
adjust it by changing the obtrusiveness level. This obtrusiveness
adjustment is achieved automatically (self-adjustment). However,
we also let users to explicitly set up his/her new preferences by
means of two customization interfaces:

• Obtrusiveness Personalization Interface. To allow users de-
fine their own obtrusiveness preferences, we provide an obtru-
siveness personalization interface. In this way, the obtrusive-
ness behavior is adapted to each user without any training.
In particular, we provide a personalization interface to let
users change the unobtrusive adaptation space and the link-

4.4 Evaluation of our approach 95

ing with the interaction resources in a user-friendly interface.

• User Situation Specification Interface. In order to guaran-
tee accurate and unambiguous user situation definitions, the
user is put in charge of defining his own situations by means
of a situation specification interface. This interface allows
users to expressively define and modify their situations in a
generic and fine-grained way, based on environment context.
To increase usability and support nomadic users in a wide
range of environments, the interface also supports directly
capturing user situations.

Further detail regarding the learning system and the different cus-
tomization interfaces is provided in Chapter 7.

4.4 Evaluation of our approach
The presented work has been validated from different perspectives

according to the confronted research questions. These validations are
the following:

1. User-centered design method.

• Usability of our design method. The introduced user-
centered design method has to be expressive enough to de-
scribe the aspects that are relevant to capture the interac-
tion obtrusiveness adaptation requirements. Also, this design
method has to help designers in the specification of this kind
of systems, from requirements to deployment. Therefore,
we have conducted an experiment to evaluate the usability
of our design method compared to the traditional method
(hand-coding).

• User satisfaction with the designed adaptations and
workload. As the users are who are going to use the sys-
tem, it has to be accepted by them and designed according

96 CHAPTER 4. OVERVIEWOF THE PROPOSAL

to their needs and preferences. Thus, before system imple-
mentation, we conducted a user satisfaction evaluation to
determine whether the designed interaction adaptations in
terms of obtrusiveness were well accepted by the users and
fit all their needs. Also, we conducted a cognitive load study
to analyze how our system is capable of handling the atten-
tion resources of the user by means of the adaptations. This
evaluation is part of the simulation phase of our method.

2. Self-regulating autonomic infrastructure.

• Scalability of the self-regulating infrastructure. The
provided infrastructure has to be subject to the same effi-
ciency requirements as the rest of the system because the
execution of the adaptation impacts the overall system per-
formance. Therefore, we analyzed the scalability of our in-
frastructure by studying the temporal cost of the operations
that access the models. In particular, we have evaluated the
performance of manipulating the models at runtime.

• User experience with the system. One of the goals of our
approach is to enhance the User eXperience (UX) by giving
ubiquitous services the capability of adapting its interaction
to the attentional resources of users. Therefore, we evaluated
the User eXperience after users interacted with our system
(to evaluate their feelings). For this evaluation, we provided
to users with a non-adaptive version of our system and the
adaptive one. In this way, users could compare both systems
and better measure their UX.

3. Obtrusiveness learning system.

• Efficiency of the learning system. The learning system
has to be capable of adjusting the behavior of the system
when the user changes his/her preferences or needs (a change
in his/her mind). This learning should be quick enough and
consistent with the user’s mind in order to guarantee user

4.4 Evaluation of our approach 97

satisfaction with the system. Thus, we have measured the
efficiency of the learning system by analyzing the behavior
of it when the user changes his/her mind.

• Usability and expressivity of the Customization In-
terfaces. The mechanisms and tools provided for defining
user situations and customizing the obtrusiveness must allow
end-users to define and update them with enough usability
and expressivity. Therefore, we have validated the usability
and expressivity of these interfaces by means of a user eval-
uation, where users had to interact with the interfaces for
defining and changing different situations and obtrusiveness
adaptations.

To evaluate the above concerns, we have carried out a case study
based evaluation. To perform it, we have developed a Smart Home
case study and an Adaptive Notifications case study (see Chapter 8)
following the guidelines for case study research by Runeson and Höst
(Runeson and Höst, 2009). The Smart Home adapts the obtrusiveness of
its services according to changes in the user’s context and the Adaptive
Notifications adjusts the interaction of the notifications delivered by
different ubiquitous services according to the current user situation.

Overall, the evaluation of the case studies revealed positive results
that can encourage designers and developers to apply our approach to
ubiquitous services. Regarding the user-centered design method, the
evaluation points out the usability and usefulness for system designers
and the user satisfaction with the interaction obtrusiveness adaptations
that can be designed; nevertheless, the participants’ feedback in the
last study revealed that several iterations are needed to maximize user
satisfaction with the designed obtrusiveness adaptation. The evalua-
tions about the self-regulating system also achieved satisfactory results
regarding the scalability of the system, and the user experience was en-
hanced with the adaptive system. Finally, high efficiency was obtained
regarding the learning system. Also, the evaluations about the inter-
faces showed them to be usable and expressive, allowing users to specify
non-trivial situations and adaptations within a short time span.

98 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

However, during the experiments, we found that intelligibility can
become an issue that affect user satisfaction and experience, as the
adaptation is transparently to users and they can feel loss of control.
This can also cause uncertainty of what the system is going to do or has
learned. Offering the users the possibility to check adaptations could
reduce this uncertainty and lack of control. Thus, this aspect needs to
be improved to give users more control over their systems.

4.5 Conclusions
The challenge in an environment full of embedded services (where hu-
man attention is the most valuable resource) is not only to make in-
formation available to people at any time, at any place, and in any
form, but to reduce information overload by making information rele-
vant to the task-at-hand (Fischer, 2001). Information delivery methods
should achieve the right balance between the costs of intrusive inter-
ruptions and the loss of context-sensitivity of deferred alerts (Horvitz
et al., 2003).

In this thesis, we manage user’s attentional resources in order to
make ubiquitous interactions less obnoxious. To achieve this, we pro-
pose an approach to design and develop ubiquitous services capable
of adjusting its interaction obtrusiveness dynamically according to the
user’s context. As the whole method is supported by models, feedback
from users is easily mapped onto the models. Also, the use of models
to design the interaction obtrusiveness adaptation is useful to central-
ize the knowledge and organize it in a way that it is easy to handle
for designers (e.g., work with technology-independent concepts, detect
inconsistencies, etc.). Also, the models support the evolution of the
services to new technologies and platforms.

The definition of our autonomic infrastructure allows the services
to be self-adaptive to the different user situations in order to regulate
their interaction obtrusiveness. Also, by means of the learning sys-
tem, the interaction adaptation behavior of the services is re-adjusted

4.5 Conclusions 99

automatically according to the user’s feedback. Finally, by means of
applying our method in two case studies, we show that by following our
approach, personalized services with the properly interaction in terms
of obtrusiveness can be obtained.

100 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

5
A Framework for InteractionObtrusiveness Adaptation
Designing considerate interactions

A picture is worth a thousandwords. An interface is worth a thousand
pictures

—Ben Shneiderman, 2003.

The increasing of a wide variety of powerful ubiquitous and mobile
devices and the heterogeneity among them introduces new challenges
in the design and development of ubiquitous services. Also, all these
services compete for the attentional resources of the user. Thus, it is
essential to consider the degree in which each service intrudes on the
user’s mind (i.e., the obtrusiveness level) when services are designed.

An important challenge in the development of ubiquitous services is
the need for adapting interaction to the user, taking into account not
only his/her current context, tasks and priorities, but also the user’s
level of attention according to his/her needs (Piva et al., 2005). Users
need to receive different feedbacks from services and interact in a dif-
ferent manner according to all these aspects. As an example, consider

102 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

the different interaction styles between the same user going in a hurry
to take a fly and watching relaxed the TV.

This chapter introduces a methodological approach and a frame-
work for the design of considerate interaction adaptations in the ubiq-
uitous domain. The goal of this method is to provide a mechanism for
defining the desired obtrusiveness variability of services’ in-
teractions according to user’s attention. In order to systematize
the development of such services and achieve a well-designed system
according to each user, the method is based on the user-centered design
principles.

User-Centered Design (UCD) (Mao et al., 2001) is a design ap-
proach that focuses on the needs of the end-user. It is a process in
which the needs, wants, and limitations of end-users of a product are
given extensive attention at each stage of the design process. In UCD,
reasoning about prospected use of a system gives valuable insights on
and validity to user requirements and interaction styles. Using a sce-
nario from the application domain, user requirements are detected and
formulated. These requirements are the basis for modeling the system,
which is simulated with mockups and storyboards, and progresses to
interactive prototypes. These prototypes are evaluated by end-users,
and feedback from them is gathered. This feedback helps to iterate the
design on until it meets the requirements of the end-users. Because de-
sign changes are applied to a prototype, iteration occurs very rapidly.
The result is a prototype that serves as an interactive specification of
the product.

Figure 5.1 shows an overview of the stages in the development pro-
cess proposed in our approach. Ubiquitous services are iteratively de-
signed. In each design cycle, the adaptation of the services is put into
practice to obtain feedback from the users. The feedback obtained is
used to improve the original design. When no further changes are re-
quired, the system specification is used to guide the implementation of
the final system. This chapter provides detail on the stages involved
in the iterative design of the interaction obtrusiveness adaptation of
services. Specifically, it introduces the different aspects to be consid-
ered from requirements to simulation. Chapter 6 provides detail on the

5.1 User-centered design method overview 103

User-centered design

Obtrusiveness
requirements

de�nition
Modeling Simulation

Re�nement Development

System
implementation

Design time

Speci�cation

Figure 5.1: The stages proposed in the user-centered development process.

implementation.

The remainder of the chapter is structured in the following manner.
Section 5.1 provides an overview of the user-centered design method.
Sections 5.2-5.4 introduces the aspects to be considered during each
stage of the method. In Section 5.5, a discussion of the usefulness and
efficiency of the proposed method is introduced. Finally, Section 5.6
concludes the chapter.

5.1 User-centered designmethod overview
This section provides a more detailed description of the design method
introduced in this work. The user-centered design stage is the initial
stage in our approach (see Fig. 5.1). Since we are following a model-
driven methodology, the specification obtained at design drives the later
stages in the development of the system. Thus, the design becomes
central to the development method.

The user-centered design method captures by means of models the
concepts that are relevant to achieve considerate services’ interaction
adaptations. The benefits of using a model-driven paradigm and the
steps to be followed in the design of considerate services interactions
are introduced below.

104 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

5.1.1 Why amodeling approach?
Models are used extensively in design, development, and the sciences.
They are powerful tools for representing complex structures and rela-
tionships for the purpose of better understanding, discussing, or visu-
alizing them (Cooper et al., 2007). Specifically, the Human-Computer
Interaction (HCI) community has considered the use of models to de-
scribe interaction for long. In a context where the possible combinations
of users, situations and devices are constantly increasing, the imple-
mentation of ad-hoc solutions to cover all possible combinations is not
feasible (Sottet et al., 2006). Furthermore, a flexible interaction within
changing contexts and situations is needed in ubiquitous environments.
Thus, the use of models has been identified as a promising approach to
handle such increasing complexity (Blumendorf et al., 2010b).

Modeling technologies have been used to formalize distinct aspects
of the interaction at different levels of abstraction, and then, to derive
the actual code automatically. In this way, the specified system can
be automatically generated for different contexts from an abstract de-
scription. Currently, the attention has been put on utilizing the models
at runtime. The idea stated by Sottet et al. (Sottet et al., 2006) is to
keep the models alive at runtime in order to make the design rationale
available at runtime. Preserving the models and thus their knowledge
at runtime allows reasoning about the designer’s decisions.

Because we are designing for different degrees of interaction obtru-
siveness according to user’s context and we want to adapt it at run-
time, it is important to handle this complexity in an understandable
and flexible way. Thanks to the use of models, ubiquitous services that
are capable of adapting their interaction in terms of obtrusiveness can
be defined by working with abstract concepts. Abstraction is one of
the fundamental principles of software engineering in order to master
complexity (Kramer, 2007). By abstracting technical details, we can
describe how the interaction varies in terms of obtrusiveness regardless
of the particular technology and platform of the different ubiquitous
devices.

Also, by using models, we can deal in a centralized way with aspects

5.1 User-centered design method overview 105

such as obtrusiveness that are much harder to deal with in the final soft-
ware system since they are spread across different parts of the code. A
distinguishing aspect of our approach is the separation of concerns such
as obtrusiveness and interaction. The obtrusiveness adjustment and the
interaction specification are faced from a modeling perspective. By link-
ing these aspects, when a service obtrusiveness varies, the interaction of
the service is re-targeted to make use of the new interaction components
in an automated fashion.

We also leverage these design models at runtime to provide services
with the knowledge required for adapting their interaction obtrusiveness
dynamically. In this way, the modeling effort made at design time is not
only useful for producing the system, but also provides a richer semantic
base for self-adaptive behavior during execution.

To summarize, modeling techniques are applied in our approach to
obtain the following benefits:

• Focus on each aspect. Separation of concerns is promoted by
our approach in order to allow designers to focus on a specific as-
pect at a time. Designers can define the way in which obtrusive-
ness is adapted according to the user’s situation without thinking
on the interaction mechanisms, and later, the appropriate inter-
action mechanisms can be chosen to cope with the obtrusiveness
requirements.

• Explore the solution space. The used models capture not only
a specific solution but also the rationale behind it. In this way,
alternative solutions can be re-considered and the design knowl-
edge can be reused for similar domains. Moreover, support for
traceability between all the models allows to easily identify the
interaction elements affected when the obtrusiveness degree of a
service varies.

• Reuse of the design knowledge at runtime. In order to guide
the adaptation of the interaction, we leverage models at runtime
without modification (i.e., we keep the same model representation
at runtime that we use at design time). The models can provide

106 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

us with a richer semantic base for runtime decision-making related
to system adaptation since all the information analyzed at design
time is also available at runtime.

• Support system evolution. The fast changing nature of user
preferences and the technological heterogeneity of ubiquitous de-
vices suggest that systems in this area must be designed to evolve.
By capturing the knowledge in models, the system can be evolved
by simply changing the models at runtime.

Our approach involves to manipulate models in different manners
through the different steps. An overview of the steps involved in the
design process is provided below.

5.1.2 Steps of the user-centered design process
The design method proposed in this work supports the (1) obtrusiveness
requirements definition, (2) modeling, and (3) simulation of consider-
ate service interactions. The method defined involves two development
roles: analysts and designers. Each one makes decisions at different ab-
straction levels. Figure 5.2 details the tasks involved during each phase
of the design method. The steps performed in each phase of the cycle
and how the different tasks are involved are detailed below:

1. Obtrusiveness requirements definition. Analysts are in charge
of detecting and defining the obtrusiveness requirements relevant
for the final system. In order to gather qualitative data about
the users, analysts make interviews and observations. From
this information, they must define the personas (user profiles)
that are going to use the system. Personas are used to understand
the users and detect their needs and preferences. From the def-
inition of personas, analysts have to detect the services that
our personas require and their obtrusiveness according to
the user’s context. Services become the basic unit of work during
development. More detail regarding the definition of this aspects
is provided in Section 5.2.

5.1 User-centered design method overview 107

Model
concrete
interaction

User-centered design

R
e

�
n

e
m

e
n

t

Model
context

Model
interaction
variability

Make user
interviews and
observations

De�ne
personas

Detect
services and
obtrusiveness

Evaluate
the user
experience

Create
a video

De�ne
screen
mock-ups

Model
obtrusiveness

De�ne
validation
scenarios

Obtrusiveness requirements de�nition

Modeling

Simulation

Figure 5.2: The different tasks in the design method proposed.

2. Modeling. Interaction designers are in charge of modeling the
attentional demand required for each service according to the per-
sonas analysis. This is done by modeling the obtrusiveness
degree required for a service. In the case that a service could be
performed at different obtrusiveness levels, designers must spec-
ify the transitions that define how the obtrusiveness of a service
can change at runtime. Transitions that change the obtrusive-
ness level of services are defined with a user situation as a trigger
and these user situations are determined based on user’s context.
Thus, designers have to model the context and specify the rules
that define each user situation. Then, they have to model the
interaction variability of the system and select the appropriate
interaction resources to interact with the services in each obtru-
siveness level supported. Once interaction obtrusiveness adapta-
tion is specified in an abstract manner, designers have to model

108 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

the concrete interaction components that are going to rep-
resent the user interface elements available for a specific platform.
Composing these concrete components, interaction features are
supported for a specific platform. Further detail regarding each
one of these steps is provided in Section 5.3.

3. Simulation. Designers perform several design iterations to ob-
tain feedback from end-users and improve the obtrusiveness de-
sign. Before efforts are put into implementation, they can use the
models defined to elaborate a prototype. This prototype can be
used to evaluate the adaptation of the system to one or several
simultaneous factors. First, designers define several validation
scenarios according to the user needs and the adaptation that
is being designed. According to this scenario, designers define
the screen mock-ups required in the different contexts and they
also create a video prototype of the proposed scenario to show
the key concepts. Using these fast-prototyping techniques, feed-
back is gathered from end-users in order to determine whether the
proposed obtrusiveness adaptation improves the existing services
in terms of user experience. Section 5.4 provides the guidelines
to perform the simulation.

The design method introduced has been defined to guide the de-
signers in their activities. We have applied model-based technologies
to provide support to the different tasks involved in the process. By
capturing user needs and obtrusiveness adaptation requirements for the
services’ interaction in different models, model-based tools can be used
to define, validate and guide the development of these considerate adap-
tive interactions. Once the models have been adjusted to fit with the
user needs, a final software solution can be obtained. The derivation of
a software solution from the system specification is described in Chap-
ter 6, and detail on the tool support and the validation of the system
specification is provided in Appendix A.

The following sections provide further details on each one of the
design stages, describing the concepts that are captured to specify the
considerate services’ interactions. These concepts are later used to ob-

5.2 Obtrusiveness requirements definition 109

tain an implementation and guide the adaptation of the interaction at
runtime.

5.2 Obtrusiveness requirements definition
The first step in the design phase is to understand the users and cap-
ture their needs and preferences. This information will determine the
obtrusiveness behavior of the different services according to each user
needs. The activities involved in this stage are detailed below.

5.2.1 User interviews and observations
Users of a software system should be the main focus of the design effort,
thus, it is important to understand their needs and how they are going to
use the system. Interviewing and observing users give analysts insights
about how the user behaves and thinks about things and the effect that
the system may have on the user (Cooper et al., 2007).

Important information to learn from users in order to help in the
system specification includes:

• The current behavior of users in their daily life.

• The context of how the different ubiquitous services fits into their
lives: what, where, when, why, and how the services will be used.

• Current services that users have and how they use it.

• Goals and motivations for obtrusiveness adaptations or new ser-
vices.

• User’s background in technology and ubiquitous devices.

• Problems and frustrations with current services and their behavior
(e.g., intrusion problems).

110 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

As most people are incapable of accurately assessing their own be-
havior when they are outside the context of the situations, it is recom-
mended to combine interviewing with observation. This allows design-
ers to clarify questions and ask direct inquiries about situations and
behaviors they observe in real time.

This activity falls out of the scope of this thesis. Any user research
technique can be used to identify these requirements. Specifically, we
have based the analysis on the ethnographic interviewing techniques
proposed by Cooper et al. (Cooper et al., 2007). They provide general
methods and tips for preparing and conducting ethnographic interviews
for a successful design. It is worth noticing that this activity is very
important for designers to truly understand the users, their needs, and
their motivations, and also to obtain a solid design concept based on
qualitative user research.

5.2.2 Persona definition
Having analyzed the users to understand their lives, motivations, and
environments, the next step is to describe all the information captured
into descriptive models of users. To this end, we make use of Personas
(also known as User Profiles). A persona is a summary representation
of the system’s intended users, often described as real people (Brown,
2010). They provide a framework for describing the target audience in
a way useful to design and personalize systems.

Personas are used to synthesize the relevant information of the audi-
ence to help drive modeling and detect common functionalities between
users. From the software engineering side, different mechanisms exist
in order to define the relationship between users and their performed
activities such as UML Use Case Diagrams (Rumbaugh et al., 1998a),
ConcurTaskTrees (Mori et al., 2002), and Business Process Modeling
Notation (BPMN) (OMG, 2006a). However, as Cooper states (Cooper
et al., 2007), personas are the strongest models that can serve as tools
for the interaction designer and they are usually used in the design of
user-centered approaches. According to the users, personas give a much
more concrete picture of typical users, providing features that directly

5.2 Obtrusiveness requirements definition 111

Layer	1:
Establishing
Requirements

Layer	2:
Elabora�ng
Rela�onships

Layer	3:
Making	'em	Human

Name

Key	Dis�nguishing

Descrip�ve
Dimensions

Objec�ves	&	
Mo�va�ons

Source

Concerns

Scenarios

Quotes

Personal	Background

Photo

System	Features

Demographic
Informa�on

Technology	Comfort

Figure 5.3: The elements of a persona prioritized into three layers

address specific user needs (Gulliksen et al., 2005). Thus, it is interest-
ing the use of them in this work where we directly address specific user
needs.

Personas describe target users of the system, giving a clear picture
of how they are likely to use the system, and what they will expect
from it (Brown, 2010). They capture relevant information about users
that directly impact on the modeling process: user goals, scenarios,
tasks, and the like. Although these user profiles are depicted as specific
individuals because they function as archetypes, they represent a type
of user. Users are grouped into personas, and the personas are analyzed
to facilitate service personalization at a person level.

However, a user does not always need to be of the same type. A user
can evolve and services have to be continuously adapted to the needs
of each moment. For example, in an online banking system, the needs
of a user can evolve from the New Customer group to the Regular User
group. So, the system will have to adapt the services provided based
on the new profile.

There is no standard format for personas, and different approaches
are offered. Regardless of the selected approach, personas should ex-
press what users need and what they expect, containing the majority
of the user research findings. In this work, we follow the notation de-
fined in (Brown, 2010) to determine the needs of each user and the
functionality required.

112 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

In this notation, the information is structured following three lay-
ers of detail. Figure 5.3 shows the elements of a persona prioritized
into these three layers. Layer 1 contains the fundamental elements to
establish user requirements. These elements are: the name of the per-
sona, some key features that distinguish the user group from others,
descriptive dimensions that are individual scales representing knowl-
edge, tasks, interests and characteristics, the objectives and motivations
of the persona within the scope of the system and annotations of the
data sources. These elements can be complemented with information
of the other layers such as the concerns of the personas that will influ-
ence their experience with the system, the scenarios and circumstances
that set the stage for an interaction between a user and a system, the
personal background, a photograph of the persona, etc.

According to these elements which characterize a persona, designers
can define the functionalities and tasks that users need to achieve their
objectives and motivations. Moreover, it can be detected common func-
tionalities between personas and these functionalities can be expressed
in terms of obtrusiveness. Considering system services in the context of
a type of user makes easier to determine the way to provide a service
personalized to the user needs. For example, services for a busy user
have to be defined avoiding overwhelming user attention.

Figure 5.4 shows an example of a persona for a Smart Home system.
This persona gives a detailed picture of a typical “busy user” that wants
to use Smart Home services to simplify his life and to help him in
optimizing his time. This excerpt of a persona provides the basics of
user’s needs and behaviors. Through careful analysis of this persona,
designers can deduce that (1) the user wants Smart Home services for
helping him in home tasks not to waste time, (2) he wants to be aware of
pending tasks related to home and work, (3) he hopes the system does
not disturb him when he is busy, and (4) he prefers as many services as
possible.

Information captured in the personas model corresponds to the
user requirements or needs structured in goals-scenarios-system fea-
tures. Designers use this understanding of people to determine what
services personas require to accomplish their goals and how the services

5.2 Obtrusiveness requirements definition 113

Bob Berry · The busier
Familiar to Smart Home services

Behaviors Objectives

ACTIVITYLow High

BREADTH
One

service
Many
services

VENUE
One

channel
Many
channels

· Optimize time

· Don't forget tasks

· Don't be disturbed

· Keep track the items to buy

· Keep the house up-to-date

· Record favorite programs

Scenarios Concerns

· How can I do not forget important tasks and

events?

· I am often in meetings. How can I make sure the

system does not interrupt me?

· I am very busy. How can I make sure I maintaing

the house up-to-date?

· Be aware of pending tasks

Bob has a busy lifestyle. He has lots of meetings and trips. He sometimes forgets important tasks

he has to do such as deadlines or meetings and other tasks that are less important but they are

important for him such as recording his favorite program, birthdays, etc. He hopes be aware of

pending tasks and events when it was required.

· Optimize time

Bob usually goes walking to the work. He passes in front of several supermarkets backing home

but he never remembers that he has items to buy and he has to return later. He wants to be

aware that he has items to buy when he is nearby to the supermarket avoiding having to return

later.

Background

Bob is a single man who works in a big company

and he lives alone in a house with swimming pool.

He has 32 years old. He works a lot because ...

Figure 5.4: Excerpt of a persona

are presented in terms of obtrusiveness. This is done by the designer
manually since there is no explicit characteristic of the impact of obtru-
siveness on the requirements. Then, this information will be formalized
in the models of the next phase by the designer in order to be automat-
ically processed in the development phases.

5.2.3 Services and obtrusiveness definition
From the definition of personas, designers have to determine what infor-
mation and capabilities our personas require to achieve their needs and
how this information is provided in terms of obtrusiveness. This is per-
formed by detecting the services of the system and their obtrusiveness
degree according to the user situation (user context). By establishing
the degree of user attention that a service needs, we avoid developing
overwhelming services. These concepts are expressed together in the
models of the next phase.

For example, the services detected from the synthesis of the persona
of Figure 5.4 are: a shopping list to keep track the items to buy, an

114 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

agenda that notifies him important tasks, a video recorder that records
his favorite programs, and a supermarket notification to remember him
that he has items to buy.

Service Attentional Context to
Demand Consider

Shopping List low attention, user activity
high attention (shopping, eating, cooking)

Agenda slightly attention, message priority, deadline
high attention of task, user status

(alone, with company),
user activity
(working, in a meeting, etc.)

Video low attention, program priority, user activity
Recorder slightly attention (watching the TV, out of home)

Supermarket slightly attention, location of user, number
Notification high attention of items to buy, user activity

(driving, walking, running)

Table 5.1: Service analysis for the Bob Persona

For these services detected, the degree of attentional demand re-
quired according to the user context is: low attention for managing the
shopping list, although the user can add items manually, slightly or low
attention for the video recorder service depending on the program to
record and the user situation whether he is watching the TV or he is
not at home, and high or slightly attention for the supermarket notifi-
cation. The agenda to notify important tasks could require slightly or
high attention depending on the priority of the task for the user and his
user situation (working, in free time, in a meeting, etc.). The priority of
the task can be set up by the user in their preferences. Table 5.1 shows
a summarized view of the service analysis results for the Bob persona.
The table shows the services needed for the persona, the attentional
demand and the contextual aspects that can affect the obtrusiveness
adaptation.

5.3Modeling 115

Some other personas could require other services and different at-
tentional demand for information presentation and interaction with the
services depending on their needs. Thus, personas will guide subsequent
adaptations in information presentation, modality and interaction style.
In order to personalize the services and provide them with a degree of
obtrusiveness that fit each user type, designers define the services in
terms of obtrusiveness according to the personas in the modeling phase.
This is detailed in the next section.

It is worth noticing that the purpose of personas is not to give a
complete theoretical model of a user. Instead, it is aiming at a simple,
but good enough description of the user to allow designers detect the
services needed and the level of obtrusiveness which need each type of
user.

5.3 Modeling
Once the obtrusiveness requirements are captured, the different models
that characterize the interaction obtrusiveness adaptation are defined.
First, the attentional demand required for each service is defined in
terms of obtrusiveness according to the personas analysis. Also, the
context is formalized by defining the properties that can affect the user’s
situation. Once the possible obtrusiveness levels for each service are
specified, the appropriate interaction resources can be selected from the
ones available. These abstract models are complemented with others
that provide a more concrete representation of the service components
such as the concrete interaction components that are going to represent
the user interface elements available and optionally the architecture
of the components that form the system (this model is only used for
implementation purposes and introduced in Chapter 6). The interaction
designer is the role in charge of this phase (henceforth, we well refer to
it as designers).

The different steps carried out in this phase and the models involved
are detailed below.

116 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

5.3.1 Obtrusivenessmodeling
We make use of the implicit interaction framework presented in (Ju and
Leifer, 2008) to determine the obtrusiveness level for each interaction
in the system. This framework helps designers to create interactions
that are more socially appropriate, focusing on the manner in which
the devices interact with the user. Figure 5.5 shows the two dimensions
to characterize implicit interactions: attentional demand and initia-
tive. Attentional demand is the degree of cognitive and perceptual load
imposed on user by the interactive system. According to this factor,
foreground interactions require a greater degree of focus, concentration
and consciousness, (the user is fully conscious of the interaction) while
background interactions are peripheral and elude the user’s attention
(the user is unaware of the interaction with the system). Interactions
that are initiated and driven by the user explicitly are called reactive
interactions, while interactions initiated by the system based on inferred
desire or demand are proactive interactions.

PROACTIVEREACTIVE

BACKGROUND

FOREGROUND

do	this!

user
commands

interac�on
at	hand

hey!

alert
direc�on

inferred
needs

implicit	command
external	es�muli

automated
tasks silent	ac�on

ambient
agents

ini�a�ve

a�
en
�o

n

Figure 5.5: Conceptual framework used for the definition of implicit interac-
tions.

Other frameworks and taxonomies on automation levels were stud-
ied. Sheridan and Verplanck (Sheridan and Verplank, 1978) developed
a taxonomy to classify the level of automation. The taxonomy incorpo-

5.3Modeling 117

rated issues of feedback (what the human should be told by the system),
as well as relative sharing of functions determining options, selecting
options and implementing. Alternative forms of this taxonomy were
discussed in the literature (Endsley and Kaber, 1999; Wei et al., 1998).
Endsley and Kaber (Endsley and Kaber, 1999) demonstrated the level
of automation effects on performance, situation awareness, and work-
load in a dynamic control task. Wei et al. (Wei et al., 1998) suggested a
model for the appropriate degree of automation of different tasks based
on a tasks effect on system performance and its demand on the op-
erator relative to other tasks. However, all of these scales of degrees
of automation focus on the traditional explicit human-machine interac-
tion and do not address the implicit interaction issue. Other frameworks
exist for the definition of implicit interactions (Horvitz et al., 2003; Bux-
ton, 1995). However, we found it very useful to consider initiative and
attention as independent concepts. In the case of mobile interaction
adaptation, automation (initiative) and user awareness (attention) are
factors that usually vary independently from service to service (e.g., an
automated task can require the user to be aware of it or not depending
on different contextual factors such as the user workload or the user
location).

According to our proposal, once the services are defined for each per-
sona, designers must indicate the possible obtrusiveness levels for each
service according to user needs and the context of use. The conceptual
framework used in this work defines two axes to represent obtrusive-
ness. For each persona, we take this space and make different divisions
of each axis. This constitutes the unobtrusive adaptation space.
Designers can divide this space into many disjoint fragments as they
need to provide specific semantics to each fragment. The only rule that
must be followed when dividing an axis is that the ordering must be
preserved in each axis for the defined values. In our approach, we use
these divisions to drive the selection of the interaction mechanisms that
are better suited for each situation.

Figure 5.6 shows the linkage between different services for the Bob
persona (see Table 5.1) and the unobtrusive adaptation space for the
interactions that support the services. The initiative axis in this case

118 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

re
ac

ti
ve

p
ro

ac
ti

ve

awareslightlyinvisible

in
it

ia
ti

ve

User is notified about to record a program.
His/her favorite program is recorded without
notification. Other programs are suggested
to record (but in different manner depending
on the user's currect activity)

Video Recorder service

attention

Shopping List
Services:
SSL

SA Agenda

Video RecorderSVR

SS Supermarket SSL

SA

SVR
SVR SVR

SS

SASA User is notified about a task to do, increasing
the attentional demand as the task deadline
approaches or the priority is high. User can
initiate the interaction if he/she sees the
pending tasks.

Agenda service

SSL

User can add an item to the shopping list
manually or the item can be added by the
system automatically when it runs out.

Shopping List service

SS

User is notified about a
supermarket nearby when

he/she is around it.

Supermarket service

Figure 5.6: Services at different obtrusiveness level according to the Bob per-
sona

is divided in two parts: reactive and proactive. The attention axis
is divided in three segments which are associated with the following
values: invisible (there is no way for the user to perceive the interaction),
slightly-appreciable (usually the user would not perceive it unless he/she
makes some effort), and user-awareness (the user becomes aware of the
interaction even if he/she is performing other tasks). Designers can
divide each axis in as many parts as they require for describing the
obtrusiveness level of the services.

In this particular example, the services needed for Bob are located
in the unobtrusive adaptation space according to his needs and con-
textual information detected in the previous stage. For example, the
service to record a TV program is offered at different obtrusiveness level
depending on different context conditions. The program is recorded au-
tomatically in an invisible manner if it is the favorite program of the
user and he is not watching it. For other programs, according to the user
preferences, a suggestion is provided to the user about the possibility
to record it. This suggestion interrupts the user in a different manner
depending on the activity he is engaged in. For example, if the user is
attending a meeting or driving, suggestion will be provided in a subtle
manner (slightly-appreciable level of attention) in order not to disturb
him. Another services, such as the agenda, can increase the attentional

5.3Modeling 119

demand required as the deadline of a notification approaches if the user
is not still aware of it.

These divisions allow designers to classify the different services ac-
cording to the interaction obtrusiveness required at each moment, tak-
ing into account implicit and explicit interactions. In this way, designers
can later choose the interaction modalities that best fit these obtrusive-
ness requirements captured. More detail on the interaction modalities
chosen is provided in the next section.

Defining transitions
During runtime, interaction with a service is offered in only one of the
obtrusiveness levels that are determined by the partitions of the unob-
trusive adaptation space. Nevertheless, this obtrusiveness level can be
modified in response to changes in the user situation. Designers can de-
fine transitions (see Figure 5.6) that link user situations with changes in
the obtrusiveness level. Each transition is composed by a user situation
and an action. When a user situation is fulfilled, the obtrusiveness level
is modified by changing the attention level, the initiative level, or both,
as defined by the action.

In this work, user situations are expressed as logic rules that check
for values in the ontology-based context model. Thus, in order to allow
the definition of transitions, the corresponding rules must be defined
and the context information that use the rules must be included in
the context model. More detail regarding the definition of the rules
for defining the user situation is provided on the next subsection (5.3.2
Context modeling).

Adaptation actions produce an impact on the obtrusiveness level
of a service. When a user situation of a given transition is fulfilled,
the corresponding action is performed. An action is defined as a tuple
(obtrusivenessAxis, destinationLevel), where the obtrusivenessAxis is
the name of the axis (e.g., Attention or Initiative) and destinationLevel
is a particular value for an axis.

The destinationLevel can be expressed in either a relative or absolute

120 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

manner. A relative destination is specified as an increment or decrement
of the obtrusiveness level for one or both axes (e.g., an increment of
two levels for attention and a decrement of one level for initiative).
An absolute destination represents the particular value for one or both
axes. For example, the user situation withCompany is associated to the
transition T as follows (an absolute destinationLevel is used):

TwithCompany = {(Attention, slightly-appreciable), (Initiative, proactive)}

This means that when the system senses the user is with company
(according to the user situation), it must adapt the interaction for the
service associated to this transition to adjust the obtrusiveness level to
(slightly-appreciable, proactive) level.

The use of relative or absolute actions depends on the specific se-
mantics that designers are using. Nevertheless, the relative actions al-
low to specify changes in the obtrusiveness level that are sensitive to
the current obtrusiveness level. For example, in the agenda service, we
can define a relative action that produces an increment in the attention
axis each time a deadline approaches and the user is not still aware of
it.

In the case that multiple user situations are fulfilled at the same
time, contradictory actions may be triggered, i.e., a movement in the
unobtrusive adaptation space performed in different (possibly opposite)
directions. To resolve this conflict, actions are aggregated before they
are applied. This process involves the following steps:

1. Absolute actions are expressed as relative actions. This is done
by calculating the increment that is required to reach the desired
destination from the current obtrusiveness level. For example, if
the attention axis is divided in three parts and the current task is
performed at the invisible level, an action that requires attention
to be at the aware level is represented as an increment of 2 units
for this axis.

2. Actions are aggregated. The median is calculated for all the rel-
ative increments of the different actions for each axis to obtain

5.3Modeling 121

an average increment. The rationale behind this is to obtain the
average movement in the unobtrusive adaptation space. We use
the median instead of the mean in order to avoid extreme results
to affect the changes in the obtrusiveness level.

3. The resulting action is applied. The current initiative and atten-
tion levels are modified according to the increment obtained by
aggregating the different actions. In this way, only a single obtru-
siveness change is performed.

5.3.2 Contextmodeling
Mobile and ubiquitous devices accompany users throughout all of the
day, operating within a context of significant constraints and environ-
mental distractions. They need“awareness”of several contextual factors
including social, psychological, physical, and the like (Tamminen et al.,
2004). Different types of context can be considered for mobile and ubiq-
uitous computing (Maiden, 2009):

• Computing context is everything related to computational resources,
such as available networks, network bandwidth, communication
costs, and nearby computational resources such as printers.

• User context is information about the user interacting with the
device, such as a profile (e.g., age), location (e.g., geographic po-
sition), proximity (e.g., distance to another person), preferences,
skills, etc.

• Physical context involves factors in the environment of the device
with which the user interacts, such as temperatures, noise levels,
and speed and lighting levels.

• Time context involves information such as absolute time, date,
and day of the week.

According to the previous classification of contextual information,
the adaptation of the interaction obtrusiveness deals directly with in-
formation related to the user, physical and time context. For example,

122 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

the presence of a close friend in the nearby area (user context) can be
notified to the user at a foreground level of attention compared to the
presence of other people with a further distance in their social network
which can be queried on demand by the user (i.e. reactive behavior is
used). Computing context could also be considered, adapting interac-
tion according to the different devices that the user possesses, but we
do not consider this adaptation in the present work.

For context modeling, we use an ontology-based context model that
leverages Semantic Web technology and OWL (Web Ontology Lan-
guage) 1. OWL is an ontology markup language that enables context
sharing and reasoning. In the Artificial Intelligence literature, an ontol-
ogy is a formal, explicit description of concepts in a particular domain of
discourse. It provides a vocabulary for representing domain knowledge
and for describing specific situations in a domain. An ontology-based
approach for context modeling lets us to describe contexts semantically
and share common understanding of the structure of contexts among
users, devices, and services. The main benefit of this model is that it
enables a formal analysis of the domain knowledge, such as performing
context reasoning using first order logic.

The ontology used in this work is described in OWL as a collection
of RDF2 triples, in which each statement is in the form of (subject,
predicate, object). The subject and object are the ontology objects or
individuals and the predicate is a property relation defined by the ontol-
ogy. For instance, (Bob, usersInLocation, bedroom) means that Bob is
located in the bedroom. Figure 5.7 shows the class diagram of our used
ontology. Information regarding the user environment, the services of
the system, the users, the temporal aspects and the events that happen
in the system are represented in this ontology. For more information
about the structure and population of this ontology see (Serral, 2011).

It is important to note that we have used this ontology because
it covers the core context needed for interaction adaptation purposes.
However, other context information specific for a system may be needed.

1http://www.w3.org/standards/techs/owl
2http://www.w3.org/RDF/

5.3Modeling 123

*
*

*

*
** *

*

*

*

*
*

Figure 5.7: OWL Ontology classes (Serral, 2011).

In this case, the ontology can be easily extended with new classes to
cover this information. In particular, we have extended the ontology
by adding the userSituation class to properly describe the current sit-
uation of the user, and the relationship currentSituation that link the
Person class with the userSituation class. The information of this class
is inferred by means of rules as explained in the next subsection.

Figure 5.8 shows an example of the context model using a graphical
tree representation in OWL format. In this figure, some of the classes
and properties of the used context ontology are shown as well as some
individuals created as examples.

Defining user situations

124 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

Figure 5.8: An example of the OWL ontology context model.

Given the above ontology, the context processing mechanism that is in
charge of keeping contextual information consistent with the real world
and inferring the current user situation is based on logic rules. These
rules aggregate and filter low level information and generate meaningful
events or user situations. For example, Listing 5.1 shows a rule to infer
when the user is with company:

Listing 5.1: Example of the withCompany rule.

[withCompany: (?user rdf:type pros:Person)
(?user pros:usersInLocation ?location)
(?person1 rdf:type pros:Person)
(?user pros:knows ?person1)
(?person1 pros:usersInLocation ?location)
(?user pros:socialRelationships ?person1)
->
(?user pros:currentSituation pros:withCompany)]

By aggregating and filtering context events we can obtain user sit-
uations that are relevant for the interaction obtrusiveness adaptation.
For example, a change in the user’s location can trigger the change of
the information of another entity (pros:currentSituation).

We have a rule repository that contains a set of logic rules. Rules are
manually added in the rule repository by designers, but they can also

5.3Modeling 125

be re-defined by users by means of a Situation Specification Interface.
This is further explained in Chapter 7.

5.3.3 Interaction variability modeling
Depending on the obtrusiveness degree in which a service is performed,
interaction will be offered in a different manner. The obtrusiveness
level determines the type of interaction offered to the user. Thus, the
appropriate use of a modality or modality combinations can play a
crucial role, attenuating the required attention (de Sá et al., 2010).
In this way, we aim to adapt interaction in terms of obtrusiveness to
the user’s current environmentally attentional resources by choosing the
appropriate interaction techniques.

Devices can interact with users through different modalities. Modal-
ity taxonomies have been proposed to serve as theoretical foundations
for understanding and describing modalities (Bernsen, 1994; Bachvarova
et al., 2007; Chittaro, 2010). A modality is a way of exchanging informa-
tion between humans and machines in some medium (Bernsen, 1994).
According to Bachvarova (Bachvarova et al., 2007), at the perception
level we can distinguish between visual, auditory and haptic modalities.
Visual are the modalities that are perceived through the visual sensory
channel, for example written text or images. Auditory modalities are
perceived through the auditory sensory channel, for example speech or
music. Haptic modalities are related to the sensory system of touch.

