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“With good education is human a docile and divine

creature but without it, they are the fiercest of animals.

Education and teaching improve the good ones

and make good to the bad ones.”

Plato. Dialogues. Volume IV.

(República, trad. de Eggers Lan). Gredos.





Abstract (English)

In this dissertation, we use epidemiologic-mathematical techniques to model the

academic performance in Spain (paying special attention on the academic under-

achievement) to understand better the mechanisms behind this important issue

as well as to predict how academic results will evolve in the Spanish Bachillerato

over the next few years. The Spanish Bachillerato educational level is made up

of the last courses before accessing to the university or to the work market and

corresponds to students of 16− 18 years old. This educational level is a milestone

in the career training of students because it represents a period to make important

decisions about academic and professional future.

In a first step, in the Chapter 2 we will present a deterministic model where

academic performance is analyzed assuming the negative attitude of Bachillerato

students may be due to their autonomous behavior and the influence of classmates

with bad academic results. Then, in the Chapter 3, the model is improved based on

the idea that not only the bad academic habits are socially transmitted but also the

good study habits. Besides, we decompose the transmission academic habits into

good and bad academic habits, in order to analyze with more detail which group of

students are more susceptible to be influenced by good or bad academic students.

The consideration of quantifying the abandon rates is also a new issue dealt with in

it. The adopted approach allow to provide both punctual and confidence intervals

predictions to the evolution of academic performance (including the abandon rates)

in Bachillerato in Spain over the next few years. The adopted approach allows us

to model academic performance in academic levels other than Bachillerato and/or

beyond the Spanish academic system. This issue is assessed in Chapter 4, where

the model is satisfactorily applied to the current academic system of the German

region of North Rhine-Westphalia.

To conclude this dissertation, we provide an estimation of the cost related to the

Spanish academic underachievement based on our predictions. This estimation

represents the investment in the Spanish Bachillerato from the Spanish Govern-

ment and families over the next few years, paying special attention on the groups

of students who do not promote and abandon during their corresponding academic

year.





Abstract (Spanish)

En esta tesis, se utilizan técnicas matemático-epidemiológicas para modelar el

rendimiento académico en España (prestando especial atención en el fracaso esco-

lar) para comprender mejor los mecanismos detrás de esta importante cuestión, aśı

como para predecir cómo evolucionarán los resultados académicos en el Bachiller-

ato español en los próximos años. El nivel educativo de Bachillerato en España

está formado por los dos últimos cursos antes de acceder a la universidad o al

mercado de trabajo y corresponde a los estudiantes de 16 − 18 años. Este nivel

educativo es muy importante para la formación de los estudiantes ya que repre-

senta un periodo en el que deberán tomar importantes decisiones sobre el futuro

académico y profesional.

En primer lugar, en el Caṕıtulo 2, se presenta un modelo determinista donde se

analiza el rendimiento académico asumiendo que la actitud negativa de los alumnos

de Bachillerato puede ser debida a su comportamiento autónomo y la influencia de

compañeros con malos resultados académicos. Luego, en el Caṕıtulo 3, se mejora el

modelo basado en la idea de que no sólo los malos hábitos académicos se transmiten

socialmente sino también los buenos hábitos de estudio. Además, descomponemos

los parámetros de transmisión de hábitos académicos con el fin de analizar con

más detalle qué grupos de estudiantes son más susceptibles a ser influenciados

por compañeros con buenos o malos hábitos académicos. El abandono escolar

también han sido incluido en este modelo. El enfoque adoptado permite propor-

cionar predicciones deterministas y con intervalos de confianza de la evolución del

rendimiento escolar (incluyendo las tasas de abandono) en Bachillerato en España

en los próximos años. Este enfoque, además, nos permite modelar el rendimiento

académico en otros niveles educativos del sistema académico español o de fuera

de España tal y como se muestra en el Caṕıtulo 4, donde el modelo se aplica sat-

isfactoriamente al sistema académico actual de la región alemana de Renania del

Norte-Westfalia.

Para concluir esta tesis, proporcionamos una estimación de los costes relacionados

con el rendimiento académico español basado en nuestras predicciones. Esta esti-

mación representa la inversión en Bachillerato por parte del Gobierno español y las

familias en los próximos años, con especial atención en los grupos de estudiantes

que no promocionan y abandonan en los diferentes cursos académicos.





Abstract (Valencià)

En aquesta tesi, s’utilitzen tècniques matematic-epidemiològiques per a modelitzar

el rendiment acadèmic a Espanya (parant especial atenció en el fracàs escolar) per a

comprendre millor els mecanismes darrere d’aquesta qestió tan important, aix́ı com

per a predir com evolucionaran els resultats acadèmics en el Batxillerat espanyol

en els pròxims anys. El nivell educatiu de Batxillerat a Espanya està format pels

dos últims cursos abans d’accedir a la universitat o al mercat de treball i correspon

als estudiants de 16 a 18 anys. Aquest nivell educatiu és molt important per a la

formació dels estudiants ja que representa un peŕıode en què hauran de prendre

decisions importants sobre el futur acadèmic i professional.

En primer lloc, en el Caṕıtol 2, es presenta un model determinista on s’analitza

el rendiment acadèmic assumint que l’actitud negativa dels alumnes de Batx-

illerat pot ser deguda al seu comportament autònom i la influència dels companys

amb resultats acadèmics dolents. Després, en el Caṕıtol 3, es millora el model

basat en la idea que no només els mals hàbits acadèmics es transmeten social-

ment sinó també els bons hàbits d’estudi. A més, descomposem els paràmetres

de transmissió d’hàbits acadèmics a fi d’analitzar amb més detall quins grups

d’estudiants són més susceptibles de ser influenciats pels companys amb hàbits

acadèmics bons o dolents. L’abandonament escolar també han sigut inclòs en

aquest model. L?estudi des de aquest punt de vista, a més a més, ens permet

modelitzar el rendiment acadèmic en altres nivells educatius del sistema acadèmic

espanyol o de fora d’Espanya tal com es mostra en el Caṕıtol 4, on el model s’aplica

satisfactòriament al sistema acadèmic actual de la regió alemanya de Renània del

Norte-Westfalia.

Aquesta tesi conclou proporcionant una estimació dels costos relacionats amb el

rendiment acadèmic espanyol en base a les nostres prediccions. Aquesta estimació

representa la inversió en Batxillerat per part del Govern espanyol i les famı́lies

en els pròxims anys, parant especial atenció en els grups d’estudiants que no

promocionen i abandonen en els diferents cursos acadèmics.
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Citations Published Work xii

List of Figures xxii

List of Tables xxiv

1 Introduction 1

2 Predicting the academic underachievement in high school in Spain
over the next few years: A dynamic modelling approach 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Building the mathematical model . . . . . . . . . . . . . . . . . . . 10

2.2.1 Available data . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Prediction over next few years . . . . . . . . . . . . . . . . . . . . . 15

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Non–parametric probabilistic forecasting of academic performance
in Spanish high school using an epidemiological modelling ap-
proach 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 The epidemiological-mathematical model . . . . . . . . . . . . . . . 20

3.2.1 Available data . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Model building . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Scaling the model . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Deterministic parameter estimation and prediction over the next
few years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

xviii



Contents xix

3.4 Introducing uncertainty in the model parameters and predicting the
next few years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Error term analysis . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.2 Generating new output perturbed data . . . . . . . . . . . . 33

3.4.3 Obtaining confidence intervals for model outputs . . . . . . 33

3.5 Abandon analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Modelling the dynamics of the students academic performance in
the German region of North Rhine-Westphalia: an epidemiologi-
cal approach with uncertainty 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Model building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Available data . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 The type-epidemiological model . . . . . . . . . . . . . . . . 43