However, there is not a universal interaction technique that is well
suited for any situation. Studies have been made to evaluate the effects
on the cognitive load of the different modalities and to detect the appro-
priate combinations of modalities (Mayer and Moreno, 2003; Cao et al.,
2009; Haapalainen et al., 2010). Results shown that the selection of an
appropriate interaction modality depends on (1) the user situation
and (2) their effects on cognitive load.

Table 5.2 presents a summarized information of the output modal-
ities considered in this work based on the existing multimodal design
taxonomies and frameworks (Bernsen, 1994; Bachvarova et al., 2007;
Obrenovic et al., 2007; Lemmelä et al., 2008). This table shows the

126 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

Output Visual Auditory Haptic
Modality

Sensory Visual Auditory Touch
channel
Pros High-specificity, Usable when user’s Discreet, usable

supports privacy focus not on screen, when user’s focus
obtrusive/ not on the screen,
draws attention reduce interruptions

Cons User’s focus needs Not usable in Limited amount
to be on a task noisy environment, of information
and screen, not when privacy needed, (understandability),
usable under certain social interference,
glaring sun situations, obtrusive perceivability

(body contact
needed)

Properties Highlighted, size, Volume, Frequency,
spatial relations, frequency, amplitude,
temporal relations, timbre, rhythm,
iconic rhythm vibration pattern
representation

Suitability In home, office, Driving, sporting, In meeting, public
for context public places, certain outdoor (noisy) places

deafness situation (bright
sunshine), blindness

Manifesta- Graphical icon, Beep, synthetic Vibration, force
tions text, image, speech, music, feedback,

graph, map, lights acoustic alarm temperature

Table 5.2: Summarized information of output modalities

strengths, limitations and properties of the different modalities. The
three main modality types include a set of manifestations of output
modalities. For example, manifestations of the auditory output include
beeps, synthetic speech, music, and acoustic alarm. Each manifestation
has its own features, based on which it can be identified and selected
for use. The purpose of this table is to identify modalities and modality
combinations best suited for different situations and information pre-

5.3Modeling 127

sentation needs. This table helps to model the interaction variability in
terms of obtrusiveness.

FeatureModeling
In order to define the interaction variability of ubiquitous and mobile
devices according to the obtrusiveness levels, we make use of Feature
Models (Czarnecki et al., 2004). Specifically, a feature model is used in
our approach to represent interaction modalities and modality combi-
nation as well as describe their variability. Feature models enable us to
specify not only current interaction features of a system but also poten-
tial features since they may be activated in the future. We argue that
in response to changes in the obtrusiveness level, the system itself can
query this feature model in order to determine the necessary modifica-
tions to its interaction components. For example, a notification service
can trigger the activation of both visual and auditory features when it
requires more attention of the user due to the priority of the message
or the user situation (e.g., user alone).

We chose feature modeling because (1) it offers coarse-grained vari-
ability management, (2) it facilitates the representation of interaction
modalities in a taxonomic way, (3) it allows us to introduce variabil-
ity in the interaction specification, and (4) it has good tool support
for variability reasoning (Benavides et al., 2005). Feature modeling is
widely used to describe a system configuration and its variants in terms
of features (coarse-grained system functionality). In our work, a feature
is a distinctive user-visible aspect or characteristic of the interaction. In
these models, features are hierarchically linked in a tree-like structure
through variability relationships such as optional, mandatory, single-
choice, or multiple-choice, and are optionally connected by cross-tree
constraints such as requires or excludes.

Besides describing the relevant aspects of the system, feature models
have proven to be effective in hiding much of the complexity in the
definition of the adaptation space (Cetina et al., 2009). We make use of
feature models to reflect the terms in which the interaction is perceived
in an abstract manner and the constraints that exist for their selection.

128 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

Visual Auditory Hap�c

Sound Speech Vibra�onLightsPropertyText Image

Op�onal
Mandatory
Single	Choice
Mul�ple	Choice
Requires
ExcludesMomentaryIconic Quick

ViewHighlight

Interac�on
Modali�es

Configura�on
Variants

Radio

ScanningPoin�ngTouching

Figure 5.9: Feature model of output interaction modalities.

Using feature models, we provide an intensional description of the
interaction possibilities (as opposed to an extensional description of all
the possibilities) without designers having to define the interaction re-
quirements for each user situation. In this way, we obtain common
interaction aspects between user situations. For example, the interac-
tion provided for a user in a noisy environment shares several interaction
features with the interaction provided for a user with an auditory im-
pairment (e.g., visual modalities).

We have defined our feature model based on the studies previously
mentioned. Figure 5.9 shows the defined feature model to represent
visual, auditory, and haptic modalities and the constraints for their se-
lection. It also includes radio modalities that correspond to the kind of
interactions between the users and the physical elements. For example,
users can access the services that are associated with an element either
by pointing to the element, touching it, or scanning nearby elements
with their mobile device. These are only some examples of the interac-
tion techniques that have been defined for the interaction between users
and their surroundings in the literature (Broll et al., 2008; Rukzio et al.,
2006).

The grey features of Figure 5.9 represent the Interaction Configu-

5.3Modeling 129

ration (IC) for a service in a particular obtrusiveness level, while the
white features represent potential variants since they may be activated
in the future if another obtrusiveness level is required. For example,
the user can be in a meeting and interaction with a service should be
adapted to this situation, offering a more subtle interaction with the
system (e.g., deactivating the sound modality and activating the vibra-
tion modality). The IC of the feature model of Figure 5.9 is defined as
follows:

ICFigure5.9 = {InteractionModalities, Auditory, Sound,

V isual, Property,Highlight, Text,Radio, Pointing}

Each IC of the feature model is defined by the set of feature states.
The feasible feature states are: active and inactive. It is the task of
designers to define the possible interaction configurations in which a
feature model can evolve. These configurations are validated using the
FeAture Model Analyzer Framework3 (FAMA) in order to ensure a con-
sistent interaction adaptation. More detail about this validation is pro-
vided in Appendix A.

The definitions that are contained in the feature model are by no
means considered universal. The feature model is intended to capture
the perspective that designers have about interaction. It can be used to
model another interaction techniques and constraints adapted to each
particular project requirements. In the example, we have considered
that an interaction element can be either visual or auditory, which is
obviously a simplification since many common widgets normally com-
bine these aspects (e.g., to offer feedback to the user).

Mapping to obtrusiveness
Once the unobtrusive adaptation space and the interaction variability
are modeled, we relate these models to match the appropriate interac-
tion configuration to each service in an obtrusiveness level. Specifically,

3http://www.isa.us.es/fama/: FAMA framework

130 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

this relationship is represented by means of a dependency relationship
between the metaelements of the different metamodels, i.e, an obtru-
siveness level element has associated a set of features (configuration
element) of the feature model.

This process to select the modalities that best convey the interaction
context is called Modality Allocation (Karagiannidis et al., 1997). This
selection is based on the studies of the effects on cognitive load of each
modality and modality combinations previously mentioned. For exam-
ple, an image uses less mental workload than a text, and visual-auditory
combinations impose less cognitive load than visual-visual combina-
tions (Cao et al., 2009). The auditory modalities are useful for attention
alerting (Reeves et al., 2004), and the vibration or lighting feedback do
not interrupt other activities (Savio and Braiterman, 2007).

Each obtrusiveness level will have an IC associated to it. This will
determine when a feature must be activated/deactivated (depending
on the attention required). For example the IC of the feature model
of Fig. 5.9 is assigned to the (aware, proactive) obtrusiveness level as
follows:

Obtrusiveness(aware,proactive) = CCFigure 5.9

It is worth noticing that for the invisible attentional demand we
do not assign an explicit configuration since these interactions occur
without the explicit behest or awareness of the user. These interactions
are more presumptuous because user does not have the opportunity to
oversee and possibly cancel the action of the service.

5.3.4 Concrete interactionmodeling
Since features represent coarse grained functionality, there is a need to
detect which concrete interaction components are represented by each
feature. This concretizes the abstract interaction features to address
interaction adaptation at a concrete level of abstraction. In this way,
we can adapt at abstract level and determine the impact of the change
in the concrete components.

5.3Modeling 131

For the purpose of this work, we assume a concrete interaction model
that is organized in a tree structure allowing a flexible composition of the
interaction elements. In this structure, components can be contained in
other components following a hierarchical representation that allows an
easier definition of UIs as seen in iOS or Android UIs. This node-based
user interface provides an easier node substitution (to adapt UIs at run-
time), since components can be dynamically activated and deactivated.
Component-based architectures have been identified for their multiple
adaptation possibilities such as addition of new components or interface
reconfiguration (Grundy and Hosking, 2000). Moreover, this interface
structure can be used for any platform that has a component-based
user interface such as Android, iOS or any user interface following the
composite pattern.

In our work, the nodes represent concrete interaction objects that
perform a specific functionality. They are any UI components that
the user can perceive such as graphical objects, text, image viewers,
UI controls, video viewers, widgets, and concrete resources available
in mobile devices to provide feedback such as the vibration, speech
synthetization, sound, etc.

Different representations exist in the HCI community to define the
concrete user interface such as UML class diagrams (da Silva and Paton,
2003), the XML User Interface Language (XUL) (Butter et al., 2007),
or Concrete Interaction Objects (CIOs) (Limbourg et al., 2004). These
descriptions also follow a hierarchical representation of containers and
components of the interface. Representing the interfaces using class di-
agrams can not give an intuitive visualization about the organization of
the associated interface. XUL and CIOs are based on the XML markup
language to specify the structure of the user interfaces supporting the
modalities graphical and auditory. Conversely, our node-based user in-
terface provides a very powerful, flexible, and intuitive way of working
with advanced interaction events and an easier support for animation,
multi-touch interaction and visual effects. Also, Android introduced ap-
plication fragments in Android 3.0 in order to help applications adjust
their interfaces and reuse different parts of the applications’ user inter-
face. This was introduced due to the need to support more dynamic

132 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

Group
Widget

Lights

Text
Button

Vibration

Speech

Image

Group
Notif.

Text

Pop-up
message

Status
Bar

Icon Text

Text Group
Button

Sound

Group
Audio

Alert
Setting

Group
Dialog

Interact.
comp.

Button

Group
item

Text
info.

Group
Map

Text Map

Group
Info.

Image

List

Text Image
select.

Figure 5.10: Concrete Interaction Components model.

and flexible UI designs when considering different conditions such as
large screens (tablets, TVs) or new interaction mechanisms. This user
interface composition is similar as the one we propose in this work.

An example of the concrete interaction components model is shown
in Figure 5.10. Users can interact with the services in several ways
depending on the obtrusiveness level selected for the service. In this
model, interaction can be offered (from left to right) using a list of
items or an interface showing a location map. A notification (Group
Notif. node) can be offered by a momentary pop-up message (pop-up
node) or by means of a notification window for persistent reminders
that come from the background and request the user’s response (Status
bar node), by an alert dialog that requires confirmation from the user
(Group Dialog node), or by an app widget to show information in a

5.3Modeling 133

subtle manner (group widget node). In conjunction to these modes,
flashing lights (lights node), vibration feedback (vibration node) and an
alert sound (group audio node) can be used. All of these components
are represented in the tree structure of the figure.

Mapping to interaction features
Designers must define how each feature in the feature model is specified
in the concrete interface model. To achieve this, each feature is mapped
into a set of nodes representing concrete interaction objects. This deter-
mines which UI components must be used to support each interaction
technique in a concrete manner. This model also allows the automatic
generation of user interfaces for a concrete platform. In this way, when
an interaction feature is activated for a given service, the corresponding
concrete UI components are activated too adapting the interaction.

Figure 5.11 shows an example of the mapping between the interac-
tion features and the concrete user interface components. For example,
the iconic modality is supported by the Group Notif. and Status Bar
nodes. Also, Speech modality is supported by the Alert Setting, Group
Audio and Speech nodes (see Fig. 5.11 (a)).

To illustrate the role that play the mapping in the adaptation pro-
cess, Figure 5.11 shows two interaction configurations of the feature
model. Part (a) of Fig. 5.11 shows an (aware, proactive) interaction
configuration for the recording service, while part (b) of Fig. 5.11 shows
a (slightly, reactive) configuration for the same service. Comparing
both configurations, a status bar is used for notifying the user about
to record a program in conjunction with speech interaction (a) because
the user is totally aware of the interaction. Then, the same notification
is presented by means of a widget in the home screen and the speech
interaction is changed by lights (b) for a more subtle interaction.

Specifically, we use a weaving model (Fabro et al., 2006) to perform
this mapping. This weaving approach enables us for scoping and con-
figuring the concrete interaction components model from a set of given
features. Weaving models are used to define and to capture relation-

134 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

RecordTVNotif(aware, proactive)

RecordTVNotif(slightly, reactive)

(a)

(b)

Visual Auditory

MomentaryIconic

Sound Speech

Hap�c

Vibra�on

Interac�on
Modali�es

Quick
ViewHighlight

LightsPropertyText Image

Speech

Group
No�f.

Status
Bar

Icon Text

Group
Audio

Alert
Se�ng

Interact.
comp.

Visual Auditory

MomentaryIconic

Sound Speech

Hap�c

Vibra�on

Interac�on
Modali�es

Quick
ViewHighlight

LightsPropertyText Image

Group
Widget

Lights

Text
Bu�on

Alert
Se�ng

Interact.
comp.

Speech	feedback
No�fica�on:	
Fringe	is	going	
to	be	recorded

Lights	feedback

Figure 5.11: Relationship between features and interaction components.

ships between model elements. Relationships between model elements
are present in many different application scenarios, such as specification
of transformations, traceability, or model alignment. We use the weav-
ing models to define the relationships between features and interaction
components of the concrete interaction components model.

Consider a weaving model (Wm) between a Feature model (Fm)
and a Concrete Interaction Components model (Im), denoted by the
triple < Wm,Fm, Im >. Wm contains a set of elements that link a
set of elements of Fm with a set of elements of Im. Specifically, the
weaving model states that each interaction feature in the feature model
has a one-to-many relationship to elements in the concrete interaction
components model.

5.4 Simulation 135

Thanks to the introduction of an abstract description of interaction
and the mapping to the concrete interaction components, designers can
deal with high level concepts closer to the requirements and they can
determine directly the impact on the concrete interaction components
that support those requirements.

5.4 Simulation
The previous sections introduced a design method for the definition of
adaptive service interactions in terms of obtrusiveness. However, when
an adaptive system is designed, there is no guarantee that the resulting
adaptation could met the user expectations. The User-Centered Design
(UCD) cycle suggests to perform simulations of a scenario before it is
finally implemented. Simulations are a kind of drama where devices are
props, environments are stages, users are actors, and user experiences
have internal narratives (Kuniavsky, 2010).

This section provides techniques based on UCD for the evaluation
of the impact for users of the interaction obtrusiveness adaptation when
they are performed in the real world. De Sá and Carriço (de Sá and
Carriço, 2006) showed that prototyping techniques can be determinant
during the consequent evaluation stages, allowing users to freely inter-
act with the system, improve them and use them on realistic settings
without being misled. In this section, we introduce a technique for the
early-stage evaluation of interaction obtrusiveness adaptation of ser-
vices by means of fast-prototyping. Our research results show that even
through the proposed prototypes can be built quickly, they are capa-
ble of reproducing a level of user experience that is considered to be
very close to what users expect from a final system. Thus, flaws in
the adaptation design can be detected before efforts are put into the
development of the final system.

5.4.1 Requirements for the evaluation

136 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

Researchers have shown that evaluating ubiquitous systems can be dif-
ficult (Neely et al., 2008). Many factors required for the evaluation
of a system cannot be reproduced in a lab, but in-situ evaluation is
also challenging and not feasible in many cases. Since a one-size-fits-all
approach for evaluating ubiquitous systems is unrealistic (Neely et al.,
2008), we have analyzed the specific application domain we are targeting
and propose an evaluation model that fits the detected requirements.
We detected the following challenges for the evaluation of the interac-
tion obtrusiveness adaptation of services:

Concurrent environment. The evaluation of an ubiquitous system
must take into account the integration with the rest of the ac-
tivities that the user is involved in (Neely et al., 2008). This is
especially relevant for mobility, where users can be interrupted
and engaged in other tasks at the same time. Thus, a mobile ser-
vice must be evaluated considering the interleaving tasks in which
the user participates.

Physical conditions. Due to environmental changes, physical condi-
tions could get worse for users to interact with services (Yamabe
and Takahashi, 2007). In mobile computing scenarios, users move
around and the environment dynamically changes according to
that. Thus, interaction adaptation should be evaluated taking
into account these physical conditions and changing contexts.

Evaluation from the user experience. Interaction design is a key
factor that determines the user experience in the interaction be-
tween users and services (Kuniavsky, 2010). This aspect is af-
fected by different factors such as effectiveness (how good is the
adaptation?), efficiency (how fast is it?) and emotional satisfac-
tion (how good does it feel?). When evaluating interaction ob-
trusiveness adaptation, these perspectives should be considered:
user emotional perception of the adaptability and the productivity
increase for the system.

To fulfill the above requirements, we propose the use of early-stage
prototypes. Even at early-stage prototypes, the need for more detailed

5.4 Simulation 137

and carefully built prototypes that offer resembling pictures of final
solutions and their characteristics are suggested (de Sá and Carriço,
2009). These techniques enable iterative design, and provide frequent
feedback about the potential of the designs.

5.4.2 Fast-prototyping for interaction obtrusiveness adaptation
The goal of our evaluation method is to immerse the user in an envi-
ronment that makes the user feel as if he/she is using the final
system despite the fact that a non-functional prototype is being used.
The first step in the evaluation is to define a scenario according to the
user needs and the adaptation that is being designed. The scenario
should consider the concurrent nature and physical conditions of mo-
bile environment. According to this scenario, users are provided with a
script to guide their actions.

A mock-up is designed for each user interface offered in the dif-
ferent contexts. These mock-ups provide the user with the expected
interaction given a set of context conditions and user needs. Since the
users have to follow a script that conforms a specific role, it is easy to
anticipate the results that can be obtained. In addition, the availabil-
ity of powerful utilities to develop graphical user interfaces make this
approach quick to apply.

The adaptation of interaction for each service is simulated using
Wizard of Oz techniques (Dahlbäck et al., 1993). An operator provides
the current user interface according to the user situation using another
device (see Fig. 5.12). The operator is in charge of providing the prop-
erly user interface depending on the context of the user (e.g., providing
a service in the completely aware obtrusiveness level when s/he is hav-
ing breakfast). In this way, the user is immersed in an environment that
behaves like a working system with context-aware capabilities, but it is
much easier to produce.

In order to obtain fast-prototypes for interaction obtrusiveness adap-
tation of ubiquitous services, we have followed the steps described below
(see Figure 5.13).

138 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

The operator triggers

interface changes

The user follows the scenario

according to a script

Figure 5.12: Fast-prototyping evaluation applying Wizard of Oz techniques
and mock-ups.

Evaluate
the user
experience

Create
a video

De�ne
screen
mock-ups

De�ne
validation
scenarios

Simulation

Figure 5.13: The different tasks in the simulation stage.

1. Define validation scenarios where considerate interaction
adaptation is reflected. Specific scenarios (i.e., mini scripts
that describe different situations) are defined to illustrate the way
services’ interactions are adapted in terms of obtrusiveness. In
each scenario, one or several services are presented at different
obtrusiveness levels simulating key adaptations in the service in-
teraction behavior. For example, we can define a video recorder
service presented first in a reactive-invisible manner because it
begins to record automatically in reaction to the user leave, and
then the same service proactively notifies the user about to record

5.4 Simulation 139

the program in a subtle manner.

The resulting description is like a use case or user story in software
development, but more detailed and focused on the value of the
adaptation experience to people.

2. Define the screen mock-ups for each scenario. Depending
on the obtrusiveness levels considered in the scenarios, the interac-
tion is offered in a different manner according to the user situation
(e.g., as taskbar notification). Thus, the different screens needed
for the scenarios must be defined and links between screens must
be provided in a decoupled manner. The screen to be shown de-
pends on the current context of the user and his/her attentional
resources (i.e., user situation).

3. Create a video prototype of the proposed adaptations. A
conceptual video prototype is created to show the key concepts
of the interaction obtrusiveness adaptation. A video prototype
makes users to be familiar with the adaptations and provides a
quick exploration of the user experience by using our system. De-
signers can create a rapid video prototype in hours or few days
using consumer-grade video hardware.

4. Evaluate the user experience. The screen mock-ups and the
video prototypes support the interaction that is required for the
scenario defined. Evaluating the prototypes composed by the
mock-ups in naturalistic situations is essential to find key issues
to be taken into account in the next iteration. The prototypes en-
able designers with a quick and inexpensive way to evaluate and
assess the design ideas without implementing real and functional
solutions.

For the development of mock-ups two opposed requirements are
faced. We want mock-ups to be realistic but we also want them to
be very easy to develop. To face both requirements, we considered the
use of a set of Android and iOS utilities for the development of both
Android and iOS GUI applications. There are different WYSIWYG

140 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

user interface tools to visually design the way the app looks instead of
writing code. Some of these tools are the App Inventor for Android4,
the DroidDraw UI Designer5, or the Interface Builder6 for iOS. Using
these tools, we can quickly design UI layouts and the screen elements
they contain, with a series of nested elements. In particular, Android
has an XML-based layout file for each user interface. So, user interfaces
can be easily defined by means of this layout file.

Specifically, we have developed mock-ups for Android and iOS using
the ADT Plugin for Eclipse and DroidDraw UI Designer (for Android)
and the Interface Builder (for iOS). On the one hand, the ADT Plugin
offers a layout preview for the XML file. Also, we used DroidDraw UI
Designer to create the XML file since it is a graphical user interface
builder for the Android platform which generates the XML files from
UI designs. In particular, we used both utilities to achieve a look-and-
feel for Android. On the other hand, Interface Builder provides palettes
of user interface objects (e.g., text fields, data tables, sliders, etc.) to
develop user interfaces by simply dragging the interface objects from
the palette onto a window or menu.

Listing 5.2 shows an excerpt of a XML prototype developed for
Android.

Listing 5.2: Excerpt from the Android prototype.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android

"
android:orientation="vertical"
android:layout_height="fill_parent"
android:layout_width="fill_parent">

<TextView
android:id="@+id/SupermarketName"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Mercadona"

4http://appinventor.mit.edu
5http://www.droiddraw.org
6https://developer.apple.com/technologies/tools/

5.4 Simulation 141

android:textStyle="bold"
android:layout_marginLeft="10dip"
android:layout_marginTop="5dip">

</TextView>
<TextView

android:id="@+id/SupermarketAddress"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Calle del Gorgos, S/N, 46021 Valencia"
android:layout_marginLeft="10dip">

</TextView>
<ImageView

android:id="@+id/Map"
android:layout_height="wrap_content"
android:layout_width="wrap_content"
android:layout_marginTop="15dip"
android:scaleType="center"
android:src="@drawable/mapa2">

</ImageView>
</LinearLayout>

The code illustrated above is a layout file that represents one screen
mock-up. Each layout file must contain exactly one root element. Once
the root element is defined, additional layout objects or widgets can be
added as child elements to gradually build a View hierarchy that defines
the layout. Figure 5.14 shows some mock-ups of the Android prototype.
The rendering of the XML layout file showed above is shown in the top
right of the figure.

The proposed technique makes it easy to apply the scenario defined
in an environment that is close to the real one since it does not require
much infrastructure. To apply this approach we only need WiFi con-
nectivity, a mobile device and a physical environment that is similar to
the real one.

5.4.3 Models refinement
In order to obtain valuable feedback from users and evaluate their user
satisfaction with the design, a questionnaire is used. This questionnaire
uses questions from the IBM Post-Study questionnaire (Lewis, 1995) in

142 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

Figure 5.14: Android prototype

conjunction with the questionnaire defined by Vastenburg et al. (Vasten-
burg et al., 2009). On the one hand, IBM Post-Study is a questionnaire
that measures user satisfaction with system usability. On the other
hand, some questions were taken from the Vastenburg questionnaire to
evaluate messages acceptability and interaction adaptation. Also, we
included a NASA task load index (TLX)7 test. This test assesses the
user’s subjective experience of the overall workload and the factors that
contribute to it. These questionnaires can be found in Appendix B. An
example of the application of the evaluation technique can be found in
Chapter 8.

7http://humansystems.arc.nasa.gov/groups/TLX/index.html

5.5 Discussion of our design method 143

These questionnaires are the basis to detect change requirements and
user dissatisfactions regarding the interaction obtrusiveness adaptation
designed. Evaluating the questionnaires, designers refine the designed
models in order to guarantee the user satisfaction with the system be-
fore move to the development phase. Also, several iterations of design-
simulation can be made until the design meets the user requirements.

5.5 Discussion of our designmethod
In this section we introduce a discussion of the usefulness and efficiency
of the proposed method. An evaluation of its usability for system de-
signers can be found in Chapter 8.

The usefulness of our proposal depends on the adaptation level ex-
pected (number of factors considered).

• When we handle simple systems with few adaptation factors to
consider (services, users, context conditions), the definition and
combination of all the models that help designers to personalize
and adapt the interaction does not add too much usefulness.

• When the number of adaptation factors increase by considering
many combinations of services, users and context conditions, our
proposal allows to (1) have a description of the impact of the
adaptation aspects and (2) reuse interaction components.

Android introduced application fragments in Android 3.0 in order
to help applications adjust their interfaces and reuse different parts of
an applications user interface. This is due to the need to support more
dynamic and flexible UI designs when considering different conditions
such as large screens (tablets, TVs) or new interaction mechanisms.
This provides a user interface composition similar as the one we propose
in our method. The fact that a company leader in the mobile devices
field opts for a fragment approximation is an indicator of the scalability
and usefulness of the solution for these devices. The difference with our

144 CHAPTER 5. A FRAMEWORK FORCONSIDERATE INTERACTIONS

approach is that they are based on the technical part without dealing
with adaptation according to obtrusiveness models.

Regarding the efficiency, the modeling solutions for interaction adap-
tation usually describe what information is presented to the user by
means of an Abstract User Interface, and then define a discrete set of
platforms, environments and user types to determine how the interac-
tion will be offered for each set of context conditions (Calvary et al.,
2003). But this discretization of context conditions presents some prob-
lems:

• Similarities between the different context conditions are not ex-
ploited. Context conditions are considered to be atomic without
taking into account the existence of shared limitations and capa-
bilities. For example, an auditory impaired user and a noisy en-
vironment both share the auditory limitation, so the interaction
with the system would be more similar in these contexts compared
to the interaction offered at other user. Another example is shown
on the left of Fig. 5.15 between a mobile device and a PDA. Both
have a limited screen, so the interaction with the system would be
more similar in these devices compared to the interaction offered
in a desktop computer or a device with no screen at all.

• All combinations of context conditions are considered explicitly to
define the interaction. This implies specifying how interaction is
derived from an Abstract User Interface for each platform-user-
environment combination. For example, we should consider how
to produce the interface for a visually-impaired user accessing the
system from a mobile device platform in a noisy environment.
Therefore, the complexity of interaction increases with the number
of context conditions considered (see Fig. 5.15).

Since the promise of natural interaction of Ubiquitous Computing
implies adapting to a large number of context conditions, we decom-
pose the context conditions in their features (capabilities and limita-
tions) represented as interaction aspects, and we use these features to
describe the interaction in an abstract manner. Interaction features can

5.5 Discussion of our design method 145

Platform User Environment

Large-display
device

Mobile
device

PDA

No-screen
device

Novice

Visual
impaired

Expert

Noisy

With
people

Alone

Dark

Limited Screen

Share context
conditions

Explicit combination
of context

High Complexity

Figure 5.15: Problems of context condition discretization.

Context
conditions

X

Y

F1

F2

F4

F3

F5

Interaction
features

shared
features

Figure 5.16: Context decomposition into features.

be shared among context conditions to indicate their commonalities. In
this way, the above problems are solved. The features can be shared
among context conditions to indicate their commonalities and differ-
ences. Figure 5.16 shows an example of the proposal. Context X has
the features F1, F2, F3 and F4, and the last three features (F2, F3, F4)
are common to another context Y. We aim to express the interaction

146 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

as a function of features. In this way, we could support contexts X and
Y, and all another contexts that could be expressed as a combination
of these shared features.

For example, a noisy context and a user with an auditory impair-
ment require interaction not to be provided by means of audio. By
considering the specification in terms of features the duplication of ef-
forts in the development are minimized since both cases are expressed
as the exclusion of the auditory feature. Avoiding the duplication of
efforts in the development of services we guarantee the efficiency of the
proposal.

5.6 Conclusions
This chapter introduces a design method to specify services according to
the user needs and context conditions in terms of obtrusiveness without
duplicating efforts in the development. When defining mobile inter-
action, many alternatives exist for defining the static structure of the
user interface in a rapid manner (e.g., Visio stencils, paper prototypes).
However, this only allows to validate the aspect of the UI in a particular
moment. Our approach allows to visually represent how the interface
changes according to different conditions. By analyzing the impact of
different factors in the interface we can (1) produce specific variants of
the application to target a particular device kind, and (2) define how the
interface is adapted at runtime according to different user situations.

The designs defined according to the method can be easily put into
practice. Fast prototyping techniques have been used to validate the
adaptation for each service according to user satisfaction. The feedback
obtained from the evaluation can be used to better adjust the models
defined at design time.

Also, the design method provided relies on proven techniques and
frameworks for context-aware modeling and implicit interaction design.
The following chapter makes use of the models defined to provide a
development method for the considerate services and adapt their inter-

5.6 Conclusions 147

action at runtime.

148 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

6
Self-Regulating InteractionsThroughModels at Runtime
Adapting obtrusiveness at runtime

Vision without implementation is hallucination.
—Benjamin Franklin (1706-1790).

According to the Considerate Computing vision (Gibbs, 2005), user
attention is a primary resource to be considered by software systems.
Although any kind of software system can benefit from being aware of
the user attention level, this is especially relevant in the ubiquitous com-
puting paradigm which promotes a natural interaction between the user
and the environment (Weiser and Brown, 1997). Thus, ubiquitous ser-
vices should behave in a considerate manner, demanding user attention
only when it is actually required according to the user needs and context.
To achieve this, interaction obtrusiveness of services should be adapted
autonomously to the different ubiquitous and mobile devices that a user
can possess (e.g., an Android/iOS-based mobile phone, tablets, etc.).

In Chapter 5, we presented a design method for capturing the degree
of obtrusiveness required to interact with the ubiquitous services. By

150 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

?

Would you like
to do anything
on the way?

YES NO

Where's
gate C38?!?

Well, uh, I guess it's
about time for me to

head on off to ...
gate C38

Figure 6.1: Example of how attentional resources of the user can call for
different system responses.

considering the obtrusiveness aspects at design time, personalized ser-
vices’ interactions can be provided to avoid overwhelming users. How-
ever, the obtrusiveness level of services’ interactions cannot be com-
pletely determined at design time and it must change during runtime
according to changes in the user situation. This idea is illustrated in
Figure 6.1. For example, consider a user in an airport to take a fly and
thinking mainly about the task of moving swiftly through the airport
terminal for not losing the fly because s/he arrives late. S/he probably
prefers instructions that require the minimal attention (e.g., showing
an arrow). By contrast, consider another user in the same airport with
sufficient time to take the fly. This second user is more relaxed and can
have a much greater attention (e.g., showing a dialog). In principle, the
mobile service interaction should be appropriately adapted to each user
situation automatically and seamlessly for the user.

In this chapter, we present a self-regulating autonomic infras-
tructure for adapting the degree of obtrusiveness required for each
service automatically at runtime. This infrastructure exploits the de-
sign models at runtime to support the dynamic interaction obtrusive-
ness adaptation according to the user’s situation (user’s context). Our
proposed approach has two main aspects:

Reuse of the design knowledge to achieve adaptation. We reuse

6.1 System implementation 151

the knowledge captured at design to describe the adaptation of the
interaction in terms of obtrusiveness. In response to changes in
the context, the system itself can query these models to determine
the necessary modifications to its interaction components.

Reuse of existing model-management technologies at runtime.
Since the models used are machine-processable and standard-based,
current tools for model manipulation and traceability between
models can be used to support our approach and propagate the
changes in the obtrusiveness level into the interaction components.

In addition to design useful and considerate adaptations, an impor-
tant prerequisite for the adoption of adaptive interactions is the devel-
opment method (Höök, 2000). Before system deployment, the adaptive
parts of services should be developed. We presented our model-based
methodology to design adaptive service interactions in terms of obtru-
siveness in Chapter 5. On this basis, and following the Model-Driven
Engineering (MDE) principles (Schmidt, 2006), in this chapter we pro-
vide support to automate the development of services with adap-
tive interaction capabilities in terms of obtrusiveness. Thanks to MDE
techniques, it has been possible to traverse the gap between the high-
level concepts used at design and the technical details of the particular
technology that is used for the services’ implementation. Also, our ap-
proach reduces the development time because the developer does not
have to implement all the components of the system and their adaptive
behavior.

This chapter is structured as follows. Section 6.1 describes the way
in which the development process is automated for the services’ interac-
tions defined. Section 6.2 presents the adaptation process that follows
our approach to self-regulate the interaction obtrusiveness of services.
Then, the autonomic infrastructure that supports the adaptation pro-
cess is defined in Section 6.3. Section 6.4 describes the mechanisms used
to adapt services’ interactions into the managed devices. In Section 6.5,
we specify how to evolve non-adaptive services into adaptive ones. Sec-
tion 6.6 describes an experimentation to evaluate the scalability of the
proposed infrastructure, and finally, Section 6.7 concludes the paper.

152 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

Implement
business
logic

Generate
user
interfaces

Generate
service
components

System implementation

Figure 6.2: The different tasks in the implementation stage.

6.1 System implementation
One of the main reasons for following a MDE development is that it is
focused on automation. Services’ requirements change quite often, and
systems need to evolve accordingly. By automating the development
process, the services can be adapted to requirement changes without
losing quality. With the adequate tool support, changes in requirements
can be mapped automatically to the particular technology in which the
system relies on, facilitating its evolution.

Provided that modeling concepts are defined in a precise way, mod-
els can be transformed automatically into new models or code by means
of model transformation techniques. This enables automation in sys-
tem development since software artifacts can be derived in a systematic
way. Many technologies and standards give support to this develop-
ment paradigm. The Object Management Group (OMG) defined Model
Driven Architecture (MDA) (Miller and Mukerji, 2003) to provide sup-
port to these ideas with standards for metamodeling and the definition
of model transformations. Either following MDA or any other paradigm
based on MDE ideas, software development can be improved by the raise
in the abstraction level that the use of models provides.

Figure 6.2 shows the tasks carried out in this implementation stage.
From the models obtained in the design phase, we can generate the
service components of the different services and their adaptive user
intefaces. Finally, the implementation is completed to include business
logic of services. Also, from the developer perspective, several consid-

6.1 System implementation 153

erations must be taken into account when the service that is being de-
veloped requires adaptation capabilities such as the functionality to be
adapted and the infrastructure required for the communication between
the services and our autonomic infrastructure. This considerations are
explained in Section 6.4.

The following subsections describe the mechanisms applied for ob-
taining the services’ components and their user interfaces automatically.

6.1.1 Glue code generation
The development process of services generally involves several repetitive
tasks. For example, the definition of a service in the Android platform
involves actions like the definition of an Android Activity to produce
the user interface and the definition of the component in the Android
Manifest configuration file. This boilerplate code can be automatically
generated by the information captured in the design models. In this
way, developers can focus on implementing only relevant business logic.

We provide code generation capabilities for the development method
described in the present work. This development considers Android as
the target technology, but the approach followed allows developers to
define different mappings to target other technological platforms.

From the description of the system based on the defined metamodel,
source code can be generated with model-to-text transformation tech-
niques. Model-to-text generation tools provide mechanisms to traverse
models and generate the code associated with them. We applied model-
to-text transformations to formalize the development process defined in
Chapter 5. Glue code generation has been implemented using XPand
templates from the Model-to-Text (M2T) project1, which is part of the
Eclipse Modeling Project. The application of templates to models is
similar to the way templates are used to generate dynamic web pages in
the web application development area. Model elements can be iterated
and pieces of code can be produced instantiating them with values ob-
tained from the model. XPand is a statically-typed template language

1http://www.eclipse.org/modeling/m2t

154 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

with several features that simplify the code generation:

Polymorphic template invocation. Inheritance relationships in
the source metamodels can be leveraged when templates are de-
fined. Given a set of modeling elements that are involved in inher-
itance hierarchy, specific behaviors can be easily defined for the
different sub-types. When multiple templates are available for an
element, the code generation engine applies the template variant
that is more specific to the current kind of element.

Functional extensions. Metamodels can be extended in a non-
obtrusive manner to obtain derived information easily. This infor-
mation is accessed as if it were part of the metamodel. However,
these extensions do not affect the metamodel since they are only
accessible during the transformation. Thus, generation rules are
more readable and less dependent on the metamodel structure,
which improves the generator maintenance.

A flexible type system abstraction. XPand provides support for
some built-in types including simple types (String, Boolean, In-
teger, and Real) and collections (List and Set). In addition to
built-in types, the type system can be extended with the concepts
defined in the different metamodels.

Model transformation and validation facilities. In order to en-
sure that the models that are used for the generation meet certain
conditions, they can be analyzed prior to the transformation is ap-
plied. By validating the input, we can ensure that the generator
does not find unexpected information (e.g., components with the
same name that would lead to a nameclass when code is gen-
erated). Furthermore, facilities are provided to transform these
models in order to fix the problems detected.

The following listing 6.1 shows a general structure of template files
in order to introduce the basics of the XPand language. A template
file consists of any number of IMPORT statements, followed by any

6.1 System implementation 155

number of EXTENSION statements, followed by one or more DEFINE
blocks (called definitions).

Listing 6.1: General structure of a template file.

IMPORT metamodel
EXTENSION my::ExtensionFile
DEFINE javaClass FOR Entity

FILE fileName()
package javaPackage();

public class name {
// implementation

}
ENDFILE

ENDDEFINE

The basic statements used in the XPand language are:

IMPORT. This statement is used to import a namespace in order to
use the unqualified names of all types and template files contained
in that namespace.

EXTENSION. Extensions provide a flexible and convenient way of
defining additional features of metaclasses. For example, it is used
to specify additional behavior such as query operations, derived
properties, etc.

DEFINE. The DEFINE block is the smallest identifiable unit in a
template file. By means of the DEFINE statement, we can declare
the rules in our template.

FILE. The FILE statement defines the output file for the code gener-
ation.

EXPAND. The EXPAND statement“expands”another DEFINE block
(in a separate variable context), inserts its output at the current
location and continues with the next statement. This is similar in
concept to a subroutine call.

156 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

Iterators. XPand use iterators primarily for iterating collections of
model elements from a source model. The iterators available are:
FOR, FOREACH, and IF.

The current implementation provides code-generation capabilities
for two different aspects: (1) the components of the different services,
including the Android Manifest and the different Android classes that
are required for the implementation of the different components and
(2) the different user interfaces to support the adaptations. A detailed
description of the artifacts generated is provided below.

Service components generation
The services defined in our system can be composed by different com-
ponents defined in the current or external systems. Thus, we propose
to define the way the components are integrated with the other com-
ponents of the system in order to (1) explicitly state their rationale,
(2) use this knowledge for automating the development, and (3) de-
tect the sources of context information that can trigger an interaction
adaptation.

In order to do so, the components of a specific platform used for the
services are captured in a model. In this case, we have defined a Domain
Specific Language (DSL) to capture the components from the Android
application framework. A simple notation has been designed to rep-
resent the Android components and their communication mechanisms.
This notation uses concepts that are familiar to Android developers in
order to describe the setting in which the user interfaces take place.
When the approach is applied to a different platform a new DSL must
be defined.

We have chosen Android to apply our approach since adaptation
plays a key role in this platform. Android services should consider (1)
different kind of context conditions, and (2) different hardware config-
urations. On the one hand, much of the available Android devices are
capable of determining context information such as the user location
and orientation. On the other hand, Android devices of different kinds

6.1 System implementation 157

Activity

Content
provider

Service

Intent filter

Intent launch
Intent broadcast

Broadcast receiver

Figure 6.3: Graphical notation used to represent components of the Android
application framework

are available today including mobile phones, netbooks, e-book readers
or TVs.

The Android platform provides loosely-coupled components such as
Activity, Service, Content Provider and Broadcast Receiver. An Ac-
tivity presents a visual user interface designed around a well-defined
purpose (e.g., viewing, editing, dialing the phone, taking a photo, etc.).
A Service provides functionality that is executed in the background
(e.g., a service that plays music). A Content Provider makes data
available to other applications and a Broadcast Receiver is a compo-
nent that reacts to announcements from other components. Broadcasts
can originate from system code (e.g., indicate that the battery is low)
or other applications and they are useful to support reactive behavior.
The communication mechanism defined among Android components is
based on Intents. An Intent is an abstract description of a desired
action (e.g., obtaining an image) regardless of the component that pro-
vides this functionality. The intent mechanism allows components from
different applications to integrate their functionality in an open manner.

Figure 6.3 illustrates the notation used to describe Android com-
ponents. The main components from the Android application frame-
work are represented in a graphical manner. The notation is aligned
with other common notations such as Business Process Management
Notation (BPMN) (OMG, 2006b) or the Unified Modeling Language
(UML) (Rumbaugh et al., 1998b) for the sake of intuitiveness.

The intent-based communication mechanism among components is
also represented in our notation (see Fig. 6.3, right) to indicate their
possibilities for the components to interact. The way in which compo-

158 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

Figure 6.4: Service components model

nents handle intents is depicted in a different manner depending whether
we are describing the capabilities of a component to either launch or
receive a certain kind of intent. When the broadcast mechanism is
used, the previous notations are slightly modified to indicate so. The
capability of a component to launch an intent is depicted by means of
an arrow. If the broadcast mechanism is used, the arrow is decorated
with an asterisk to indicate that it can reach multiple receivers. Since
intents are used as abstract descriptions of an action, the target com-
ponent is not always known at design time. When an arrow connects
two components, it describes an explicit intent. However, arrows are
not forced to be connected with a target element. In order to indicate
that a component can respond to a given intent, we make use of the
lollypop primitive (used in UML for declaring an exported interface).
When the component is a broadcast receiver, the lollypop is decorated
to resemble an antenna that can receive the broadcast.