4.3 Scaling, fitting and predictions . . . . . . . . . . . . . . . . . . . . . 48

4.4 Introducing uncertainty in the model parameters and predicting the
next few years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Error term analysis . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.2 Generating new output perturbed data . . . . . . . . . . . . 53

4.4.3 Obtaining confidence intervals for model outputs . . . . . . 54

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Estimation of the cost of the academic underachievement in high
school in Spain over the next few years 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Estimation with 95% confidence intervals of the cost of the academic
underachievement in Bachillerato for the next few years for the
Spanish Government . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Estimation with 95% confidence intervals of the investment in edu-
cation by Spanish families of Bachillerato students in the next few
years . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Conclusion and discussion 73

Appendix A epiModel: A system to build automatically systems
of differential equations of compartmental type-epidemiological
models 77

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.2 How to build the file ”ModelDefinition” . . . . . . . . . . . . . . . . 80

A.2.1 General variable . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2.2 Definition of the subpopulations . . . . . . . . . . . . . . . . 80

A.2.3 Defining Parameters . . . . . . . . . . . . . . . . . . . . . . 81



Contents xx

A.2.3.1 Parameters of independent term and linear term . 82

A.2.3.2 Parameters of non-linear terms . . . . . . . . . . . 84

A.3 Steps to building the system of differential equations . . . . . . . . 85

A.3.1 The file ”Model.data” . . . . . . . . . . . . . . . . . . . . . 86

A.3.2 The file ”parameters.data” . . . . . . . . . . . . . . . . . . . 87

A.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.4.1 SIRS model . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.4.2 SIR model with two age groups . . . . . . . . . . . . . . . . 90

A.4.3 SIR model with two age groups and two sexes . . . . . . . . 93

A.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Appendix B Validation of our Spanish mathematical model results 99

Appendix C Validation of our German mathematical model results103

Appendix D Time series analysis: Forecasting models in Statgraph-
ics Plus 5.1. 105

D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

D.2 Forecasting models . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

D.3 Validation of the model . . . . . . . . . . . . . . . . . . . . . . . . . 108

D.4 Obtaining 95% confidence intervals . . . . . . . . . . . . . . . . . . 109

Bibliography 111





List of Figures

1.1 Structure of the Spanish educational system for students aged be-
tween 12− 18 years old. . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Flow diagram of the mathematical model for Bachillerato academic
underachievement in Spain. The boxes represent subpopulations
under study classified according to genre (women (W) and men
(M)) and academic level (First and Second Stage of Bachillerato).
Students that belong to the promote/non-promote group are de-
noted by W, M, W and M , respectively. The arrows represent the
transitions between the subpopulations, and they are labeled by
their corresponding terms and parameters according to the model. 13

2.2 Fitting and prediction of the academic performance of Bachillerato
Spanish students over the academic years 1999−2000 to 2014−2015. 16

3.1 Flow diagram of the epidemiological-mathematical model for dy-
namics of Bachillerato academic performance in Spain. The boxes
represent the students depending on their sex, stage and academic
results. The arrows denote the transits of students labeled by the
expressions and parameters governing these transits. . . . . . . . . . 26

3.2 Real data (red points on the left side of vertical axis) and prediction
(line) with confidence intervals (on the right side of vertical axis)
of the academic performance of Bachillerato Spanish students over
the academic years 1999− 2000 to 2014− 2015. Smaller confidence
intervals, represent less uncertainty in the predictions, the points in
the middle of the confidence intervals are their means. The square
black point represents the last academic results published recently
corresponding to the academic year 2009− 2010. Notice that each
graph has its own scale. . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Flow diagram of the model (4.3)-(4.5). The boxes represent the
students depending on their gender, level and academic results. The
arrows denote the transit of students labelled by the cause of the
flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xxii



List of Figures xxiii

4.2 Real data (black points) and prediction with 95% confidence inter-
vals (red line) of the academic performance of German students in
the North Rhine-Westphalia over the academic years 2006−2007 to
2014−2015. Smaller confidence intervals, represent less uncertainty
in the predictions, the dashed lines in the middle of the confidence
intervals are their means. Note that there are high differences in
the scale of the graphs between the promotable and non–promotable
students, specially with very low rates in the non–promotable groups. 57

5.1 Graph of the prediction of euros invested by the Spanish Govern-
ment in each Spanish student in the First and Second Stage of
Bachillerato, in both, state and private high schools during the aca-
demic years from 2009− 2010 to 2014− 2015. . . . . . . . . . . . . 63

5.2 Graph of the prediction (in euros) the Spanish families will invest
in each Bachillerato student during the academic years from 2009−
2010 to 2014− 2015. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.1 Proccess of how epiModel works. ”ModelBuilder.nb” loads data
from ”ModelDefinition” and ”epiModel” creates ”Model.data” and
”parameters.data”. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.2 Parameter types dependent on where the arrows enter and exit in
compartmental models. . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.3 Screenshot of ”ModelBuilder.nb” in Mathematica. . . . . . . . . . . 86

A.4 Diagram of a Susceptible-Infectious-Recovered-Susceptible model. . 88

A.5 Diagram of a Susceptible-Infectious-Recovered model with two age
groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



List of Tables

2.1 The available data corresponding to the First and Second Stage of Bachiller-

ato, in both, state and private high schools all over Spain during aca-

demic years 1999− 2000 to 2007− 2008. Each row shows the percentage

of women/men that promote (Wi | Mi) and do no promote (W i | M i)

for each level i = 1, 2 (that corresponds to the First and Second Stage of

Bachillerato, respectively) over the total Spanish Bachillerato students.

These data are referred to the month of September, when each academic

year ends officially. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Estimation of the model parameters. . . . . . . . . . . . . . . . . . 14

2.3 The model output corresponding to the First and Second Stage of
Bachillerato, in both, state and private high schools all over Spain
during academic years 2008−2009 to 2014−2015. Each row shows
the rate of women and boys who promote (Wi | Mi) and do not
promote (W i | M i) for each level i = 1, 2. Graphically, it can be
seen in Figure 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 The available data corresponding to the First and Second Stage of
Bachillerato, in both, state and private high schools all over Spain
from academic year 1999 − 2000 to 2008 − 2009. Each row shows
the percentage of Girls and Boys who promote (Gi | Bi) and do
not promote (Gi | Bi) for each level i = 1, 2 over the total Spanish
Bachillerato students. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Estimation of positive and negative autonomous decision and aban-
don rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Estimation of positive and negative transmission parameters. . . . . 28

3.4 The model output corresponding to the First and Second Stage of
Bachillerato, in both, state and private high schools all over Spain
during academic years 1999−2000 to 2014−2015. Each row shows
the percentage of girls and boys who promote (Gi | Bi) and do not
promote (Gi | Bi) for each level i = 1, 2. It can be compared the
model output values for t = 1999−2000, . . . , 2008−2009 to the data
values in Table 3.1 to verify the goodness of the fitting. Graphically,
it can be seen in the left-hand side of the graphs in Figure 3.2. . . . 29

xxiv



List of Tables xxv

3.5 Differences between the real data in Table 3.1 and the output model
in Table 3.4 corresponding to the First and Second Stage of Bachiller-
ato, both state and private high schools all over Spain during aca-
demic years 1999−2000 to 2008−2009, for Girls|Boys who promote
(Gi|Bi) and do not promote (Gi | Bi) for each level i = 1, 2. . . . . 31

3.6 Matrix of Pearson correlation coefficients for the error terms. . . . . 32

3.7 The 95% confidence interval prediction corresponding to the First
and Second Stage of Bachillerato, in both, state and private high
schools all over Spain during academic years 2009− 2010 to 2014−
2015. Each row shows the rate of girls/boys who promote (Gi|Bi)
and do not promote (Gi|Bi) for each level i = 1, 2. Graphically, it
can be seen in Figure 3.7. . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 The 95% confidence interval prediction, the real academic results
and the distance between these real data from its corresponding
confidence interval. The dash indicates that the point lies inside
its confidence interval. Data corresponding to the First and Second
Stage of Bachillerato, in both, state and private high schools all over
Spain during the academic year 2009 − 2010. Each row shows the
rate of girls/boys who promote (Gi|Bi) and do not promote (Gi|Bi)
for each level i = 1, 2. . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.9 Estimation of the percentage of abandon in Spanish Bachillerato
during the academic years from 1999− 2000 to 2014− 2015. . . . . 38

3.10 Descriptive analysis of the percentage of abandon in Spanish Bachiller-
ato during the academic years from 2009− 2010 to 2014− 2015. . . 38

4.1 The available data corresponding to Levels 11, 12 and 13, in both,
state and private high schools all over North Rhine-Westphalia from
academic year 2006− 2007 to 2010− 2011 divided by gender, level
and promote/non–promote over the total number of students in the
three levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Estimation of positive and negative autonomous decision and aban-
don rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Estimation of positive and negative transmission parameters. . . . . 50

4.4 The 95% confidence interval predictions corresponding to the Levels
11, 12 and 13, in both, state and private high schools all over the
German region of North Rhine-Westphalia during academic years
2011 − 2012 to 2014 − 2015. Each row shows the percentage of
girls/boys who promote and do not promote for each academic level. 56

5.1 Investment per Spanish student in the First and Second Stage of
Bachillerato, in both, state and private high schools all over Spain
from academic year 1999− 2000 to 2008− 2009 by the Government
[1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 The indicators (RMSE and MAPE) considered for the validation of
the different models in order to determine the model that best fit
the data in Table 5.1. The best is the Linear Trend Model. . . . . . 62



List of Tables xxvi

5.3 The prediction of euros invested by the Spanish Government in each
Spanish student in the First and Second Stage of Bachillerato, in
both, state and private high schools during the academic years from
2009− 2010 to 2014− 2015. . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Number of Spanish student in the First and Second Stage of Bachiller-
ato in both, state and private high schools, all over Spain from
academic year 1999− 2000 to 2008− 2009 [2]. . . . . . . . . . . . . 64

5.5 The indicators (RMSE and MAPE) considered for the validation of
the different models in order to determine the model that best fit
the data in Table 5.4. The best is the Random Walk with Trend
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6 Estimations with 95% confidence intervals of the number of Spanish
students in the First and Second Stage of Bachillerato in both,
state and private high schools, all over Spain from academic year
2009− 2010 to 2014− 2015. . . . . . . . . . . . . . . . . . . . . . . 65

5.7 Estimation with 95% confidence intervals of the number of Bachiller-
ato students who do not promote and abandon in the First and Sec-
ond Stage of Bachillerato, in both, state and private high schools all
over Spain from academic year 2009−2010 to 2014−2015 and their
corresponding cost for the Spanish Government also given with 95%
confidence intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.8 Spanish families investment, on average, per Spanish student in the
First and Second Stage of Bachillerato in both, state and private
high schools, all over Spain from academic year from 1999 − 2000
to 2008− 2009 [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.9 The indicators (RMSE and MAPE) considered for the validation of
the different models in order to determine the model that best fit
the data in Table 5.8. The best is the Linear Trend Model . . . . . 69

5.10 The prediction of euros Spanish families will invest in each Spanish
student in the First and Second Stage of Bachillerato, in both, state
and private high schools during the academic years from 2009−2010
to 2014− 2015. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.11 95% confidence intervals of the Spanish families cost in the group
of Bachillerato students with academic underachievement over the
next few years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.1 The model output corresponding to the mathematical model shown
in both, Chapter 2 and Chapter 3 and the predictions with cor-
responding 95% confidence intervals obtained in Chapter 3 of the
First and Second Stage of Bachillerato, in both, state and private
high schools all over Spain during academic years 2008 − 2009 to
2014− 2015. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



List of Tables xxvii

B.2 Absolute errors corresponding to the distance between the deter-
ministic predictions given in Chapter 2 and 3 (also shown in Table
B.1) and the low or high 95% confidence interval extremes stated
in Chapter 3 of the First and Second Stage of Bachillerato, in both,
state and private high schools all over Spain during academic years
2008−2009 to 2014−2015. The dashes indicate that the determin-
istic prediction lies inside its corresponding 95% confidence interval. 101

C.1 The model output obtained with the estimated parameters (Tables
4.2 and 4.3) in our German model, the real data and their associated
absolute errors corresponding the Levels 11, 12 and 13, in both,
state and private high schools all over the German region of North
Rhine-Westphalia during academic years 2006−2007 to 2010−2011.
Each row shows the percentage of girls/boys who promote and do
not promote for each academic level. . . . . . . . . . . . . . . . . . 104



Chapter 1

Introduction

In recent years, there has been increased awareness of the importance of education

in society by both governments and society in general. Education largely deter-

mines the professional life of an individual. It has an impact on the ease of getting

and keeping a job and also influences on the conditions and characteristics of the

job. This important issue has led to the educational experts and policy makers to

focus their attention on the evolution of the academic results of students. There

are many contributions which show us the increasing concern about young stu-

dents’ academic performance in worldwide [1, 3, 4], mainly, focusing on the bad

academic results which could have serious negative influences on the country’s

economic development. Obviously, the better education of the population, the

greater benefits could be brought by the population to the country.

In general terms, the definition of obtaining bad academic results is commonly

called ’academic underachievement’. However, this expression presents several

definitions due to the different perspectives given by recognized educational ex-

perts. In [5] academic underachievement is defined as: ’Students who, during

their stay in school, have obtained a minimum preparation to enable them to live

independently in society: find a job, organize independently and behave civic, re-

sponsible and tolerant’. In [6], the author says that ’academic underachievement

has, at least, three points: low academic performance, difficulties in adapting to

the rules of coexistence and destruction of self-esteem’. In [7], the author de-

fines it as ’academic underachievement is any insufficiency detected in the results

achieved by pupils in schools regarding the proposed objectives for their level, age

and development, and is usually expressed through negative grades’. In addition,
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the Spanish educational law in force stated that ’academic underachievement is

considered when a student has not realized any improvement in their academic

performance from 18 to 25 years old’.

It is very difficult to quantify the academic underachievement if we use any of

the above-mentioned definitions. It leads us to propose our own definition of

academic underachievement, more strict than the ones in the previous paragraph,

but it will allow the quantification. Therefore, in this dissertation, we identify

academic underachievement when a student who, during her/his stay in school

in a specific academic year, has not been able to get the proposed objectives for

her/his academic level such as it is established by the educational law in force and,

as a consequence, she/he is not allowed to pass into a higher level or she/he has

decided to abandon her/his studies.

During the last few years, Spanish academic authorities have taken numerous ed-

ucational measures in order to combat academic underachievement in high schools

including an increase in funding and resources destined to education improvement

[8]. These efforts have been carried out by several changes in the educational

laws looking for an improvement in academic results [9, 10]. This concern has

even become a compelling reason for the enactment of the last education law

[10], which states in its abroad outlines: ’It pretends to reduce the rate of aca-

demic underachievement and to improve the level of performance of students’.

These legislative measures have been focused, mainly, on the educational levels in

which have appeared an increasing of academic underachievement: Compulsory

Secondary Education (in the Spanish terminology, Educación Secundaria Obli-

gatoria (ESO)) and the last two high school courses (in the Spanish terminology,

Bachillerato) that theoretically correspond to students between 12−16 and 16−18

years old, respectively. As a result of these educational measures, although the

rate of the academic underachievement has slightly reduced over the last years,

these rates in these educational stages are still at very worrying levels about 30%

of the pupils [11]. This situation is more alarming if we compare these figures

with the corresponding ones to the rest of the countries of the European Union in

which the levels of academic underachievement are around the 15% [3, 4, 12].