Figure 6.4 shows the model for the components of a shopping list and
supermarket notification services using the notation introduced. The
system is composed by four activities corresponding to the user inter-

6.1 System implementation 159

faces provided. These activities have defined the intent filters associated
to the actions they can perform such as ADD ITEM or VIEW ITEMS.
Show Location activity launches the intent VIEW to show the map of
the location. Moreover, the Show Services activity has the intent fil-
ter MAIN to mark this activity as the initial activity. There are two
content providers: one for offering the items of the shopping list and
another for offering the information to update the Widget Supermar-
ket receiver. There are also two services in the system: the Shopping
List service in charge of orchestrating the communication between the
components and the Notify Supermarket service in charge of launching
a notification.

On mobile platforms, such as Android, it is difficult to precisely de-
termine the way in which the different interfaces are tight together just
by observing the final user interfaces since different components influ-
ence in the user interface navigation. The introduced model captures
relevant aspects for interaction such as (1) the components that require
a user interface (i.e., Android Activities), (2) the possibilities for user
navigation by means of intents, and (3) the different goals that each
user interface must fulfill (e.g., add items or view items). Having these
aspects separately, it is possible to define a combination of components
for each user, personalizing the system to each user.

Although the approach has been applied to the Android platform, it
has been designed to be general. Android-specific components are de-
coupled from adaptation aspects. Thus, a different service components
model (e.g., based on iOS) can be used instead without the need for
redefining adaptation.

From this service components model, developers can generate the
Android components of the whole services defined. Figure 6.5
describes the elements that are produced by the transformation from
the model.

Listing 6.2 shows the code of the main template that is used for
orchestrating the generation of all the components. The excerpt of the
transformation declares the main rule by means of the DEFINE key-
word. The main transformation rule is used to generate the components

160 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

Android
Manifest Activity Service

Broadcast
Receiver

Content
Provider

AndroidManifest.xml NameActivity.java NameService.java NameReceiver.java NameProvider.java

Android
Model

Figure 6.5: Global schema of the elements generated by the transformation.

of the application. This rule is applied to the whole system and it is
defined for the App element of the Android components metamodel (see
the metamodel in Appendix A). By means of the EXPAND command,
the initial structure of the application, the Android Manifest file and
the rest of Android components are expanded for the generation.

Listing 6.2: Excerpt of the code generation template that produces the calls to all
the components of an Android application.

IMPORT AndroidModel
EXTENSION template::GeneratorExtensions
DEFINE main FOR App
EXPAND template::InitialStructure::initialStructure
EXPAND template::Manifest::manifest
EXPAND template::Activities::activities
EXPAND template::Services::services
EXPAND template::BroadcastReceivers::broadcastReceivers
EXPAND template::ContentProviders::providers

ENDDEFINE

Listing 6.3 shows the code of one of the templates that is used for
generating the Android Manifest. The excerpt of the transformation
declares the manifest rule. This rule is used to generate the fragment
of the Android Manifest that is associated to each component. In the

6.1 System implementation 161

example, we show that this rule is also applied to the whole system since
it is defined for the App element of the Android components metamodel.
Generation rules control the creation of new files (e.g., source code,
configuration files, resource descriptions, etc.) and the generation of
their correspondent content. The FILE statement defines the output
file for the code generation (in the example, an AndroidManifest.xml
file is generated into a folder named after the App).

Listing 6.3: Excerpt of the code generation template that produces the Android
Manifest file.

IMPORT AndroidModel
EXTENSION template::GeneratorExtensions
DEFINE manifest FOR App
FILE name + "/AndroidManifest.xml"
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res

/android"
package="generatePackageName(name)"
android:versionCode="1"
android:versionName="1.0">

<application android:label="@string/app_name">
EXPAND activitiesDeclaration FOREACH activities()
EXPAND servicesDeclaration FOREACH services()
EXPAND broadcastReceiversDeclaration FOREACH

broadcastReceivers()
EXPAND providersDeclaration (name) FOREACH

providers()
</application>

<uses-sdk android:minSdkVersion="3" />
</manifest>
ENDFILE
ENDDEFINE

The rest of the rule is a code template with static and dynamic
parts. The static parts of code are transferred to the generated code
directly. In the example template, the static parts represent aspects
that are common to any Android manifest, such as the XML header or
the application declaration. The dynamic code is calculated for each
instance to which the rule is applied. Dynamic expressions (defined
between angle quotes) are used for capturing the required information

162 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

and expressing it according to the target technology. For example, the
package name for the Android Manifest is obtained from an auxiliary
function generatePackageName that is defined as an extension of the
metamodel. The extension statement in the example is in charge of
importing the extension of the metamodel that implements the gener-
atePackageName operation.

The generation of the rest of the Android Manifest is carried out
by different rules, each one for a specific kind of component. For ex-
ample, activitiesDeclaration rule is applied to Activity components for
the generation of the activity statements. Listing 6.4 illustrates the
definition of the activitiesDeclaration rule applied to this kind of com-
ponents. This rule declares the activity in the manifest and their intent
filters according to the model defined. For each intent filter declared in
the model, the rule adds an intent filter named with the name declared
in the model. If the component has the Main intent filter, the default
category android.intent.category.LAUNCHER is also added. This de-
termines that the activity can be launched by the user directly. The
template of this example makes use of conditional statements (see the
IF, ENDIF instructions) to add the default category for the generated
intent.

Listing 6.4: Generation rule that produces the Android Manifest fragment corre-
sponding to Activities.

DEFINE activitiesDeclaration FOR Activity
<activity android:name="generateClassName(name, "Activity

")">
EXPAND intentFilters FOR this

</activity>
ENDDEFINE

DEFINE intentFilters FOR Component
IF intents.typeSelect(IntentFilter).size > 0
<intent-filter>
FOREACH intents.typeSelect(IntentFilter) AS

intentFilter
<action android:name="intentFilter.name" />
IF intentFilter.name == "android.intent.action.MAIN"
<category android:name="android.intent.category.

LAUNCHER" />

6.1 System implementation 163

ENDIF
ENDFOREACH
</intent-filter>

ENDIF
ENDDEFINE

The code generation supported in this part automates the definition
of the Android Manifest and the Java classes that are required
for the implementation of the different service components according
to the service components model. Intent processing code is also
generated. Although full code generation is not provided for component
implementation, the provided code skeletons let developers focus on the
implementation of the business logic behavior, avoiding to deal with
particular details of the target technology. Since the Android specific
artifacts are generated, the use of the Android application framework
is made transparent to the developer, who only has to deal with Java
programming.

User interface generation
We also propose to generate the user interfaces to support the interac-
tion adaptation for the different user situations. For this generation, we
make use of the design models defined in Chapter 5.

As we introduced in Chapter 5, Android platform has a node-based
user interface. In particular, in an Android application, the user inter-
face is built using View and ViewGroup objects (see Fig. 6.6). View
objects are the basic units of user interface expression on the Android
platform that serves as the base for subclasses such as widgets. The
ViewGroup class serves as the base for subclasses called layouts which
offer different kinds of layout architecture, like linear, tabular and rel-
ative. A View object is a data structure whose properties store the
layout parameters and content for a specific rectangular area of the
screen. A View object handles its own measurement, layout, drawing,
focus change, scrolling, and key/gesture interactions for the rectangular
area of the screen in which it resides. As an object in the user interface,

164 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

Figure 6.6: Hierarchy for defining Android UIs

a View is also a point of interaction for the user and the receiver of the
interaction events.

Thus, on the Android platform, the user interface is defined using
a hierarchy of View and ViewGroup nodes, as shown in the Figure 6.6.
The most common way to define a user interface expressing the view
hierarchy is with an XML layout file. XML offers a human-readable
structure for the layout, much like HTML. Each element in XML is
either a View or ViewGroup object (or descendant thereof). View ob-
jects are leaves in the tree and ViewGroup objects are branches in the
tree.

In this way, for the implementation of the user interfaces, we produce
the Android XML layout file for all the user interfaces of the whole
system from the concrete interaction components model. Specifically,
in each generation iteration, we produce the user interfaces of an specific
interaction configuration.

The process for generating the code of a service interface takes as
input the concrete interaction component model configured with the ac-
tive nodes of the service for a specific configuration. The transformation
template is composed by different rules that perform the generation.
Listing 6.5 shows an excerpt of the template used for generating the
XML layout file. The transformation template is composed by different

6.1 System implementation 165

rules that perform the generation. These rules are explained below:

Listing 6.5: Excerpt of the code generation template that produces the XML layout
for each user interface.

DEFINE Root FOR FeatureModelPackage::FeatureModel
FILE Name+".xml"
<?xml version="1.0" encoding="utf-8"?>
EXPAND FindRoot FOREACH Features
ENDFILE

ENDDEFINE
DEFINE FindRoot FOR FeatureModelPackage::Feature
FOREACH Attributes AS e
IF e.Name=="root" && e.Value=="true"

EXPAND PrintFeature FOR this
ENDIF

ENDFOREACH
ENDDEFINE
DEFINE PrintFeature FOR Feature
< Name
FOREACH Attributes AS e
IF e.Name == "root"
xmlns:android="http://schemas.android.com/apk/res/

android"
ELSEIF
android: e.Name =" e.Value "

ENDIF
ENDFOREACH

>
FOREACH CardinalityBased_Relationships.typeSelect(

Mandatory) AS e1
EXPAND PrintFeature FOR e1.To

ENDFOREACH
IF ! CardinalityBased_Relationships.typeSelect(

Alternative).isEmpty
FOREACH CardinalityBased_Relationships.typeSelect(

Optional) AS e1
EXPAND PrintFeatureAlternative FOR e1.To

ENDFOREACH
ELSE
FOREACH CardinalityBased_Relationships.typeSelect(

Optional) AS e1
EXPAND PrintFeatureOptional FOR e1.To

ENDFOREACH

166 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

ENDIF
</ Name >

ENDDEFINE

Root rule. The Root rule is applied to the whole concrete UI model
(FeatureModel element). This rule is in charge of the creation of
the XML file and the generation of the corresponding content.
Then, the XML header is declared as a static part of the rule.

FindRoot rule. The FindRoot rule is applied to the different nodes
(Feature element) for the generation of the rest of the XML layout.
FindRoot is a recursive rule in charge of seeking the root node and
calling the PrintFeature rule to begin the generation of the whole
nodes of the hierarchy from the root node.

PrintFeature rule. PrintFeature rule generates the attributes for the
nodes. Depending on the kind of node, the attributes to generate
are different. If the current node to generate is the root node,
the header of the layout is generated. Otherwise, the value of
the attributes are generated. Then, depending on the variabil-
ity relationships in which the nodes are linked, the appropriate
PrintFeature rule is expanded (PrintFeature, PrintFeatureAlter-
native, PrintFeatureOptional). The generation of this alternative
and optional nodes depend on the active nodes defined in the
Configuration model (see Appendix A).

The result is an Android XML layout file of the service interface.
Some XML attributes of the components needed for generating the lay-
out are defined as node attributes in the concrete interface model. In
this way, nodes are generated with their appropriate attributes.

The advantage of declaring the UI in XML is that it enables to
better separate the presentation of the application from the code that
controls its behavior. UI descriptions are external to the application
code, which means that it can be modified or adapted without having
to modify the source code and recompile.

6.2 The self-regulating system 167

However, some interface components can not be implemented by
means of the XML layout file, such as the notifications, the use of spe-
cific libraries for the physical interaction, etc. In particular, we define
Android services for implementing these components. So, we have de-
fined another templates for generate these specific components.

For example, notifications are generated by means of this template
because they are initiated from a Service. In this way, the notification
can be created from the background, while the user is using another
application. This is implemented checking the name of the node in the
PrintFeature rule.

Figure 6.7 shows the two kinds of generation for the supermarket
service in two different obtrusiveness levels. On the one hand, for the
(aware, proactive) obtrusiveness level, the service is presented by means
of a status bar notification (through all the design process described in
the previous chapter). An excerpt of the generated code for the status
bar notification and the rendering of this code is shown at the left of the
Figure 6.7. On the other hand, for the (slightly, reactive) obtrusiveness
level, a widget is used and the generated code is shown at the right of
the Figure 6.7. In this way, the services are generated and adapted for
each user situation.

6.2 The self-regulating system
The design models capture the knowledge required to provide consider-
ate services’ interactions. However, in order to allow an autonomic and
unobtrusive adaptations, the ubiquitous services must themself regulate
their interactions with users according to the different user situations.
Specifically, we argue that a service can use the appropriate interaction
components dynamically at runtime according to the user situation.
The unobtrusive adaptation space specifies the different ways in which
services can interact with users. Interaction features specify the possible
interaction configurations that support the services for each obtrusive-
ness level, while an adaptive user interface made by concrete interaction

168 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

Figure 6.7: Different generations of the same service

components (components of the target device) can be rapidly retargeted
to a specific configuration (a set of interaction modalities) in response
to user situation changes (triggered by a context change).

Specifically, our approach follows a dynamic computer-human inter-
action loop that has a goal to regulate (i.e., a self-regulating system)
(Dubberly et al., 2009) (see Fig. 6.8(a)). In our case, this goal is to
provide considerate services’ interactions. Thus, the process that fol-
lows our system is to gather information about user’s context, analyze
this information to check the user’s situation, and adapt the interaction

6.2 The self-regulating system 169

Unobtrusive
adaptation

space

Managed
system

Runtime
adaptation

Meeting
at 17:00!

New context
event

Ontology-based
context
model

Interaction
variability

1 2

3

4

Insert event/
check user situation Changes in

user situation

Change in the
obtrusiveness level

Change
requestCalculate new

interaction componentsPush new
interaction

analyze adapt

(a) Self-regulating system

compare

environment

context change

goal

(b) Adaptation process

Figure 6.8: (a) Self-regulating system and (b) adaptation process.

of the services according to the system’s goal (not to disturb the user)
by comparing the last and the new user situation. To achieve this, our
approach follows the adaptation process depicted in Figure 6.8(b):

1. Monitoring context changes. The adaptation process is trig-
gered when the system senses a relevant contextual change from
the environmental and mobile sensors. The new context event is
inserted in the ontology to reflect the user environment. Then, the
user situation is analyzed to check whether the user’s current sit-
uation has changed and some adaptation needs to be made (e.g.,
user from a relaxed situation to be in a hurry). This inference
is based on logic rules that uses the context information updated
in the ontology. For example, a change in the current time could
mean that the user is in a hurry.

2. Analyzing the attentional demand. The second step of the
adaptation process is triggered when there is a change in the user
situation. This change can trigger an adaptation of the obtrusive-
ness level for a service. Thus, the unobtrusive adaptation space is
checked to see if any transition depends on that new user situation.
For example, the UserInAHurry, a new user situation, can trigger
a change in the obtrusiveness level demanding less attention. A
change request with the new obtrusiveness level is generated.

3. Comparing the interaction mechanisms. The third step of

170 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

Airport (slightly,proactive)

(a)

(b)

Configura�on
Varia�ons

Status
Bar
No�f.

Speech

re
ac
�v
e
pr
oa
c�
ve

awareslightlyinvisible

in
i�
a�

ve

a�en�on

Vibration

Icon

Adapta�on
Visual Auditory Hap�c

Sound Speech Vibra�onLightsPropertyText Image

MomentaryIconic Quick
ViewHighlight

Interac�on
Modali�es

Radio

Touching

Service Interaction

ScanningPoin�ng

Airport (aware,proactive)

Status
Bar
No�f.

Speech

re
ac
�v
e
pr
oa
c�
ve

awareslightlyinvisible

in
i�
a�

ve

a�en�on

Visual Auditory Hap�c

Sound Speech Vibra�onLightsPropertyText Image

MomentaryIconic Quick
ViewHighlight

Interac�on
Modali�es

Radio

Touching

Service Interaction

ScanningPoin�ng

Sound

Dialog

UserInAHurry

Would you like
to do anything
on the way?

YES NO

Figure 6.9: Runtime adaptation example.

the adaptation process is triggered when a change request with
the new obtrusiveness level is created. This change request will
require new interaction mechanisms to be used by a service. Thus,
the interaction mechanisms of the old and the new obtrusiveness
level are compared and the necessary modifications to the inter-
action features are calculated in terms of interaction increments
(interaction mechanisms to activate) and interaction decrements
(interaction mechanisms to deactivate). Specifically, the Interac-
tionIncrement operation is made up of the interaction mechanisms
in the new obtrusiveness level that are not in the current obtru-
siveness level (set-theoretic difference), and the other way round
for the InteractionDecrement operation.

In order to specify which interaction features support a certain
service for a given obtrusiveness level, the superimposition opera-
tor (�) is defined. The superimposition operator takes a service
and an obtrusiveness level and returns the set of interaction fea-
tures required for the service. Some examples of the relationship
between the obtrusiveness level for the airport service and its map-
ping with the interaction features (see Fig. 6.9) are as follows:

6.2 The self-regulating system 171

�Airport(aware, proactive) =
{visual, property highlight, text, auditory, sound, radio, pointing}

�Airport(slightly, proactive) =
{visual, property iconic, text, image, haptic, vibration, radio, touching}

The results of the InteractionIncrement/Decrement operations given
the adaptation of the airport service when the user is in a hurry
(UserInAHurry situation) are as follows (see Figure 6.9):

InteractionIncrementUserInAHurry ={property iconic, image, haptic,
vibration, touching}

InteractionDecrementUserInAHurry ={property highlight, auditory,
sound, pointing}

These operations indicate how the services should adapt their in-
teraction in order to move from one interaction configuration to
another. Fig. 6.9 illustrates an example of the adaptation strat-
egy for the airport service. In this figure, the service first is in
the (aware, proactive) level by means of a highlighted visual prop-
erty with sound feedback and the pointing interaction technique
are used to provide the interaction. But, when the mobile device
senses the user is in a hurry (due to a context change), the inter-
action is adapted to demand less attention of the user. With this
adaptation, the mentioned interaction mechanisms are no longer
used for the interaction with this service; instead, an iconic visual
property with vibration and the touching interaction technique
are used (as calculated by the operations).

4. Adapting the interaction components. When the new in-
teraction features are calculated according to the user situation,
the system applies the adaptation in the ubiquitous device where
the service is running. However, before applying the adaptation,
the concrete interaction components of the target device need to
be calculated. As the adaptation is performed in a technology-
independent manner, we need a mechanism to translate the ab-
stract interaction features into the concrete interaction mecha-
nisms of each platform. This is done by querying the weaving

172 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

model to realize the mappings between the features and their re-
lated interaction components.

For example, if our system indicates that an icon with vibration is
needed for service S, this operation replaces these components to
the ones that match with the specific target technology (e.g., in
an Android system, the icon is translated into the status bar com-
ponent). For the results obtained when trigger the user situation
UserInAHurry shown above, the following concrete interaction
components are calculated:

Increments = {GroupNotif, StatusBar, Icon, Text, V ibration}
Decrements = {GroupDialog,GroupAudio, Sound}

In this section, we have illustrated how the autonomic reaction of a
system can be calculated by taking the obtrusiveness models as a basis.
In the next section, more detail is provided about how the required steps
are supported by our infrastructure and some implementation details.

6.3 AdaptIO: an infrastructure for adapting
interaction obtrusiveness

In order to carry out the adaptation process, we provide an autonomic
infrastructure (AdaptIO) that enhances services with interaction obtru-
siveness adaptation capabilities. Our infrastructure provides the follow-
ing benefits:

• It is available to the ubiquitous and mobile services in a centralized
manner.

• It senses context changes from environmental and mobile sensors.

• It is based on the high-level design models to adapt interaction
based on user attention in a technology-independent manner.

6.3 AdaptIO: an infrastructure for adapting interaction obtrusiveness 173

Next, we first explain the infrastructure at the conceptual level, and
then, we explain how we have developed it giving technological details.

6.3.1 The Autonomic Infrastructure
In order to make our user-centered obtrusiveness adaptation a reality,
we define a model-based infrastructure, i.e., AdaptIO. AdaptIO is an
autonomic infrastructure to support the considerate interaction adap-
tation of services in the ubiquitous computing domain. To achieve this,
it senses the context from environmental and mobile sensors and adapts
the interaction resources of each service in terms of obtrusiveness. Its
autonomic behavior is based on the design models introduced in Chap-
ter 5. Our design goal for AdaptIO was to support the interaction
obtrusiveness adaptation in a modular and extensible manner by de-
coupling context processing, technology-independent interaction adap-
tation, and service management. Also, we provide a set of components
in a pluggable manner for addressing the technological heterogeneity of
ubiquitous and mobile devices.

Fig. 6.10 illustrates the AdaptIO infrastructure components and
their connection to context sources, services and managed devices. For
the definition of the infrastructure, we rely on the component con-
cept since this is a well-understood concept that can be implemented
in most of the implementation technologies available. Components
are the basic pieces that conform the system. For achieving the self-
adaptation, our infrastructure is based on the IBM reference model for
self-management (IBM, 2006), which is called the MAPE-K (Monitor,
Analyze, Plan, Execute, Knowledge) loop. In our case, the knowledge
is defined in the high-level models. As shown in Fig. 6.10, the process
is composed by four components that share the models.

AdaptIO is designed to provide a loosely-coupled and model-based
solution. It allows us to define how the different services are integrated
(by means of a Service Manager) and adapted (by means of an Adap-
tation Engine) to all the changes in the user context (by means of a
Context Monitor) in terms of obtrusiveness (by means of the User Situ-
ation Analyzer) using the design models. Figure 6.11 describes the over-

174 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

RFID

Context Sources

Interaction
Providers

Managed systems

GPS

Presence
Detector

Context
Monitor

Mobile Services
Calendar

Mobile Phone Tablet

Washing
Machine Weather

Healthcare

Shopping

Facebook
Twitter

M
o
n
it
o
r

User Situation
Analyzer

Analyze

Context
Change

Adaptation
Engine

Plan

Design
Models

Service
Manager

E
xe
cu

tio
n

Change
Plan

Change
Request

Information +
Con�guration

Context
Update

Service
invokations

Service
invokations

Ubiquitous
Services

Knowledge

Figure 6.10: Infrastructure components overview

all adaptation flow among these components. In the next subsections,
more details about these components and their supported operations
are given (with some implementation details).

ContextMonitor
The Context Monitor is the component in charge of the monitoring
process. It detects changes in the user context and translates them to
context events. For example, the detection of a RFID tag with the X id
means that Bob has been detected. These context events are inserted in
the ontology-based context model to reflect the user environment. Note
that this update must be performed at runtime. Then, the context
change is passed to the User Situation Analyzer.

6.3 AdaptIO: an infrastructure for adapting interaction obtrusiveness 175

Figure 6.11: Adaptation flow of the AdaptIO behavior

176 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

Context changes are physically detected by environmental (physi-
cal sensors) and mobile sensors (virtual sensors), which are controlled
by ubiquitous and mobile services. Thus, in order to capture context
changes, the monitor is continuously monitoring the execution of the
services. Specifically, the pervasive services that control the physical
sensors are developed using the development method presented in (Ser-
ral et al., 2010), which allows us to automatically generate Java/OSGi2

pervasive services from high-level abstraction models. Using OSGi, the
Context Monitor can listen the changes produced in the services to
detect context changes. The mobile services that control the virtual
sensors are implemented as background services running on the mobile
device that monitor changes in their own device sensors. For exam-
ple, the user location is detected by the GPS service that controls the
mobile GPS sensor and presence detector devices of the environment.
Specifically, we have two Context Event Listeners: one in charge of lis-
tening to events from the environmental sensors and another in charge
of listening to events from mobile devices.

To implement the operation to insert context events in the ontology
(InsertContextEvent operation), we use the INSERT form of SPARQL3.
SPARQL is the W3C recommendation query language for RDF. This
query language is based on graph-matching techniques. Given a data
source, a query consists of a pattern which is matched against the data
source, and the values obtained from this matching are processed to
give the answer. The data source to be queried can be an OWL model
as the one we use for the context model. For example, Listing 6.6 shows
the SPARQL expression to set that a given user is at home.

Listing 6.6: Example of InsertContextEvent operation.

DELETE DATA FROM <http://www.pros.com/Person>
{<http://www.pros.com/Bob> pros:personLocatedIn ?value}

INSERT DATA INTO <http://www.pros.com/Person>
{<http://www.pros.com/Bob> pros:personLocatedIn "pros:

Home"}

2http://www.osgi.org/
3http://www.w3.org/TR/rdf-sparql-query/

6.3 AdaptIO: an infrastructure for adapting interaction obtrusiveness 177

User Situation Analyzer
When a context event is detected, the User Situation Analyzer ana-
lyzes the context change to infer the user’s situation and determine if
some service interaction adaptation needs to be made. For example, a
change in the user’s location could mean the user is working. If the user
situation has changed, the User Situation Analyzer generates a change
request with the new user situation and passes it to the Adaptation
Engine.

In order to accurately infer the user’s situation, it is based on logic
rules. These logic rules use the context information updated in the
context model. For example, Listing 6.7 shows the rule to infer when
the user is with company:

Listing 6.7: Example of the withCompany rule.

[withCompany: (?user rdf:type pros:Person)
(?user pros:usersInLocation ?location)
(?person1 rdf:type pros:Person)
(?user pros:knows ?person1)
(?person1 pros:usersInLocation ?location)
(?user pros:socialRelationships ?person1)
->
(?user pros:currentSituation pros:withCompany)]

To implement the rules, we have used the Jena Framework4. Jena is
a Java framework for building Semantic Web applications that provides
a programmatic environment for OWL and SPARQL and includes a
rule-based inference engine. We have a rule repository that contains a
set of logic rules. In the design phase, rules are manually added in the
rule repository by designers. However, end-users can also update these
rules and define his/her own situations at runtime by means of the User
Specification Interface (explained in Chapter 7).

The main operations that support the User Situation Analyzer are:
the operation for loading rules from a folder, the operation for inferring
and getting new data, and the operation for updating the user situation

4http://jena.apache.org

178 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

changes in the ontology. Listing 6.8 shows an excerpt of the main class
that call the operations of the User Situation Analyzer.

Listing 6.8: Excerpt of the main class of the User Situation Analyzer.

public class UserSituationAnalyzer {
private static Logger logger;

public static void main(String[] args) {
initFactoriesAndPaths(args);

RuleEngine engine = RuleEngineFactory.getInstance().
createRuleEngine(
RuleEngineFactory.BUILTIN);

engine.loadRulesFromFolder("rules");

RdfGraph context = RdfGraphFactory.getFactory().
createRdfGraph(
RdfGraphFactory.QUERYABLE);

context.retrieveFromFile("AdaptIO-ContextModel.owl");

engine.inferNewData(context);
RdfGraph data = engine.getInferredData();

}
}

Adaptation Engine
When alerted by the User Situation Analyzer of a change request, the
Adaptation Engine consults the unobtrusive adaptation space to check
if any transition of the current obtrusiveness depends on that new user
situation. If so, the engine calculates the necessary modifications to
the interaction features and generates an adaptation plan. This plan
represents the set of high-level interaction changes for each service.

In order to calculate the necessary modifications to the interaction
mechanisms by means of increments and decrements (explained in Sec-
tion 6.2), the adaptation engine queries the obtrusiveness and feature
model at runtime. To do this, it is based on four main operations: (1)
the getTransitionsToCheck operation, (2) the checkUserSituation oper-

6.3 AdaptIO: an infrastructure for adapting interaction obtrusiveness 179

ation, (3) the triggerTransition operation, and (4) the getDifferences
operation.

The process that follows the Adaptation Engine when it receives a
change request with the updated user situation is the following:

• For each service, it gets the output transitions of the current ob-
trusiveness level of the service. This activity is supported by the
getTransitionsToCheck operation.

• Then, it checks the transitions to see if any user situation is ful-
filled according to the user’s current situation (it means that
an adaptation needs to be made). This is supported by the
checkUserSituation operation.

• For the transitions fulfilled, it aggregates their actions to calcu-
late the target obtrusiveness level and avoid inconsistencies when
trigger the transitions.

• Then, the Adaptation Engine applies the final action by obtaining
the current interaction configuration and the target one and calcu-
lating the difference between both configurations. This difference
is calculated by means of increments and decrements with respect
to the current configuration. These procedures are supported by
the triggerTransition and the getDifferences operations.

The Adaptation Engine is implemented in Java/OSGi and uses Eclipse
Model Query5 (EMFMQ) to query the models at runtime and the EMF
compare plugin6 to calculate the differences between the interaction
configurations. EMFMQ facilitates the process of search and retrieval
of model elements in a flexible, controlled and structured manner. To
achieve this, the plugin allows the construction and execution of queries
in a SQL-fashion. We use these queries to search for and get the
instances of the model that need to be accessed or modified. EMF
Compare allows model comparison to the EMF framework, providing a

5http://www.eclipse.org/modeling/emf/?project=query
6http://www.eclipse.org/emf/compare/

180 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

generic support for any kind of metamodel in order to compare models.
Specifically, we use the diff class to calculate the difference between the
two interaction configurations.

Listing 6.9 shows the implementation in Java of the getTransition-
sToCheck operation. It creates a list with the transitions of the current
obtrusiveness level to check.

Listing 6.9: Implementation of the getTransitionsToCheck operation.

public ArrayList<Transition> getTransitionsToCheck() {
this.machineChanged=false;
ArrayList<Transition> transitionsToCheck=new ArrayList<

Transition>();
EList<Transition> transitions=this.getCurrentState().

getStateTransitions();
for (Transition transition : transitions) {

transitionsToCheck.add(transition);
}
return transitionsToCheck;

}

Listing 6.10 shows the code of the checkUserSituation operation
which checks if the user situation of the transition is fulfilled.

Listing 6.10: Implementation of the checkUserSituation operation.

public boolean checkUserSituation(String userSituation) {
boolean result = false;
result = ManageOntology.queryPelletAsk(userSituation);
return result;

}

Once the user situation of the transition is fulfilled, the transition
is triggered in order to calculate the interaction modifications (differ-
ences). We have implemented the triggerTransition operation (see List-
ing 6.11) by retrieving the current interaction configuration and apply-
ing the transition over this configuration. This means, we process the
transition to get the action associated to it (i.e., the target obtrusiveness
level) and obtain the configuration of the target obtrusiveness level.

Listing 6.11: Excerpt of the implementation of the triggerTransition operation.

6.3 AdaptIO: an infrastructure for adapting interaction obtrusiveness 181

public ConfigurationModel applyTransition(
ConfigurationModel cmToEvolve, Transition
transitionToAply){
ConfigurationModel cmEvolved=cmToEvolve;
ArrayList<Feature> presentFeatures=new ArrayList<

Feature>();
for (FeatureState featureState : cmToEvolve.

getFeatureStates()) {
presentFeatures.add(featureState.getFeature());

}
EList <Action> actionsToAply=transitionToAply.

getResolution().getActions();
for (Action action : actionsToAply) {

if(presentFeatures.contains(action.getFeature())){
cmEvolved=updateFeatureState(cmEvolved, action.

getFeature(), action.getActionType());
}
else{

cmEvolved=createNewFeatureState(cmEvolved,
action.getFeature(), action.getActionType()
);

}
}
return cmEvolved;

}

Finally, with the two configurations, we calculate the differences
between them in order to obtain the increments and decrements of the
interaction features (see Listing 6.12).

Listing 6.12: Excerpt of the implementation of the getDifferences operation.

if(smManager.hasTheMachineChanged()){
DiffModel differencesModel = DiffService.doDiff(

MatchService.doMatch((EObject)smManager.
getLastConfiguration(),(EObject)smManager.
getCurrentConfiguration(), Collections.<String,
Object>emptyMap()), false);

FeatureModelConfigurationChanges thisSMChanges=
getDifferences(differencesModel);

thisSMChanges.setStateMachineModelName(smManager.
getStateMachineName());

182 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

thisSMChanges.setCurrentStateName(smManager.
getCurrentState().getName());

this.systemChanges.add(thisSMChanges);
}

This plan of high-level interaction increments/decrements is noti-
fied to all the installed Interaction Providers. As the adaptation is
performed in a technology-independent manner (high-level concepts),
we need a mechanism to translate the abstract interaction resources to
use into the concrete ones of each platform. To make this, we define the
Interaction Providers, pluggable components in charge of converting the
high-level interaction plan into a concrete one with the specific inter-
action components of the underlying managed systems. These compo-
nents query the concrete interaction component model and the weaving
model. For example, the Banner is translated to a Status Bar on An-
droid and a Banner on iOS. Finally, the plan is passed to the Service
Manager. The operation in charge of supporting this translation is the
doWeaving operation. Listing 6.13 shows the implementation of this
operation.

Listing 6.13: Excerpt of the implementation of the doWeaving operation.

private TargetModelChanges doWeaving(
FeatureModelConfigurationChanges configurationChanges){
TargetModelChanges temp=new TargetModelChanges();
this.loadModelURIs();

RunTimeModel rtm=new RunTimeModelImpl(sourceModelURI,
sourceModelPackage, weavingModelURI, targetModelURI
, targetModelPackage);

ArrayList<EObject> aux=new ArrayList<EObject>();
for (Feature featAux : configurationChanges.

getAdditions()) {
aux.add((EObject)featAux);

}
temp.setIncrements(rtm.getTargetModelElements(aux));
aux=new ArrayList<EObject>();
for (Feature featAux : configurationChanges.getRemovals

()) {
aux.add((EObject)featAux);

6.3 AdaptIO: an infrastructure for adapting interaction obtrusiveness 183

}
temp.setDecrements(rtm.getTargetModelElements(aux));
return temp;

}

ServiceManager
The Service Manager is the component in charge of applying the adap-
tation to the underlying system. When it receives a change plan of the
interaction components to adapt for a service, it stores the plan and
waits until a service has to interact with the user. Typically, plenty of
local and remote services or applications are running on a user’s mo-
bile device (e.g., agenda), which may interact with the user to notify
him/her important events or information. These services are registered
in the Service Manager and invoke it when they have to interact with
the user. Thus, when a service invocation is received (i.e., a notification,
information useful for the user, etc.), the Service Manager retrieves the
interaction components to use from the change plan, composes the in-
teraction and pushes the information to the user’s managed device with
the appropriate interaction configuration.

The Service Manager can also be queried in order to retrieve the
services’ information according to certain criteria (e.g., read last in-
formation, retrieve all notifications, retrieve deleted information, etc.).
Since in a mobile environment users can change from device to device
on the go, it is desirable to allow users to access their service’s informa-
tion from a single application point. The Service Manager component
provides a unified view of the information for all the services in which
the user is involved. This distributed schema is common in mobile ap-
proaches. Two operations are implemented:

Receive service information. For receiving data from the services, a
RESTful web service has been implemented. In this way, services
can send any kind of data to the Service Manager only by sending

184 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

the information via HTTP. The Restlet Framework7 has been used
for its implementation. The information has been formatted in
JSON, a lightweight data-interchange format. In this way, all the
components understand the format of the information.

Execute a service adaptation. Once a service invocation is received,
it is adapted to the user’s current situation and sent to the Man-
aged Systems. To do this, our infrastructure makes use of push
notifications (remote notifications). The information processed is
pushed to the Managed Systems (via the Push Notification ser-
vices) when the service has to interact with the user. The service
information and the interaction configuration to be used are spec-
ified in the payload. This payload is sent to all the registered
devices. Specifically, we have used Android Cloud to Device Mes-
saging8 (C2DM) for the Android platform and Apple Push No-
tification service (APNs) for iOS. Listing 6.14 shows an excerpt
of the code to send the information to an Android-based mobile
device.

Listing 6.14: Excerpt of the implementation to use the C2DM service.

$message = json_encode($not);
$handler = fopen("registerID.txt","r");
$registrationID = fgets($handler);
fclose($handler);

$tooken = googleAuthenticate("username", "83055294",
$source="Company-AppName-Version", $service="ac2dm
");

$re=sendMessageToPhone($tooken, $registrationID, "
collapsed", json_encode($not));

6.4 Deployment of the infrastructure
7http://www.restlet.org/
8https://developers.google.com/android/c2dm/

6.4 Deployment of the infrastructure 185

This section provides details about the architecture followed to de-
ploy our infrastructure, describing the key design choices and solutions.
AdaptIO follows a client/server architecture. The context processing,
user situation inferring, adaptations and services’ information are man-
aged at the server. Managed systems are the clients that rely on the
server components for receiving the service information with the appro-
priate interaction components to be used. In this way, the logic remains
on the server side avoiding mobile clients to deal with complex processes
that may have an impact on performance.

6.4.1 Server Side Subsystem
The components of the server side (Context Monitor, User Situation
Analyzer, and Adaptation Engine) are implemented using Java/OSGi
technology. Using this technology, we achieve that the autonomic in-
frastructure is an operative system independent and can be dynami-
cally constructed from reusable and collaborative components, which
are known in the OSGi terminology as bundles. Thus, the infrastruc-
ture is developed to be run in an OSGi service platform. An OSGi
service platform is an instantiation of a Java virtual machine, an OSGi
framework, and a set of bundles.

The OSGi framework runs on top of a Java virtual machine and
provides a shared execution environment to install, update, run, stop
and uninstall bundles without needing to restart the entire system. To
minimize the coupling among bundles, the OSGi framework provides a
service-oriented architecture that enables bundles to dynamically dis-
cover each other for collaboration. An installed bundle can register
services by publishing their interfaces using the framework’s service reg-
istry. This registration makes the services discoverable through the reg-
istry so that other bundles can use them. Thus, when a bundle queries
the registry, it obtains references to actual service objects registered un-
der the desired service interface. For example, each Interaction Provider
is encapsulated in an OSGi bundle. In this way, we can add as many
Interaction Providers as we need without having to stop the system.
This provides flexibility to add new devices (Managed Systems).

186 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

The framework also manages dependencies among services to facil-
itate coordination among them. These dependencies are implemented
by using Wire objects. A Wire object acts like a communication chan-
nel between a Producer service and a Consumer service. When a wire
is created, the Producer service can produce information to be used
by the Consumer service. Thus, we use the Wire Admin Service in
OSGi to address the inter-component eventing mechanism between the
components of our system such as the Context Monitor and the User
Situation Analyzer, this last and the Adaptation Engine or this last and
the Interaction Providers. When a component has an event to deliver,
the component source calls all event listeners in the service registry.

To enable this communication, the Producer service must imple-
ment the OSGi Producer interface, while the Consumer service must
implement the OSGi Consumer interface. There are two ways to es-
tablish communication using a wire: 1) the Producer service can send
information to the Consumer service or 2) the Consumer service can
request information from the Producer service. In our approach, the
communication between services using a wire is always produced from
the producer to the consumer.

Furthermore, OSGi enables the integration of heterogeneous devices
and sensors in ubiquitous environments by means of the service discov-
ery. Services expose external devices, such as UPnP devices or KNX-
EIB devices which are the ones that we use to gather context informa-
tion besides mobile sensors.

Finally, the Service Manager is implemented in PHP, a server-side
scripting language interpreted by an Apache web server and connected
to a MySQL database that stores the received interaction configura-
tions. In this way, we keep track of the adaptation traces to be able
to analyze it later and check the proper functioning of the autonomic
infrastructure. Also, these traces are shown in a web page to assist
engineers in the task of checking the correct adaptations of the services.

6.4.2 Client side subsystem: managed systems

6.4 Deployment of the infrastructure 187

Master view Detail view

iOS

Android

Figure 6.12: Implementation of the managed system on iOS and Android.

The client side subsystem is formed by the managed systems deployed
in the managed devices to adapt their interaction obtrusiveness. In or-
der to validate our approach, we have implemented a managed system
on both Android and iOS. We chose those platforms because they allow
interaction components to be easily managed. On the one hand, An-
droid provides an open application framework that supports advanced
interaction techniques such as text-to-speech synthesis and easy commu-
nication mechanisms to integrate functionality of applications. On the
other hand, iOS is a closed platform where mechanisms for component
interoperability and background processing are very limited. However,
the APNs alleviate these problems by providing a centerpiece, robust,
and efficient service for propagating information to devices using a given
configuration.

188 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

Specifically, we have implemented a mobile application on each plat-
form following a master-detail interface that displays a master list of all
the service information received and the details of the currently selected
information. When some data of a service is received at the managed
system, it is notified using the appropriate interaction components for
the current user situation and it is also showed in the master list. By
selecting a notification of the list view, its details are shown. Fig. 6.12
shows these views for an implementation on iOS and Android. When
the application is installed in the device, it registers the device to the
infrastructure.

In the next subsection, we provide further detail of the implemen-
tation on the Android platform.

Themanage system onAndroid
One of the managed systems was implemented on the Android platform.
Although our approach is not platform-dependent, we took advantage of
this platform to implement the adaptation actions. The Android plat-
form provides the Intent messaging facility for late runtime binding be-
tween components. Moreover, it provides loosely-coupled components9

such as Service, which provides functionality executed in background,
and Activity, which provides the user interface. Also, a more sophisti-
cated user interface can be described in Android by merging different
fragments defined in an XML layout file that separates the presentation
from the behavior. The different components are generated automati-
cally by means of model-to-text transformations using XPand templates
as we described in Section 6.1.

In order to integrate our infrastructure with the manage system on
Android, a controller was implemented as an Android Service running
in background (see Fig. 6.13). This component was developed to act as
a local broker. It supports the following operations:

Activation and deactivation of components. Android allows

9http://developer.android.com/guide/components/index.html: Android compo-
nents

6.4 Deployment of the infrastructure 189

Vibra�on

Interac�on
adapta�on
at	run�me

Agenda (slightly, proactive)

Speech
feedback

Deadline
paper	
submission

Context
change

Ubiquitous
device

Automomic
infrastructure

 New interaction
con�guration

Mobile Phone Tablet

Controller

context event

Agenda (aware,proactive)

context
event

Figure 6.13: The components of the managed system on Android.

the dynamic activation and deactivation of components (services
and activities). The different components executed in the mobile
client are activated and deactivated by the controller as our in-
frastructure request it. The startService/stopService and startAc-
tivity/stopActivity methods defined by Android are executed by
the controller to activate and deactivate interaction components
(implemented as services or activities). For locating a component
in Android, an Intent is launched that describes the components
to start. That is an abstract description of the component desired
to be activated (e.g., vibration feedback) regardless of the compo-
nent that provides such functionality (e.g., vibrator resource). For
example, the code of Listing 6.15 launches a service that provides
the “es.upv.pros.Vibration” interaction.