Nowadays, the job opportunities of people depend on their qualification, their

ability to acquire, use and interprete the information, including their skills to

adapt the new knowledge to a very demanding and competitive society in constant

change. In order to acquire them, students go to basic schools first and high
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schools later, learning the contents determined in the corresponding legislations.

As a consequence, high rates of academic underachievement could lead that the

number of qualified workers is less than the number of qualified jobs expected over

the following years [13, 14]. This is also a primer concern of the European Union

[15–17].

The interest about academic underachievement in Spain is completely justified, not

only by the high rates but also it is becoming a major social and political concern

[18–20], especially in the unemployment and its serious consequences. This issue is

of primer importance in the current context of economic crisis affecting particularly

Spain. In fact, when the economic crisis started around the year 2008 affecting

negatively on the international labor market, in Spain, the unemployment rates

were twice higher than the rest of the European Countries [21]. Moreover, in 2012,

the 80% of the Spanish people that had finished their higher studies, accessed to

the work market while the Spanish population who had only got ESO or lower

educational levels was around 27% [22].

To deal with this problem, in this work we focus our attention on the Spanish

Bachillerato educational stage for several reasons. First, from a mathematical

standpoint, Bachillerato has a simpler academical structure that seems to be an

adequate start-point to introduce these type of modeling approach. Second, from

a social viewpoint, as we pointed out previously, Bachillerato is a milestone in the

career training of students because it represents a period to make important deci-

sions about academic and professional future [23]. When they finish Bachillerato

they can decide whether to continue their higher studies (university or professional

training) or to access the work market. This is of paramount importance for so-

ciety because, although the percentage of high school academic underachievement

has slightly reduced over the last years, nowadays it seems to be at a worrying

steady-level. This constitutes a serious problem not only for these individuals and

their families but also for the society that has invested an important amount of

money in their previous training.

The access to this academic educational level takes place after finishing the Com-

pulsory Secondary Education (ESO) where students should stay for four years

(from 12 to 16 years old). Then, a great part of them decide to access to Bachiller-

ato, which is not mandatory and, as it was pointed out, corresponds to students

who are 16− 18 years old. Bachillerato consists of two years and the subjects are

more specialized in science, literature or art than in ESO. In Spain, students can
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especialise in three different Bachillerato branches: Arts; Sciences and Technol-

ogy; Humanities and Social Sciences (see Figure 1.1). In accordance with educa-

tional regulations in force in Spain [10], in September, a student of First Stage of

Bachillerato will transit into the Second Stage of Bachillerato if she/he has passed

successfully all the subjects except, maybe, at most two out of a total of ten. In

order to get the Bachillerato degree, it is necessary to pass all the subjects of both

Bachillerato Stages, in particular, a student will pass any subject of Bachillerato

subject if she/he gets, at least, 5 points out of 10 in the final academic results.

Figure 1.1: Structure of the Spanish educational system for students aged
between 12− 18 years old.

The different learning theories [24, 25], in particular, the Vygotskian perspective

[26–28] and the recent studies published [29, 30], confirm that habits and behavior

may be socially transmitted. In our context, we assume that social contacts have

a great influence on transmission of study habits [23, 31]. The main idea behind

our study of the academic performance is that these appropriate or inappropriate

habits may spread from one student to another, more probably between students

of the same academic level [23].

Some examples of analogous situations (related to social behavior modelling) us-

ing type-epidemiological mathematical models are encountered in public health,

obesity [30, 32], alcoholism [33], drug abuse [34], shopaholism [35], spread of ideas

[36], evaluation of law effects on societies [37], and so on. To point out that the use

of epidemiological models is widely known by the scientific community, especially,
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for the spread of diseases. However, although there is a high interest in analysing

the academic performance [38–40], to the best of our knowledge, there is no evi-

dence that these techniques have been applied to analyze academic performance

previously.

To address this approach, we propose a non-linear system of differential equations

to model the evolution of the academic performance in the educational level of

Bachillerato in Spain using modeling techniques in mathematical epidemiology.

To analyze the academic performance, we have focused on the available academic

results belonging to the students of the First and Second Stage of Bachillerato

during the academic years from 1999 − 2000 to 2007 − 2008, in both, state and

private high schools all over Spain [2, 41]. Bachillerato students will be classified

in promote and non-promote group according to the obtained academic results

at the end of each academic year. Moreover, in order to reflect as truthfully as

possible the attitude of students towards their studies, we have taken into account

pedagogical studies [42–45] which confirm that exist a significative difference of

academic performance depending on genre considering, in general, women obtain

better academic results than men. This motivates the fact that our model considers

genre into its formulation. We also consider that the transmission of academic

habits is carried out between students of the same academic level [23, 46, 47].

Once the model is stated, we will be able to monitor the promoted and gradu-

ated students. The estimation of the parameters of our model will allow us to

predict the evolution of the academic performance in specific confidence intervals.

Furthermore, we include the estimation of the abandon rates. Abandon is an im-

portant and sensitive aspect still under debate in the pedagogical studies and is

not commonly available. We have made a decision in order to include this issue

in the model and this is to consider abandon when, during the academic year,

the student leaves the academic system. As a consequence, we could predict the

percentage of Spanish population may be less qualified at time to enter in the

work market with their negative consequences. An important characteristic of the

proposed model is its ability to be adapted, although in this research we have

focused on Bachillerato educational level, to other Spanish educational levels and

also foregoing any educational systems. This is illustrated in Chapter 4 where the

proposed model for Spanish Bachillerato has been adapted successfully to study

the academic performance in the German region of North Rhine-Westphalia.
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Moreover, high rates of academic underachievement have strong negative effects

on the economic situation of families and the Spanish Government, mainly, in the

current economic crisis in Spain. On the one hand, families must spend a lot of

money on each of their children‘s education and it has been increasing as time goes

reaching values that, on average, are around 1 300 euros per year for each Spanish

student [48, 49]. There are many needs that parents have to deal with such as

the school fees, books, uniform and, in some cases, accommodation each academic

year, money that would be invested again if the student is not able to promote

during the academic year. In the same way, each year the Spanish State Man-

agement spends a high percentage of its budget on education [1], a waste of large

amounts of money if the rates of academic underachievement are increasing [20].

The predictions given in this dissertation of the Spanish Bachillerato academic

results in the coming years will allow to provide an estimation of the investment

could be made in this educational level by both, the Spanish Government and fam-

ilies. We will pay special attention on the groups of students who abandon and do

not promote during their corresponding academic year whose academic attitude

could lead a high economic costs for the Spanish Government and families.

The proposed mathematical approach will allow us to understand better the mech-

anisms behind the academic performance as well as to predict how things will

evolve in the Spanish Bachillerato over the next few years and this way, to provide

relevant information to make appropriate decisions to policymakers. In addition,

this predictions will allow us to quantify the large costs that would entail for the

Spanish society the high rates of academic underachievement in the coming years.

We conclude this introduction by showing more details of the contents of this

dissertation.