Listing 6.15: Excerpt of the implementation to launch a component on Android.

Intent i;
i = new Intent("es.upv.pros.Vibration");
startService(i);

An Intent can also carry small amounts of data to be used by the
component that is started. For example, we can include in the
vibration intent the pattern to be followed or the length of time

190 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

to vibrate.

Dependency changes. Android provides loosely-coupled commu-
nication mechanisms among components. For requesting some
external functionality, a component launches an Intent. In this
case, the controller intercepts the signals from our infrastructure
(abstract Intents) and translates them to a more specific ones
that matches the concrete underlying technology. For instance,
if the infrastructure indicates that a notification with vibration is
needed for service S, the controller replaces the general Intent with
one that contains the same data but with the specific data of the
component description. The later would be the component corre-
sponding to the Android notification service in charge of showing
status bar notifications (e.g.,“es.upv.pros.Notification.StatusBar”)

6.5 Applying AdaptIO to non-adaptive ser-
vices

In this section, we discuss the steps necessary to apply AdaptIO to
existing non-adaptive services. As a prerequisite, the service obtrusive-
ness adaptation behavior has to be modeled by means of the design
method presented in Chapter 5. Then, the service interaction compo-
nents are derived automatically from the model-based description. Once
the different interaction components are prepared, the service has to be
modified in order to be connected with the infrastructure by means of a
service invocation. Specifically, the steps to be taken towards preparing
adaptive services are the following:

1. Identifying adaptable interaction components. The initial step is
to analyze the service and specify the required adaptability factors
for each obtrusiveness requirement. After specifying the adapt-
ability factors, it is necessary to identify the relevant supporting
user interface components. During this process, a software en-

6.5 Applying AdaptIO to non-adaptive services 191

gineer analyzes the original software with regard to the list of
potential adaptability factors to obtain the new requirements.

2. Modeling the service adaptation behavior. The service interaction
obtrusiveness adaptation behavior has to be designed by following
our modeling framework. First, the possible obtrusiveness levels
must be defined and the interaction configurations for each level
according to the adaptability factors. Also, if a new user situation
is introduced, the rule to infer the user situation must be defined
and inserted in the rules repository.

3. Developing alternative components. The next step is to transform
or develop the source code of the alternative variants of the in-
teraction components. Since we follow a model-based approach,
the multiple variants can be obtained automatically following our
development method. Our approach considers each interaction
component as an isolated component that has its own functional-
ity. However, if the degree of service functionality overlaps among
different component variants, developers only need to provide the
common functionality in a single point.

4. Connecting the service with our infrastructure. Finally, in order to
integrate the service with our autonomic infrastructure, the inter-
action layer of the service has to be updated to take into account
adaptation. That is, it has to invoke the Service Manager of our
infrastructure via HTTP in order to provide to our infrastructure
the information to show or communicate this information to the
user adapted to the user’s situation. However, these invocations
can be reused between the different services.

In order to illustrate this process, we have modified a user’s task
management system to introduce the interaction obtrusiveness adap-
tation on it. This system allows users to add tasks and events under
different categories with deadline information and priority. For the non-
adaptive version of the system, the tasks were provided always using the
same interaction components (a dialog). After applying our framework
to the system, the interaction components available in the interaction

192 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

User's tasks

Edit task

Alert of a task
Multiple variants

considered to alert
the user of an

approaching task

Figure 6.14: Modifying a user’s tasks management system to be adaptive.

layer for interacting with the system were: vibration, loud and soft au-
dio, speech, an status notification, a dialog alert, and a home widget (see
Fig. 6.14). These were the interaction component variants considered
to adapt the system.

In order to connect this system with the autonomic infrastructure,
we reused the controller component described in the previous section
(Section 6.4) since it was also implemented on the Android platform.
Specifically, we integrated this component in the interaction layer of the
application in a way that, before calling an interface, the controller pro-
cesses the interaction configuration from the autonomic infrastructure
and makes the appropriate calls to the components.

6.6 Scalability evaluation
Model-based techniques provide a greater degree of flexibility for sup-
porting the interaction obtrusiveness adaptation. By following an adap-
tation approach based on models, we can adapt the interaction in terms
of concepts of a high level of abstraction. Since the models are directly

6.6 Scalability evaluation 193

interpreted, we use the same representation at runtime than at design
time. Therefore, when the models change, the system is automatically
updated.

However, model manipulation at runtime may impact overall system
performance. Specifically, the incorporated latency is determined by (a)
the model manipulation frameworks, (b) the model population (includ-
ing the number of services taken into account), and (c) the web service
invocations. Since the scalability of ubiquitous services is an important
problem rarely addressed (Mostéfaoui et al., 2004), we have evaluated
this concern in our autonomic infrastructure. As model manipulation
frameworks, we used SPARQL to manage the context model and EMF
Model Query to query the models at runtime. Specifically, we demon-
strate the feasibility of exploiting at runtime the models introduced in
our approach.

Experimental setup. The target platform used in our experiment
was the open source implementation of OSGi Equinox Release 4. To
run the instance of Equinox, we used a host with an Intel Core i7 1.8
GHz processor and 4 GB RAM 1333 MHz with Mac OS X Lion and
Java 1.6.0 29 installed.

In the adaptation of our running services (Smart Home services),
model processing did not introduce significant performance penaliza-
tion. However, in order to validate the efficiency of the proposed ap-
proach to large systems, we quantified this overhead for randomly gen-
erated models. These models started with one element and were pop-
ulated with five hundred new elements each iteration. After the model
population, we applied the model operations that support the calcula-
tion of the interaction modifications: InsertContextEvent, checkUserSi-
tuation, triggerTransition, getDifferences, and doWeaving. Our system
requires these operations to be efficient enough to gather the necessary
knowledge without drastically affecting the system response.

Figure 6.15 shows the milliseconds that take the infrastructure per-
forming each one of the model operations. Analyzing in detail the ex-
perimentation results, we notice that the operations with the highest
temporal cost were the operations related to trigger a transition (trigger-

194 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

M
ill

is
e

co
n

d
s

Performance Values

Model Elements

InsertContextEvent

CheckUserSituation

getDifferences

triggerTransition

doWeaving

Figure 6.15: Values of infrastructure performance.

Transition and getDifferences operations). These operations navigate
through the models to obtain the configurations and calculate the dif-
ferences among them. For this reason, both operations get a similar
time response. The operation over the context model that got higher
response time was the CheckUserSituation operation, since it queries
the ontology by means of SPARQL. Although the doWeaving operation
also operates over the models, it got less response time because it only
queries the elements involved to do the weaving (it does not navigate
through all the model). Finally, the InsertContextEvent operation do
not introduce any penalization in the response time. Overall, even with
a model population of 35.000 elements in each model, the model oper-
ations provide fast response time (<350 milliseconds) at least for the
kind of services we are addressing.

To determine the performance of a REST-based architecture in our
approach, we evaluated the web service invocations. The evaluation was
performed using the university wireless network, and the REST-based
invocations were performed on a HTC Magic device. We performed
500 invocations in sequence, measuring the time from the creation of a
request to the parsing of the result. Approximately 85% of the requests
were shorter than 290 ms. The longest duration was close to 1 second

6.7 Conclusions 195

(this could be due to a socket timeout on the device).

It turns out that our approach gathers the necessary knowledge from
the runtime models without drastically affecting the system response.
Also, we consider that the response time offered by our model operations
is acceptable when compared to the performance of the devices and
communication networks usually found in the Smart Home domain.
Thus, we can conclude that our approach can also be applied in other
domains with similar temporal constraints.

6.7 Conclusions
In this chapter, we have used model-based adaptation techniques to
self-regulate service interactions in terms of obtrusiveness. With the
increase in the capabilities of mobile and ubiquitous devices, user at-
tention becomes a bottleneck for the system. Therefore, it is important
to be able to manage it in an effective manner. Our infrastructure takes
into account the user’s attention for adapting the way in which service
interactions are delivered in each situation to avoid overwhelming the
user.

The mechanisms provided for adapting interaction obtrusiveness
at runtime help services to be considerate with the user according to
his/her context. Also, the use of design models at runtime offers new op-
portunities for adaptation capabilities without increasing development
costs. This is accomplished by means of a planned reutilization of the
efforts invested at design time. In addition, the definition of the infras-
tructure at modeling level allows the system to be sustainable since it
can support its evolution to new technologies.

196 CHAPTER 6. SELF-REGULATING INTERACTIONS AT RUNTIME

7
Exploiting the User Feedback
Improving the obtrusiveness design

In any design that is going to last more than a very brief moment, the
environment, the context, the expectations of people who use it, are

bound to change.
—Mark D. Gross.

As the use of ubiquitous devices (e.g., mobile phones, tablets, TVs,
etc.) is widespread nowadays, they increasingly ring, beep or show in-
formation at inappropriate situations or contexts. For example, when
ringing in a meeting or in a theatre, or when showing inopportune infor-
mation with company. Sometimes, we receive reminders to turn off our
mobile devices or silent them, however, we often forget to do so result-
ing in unwanted interruptions. Even when we do remember, we then
forget to turn on the device afterwards resulting in missed notifications,
service information or calls (Rosenthal et al., 2011).

In Chapter 5 and Chapter 6, we presented a method and an infras-
tructure for designing and adapting services to regulate their interaction
obtrusiveness at runtime according to user’s current situation. However,

198 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

users’ context and circumstances can change over time and the defined
service obtrusiveness behavior must be re-adjusted to adapt to these
changes. Otherwise, the adaptation of these services’ interactions not
only may become useless for users but may also become a burden on
them. Although the proposed models specify the interaction behavior
of services according to user’s context, changes in user behavior and
preferences cannot be anticipated at design time. This highlights the
need to adapt the decisions made at design time by learning the users’
preferences through experience.

Analyzing user behavior (based on user’s reaction or user’s ongoing
interaction with the system), the user personality can be better under-
stood and interaction obtrusiveness can be improved. Every time the
system suggests a choice to the user, he or she accepts it or rejects it,
giving feedback to the system to update its knowledge base (e.g., mod-
els) either implicitly or explicitly (Jaimes and Sebe, 2007). In this way,
interaction obtrusiveness adaptation can be conducted implicitly by the
system or explicitly by the end-user. User history can be monitored im-
plicitly, by observing the user interacting with the system. Additionally,
the user can explicitly characterize his/her own preferences and modify
the behavior of the adaptation by means of tools supporting customiza-
tion (Toninelli et al., 2008).

In this chapter, we introduce a learning strategy for adapting the
designed service interaction obtrusiveness implicitly (specified in the
unobtrusive adaptation space) based on user’s reaction. Specifically, we
follow a reinforcement learning approach for automatically adapting the
interaction obtrusiveness in a way that maximizes the user’s satisfaction
for long-term use. The initial interaction obtrusiveness design ensures
us a consistent initial behavior according to initial user needs. This
design is then adapted for each service to the individual behavior and
preferences of users based on the feedback given by them.

Also, we provide users with customization interfaces in order to
let them explicitly set up their own obtrusiveness preferences, since the
user is who better knows his/her new preferences. In particular, we have
developed a mobile interface with expressive user support for defining
situations and a personalization interface to allow users to change the

7.1 Characterization of the obtrusiveness adaptation 199

services in the unobtrusive adaptation space and the linking with the
interaction resources.

Because this interaction obtrusiveness must learn from observing the
behavior of users, another distinguishing characteristic of these systems
is their need for rapid learning (Jaimes and Sebe, 2007). An important
issue is the number of training cases needed by the system to generate
good adaptation. Thus, we have conducted an experiment to evaluate
the accuracy of our learning method.

The rest of the chapter is organized as follows. We first motivate the
problem and characterize the learning approach in Section 7.1. Then,
we describe the accomplished method to adapt automatically the initial
design based on user feedback in Section 7.2. Next, Section 7.3 describes
the provided interfaces to change the design explicitly. Afterwards,
we present experimental results in Section 7.4. Finally, Section 7.5
concludes the chapter.

7.1 Characterization of the obtrusiveness
adaptation

According to the unobtrusive adaptation space presented in Chapter
5, there is a range of ways to provide the interaction of a service with
different degrees of attentional demand and proactivity. Which is the
best? It depends on the user who is interacting with the system (e.g.,
his/her needs, priorities, preferences, context), the service (e.g., allowed
obtrusiveness levels to be presented), and the context (e.g., environment,
location, user state, cognitive load, etc.). We take into account all these
factors to define the initial service obtrusiveness design.

But, what happens if user preferences change over time? How the
user reacts to a designed interaction? Which is the new user behavior?
What happens if a new service appears in the system?. There are a lot
of questions that raise the need to adapt the initial obtrusiveness design
to the new user preferences in order to ensure user satisfaction with the
system over time.

200 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

The different factors that could affect the initial design according to
our characterization and the way to adjust it are the following.

• User profile: User profile can change over time due to a change
in the user’s lifestyle or user’s needs. In this situation, the user
could need an adaptation of the type of user to another profile.
Thus, services and obtrusiveness configurations should be adapted
to this new profile.

• User preferences: A specific preference within the same type of
user could change and the user could need another obtrusiveness
level for a specific service in a context. The system should be able
of adjusting the interaction obtrusiveness according to the new
user preferences.

• User context: User’s context can change and the user situa-
tion definitions of the transitions between two obtrusiveness levels
could require a re-definition in order to guarantee accuracy in the
interaction adaptations. Thus, the system should offer a manner
to change the definition of the user situations and, in this way,
re-define the transitions.

• Services: Users can need new services or existing services can
change their functionality over time. If a new service appears, the
system should be able of learning the relevant obtrusiveness levels
for the service. If an existing service changes its functionality, the
user may prefer another obtrusiveness level for the new function-
ality. Thus, the system should adjust the obtrusiveness level for
that service.

From this characterization, we propose three types of adaptations:

• Type 1: adaptations between user profiles.

• Type 2: adaptations of obtrusiveness levels for a service.

• Type 3: adaptations of user situations of transitions for a service.

7.1 Characterization of the obtrusiveness adaptation 201

(a)

Status
Bar
No�f.

Speech

re
ac
�v
e

pr
oa
c�
ve

aware

in
i�
a�

ve S1

S2

Persona	1 Persona	2

slightlyinvisible
a�en�on

Status
Bar
No�f.

Speech
re
ac
�v
e

pr
oa
c�
ve

aware

in
i�
a�

ve

slightlyinvisible
a�en�on

S1 S3 S3 S1

(b)

Status
Bar
No�f.

Speech

re
ac
�v
e

pr
oa
c�
ve

aware

in
i�
a�

ve S1

S2

slightlyinvisible
a�en�on

Status
Bar
No�f.

Speech

re
ac
�v
e

pr
oa
c�
ve

aware

in
i�
a�

ve

slightlyinvisible
a�en�on

S1

S3

Persona	1
profile

adapta�on

S2

S1 S1S1S1S1

Learn a new
obtrusiveness

con�guration of an
existing service

Learn the
obtrusiveness

con�guration of a
new service

obtrusiveness
adapta�on

Adjust the user
situation of an

existing transition

Figure 7.1: Types of adaptations: (a) profile adaptations, (b) obtrusiveness
levels and transitions adaptations.

For example, an unemployed user can have a specific profile that
could need to be adapted if the user begins to work (from unemployed
profile to worker profile). In addition, a particular user can play two
roles at different moment (e.g., weekdays vs. weekends) and the sys-
tem could adapt the profile according to it (adaptations of type 1).
Moreover, a specific service within a profile could need to be adjusted.
Imagine it was defined for a user the healthcare service to be always
in the aware level of attention by means of speech feedback. However,
when the user begins to work s/he does not want other people to be
aware of it. Thus, this obtrusiveness level for the service needs to be
adjusted to another one that requires less attention (adaptation of type
2). Also, the user’s context can change in a way that s/he has changed
his/her job and s/he had specified a user situation rule atWork with
the location of his/her old job in its definition. However, as the job
location has changed, this rule should be adjusted with the new job
location (adaptation of type 3).

Figure 7.1 illustrates these types of adaptations. In the first case
(see Fig 7.1(a)), profile adaptation can be defined by designers in the
design phase by means of a transition between Personas. The way
to define transitions between personas is similar as the one to define
transitions among obtrusiveness levels defined in Chapter 5. However,
in this case, the action of the transition is the target persona. In the
second case (Fig 7.1(b)), the system has to improve the initial design

202 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

by adapting the obtrusiveness level of a service. Our system achieves
this by learning from user’s reaction after interacting with the system
in a specific obtrusiveness level. This case of adaptation is described in
Section 7.2. The users can also set up their new preferences explicitly
by means of an end-user interface described in Section 7.3. In the third
case (see Fig. 7.1(b)), the user is put in charge of defining his/her own
situations by means of a mobile interface described in Section 7.3. In
the case that a new service appeared in the system, it is located in a
default obtrusiveness level (e.g., slightly-aware obtrusiveness level) and
this obtrusiveness level is adjusted in the same way of an existing service
by means of an adaptation of type 2 (second case described).

The following sections provide further details about the mechanisms
that we propose to address each type of adaptations.

7.2 The reinforcement learning strategy
As it is difficult to model interaction obtrusiveness adaptation in the
design stage to meet the changing users’ preferences over time, we need
mechanisms to learn these user preferences automatically (Maes, 1994).
Thus, we propose to automatically learn the obtrusiveness pref-
erences and adapt the initial design at runtime. Our system
achieves this by learning from user’s reaction after interacting with a
service in a specific obtrusiveness level.

In order to deal with user preferences, some research try to inject
user models into context-aware systems. For example, (Byun and Chev-
erst, 2001b) showed how the two closely related concepts of user mod-
eling and context-awareness could be combined. (Godoy and Amandi,
2005) built user profiles of net surfers capturing their preferences and
interests for page suggestions. These profiles are learned using classifi-
cation techniques. (Doctor et al., 2005) used fuzzy logic to learn rules
representing the user’s behavior with the aim of automating his/her
usual actions. Following this direction, our goal is to learn the prefer-
ences of the user based on the satisfaction or disapproval of the user

7.2 The reinforcement learning strategy 203

towards the system’s actions.

In order to improve the initial obtrusiveness design and adapt the
obtrusiveness level for each service, we follow a Reinforcement Learning
(RL) strategy (Sutton and Barto, 1998b) in which our system learns
from user feedback. Reinforcement learning is an approach where an
agent acts in an environment and learns from its previous experiences to
maximize the sum of rewards received from its action selection. RL has
been demonstrated to be a promising approach in autonomous systems
to avoid knowledge bottlenecks by automatically learning high-quality
management policies (Tesauro, 2007).

In the next subsections, we explain how we have applied RL in our
approach to adapt the initial obtrusiveness knowledge.

7.2.1 Applying RL to our approach
Considering the obtrusiveness levels as the different states of our sys-
tem and depending on the received feedback (positive or negative), the
current obtrusiveness level for a service is rewarded or punished. In this
way, if negative feedback is received continuously for a given service in
an obtrusiveness level, it means that the user is unsatisfied with the de-
sign and the system will adjust it by changing the obtrusiveness level.
Thus, in each obtrusiveness level, the possible actions that the system
can take are:

• do nothing : for maintaining a service in the same obtrusiveness
level while positive feedback is received.

• adjust the obtrusiveness level : for improving the designed obtru-
siveness level for a service due to received negative feedback.

To select an action in each obtrusiveness level, we define a behavior
policy with the goal of optimizing all subsequent feedbacks over time.
Each time feedback is received, the weights of each action are updated
based on the new information. The process is the following: while posi-
tive feedback is received, the action do nothing increases its weight and
the policy will choose this action since it is defined to choose the action

204 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

Reward or punish

Vibration
Banner

Service Preferences

Figure 7.2: Ways of obtain explicit feedback from user.

with the highest value in a given state (obtrusiveness level). However,
if the system starts to receive negative feedback, do nothing action will
start to decrease its weight until the action to adjust the obtrusiveness
level has a higher value (according to a learning rate). When this situ-
ation happens, the system will proceed to adjust the obtrusiveness level
since the system will choose the action to adjust the obtrusiveness level
and will adapt the design. The learning rate determines to what ex-
tent the new value feedback overrides the old one. It is initially defined
manually and then can be adjusted to each user.

7.2.2 Obtaining the Feedback
Since the user is the target of the system, the user is who can reward or
punish it by giving feedback (a reward r). We specify a reward of +1 to
express satisfaction and −1 to express disapproval. This feedback can
either be explicit or implicit. Explicit feedback is obtained directly from
the user by means of two verbs that appear in the service interface as
implemented in (Isbell et al., 2001): reward and punish. Also, if users
change their service preferences, that is considered explicit feedback.
Fig. 7.2 illustrates the ways to obtain explicit feedback.

Implicit feedback is obtained by observing user’s behavior (inter-
action with the system) after interacting with a service in a specific

7.2 The reinforcement learning strategy 205

obtrusiveness level. Specifically, it is detected as the immediate inter-
action related to the service at hand that is performed by the user. For
example, if the user receives information from a service and s/he views
it, then s/he probably was satisfied with the action. However, if the
user changes the feedback mode when s/he receives it, then the implicit
reward is negative. This semantic is specified by means of a function
that takes the immediate interaction as input and returns the adequate
value (positive or negative).

For a service Si delivered to the user, we define the valued feedback
as ri = αRE(i)+(1−α)RI(i), where RE(i) is an explicit feedback, RI(i)
is an implicit one, and α is a regulating factor that adjusts the ratio
of implicit and explicit feedback. In our approach, implicit feedback is
numerically weaker that the explicit one.

7.2.3 Running the Reinforcement Learning algorithm
Through an online trial-and-error process by means of actions, our sys-
tem is able to learn a decision-making policy which optimizes all sub-
sequent rewards over time. Also, using an a-priori designed model, we
avoid to explore particular actions that are heavily punished but rather
reason about the consequences of these actions (Wiering, 2002). For
example, with the a-priori model of our system, the agent can compute
a policy to attain its current goal (maintain the obtrusiveness level).
If the agent discovers more information about the user, it can again
instantiate this in the model and recompute a policy without the need
to try all its actions.

Specifically, the RL method we consider to update the weights is
called Q-learning (Watkins and Dayan, 1992). This method has a func-
tion Q that calculates the quality of choosing an action a in the obtru-
siveness state s (state-action combination Q(s, a)). Before learning has
started, Q returns a fixed value chosen by the designer. This value is
specified following our initial design by giving a higher value to the pairs
corresponding to the default obtrusiveness level and the “do nothing”
action, and a less value to the remainder. Then, each time the user

206 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

gives a reward, new values are calculated for these pairs as follows:

Q(s, a)⇐ Q(s, a) + α(r + γmaxa′∈A(s′)Q(s′, a′)−Q(s, a)) (7.1)

Here, Q(s, a) is the old value of the pair state-action; α is the learn-
ing rate that determines to what extent the new feedback overrides the
old one. A factor of 0 makes the system not learn anything, while a fac-
tor of 1 would make it consider only the most recent feedback; r is the
reward observed after performing the action a in an obtrusiveness state
s; γ is a discount parameter between 0 and 1 expressing the importance
of future rewards; and Q(s′, a′) is the expected future feedback. We
have introduced a new function V to establish a limit value that the
quality value can take to accelerate the learning and obtain an adap-
tation with few trials when the user changes his/her preferences. This
new function is:

V (s, a) =


−∆ if Q(s, a) <= −∆

Q(s, a) if −∆ < Q(s, a) < ∆
∆ if Q(s, a) >= ∆

(7.2)

Where ∆ is the limit value that the quality value can take. This
value has to be defined according to the reward and learning rate values.

However, in our system, even though when the action to choose is
“do nothing” while receiving positive feedback, the obtrusiveness level
(state) can be modified by a change in the user’s situation. In this case,
we assume the action “do nothing” and the new obtrusiveness level as
the new state. Algorithm 1 shows our modified version of Q-Learning
for learning after interacting with a service and taking into account the
limit value function and the changes in the user situation.

As we have a designed a-priori model, we initialize s as the designed
default obtrusiveness level and the value of the state-action pairs Q(s, a)
and V (s, a) with the designed values giving more weight to the action
do nothing in the initial obtrusiveness state. This provides a consistent
initial behavior. When a service has to interact with the user, the
system choose an action a in the state s following the behavior policy.

7.2 The reinforcement learning strategy 207

Algorithm 1 RL algorithm for a service

Require: discount factor γ, learning parameter α, limit value ∆
1: Initialize s with initial obtrusiveness state, and Q(s, a) = V (s, a)

with initial values
2: repeat
3: when service St has to interact with the user
4: choose action a in s using behavior policy
5: perform a
6: perform service interaction in the new state s′

7: observe received reward r
8: update V (s, a)
9: s := s′

10: if obtrusiveness change by user’s situation from s to s′′ then
11: s := s′′

12: a := “do nothing”
13: end if
14: if r is negative then
15: save the kind of negative reward
16: end if
17: until end of learning process

Then, the action is performed and the service interaction is performed
in the new obtrusiveness state s′. The system observes the reward
obtained from the user either explicitly by means of a graphical interface
or implicitly by recognizing the user’s emotional state. Based on the
obtained reward, the system updates the value of the state-action pair.
Then, s is updated to the current obtrusiveness state s′. The system
also checks if the obtrusiveness state has been modified due to a change
in the user’s situation. If so, the s and a values are updated with
the new obtrusiveness state s′′ and the “do nothing” action. Finally,
if the received reward is negative, we save the kind of negative reward
received.

7.2.4 Adjusting an obtrusiveness level

208 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

If the action to perform is to adjust the obtrusiveness level for a service
in a given user situation, the system has to compute the initiative and
attention level required for the adaptation to a new obtrusiveness level.
We introduce an ordering in the obtrusiveness axes as invisible < aware
(aware interactions requires more attention than invisible ones) and
reactive < proactive (a reactive value provides a lower degree of au-
tomation than the proactive one). In this way, we express the changes
in the obtrusiveness level as increments and decrements in the different
axes.

To calculate the increments and decrements, we process the kind of
negative feedback. For example, if the user puts the device into silent
mode after receiving a notification, it means a decrement in the atten-
tion axis (decremental feedback). However, if the user is not aware of
a notification, it needs to increment the attention (incremental feed-
back). For processing this feedback, we calculate the median for all
the increments and decrements as explained in Section 5.3. The ratio-
nale behind it is to obtain the average movement in the unobtrusive
adaptation space. Finally, the resulting action is applied.

7.2.5 An application example
In order to exemplify the application of the algorithm and the way the
reinforcement strategy works, we based on an example of the healthcare
service. Initially, this service was designed in the (aware, proactive)
obtrusiveness level being this state able to be changed to the other
proactive levels due to different user situations. Figure 7.3 shows the
unobtrusive adaptation space of the service with its transitions.

Imagine a period of time in which the healthcare service notifies the
user about taking the pills when s/he is having lunch alone. According
to the initial obtrusiveness design, the interaction is performed in the
(aware, proactive) level of attention (e.g., be means of speech feedback).
Suddenly, the user changes his/her routine and starts to having lunch
with friends. Following the obtrusiveness design, the service carries
on in the (aware, proactive) obtrusiveness state. However, in this new
situation, the user starts to give negative feedback because s/he switches

7.2 The reinforcement learning strategy 209

Invisible,
proactive

Slightly,
proactive

Aware,
proactive

@inMeeting

!@inMeeting

@free-time

@work

S

Figure 7.3: Unobtrusive adaptation space for the healthcare service.

Figure 7.4: Quality values for 20 iterations of the algorithm.

off the volume of his/her mobile device every time s/he receives the
notification while having lunch. This means that the user prefers an
obtrusiveness level with a lower attention level (decremental feedback).
Thus, in this situation, our system learns this new preference by means
of the reinforcement learning algorithm.

Figure 7.4 shows the trace of the algorithm for 20 iterations. The

210 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

Invisible,
proactive

Slightly,
proactive

Aware,
proactive

@inMeeting

!@inMeeting

@free-time

@work

S S

Figure 7.5: Updated unobtrusive adaptation space for the healthcare service.

parameters were initialized in the following manner: γ=0’99, α=0’5,
and ∆=3. Cells in blue shows the updates of the quality values each time
feedback was received. Initially, the values were defined based on the
initial obtrusiveness design. In this particular example, we gave priority
to the action “do nothing” in the (aware, proactive) obtrusiveness state.
While positive feedback is received in this state, the quality value for
the “do nothing” action in that state is increasing after the limit value
(see iteration 7). In the iteration 8 the user changes his/her preferences
wanting less attention (see that the reward is negative in this iteration).
Thus, the system begins to decrease the quality value of the current state
due to the received negative feedback until it starts to learn the new
obtrusiveness state (iteration 14 to 16). Finally, the system stays stable
in the learned obtrusiveness level due to received positive feedback (from
iteration 16).

When the obtrusiveness level for a service is adjusted according to
the new user preferences, the unobtrusive adaptation space is updated
to reflect the changes. For example, according to the learned preference
in the example of the healthcare service, this service cannot transit
anymore to the (aware, proactive) obtrusiveness level. Thus, the tran-
sition from the (slightly, proactive) level to the (aware, proactive) level
is deleted as illustrated in Fig. 7.5.

Note that this update of the model is produced after the period
of learning when the obtrusiveness level becomes stabilized. In the
example, this update is performed in the iteration 19. In this way, we
avoid unnecessary updates while the system is learning.

7.3 The customization interfaces for end-users 211

7.3 The customization interfaces for end-
users

Another possibility to learn user preferences over time is that users
characterize their own preferences explicitly (Toninelli et al., 2008). To
contend with this, we need a tool that lets end-users easily and effi-
ciently customize their interaction obtrusiveness. To that end, we have
developed mobile interfaces to allow users adjust and customize the
initial obtrusiveness design.

End-user centered approaches provide alternatives for end-users to
define the behavior of their systems and environments. Dey et al. (Dey
et al., 2004) presented a programming-by-demonstration approach for
prototyping context-aware applications. They experimented with a pro-
totype PC-based tool that lets users train and label context models,
which can then be mapped to actions. Chin et al. (Chin et al., 2006)
provided a platform aimed at non-technical people to customize the
functionality of their digital home to suit their particular needs. Kor-
pipää et al. (Korpipaa et al., 2006) provided users with a UI to manually
define new interactions in smart phones (e.g., gestures) and link them
to device actions. Usually, these techniques improves user acceptance
of the system because they provide users with better control over the
system. However, these techniques do not focus on specifying the de-
gree of obtrusiveness required to provide the functionality. In contrast,
our designed interfaces allow users to define fine-grained obtrusiveness
adaptations.

Because mobile devices are lighter and more portable, we find it
more convenient to develop the customization interfaces for them. In
this way, users can customize their system at any time and ev-
erywhere. However, unlike traditional desktop interfaces, mobile inter-
faces have several constraints such as limited screen, mobility, viewing
conditions, etc. and it is very important from the designers’ viewpoint
that the development of this kind of interfaces follows a user-centered

212 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

design process to arrive at the end-users1.

Furthermore, interaction aspects are a crucial factor for determining
the application’s success or failure since a bad interaction can cause that
user does not use the application. Specially, we have put emphasis in
simplicity as one of the main goals of our design solutions. Simplicity
is about subtracting the obvious and adding the meaningful (Maeda,
2006). This principle is behind the design of successful products such
as the iPod (Maeda, 2006).

Many usability guidelines try to aid users in fulfilling their goals ef-
fectively, efficiently and successfully in each context of use (Iso, 2010).
In order to obtain simpler designs, designers normally apply heuristic
analysis to their interaction designs. There are different works describ-
ing heuristics or guidelines for general purpose design such as (Unger
and Chandler, 2009), (Krug, 2005). There are also references related
to touch gestures such as (Villamor et al., 2010), for voice user in-
terface design (Cohen et al., 2004), or for mobile design (Savio and
Braiterman, 2007). In many cases, simplicity is behind some of these
guidelines. Nevertheless, by considering simplicity as an independent
aspect for the system, some of the limits that reduce the design space
are eliminated (Vastenburg et al., 2008).

Since we wanted to obtain simple interfaces in an early step, we
inspired in the “Laws of Simplicity” of Maeda (Maeda, 2006) in order
to design our customization interfaces. These guidelines are metaphors
which are applicable to different areas such as design, business, tech-
nology and life. In our work, we took some of these guidelines to detect
and fix complexity problems. Specifically, in our work, we apply the
following laws:

• Reduce. To preserve the most relevant information and opera-
tions in the main screen, diverting the rest to other contexts where
user can navigate.

• Organize. To group similar components and operations.

1http://www.uxbooth.com/articles/designing-for-mobile-part-1-information-
architecture/

7.3 The customization interfaces for end-users 213

Main screen of the obtrusiveness

personalization inteface with the

two options: basic features for

novel users and advanced

features for a more advanced

personalization

Figure 7.6: Main screen of the Obtrusiveness Personalization interface.

• Time. To avoid unnecessary navigation with the purpose of users
complete their activities more fluently.

• Learn. To apply popular and intuitive knowledge that is movable
to an application.

• Emotion. To achieve users have good feelings which lead to a
satisfying interaction.

According to these laws, we defined our customization interfaces in
different iterations in which new ideas were emerged. At the end, we
obtained interaction designs more focused in the end-user. In the follow-
ing subsections we describe the design of each one of the customization
interfaces provided based on simplicity.

7.3.1 Obtrusiveness Personalization interface
To overcome the problem of the users’ changing preferences and allow
them to define their own obtrusiveness preferences, we provide an Obtru-
siveness Personalization interface. This corresponds to the adaptation
of type 2.

In particular, we developed a personalization interface to let users
change the services in the unobtrusive adaptation space and the linking

214 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

with the interaction resources in a user-friendly interface. The interface
is based on the nested doll pattern (applying the “reduce” and “time”
laws). Figure 7.6 shows the main screen of the interface where we show
the main operations (applying the “reduce” and “organize” law). Below,
we first discuss how the user can change the obtrusiveness level of a
service on a basic interface, and then, how he can change the interaction
resources assigned to each obtrusiveness level and the transitions among
the levels in a more advanced interface.

Changing the obtrusiveness level (basic features)
We provide a basic interface for novel users to change the obtrusiveness
level of services following the “emotion” law. As Figure 7.7 shows, when
the user selects the basic features option, a list of all services appears
(left screen). Selecting a service, its obtrusiveness levels with their asso-
ciated user situations are shown. In this interface, when the user selects
a specific user situation of the selected service, the obtrusiveness level
associated with that user situation is shown (represented as the level
of attention in the interface). In this screen, the user can choose one
obtrusiveness level to change it (see Fig. 7.7, right screen) or delete it.

As the figure shows, the interface to change the obtrusiveness level is
designed with a slider to let users increase or decrease the attention level
without any knowledge about obtrusiveness levels (following the “learn”
law). When the attention level changes, the configuration image changes
accordingly to show users the interaction resources of the selected level
(applying the “emotion” law).

Changing interaction resources and transitions (advanced features)
For advanced users, we provide an advanced interface to allow users (1)
change the interaction resources assigned to an obtrusiveness level, (2)
create, edit or delete transitions between obtrusiveness levels, and (3)
manage conditions (user situations). Figure 7.8 shows the main screen
of the advanced features (following the “reduce” and “organize” laws).

7.3 The customization interfaces for end-users 215

Figure 7.7: Interfaces for changing the obtrusiveness level.

Main screen of the advanced

features with three

available options to personalize

the obtrusiveness of a service

Figure 7.8: Main screen of the advanced features.

Selecting one of the items lets users to change each one of the features.

Profiles Configuration. To change the interaction resources of an
obtrusiveness level, the user can select an obtrusiveness level be-
tween the existing ones. This is done by selecting the row where
the obtrusiveness level (obtrusiveness state) is shown (see Fig.

216 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

Figure 7.9: Profiles configuration screens.

7.9, left screen). In order to choose an obtrusiveness level, a list
of all the obtrusiveness levels is shown to the user by means of
a picker (see Fig. 7.9, right screen). When the user selects one,
the profile configuration interface shows the complete list of inter-
action resources with the current configuration highlighted (with
a “tick”). In this screen, the user can select edit to change this
configuration by clicking other interaction resources. It is worth
noticing that the selection follows the constraints defined in the
interaction model.

This interface has been designed following the “organize”, “learn”,
and “emotion” laws since the interaction components are orga-
nized in categories, an image of each interaction component is
shown to provide more intuitiveness, and users can change the
configuration with few interactions.

Profiles Transitions. To create, edit or delete transitions between
obtrusiveness levels, a list of all the transitions is shown to the
user (see Fig. 7.10, left screen). Each row of this list shows the
origin and the target obtrusiveness levels, and the services that

7.3 The customization interfaces for end-users 217

Figure 7.10: Profile transitions screens.

have the transition. In this screen, the user can select an existing
transition from the list to edit its information or can delete it.
The user can also create a new one by pressing the item “Create
new transition”.

When the user selects a transition to edit its information, the user
has to define the from and to obtrusiveness levels of the transi-
tion (see Fig. 7.10, right screen). Then, he can choose the affected
services in which the transition will be applied, and the user sit-
uations that make the obtrusiveness level to change. From this
screen, the user can also go to the manage conditions options de-
tailed below. This interfaces have been designed following the
“reduce”, “organize”, and “learn” laws since the task has been di-
vided in different screens, the interfaces have been organized by
operations, and the used labels have been chosen to be intuitive
for the users.

Manage Conditions. For creating, editing or deleting conditions
(user situations), a list of all the user situations is shown to the
user (see Fig. 7.11, left screen). From this list, the user can select

218 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

Figure 7.11: Manage conditions screens.

an existing one to edit its information or delete it. The user can
also create a new one by selecting the “Create new user situation”
option.

In the screen to create or edit a user situation (see Fig. 7.11,
middle screen), the user can give a name to the user situation and
add as many triples as s/he needs to define the body of the rule.
At the end, the user can specify the consequent of the rule as a
triple too. Each one of the triples is formed by the object (e.g.,
“I’m”), the property (e.g., “type”), and the value (e.g., “Person”)
as it is shown in the right screen of Fig. 7.11. The values to be
chosen to form the triples are retrieved from the ontology context
model. These interfaces follows the “reduce” and “organize” laws
since only the relevant information is shown in each interface and
this information is grouped and organized by sections.

7.3.2 User Situation Specification interface
In order to adapt the user situation definitions and guarantee accurate
and unambiguous situation definitions, the user is put in charge of re-

7.3 The customization interfaces for end-users 219

Main screen of the situation

speci�cation inteface with the

two options to capture

automatically a user situation

or de�ne it manually

Figure 7.12: Main screen of the User Situation Specification interface.

defining his own situations. This corresponds to the adaptation of type
3.

We developed a mobile interface that allows users to specify their
situations in a generic and fine-grained way, based on environment con-
text. To increase usability and support nomadic users in a wide range
of environments, the interface also supports directly capturing user sit-
uations (to support the “time” and “learn” laws). Figure 7.12 shows
the main screen of the interface where we show the main operations
(applying the “reduce” law). Below, we first discuss how the user can
manually specify situations, and then, how s/he can use the “capture”
functionality.

Manually defining situations
When the user chooses the “Define Situation” option, s/he can define
a new user situation or re-define an existing one manually. In the first
screen (see left screen of Fig. 7.13), the user can choose to define a
still undefined situation (referenced in the obtrusiveness model), or edit
an already defined one. In the second screen (see right screen of Fig.
7.13), s/he can define the chosen situation using two aspects: location
and time. A third, more advanced “free-form” option allows the user to

220 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

Figure 7.13: Interfaces of the situation overview and specification options.

Figure 7.14: Interfaces to define a location.

place arbitrary constraints on his/her environment (see below). These
interfaces have been designed following the “organize” law by grouping
and organizing the functionality of them.

Using the location option, the user describes the location(s) s/he is
in while being in the chosen situation. For each location (see Fig. 7.14),
the user specifies whether s/he is inside or nearby a certain place, per-
son or thing (i.e. physical entity) in that situation, and provides a way
to identify that physical entity via its type and/or unique identifica-

7.3 The customization interfaces for end-users 221

Figure 7.15: Interfaces to define time intervals.

Figure 7.16: Interfaces to define the free-form option.

tion (URI). The user is aided via auto-complete functions (applying the
“time” and “learn” laws): the type field suggests terms from the ontol-
ogy, as well as synonyms of the ontology terms (provided by WordNet);
while the URI field suggests URIs that identify physical entities the user
has encountered.

The user can also specify time intervals (i.e., days of the week and
time span) during which s/he is in the situation (see Fig. 7.15).

222 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

The advanced, “free-form” option (see Fig. 7.16) allows defining
situations in a more powerful and expressive way, by placing arbitrary
constraints on the user’s environment context. A constraint consists
of a property and a value field. A user may arbitrarily constrain a
property value, either by providing a concrete string or by linking its
connector to other constraints. This free-form option, with connectable
components, resembles the popular Yahoo! Pipes online mashup tool.
In this example, the user is inside his office during the @work situation.
To describe this in a generic way, the user specifies the inside property,
and creates two constraints on the place s/he should be inside of. The
first constraint states that the type of the place should be “Office”,
while the second specifies that the place is the user’s office (via the
housesPerson property). Using the constraint’s connectors, the user
connects the two new constraints to the first constraint’s value field.
The property and value fields are respectively backed by the same auto-
complete functions mentioned above.

Capturing situations
The “capture” option exploits the user’s current environment to quickly
and easily specify situations (to support the “emotion” law). In this
option, the user takes a snapshot of his/her environment, fine-tunes it,
and attaches it to a situation. For example, the user is sitting in a movie
theatre, and one of the services produces a loud notification. The un-
obtrusive adaptation space, defining the service’s adaptation behavior,
makes sure the service is handled at the invisible obtrusiveness level in
an @quiet-place situation (e.g., classroom).