In Chapter 2, we propose a dynamic model based on a non-linear system of dif-

ferential equations to understand the evolution of the academic underachievement

in students First and Second Stage of Bachillerato in Spain taking into account

the different attitude of students according their gender. To build the model we

suppose that a student obtains negative academic results when she/he decides au-

tonomously to adopt a negative academic habits and also when she/he gets into

study habits socially transmitted by students with bad academic habits. From

the available Bachillerato academic results in both, state and private Spanish

high schools during the period 1999 − 2000 to 2007 − 2008, we fit the model to

the data and obtain the parameters of the model. Then, we predict the academic
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underachievement evolution over the next few years. In Chapter 3, our approach

is to improve the dynamical model statement. In this case, the improved model

is based on the idea that not only the bad academic habits are transmitted but

also the good study habits. We also decompose the transmission parameters into

good and bad academic habits, in order to analyze with more detail which group

of students are more susceptible to be influenced by good or bad academic stu-

dents. Besides, we introduce uncertainty in the model, a bootstrapping approach

is employed. The model presented in this chapter is validated verifying that the

95% confidence intervals predicted collect the estimations given in Chapter 2 and

also with new available data which were published during the development of this

dissertation. Other important improvement in this model is the quantification of

the abandon rates. In Chapter 4, we show an application of our improved mathe-

matical model to the German educational system. This has been possible thanks

to the grant received from the Spanish Ministry of Education which allowed to stay

during three months (from 7th April to 29th June, 2012) in Bergische Universität

Wuppertal (Germany) working under the supervision of Prof. M. Ehrhardt. Dur-

ing this stay, we had the opportunity to access to the academic results belonging

to students in high school of the German region of North Rhine-Westphalia which

enabled us to apply our model and to analyze the evolution of the academic per-

formance of students in this German region. Additionally, it also allows us to test

the ability of the proposed method to be adapted to other educational systems

as well as to compare the educational training of Spanish and German students.

This dissertation ends by studying in Chapter 5 the negative economical effects

which could have for both, the Spanish Government and families, the high rates

of academic underachievement in the next few years according to the predictions

obtained from our dynamic model. Finally, the conclusions are given in Chapter 6.
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Chapter 2

Predicting the academic

underachievement in high school

in Spain over the next few years:

A dynamic modelling approach

2.1 Introduction

In this chapter we propose a dynamic model to understand the evolution of the

academic underachievement in high school in Spain. This model is based on ideas

of Christakis and Fowler which confirm that individual habits may be transmitted

by social contact [29, 30]. Moreover, in order to reflect as truthfully as possible the

attitude of students towards their studies, we have taken into account pedagogical

studies [42–45] which state that exists a significative difference of academic perfor-

mance depending on genre. This motivates the fact that our model considers genre

into its formulation. We also consider that the transmission of academic habits

is carried out between students of the same academic level [23, 46, 47]. Thus, to

build the model we suppose that a student has academic underachievement when

she/he gets into study habits transmitted by students with bad academic habits.

From the available academic results of the Spanish high school educational system

during the period 1999−2008 [2, 41], we fit the model to the data in order to obtain

the parameters of the model. Then, we predict the academic underachievement

evolution over the next few years.
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2.2 Building the mathematical model

2.2.1 Available data

We have considered the available data corresponding to the First and Second

Stage of Bachillerato, in both, state and private high schools all over Spain during

academic years 1999−2000 to 2007−2008. We point out that we study this period

because after the academic year 2007 − 2008 only partial data corresponding to

specific regions of Spain are available. For each of these academic years, Table

2.1 collects the percentage of women/men that pass (Wi | Mi) and do not pass

(W i | M i) for each level i = 1, 2 (that corresponds to the First and Second Stage

of Bachillerato, respectively) over the total Spanish Bachillerato students. These

data have been obtained from the official database [2, 41] and they are referred to

the month of September, when each academic year ends officially.

First Stage of Bachillerato Second Stage of Bachillerato

(Women | Men) (Women | Men)

Academic % Pass % Do not Pass % Pass % Do not Pass

year (W1 | M1) (W 1 | M1) (W2 | M2) (W 2 | M2)

1999− 00 19.68 | 15.24 9.75 | 9.33 16.21 | 11.64 9.52 | 8.63

2000− 01 22.65 | 17.54 9.91 | 10.12 14.07 | 10.04 8.24 | 7.43

2001− 02 19.23 | 14.23 8.61 | 9.10 17.86 | 13.06 9.32 | 8.59

2002− 03 18.87 | 14.19 8.36 | 8.51 19.14 | 13.97 8.76 | 8.20

2003− 04 19.93 | 15.06 7.74 | 7.88 19.19 | 13.80 8.44 | 7.96

2004− 05 20.11 | 15.14 7.65 | 7.94 18.90 | 13.92 8.39 | 7.95

2005− 06 20.07 | 15.39 7.64 | 7.93 19.14 | 13.97 8.08 | 7.78

2006− 07 20.06 | 15.34 7.67 | 7.87 19.14 | 14.29 7.98 | 7.65

2007− 08 20.25 | 15.82 7.57 | 7.66 19.37 | 14.61 7.60 | 7.12

Table 2.1: The available data corresponding to the First and Second Stage
of Bachillerato, in both, state and private high schools all over Spain during
academic years 1999− 2000 to 2007− 2008. Each row shows the percentage of
women/men that promote (Wi |Mi) and do no promote (W i |M i) for each level
i = 1, 2 (that corresponds to the First and Second Stage of Bachillerato, respec-
tively) over the total Spanish Bachillerato students. These data are referred to
the month of September, when each academic year ends officially.

We build our mathematical model, based on an epidemiological-type model, by

considering that academic underachievement is a process that takes place when a

female (W) or a male (M) student that initially belongs to the promotable group of

a specific level, Wi or Mi, i = 1, 2, leaves her/his good academic habits due to the

negative influence (contagion) from other students of the same educational level
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who belong to the group of students with academic underachievement, W i and M i.

We emphasize that, in spite of the fact that Spanish Bachillerato students share

the same educational center with students belonging to other lower educational

levels, it is realistic to assume that from an academic performance point of view, in

general, the contagion between them is not significative. This statement is justified

by the differences in age and maturity between students that belong to different

educational levels, their physical location in the high school, etc. [23, 46, 47]. In

the model, these considerations will be taken into account even for Bachillerato

students of different academic level. We shall consider that, for each specific

academic level under study, the bad academic habits just spread between students

of the same course, independently of their genre. Thus, the transitions described

can be modeled as follows:

• For a specific Bachillerato academic level i = 1, 2, a student in Wi (respec.

Mi) transits to W i (respec. M i) because students in W i and M i transmit

their negative academic habits at rates βWi (respec. βMi ). Therefore, this is

a non-linear term modeled by βWi Wi(W i +M i) (respec. βMi Mi(W i +M i)).

Note that modeling above assumes implicitly homogeneous population mix-

ing for each academic level under consideration. This is a usual assumption

in type-continuous epidemiological models [30, 32–36, 50]. In this context, it

is realistic to consider that a particular attitude of any student towards their

studies not only can be influenced by her/his autonomous behavior but also

by their mates, the study center and, in general, by the social environment

surrounded.

• For a specific Bachillerato academic level i = 1, 2, students can also acquire

bad academic habits because they autonomously decide to strive less and

to give up appropriate study habits due to lack of self-motivation, personal

problems, etc.

• Data collected in Table 2.1 refer to the end of each academic course, i.e.,

in September when, according to educational regulation in force in Spain,

every student in W1 and M1 will pass to W2 and M2, respectively. Taking

into account that time t is measured in years and we identify each academic

year in the period 1999− 2000 to 2007− 2008, with 0, 1, . . . , 8, respectively,

this is modeled by the δ parameter indicated in Figure 2.1 and is defined as
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follows:

δ =

 1 if
9

12
+ j ≤ t ≤ 10

12
+ j, j = 0, 1, 2, . . . , 8,

0 otherwise,

where δ = 1 if a Bachillerato student (woman/men) passes into a higher

academic level in September and 0 otherwise. This parameter allows to

model the transitions of students who pass successfully in September (ninth

month of the year) from First to Second Stage of Bachillerato.

• For a specific Bachillerato academic level i = 1, 2, a student in W i (respec.

M i) transits to Wi (respec. Mi), when she/he gives up her/his bad academic

habit. An individual in W i (respec. M i) transits to Wi (respec. Mi) at rate

γWi (respec. γMi ) proportionally to the size of W i (respec. M i). Analogously

to αWi and αMi , parameters γWi and γMi also contain those autonomous de-

cisions adopted by students belonging to W i and M i, respectively.

Then, the transitions between these different subpopulations are described by the

following coupled non-linear system of differential equations where the unknows

are Wi = Wi(t), Mi = Mi(t), W i = W i(t) and M i = M i(t) (t denotes time in

years),

W ′
1(t) = −δW1(t)− αW1 W1(t)− βW1 W1(t)[W 1(t) +M1(t)] + γW1 W 1(t),

W
′
1(t) = αW1 W1(t) + βW1 W1(t)[W 1(t) +M1(t)]− γW1 W 1(t),

W ′
2(t) = δW1(t)− αW2 W2(t)− βW2 W2(t)[W 2(t) +M2(t)] + γW2 W 2(t),

W
′
2(t) = αW2 W2(t) + βW2 W2(t)[W 2(t) +M2(t)]− γW2 W 2(t),

M ′
1(t) = −δM1(t)− αM1 M1(t)− βM1 M1(t)[W 1(t) +M1(t)] + γM1 M1(t),

M
′
1(t) = αM1 M1(t) + βM1 M1(t)[W 1(t) +M1(t)]− γM1 M1(t),

M ′
2(t) = δM1(t)− αM2 M2(t)− βM2 M2(t)[W 2(t) +M2(t)] + γM2 M2(t),

M
′
2(t) = αM2 M2(t) + βM2 M2(t)[W 2(t) +M2(t)]− γM2 M2(t).

(2.1)

The parameters of the model are:

• αgi , denotes the rate at which a student of Spanish Bachillerato academic

level i and genre g, who belongs to the promoting group, passes to have bad

academic habits by an autonomous decision. In accordance with personal

trait patterns and academic performance of adolescents [51], it is considered
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that for the same educational stage, women are more responsible with respect

to studies matters than men. Whereas comparing the same genre, students

that belong to the Second Stage of Bachillerato get more involved than

students of the First Stage due not only to maturity but also they feel more

self-motivated because they are about to get the Bachillerato degree [42–

45]. In consequence, we consider these academic behavioral conclusions by

assuming, respectively, that

αW1 < αM1 , α
W
2 < αM2 ; αW1 > αW2 , α

M
1 > αM2 . (2.2)

• βgi , denotes the transmission rate at which a student of Spanish Bachillerato

academic level i and genre g adopts bad academic habits due to the negative

influence from students that do not pass and belong to the same academic

level i including both genre.

• γgi , denotes the rate at which a student of Spanish Bachillerato academic

level i and genre g who has bad academic habits, by an autonomous decision,

decides to change her/his bad academic habits and she/he ends up getting

into the passing group.

The flow diagram, associated to the model, is depicted in Figure 2.1.

Figure 2.1: Flow diagram of the mathematical model for Bachillerato aca-
demic underachievement in Spain. The boxes represent subpopulations under
study classified according to genre (women (W) and men (M)) and academic
level (First and Second Stage of Bachillerato). Students that belong to the
promote/non-promote group are denoted by W, M, W and M , respectively.
The arrows represent the transitions between the subpopulations, and they are
labeled by their corresponding terms and parameters according to the model.
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2.3 Parameter estimation

In this section we are going to present the estimation of the parameters of (2.1)

by fitting the model in the mean square sense to the data collected in Table 2.1.

In order to do that, we have implemented a function of the parameters in Mathe-

matica 8.0 [52] taking as initial conditions of the system of differential equations

(2.1), we take data of the academic year 1999 − 2000 (corresponding to t = 0),

so W1(0) = 19.68, M1(0) = 15.24, W 1(0) = 9.75, M1(0) = 9.33, W2(0) = 16.21,

M2(0) = 11.64, W 2(0) = 9.52 and M2(0) = 8.63. The process for obtaining the

parameters that best fit (in the mean square sense) is as follows:

• Use Mathematica command NDSolve to solve the system of differential equa-

tions obtained (2.1).

• Substitute the solution in the time instants 1999 − 2000, . . . , 2007 − 2008

corresponding to the academic courses.

• Compute the root mean square error between the model outputs (obtained

in the previous step) and the data in Table 2.1.

The parameters that best fit the model to data will be those that minimize the

above function. The minimization process has been done using the Nelder-Mead

algorithm [53] included in the Mathematica command NMinimize.

The estimated parameters are collected in Table 2.2. The least square error that

we have obtained is 0.0095.

Negative autonomous Negative Positive autonomous

decision transmission decision

Gender Parameter Value Parameter Value Parameter Value

Women
αW1 0.0180156 βW1 0.538867 γW1 0.285557

αW2 0.000119175 βW2 0.668998 γW2 0.270119

Men
αM1 0.0180175 βM1 2.59115 γM1 0.853703

αM2 0.00307025 βM2 1.38138 γM2 0.405319

Table 2.2: Estimation of the model parameters.
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Regarding Table 2.2, for both educational stages, the transmission rate at which

male students of Bachillerato adopt bad academic habits due to influence of stu-

dents that do not pass is greater than the corresponding one for female students,

i.e., βM1 > βW1 and βM2 > βW2 . Whereas the rate at which a male student of

Bachillerato who has bad academic habits decides autonomously to change his

bad academic habits and he ends up getting into the passing group is greater than

the corresponding one for a female student, i.e., γM1 > γW1 and γM2 > γW2 . We

point out that both results agree with conclusions derived from other pedagogical

studies [51].

2.4 Prediction over next few years

Now, once the model is stated and the parameters estimated, we are able to give

predictions of each subpopulation over the next few years computing the solutions

of the model, W1(t), W 1(t), M1(t), M1(t), W2(t), W 2(t), M2(t) and M2(t) for

values of time t in the future. The solution to model (2.1) is given in percentage

in Table 2.3 and plotted in Figure 2.2.

First Stage of Bachillerato Second Stage of Bachillerato

(Women | Men) (Women | Men)

Academic % Pass % Do not Pass % Pass % Do not Pass

year (W1 | M1) (W 1 | M1) (W2 | M2) (W 2 | M2)

2008− 2009 0.21138 | 0.15997 0.08293 | 0.08573 0.18798 | 0.13589 0.06932 | 0.06681

2009− 2010 0.21197 | 0.16033 0.08233 | 0.08537 0.18945 | 0.13692 0.06785 | 0.06578

2010− 2011 0.21246 | 0.16063 0.08184 | 0.08508 0.19073 | 0.13783 0.06657 | 0.06487

2011− 2012 0.21287 | 0.16087 0.08143 | 0.08483 0.19187 | 0.13865 0.06543 | 0.06406

2012− 2013 0.21324 | 0.16109 0.08106 | 0.08461 0.19289 | 0.13939 0.06441 | 0.06331

2013− 2014 0.21360 | 0.16129 0.08070 | 0.08441 0.19386 | 0.14010 0.06344 | 0.06260

2014− 2015 0.21397 | 0.16150 0.08033 | 0.08420 0.19480 | 0.14080 0.06250 | 0.06190

Table 2.3: The model output corresponding to the First and Second Stage
of Bachillerato, in both, state and private high schools all over Spain during
academic years 2008− 2009 to 2014− 2015. Each row shows the rate of women
and boys who promote (Wi | Mi) and do not promote (W i | M i) for each level
i = 1, 2. Graphically, it can be seen in Figure 2.2.

According to the global prediction of the model, note that the total percent-

age of Bachillerato students that will not pass is worrying because it will lie
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Figure 2.2: Fitting and prediction of the academic performance of Bachillerato
Spanish students over the academic years 1999− 2000 to 2014− 2015.

around 30% which still constitutes a high rate. In accordance with the model,

we consider that the First Stage of Bachillerato is the key level to begin to com-

bat academic underachievement in Bachillerato because it has greater associated

academic underachievement rates than Second Stage (around 17% over the total

Spanish Bachillerato students).