However, mobile users are typically nomadic and move in a wide
range of (previously unknown) environments, making it difficult even
for them to foresee every situation-relevant environment (e.g., movie
theatre). After quickly (and manually) turning off the device’s sound,
the user selects the capture option. This option re-uses the screens from
the previous “define” option (see previous section) and populates them,
based on the user’s current environment. The user selects the location
aspect (see Fig. 7.17), and sees that the “inside MovieTheatre” location

7.4 Reinforcement evaluation 223

Figure 7.17: Interfaces to capture locations.

is present, as well as some other captured locations (e.g., “nearby Cafe”).
S/he then removes the irrelevant locations, and also unchecks the time
and free-form option, since they are not relevant in this case. In the
final screen, the user attaches the fine-tuned context to the @quiet-
place situation, thus making sure the invisible obtrusiveness level will
be utilized in movie theaters as well.

7.4 Reinforcement evaluation
Learning systems have to be efficient and consistent with the real world
in order to assure user satisfaction and acceptability of users. Thus, in
order to measure the efficiency of our learning system and its correct
functioning, we implemented a prototype and conducted an experiment.
This prototype is composed of three components:

• The learning component : This component was deployed on a
server side where the reinforcement learning algorithm was im-
plemented. It was implemented in Java/OSGi.

• The managed system: This component was deployed in the mobile

224 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

device. It consisted on a notification system capable of receiving
notifications from different services and delivering them to users.
This system received notifications with the appropriate interaction
resources to be used according to the obtrusiveness level. It was
implemented on iOS 5.1 running on an iPhone 4. The interaction
components available for delivering the notifications in this system
were: vibration, loud and soft audio, speech, a badge icon, a dialog
alert, and a banner. By means of these interaction components
and a combination of them we were capable of giving support to
all the obtrusiveness levels. We implemented a mobile application
following a master-detail interface that displayed a master list
of all the notifications received and the details for the currently
selected notification. In this way, when a notification is received in
the managed system, it is notified to the user using the appropriate
interaction components for the current obtrusiveness level and is
is also inserted in the master list of the application. By selection a
notification of the list view, its details are shown. This notification
system is further explained in Chapter 8.

• A notification management system: This component was devel-
oped to simulate the notifications from different ubiquitous ser-
vices. This system supports the introduction of new notifications
for the different services of the case study and the sending of them
to the managed system. This component is also further explained
in Chapter 8.

7.4.1 Case study description
For this test, we used a case study for supporting different ubiquitous
services of the users’ daily life, where different services were classified in
a different obtrusiveness level according to an initial design and adapted
then to a specific goal. This case study describes different ubiquitous
services in a Smart Home such as a shopping service, a healthcare ser-
vice, a washing machine service, an agenda service and a recorder ser-
vice. Table 7.1 shows the services used and their initial obtrusiveness

7.4 Reinforcement evaluation 225

level designed.

Service Initial obtrusiveness level

Washing machine (slightly, reactive)

Healthcare (aware, proactive)

Shopping (slightly, proactive)

Agenda (aware, proactive)

Video Recorder (invisible, proactive)

Table 7.1: Initial obtrusiveness level of services

In particular, we defined a scenario for adapting several notifications
of these services for a initially unemployed user profile. The notifications
of the different services were adapted dynamically at different obtrusive-
ness levels according to users reaction. This allowed us to evaluate the
efficiency of the learning system based on user feedback and the user
experience with the system.

Initially, the services were defined in the initial obtrusiveness state
mentioned. Then, due to the user starts working, some services were
adapted because the received negative feedback. The service we are
going to show in the evaluation is the healthcare service. It was ini-
tially designed in the (aware, proactive) obtrusiveness state because the
service was important for the user. Then, the user changes his/her
lifestyle because s/he starts a new job and s/he is working most of the
day with other people and doesn’t want other people to be aware of the
notification. So, the notification is adapted to the (slightly, proactive)
obtrusiveness state when the user starts to give negative feedback.

7.4.2 Evaluation procedure and results
The role of the user was taken by a human experimenter and consisted
in receiving notifications in a given context and giving rewards to the
system. For that, the experimenter had a goal behavior in mind and
gave rewards mostly consistent with this goal. For example, the goal
for the healthcare service was:

226 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

Iterations

Q
u

al
it

y
V

al
u

e

Figure 7.18: Quality values for the behavior of the healthcare service.

• To be satisfied with the initial design during 40 notifications.

• To change the mind and want to reduce the attention level of the
notification due to start working.

The experimenter was also who grade the learned behavior (new
obtrusiveness level) by indicating if the way to receive the notification
was the one he had in mind or not. Fig. 7.18 shows the resulting quality
values of the healthcare service behavior based on the rewards given by
the experimenter for α=0’5, γ=0,99 and ∆=3.

The quality of a behavior is its correspondence to what user expects.
The curve is rising or flat when the obtrusiveness behavior is optimal for
the user (positive rewards). The quality drops when the experimenter
changes his mind on the expected behavior (negative rewards) and it
is fluctuating while the system is learning. The figure shows an initial
phase where the experimenter was satisfied with the behavior (iterations
1 to 39). Then, the experimenter changed his mind and the curve drops
(iterations 40 to 45). The system quickly learned the new behavior
(iterations 46 to 49) and finally the user was satisfied after the new
behavior was achieved (iterations 50 to 90).

It is worth noticing that the value of ∆ is dependent on α and r
because it defines more or less the number of iterations to learn a new
behavior. If ∆ is higher, the system will be less sensitive to anomalous
rewards but a change in the user’s mind will be slower to learn. On the
contrary, if ∆ is lower, the system will be more sensitive to anomalous

7.5 Conclusions 227

rewards but will learn quicker. Thus, the choice of ∆ value could be
different for each user following this criteria.

7.5 Conclusions
In this work, we have presented a learning method for adapting interac-
tion obtrusiveness based on user’s feedback. Because user’s needs and
preferences can change over time and the initial interaction obtrusive-
ness design can not further satisfy the user, we introduce a system to
adapt this initial design through experience. We exploit user feedback
after receiving a notification in a certain obtrusiveness level in order to
minimize the burden of mobile notifications and maximize user’s sat-
isfaction in a long-term use. In addition, the provided customization
interfaces allow the users to re-define their own obtrusiveness prefer-
ences to support explicit adaptation over time.

228 CHAPTER 7. EXPLOITING THEUSER FEEDBACK

8
Validation of the proposal
Measuring it!

"Tomeasure is to know". "If you cannot measure it, you cannot
improve it"

—Lord Kelvin, a.k.a. Sir William Thomson, n.d.

This chapter describes the evaluations performed to validate our ap-
proach by means of applying it in practice. By applying our approach,
we want to illustrate how interaction can be adapted to provide an ap-
propriate obtrusiveness level in an Ubiquitous Computing environment.
Specifically, the present work has been validated from different perspec-
tives according to the confronted research questions defined in Chapter
1:

Design method. The information captured at design should describe
the aspects that are relevant to capture the interaction obtrusive-
ness adaptation requirements. This design method has to help de-
signers in the specification of this kind of systems. Our research
results show that the models defined are useful for designers to
develop this kind of systems.

230 CHAPTER 8. VALIDATIONOF THE PROPOSAL

Requirements must be captured in a way that it is feasible to val-
idate them with fast iterations. In this way, continuous feedback
from users can be obtained to improve designs, since these de-
signs have to be well accepted by the users and fit all their needs.
Our research results show that fast-prototyping techniques can be
applied in a way that reproduce the user experience of the final
system and feedback from users can be easily mapped onto the
models.

Self-regulating autonomic infrastructure. The provided infrastruc-
ture has to be subject to the same efficiency requirements as the
rest of the system because the execution of the adaptation impacts
overall system performance. Our research results show that our
infrastructure gathers the necessary knowledge from the runtime
models without drastically affecting the system response

In addition to objective measures, the attitudes of users using the
system play an important role with regard to user experience. For
this purpose, these subjective measures should be evaluated in a
way that immerse users in a real environment. We evaluated the
User eXperience after users interacted with our system, obtaining
an enhanced user experience.

Learning system. The learning system has to be quick enough and
consistent with the changing preferences of the users in order to
guarantee user satisfaction with the system. Our research results
show that it learns the new obtrusiveness preferences from user
feedback with few iterations.

Also, the mechanisms and tools provided for changing and adapt-
ing the initial design and customizing the obtrusiveness according
to each user preferences must allow end-users to define and update
them with enough usability and expressivity. Our research results
show the interfaces to be usable and expressive, allowing users to
specify non-trivial situations and adaptations within a short time
span.

In order to validate the above concerns, we put the approach in

231

practice carrying out a case study based evaluation. It has been proven
that case studies provide deeper understanding of the phenomena under
study if proper research methodology practices are applied (Flyvbjerg,
2006). Specifically, we have developed a Smart Home case study and
an Adaptive Notifications case study following the guidelines for case
study research provided in (Runeson and Höst, 2009).

First, with the Smart Home case study we wanted to verify that the
design method was appropriate and useful for describing the interac-
tion obtrusiveness adaptation requirements in a way that help design-
ers in their specification. In order to respond to this, we modeled the
case study and compared our design method to the traditional method
(hand-coding). Then, we made use of fast-prototyping techniques in or-
der to evaluate the user satisfaction with the designed adaptations and
re-design the models. On the one hand, feedback was gathered from
end-users in order to verify how the design method could deal with the
changes iteratively and the degree of user satisfaction with the designed
system. On the other hand, the cognitive workload was measured in
order to analyze how our system is capable of handling the attentional
resources of users by means of the adaptations.

Then, with the Adaptive Notifications case study we wanted to vali-
date the User eXperience by using our system. In order to evaluate this,
we developed an adaptive notifications’ management system capable of
receiving notifications from different ubiquitous services and delivering
them to the users using the most appropriate interaction resources ac-
cording to the user situation. This allowed us to identify the relevance
of the obtrusiveness adaptation in the user experience for the interac-
tions. The user experience was measured by comparing our adaptive
system with a non-adaptive one. Also, with this case study we validated
the usability of the customization interfaces for end-users by means of
a user evaluation. In this experiment, users had to interact with the in-
terfaces for defining and changing different situations and obtrusiveness
adaptations.

In addition, the scalability of the self-regulating system was evalu-
ated in Chapter 6, and the efficiency of the learning system was vali-
dated in Chapter 7, obtaining satisfactory results in both evaluations.

232 CHAPTER 8. VALIDATIONOF THE PROPOSAL

We also have applied our approach in other domains by means of differ-
ent case studies such as a Smart Hotel, a Smart Library and a Home-
Care. This allowed us to identify the advantages and limitations when
applying our approach. We evaluated both, the experience of the de-
signers with the design method proposed and the experience of the
end-users with the defined interaction adaptations.

The remainder of this chapter is structured as follows. Section 8.1
introduces the Smart Home case study and the evaluations performed
using this case study. Section 8.2 describes the Adaptive Notifications
case study and provides information regarding the experiments per-
formed using this case study. After these two sections, in Section 8.3,
we give details about our experiences applying our approach in other
domains. Then, we analyze the advantages and problems found dur-
ing the application of the approach in Section 8.4. Finally, Section 8.5
concludes the chapter.

8.1 Smart Home case study
We applied our approach to a case study of a smart home environment
based on the scenario of service adaptation we developed in (Cetina
et al., 2009). We extended the services defined in the original case study
in order to adapt the obtrusiveness level at which they are presented to
the user.

8.1.1 Design of the case study
The scenario of our case study describes a normal day in Bob’s life
and the way interaction mechanisms of different home services change
depending on the context. Bob lives in a smart home with garden and
a swimming pool. Every day, he gets up at 7 a.m. and drinks milk for
breakfast while he watches a TV program before going to work. One
day during breakfast, Bob runs out of milk. In reaction to this, the
refrigerator added this item to the shopping list in an invisible manner
for Bob. While he was watching the TV program, the system reminded

8.1 Smart Home case study 233

him that he had an important meeting at work and he had to leave the
house sooner. Therefore, the video service started to record it. Before
leaving the house, he realized the pool was dirty.

During the meeting, the smart home reminded Bob about watering
the plants. Because of he had the mobile at hand, the notification
appeared in a subtle manner suggesting him if he wanted that the system
water the plants automatically. Meanwhile, he manually added some
products to the shopping list using the mobile device.

When he was going back to home, he was nearby to a supermarket
and the mobile notified him about it, showing the map to arrive to the
supermarket. When he was there, the map was changed by the floor
map of the supermarket. At the same time, the mobile suggested him
the items to the shopping list that were available in that supermarket.
While Bob was buying, the mobile suggested him a television series
to record since he usually watched that program. When he arrived at
home, he put the mobile to charge. While it was charging, pool was
cleaned automatically. At the end of the day, Bob realized the pool was
cleaned and the programs were recorded.

For the design of the services defined in the case study, we applied
the design method defined in Chapter 5. According to this method,
different aspects of the services should be captured in models.

8.1.2 Applying our designmethod
According to our design method, the different aspects of the interaction
obtrusiveness adaptation should be captured in models. The detail of
the information captured in each modeling perspective includes the per-
sona definition in order to understand the users and detect the services
and obtrusiveness, the obtrusiveness modeling for each service detected,
the interaction variability modeling, and the concrete interaction model-
ing that determines the final user interface provided. All these aspects
are detailed below.

Persona definition

234 CHAPTER 8. VALIDATIONOF THE PROPOSAL

Bob Berry · The busier
Familiar to Smart Home services

Behaviors Objectives

ACTIVITYLow High

BREADTHOne
service

Many
services

VENUEOne
channel

Many
channels

· Optimize time

· Don't forget tasks

· Feel in control of housekeeping

· Keep track the items to buy

· Keep the house up-to-date

· Record favorite programs

Scenarios Concerns

· If a product of my refrigerator runs

out, can the system add the item to the

shopping list?

· How can I do not forget important

tasks and events?

· If the system do something, will it

inform me about it?

· If my favorite program begins and I

can't watch it, can the system record it?

· How can I remember when water the

plants?

· I am very busy. How can I make sure I

am maintaing the house up-to-date?

· Remember items to buy

Bob lives alone and he has to take on all the responsabilities in

the home. He always goes shopping and he never remembers

what he need or the finished products. He wastes a lot of time

buying because he has to move along the entire supermarket. He

usually has a paper in the refrigerator to write down the items

but he sometimes forgets to take the paper when he goes to the

supermarket. Bob thinks he should keep track the items to buy in

an electronic manner.

· Recording interesting programs

Bob usually watches a TV program before going to work when he

is having breakfast. Sometimes he has a meeting and he has to

leave home earlier loosing the program. He would like the

program was recorded when he is not watching it.

· Be aware of pending tasks

Bob has a busy lifestyle and he sometimes forgets important tasks

he has to do such as deadlines or meetings and other tasks that

are less important but they are essential such as water the plants,

birthdays, etc. He hopes be aware of pending tasks and events

when it was required.

· Optimize time

Bob usually goes walking to the work. He passes in front of

several supermarkets going back to home but he never

remembers that he has items to buy and he has to return later.

He wants to be aware that he has items to buy when he is nearby

to the supermarket avoiding having to return later.

Background

Bob is a single man who works in a big

company and he lives alone in house

with swimming pool. He has 32 years

old. He works a lot because he wants to

promote in the company. Thus, he has

little free time. In his free time he likes

practice sport and watching TV series

and movies. He is very trendy and he

has a smartphone. He likes new

technology but he has few time to be

up-to-date.

Figure 8.1: A detailed persona

In order to give a clear picture of how users are likely to use the sys-
tem and what they will expect from it, we define personas. Personas
capture relevant information about customers that directly impact the

8.1 Smart Home case study 235

design process: user goals, scenarios, tasks, functionalities, and the like.
Figure 8.1 shows the description of the persona for Bob.

Services and obtrusiveness definition
After describing the persona and study their needs, the services defined
for the Smart Home were the following:

Shopping list. Users are enabled to keep track of the products they
want to buy in order to purchase these products on the next visit
to the supermarket. The shopping list is shared among all the
members of the house, including the smart refrigerator that can
add items to the shopping list.

Video recorder. This service allows to record video in a digital format
to a disk drive, USB flash drive, SD memory card or other mass
storage device. Users can be asked to record a program or the
program can be recorded automatically.

Agenda. It allows users to manage his/her time giving convenient ac-
cess to their tasks alongside their calendar. Also, users are enabled
to get event reminders when the task is going to begin.

Plant watering. Users have a busy lifestyle and they usually forget
to water their plants. This service is in charge of remind and tell
users that their plants need water and water the plants automat-
ically when they need it.

Supermarket notification. Many users do not remember that they
have items to buy when they are nearby to the supermarket. So,
the intention of this service is to prevent these situations, notifying
users when they have items to buy in a nearby supermarket.

Clean pool. Swimming pool can be lots of work to keep clean. This
service is in charge of swimming pool maintenance with the pos-
sibility of informing the users about the situation of the pool.

236 CHAPTER 8. VALIDATIONOF THE PROPOSAL

The contextual information relevant for the given persona is:

User location. A service can be adapted depending on the location of
the user. For example, the supermarket notification service can
change the information to be shown depending on this informa-
tion. On the one hand, if the user is outside supermarket, the
service can show the map to arrive to the supermarket. On the
other hand, if the user is inside, the service can show the floor
map to the supermarket.

Mobile location. The location of the mobile is another context factor
that should be taken into account for Bob. Bob can have his mo-
bile with him (e.g., in his hand, in his pocket) or the mobile can be
far of Bob (e.g., if Bob leaves the mobile charging in other room).
If Bob does not have the mobile with him, it is not necessary that
services provide notifications by means of alarms avoiding disturb
other people.

User engagement in other activities. This is an important factor
to be taken into account for service adaptation. For example, if
the user is engaged in an important activity (e.g., working, in a
meeting), a service will be presented in a subtle manner avoiding
to disturb him. However, if the user is in his free-time, a service
will demand his complete attention.

Once we have defined the personas, the important services for the
persona and the relevant contextual information (to form the user sit-
uations) in which the adaptation can depend on, we define the way in
which services are presented in terms of obtrusiveness for the case study.
This information is detailed below.

Obtrusivenessmodeling
Each service can be provided at different obtrusiveness level depending
on the user situation in which the service is performed. Figure 8.2 shows
the services of the Smart Home case study and their obtrusiveness level

8.1 Smart Home case study 237

Add item

ProactiveReactive

The item is explicitly added to the
shopping list by the user.

Notification supermarket
Users have a supermarket nearby

and the system informs them
about it

Water plants reminder
The system suggests that plants should
be watered

Clean pool
The system activates the service to clean
the pool without notifying the user.

initiative

at
te

n
ti

o
n

in
vi

si
b

le
Sl

ig
h

tl
y

n
o

ti
ce

ab
le

C
o

m
p

le
te

ly
aw

ar
e

Meeting notification
User is notified that he has an important
meeting at work.

Video recorder
The favorite program of the user is
recorded

Figure 8.2: Obtrusiveness level defined for each service in the Smart Home
case study.

for Bob. The unobtrusive adaptation space in this case was defined by
dividing each axis in different parts as it was illustrated in Chapter 5.
The attention axis is divided in three levels depending whether the inter-
action should be invisible to the user, slightly noticeable, or completely
aware for the user. The initiative axis is divided in two parts that
represent interactions initiated by the user (reactive) and interactions
initiated by the system (proactive).

During analysis, we decided the appropriate obtrusiveness level for
services according to the contextual information and the user needs.
The obtrusiveness level for the different services in the Smart Home are
detailed below.

Shopping list. The service to add an item to the shopping list can
be placed in different obtrusiveness level. The item can be added
to a shopping list explicitly by the user when he remembers an
item to buy (reactive and completely aware) or it can be added by
the system (proactive) when the user just drops the item to the

238 CHAPTER 8. VALIDATIONOF THE PROPOSAL

garbage in an invisible manner (invisible level of attention).

Video recorder. The service to record a program is also offered in
different obtrusiveness level. On the one hand, the system can
begin to record the program automatically in an invisible manner
for the user (invisible level of attention) in reaction to the user
leave (reactive). On the other hand, the service can notify the
user proactively about to record a TV program because the user
usually watches the program. But the information is only shown
as a hint (slightly noticeable) because it is not very important for
the user and when the notification appears in the case study Bob
is shopping (engaged in other activity). Thus, it can be later
implemented as a soft vibration or some non-intrusive mark on
the screen to indicate that service information exists.

Agenda. The notification of a meeting to the user is performed in a
proactive manner in terms of initiative and the user is completely
aware because the message is important for him.

Plant watering. Not all the information provided by the system is
relevant for the user at anytime. Depending on the user situation
and the importance of the message, the user will prefer to be
disturbed or not by the system. In this case, water the plants
reminder is not very important for the user and he prefers to
be notified in a subtle manner (slightly noticeable) by the system
(proactive). Moreover, when the plants watering is notified Bob
is engaged in other activities (he is in a meeting).

Supermarket notification. When the user is in the proximity of a
supermarket (user location), he is informed about a supermarket
nearby. Depending on the distance to the supermarket and the
number of items on the shopping list, the notification will be dif-
ferent. On the one hand, if the user is closer to the supermarket,
the system proactively will notify the user in an explicit manner
(the user is completely aware). On the other hand, if the user
is far, the notification will be slightly noticeable. Then, when the

8.1 Smart Home case study 239

user is in the supermarket, the system shows the items to buy that
are in the shopping list at the slightly noticeable level of attention.

Clean pool. The system proactively activates the service to clean the
pool in an invisible manner for the user due to the user does not
have the mobile nearby (user situation without the mobile).

In order to support the behavior described above for the services per-
formed in the Smart Home case study, different interaction techniques
can be applied. The mechanisms used from all the ones available for
interacting with the system in the Smart Home are described below.

Interaction variability modeling
According to the previous requirements, different interaction techniques
are used to provide the functionality of the services. This information is
decomposed in a Feature Model in order to indicate the commonalities
and differences between adaptation aspects and define the constraints
that exist for the selection of the different features.

In (Chittaro, 2010), Chittaro summarizes the many channels that
can be exploited to send and receive information from a mobile device.
For this case study, we have defined the feature model utilizing these
modalities. To describe the constraints between modalities we have fol-
lowed the study presented in (Lemmelä et al., 2008) to identify modal-
ities and modality combinations best suited for different situations and
information presentation needs.

Figure 8.3 shows the decomposition of the available interaction in the
feature model and the constrains for their selection. We have divided
the interaction into groups of expression, visual, auditory and haptic
modalities. These four main features include a set of manifestations of
input and output modalities.

Then, we have to choose for each service the interaction features
that are going to support the obtrusiveness level defined. Table 8.1
shows a view of the interaction analysis results performed for the ser-
vices. The table shows for each service, the obtrusiveness level at which

240 CHAPTER 8. VALIDATIONOF THE PROPOSAL

Visual Auditory

Graphical Text Sound Speech

Haptic

Vibration

Interaction

Status-based

Expression

Change-based

Figure 8.3: Decomposition of interaction aspects using the Feature Model.

Service Obtrusiveness Interaction Features

Add item (reactive, aware) Text, graphical
Add item (proactive, invisible) -

Record program (proactive, slightly) Change-based, graphical,
vibration

Record program (reactive, invisible) -
Meeting notification (proactive, aware) Change-based, graphical,

speech
Water plants reminder (proactive, slightly) Change-based, graphical,

vibration
Supermarket notification (proactive, aware) Change-based, graphical,

sound
Items to buy suggestion (reactive, slightly) Status-based, text

Clean pool (proactive, invisible) -

Table 8.1: Interaction features for each service in the unobtrusive adaptation
space

it can be performed and the interaction features selected for the obtru-
siveness level. The services that have more than one obtrusiveness level
associated is because they depend on the user situation and can change
at runtime.

8.1 Smart Home case study 241

Figure 8.4: Concrete UI components of a Smart Home system.

Concrete interactionmodeling
In order to define the concrete user interface components that support
the interaction techniques available, we define the node tree of our sys-
tem. For the Smart Home case study, the concrete components are
shown in Figure 8.4.

The concrete UI components that support the different interaction
features are specified in Table 8.2

The requirements captured following our design method describe the
interaction obtrusiveness adaptation of services to support the Smart
Home scenario. Since the design method was followed, the different
decisions are organized in different layers and consistency is guaranteed

242 CHAPTER 8. VALIDATIONOF THE PROPOSAL

Interaction feature Concrete components

Change-based Group Notif.
Status-based Group Widget

Group Location,
Graphical Group Notif.,

Group List View + Image
Text,

Text Address,
Group List View

Sound Sound
Speech Speech

Vibration Vibration

Table 8.2: Linking between interaction features and concrete components

among them. However, in order to validate our approach, we have
performed an experiment to measure the benefits that introduce our
model-based solution for designers (i.e., its usability) over traditional
development. This evaluation is detailed below.

8.1.3 Evaluating the designmethod
In order to measure the usability of our approach, we have followed
an empirical framework to perform usability evaluations for MDD tools
(Panach et al., 2011). According to this framework, the usability of a
MDD tool is evaluated by means of: satisfaction, efficiency and effec-
tiveness. In this work, we focus our study on the satisfaction and the
efficiency. The aim of this evaluation is to compare the usability mea-
sure obtained by our proposed approach (model-based development)
over the traditional development (hand-coding development).

According to the Goal/Question/Metric template (van Solingen and
Berghout, 1999) the objective of the experiment was:

8.1 Smart Home case study 243

Analyse our model-based solution
For the purpose of evaluating its usability
With respect to the traditional design and development (hand-coding)
From the viewpoint of the designer
In the context of computer science developers

From this objective, the following null hypotheses were derived (one
for satisfaction and another for efficiency) and the two types of variables
were identified:

Null hypothesis 1, H10: The satisfaction when following our method
for developing non-disturbing adaptive interactions is the same as
the traditional design.

Null hypothesis 2, H20: The efficiency when following our method
for developing non-disturbing adaptive interactions is the same as
the traditional design.

Identification of variables
We identified two types of variables:

• Dependent variables: In this work, usability was the tar-
get of the study, which was measured in terms of satisfaction
(measured with respect to the designers’ perceptions of usefulness
and overall satisfaction) and efficiency (measured by the task
completion percentage in relation to the time spent to perform a
task).

• Independent variables: The development method was identi-
fied as a factor that affects the dependent variables. This variable
had two alternatives: (1) model-driven development (MDD) and
(2) traditional development.

244 CHAPTER 8. VALIDATIONOF THE PROPOSAL

Experimental context
Experimental subjects. Eight subjects participated in the experi-
ment, all of them being researchers in software engineering. Their ages
ranged between 25 and 40 years old. The subjects had an extensive
background in Java programming and modeling tools.

Objects of study. The experiment was conducted using the Smart
Home case study detailed above. In order to shorten the evaluation pro-
cess for both development methods and to achieve similar implemen-
tations from user to user, we provided the subjects with an example
service to guide the development of the other services. Specifically, we
provided them with a traditional implementation of the shopping list
service as well as its modeling using our method.

Instrumentation. The instruments that were used to carry out the
experiment were: (1) a demographic questionnaire to know the level of
the users’ experience in Java programming and modeling tools, (2) a
task description with the tasks that the users must carry out, and (3) a
survey with a list of questions defined to capture the duration times of
each task and the users’ perceptions in a 7-Likert scale format. Specifi-
cally, the tasks that the subjects had to perform were the development
of the Smart Home case study using our model-based solution and the
traditional one. More detail about the instruments can be found in
Appendix B.

Validity evaluation. The various threats that could affect the
results of this experiment and the measures that we took were the fol-
lowing:

• Conclusion validity: This validity is concerned with the rela-
tionship between the treatment and the outcome. Our experiment
was threatened by the random heterogeneity of subjects. This
threat appears when some users within a user group have more
experience than others. This threat was minimized with a demo-
graphic questionnaire that allowed us to evaluate the knowledge
and experience of each participant beforehand. This question-
naire revealed that most users had experience in Java program-

8.1 Smart Home case study 245

ming and modeling techniques. This threat was also minimized
by providing the subjects with the shopping list service, which
helped and guided them in the development of the rest of the ser-
vices. Also, our experiment was threatened by the reliability of
measures threat: objective measures, that can be repeated with
the same outcome, are more reliable than subjective measures.
In this experiment, the precision of the measures may have been
affected since the activity completion time was measured manu-
ally by users using the computer clock. In order to reduce this
threat, we observed subjects while they were performing the dif-
ferent activities in order to guarantee their exclusive dedication in
the activities and supervise the times that they wrote down.

• Internal validity: This type of validity concern is related to
the influences that can affect the factors with respect to causal-
ity, without the researcher’s knowledge. Our evaluation had the
maturation threat: the effect that users react differently as time
passes (because of boredom or tiredness). We solved this threat
by dividing the experiment into different activities.

• Construct validity: Threats to construct validity refer to the
extent to which the experiment setting actually reflects the con-
struct under study. Our experiment was threatened by the hypoth-
esis guessing threat: when people might try to figure out what
the purpose and intended result of the experiment is and they are
likely to base their behaviour on their guesses. We minimized this
threat by hiding the goal of the experiment.

• External validity: This type of validity concern is related to
conditions that limit our ability to generalize the results of the
experiment to industrial practice. Our experiment might suffer
from interaction of selection and treatment : the subject popula-
tion might not be representative of the population we want to
generalize. We used a confidence interval where conclusions were
95% representative. This means that if conclusions followed a nor-
mal distribution, results would be true for 95% of the times the
evaluation would be repeated.

246 CHAPTER 8. VALIDATIONOF THE PROPOSAL

Experimental design procedure
We followed a within-subjects design where all subjects were exposed
to every treatment/method (MDD and traditional development). The
main advantage of this design was that it allowed statistical inference to
be made with fewer subjects, making the evaluation much more stream-
lined and less resource heavy (Wohlin et al., 2000). In order to minimize
the effect of the order in which the subjects applied the methods, the
order was assigned randomly to each subject. Also, we had the same
number of subjects starting with the first method as with the second in
order to have a balanced design. In this way, we minimized the threat
of learning from previous experience.

The study was initiated with a presentation in which general infor-
mation and instructions were given. Next, the experiment started with
a demographic questionnaire to capture the user’s background. After-
wards, the task description and the survey were given to the subjects
and they started to develop the case study following the two kinds of
development (MDD and traditional) in the indicated order to each user.
For each task of the development, they filled in the survey to capture
the development times and their perceived satisfaction. The task com-
pletion percentage was obtained by deploying the developed adaptive
behavior and testing it. As in the survey subjects wrote down the time
at which they started and completed the task, efficiency was derived us-
ing these times. Furthermore, the perceived satisfaction was captured
using the two perceptions of satisfaction (system usefulness and overall
satisfaction) of the CSUQ questionnaire (Lewis, 1995).

Analysis and interpretation of results
A paired t-test was used to compare the mean of the subjects’ means
to evaluate if there was a difference in overall usability between the two
methods: MDD versus traditional. Statistical analysis has been carried
out using the IBM SPSS Statistics V20 at a confidence level of 95%
(α=0.05) (Bruin, 2011). When the critical level (the significance) is
higher than 0.05, we can accept the null hypothesis because means are

8.1 Smart Home case study 247

not statistically significantly different. Table 8.3 presents the descriptive
statistics for each of the studied measures.

Measurement Method Mean N Std. deviation Signif.

Satisfaction Traditional 4,81 8 2,78 ,000
MDD 2,33 8 1,71 ,000

Efficiency Traditional 0,47 8 0,55 ,000
MDD 2 8 0,48 ,000

Table 8.3: Descriptive statistics for each measurement

Regarding the perceived satisfaction, designers were more satisfied
with the model-based approach. A low value in the mean column of
Table 8.3 implies a good perception of overall satisfaction, while a high
value implies a bad perception. As the table indicates, there is a dif-
ference between the pair of means of the satisfaction measure. Since
the MDD method provided a lower mean, subjects were more satisfied
with it. Also, more dispersion was found in the perceived satisfaction
with the traditional development (std. deviation=2,78). This is be-
cause subjects that had more experience in Java programming had less
problems in the development and their perceived satisfaction was higher
than the others. The significance of the paired t-test for the satisfaction
means was 0.000, which means that we can reject the null hypothesis
H10, therefore, the perceived satisfaction using both methods is differ-
ent. As the results are better in the MDD method, we have a strong
evidence that the perceived satisfaction when using our method
is better than when using the traditional one.

With regard to efficiency, we obtained a significant difference in the
mean values. According to the analysis that was carried out for effi-
ciency, H20 can be rejected. As Table 8.3 shows, the mean for efficiency
was 0,47 for traditional development and 2 for MDD. Therefore, effi-
ciency was significantly better with the MDD. In general, the subjects
completed all the tasks for both methods; however, the development
time using the traditional development was higher than following the
MDD method. Regarding the standard deviation, it was low for both

248 CHAPTER 8. VALIDATIONOF THE PROPOSAL

development methods indicating that development times tended to be
close for each development method. These results provide strong evi-
dence that the efficiency when following our method is better
that when following the traditional one.

8.1.4 Simulating the design
The MDE techniques defined in Chapter 6 can be applied to the design
models to obtain a software solution to support the system. However,
there is still place for fast-prototyping. In the case of adaptive ubiq-
uitous services, deployment efforts are high if real hardware is used.
Designers need certain guaranties that the adaptation defined will fit
well when it is finally deployed.

Fast-prototyping techniques have been applied in order to immerse
the user in the adaptation designed for the services of the case study
without actually implementing it. Android interface mock-ups and Wiz-
ard of Of techniques are used to simulate the process. From the device
perspective, it has (1) to be running under Android Operating System
and (2) to have wireless connectivity. The physical context was repro-
duced in a laboratory, setting all the scenarios that appear in the case
study.

Questionnaire and participants
Once the user is immersed in the simulated environment, the user sat-
isfaction in terms of usability and interaction adaptation is evaluated.
To evaluate these aspects, we used an adapted IBM Post-Study ques-
tionnaire (Lewis, 1995) in conjunction with the questionnaire defined by
Vastenburg et al. in (Vastenburg et al., 2008). On the one hand, IBM
Post-Study is a questionnaire that measures user satisfaction with sys-
tem usability. On the other hand, some questions were taken from the
Vastenburg questionnaire to evaluate home notification systems such
as messages acceptability and interaction adaptation. The three di-
mensions evaluated in our questionnaire were: usability of the system,
messages acceptability and interaction adaptation.

8.1 Smart Home case study 249

The first dimension focuses on measuring users’ acceptance with the
usability of the system; the second one focuses on the general accept-
ability considering the messages and the user activity at the time of
notification; and finally, the third dimension is about users’ satisfaction
in the interaction adaptation.

Also, we included a NASA task load index (TLX)1 test. This test
assesses the user’s subjective experience of the overall workload and
the factors that contribute to it on six different subscales: Mental De-
mand, Physical Demand, Temporal Demand, Performance, Effort, and
Frustration.

A total of 15 subjects participated in the experiment (6 female and
9 male). Most of them had a strong background in computer science.
Participants were between 23 and 40 years old. 8 out of 15 were familiar
with the use of a smartphone, and three own an Android device similar
to the one used in the experiment. We applied a Likert scale (from 1
to 5 points) to evaluate the items defined in the questionnaire. Some
space was left at the end of the questionnaire for positive and negative
aspects, and for further comments.

Procedure
For the simulation of the Smart Home case study, users adopted Bob’s
role and performed the activities earlier described. The study was con-
ducted in our laboratory in order to simulate the different scenarios in
which the experiment was based on. In-situ evaluation was possible
since the technique does not require a complex infrastructure. An HTC
Magic mobile device running Android Operating System was used to
interact with the Smart Home services.

When the users evaluated the prototype, they were not told that it
was a non-functional prototype. After the evaluation, when they were
told that it was not a final functional system, more than a third of the
participants confessed that they thought that it was. This means that
it is possible to anticipate the feedback that could be obtained from the

1http://humansystems.arc.nasa.gov/groups/TLX/index.html

250 CHAPTER 8. VALIDATIONOF THE PROPOSAL

Interaction adaptation

Complete	tasks	quickly	and	effec�vely
Easy	to	learn
UI	pleasant	and	easy	to	understand
Recommend	the	system

Appropriate	message	content	and	presenta�on	
Adequate	level	of	interrup�on

Automated	ac�ons	performed	in	adequate	situa�ons
Level	of	automa�on	adapted	properly
Alerts/reminders	presented	in	an	adequate	manner
Loca�on-based	adapta�on	was	useful
Automa�on	vs.	confirma�on
Good	for	long-term	objec�ves
Interac�on	adapted	properly

Messages Acceptability

System Usabiliby

Strongly	agree

Strongly	disagree

N/A

80%
27% 60%

67%

67%33%

33%

73.3%

43.3%

33%

40%

66.6%

80%

53.3%

67%26.6%

67% 33%

40% 47%

53%

Figure 8.5: Summarized results.

final system with minimal effort.

Results of user satisfaction evaluation
Figure 8.5 shows a summarized table of the obtained results2.

More than 70% of the people strongly agreed that using the sys-
tem they were able to complete the tasks and scenarios effectively and
quickly. All users considered (4 or 5 points) the user interface to be
pleasant and easy to understand. 67% of users strongly agreed about
recommending the system to other people.

With regard to the messages acceptability, the results were also posi-
tive, but more dispersion was found in them. This was due the different
perception each user had about what was considered to be a relevant
or urgent message. Although participants had to adopt the personas

2The complete dataset of the experimental results can be downloaded from
http://www.pros.upv.es/labs/projects/interactionadaptation

8.1 Smart Home case study 251

role and adjust their behavior to the personas needs, this is difficult
when they have another needs. In the study made by Vastenburg et
al. (Vastenburg et al., 2008), they pointed out that the more urgent
the message was considered to be, the higher the level of intrusiveness
should be. In our results, the content and presentation of the different
messages were considered appropriate by the 73% of the subjects. Some
users (20%) found some services to be intrusive, but the interruption
level was in general (80%) considered adequate to each situation.

Regarding the interaction adaptation, automated services outcomes
were not always discovered (33% of subjects), but 80% of subjects
strongly agreed in that automated actions had performed in appropri-
ate situations and helped them to perform routine tasks. There were
some exceptions that were suggested in the comments such as “I would
like to receive the pool notification and can postpone it” or “When the
system clean the pool do not inform the user about that”. Although
the adaptation provided was considered adequate (more than 80% con-
sidered it appropriate for all the services), most of the complaints were
related to the level of control provided. Some users would like to be able
to undo actions they were notified about such as the video recording,
many (67%) did not considered watering the plants deserving a notifi-
cation, and the suddenly change of the outdoor to an indoor map of the
supermarket made some users (33%) feel they were loosing control.

The initial results obtained show that by following our approach, we
can adjust the obtrusiveness level for the services in a detailed manner
providing a good personalization. Nevertheless, additional experimenta-
tion would be required to analyze the adaptation during longer periods.
Due to time constraints, we gave the users a script to follow to reproduce
specific tasks and contexts of use. Using a script that was conformant to
the process rules did not allow to evaluate the system in a more realistic
context where services are competing with daily activities.

Results of theworkload evaluation

252 CHAPTER 8. VALIDATIONOF THE PROPOSAL

Very low Very high

Mental demand
How mentally demanding was the task?

Physical demand
How physically demanding was the task?

Very low Very high

Temporal Demand
How hurried or rushed was the pace of the task?

Very low Very high

Performance
How successful were you in accomplishing what
you were asked to do?

Perfect Failure

Frustration
How insecure, discouraged, irritated, stressed,
and annoyed were you?

Very low Very high

Effort
How hard did you have to work to accomplish
your level of performance?

Very low Very high

Figure 8.6: Nasa TLX results

The results on workload are shown in Figure 8.6. We show each sub-
scale in a different diagram. The Mental Demand diagram shows that
not all the tasks were simple and easy. Mostly, mental demand was low
but some tasks in the experiment required more attention, increasing
the mental demand. Some users would prefer more automation in the
services. Physical demand was low excepting for the services that re-
quired more attention. Moreover, some users were not familiar with the
use of a smartphone. For these users, the physical demand was higher.

The low workload was accompanied by good performance. The ma-
jority of users could accomplish the goals of the tasks proposed (see the
Performance diagram) without much effort (see the Effort diagram) and
with a low degree of frustration (see the Frustration diagram). Tem-

8.2 Adaptive Notifications case study 253

poral demand did not provide any significant results since the results
are very scattered. This results show that users did not understand the
question very well.

Adaptation re-design
The feedback from users was used to re-design the adaptation of the
services iteratively. Some concerns resulted in minor modifications of
the mock-up interfaces (e.g., using graphical metaphors and bigger but-
tons). Other suggestions were more relevant to the process redesign
since they involved changing the level of obtrusiveness for some tasks
and providing more contextual information.

For example, the service of cleaning the pool was placed in a proactive-
invisible obtrusiveness level. It means that users were not notified about
the cleaning of pool. However, some users wanted to be notified. As a
consequence, we changed the obtrusiveness level of cleaning the pool to
a slightly-noticeable level of attention.

The context conditions associated to the water the plants reminder
were also problematic. In the first iterations of the design, this reminder
was in a slightly-noticeable level of attention with the condition of using
vibration if users were engaged in other important activities. In the
case study, this reminder appeared during the meeting. However, users
wanted this reminder only appeared when the user was at home.

Users demanded more contextual information for some tasks. For
example, in the notification of supermarket, when the user entered the
supermarket, the system showed the floor map of the supermarket, but
this information appeared without any other information and users did
not know what was happening. To solve this, we added a contextual
help.

8.2 Adaptive Notifications case study

254 CHAPTER 8. VALIDATIONOF THE PROPOSAL

We developed a case study for supporting different ubiquitous services
of the users’ daily life. The case study was focused on the notification
mechanisms used in different situations since the adaptation of atten-
tional resources is a key factor in the user experience of this kind of
services (Vastenburg et al., 2008). In particular, we defined a scenario
for adapting several notifications of one day in the context of a uni-
versity professor. The notifications of the different ubiquitous services
were adapted dynamically at different obtrusiveness levels depending
on the user context. This allowed us to identify the relevance of the
obtrusiveness level in the cognitive load and user experience for the
interactions.