2.5 Conclusions

In this chapter we have proposed a continuous model to study academic un-

derachievement in the last educational stage of the Spanish high school, called

Bachillerato. The major novelty of this contribution is the treatment of academic

underachievement as a problem that is transmitted through social contact includ-

ing its mathematical type-epidemiological modeling. We point out that we used

hypotheses appearing in other studies [23, 29, 31, 42–47], as homogeneous mixing,

habits transmission dynamics and genre groups. In addition, the model allows us

to see how things will evolve over the next future. Hence, it enables us to make an

estimation of, both the number of pupils who will apply for higher education and

the students who do not get the minimum knowledge to pass into the next course.

According to the obtained results in Table 2.3 and Figure 2.2, the academic un-

derachievement in the Spanish Bachillerato could be around of 30% over the total

number of Spanish Bachillerato students.
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In this chapter, the first proposed model has been presented. In the next chapter,

we will show an improved mathematical model based on the presented one. In

the next model, in addition to the assumptions included in the current one, we

will consider the transmission of good academic habits and we also decompose the

transmission parameters into good and bad academic habits, in order to analyze

with more detail which group of students are more susceptible to be influenced

by good or bad academic students. In addition, we will obtain the estimation of

the abandon rates. Other important improvement will be seen in the model to be

presented in the next chapter, and it is the inclusion of uncertainty in it which

will allow us to present our predictions using confidence intervals.
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Chapter 3

Non–parametric probabilistic

forecasting of academic

performance in Spanish high

school using an epidemiological

modelling approach

3.1 Introduction

In this chapter, we propose an improved mathematical model respect to the model

developed in Chapter 2. Our approach is also based on the idea that academic

habits of any student is a mixture of personal decisions and influence of classmates.

In this case, we consider that not only the bad academic habits are transmitted but

also the good ones. We want to analyze in more detail which groups of students are

more susceptible to be influenced by good or bad academic students. Moreover,

in order to consider the uncertainty in the model, a bootstrapping approach is

employed. This technique permits to forecast model trends in the next few years

using confidence intervals. In addition, the model presented is validated verifying

that the 95% confidence intervals predicted collect the deterministic estimations

given in Chapter 2 in the academic years 2008 − 2009 to 2014 − 2015, and also

with new available data which have been published during the development of this
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dissertation. This improved model also allows us to forecast the abandon rates,

information which is not commonly available.

3.2 The epidemiological-mathematical model

3.2.1 Available data

The available data that we have considered in this chapter correspond to the aca-

demic results belonging to the students of the First and Second Stage of Bachiller-

ato during the academic years from 1999−2000 to 2008−2009, in both, state and

private high schools all over Spain. Notice that these data are the same as it has

been used in Chapter 2 although, in this case, it was possible to include the aca-

demic results of Spanish Bachillerato belonging to the academic year 2008− 2009

[41] since as time goes new Bachillerato academic results of this academic results

have been published. The available data can be seen in Table 3.1.

First Stage (Girls | Boys) Second Stage (Girls | Boys)

Academic % Promote % Non–Promote % Promote % Non–Promote

year (G1 | B1) (G1 | B1) (G2 | B2) (G2 | B2)

1999− 2000 19.68 | 15.24 9.75 | 9.33 16.21 | 11.64 9.52 | 8.63

2000− 2001 22.65 | 17.54 9.91 | 10.12 14.07 | 10.04 8.24 | 7.43

2001− 2002 19.23 | 14.23 8.61 | 9.10 17.86 | 13.06 9.32 | 8.59

2002− 2003 18.87 | 14.19 8.36 | 8.51 19.14 | 13.97 8.76 | 8.20

2003− 2004 19.93 | 15.06 7.74 | 7.88 19.19 | 13.80 8.44 | 7.96

2004− 2005 20.11 | 15.14 7.65 | 7.94 18.90 | 13.92 8.39 | 7.95

2005− 2006 20.07 | 15.39 7.64 | 7.93 19.14 | 13.97 8.08 | 7.78

2006− 2007 20.06 | 15.34 7.67 | 7.87 19.14 | 14.29 7.98 | 7.65

2007− 2008 20.25 | 15.82 7.57 | 7.66 19.37 | 14.61 7.60 | 7.12

2008− 2009 20.72 | 16.57 7.28 | 7.43 19.43 | 14.86 7.05 | 6.66

Table 3.1: The available data corresponding to the First and Second Stage
of Bachillerato, in both, state and private high schools all over Spain from
academic year 1999 − 2000 to 2008 − 2009. Each row shows the percentage of
Girls and Boys who promote (Gi | Bi) and do not promote (Gi | Bi) for each
level i = 1, 2 over the total Spanish Bachillerato students.
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3.2.2 Model building

We build our improved mathematical model based on the same ideas as we pre-

sented in the mathematical model in Chapter 2, that is, based on idea that indi-

vidual habits may be transmitted by social contact [29, 30] considering as main

idea that the academic performance of a student, Girl (G) or Boy (B), is a mixture

of her/his own study habits and the study habits of their classmates. We have also

taken into account pedagogical studies [42–45] which confirm that exist a signi-

ficative difference of academic performance depending on genre and also consider

that the transmission of academic habits is carried out between students of the

same academic level [23, 46, 47]. However, in this improved model we consider not

only the transmission of bad academic habits but also the transmissions of good

academic habits among Bachillerato students in the same academic level.

The subpopulations we have considered in this model are the same as the ones we

considered in the previous chapter (also time t in years), that is,

• Gi = Gi(t) is the number of girls who promote at time t, for i = 1, 2.

• Bi = Bi(t) is the number of boys who promote at time t, for i = 1, 2.

• Gi = Gi(t) is the number of girls who do not promote at time t, for i = 1, 2.

• Bi = Bi(t) is the number of boys who do not promote at time t, for i = 1, 2.

Furthermore, we consider, besides the assumptions we presented in the previous

model, additionally assumptions to build this improved model. The assumptions

considered to define this model are the following:

• Let us assume homogeneous population mixing following the lead of other

recently published works [30, 32–36, 50]. As it was stated in the previous

model (see Chapter 2), in this context, it is also considered that a particular

attitude of any student towards their studies not only can be influenced by

her/his autonomous behavior but also by their mates, the study center and,

in general, the social environment surrounded which may condition a student

to adopt different academic attitude.
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• Negative autonomous decision: For each Bachillerato academic level i = 1, 2,

students belonging to the promotable groups Gi or Bi, may change their

personal habit towards the study and this change may lead the students

to obtain bad academic results, moving to Gi or Bi. We assume that this

transition is proportional to the number of pupils in Gi and Bi, and it is

modeled by the linear terms αGi Gi and αBi Bi. According to educational

experts, it is assumed that the academic attitude is different in the same

educational level depending on gender: girls are usually more responsible for

their academic performance than boys in both the First and Second Stage

of Bachillerato [51]. This leads us to suppose the following restrictions:

αG1 < αB1 , α
G
2 < αB2 . (3.1)

In addition we will assume that:

αG1 > αG2 , α
B
1 > αB2 , (3.2)

because students in the Second Stage are more mature than their mates in

the First Stage [51].

• Negative habits transmission: For each Bachillerato academic level i = 1, 2,

students in Gi or Bi may move to the non–promotable group, Gi or Bi

respectively, due to the negative influence transmitted in the encounters

between students (girls and boys) in the non–promotable group in the same

academic level. Hence, these transitions are modeled by the non-linear terms

βGGi GiGi + βGBi GiBi and βBGi BiGi + βBBi BiBi, where βGGi , βGBi , βBGi and

βBBi are the corresponding transmission rates where the first letter in the

superscript denotes the group susceptible to acquire the bad study habit

and the second one denotes the group that transmit the bad study habit,

i = 1, 2, at time t. All specific factors and social encounters involved in the

transmission of the bad academic habits are embedded in β parameters.