8.2.1 Design of the case study
The scenario focuses on a daily day of a university professor named
Matt. He lives in a smart home with ubiquitous services with his wife
and his son. Every day, he gets up at 7 a.m. and took a shower. While
he was in the bathroom, the washing machine notified him that it was
full load and ready to start. Because he had the mobile in his room, the
notification was presented in a slightly level of attention since he was
not going to be aware of it at that moment. Then, during the breakfast,
the healthcare service reminded him to take the vitamins. Due to he
was alone with the mobile on the table, the notification appeared in
the completely-aware level of attention by means of speech. When he
was leaving home to go to work, the weather service suggested him to
take the umbrella. As he had the mobile at hand and he was alone, the
notification was presented at the highest level of attention. However as
the weather service had a medium priority for him, a dialog was used
to present the notification instead of speech.

While he was driving to work with a workmate, the agenda service
reminded him a meeting to attend at work. Because he was driving with
company, the notification was presented in a slightly level of attention.
At work, Matt was having coffee with his workmates and the facebook
service notified a post on his timeline. The notification appeared in a
slightly level of attention by means of vibration and a banner for not

8.2 Adaptive Notifications case study 255

disturbing the conversation. During the meeting, the agenda service
reminded Matt about a deadline approaching. Because he was in the
meeting, the notification appeared in an invisible manner for not in-
terrupting the meeting. After the meeting, he was having lunch with
his workmates, and the healthcare service reminded him that he had
to take the pills. This notification was presented in a slightly manner
due to the privacy of the message. In the afternoon, Matt was giving a
course and two notifications were suggested to him requiring different
levels of attention. One from the facebook service in an invisible man-
ner due to the facebook service had low priority, and another from the
home messages in a slightly manner because of their urgency.

When he was going back to home, he was nearby of a supermarket
and the mobile notified him about an item to buy. Because he was
alone and there was an urgent item in the shopping list, the notification
was totally aware using the speech of the car. When Matt arrived at
home, he was watching the TV and the washing machine remembered
him to get out the laundry at the highest level of attention because
he was not engaged in an important task. Then, Matt went running
listening to music with the headphones. The notification of the agenda
about the deadline approaching increased the attention level because
Matt was not aware of it in the morning. This time, the notification
was presented in the aware level of attention. At the end of the day,
Matt was sleeping and the shopping service suggested him an item to
put in the shopping list. Due to he was sleeping, the notification was
invisible for not disturbing him.

Appendix B describes in detail the design of the Adaptive Notifica-
tions case study in the same way we have described the Smart Home
case study. This description comprises the designed models that con-
form the ubiquitous services of the case study by means of applying our
design method.

8.2.2 Evaluating the User Experience
This experiment was focused on evaluating the User eXperience (UX) of
users using our system (to evaluate their feelings). This evaluation has

256 CHAPTER 8. VALIDATIONOF THE PROPOSAL

become important in mobile contexts given the ubiquity and intelligent
capabilities of these kind of systems. For the evaluation, we presented to
users a non-adaptive version of our system (usual notification system)
and the adaptive one (our system) based on the proposed scenario. In
this way, users could compare both systems and better measure their
UX. At the end, users were handed a questionnaire to collect their
attitudes towards our system.

Experimental design
The goal of the scenario was to show users the capabilities of our self-
regulating system by emphasizing the following points:

• The notifications’ interaction is adjusted according to the user
attentional resources in each situation (e.g., when the user is in a
meeting the notification is presented silently).

• In the same situation, different services can be presented in differ-
ent obtrusiveness levels according to user preferences (e.g., when
the user is giving a course, the facebook and home messages are
presented in a different obtrusiveness level).

• Different services in the same obtrusiveness level can be presented
in a different way according to their priorities for the user (e.g.,
the agenda and the weather service in the aware obtrusiveness
level are presented in a different way because they have different
priorities).

Table 8.4 shows the notifications of the services delivered to the user
in the proposed scenario in order of appearance, the user situation in
the time of the notification and the obtrusiveness of the notification for
that context. For the experiment, services were classified in a different
unobtrusive adaptation space according to three priorities for the user
profile: high, medium and low priority. Specifically, the healthcare,
agenda and home messages services were given a high priority; the
washing machine and the shopping the medium priority; and finally, the

8.2 Adaptive Notifications case study 257

Service User situation Obtrusiveness

Washing Machine Mobile in other room (slightly, reactive)
Healthcare Having lunch, alone (aware, proactive)

mobile on the table
Weather Leaving house, alone, (aware, proactive)

mobile at hand
Agenda Driving with company (slightly, proactive)
Facebook Having coffee (slightly, proactive)

with company
Agenda In a meeting (invisible, proactive)
Healthcare Having lunch, (slightly, proactive)

with company
Facebook Giving a course (invisible, proactive)
Home Messages Giving a course (slightly, proactive)
Shopping Driving alone, (aware, reactive)

near a supermarket
Washing Watching TV, (aware, proactive)
Machine alone in home
Agenda Running with headphones (aware, proactive)
Shopping List Sleeping (invisible, proactive)

Table 8.4: Notifications received during the experiment.

facebook and the weather services were in the low priority. It is worth
noticing that the obtrusiveness of services was adjusted to a professor
profile and his needs.

Testbed
The managed system used for the test was running on an iPhone 4
(iOS 5.1). The interaction components available for delivering the no-
tifications in this system were: vibration, loud and soft audio, speech,
a badge icon, a dialog alert, and a banner. By means of these interac-
tion components and combinations of them we were capable of giving
support to all obtrusiveness levels.

For delivering the notifications to subjects in the opportune context,

258 CHAPTER 8. VALIDATIONOF THE PROPOSAL

Figure 8.7: Notification management system.

we implemented a notification management system. This system sup-
ports the introduction of notifications for the different services and the
sending of them to the managed systems. A screenshot of this system
is shown in Figure 8.7. Using this system, we were able to simulate the
notifications from pervasive/mobile services in order to deliver them at
the context described in the case study.

On the server side, the target platform used in our experiment was
the open source implementation of OSGi Equinox Release 4. To run
the instance of Equinox, we used a host with an Intel Core i7 1.8 GHz
processor and 4 GB RAM 1333 MHz with Mac OS X Lion and Java
1.6.0 29 installed.

Questionnaire and participants

8.2 Adaptive Notifications case study 259

Fifteen people participated in this experiment (9 men and 6 women).
Their age ranges from 19 to 50. Most of them were university students
(master, or PhD) and daily mobile users. Each subject performed the
defined scenario throughout a day. First, participants were given a short
description of the scenario situations and the notifications presented in
each situation. Then, they watched a video3 of the proposed scenario
(following the video creation step of our simulation phase) to clarify the
description and, finally, they used it in a real environment.

To measure the UX, we followed one of the most influential models
proposed by Hassenzahl (Hassenzahl, 2008). According to this model,
each interactive system has a pragmatic (related to usability) and he-
donic (related to users’ self) quality that contribute to the UX. Based
on this model, we use the AttrakDiff 2 questionnaire (Hassenzahl, 2008)
to measure UX. The questionnaire consists of twenty-one 7-point items
with bipolar verbal anchors. It is composed of four main constructs:
Pragmatic Quality (PQ) which is related to traditional usability issues
(e.g., effectiveness, efficiency, learnability, etc.); Hedonic Quality Stim-
ulation (HQ-S) related to personal growth of the user and the need to
improve personal skills; Hedonic Quality Identification (HQ-I) focused
on the human need to be perceived by others in a particular way; and
Attraction (ATT) which is about the global appeal of the system.

Results of the user experience evaluation
Fig. 8.8 illustrates the mean values of the UX dimensions for both
systems4. According to the results, we observe considerable deviation
between the instances in HQ-S and ATT. In HQ-S, mean scores of the
non-adaptive version were -1.25, and 2 for the adaptive one. In ATT,
mean scores of the non-adaptive version were -0.25, and 2.4 for the
adaptive one. These values indicate that users perceived a huge differ-
ence of the hedonic quality (stimulation) and overall appeal (attraction)
between both versions, considering our system better in these aspects.

3The video can be found on: http://www.pros.upv.es/adaptio/Notifications.mov
4Complete results in http://dl.dropbox.com/u/14910519/uxresults.pdf

260 CHAPTER 8. VALIDATIONOF THE PROPOSAL

Average UX Values

PQ HQ-I HQ-S ATT

A
ve

ra
g

e
 V

al
u

e
s

Non-Adaptive Version

Adaptive Version

Figure 8.8: Mean UX values for both systems.

Regarding the PQ, marginal deviation has been observed indicating
that this factor does not significantly influence in the UX of the differ-
ent versions. Even so, PQ results were higher in our system, indicating
that users considered our system more usable. Results also indicate that
HQ-I does not primarily affect any of the systems, since it is intended
for evaluation of products rather than software.

Regarding the mean values of the word pairs, there are some of
particular interest in our research. Results indicate that the adaptive
system is significantly more human and cautious than the non-adaptive
one. This is because the adaptive system attunes notifications to the
user attention and context behaving like a human and avoiding to inter-
rupt the user. Users rated the adaptive system a bit more complicated
since it has more configuration features to take into account compared
to the non-adaptive, which only has basic configuration features. Also,
users appreciated our system a little more unpredictable compared to the
non-adaptive, due to they unknown initial designed adaptations.Despite
these detected issues, the adaptive version was considered more inno-
vative, challenging and attractive.

Thus, results points out that with our obtrusiveness adaptations,
user experience is enhanced.

8.2.3 Evaluating the customization interfaces

8.2 Adaptive Notifications case study 261

We validated the usability and expressivity of the customization in-
terfaces by means of a user evaluation, where users had to change the
obtrusiveness adaptation behavior via the obtrusiveness personalization
interface, and specify six situations of varying complexity via the defi-
nition and capturing options of the user specification interface.

Experimental design and procedure
In order to evaluate the Obtrusiveness Personalization Interface the
users had to perform the following tasks:

• Change the interaction resources associated with a specific obtru-
siveness level.

• Edit an existing transition between two obtrusiveness levels (change
the user situation that triggers the transition).

• Create a new transition between two obtrusiveness levels.

• Delete an existing transition between obtrusiveness levels.

• Edit the information of an existing user situation.

• Delete an existing user situation.

• Create a new user situation.

Regarding the evaluation of the User Situation Specification Inter-
face, the users had to specify six situations of varying complexity, using
the definition and capturing options. Below, you can find the list of
situations. Note that, since “capturing” the first five situations proved
trivial, the users only had to use the capture option for the sixth, most
complex situation.

• @work (1): You are inside the “DSIC” building (an educational
building, with URI http://dsic.upv.es), during working hours (9AM
– 18PM, from Monday to Friday).

262 CHAPTER 8. VALIDATIONOF THE PROPOSAL

• @meeting: You are inside a meeting room during work hours
(9AM – 18PM).

• @quiet-place: You are inside a movie theatre or a theatre (time
independent)

• @teaching: You are inside a classroom, during 13-17h on Monday,
11-13h on Tuesday, and 13-17h on Friday.

• @free-time: The current time on weekdays is from 18PM to 8AM,
and the whole day during the weekend.

• @work (2): You are inside your office (which is linked to you via
the housesPerson property), during working hours (9AM – 18PM).
You can assume that http://you.upv.es is your personal URI. You
will have to utilize the free-form method to express this situation.

In each user session, we took five minutes to shortly explain the inter-
faces, and then let the user perform the described tasks. We noted the
required time, as well as any encountered difficulties and errors dur-
ing their tasks. After performing their tasks, the users filled out the
questionnaire.

Questionnaire and participants
In order to evaluate the efficiency of the customization interfaces, we
used the Post-Study System Usability Questionnaire (PSSUQ) (Lewis,
1995). This questionnaire is a 19-item instrument for assessing user
satisfaction with system usability. Specifically, it studies the following
four dimensions: overall satisfaction with the system, its usefulness,
information quality, and interface quality.

A total of 8 subjects participated in the experiment (5 male and
3 female), between the ages of 25 to 35. All of them had a strong
background in computer science, being students or researchers; they
were also familiar with the use of a smartphone, and 4 out 8 owns an
Android-based smartphone similar to the one used in the experiment.

8.2 Adaptive Notifications case study 263

Figure 8.9: Summarized questionnaire of resutls.

Results of the customization interfaces evaluation
Fig. 8.9 shows a summary of the PSSUQ questionnaire results; the com-
plete dataset can be downloaded from http://wise.vub.ac.be/Mobiquito-
us2012/. Overall, users found the interfaces simple to use (questions 1,
2) and very easy to learn (7), while they also felt they could complete
tasks effectively (3) and quickly become productive using the system
(8). Users found the provided information more or less clear (11), easy
to find (12) and understand (13), and clearly organized (15). Overall,
around 80% of the users found the interfaces pleasant (16), and 75%
liked using the interfaces (17). Averaging the questionnaire results, on
a scale from 1 (strongly agree) to 7 (strongly disagree); overall satis-
faction was 3.09, usefulness was 3.2, information quality was 3, and
interface quality was 3.04.

On average, users took about 10 minutes to personalize the obtru-
siveness and 13 minutes to specify all user situations; since “capturing”
the first five situations proved trivial, they were left out the remaining
evaluations of the capture option. Regarding the obtrusiveness person-
alization interface, users found more difficulties in the tasks to manage
the conditions. This was because they were less familiar with these
aspects. However, they could complete all the tasks effectively. With
regards to the situation specification interface, one user had initial dif-
ficulty with the location method; but the other users had no problems.
Six out of seven users had difficulty using the free-form method while
testing the define option; on the other hand, they found using this

264 CHAPTER 8. VALIDATIONOF THE PROPOSAL

method easier when “capturing” situations.

In conclusion, the evaluations show the interfaces to be usable and
expressive, allowing users to change the obtrusiveness design and specify
non-trivial situations within a short time span. Moreover, the capture
option makes it very simple to specify most situations. The free-form
method, which allows for more generic and complex situation defini-
tions, proved to be more difficult to use and have a steep learning curve.
However, using this option becomes much easier in the capture option,
since users are able to fine-tune a given free-form specification instead of
creating one from scratch. We do note that this is a preliminary evalua-
tion, and additional experiments, with a larger and more heterogeneous
user group, are needed to confirm and generalize these results.

8.3 Experiences applying our approach
This section analyzes the experience of applying our approach in dif-
ferent case studies of other domains. These experiences have served to
determine whether (1) the design method was adequate to represent
and manage the knowledge involved in the design of interaction obtru-
siveness adaptation, (2) the obtrusiveness is an issue that really affects
users when interacting with a system, and (3) the adaptation performed
in the different domains help to manage the user’s attentional resources.

A brief description of the case studies and the obtained results is
provided below.

8.3.1 User Routine Tasks: Smart Hotel
We applied our approach in the automation of routines in the domain
of a smart hotel. By applying our approach in this domain, we obtained
routine tasks capable of adjusting their obtrusiveness level at runtime
according to the user’s situational context. In this way, task automation
behave in a considerate manner.

Specifically, we modeled a routine for automating the tasks when the

8.3 Experiences applying our approach 265

2. Light is
switched on

3. Air conditioning
is turned on 1. Room door

is opened
New messages

!

4. Hotel messages
are shown, either in the TV

or in the user mobile device.
Implicit Interaction:

User approaching
to the room

Figure 8.10: Example scenario of a routine task adjusting the obtrusiveness
level

user enters to his/her room. When a hotel guest approaches to his/her
room (implicit interaction), a welcome hotel service will be automati-
cally executed (see Figure 8.10): opening the door room to let the user
come in, switching on the lights of the room, turning on the air condi-
tioner to fit user preferences and communicating the new messages/news
of the hotel to the user. Such tasks (which compose a routine) would
be automatically performed just by approaching to the room (without
the user explicitly requests them).

Applying our approach, the execution of each task behaves in a
considerate manner, demanding the proper level of user attention in
each situation. Considering the routine above introduced, each time it
is performed, some of its actions could require a different degree of user
attention. As a consequence, different interaction resources should be
used to support each task at the appropriate obtrusiveness level (e.g.,
using either the TV or the mobile device to show the hotel messages).

Figure 8.11 shows the part of the interaction resources that sup-
ports some tasks from the “entering the room” routine. For example,
the ambient sound of the room is used for the “communicate hotel mes-
sages” task when the task is performed proactively at the highest level
of attention. However, the mobile notification and the mobile vibration
are used for the same task when it is performed at the slightly level of

266 CHAPTER 8. VALIDATIONOF THE PROPOSAL

Status
Bar
No�f.

Speech

re
ac
�v
e

pr
oa
c�
ve

awareslightlyinvisible

in
i�
a�

ve

a�en�on

Media
Object

New messages

!

New
message!

Mobile
Notification

TV Display

Ambient
Sound

Mobile
Vibration

Mobile
Display

Mobile Sound

Blinds

Lights

Heating

Movement
Detector

Mobile
Display

Mobile
Speech

Bla, bla..

Temperature
Sensor

CommunicateMessages(proactive,slightly)

CommunicateMessages(proactive,aware)

SwitchLightOn(reactive,aware)SwitchLightOn(reactive,slightly)

Gradual
Lights

Figure 8.11: Implication of the interaction resources with the attentional
demand

Routine Automation
Satisfaction with the system and its use

Could complete tasks quickly and effectively

Easy to learn to use

Mistakes are recovered easily

Information provided appropriately

System helps to complete tasks

Users felt comfortable using the system

All functions and capabilities expected

Automated actions performed in adequate situations

Adequate level of automation

Notifications presented in an adequate manner

Context-based adaptation was useful

Automation vs. confirmation

Good for long-term objectives

Obtrusiveness adapted properly

User Satisfaction

Strongly agree

Strongly disagree

N/A

26.6%

66.6%

80%

66.6%26.6%

53.3% 33.3%

33.3% 46.6%

66.6%20%

80%

80%13.3%

20%

63.3%20%

83.3%

63.3%22%

53.3%

20%

40%33.3%

47%31%

30.5%35.4%

22%

Figure 8.12: Summarized results

attention. Another example is the “switch light on” task. The gradual
lights that regulate light’s intensity are used for this task when it is per-
formed at the slightly level of attention. Conversely, the regular lights
are used when the task is performed at the highest level of attention
(i.e., completely-awareness). Figure 8.11 illustrates all these mappings
for the tasks.

The case study was defined following our design method and a pro-
totype was developed to evaluate the user satisfaction with the exe-
cution of the routines. In particular, we wanted to evaluate whether
the routines were automated adequately and whether guests were sat-
isfied with the result system. Figure 8.12 shows a summarized table of
the obtained results. Overall, the experiment showed that by following

8.3 Experiences applying our approach 267

Borrow book

ProactiveReactive

The book is explicitly touched using
a mobile device and the loan is

confirmed to the user.

Block book
Users "touch" the book to be

blocked and information is
provided to the user

Unlock book
User is notified when a book is
no longer blocked.

Related information
Suggestions of similar books are
provided to the user by demand but
also when looking for a given book.

Return book
The user just drops the book in the
"return box". The system registers
the return when the book is detected.

Comment book
Book valorations of other members
are presented to the user. The user
can access the detailed comments

by demand (but comments from
friends are proactively announced).

initiative

at
te

nt
io

n

In
vi

si
b

le
S

lig
h

tl
y

n
o

ti
ce

ab
le

C
o

m
p

le
te

ly
aw

ar
e

Figure 8.13: Obtrusiveness level defined for the services in the Smart Library
scenario.

our method, user routines can be automated adjusting its obtrusiveness
level according to context.

8.3.2 Smart Library
Once our proposal was established, we applied it for the development
of Presto (Giner et al., 2010). Presto is a context-aware mobile plat-
form that allows to support different workflows by interacting with the
physical environment. Depending on the physical context, user inter-
faces were adapted for completing the workflow tasks. In particular,
we applied our approach for the support of different processes that take
place in a library such as borrowing a book, obtaining user comments
and finding similar books. Adaptation in these scenarios takes into ac-
count different factors. For example, users are reminded for returning a
book by means of a different interaction mechanism depending on the
remaining time for their loan (first in a subtle manner, and later more
energically), comments are displayed differently depending on the social
relationship between the users, etc.

Figure 8.13 illustrates the linkage between different services sup-

268 CHAPTER 8. VALIDATIONOF THE PROPOSAL

ported by this case study and the unobtrusive adaptation space for the
interactions that support each service. In the case study, we consid-
ered that it is important to inform users about the events that require
some actions for them to be performed or events that are relevant for
them. This is why services such as borrow book and unlock book were
presented at the foreground of user attention (in a notorious manner).
On the contrary, the return of books was performed in a completely
unobtrusive manner, the user leaves the book in the return box and
the system initiates the return process without notifying the user. In
this way, users avoid queues. In the case of the related information and
comment book services, not all the information that is associated with
a book is relevant for the library users at anytime. So, we provided
the interaction at a different obtrusiveness level depending on the rel-
evance of the information. User comments that were made by friends
were considered to be more relevant that those made by people that
was not part of the user social network. Thus, comments from friends
were provided in a proactive manner to the user. For similar books,
books that were physically close to the user position were considered
more relevant. Information of close books was provided in a proactive
manner, but it was only shown as a hint (slightly noticeable).

In order to validate this case study, we applied it to support services
in our faculty library. We developed a prototype version for the system
and conducted an experiment. The experiment was performed by 34
users (26 men and 8 women, all between the ages of 20 and 60). The
participants evaluated the prototype in different scenarios that com-
prised several alternate, simultaneous, and repetitive tasks playing the
library user role. They were required to borrow books, make temporal
reservations while looking for similar books with a better rating, and
buy a copy of the book in an on-line store.

For the evaluation, we made use of the MoBiS-Q questionnaire (Vuolle
et al., 2008). MoBiS-Q evaluates user experience combined with en-
hancements in work productivity. Questions related to the “perceived
usability of a mobile business service” dimension are the most relevant
for the current work since these questions are related with interaction.
Figure 8.14 provides the detailed results for each question considered.

8.3 Experiences applying our approach 269

Item
disagree agree nor

disagree
agree

Easy to learn
‐

2.9%

(1)
‐

55.9%

(19)

41.2%

(14)
34

skilful ‐ ‐ ‐
47.1%

(16)

52.9%

(18)
34

tasks on the move ‐ ‐
2.9%

(1)

47.1%

(16)

50.0%

(17)
34

Quick enough
‐

2.9%

(1)

8.8%

(3)

14.7%

(5)

73.5%

(25)
34

necessary ‐ ‐
11.8%

(4)

35.3%

(12)

52.9%

(18)
34

Ease of navigation
‐

2.9

(1)

14.7%

(5)

29.4%

(10)

52.9%

(18)
34

0.0% 1.5% 6.4% 38.2% 53.9% 204

Figure 8.14: Detailed results

Overall, the experiment showed positive results for the interaction as-
pects endorsing our proposal in this domain.

8.3.3 HomeCare
We applied our approach in a HomeCare case study to develop context-
aware interactions adaptive to the different devices that the user pos-
sesses. To exemplify the proposal, we described a scenario of a Home-
Care system that contain services to assist to users in their healthy
habits.

The scenario described a day in John’s life and the way interaction
of the services changed depending on his context. John is a 60 years old
man who lives in a smart home. He has a heart disease that forces him
to take a pill at a certain time, but he is rather forgetful and he prefers
to be reminded. He also appreciate if the house notify him when he has
a doctor’s appointment.

One day John was having breakfast while he was watching the TV
and he forgot taking his pills, so a message was shown on his TV re-
minding him about it. When he took the pills, the system detected that

270 CHAPTER 8. VALIDATIONOF THE PROPOSAL

Pocket	

Device

Don't	
 forget	
 to
take	
 your	
 pills

Don't	
 forget	
 to
take	
 your	
 pills

TV

User	
 alone
in	
 his	
 house:

Aware	
 Interac>on
User	
 in	
 a	
 mee>ng:
Subtle	
 Interac>on

Vibra>on
Feedback

Figure 8.15: Different interaction for the same service

there were few left and in reaction to this, the system added it to the
medicine shopping list in an invisible manner for John. Later, when he
was at his workplace, a message was shown on his mobile phone that
reminded him about a doctor’s appointment for a revision that after-
noon. Finally, when he was having a business lunch at a restaurant,
an alert was shown in his mobile phone that reminded him to take his
pills. In this case, the alert was shown in a subtle way because John
was on a meeting with other people. Figure 8.15 depicts the different
ways that the taking the pills reminder are presented in the scenario.

Figure 8.16 shows the obtrusiveness modeling for the services that
supported the case study.

In order to validate if the adaptation provided by different devices
was satisfactory for the end-users, we developed a prototype version of
the services described and conducted an experiment with users. The
experimental setup included an HTC Magic mobile device running An-
droid Operating System and a LG Scarlet TV using CE-HTML (simu-
lated). Wizard of Oz techniques were used to simulate the adaptation
process.

Figure 8.17 shows a summarized table of the obtained results. Over-
all, the initial results obtained showed that by following our approach,
we can obtain user interfaces for multiple devices that support the spec-
ified services with the properly interaction mechanisms for each context

8.4 Discussion of the results 271

Medicine Shopping List

ProactiveReactive

A medicine item is added to the
shopping list automatically when it

runs out or the item is explicitly
added by the user.

Taking Pills Reminder
User is notified when he/she
has to taking his/her pills

Appointment Reminder
The system reminds the user
that he/she has a doctor's
appointment.

initiative

at
te

n
ti

o
n

in
vi

si
b

le
Sl

ig
h

tl
y

n
o

ti
ce

ab
le

C
o

m
p

le
te

ly
aw

ar
e

Figure 8.16: Obtrusiveness level defined for the services in the SmartCare
scenario.

50%

Automa'on	
 vs.	
 Confirma'on

Level	
 of	
 automa'on	

adapted	
 properly

Alerts	
 and	
 reminders	
 presented	
 in	

adequate	
 manner	
 in	
 different	
 devices

Automated	
 ac'ons	
 performed	

in	
 appropriate	
 situa'on	

58,3%

83,3%

66,6%

66,6%Good	
 for	
 long-­‐term	
 objec'ves

Interac'on	
 adapted	
 properly	

across	
 different	
 devices 66,6%

Strongly	
 agreeStrongly	
 disagree N	
 /	
 A

If	
 the	
 system	
 was	
 	
 available,	
 would	
 you	
 use	
 it?

Interac=on
Adapta=on

Figure 8.17: Summarized results

of use.

8.4 Discussion of the results
Based on our experiences from all the case studies, we present the lessons
that we learned in the application of our approach.

272 CHAPTER 8. VALIDATIONOF THE PROPOSAL

8.4.1 Benefits obtained
The development of services’ interactions obtrusiveness adaptations in-
volves some aspects that are not usually considered in software devel-
opment such as the interaction variability and the obtrusiveness con-
straints. The application of our development method has been useful
in the development of this kind of systems at different levels. We have
applied the approach in different domains. In this way, we could expe-
rience whether the approach was appropriate for supporting interaction
obtrusiveness adaptation under different circumstances. The main ben-
efits observed during the application of our approach are introduced
below.

Error reduction
One of the conclusions from applying our method is that it is difficult
for developers to keep an overall view of the system while focusing on a
specific part of the adaptation. When we introduced our design method
supported by tools, it was useful since it assured general consistency for
the adaptive behavior. At design time, the presented method provides
abstract models that allow the requirements related to adaptive services
interaction behavior to be captured. Using these abstract models, the
system can be designed by using concepts that are much less bound to
the underlying implementation technology and are much closer to the
problem domain (Paternò, 2003). Thus, designers can focus on the main
concepts (the abstractions, such as user, obtrusiveness, interaction, etc.)
without being confused by many low-level details (Paternò, 2003). This
makes the provided models easier to specify, understand, and maintain
than source code.

In addition, model-based validations ensure that the pieces defined
fit together. At implementation, code generation is in charge of pro-
ducing the code that is required for the adaptive behavior defined for
interaction.

8.4 Discussion of the results 273

System evolution
One of the benefits of our approach is that the developed autonomic in-
frastructure directly interprets the models at runtime in order to adapt
the services’ interactions according to the user’s attentional resources.
Thus, the models become the primary means to understand, interact
with, and modify the services interactions and their obtrusiveness level.
This considerably facilitates the evolution of the system at runtime: as
soon as the models are changed, the evolutions are applied by the auto-
nomic infrastructure without the need to stop or redeploy the system.

8.4.2 Limitations detected
Since the approach has been applied in different domains, two com-
plaints commonly found in adaptive systems were to some extent present
in our approach. Specifically, to what extent users have control over
adaptations and the handling of failures due to imperfect context sens-
ing. More detail about the issues detected is provided below.

Intelligibility
During the experiments, we found that intelligibility can become an
issue that affects user satisfaction, as the adaptation is transparently
to users and automatically performed. This causes loss of control over
the system and the feeling that the system is doing something “in our
back”. Context-aware applications should be intelligible (also called
transparent, comprehensible, scrutable), capable of generating explana-
tions of their behavior (Bellotti and Edwards, 2001). In this way, our
system should explain its decisions to the user in some way that was
not intrusive for him/her.

Handling failures
The designed adaptations are exposed to possible failures due to the
imperfect context sensing or failures in the mobile device. As detailed

274 CHAPTER 8. VALIDATIONOF THE PROPOSAL

in (Bellotti and Edwards, 2001), a context-aware system can not pretend
to understand all of the user’s context, thus it must be responsible about
its limitations. The system should be able to handle these failures and
self-heal accordingly at runtime. This can be achieved by means of
defining reconfiguration rules to indicate the behavior of the system
when a failure is detected.

8.5 Conclusions
Modeling is about abstractions and the conceptualization of the sys-
tem to be built. However, for a problem to be completely understood,
analysis hypotheses must be validated with the end-users of the system.
In this chapter, we put in practice the approach defined. The applica-
tion of our approach in the presented case studies has provided valuable
feedback at different levels. Our research results show that the method
is capable of producing services with a high level of user acceptance,
and a final software solution can be obtained from what it is captured
at requirements level.

The resulting application from these case studies is interesting by
itself. Although some aspects have been simplified for the development
of the prototypes, the technologies in use are production ready. In
addition, the design effort to improve the case studies has lead to better
enhancing the user experience and the adaptation fluency.

9
Conclusions and FutureWork
Where dowe go?

I like the dreams of the future better than the history of the past
—Thomas Jefferson (1743-1826)

The present work has introduced a model-based approach to face the
challenge of developing and adapting service interaction obtrusiveness in
a mobile and ubiquitous context. Facing the development and runtime
adaptation of such services’ interactions in terms of obtrusiveness have
resulted innovative and different contributions were produced from this
work. In addition, the research line in which this work is aligned is by
no means completed here. Further work can complement and extend
this thesis.

This last chapter introduces the conclusions of the work developed
in this thesis. First, Section 9.1 presents the main contributions to
both the Context-Aware and Considerate communities. Section 9.2
provides an overview of the publications that have emerged from this
work. Section 9.3 presents the projects co-directed related to some parts
of this thesis. Finally, Section 9.4 outlines the ongoing and future work

276 CHAPTER 9. CONCLUSIONS ANDFUTUREWORK

that can extend this research line, and Section 9.5 concludes with some
final remarks.

9.1 Contributions
The main contribution of this work is a development process of ubiqui-
tous services that can be adapted in terms of obtrusiveness. The deve-
lopment process comprises from architectural to methodological aspects.
So, the work provides the following contributions:

DSL for interaction obtrusiveness specification. Modeling primi-
tives have been defined to facilitate the specification of the adap-
tive behavior of services’ interactions according to the user’s atten-
tional resources. Separation of concerns and metamodeling tech-
niques have been applied to capture and organize formally
the concepts that conform this specification language.

Method for development. A systematic development method has
been defined to guide the developer in the construction of conside-
rate services adaptive to users’ attention. The method comprises
from specification to the final implementation. This method helps
the different stakeholders in the design and development of this
kind of systems without duplicating efforts in the develop-
ment.

Runtime infrastructure for dynamic interaction adaptation. A
self-regulating autonomic infrastructure has been defined in order
to automatically adapt the interaction of the different services ac-
cording to the momentary attentive state of users. Design mo-
dels are exploited at runtime to drive the autonomic adapta-
tion of interaction obtrusiveness.

System for learning. An obtrusiveness learning system has been de-
fined in order to improve the initial obtrusiveness design dy-
namically over time according to the changing user preferences.

9.2 Publications 277

In this way, we maximize the user’s satisfaction for a long-term
use. Furthermore, the provided customization interfaces allow
end-users to change their own obtrusiveness preferences manually
without the need to stop the system or redeploy it. In this
way, we also integrate the user in the self-adaptation loop.

To sum up, we do believe that using a model-driven approach is
a promising way to self-adapt services’ interactions in terms of obtru-
siveness. As the whole approach is supported by models, feedback from
users is easily mapped onto the models enabling future improvements at
design time and at runtime. Also, the use of models to design unobtru-
sive interaction adaptations has been useful to centralize the knowledge
about the services’ behavior in a way that it is easy to handle for de-
signers.

9.2 Publications
The research activity presented in this work has produced innovative
and different contributions that have been presented and discussed on
different peer-review forums. In this section, we present the articles in
which this research has been published. Figure 9.1 outlines the publica-
tions achieved in the course of this thesis indicating the type of publica-
tion and the conference or journal where it was published. The order of
the publications and the year when the publication was achieved is also
illustrated by means of a path that starts from the problem awareness
and ends with the present thesis. The bridge at the end of the path
means that the last publication was submitted but it remains under the
review process. Specifically in the figure, three types of publications
are defined: journals, conferences, and workshops. The most relevant
publications have a quality level associated, which corresponds to the
JCR index for journals, and the CORE ranking for conferences. Also,
conferences published in LNCS are indicated. The distinct publications
in which the author of this thesis was involved are listed below.

International Journals Indexed in the JCR.

278 CHAPTER 9. CONCLUSIONS ANDFUTUREWORK

Problem
Awareness

2010

Pervasive
Personalisation

(PERVASIVE)

TouchTheWeb
(ICWE)
(LNCS)

UCAmI

AmI

(LNCS)
UCAmI 20112012

PUC

(0.938 JCR)

SAME

(PERVASIVE)

UCAmI

UCAmI

(LNCS)

MobiQuitous

(CORE A)
2013

SCP

(0.622 JCR)

MTA
(0.617 JCR)

PhD
Thesis

Workshop

Conference

Journal

May 2013

Paper 1 Paper 2

Under Review

Figure 9.1: Publications overview.

1. Miriam Gil, Estefańıa Serral, Pedro Valderas & Vicente
Pelechano. Designing for user attention: a method for sup-
porting unobtrusive routine tasks. Science of Computer Pro-
gramming Journal, 2013. vol. 78(10), pp. 1987-2008.

2. Miriam Gil, Pau Giner & Vicente Pelechano. Persona-
lization for unobtrusive service interaction. Personal and
Ubiqui-tous Computing Journal, 2012. vol. 16(5), pp. 543-
561. Springer.

International Conference Papers Indexed in the First Tier of
CORE Ranking.

3. William Van Woensel, Miriam Gil, Sven Casteleyn, Este-
fańıa Serral, & Vicente Pelechano. Adapting the obtrusive-
ness of service interactions in dynamically discovered envi-

9.2 Publications 279

ronments. 9th International Conference on Mobile and Ubi-
quitous Systems: Computing, Networking and Services (Mo-
biquitous 2012).

International Conference or Workshop Papers published by
Springer (LNCS).

4. Miriam Gil & Vicente Pelechano. Exploiting User Feedback
for Adapting Mobile Interaction Obtrusiveness. 6th Interna-
tional Symposium of Ubiquitous Computing and Ambient
Intelligence (UCAmI 2012), 2012. LNCS 7656, pp. 274-281.
Springer, Heidelberg.

5. Miriam Gil, Pau Giner & Vicente Pelechano. Service Ob-
trusiveness Adaptation. First International Joint Conference
on Ambient Intelligence (AmI 2010), Malaga, Spain, 2010.
pp. 11-20. Springer Berlin / Heidelberg. Lecture Notes in
Computer Science, Volume 6439.

6. Pablo Munoz, Pau Giner & Miriam Gil. Designing Context-
Aware Interactions for Task-Based Applications. 10th Inter-
national Conference on Web Engineering, ICWE 2010 Work-
shops, Vienna, Austria, 2010. pp. 463-473. Springer Berlin
/ Heidelberg. Lecture Notes in Computer Science, Volume
6385.

International Conference Papers.

7. Miriam Gil, Estefańıa Serral, Pedro Valderas & Vicente
Pelechano. Achieving Unobtrusive Interaction for Routine
Task Automation. 5th International Symposium on Ubiqui-
tous Computing and Ambient Intelligence (UCAmI 2011),
2011. pp. 37.

8. Ignacio Mansanet, Miriam Gil, Joan Fons & Vicente Pele-
chano. A Feature-Based Approach For Context-Aware Inter-
actions Over Multiple Devices. 5th International Symposium
on Ubiquitous Computing and Ambient Intelligence (UCAmI
2011), 2011. pp. 38.

280 CHAPTER 9. CONCLUSIONS ANDFUTUREWORK

9. Miriam Gil, Pau Giner & Vicente Pelechano. Designing
context-aware mobile interactions. 4th Symposium of Ubi-
quitous Computing and Ambient Intelligence (UCAmI 2010),
Valencia, Spain, 2010. pp. 93-102.

International Workshop Papers published in High-Relevance
Forums to this Thesis.

10. Estefańıa Serral, Miriam Gil, Pedro Valderas & Vicente
Pelecha-no. Unobtrusive Personalized Services in Ambient
Media Environments. 5th International Workshop on Se-
mantic Ambient Media Experience in conjunction with Per-
vasive 2012 (SAME 2012), 2012.

11. Miriam Gil, Pau Giner & Vicente Pelechano. Service Ob-
trusiveness Personalisation. Pervasive Personalisation Work-
shop held in conjunction with Pervasive 2010, Helsinki, Fin-
land, 2010. pp. 18-25.

Moreover, we have one journal paper under review process:

• Estefańıa Serral, Miriam Gil, Pedro Valderas & Vicente Pelecha-
no. Automating Unobtrusive Personalized Services in Ambient
Media Environments. Multimedia Tools and Applications Jour-
nal. MTA Special Issue on “Semantic Ambient Media – What
has Been Achieved, and What still Needs to be Done”. JCR 2011
impact factor: 0.617, position: 71/104 in the category ”Computer
Science/Software Engineering”.

All these publications are exclusively associated with this thesis
work. Table 9.1 shows the relation between the contributions presented
in this thesis and the publications achieved during its execution.

9.2.1 Relevance of the publications
This section provides some information about the relevance of the con-
ferences where different aspects of this work have been published.

9.2 Publications 281

Contribution Publication

DSL for specification - SAME 2012
- AmI 2010
- UCAmI 2010
- Pervasive & ICWE Workshops 2010

Method for development - SCP Journal 2013
- PUC Journal 2012
- UCAmI 2011

Runtime infrastructure - SCP Journal 2013
- Mobiquitous 2012
- UCAmI 2011

Learning system - UCAmI 2012
- Mobiquitous 2012

Table 9.1: Outline of the contributions and the publications achieved

Personal and Ubiquitous Computing. Personal and Ubiquitous
Computing is a peer-reviewed scientific journal that has published
some of the most innovative international research contributions
on the design and evaluation of new generations of handheld and
mobile information appliances. Since 1997, it has covered original
research on ubiquitous and pervasive computing, ambient intel-
ligence, and handheld, wearable and mobile information devices,
with a focus on user experience and interaction design issues. Ac-
cording to the Journal Citation Reports (JCR), the journal has a
2011 impact factor of 0.938, ranking it 67th out of 135 journals in
the category ”Computer Science/Information Systems”.

The article ”Personalization for unobtrusive service interaction”
published in this journal is part of an special issue entitled ”Adap-
tation and Personalization for Ubiquitous Computing” which is
focused on topics that are central to this thesis. The guest edi-
tors for this special issue were Zhiwen Yu, Doreen Cheng, Ismail
Khalil, Judy Kay, Dominikus Heckmann, relevant researchers in
the Ubiquitous Computing area.

282 CHAPTER 9. CONCLUSIONS ANDFUTUREWORK

Science of Computer Programming. Science of Computer Pro-
gramming is a peer-reviewed scientific journal dedicated to the
distribution of research results in the areas of software systems
development, use and maintenance, including the software aspects
of hardware design. According to the Journal Citation Reports
(JCR), the journal has a 2011 impact factor of 0.622, ranking it
70th out of 104 journals in the category ”Computer Science/Soft-
ware Engineering”.

The article ”Designing for user attention: a method for support-
ing unobtrusive routine tasks” published in this journal is part of
an special issue entitled ”Software Engineering Aspects of Ubiq-
uitous Computing and Ambient Intelligence” which is focused on
techniques for modeling ubiquitous systems and leveraging them
at runtime.

MobiQuitous. The International Conference on Mobile and Ubi-
quitous Systems: Computing, Networking and Services provides
a forum for practitioners and researchers to interact and exchange
experiences about the design and implementation of mobile and
ubiquitous systems. According to the CORE conference ranking,
MobiQuitous is a Core A conference.

The paper ” Adapting the obtrusiveness of service interactions in
dynamically discovered environments” was presented in the main
track of this conference.

Ambient Intelligence. The AmI conference has an important role
for the social cohesion of the Ambient Intelligence community.
The conference papers are published by Springer (LNCS). The
conference has a major impact in industry with the participation
of relevant corporations in the AmI area such as Nokia, Philips,
NTT DOCOMO or SAP.

Ubiquitous Computing and Ambient Intelligence. UCAmI has
been consolidated as a reference event in Ubiquitous Compu-
ting & Ambient Intelligence, agglutinating high quality papers.
This conference provides a discussion forum where researchers and

9.3 Projects codirected 283

practitioners on Ubiquitous Computing and Ambient Intelligence
can meet, disseminate and exchange ideas and problems, identify
some of the key issues related to these topics, and explore together
possible solutions and future works. The conference papers are
published by Springer (LNCS).

International workshops. In addition to the above mentioned venues,
different parts of the work have been published in workshops from
relevant conferences such as Pervasive or ICWE. This has helped
to achieve diffusion of the work.

9.3 Projects codirected
In addition, two degree projects and a master thesis were co-directed in
the context of this work to explore some concepts and put into practice
its application. In particular, the degree projects and the master thesis
in which this work has been applied are the following:

• Desarrollo de una aplicación móvil para la gestión de tareas per-
sonales. Sergio Segarra Miró. September 2011. Degree project.

• Personalización de perfiles de notificación de aplicaciones según
el contexto del usuario. Nacho López Guerrero. September 2012.
Degree project.

• Reconfiguración de la interacción en sistemas Android: adaptando
las notificaciones al contexto. Deisson Leonardo Sánchez Toledo.
September 2012. Master Thesis.

Furthermore, three master thesis are being co-directed at the mo-
ment where other parts of the present work are being applied in practice.

9.4 Futurework

284 CHAPTER 9. CONCLUSIONS ANDFUTUREWORK

The research presented here is not a closed work and there are several
interesting directions that can be taken to provide the proposal with a
wider spectrum of application. Thus, the research activities that are
planned to continue this work are the following.

Control over adaptations. Users using adaptive systems may not
understand how these applications make their decisions, letting
them alone to be aware when the decisions are made and actions
are taken. This is what Bellotti and Edwards named the intelli-
gibility (Bellotti and Edwards, 2001):

“Context-aware systems that seek to act upon what
they infer about the context must be able to represent to
their users what they know, how they know it, and what
they are doing about it.”

Offering to users the possibility to check the adaptations could
reduce the uncertainty and lack of control over the adaptive sys-
tem. Thus, future extensions can further explore these aspects by
increasing the intelligibility of our adaptive system.

Adaptations in dynamic environments. In the present work, the
adaptive behavior of the services’ interaction has been considered
within an environment with ubiquitous services and context con-
ditions known a-priori. But, in the “open world” the user can
enter to new and undiscovered smart environments, and interac-
tions with the services of the new environments should also behave
in a considerate manner. Thus, we propose the development of
mechanisms capable of discovering these new environments and
the services in there and adapt the interaction with these services
in a considerate manner.

User behavior patterns. User behavior has been considered in the
present work at the learning system level in order to improve the
initial design according to the user’s reaction. However, individual
actions of users have been considered for this work. Studying and
detecting user behavior patterns can be convenient in order to

9.5 Final remarks 285

better adapt the system to the new user needs and preferences.
Thus, more work is needed in this direction to understand user
behavior and behavior patterns that can affect user preferences.

9.5 Final remarks
Paul Hemp, an editor of the Harvard Business Review, spent a week
training to be a room-service waiter at a Ritz Carlton hotel in Boston.
The training emphasized empathy with the guests and anticipation of
their needs. The care and concern shown by the employees had to be
genuine: the staff really has to care about their guests. Every morning,
they get together to discuss the day’s guests and their desires. They
review the service philosophy of the Ritz every day. Their philosophy is:

“If you go to a good hotel and ask for something, you
get it... If you go to a great hotel, you don’t even have to
ask.” The Ritz-Carlton Hotel chain’s philosophy—they want
to be great hotels.

—Paul Hemp (2002)

This means that a service is often an experience and it has to be
designed “to make users feel good so they use it again”. Thus, services
do not have to overwhelm users, at the contrary, they have to facilitate
users life and anticipate to their needs. This thesis is an attempt to
achieve this by providing users with services that behave like considerate
humans.

A
Metamodels & Tool Support
The design method proposed in Chapter 5 defines a set of concepts
that are used to describe the interaction obtrusiveness adaptation of
ubiquitous services at different abstraction levels. Designers can com-
bine these concepts to specify the services’ obtrusiveness requirements
for each persona, the interaction variability in terms of obtrusiveness,
and the interaction components of the target technology according to
the interaction features. A well-defined language must be used for this
specification to avoid ambiguities.

This section formalizes the concepts used for describing considerate
adaptations of services’ interactions into a Domain Specific Language
(DSL). A DSL is a focussed, processable language for describing con-
cisely a specific concern when building a system in a specific domain
(Voelter, 2013). Also, it provides abstractions and notations tailored
specifically to that domain helping designers in the system specifica-
tion.

The DSL defined for the specification of the considerate services’
interaction behavior according to user’s situations is named AdaptIO.
AdaptIO describes in a formal manner the concepts involved in the
design method and the specific ways in which these concepts can be
combined to create a valid definition. Since AdaptIO has been defined

288 APPENDIX A. METAMODELS & TOOL SUPPORT

to be machine-processable, the descriptions made using this language
can be automatically handled by different tools. In particular, we have
defined an AdaptIO modeling suite with the different tools to edit,
validate and guide the design of this kind of services’ adaptations.

The following subsections provide detail on the definition of the
AdaptIO DSL and the support for validating the different aspects of
the specifications defined with the language.

A.1 The AdaptIOmodeling language
This work follows a model-based approach for the development of inter-
action obtrusiveness adaptation of mobile and ubiquitous services. A
model is a schematic description and a simplification of a system, built
with an intended goal in mind, that should be able to answer questions
in place of the actual system (Bezivin and Gerbe, 2001). Some exam-
ples of models are a scale plane in a wind tunnel, a plan of a house or
a user interface described in a paper. In this case, we are dealing with
descriptions of services’ interaction adaptations to guide their develop-
ment. A modeling language can be defined as a set of models (Favre,
2004).

A metamodel describes the modeling language. A metamodel de-
fines which models are part of this language. Plenty of models have been
produced without metamodels or at least without making explicit meta-
models (e.g., in the form of a hand drawing in a mat). Nevertheless,
metamodels are useful to formalize and exchange models. By defin-
ing a metamodel that formalizes the concepts presented in our design
method, we provide clear rules about how to model services’ interaction
obtrusiveness adaptation according to our approach.

Specifically, the AdaptIO modeling language is composed by several
models that conforms to its metamodels. It also integrates the Feature
Model metamodel in a non-intrusive manner. Since the Feature Model
metamodel is used as-is, we can make use of the existing tools for feature
model definition.

A.1 The AdaptIOmodeling language 289

Figure A.1: AdaptIO dashboard

The modeling community has developed several projects to support
the MDE paradigm under the Eclipse Modeling Project. Different tasks
comprised by the MDE approach are supported: definition of a modeling
language (metamodeling), description of a system using this language
(modeling). For the implementation of the graphical tool, we have used
the possibilities offered by the Eclipse Graphical Modeling Framework
(GMF) which is part of the Eclipse Modeling Project. GMF provides
a generative component and a runtime infrastructure for the develop-
ment of graphical editors based on EMF (Eclipse Modeling Framework).
Using these plugins, we have created the complete graphical suite for
modeling the interaction obtrusiveness adaptation of services.

Figure A.1 shows the AdaptIO dashboard view that we provide to
assist designers work through the flow of designing considerate interac-
tion adaptations. As the figure shows, it invokes actions for many of
the steps of our design method. Each action opens a graphical editor
to create or edit the corresponding models. The following subsections
give further details on these editors and the metamodels they conform
to.

It is important to note that using this tool, the proposed models not

290 APPENDIX A. METAMODELS & TOOL SUPPORT

Figure A.2: Persona model metamodel

only can be graphically visualized and edited, but also, they are stored
in XMI (XML Metadata Interchange), which is a machine-processable
language. In addition, these tools also provide model-based validations
to ensure that the specified models are valid.

A.1.1 The personamodel metamodel
The persona metamodel defines in a formal manner the modeling con-
cepts to design personas and specify their required services and ob-
trusiveness requirements. Figure A.2 shows the metamodel. The Per-
sonasModel is composed by Personas, Services, and different Dimen-

A.1 The AdaptIOmodeling language 291

Figure A.3: Persona editor

sions to characterize each persona. For each Persona, its relevant in-
formation can be defined such as PersonalBackground, DemographicIn-
formation, Quotes, Sources, TechnologyComfort, Scenarios, Objectives,
Concerns, DescriptiveDimensions and SystemFeatures. These System-
Features specify the services required for the personas to accomplish
their goals and how these services are provided in terms of obtrusive-
ness.

The provided graphical editor is shown in Figure A.3. This editor
supports the obtrusiveness requirements definition step of our design
method (step 1). Using the dashboard view’s “Create” or “Edit” links
in the Personas Model section (see Fig. A.1), the editor is opened to
create a new Persona model or edit an existing one. The “Select” link
allow to locate an existing Persona model.

A.1.2 The obtrusivenessmodel metamodel

292 APPENDIX A. METAMODELS & TOOL SUPPORT

Figure A.4: Obtrusiveness model metamodel

The obtrusiveness model metamodel defines the concepts used for de-
scribing the obtrusiveness level of services for each persona. Figure A.4
shows an excerpt of the metamodel. As the figure illustrates, we repre-
sent the entire adaptive system by zero to many unobtrusive adaptation
spaces. In this way, each unobtrusive adaptation space can define anal-
ogous interactions, since services in the same space are likely to face
similar problems and can share solutions. This is useful to establish
priorities of services, since each unobtrusive adaptation space can rep-
resent a different priority, and therefore, different adaptations.

An unobtrusive adaptation space is composed by obtrusiveness levels
which describe the different possibilities in which interaction with the
system can be offered. Each obtrusiveness level is formed by one initia-
tive level to indicate who initiates the interaction (e.g., the user or the
system) and one attention level to indicate to which degree the interac-
tion intrudes on user’s mind. Each service in the system is located in
the possible obtrusiveness levels in which the service can be performed.
Services in the obtrusiveness levels have transitions that specify how a
particular service should move between obtrusiveness levels to adapt its
interaction according to user situations (inferred from context changes
expressed as rules).

A.1 The AdaptIOmodeling language 293

Figure A.5: Snapshot of the obtrusiveness modeling tool

Figure A.5 shows the graphical tool that support the definition of the
obtrusiveness model. Following the dashboard, when designers select
the “Create” link between the Personas Model and the Obtrusiveness
Model, the obtrusiveness model is created and initialized based on the
information of the personas model. In this way, designers only have to
complete the model.

A.1.3 The featuremodel metamodel
In order to model the interaction variability and the concrete inter-
action, we have used the Feature Model provided by Moskitt4SPL1.
Moskitt4SPL is a free open-source tool that is part of the Moskitt mod-
eling suite2. Moskitt4SPL is defined as a set of plug-ins that we could
incorporate to enhance our tool support with software product lines
(SPL) capabilities.

Moskitt4SPL provides features that are well suited for the use we
are making of Feature Models. Figure A.6 shows the different concepts
in the Feature Model metamodel and the relationships among them.
The metaclass FeatureModel normally is used as the root element of

1http://www.pros.upv.es/m4spl
2http://www.moskitt.org

294 APPENDIX A. METAMODELS & TOOL SUPPORT

Figure A.6: Feature Model metamodel

Feature models. The Feature metaelement represents the different fea-
tures of the Feature model. Each feature can have attributes that are
represented by the Attribute metaelement. Features are related among
them through relationships represented by the CardinalityBasedRela-
tionship metaelement. This metaelement is specialized in the different
relationships that the Feature model supports: Or, Alternative, Op-
tional, Mandatory, and Regular. Also, the Constraint metaelement rep-
resents the constrants that can exist between features: Requires and
Excludes.

This metamodel is based on the generic formalization of the Fea-
ture Model syntax defined by Schobbens et al. (Schobbens et al., 2007).
According with the results of their work, the feature model editor incor-
porates support to multiple graphical notations. Users can dynamically
change the graphic notation of feature models. This is very conve-
nient when dealing with large user interface models (see Fig. A.7).

A.1 The AdaptIOmodeling language 295

Profile Image

Screen_size = not small
Profile Image

Profile
Image

[0, 1]
[0, 1]

Model detail

+ _

R
el

at
io

n
sh

ip
s

Fe
at

u
re

s

Figure A.7: Different representations for interface nodes

The Feature mModel editor supports customizing the notation at
any time between the following feature representations:

1. Feature with Attributes. Features are graphically represented
by means of rectangles. These rectangles are composed of two
compartments. The top compartment holds the feature name and
the bottom compartment holds the features attributes. These
features attributes follows the pattern: <name>=<value>.

2. Rounded Feature. Features are graphically represented by means
of ellipses. The feature name is at the ellipse center, whereas fea-
ture attributes are not shown.

3. Fixed Feature. Features are represented as Rounded features
which diameter depends of the feature name length.

4. Simplified Feature. Features are graphically represented by
means of ellipses. Neither the feature name is visible, nor the
feature attributes. The ellipse diameter is set to a constant.

It also supports customizing relationship notation as follows:

1. Simplified Relationship. Relationships are represented only by
means of lines.

296 APPENDIX A. METAMODELS & TOOL SUPPORT

2. Graphic Relationship. Relationships are represented by means
of decorated lines.

3. Cardinality Relationship. Relationships are represented by
means of lines and a flotating label.

4. Cardinality-Graphic Relationship. Relationships are repre-
sented by means of decorated lines and a flotating label. The line
decoration indicates the type of relationship. Optional relation-
ships are decorated with a white ellipse and mandatory relation-
ships are decorated with a black ellipse. The label follows the pat-
tern [min, max] to indicate the minimum and maximin cardinality
of the relationship. Both label and decoration are synchronized
between them.

By varying the representation, a designer can go from a detailed
description of the user interface nodes and their adaptation conditions
to a general overview of the user interface topology. In addition, the
editor allows to apply the different kinds of visualizations for different
parts of the model. This resulted very useful for focusing on specific
parts of the user interface while hiding the complexity for other parts.

Figure A.8 shows the environment of the Feature Model editor. This
editor is opened from the dashboard by selecting the “Create” or “Edit”
links in both the Abstract Interact. Feature Model section and the Con-
crete Interact. Feature Model section. This editor is used to create the
interaction variability model and the concrete interaction model. To
model the concrete interaction model, we use the Regular relationship
of the feature model editor, which express a simple containment rela-
tionship. Figure A.9 shows the way to change between the different
visualizations supported from the Feature Model editor.

Then, these models are mapped by means of a Weaving Model. In
order to create the weaving model, designers have to select the “Create”
link between both models. Figure A.10 shows a snapshot of the weav-
ing model editor using ATLAS Model Weaving tool (Fabro et al., 2006).
The interaction features appears in column 1 and Atlas Model weav-
ing (column 2) establishes the relations between features and concrete

A.1 The AdaptIOmodeling language 297

Figure A.8: Feature model editor

Figure A.9: Changing the visualization mode from the editor

interaction components (column 3).

Using the “Create” link between the Abstract Interact. Feature
Model and the Default Configuration Model, the Feature Model Con-
figurator is opened to create a default configuration from the defined
Feature Model. A configuration of a Feature Model conforms to the
metamodel of Figure A.11. In this metamodel the ConfigurationModel
metaelement is composed by the set of FeatureStates of a Feature Model.

298 APPENDIX A. METAMODELS & TOOL SUPPORT

Figure A.10: Snapshot of a Weaving Model.

Figure A.11: Configuration model metamodel

The feasible feature states are: active, deactive or discarded. The editor
that supports the Feature Model Configurator is shown in Figure A.12.

From the default configuration model, designers can define the in-
teraction variability according to each obtrusiveness level. To do this,
they click on the “Create” link and the default configuration model is
loaded allowing to express increments and decrements of features with
respect to this configuration. Figure A.13 shows the main window to
create variations. From this window, designers can create new varia-
tions by simply clicking the “Add Variation” button. This button opens
the variation editor that allows designers to express the variations from
a configuration model (see Fig. A.14).

A.1 The AdaptIOmodeling language 299

Figure A.12: Feature model configurator editor

Figure A.13: Variations Model editor

Then, using the “Derive” link between the Variation Model and the
Variated Configuration Models, the different configuration models are
derived automatically. These configuration models are used to specify

300 APPENDIX A. METAMODELS & TOOL SUPPORT

Figure A.14: Variations editor

Figure A.15: Editor to link interaction configurations to the unobtrusive
adaptation spaces

A.1 The AdaptIOmodeling language 301

Figure A.16: Editor to link interaction configurations to a service in an ob-
trusiveness level

the interaction configuration for each obtrusiveness level. Thus, using
the “Link” link between the Variated Configuration Models and the Ob-
trusiveness Model these associations are done graphically. Figure A.15
shows the main window where designers can choose the unobtrusive
adaptation space to do the mapping. When they select an unobtrusive
adaptation space, a list of the services in that space is shown and de-
signers can select one configuration to do the association (see Figure
A.16).

Once these models are created and traced, designers can select the
“Derive” link of the Obtrusiveness Model in order to obtain the state ma-
chines that define the adaptive behavior of the different services. These
state machines capture the implicit adaptive behavior of the services’
interactions according to user situations. They are used to adapt the
service interactions at runtime. The way to leverage these models at
runtime is explained in Chapter 6.

A.1.4 The contextmodel metamodel

302 APPENDIX A. METAMODELS & TOOL SUPPORT

Figure A.17: Snapshop of the Protégé user interface

There are several tools that can be used to create OWL models. Some
examples are SWOOP3, the editor developed by the Model Feature
company4, the OWL Visual Editor of the EMF Ontology Definition
Metamodel (EODM)5 plugin developed upon the eclipse platform, the

3http://www.mindswap.org/2004/SWOOP/
4http://www.modelfutures.com/
5http://wiki.eclipse.org/MDT-EODM

A.1 The AdaptIOmodeling language 303

SematicWorks tool developed by Altova6 or Protégé7. Any of these
tools can be used to create the OWL context model. We have used
the Protégé tool because it is an open source tool that can be freely
downloaded from its Web page, and because it provides a very intuitive
interface to create ontologies. In addition, there is a great research
community that is continuously extending and improving this tool. A
proof of that is the International Protégé Conference that is celebrated
every year.

Figure A.17 shows a snapshot of the Protégé tool. In this snap-
shot the above introduced OWL model is being created. The Protégé
user interface is divided in several tabs that provide us with editors to
create the different elements of the ontology: classes, properties and
individuals.

A.1.5 The Android componentsmetamodel
The Android components metamodel defines in a formal manner the
modeling concepts of the Android application framework. The meta-
model is shown in Fig. A.18. The metaclass App is the root ele-
ment of the component architecture model. The metamodel includes
the definition of the Android components (Activity, Service, Content-
Provider, and BroadcastReceiver) and the communication mechanisms
among them (LaunchImplicit, LaunchExplicit, IntentFilter, and Intent-
Broadcast).

A graphical editor was provided for describing the components of
different Android-based applications. As Fig. A.19 shows, the developed
tool incorporates a palette of Android components that can be labeled
and linked with other components. The components defined are the
ones introduced in Chapter 6.

With this tool, developers can determine how an application interop-
erates with third party components (e.g., the contact list of the mobile
device) or mock components defined to be later replaced with the final

6http://www.altova.com/products/semanticworks/semantic web rdf owl edi-
tor.html

7http://protege.stanford.edu/overview/protege-owl.html

304 APPENDIX A. METAMODELS & TOOL SUPPORT

Figure A.18: Android components metamodel

Figure A.19: Graphical editor for Android components

ones.

A.1.6 Relationships betweenmetamodels

A.2Model-based validation 305

Figure A.20: Dependency relationships between metamodels

In order to match the appropriate interaction configuration to each
service in an obtrusiveness level, we link the elements of the different
models. In this way, when a change in the obtrusiveness level for a
service is produced, the interaction is adapted according to the new
configuration. These links are represented by means of dependency
relationships between the metaelements of the different metamodels in
the following manner (see Fig. A.20):

• The AdaptiveSystem in the obtrusiveness model metamodel is re-
lated with a unique FeatureModel in the feature model metamodel,
since the FeatureModel represents all the available interaction fea-
tures of the system and their relationships.

• Each ObtrusivenessLevel in an unobtrusive adaptation space has
associated a ConfigurationModel from the configuration model
metamodel. This represents the interaction configuration assigned
to that obtrusiveness level.

Note that these dependency relationships do not automatically cre-
ate any references; it merely grants permission for them to be estab-
lished.

A.2 Model-based validation

306 APPENDIX A. METAMODELS & TOOL SUPPORT

One of the most important uses of models is to reason about the system
they describe. Model-based verification can ensure that some aspects of
the system are valid prior to its construction. This section introduces
some of the validation capabilities provided during system specification.

The method proposed for the design of service interactions obtru-
siveness adaptation promotes separation of concerns. Different aspects
are specified in different models in order to better handle complexity.
However, this requires to apply validation techniques in order to guar-
antee that the different aspects specified are consistent.

We have implemented different validations that can be applied au-
tomatically to the AdaptIO models. The validation mechanisms are
supported by two different ways. First, we have expressed constraints
in the different models to check the properties that have to be fulfilled
by the models. Second, we have used analysis tools on Feature Models
to check the validity of the Feature Model and interaction configurations
defined.

A.2.1 Constraints onmodels
These validations are specified at the metamodel level. This allows de-
signers to automatically validate a created model from the metamodel.
Specificaly, they check on different constraints expressed in the meta-
model. An overview of the questions that can be answered thanks to
these contraints is provided below.

Are the different elements on the model unique? All the names
of the different elements of a model (e.g., personas, services, user
situation, obtrusiveness space, etc.) need to be unique since they
are the identifiers of the element.

Are all the obtrusiveness levels supported by an interaction
configuration? Given an unobtrusive adaptation space, all the
obtrusiveness levels that compose it need to be linked to an inter-
action configuration of the feature model.

Is a service interface suitable for generation in a given user

A.2Model-based validation 307

situation? Given a specific user situation, the traceability be-
tween all the models (from a persona to the concrete interaction
components model) have to guarantee a valid generation of a ser-
vice interface for that user situation. In this way, we verify that no
problem is produced when interaction components are generated.

The constraints have a twofold goal. On the one hand, they are
used during design to provide designers with immediate feedback about
inconsistencies in their specifications. On the other hand, they simplify
the definition of the model transformations since transformations can
be specified by assuming that the models are consistent.

A.2.2 Reasoning on featuremodels with FAMA
In order to validate the Feature Model description and the different
variation configurations, we use the Feature Model Analyser Framework
(Benavides et al., 2005) (FAMA). This framework implements the au-
tomated analysis of Feature Models using Constraint Satisfaction Prob-
lems (Jaffar and Maher, 1994). Figure A.21 shows the FAMA opera-
tions available for a Feature Model. In particular, we use the following
operations.

Validate model. This operation checks if a feature model is not empty
or has at least one interaction configuration.

Validate product. This operation determines if an interaction config-
uration is valid for a given feature model.

Detect errors on model. This operation looks for errors on a feature
model.

Explain errors on model. When a feature model has errors, this op-
eration looks for explanations (relationships) for the errors.

Explain error on product. This operation provides options to repair
an invalid interaction configuration for a given feature model.

308 APPENDIX A. METAMODELS & TOOL SUPPORT

Figure A.21: FAMA operations for the Feature Model

Figure A.22 shows an example of the message after applying the
model validation operation for a feature model, and Figure A.23 shows
an example of the validation message for the explain errors on model op-
eration. These operations have been integrated as plugins in the Adap-
tIO modeling suite, allowing designers to validate the feature model and
the configurations while their specification.

A.2Model-based validation 309

Figure A.22: Output of the model validation operation

Figure A.23: Validation message of FAMA

310 APPENDIX A. METAMODELS & TOOL SUPPORT

B
Adaptive Notifications casestudy & EvaluationInstruments
This appendix presents the design of the Adaptive Notifications case
study and shows the instruments used in the different evaluations.

B.1 Adaptive Notifications case study
Overall, the Adaptive Notifications case study supports different ubiq-
uitous services in the context of a university professor.

B.1.1 Applying our designmethod
In the following subsections, we describe the different aspects to be
captured to specify the interaction obtrusiveness adaptation of the case
study.

Persona definition

312
APPENDIX B. ADAPTIVENOTIFICATIONSCASE STUDY& EVALUATION

INSTRUMENTS

Ma�	Robertson	·	The	university	professor
Computer	science	professor

Behaviors Objec�ves

ACTIVITYLow High

BREADTHOne
service

Many
services

VENUEOne
channel

Many
channels

·	Op�mize	�me
·	Don't	forget	tasks
·	Don't	forget	taking	the	pills
·	Be	aware	of	social	informa�on
·	Keep	the	house	up-to-date
·	Be	aware	of	the	family	concerns

Scenarios Concerns
·	How	can	I	remember	to	take	my	pills	
everyday?
·	How	can	I	do	not	forget	important	
tasks	and	events?
·	How	can	I	be	informed	about	weather	
forecasts?
·	How	can	I	be	aware	of	social	
informa�on	without	overwhelm	me?
·	How	can	I	remember	when	I	have	
items	to	buy?
·	I	am	very	busy.	How	can	I	make	sure	I	
am	maintaing	the	house	up-to-date?	

·	Remember	to	take	the	pills
Ma�	has	to	take	his	pills	everyday	and	he	wants	to	be	warned	
about	it	because	he	o�en	forgets	to	take	it.	However,	when	he	is	
with	company,	he	does	not	want	the	other	people	to	be	aware	of	
it.
·	Be	aware	of	the	forecast
The	weather	is	a	passion	for	Ma�.	He	would	like	to	be	informed	
about	the	weather	forecasts	and	sugges�ons	and	
recommenda�ons	about	it.
·	Be	aware	of	important	tasks
Ma�	has	a	busy	lifestyle	and	he	some�mes	forgets	important	
tasks	he	has	to	do	such	as	deadlines	or	mee�ngs	and	other	tasks	
that	are	less	important	but	they	are	essen�al	such	as	start	the	
washing	machine,	birthdays,	etc.	He	hopes	be	aware	of	pending	
tasks	and	events	when	it	was	required.	Also,	he	wants	to	be	
informed	when	he	has	items	to	buy.
·	Don't	be	interrupted
Ma�	is	usually	giving	courses	and	conferences	and	he	would	like	
not	to	be	disturbed	when	he	is	busy	or	with	other	people.	
However,	if	it	is	a	message	from	his	family,	he	wants	to	be	aware	
of	it	in	a	slightly	manner.		

Background

Bob	is	a	university	professor	that	lives	
with	his	with	and	his	son.	He	has	42	
years	old.	He	lives	in	a	Smart	Home	
with	ubiquitous	services.	Because	he	
teaches	computer	science,	he	has	a	lot	
of	background	in	new	technologies.	He	
also	is	researcher	in	ambient	
intelligence.

Figure B.1: A detailed persona

In order to give a clear picture of how users are likely to use the sys-
tem and what they will expect from it we define personas. Personas
capture relevant information about customers that directly impact the
design process: user goals, scenarios, tasks, functionalities, and the like.
Figure B.1 shows the description of the persona for Matt.

B.1 Adaptive Notifications case study 313

Services and obtrusiveness definition
After describing the persona and study their needs, the services defined
were the following:

Healthcare service. This service allows to manage the user health by
alerting the user when he has to take his pills, and remembering
to him his appointments to the doctor.

Agenda service. This service allows users to manage his time giving
convenient access to their tasks alongside their calendar. Also,
users are enabled to get event reminders when the task is going
to begin.

Home Messages service. This is a text messaging service that allows
the members of the family communicate messages to the other
members. This service is used in the context of the family core.

Washing Machine service. This service allows users to be informed
when the washing machine is full and ready to start. Also, it
notifies users when the laundry cycle is finished.

Shopping service. Many users do not remember that they have items
to buy when they are nearby to the supermarket. So, the intention
of this service is to prevent these situations, notifying users when
they have items to buy in a nearby supermarket.

Weather service. This service provides information about the weather
forecasts, warnings and meteorological recommendations for users.

Facebook service. This is a facebook notification service that shows
users the alerts from Facebook.

Table B.1 shows the services of the system and their attentional
demand needed according to the user situation (user context). Also, it
shows the priority that the different services have for the user.

314
APPENDIX B. ADAPTIVENOTIFICATIONSCASE STUDY& EVALUATION

INSTRUMENTS

Service Attentional Context to Consider
Demand

Healthcare medium attention, user alone, with company,
(high priority) high attention working, in a meeting,

in free time

Agenda low attention, working, teaching,
(high priority) medium attention, in a meeting, free-time,

high attention deadline

Home Messages medium attention teaching, in a meeting
(high priority) high attention

Washing Machine low attention, user in home, outside,
(medium priority) medium attention sleeping, eating, cooking,

high attention watching TV

Shopping medium attention, number of items to buy,
(medium priority) high attention user alone, with company,

driving, walking,
nearby supermarket

Weather low attention, user in home, outside,
(low priority) medium attention going out, with company

high attention in work, user alone

Facebook low attention, user alone, with company,
(low priority) medium attention in free time

Table B.1: Services’ analysis for the Matt Persona

Once we have defined the personas, the important services for the
persona and the relevant context to consider (to form the user situ-
ations) in which the adaptation can depend on, we define the way in
which services are presented in terms of obtrusiveness for the case study.
This information is detailed below.

Obtrusivenessmodeling

B.1 Adaptive Notifications case study 315

For this case study, we have defined three unobtrusive adaptation spaces
in order to model the different priorities of the services. In this way,
each unobtrusive adaptation space represents a specific priority. Fig-
ure B.2 shows the services of the Adaptive Notifications case study and
their obtrusiveness level for Matt according to the different priorities of
services.

The unobtrusive adaptation spaces was defined by dividing each axis
in different parts as it was illustrated in Chapter 5. The attention axis
is divided in three levels depending whether the interaction should be
invisible to the user, slightly noticeable, or completely aware for the user.
The initiative axis is divided in two parts that represent interactions
initiated by the user (reactive) and interactions initiated by the system
(proactive).

The obtrusiveness level for the different services are detailed below.

Healthcare service. The healthcare service informs the user about
taking the pills when it is scheduled (proactive levels). The no-
tification of this service is shown as a hint (slightly noticeable)
when the user is with company or in a meeting. Otherwise, it is
performed at the completely aware level of attention.

Agenda service. The notification of the agenda service is performed
in a proactive manner in terms of initiative. Regarding the atten-
tional demand, it moves across the attentional levels as the dead-
line of a notification approaches if the user is not still aware of it
or he/she can be interrupted (depending on the activity he/she
is engaged in) and if the priority of the notification is high. For
example, if the user is attending a meeting or teaching, the no-
tification will be provided in an invisible manner. However, if
the user is working, suggestion will be provided in a subtle man-
ner (slightly attention level). Otherwise, the notification will be
provided in the completely aware level of attention.

316
APPENDIX B. ADAPTIVENOTIFICATIONSCASE STUDY& EVALUATION

INSTRUMENTS
Proac�veReac�ve

Healthcare
The	service	informs	users	about	the	
pills	to	take	and	the	appointments	to	
the	doctor

Agenda
User	is	no�fied	about	important	events	
and	tasks-to-do	from	the	user's	agenda

ini�a�ve

a�
en

�o
n

in
vi

si
bl

e
Sl

ig
ht

ly
	

no
�c

ea
bl

e
Co

m
pl

et
el

y
aw

ar
e Home	Messages

User	is	no�fied	about	important	
messages	of	home	and	family	issues	

Proac�veReac�ve

Washing	Machine
Users	is	informed	when	the	

washing	machine	is	ready	to	start	
and	when	it	finishes	

ini�a�ve

a�
en

�o
n

in
vi

si
bl

e
Sl

ig
ht

ly
	

no
�c

ea
bl

e
Co

m
pl

et
el

y
aw

ar
e Shopping

User	is	no�fied	about	a	supermarket	
nearby.	

Proac�veReac�ve

Weather
It	warns	users	about	the	weather	

forecasts	before	going	outside

Facebook
It	no�fies	users	about	the	alerts	from	
facebook

ini�a�ve

a�
en

�o
n

in
vi

si
bl

e
Sl

ig
ht

ly
	

no
�c

ea
bl

e
Co

m
pl

et
el

y
aw

ar
e

HIGH	PRIORITY

MEDIUM	PRIORITY

LOW	PRIORITY

Figure B.2: Unobtrusive adaptation spaced defined for each service in the
Adaptive Notifications case study.

B.1 Adaptive Notifications case study 317

Home Messages service. When the user is working, teaching or in
a meeting, the messaging service passes to the slightly appreciable
level of attention, thus reducing notification obtrusiveness when
the user is working. When the system determines that the user
is no longer working (in free-time), the service goes back to the
completely aware level, increasing notification obtrusiveness.

Washing Machine service. The washing machine service notifies the
user that it is ready to start after the user loads it (reactive levels).
Notifications of this service are presented in the invisible level of
attention when the system determines that the user is sleeping or
outside home. If the user is in home, but s/he is eating or cooking,
the service passes to the slightly level of attention. Otherwise, if
the user is at home the service is presented in the complete aware
level of attention.

Shopping service. When the user is in the proximity of a supermarket
(user location), he/she is informed about a supermarket nearby.
The shopping service can present notifications proactively in the
highest level of attention (completely aware level) if the user is
driving or walking alone and there is a supermarket nearby (e.g.,
by using speech feedback). However, if the user is driving with
company, the notification is presented more slightly due to the
privacy of the message.

Weather service. This service informs the user about the weather
when the user leaves a building (reactive levels). Depending if
the user is alone (complete aware level) or with company (slightly
level) the service is performed in a different obtrusiveness level.

Facebook service. This service moves between the invisible and the
slightly level of attention proactively depending if the user is in
free time (slightly level) or with company (invisible level).

In order to support the behavior described above for the services,
different interaction techniques can be applied. The mechanisms used

318
APPENDIX B. ADAPTIVENOTIFICATIONSCASE STUDY& EVALUATION

INSTRUMENTS

Visual Auditory Hap�c

Sound Speech Vibra�onLightsPropertyText Image

Op�onal
Mandatory
Single	Choice
Mul�ple	Choice
Requires
ExcludesMomentaryIconic Quick

ViewHighlight

Interac�on
Modali�es

Configura�on
Variants

Figure B.3: Feature model of output interaction modalities.

from all the ones available for interacting with the system in this case
study are described below.

Interaction variability modeling
According to the previous requirements, different interaction techniques
are used to provide the functionality of the services. This information is
decomposed in a Feature Model in order to indicate the commonalities
and differences between adaptation aspects and define the constraints
that exist for the selection of the different features.

Figure B.3 shows the decomposition of the available interaction in
the Feature Model and the constrains for their selection. We have di-
vided the interaction into groups of visual, auditory, and haptic modal-
ities. These three main features include a set of manifestations of input
and output modalities.

Then, we have to choose for each service the interaction features that
are going to support the obtrusiveness level defined. Table B.2 shows a
view of the interaction analysis results performed for the services. The
table shows for each unobtrusive space, the relevant obtrusiveness level
at which services can be performed and the interaction features selected

B.2 Instruments used in the evaluations 319

Unobtrusive Obtrusiveness Interaction
Space Level Features

High priority (proactive, invisible) iconic, image

High priority (proactive, slightly) quick view, sound

High priority (proactive, aware) highlight, speech

Medium priority (reactive, invisible) momentary

Medium priority (reactive, slightly) iconic, vibration

Medium priority (reactive, aware) quick view, sound

Medium priority (proactive, slightly) iconic, vibration

Medium priority (proactive, aware) quick view, speech

Low priority (reactive, slightly) momentary, vibration

Low priority (reactive, aware) iconic, sound

Low priority (proactive, invisible) -

Low priority (proactive, slightly) iconic, image

Table B.2: Interaction features for each obtrusiveness level of the unobtrusive
adaptation spaces

for the obtrusiveness level.

Concrete interactionmodeling
In order to define the concrete user interface components that sup-
port the interaction techniques available we define the node tree of our
system. For the Adaptive Notifications case study, the concrete compo-
nents are shown in Figure B.4.

The concrete UI components that support the different interaction
features are specified in Table B.3

B.2 Instruments used in the evaluations

320
APPENDIX B. ADAPTIVENOTIFICATIONSCASE STUDY& EVALUATION

INSTRUMENTS

Group
Widget

Lights

Text
Bu�on

Vibra�on

Speech

Image

Group
No�f.

Text

Pop-up
message Status

Bar

Icon Text

Text Group
Bu�on

Sound

Group
Audio

Alert
Se�ng

Group
Dialog

Interact.
comp.

Bu�on

Group
item

Text
info.

Group
Map

Text Map

Group
Info.

Image

List

Text Image
select.

Figure B.4: Concrete Interaction Components model.

Interaction feature Concrete components

Iconic Group Notif., Status Bar

Momentary Group Notif. Pop-up message

Highlight Group Dialog

Quick View Group Widget

Lights Alert Setting, Lights

Sound Group Audio, Sound

Speech Group Audio, Speech

Vibration Alert Setting, Vibration

Table B.3: Linking between interaction features and concrete components

In this section, the different questionnaires used in the evaluations are
presented.

B.2.1 Usability evaluation of the designmethod
The questionnaires that were used to carry out this experiment were:

B.2 Instruments used in the evaluations 321

1. a demographic questionnaire to know the level of the users’ expe-
rience in Java programming and modeling tools

2. a survey with a list of questions defined to capture the duration
times of each task and the users’ perceptions in a 7-Likert scale
format. The perceived satisfaction was captured using the two
perceptions of satisfaction (system usefulness and overall satisfac-
tion) of the CSUQ questionnaire (Lewis, 1995).

These instruments are illustrated in the following pages.

322
APPENDIX B. ADAPTIVENOTIFICATIONSCASE STUDY& EVALUATION

INSTRUMENTS

B.2 Instruments used in the evaluations 323

324
APPENDIX B. ADAPTIVENOTIFICATIONSCASE STUDY& EVALUATION

INSTRUMENTS

B.2.2 User satisfaction evaluation
In order to evaluate the user satisfaction in the simulation of the Smart
Home case study, we used an adapted IBM Post-Study questionnaire
(Lewis, 1995) in conjunction with the questionnaire defined by Vasten-
burg et al. in (Vastenburg et al., 2008) to evaluate home notification
systems for three dimensions. This three dimensions were:

• usability of the system

• messages acceptability

• interaction adaptation

The first dimension focuses on measuring users’ acceptance with the
usability of the system; the second one focuses on the general accept-
ability considering the messages and the user activity at the time of
notification; and finally, the third dimension is about users’ satisfaction
in the interaction adaptation.

Furthermore, in order to analyze how our system is capable of han-
dling the attention resources of the user by means of the adaptations,
we used the NASA Task Load Index 1 (NASA-TLX) to obtain the sub-
jective cognitive load level (SCL). TLX contains six workload-related
dimensions: mental demand, physical demand, temporal demand, own
performance, effort, and frustration. A 10-level rating can be performed
on each of the six dimensions.

These questionnaires are illustrated in the following pages.

1http://humansystems.arc.nasa.gov/groups/TLX/index.html

B.2 Instruments used in the evaluations 325

326
APPENDIX B. ADAPTIVENOTIFICATIONSCASE STUDY& EVALUATION

INSTRUMENTS

B.2 Instruments used in the evaluations 327

328
APPENDIX B. ADAPTIVENOTIFICATIONSCASE STUDY& EVALUATION

INSTRUMENTS

B.2.3 User experience evaluation
In order to measure the User Experience, we used the AttrakDiff2 ques-
tionnaire. This questionnaire is an instrument for measuring the at-

B.2 Instruments used in the evaluations 329

tractiveness of interactive products. With the help of pairs of opposite
adjectives, users (or potential users) can indicate their perception of
the product. these adjective-pairs make a collation of the evaluation
dimensions possible. The following product dimensions are evaluated:

• Pragmatic Quality (PQ): Describes the usability of a product and
indicates how successfully users are in achieving their goals using
the product.

• Hedonic Quality - Stimulation (HQ-S): Mankind has an inherent
need to develop and move forward. This dimension indicates to
what extent the product can support those needs in terms of novel,
interesting, and stimulating functions, contents, and interaction-
and presentation-styles.

• Hedonic Quality - Identity (HQ-I): Indicates to what extent the
product allows the user to identify with it.

• Attractiveness (ATT): Describes a global value of the product
based on the quality perception.

Hedonic and pragmatic qualities are independent of one another, and
contribute equally to the rating of attractiveness. This questionnaire is
illustrated below.

330
APPENDIX B. ADAPTIVENOTIFICATIONSCASE STUDY& EVALUATION

INSTRUMENTS

technical

complicated

impractical

cumbersome

unpredictable

confusing

unruly

isolating

unprofessional

tacky

cheap

alienating

separates me

unpresentable

conventional

unimaginative

cautious

conservative

dull

undemanding

ordinary

unpleasant

ugly

disagreeable

rejecting

bad

repelling

discouraging

human

simple

practical

straightforward

predictable

clearly structured

manageable

connective

professional

stylish

premium

integrating

brings me closer

presentable

inventive

creative

bold

innovative

captivating

challenging

novel

pleasant

attractive

likeable

inviting

good

apelling

motivating

Assessment of the system

Please state your impression of the system you tested by means of the following pairs of words:

B.2.4 Customization interfaces evaluation

B.2 Instruments used in the evaluations 331

332
APPENDIX B. ADAPTIVENOTIFICATIONSCASE STUDY& EVALUATION

INSTRUMENTS

Bibliography

Aarts, E., Harwig, R., and Schuurmans, M. (2002). Ambient intelli-
gence. The invisible future: the seamless integration of technology
into everyday life, pages 235–250.

Altosaar, M., Vertegaal, R., Sohn, C., and Cheng, D. (2006). Auraorb:
social notification appliance. In CHI ’06 extended abstracts on Hu-
man factors in computing systems, CHI EA ’06, pages 381–386,
New York, NY, USA. ACM.

Bachvarova, Y., van Dijk, B., and Nijholt, A. (2007). Towards a unified
knowledge-based approach to modality choice. In Proc. Workshop
on Multimodal Output Generation (MOG), pages 5–15.

Balme, L., Demeure, A., Barralon, N., Coutaz, J., and Calvary, G.
(2004). Cameleon-rt: A software architecture reference model for
distributed, migratable, and plastic user interfaces. In Ambient
Intelligence, volume 3295 of Lecture Notes in Computer Science,
pages 291–302.

Bellotti, V. and Edwards, K. (2001). Intelligibility and accountability:
human considerations in context-aware systems. Hum.-Comput.
Interact., 16(2):193–212.

334 Bibliography

Benavides, D., Trinidad, P., and Ruiz-Cortés, A. (2005). Automated
reasoning on feature models. In Proceedings of the 17th interna-
tional conference on Advanced Information Systems Engineering,
CAiSE’05, pages 491–503, Berlin, Heidelberg. Springer-Verlag.

Bernsen, N. O. (1994). Foundations of multimodal representations: a
taxonomy of representational modalities. Interacting with Comput-
ers, 6(4):347 – 371.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ran-
ganathan, A., and Riboni, D. (2010). A survey of context modelling
and reasoning techniques. Pervasive Mob. Comput., 6(2):161–180.

Bezivin, J. and Gerbe, O. (2001). Towards a precise definition of the
omg/mda framework. In Automated Software Engineering, 2001.
(ASE 2001). Proceedings. 16th Annual International Conference
on, pages 273 – 280.

Blumendorf, M., Lehmann, G., and Albayrak, S. (2010a). Bridging
models and systems at runtime to build adaptive user interfaces. In
Proceedings of the 2nd ACM SIGCHI symposium on Engineering
interactive computing systems, EICS ’10, pages 9–18, New York,
NY, USA. ACM.

Blumendorf, M., Lehmann, G., Roscher, D., and Albayrak, S. (2010b).
Ubiquitous User Interfaces: Multimodal Adaptive Interaction for
Smart Environments, pages 24–52. IGI Global.

Broll, G., Haarländer, M., Paolucci, M., Wagner, M., Rukzio, E., and
Schmidt, A. (2008). Collect&drop: A technique for multi-tag in-
teraction with real world objects and information. In AmI, pages
175–191.

Brown, D. M. (2010). Communicating Design: Developing Web Site
Documentation for Design and Planning (2nd Edition). New Riders
Press.

Bruin, J. (2011). Statistical analyses using spss
http://www.ats.ucla.edu/stat/spss/whatstat/whatstat.htm#1sampt.

Bibliography 335

Butter, T., Aleksy, M., Bostan, P., and Schader, M. (2007). Context-
aware user interface framework for mobile applications. In Dis-
tributed Computing Systems Workshops, 2007. ICDCSW ’07. 27th
International Conference on, page 39.

Buxton, B. (1995). Integrating the periphery and context: A new model
of telematics. In Proceedings of Graphics Interface, pages 239–246.

Buxton, W. (1990). Human-computer interaction. chapter There’s more
to interaction than meets the eye: some issues in manual input,
pages 122–137. Prentice Hall Press, Upper Saddle River, NJ, USA.

Byun, H. E. and Cheverst, K. (2001a). Exploiting user models and
context-awareness to support personal daily activities. In Per-
sonal Daily Activities, Workshop in UM2001 on User Modelling
for Context-Aware Applications, pages 13–16.

Byun, H. E. and Cheverst, K. (2001b). Exploiting user models and
context-awareness to support personal daily activities. In Work-
shop in UM2001 on User Modelling for Context-Aware Applica-
tions, Sonthofen, Germany.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., and
Vanderdonckt, J. (2003). A unifying reference framework for multi-
target user interfaces. Interacting with Computers, 15(3):289 – 308.

Cao, Y., Theune, M., and Nijholt, A. (2009). Modality effects on cogni-
tive load and performance in high-load information presentation. In
Proceedings of the 14th international conference on Intelligent user
interfaces, IUI ’09, pages 335–344, New York, NY, USA. ACM.

Carroll, J. M. (2000). Making Use: Scenario-Based Design of Human-
Computer Interactions. The MIT Press.

Cetina, C., Giner, P., Fons, J., and Pelechano, V. (2009). Autonomic
computing through reuse of variability models at runtime: The case
of smart homes. Computer, 42(10):37 –43.

336 Bibliography

Chen, H. (2004). An Intelligent Broker Architecture for Pervasive
Context-Aware Systems. PhD thesis, University of Maryland, Bal-
timore County.

Chen, H. and Black, J. P. (2008). A quantitative approach to non-
intrusive computing. In Mobiquitous ’08: Proceedings of the 5th
Annual International Conference on Mobile and Ubiquitous Sys-
tems, pages 1–10, ICST, Brussels, Belgium, Belgium. ICST (Insti-
tute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering).

Chin, J., Callaghan, V., and Clarke, G. (2006). An end-user program-
ming paradigm for pervasive computing applications. In Pervasive
Services, 2006 ACS/IEEE International Conference on, pages 325–
328.

Chittaro, L. (2010). Distinctive aspects of mobile interaction and their
implications for the design of multimodal interfaces. Journal on
Multimodal User Interfaces, 3(3):157–165.

Clark, H. (1996). Using Language. Cambridge University Press.

Clerckx, T., Vandervelpen, C., and Coninx, K. (2008). Task-based
design and runtime support for multimodal user interface distribu-
tion. In Engineering Interactive Systems, volume 4940 of Lecture
Notes in Computer Science, pages 89–105.

Cohen, M. H., Giangola, J. P., and Balogh, J. (2004). Voice User
Interface Design. Addison Wesley Longman Publishing Co., Inc.,
Redwood City, CA, USA.

Coninx, K., Luyten, K., Vandervelpen, C., den Bergh, J. V., and
Creemers, B. (2003). Dygimes: Dynamically generating interfaces
for mobile computing devices and embedded systems. In Human-
Computer Interaction with Mobile Devices and Services, volume
2795 of Lecture Notes in Computer Science, pages 256–270.

Constantine, L. L. (2009). Interaction design and model-driven devel-
opment. In Proceedings of the 12th International Conference on

Bibliography 337

Model Driven Engineering Languages and Systems, MODELS ’09,
pages 377–377, Berlin, Heidelberg. Springer-Verlag.

Cooper, A., Reimann, R., and Cronin, D. (2007). About Face 3: The
Essentials of Interaction Design. Wiley Publishing, Inc., New York,
NY, USA.

Czarnecki, K., Helsen, S., and Eisenecker, U. (2004). Staged configura-
tion using feature models. In Software Product Lines, volume 3154
of Lecture Notes in Computer Science, pages 162–164.

da Silva, P. P. and Paton, N. W. (2003). User interface modeling in
UMLi. IEEE Softw., 20(4):62–69.

Dahlbäck, N., Jönsson, A., and Ahrenberg, L. (1993). Wizard of Oz
studies: why and how. In IUI ’93: Proceedings of the 1st inter-
national conference on Intelligent user interfaces, pages 193–200,
New York, NY, USA. ACM.

de Sá, M. and Carriço, L. (2006). Low-fi prototyping for mobile de-
vices. In CHI ’06: CHI ’06 extended abstracts on Human factors
in computing systems, pages 694–699, New York, NY, USA. ACM.

de Sá, M. and Carriço, L. (2009). A mobile tool for in-situ prototyping.
In MobileHCI ’09: Proceedings of the 11th International Conference
on Human-Computer Interaction with Mobile Devices and Services,
pages 1–4, New York, NY, USA. ACM.

de Sá, M., Duarte, C., Carriço, L., and Reis, T. (2010). Desining Mobile
Multimodal Applications, chapter 5, pages 106–136. Information
Science Reference.

den Bergh, J. V. and Coninx, K. (2006). Cup 2.0: High-level modeling of
context-sensitive interactive applications. In Nierstrasz, O., Whit-
tle, J., Harel, D., and Reggio, G., editors, MoDELS, volume 4199
of Lecture Notes in Computer Science, pages 140–154. Springer.

Dey, A. K. and Abowd, G. D. (2000). Towards a better understanding of
context and context-awareness. In Workshop on The What, Who,

338 Bibliography

Where, When, and How of Context-Awareness (CHI 2000), The
Hague, The Netherlands.

Dey, A. K. and Häkkilä, J. (2008). Context-awareness and mobile de-
vices. chapter XIII, pages 205–217. IGI Global.

Dey, A. K., Hamid, R., Beckmann, C., Li, I., and Hsu, D. (2004). a
cappella: programming by demonstration of context-aware applica-
tions. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’04, pages 33–40, New York, NY, USA.
ACM.

Dix, A., Finlay, J. E., Abowd, G. D., and Beale, R. (2003). Human-
Computer Interaction (3rd Edition). Prentice Hall, New York, NY,
USA.

Doctor, F., Hagras, H., and Callaghan, V. (2005). An intelligent fuzzy
agent approach for realising ambient intelligence in intelligent in-
habited environments. IEEE Transactions on System, Man & Cy-
bernetics, 35(1):55–65.

Dourish, P. (2004). What we talk about when we talk about context.
Personal Ubiquitous Comput., 8(1):19–30.

Dowling, J., Cunningham, R., Curran, E., and Cahill, V. (2006). Build-
ing autonomic systems using collaborative reinforcement learning.
Knowl. Eng. Rev., 21(3):231–238.

Duarte, C. and Carriço, L. (2006). A conceptual framework for de-
veloping adaptive multimodal applications. In Proceedings of the
11th international conference on Intelligent user interfaces, IUI ’06,
pages 132–139, New York, NY, USA. ACM.

Dubberly, H., Pangaro, P., and Haque, U. (2009). On modeling: What
is interaction?: are there different types? interactions, 16(1):69–75.

Endsley, M. and Kaber, D. (1999). Level of automation effects on per-
formance, situation awareness and workload in a dynamic control
task. Ergonomics, 42(3):462–492.

Bibliography 339

Fabro, M. D. D., Bézivin, J., and Valduriez, P. (2006). Weaving models
with the eclipse amw plugin. Eclipse Modeling Symposium.

Favre, J.-M. (2004). Foundations of Model (Driven) (Reverse) En-
gineering : Models – Episode I: Stories of the fidus papyrus
and of the solarus. In Bezivin, J. and Heckel, R., editors, Lan-
guage Engineering for Model-Driven Software Development, num-
ber 04101 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany.
Internationales Begegnungs- und Forschungszentrum für Infor-
matik (IBFI), Schloss Dagstuhl, Germany.

Ferscha, A. (2012). 20 years past weiser: What’s next? Pervasive
Computing, IEEE, 11(1):52 –61.

Fischer, G. (2001). User modeling in human–computer interaction. User
Modeling and User-Adapted Interaction, 11:65–86.

Fischer, J. E., Yee, N., Bellotti, V., Good, N., Benford, S., and Green-
halgh, C. (2010). Effects of content and time of delivery on re-
ceptivity to mobile interruptions. In Proceedings of the 12th inter-
national conference on Human computer interaction with mobile
devices and services, MobileHCI ’10, pages 103–112, New York,
NY, USA. ACM.

Flyvbjerg, B. (2006). Five Misunderstandings About Case-Study Re-
search. Qualitative Inquiry, 12(2):219–245.

France, R. and Rumpe, B. (2007). Model-driven development of com-
plex software: A research roadmap. In 2007 Future of Software
Engineering, FOSE ’07, pages 37–54, Washington, DC, USA. IEEE
Computer Society.

Gershenfeld, N. (2000). When Things Start to Think. Owl Books, New
York, NY, USA.

Gershenfeld, N., Krikorian, R., and Cohen, D. (2004). The Internet of
Things. Scientific American, 291(4):46–51.

340 Bibliography

Gibbs, W. W. (2005). Considerate computing. Scientific American,
292(1):54–61.

Giner, P., Cetina, C., Fons, J., and Pelechano, V. (2010). Developing
mobile workflow support in the internet of things. IEEE Pervasive
Computing, 9(2):18–26.

Ginsburg, G. (2004). Interruptions: A Criterion in the Design and
Evaluation of Human-Computer Interfaces. PhD thesis, University
of Toronto.

Godoy, D. and Amandi, A. (2005). User profiling for web page filtering.
IEEE Internet Computing, 9(4):56–64.

Grandhi, S. and Jones, Q. (2009). Conceptualizing interpersonal inter-
ruption management: A theoretical framework and research pro-
gram. In System Sciences, 2009. HICSS ’09. 42nd Hawaii Inter-
national Conference on, pages 1–10.

Greenfield, A. (2006). Everyware: The Dawning Age of Ubiquitous
Computing. New Riders Publishing, Berkeley, CA.

Gruber, T. R. (1993). A translation approach to portable ontology
specifications. Knowl. Acquis., 5(2):199–220.

Grundy, J. and Hosking, J. (2000). Developing adaptable user interfaces
for component-based systems. In Proceedings of the First Aus-
tralasian User Interface Conference, AUIC ’00, pages 17–, Wash-
ington, DC, USA. IEEE Computer Society.

Gulliksen, J., Göransson, B., Boivie, I., Persson, J., Blomkvist, S., and
Cajander, Å. (2005). Key principles for user-centred systems de-
sign. In Seffah, A., Gulliksen, J., and Desmarais, M. C., editors,
Human-Centered Software Engineering — Integrating Usability in
the Software Development Lifecycle, volume 8 of Human-Computer
Interaction Series, pages 17–36. Springer Netherlands.

Haapalainen, E., Kim, S., Forlizzi, J. F., and Dey, A. K. (2010). Psycho-
physiological measures for assessing cognitive load. In Proceedings

Bibliography 341

of the 12th ACM international conference on Ubiquitous computing,
Ubicomp ’10, pages 301–310, New York, NY, USA. ACM.

Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F., Horn, G.,
Lorenzo, J., Mamelli, A., and Papadopoulos, G. (2012). A devel-
opment framework and methodology for self-adapting applications
in ubiquitous computing environments. Journal of Systems and
Software, 85(12):2840 – 2859.

Hansmann, U., Nicklous, M. S., and Stober, T. (2001). Pervasive com-
puting handbook. Springer-Verlag New York, Inc., New York, NY,
USA.

Hassenzahl, M. (2008). The interplay of beauty, goodness, and usability
in interactive products. Hum.-Comput. Interact., 19(4):319–349.

Hassenzahl, M. and Tractingsky, N. (2006). User experience – a research
agenda. Behaviour & Information Technology, 25(2):91–97.

Hervas, R. (2009). Context Modeling for Information Visualization in
Intelligent Environments. PhD thesis, Castilla-La Mancha Univer-
sity.

Hervás, R. and Bravo, J. (2011). Towards the ubiquitous visualization:
Adaptive user-interfaces based on the semantic web. Interact. Com-
put., 23(1):40–56.

Hinckley, K. and Horvitz, E. (2001). Toward more sensitive mobile
phones. In Proceedings of the 14th annual ACM symposium on
User interface software and technology, UIST ’01, pages 191–192,
New York, NY, USA. ACM.

Hinckley, K., Pierce, J., Horvitz, E., and Sinclair, M. (2005). Foreground
and background interaction with sensor-enhanced mobile devices.
ACM Trans. Comput.-Hum. Interact., 12(1):31–52.

Ho, J. and Intille, S. S. (2005). Using context-aware computing to reduce
the perceived burden of interruptions from mobile devices. In Pro-
ceedings of the SIGCHI conference on Human factors in computing
systems, CHI ’05, pages 909–918, New York, NY, USA. ACM.

342 Bibliography

Höök, K. (2000). Steps to take before intelligent user interfaces become
real. Interacting with Computers, 12(4):409–426.

Horn, P. (2001). Autonomic Computing: IBM’s Perspective on the
State of Information Technology. Technical report.

Horvitz, E., Kadie, C., Paek, T., and Hovel, D. (2003). Models of
attention in computing and communication: from principles to ap-
plications. Commun. ACM, 46(3):52–59.

Horvitz, E., Koch, P., Sarin, R., Apacible, J., and Subramani, M.
(2005). Bayesphone: precomputation of context-sensitive policies
for inquiry and action in mobile devices. In Proceedings of the 10th
international conference on User Modeling, UM’05, pages 251–260,
Berlin, Heidelberg. Springer-Verlag.

Huberman, B. A. and Wu, F. (2007). The economics of attention: maxi-
mizing user value in information-rich environments. In Proceedings
of the 1st international workshop on Data mining and audience
intelligence for advertising, ADKDD ’07, pages 16–20, New York,
NY, USA. ACM.

IBM (2006). An architectural blueprint for autonomic computing.

Indulska, J. and Sutton, P. (2003). Location management in pervasive
systems. In Proceedings of the Australasian information security
workshop conference on ACSW frontiers 2003 - Volume 21, ACSW
Frontiers ’03, pages 143–151, Darlinghurst, Australia, Australia.
Australian Computer Society, Inc.

Isbell, C., Shelton, C. R., Kearns, M., Singh, S., and Stone, P. (2001).
A social reinforcement learning agent. In AGENTS 2001: Au-
tonomous agents, pages 377–384. ACM.

Iso (2010). ISO 9241-210:2010 - Ergonomics of human-system interac-
tion – Part 210: Human-centred design for interactive systems.

Jackson, T., Dawson, R., and Wilson, D. (2001). The cost of email inter-
ruption. Journal of Systems and Information Technology, 5(1):81–
92.

Bibliography 343

Jaffar, J. and Maher, M. J. (1994). Constraint logic programming: a
survey. The Journal of Logic Programming, 19–20, Supplement
1(0):503 – 581.

Jaimes, A. and Sebe, N. (2007). Multimodal human-computer inter-
action: A survey. Computer Vision and Image Understanding,
108(1-2):116 – 134. Special Issue on Vision for Human-Computer
Interaction.

Jameson, A. (2002). Usability issues and methods for mobile multimodal
systems. In Proceedings of the ISCA Tutorial and Research Work-
shop on Multi-Modal Dialogue in Mobile Environments, Kloster
Irsee, Germany.

Ju, W. (2008). The design of implicit interactions. PhD thesis, Depart-
ment of Mechanical Engineering, Stanford University.

Ju, W. and Leifer, L. (2008). The design of implicit interactions: Making
interactive systems less obnoxious. Design Issues, 24(3):72–84.

Karagiannidis, C., Koumpis, A., and Stephanidis, C. (1997). Adapta-
tion in immps as a decisions making process. Computer Standards
and Interfaces, 18.

Kephart, J. and Chess, D. (2003). The vision of autonomic computing.
Computer, 36(1):41 – 50.

Korpipaa, P., Malm, E.-J., Rantakokko, T., Kyllonen, V., Kela, J.,
Mantyjarvi, J., Hakkila, J., and Kansala, I. (2006). Customizing
user interaction in smart phones. Pervasive Computing, IEEE,
5(3):82 –90.

Kramer, J. (2007). Is abstraction the key to computing? Commun.
ACM, 50(4):36–42.

Krug, S. (2005). Don’t Make Me Think: A Common Sense Approach to
the Web (2nd Edition). New Riders Publishing, Thousand Oaks,
CA, USA.

344 Bibliography

Kuniavsky, M. (2010). Smart Things: Ubiquitous Computing User Ex-
perience Design. Morgan Kaufmann, Burlington, MA.

Latorella, K. A. (1998). Effects of modality on interrupted flight deck
performance: Implications for data link. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, 42(1):87–91.

Law, E. L.-C., Roto, V., Hassenzahl, M., Vermeeren, A. P., and Kort,
J. (2009). Understanding, scoping and defining user experience:
a survey approach. In Proceedings of the 27th international con-
ference on Human factors in computing systems, CHI ’09, pages
719–728, New York, NY, USA. ACM.

Lemmelä, S., Vetek, A., Mäkelä, K., and Trendafilov, D. (2008). De-
signing and evaluating multimodal interaction for mobile contexts.
In Proceedings of the 10th international conference on Multimodal
interfaces, ICMI ’08, pages 265–272, New York, NY, USA. ACM.

Lewis, J. R. (1995). Ibm computer usability satisfaction questionnaires:
psychometric evaluation and instructions for use. International
Journ. Human-Computer Interaction, 7(1):57–78.

Limbourg, Q., Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon,
L., Florins, M., and Trevisan, D. (2004). Usixml: A user inter-
face description language for context-sensitive user interfaces. In
in proceedings of the acm avi’2004 workshop developing user inter-
faces with xml: advances on user interface description languages,
volume 25, pages 55–62.

Littman, M., Ravi, N., Fenson, E., and Howard, R. (2004). Rein-
forcement learning for autonomic network repair. In Autonomic
Computing, 2004. Proceedings. International Conference on, pages
284–285.

Maeda, J. (2006). The Laws of Simplicity. The MIT Press.

Maes, P. (1994). Agents that reduce work and information overload.
Commun. ACM, 37(7):30–40.

Bibliography 345

Maiden, N. (2009). Where are we? handling context. Software, IEEE,
26(5):75 –76.

Mäntyjärvi, J. and Seppänen, T. (2002). Adapting applications in mo-
bile terminals using fuzzy context information. In Proceedings of the
4th International Symposium on Mobile Human-Computer Interac-
tion, Mobile HCI ’02, pages 95–107, London, UK, UK. Springer-
Verlag.

Mao, J.-Y., Vredenburg, K., Smith, P. W., and Carey, T. (2001). User-
centered design methods in practice: a survey of the state of the art.
In Proceedings of the 2001 conference of the Centre for Advanced
Studies on Collaborative research, CASCON ’01, pages 12–. IBM
Press.

March, S. T. and Smith, G. F. (1995). Design and natural science re-
search on information technology. Decis. Support Syst., 15(4):251–
266.

Mayer, R. E. and Moreno, R. (2003). Nine ways to reduce cognitive
load in multimedia learning. EDUCATIONAL PSYCHOLOGIST,
38:43–52.

McCarthy, J. and Wright, P. (2004). Technology as experience. inter-
actions, 11(5):42–43.

McCrickard, D. S. and Chewar, C. M. (2003). Attuning notification
design to user goals and attention costs. Commun. ACM, 46(3):67–
72.

Mcfarlane, D. C. (1997). Interruption of people in human-computer
interaction: A general unifying definition of human interruption
and taxonomy.

McFarlane, D. C. (1999). Coordinating the interruption of people in
human-computer interaction. In Sasse, A. and Johnson, C., editors,
Proceedings of Human-Computer Interaction (INTERACT 1999),
pages 295–303. IOS Press.

346 Bibliography

McFarlane, D. C. and Latorella, K. A. (2002). The scope and impor-
tance of human interruption in human-computer interaction design.
Hum.-Comput. Interact., 17(1):1–61.

Miller, J. and Mukerji, J. (2003). MDA Guide Version 1.0.1. Technical
report, Object Management Group (OMG).

Mori, G., Paterno, F., and Santoro, C. (2002). Ctte: support for de-
veloping and analyzing task models for interactive system design.
Software Engineering, IEEE Transactions on, 28(8):797 – 813.

Mori, G., Paterno, F., and Santoro, C. (2004). Design and development
of multidevice user interfaces through multiple logical descriptions.
Software Engineering, IEEE Transactions on, 30(8):507 – 520.

Mostefaoui, G., Pasquier-Rocha, J., and Brezillon, P. (2004). Context-
aware computing: a guide for the pervasive computing commu-
nity. In Pervasive Services, 2004. ICPS 2004. Proceedings. The
IEEE/ACS International Conference on, pages 39 – 48.

Mostéfaoui, G. K., Pasquier-Rocha, J., and Brézillon, P. (2004).
Context-aware computing: A guide for the pervasive computing
community. In Proceedings of the IEEE/ACS International Con-
ference on Pervasive Services (ICPS’04), pages 39–48.

Nagata, S. F. (2003). Multitasking and interruptions during mobile web
tasks. Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, 47(11):1341–1345.

Neely, S., Stevenson, G., Kray, C., Mulder, I., Connelly, K., and Siek,
K. A. (2008). Evaluating pervasive and ubiquitous systems. IEEE
Pervasive Computing, 7(3):85–88.

Neerincx, M., van Doorne, H., and Ruijsendaal, M. (2000). Attuning
computer-supported work to human knowledge and processing ca-
pacities in ship control centres. In Schraagen, J., Chipman, S.,
and Shalin, V., editors, Cognitive Task Analysis, Mahwah and NJ.
Erlbaum, Erlbaum.

Bibliography 347

Nigay, L. and Coutaz, J. (1993). A design space for multimodal sys-
tems: concurrent processing and data fusion. In Proceedings of
the INTERACT ’93 and CHI ’93 Conference on Human Factors
in Computing Systems, CHI ’93, pages 172–178, New York, NY,
USA. ACM.

Norman, D. A. (2005). Human-centered design considered harmful.
interactions, 12(4):14–19.

Obrenovic, Z., Abascal, J., and Starcevic, D. (2007). Universal accessi-
bility as a multimodal design issue. Commun. ACM, 50(5):83–88.

OMG (2006a). Business Process Modeling Notation (BPMN) Specifi-
cation. OMG Final Adopted Specification.

OMG (2006b). Business Process Modeling Notation (BPMN) Specifi-
cation. OMG Final Adopted Specification. dtc/06-02-01.

Oulasvirta, A. and Saariluoma, P. (2004). Long-term working memory
and interrupting messages in human-computer interaction. Behav.
Inf. Technol., 23(1):53–64.

Oviatt, S. (1999). Ten myths of multimodal interaction. Commun.
ACM, 42(11):74–81.

O’Grady, M., O’Hare, G., and Keegan, S. (2008). Interaction modalities
in mobile contexts. In Virvou, M. and Jain, L., editors, Intelligent
Interactive Systems in Knowledge-Based Environments, volume 104
of Studies in Computational Intelligence, pages 89–106. Springer
Berlin / Heidelberg.

Panach, J. I., Condori-Fernández, N., Baars, A., Vos, T., Romeu, I.,
and Pastor, O. (2011). Towards an experimental framework for
measuring usability of model-driven tools. In Proceedings of the
13th IFIP TC 13 international conference on Human-computer in-
teraction - Vol. Part IV, INTERACT’11, pages 640–643, Berlin,
Heidelberg. Springer-Verlag.

348 Bibliography

Paramythis, A., Weibelzahl, S., and Masthoff, J. (2010). Layered eval-
uation of interactive adaptive systems: framework and formative
methods. User Modeling and User-Adapted Interaction, 20(5):383–
453.

Paternò, F. (2003). From model-based to natural development. HCI
International, pages 592–596.

Paternò, F., Santoro, C., and Spano, L. D. (2012). Deliverable 2.4.2
criteria for the evaluation of caa of sfes. Technical report, Project
no. FP7 - ICT - 258030.

Patterson, D. J., Baker, C., Ding, X., Kaufman, S. J., Liu, K., and
Zaldivar, A. (2008). Online everywhere: evolving mobile instant
messaging practices. In Proceedings of the 10th international con-
ference on Ubiquitous computing, UbiComp ’08, pages 64–73, New
York, NY, USA. ACM.

Piva, S., Bonamico, C., Regazzoni, C., and Lavagetto, F. (2005). A
Flexible Architecture for Ambient Intelligence Systems Supporting
Adaptive Multimodal Interaction with Users, chapter 6, pages 97–
120. IOS Press, Amsterdam.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S., and Carey, T.
(1994). Human-computer interaction. Addison-Wesley Publishing
Company.

Ramchurn, S., Deitch, B., Thompson, M., De Roure, D., Jennings, N.,
and Luck, M. (2004). Minimising intrusiveness in pervasive com-
puting environments using multi-agent negotiation. In Mobile and
Ubiquitous Systems: Networking and Services, 2004. MOBIQUI-
TOUS 2004. The First Annual International Conference on, pages
364 – 371.

Reeves, L. M., Lai, J., Larson, J. A., Oviatt, S., Balaji, T. S., Bui-
sine, S., Collings, P., Cohen, P., Kraal, B., Martin, J.-C., McTear,
M., Raman, T., Stanney, K. M., Su, H., and Wang, Q. Y. (2004).
Guidelines for multimodal user interface design. Commun. ACM,
47:57–59.

Bibliography 349

Rosenthal, S., Dey, A. K., and Veloso, M. (2011). Using decision-
theoretic experience sampling to build personalized mobile phone
interruption models. In Proceedings of the 9th international confer-
ence on Pervasive computing, Pervasive’11, pages 170–187, Berlin,
Heidelberg. Springer-Verlag.

Rukzio, E., Leichtenstern, K., and Callaghan, V. (2006). An experimen-
tal comparison of physical mobile interaction techniques: Touching,
pointing and scanning. In 8th International Conference on Ubiqui-
tous Computing, UbiComp 2006, Orange County, California.

Rumbaugh, J., Jacobson, I., and Booch, G. (1998a). The Unified Mod-
eling Language Reference Manual. Addison-Wesley.

Rumbaugh, J., Jacobson, I., and Booch, G. (1998b). The Unified Mod-
eling Language Reference Manual. Addison-Wesley.

Runeson, P. and Höst, M. (2009). Guidelines for conducting and report-
ing case study research in software engineering. Empirical Softw.
Engg., 14(2):131–164.

Savio, N. and Braiterman, J. (2007). Design sketch: The context of
mobile interaction. In Proceedings of MobileHCI 2007, pages 248–
286.

Schilit, B., Adams, N., and Want, R. (1994). Context-aware computing
applications. In Proceedings of the 1994 First Workshop on Mobile
Computing Systems and Applications, WMCSA ’94, pages 85–90,
Washington, DC, USA. IEEE Computer Society.

Schmandt, C., Marmasse, N., Marti, S., Sawhney, N., and Wheeler, S.
(2000). Everywhere messaging. IBM Systems Journal, 39(3.4):660
–677.

Schmidt, A. (2000). Implicit human computer interaction through con-
text. Personal Technologies, 4(2-3):191–199.

Schmidt, A. (2013). Context-Aware Computing: Context-Awareness,
Context-Aware User Interfaces, and Implicit Interaction. The In-
teraction Design Foundation, Aarhus, Denmark.

350 Bibliography

Schmidt, A., Beigl, M., and Gellersen, H.-W. (1999). There is more to
context than location. Computers & Graphics, 23(6):893 – 901.

Schmidt, A., Pfleging, B., Alt, F., Sahami, A., and Fitzpatrick, G.
(2012). Interacting with 21st-century computers. Pervasive Com-
puting, IEEE, 11(1):22 –31.

Schmidt, D. (2006). Guest editor’s introduction: Model-driven engi-
neering. Computer, 39(2):25 – 31.

Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., and Bontemps, Y.
(2007). Generic semantics of feature diagrams. Comput. Netw.,
51(2):456–479.

Serral, E. (2011). Automating Routine Tasks in Smart Environments:
A Context-aware Model-driven Approach. PhD thesis, Universitat
Polit‘ecnica de Val‘encia.

Serral, E., Valderas, P., and Pelechano, V. (2010). Towards the model
driven development of context-aware pervasive systems. Pervasive
Mob. Comput., 6(2):254–280.

Sheridan, T. B. and Verplank, W. L. (1978). Human and computer
control of undersea teleoperators. Technical report, Massachusetts
Inst. of Tech. Cambridge Man-Machine Systems Lab.

Siewiorek, D., Smailagic, A., Furukawa, J., Krause, A., Moraveji, N.,
Reiger, K., Shaffer, J., and Wong, F. L. (2003). Sensay: A context-
aware mobile phone. In Proceedings of the 7th IEEE International
Symposium on Wearable Computers, ISWC ’03, pages 248–, Wash-
ington, DC, USA. IEEE Computer Society.

Sottet, J.-S., Calvary, G., Favre, J.-M., Coutaz, J., Demeure, A., and
Balme, L. (2006). Towards model driven engineering of plastic user
interfaces. In Bruel, J.-M., editor, Satellite Events at the MoDELS
2005 Conference, volume 3844 of Lecture Notes in Computer Sci-
ence, pages 191–200. Springer Berlin Heidelberg.

Bibliography 351

Strang, T. and Linnhoff-Popien, C. (2004). A context modeling survey.
In In: Workshop on Advanced Context Modelling, Reasoning and
Management, UbiComp 2004 - The Sixth International Conference
on Ubiquitous Computing, Nottingham/England.

Streefkerk, J. W., van Esch-Bussemakers, M. P., and Neerincx, M. A.
(2006). Designing personal attentive user interfaces in the mobile
public safety domain. Computers in Human Behavior, 22(4):749–
770.

Sutton, R. and Barto, A. (1998a). Reinforcement Learning: An Intro-
duction (Adaptive Computation and Machine Learning). The MIT
Press.

Sutton, R. S. and Barto, A. G. (1998b). Reinforcement Learning: An
Introduction. MIT Press.

Tamminen, S., Oulasvirta, A., Toiskallio, K., and Kankainen, A. (2004).
Understanding mobile contexts. Personal Ubiquitous Comput.,
8(2):135–143.

Tedre, M. (2006). What should be automated?: The fundamental ques-
tion underlying human-centered computing. In Proceedings of the
1st ACM international workshop on Human-centered multimedia,
HCM ’06, pages 19–24, New York, NY, USA. ACM.

Tesauro, G. (2007). Reinforcement learning in autonomic computing: A
manifesto and case studies. IEEE Internet Computing, 11(1):22–30.

Toninelli, A., Khushraj, D., Lassila, O., and Montanari, R. (2008). To-
wards socially aware mobile phones. In Proceedings of the ISWC
2008 Workshop on Social Data on the Web (SDoW2008).

Turk, M. and Robertson, G. (2000). Perceptual user interfaces (intro-
duction). Commun. ACM, 43(3):32–34.

Unger, R. and Chandler, C. (2009). A Project Guide to UX Design:
For user experience designers in the field or in the making. New
Riders Publishing.

352 Bibliography

Vaishnavi, V. and Kuechler, W. (2004). Design research in infor-
mation systems. http://desrist.org/design-research-in-information-
systems.

Valtonen, M., Vainio, A.-M., and Vanhala, J. (2009). Proactive and
adaptive fuzzy profile control for mobile phones. In Pervasive Com-
puting and Communications, 2009. PerCom 2009. IEEE Interna-
tional Conference on, pages 1 –3.

van Solingen, R. and Berghout, E. (1999). Goal/question/measures.

van Welie, M. (2001). Task-based user interface desing. PhD thesis,
Dutch Graduate School for Information and Knowledge Systems.

Vastenburg, M. H., Keyson, D. V., and de Ridder, H. (2009). Con-
siderate home notification systems: A user study of acceptability
of notifications in a living-room laboratory. Int. J. Hum.-Comput.
Stud., 67(9):814–826.

Vastenburg, M. H., Keyson, D. V., and Ridder, H. (2008). Considerate
home notification systems: a field study of acceptability of notifi-
cations in the home. Personal Ubiquitous Comput., 12(8):555–566.

Vertegaal, R. (2002). Designing attentive interfaces. In Proceedings
of the 2002 symposium on Eye tracking research & applications,
ETRA ’02, pages 23–30, New York, NY, USA. ACM.

Vertegaal, R. (2003). Attentive user interfaces: Introduction. Commu-
nications of the ACM, 46(3):30–33.

Vertegaal, R., Shell, J. S., Chen, D., and Mamuji, A. (2006). Designing
for augmented attention: Towards a framework for attentive user
interfaces. Computers in Human Behavior, 22(4):771–789.

Villamor, C., Willis, D., Wroblewski, L., and Rhim, J. (2010). Touch
Gesture Reference Guide.

Voelter, M. (2013). DSL Engineering: Designing, Implementing and
Using Domain-Specific Languages. dslbook.org.

Bibliography 353

Vuolle, M., Tiainen, M., Kallio, T., Vainio, T., Kulju, M., and Wigelius,
H. (2008). Developing a questionnaire for measuring mobile busi-
ness service experience. In MobileHCI ’08, pages 53–62. ACM.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Mach. Learning,
8(3-4):279–292.

Wei, Z.-G., Macwan, A. P., and Wieringa, P. A. (1998). A quantita-
tive measure for degree of automation and its relation to system
performance and mental load. Human Factors, 40:277–295.

Weiser, M. (1999). The computer for the 21st century. SIGMOBILE
Mob. Comput. Commun. Rev., 3(3):3–11.

Weiser, M. and Brown, J. S. (1997). The coming age of calm technolgy.
In Denning, P. J. and Metcalfe, R. M., editors, Beyond calculation,
pages 75–85. Copernicus, New York, NY, USA.

Whiteson, S. and Stone, P. (2006). Evolutionary function approxima-
tion for reinforcement learning. Journal of Machine Learning Re-
search, 7:877–917.

Wiering, M. A. (2002). Model-based reinforcement learning in dynamic
environments. Technical Report CS-UU-2002-029, Utrecht Univer-
sity.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and
Wesslén, A. (2000). Experimentation in software engineering: an
introduction. Kluwer Academic Publishers, Norwell, MA, USA.

Wood, S., Cox, R., and Cheng, P. (2006). Attention design: Eight issues
to consider. Computers in Human Behavior, 22:588–602.

Yamabe, T. and Takahashi, K. (2007). Experiments in mobile user in-
terface adaptation for walking users. In IPC ’07: Proceedings of the
The 2007 International Conference on Intelligent Pervasive Com-
puting, pages 280–284, Washington, DC, USA. IEEE Computer
Society.

354

Zhai, S. (2003). What’s in the eyes for attentive input. Commun. ACM,
46(3):34–39.

www.pros.upv.es
Centro de Investigación enMétodosde Producción de SoftwareUniversitat Politècnica de ValènciaCamí de Vera s/n, Edifici 1F, Dept. DSIC46022 - ValènciaSpain

Tel: (+34) 963 877 007 (Ext. 83533)
Fax: (+34) 963 877 359

Emerging ubiquitous technologies such as mobile devices enable users to
always be connected to the environment, making demands on the most

precious resource for the user: human attention.

We are spending more and more time responding to the demands of
machines.

The proposed approach avoids overwhelming the user’s attention, creating a
considerate environment that adapts ubiquitous services' interactions to the

user’s context. Like a considerate human...

Miriam Gil Pascual
July, 2013

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Thesis goals
	1.4 Thesis approach
	1.5 Research methodology
	1.6 Thesis context
	1.7 Outline of this thesis

	2 Background
	2.1 Human-Computer Interaction
	2.1.1 Design methodologies
	2.1.2 Interaction Modalities
	2.1.3 Multimodal interaction
	2.1.4 Analysis and discussion

	2.2 Context-Aware Computing
	2.2.1 Context of use
	2.2.2 Context sensing
	2.2.3 Context models
	2.2.4 Context-Awareness as enabler for Autonomic Computing
	2.2.5 Reinforcement Learning
	2.2.6 Analysis and discussion

	2.3 Considerate Computing
	2.3.1 Receiving and managing interruptions
	2.3.2 Contextual factors that influence interruption
	2.3.3 Cognitive aspects of interruptions
	2.3.4 Analysis and discussion

	2.4 Conclusions

	3 State of the Art
	3.1 Analysis criteria
	3.2 Context-Aware User Interfaces
	3.2.1 Analysis and discussion

	3.3 Attentive User Interfaces
	3.3.1 Analysis and discussion

	3.4 Non-Intrusive Ubiquitous Computing
	3.4.1 Analysis and discussion

	3.5 Discussion of previous systems
	3.5.1 Characteristics of our proposal

	3.6 Conclusions

	4 Overview of the Proposal
	4.1 Point of view
	4.2 Main building blocks
	4.3 Systems' infrastructure
	4.4 Evaluation of our approach
	4.5 Conclusions

	5 A Framework for Interaction Obtrusiveness Adaptation
	5.1 User-centered design method overview
	5.1.1 Why a modeling approach?
	5.1.2 Steps of the user-centered design process

	5.2 Obtrusiveness requirements definition
	5.2.1 User interviews and observations
	5.2.2 Persona definition
	5.2.3 Services and obtrusiveness definition

	5.3 Modeling
	5.3.1 Obtrusiveness modeling
	5.3.2 Context modeling
	5.3.3 Interaction variability modeling
	5.3.4 Concrete interaction modeling

	5.4 Simulation
	5.4.1 Requirements for the evaluation
	5.4.2 Fast-prototyping for interaction obtrusiveness adaptation
	5.4.3 Models refinement

	5.5 Discussion of our design method
	5.6 Conclusions

	6 Self-Regulating Interactions Through Models at Runtime
	6.1 System implementation
	6.1.1 Glue code generation

	6.2 The self-regulating system
	6.3 AdaptIO: an infrastructure for adapting interaction obtrusiveness
	6.3.1 The Autonomic Infrastructure

	6.4 Deployment of the infrastructure
	6.4.1 Server Side Subsystem
	6.4.2 Client side subsystem: managed systems

	6.5 Applying AdaptIO to non-adaptive services
	6.6 Scalability evaluation
	6.7 Conclusions

	7 Exploiting the User Feedback
	7.1 Characterization of the obtrusiveness adaptation
	7.2 The reinforcement learning strategy
	7.2.1 Applying RL to our approach
	7.2.2 Obtaining the Feedback
	7.2.3 Running the Reinforcement Learning algorithm
	7.2.4 Adjusting an obtrusiveness level
	7.2.5 An application example

	7.3 The customization interfaces for end-users
	7.3.1 Obtrusiveness Personalization interface
	7.3.2 User Situation Specification interface

	7.4 Reinforcement evaluation
	7.4.1 Case study description
	7.4.2 Evaluation procedure and results

	7.5 Conclusions

	8 Validation of the proposal
	8.1 Smart Home case study
	8.1.1 Design of the case study
	8.1.2 Applying our design method
	8.1.3 Evaluating the design method
	8.1.4 Simulating the design

	8.2 Adaptive Notifications case study
	8.2.1 Design of the case study
	8.2.2 Evaluating the User Experience
	8.2.3 Evaluating the customization interfaces

	8.3 Experiences applying our approach
	8.3.1 User Routine Tasks: Smart Hotel
	8.3.2 Smart Library
	8.3.3 HomeCare

	8.4 Discussion of the results
	8.4.1 Benefits obtained
	8.4.2 Limitations detected

	8.5 Conclusions

	9 Conclusions and Future Work
	9.1 Contributions
	9.2 Publications
	9.2.1 Relevance of the publications

	9.3 Projects codirected
	9.4 Future work
	9.5 Final remarks

	Appendix
	A Metamodels & Tool Support
	A.1 The AdaptIO modeling language
	A.1.1 The persona model metamodel
	A.1.2 The obtrusiveness model metamodel
	A.1.3 The feature model metamodel
	A.1.4 The context model metamodel
	A.1.5 The Android components metamodel
	A.1.6 Relationships between metamodels

	A.2 Model-based validation
	A.2.1 Constraints on models
	A.2.2 Reasoning on feature models with FAMA

	B Adaptive Notifications case study & Evaluation Instruments
	B.1 Adaptive Notifications case study
	B.1.1 Applying our design method

	B.2 Instruments used in the evaluations
	B.2.1 Usability evaluation of the design method
	B.2.2 User satisfaction evaluation
	B.2.3 User experience evaluation
	B.2.4 Customization interfaces evaluation

	Bibliography