• Positive autonomous decision: For each Bachillerato academic level i = 1, 2,

students belonging to the non–promotable group Gi or Bi, may change their

personal behavior towards their study habits and this change may lead the

students to improve their academic results, moving to Gi or Bi. We assume

that this transition is proportional to the number of pupils in Gi and Bi,

and it is modeled by the linear terms γGi Gi and γBi Bi.
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• Positive habits transmission: For each Bachillerato academic level i = 1, 2,

students in Gi or Bi may move to the promotable group, Gi or Bi re-

spectively, due to the positive influence transmitted in the encounters be-

tween students (girls and boys) in the promotable group in the same aca-

demic level. Hence, these transitions are modeled by the non-linear terms

δGGi GiGi + δGBi GiBi and δBGi BiGi + δBBi BiBi, where δGGi , δGBi , δBGi and

δBBi are the corresponding transmission rates where the first letter in the

superscript denotes the group susceptible to acquire the good study habit

and the second one denotes the group that transmit the good study habit,

i = 1, 2, at time t. All specific factors and social encounters involved in the

transmission of the good academic habits are embedded in δ parameters.

• Passing courses and graduation: According to the Spanish educational law,

all the students in G1 and B1, in September, transit automatically to G2 and

B2, respectively. Analogously, all the students in G2 and B2 will graduate

in September. These transitions are modeled by εG1, εG2, εB1, εB2, where

ε =

 1 if
9

12
+ j ≤ t ≤ 10

12
+ j,

0 otherwise,

where j = 0, 1, . . . , 9 correspond to academic years 1999−2000, 2000−2001,

. . ., 2008 − 2009, respectively. ε will take value 1 if a Bachillerato student

(girl/boy) passes into a higher academic level in September and 0 otherwise.

As in the previous model shown in Chapter 2, this parameter allows to model

the transitions of students who pass successfully in September (ninth month

of the year) from First to Second Stage of Bachillerato. This parameter also

models Bachillerato graduation, that is, when students finish the Second

Stage of Bachillerato (see Figure 3.1).

• Abandon: As we said previously, this new formulation of the model considers

non–completion of Bachillerato. For each Bachillerato academic level i =

1, 2, a proportion of the students in Gi or Bi with bad academic results

may leave the studies by autonomous decision. This situation is modeled by

the linear terms ηGi Gi and ηBi Bi. We also assume that these transitions are

proportional to the number of pupils in Gi and Bi.

• Access : New students enter into the Bachillerato in the month of September

in the promotable group, both girls and boys. It is modeled by the functions
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σG =

 τG if
9

12
+ j ≤ t ≤ 10

12
+ j,

0 otherwise,

σB =

 τB if
9

12
+ j ≤ t ≤ 10

12
+ j,

0 otherwise,

where j = 0, 1, . . . , 9 correspond to academic years 1999 − 2000, 2000 −
2001, . . ., 2008− 2009, respectively, and τG and τB to be determined. This

parameters allow us to model student input in the system.

Notice that, in contrast to the model developed in Chapter 2, in this improved

model it has considered to include these new assumptions: the access and abandon

to the system, the transmission of positive habits and the graduation of Bachiller-

ato students. Moreover, we also decompose the transmission parameters into good

and bad academic habits in order to analyze with more detail which group of stu-

dents are more susceptible to be influenced by good or bad academic students.

Thus, under the above assumptions, we build the non-linear system of ordinary

differential equations (3.3) using epiModel software (see Appendix A). epiModel

facilitates the implementation all the equations in Mathematica 8.0 [52] saving

developing time. This non-linear system of ordinary differential equations is built

in order to describe the dynamics of Bachillerato students academic performance,

where the unknown functions are Gi = Gi(t), Bi = Bi(t), Gi = Gi(t) and Bi =

Bi(t) (t denotes time in years). For the sake of clarity, each equation is written

in three lines, in the first one the linear terms, in the second one the non-linear

terms related to the transmission of bad study habits and in the third line the non-

linear terms related to the transmission of good study habits. We point out that

epiModel software was not applied in the previous mathematical model developed

in Chapter 2 since it contains equations which are easier to implement by hand.
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G′1(t) = σG − εG1(t)− αG1 G1(t) + γG1 G1(t)

− βGG1 G1(t)G1(t)
T (t)
− βGB1 G1(t)B1(t)

T (t)

+ δGG1 G1(t)G1(t)
T (t)

+ δGB1 G1(t)B1(t)
T (t)

,

G
′
1(t) = αG1 G1(t)− γG1 G1(t)− ηG1 G1(t)

+ βGG1 G1(t)G1(t)
T (t)

+ βGB1 G1(t)B1(t)
T (t)

− δGG1 G1(t)G1(t)
T (t)
− δGB1 G1(t)B1(t)

T (t)
,

G′2(t) = εG1(t)− εG2(t)− αG2 G2(t) + γG2 G2(t)

− βGG2 G2(t)G2(t)
T (t)
− βGB2 G2(t)B2(t)

T (t)

+ δGG2 G2(t)G2(t)
T (t)

+ δGB2 G2(t)B2(t)
T (t)

,

G
′
2(t) = αG2 G2(t)− γG2 G2(t)− ηG2 G2(t)

+ βGG2 G2(t)G2(t)
T (t)

+ βGB2 G2(t)B2(t)
T (t)

− δGG2 G2(t)G2(t)
T (t)
− δGB2 G2(t)B2(t)

T (t)
,

B′1(t) = σB − εB1(t)− αB1 B1(t) + γB1 B1(t)

− βBG1 B1(t)G1(t)
T (t)
− βBB1 B1(t)B1(t)

T (t)

+ δBG1 B1(t)G1(t)
T (t)

+ δBB1 B1(t)B1(t)
T (t)

,

B
′
1(t) = αB1 B1(t)− γB1 B1(t)− ηB1 B1(t)

+ βBG1 B1(t)G1(t)
T (t)

+ βBB1 B1(t)B1(t)
T (t)

− δBG1 B1(t)G1(t)
T (t)
− δBB1 B1(t)B1(t)

T (t)
,

B′2(t) = εB1(t)− εB2(t)− αB2 B2(t) + γB2 B2(t)

− βBG2 B2(t)G2(t)
T (t)
− βBB2 B2(t)B2(t)

T (t)

+ δBG2 B2(t)G2(t)
T (t)

+ δBB2 B2(t)B2(t)
T (t)

,

B
′
2(t) = αB2 B2(t)− γB2 B2(t)− ηB2 B2(t)

+ βBG2 B2(t)G2(t)
T (t)

+ βBB2 B2(t)B2(t)
T (t)

− δBG2 B2(t)G2(t)
T (t)
− δBB2 B2(t)B2(t)

T (t)
.

T (t) = G1(t) +G1(t) +B1(t) +B1(t) +G2(t) +G2(t) +B2(t) +B2(t)

(3.3)

The flow diagram, associated to the model, is plotted in Figure 3.1.
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Figure 3.1: Flow diagram of the epidemiological-mathematical model for dy-
namics of Bachillerato academic performance in Spain. The boxes represent
the students depending on their sex, stage and academic results. The arrows
denote the transits of students labeled by the expressions and parameters gov-
erning these transits.

3.2.3 Scaling the model

Data in Table 3.1 are related to the percentages of population meanwhile model

(3.3) is referred to the number of students where the total population is varying

in size over the time. Notice that the Access and Abandon of students in the

system is changing in each academic year. It leads us to transform (by scaling)

the model into the same units as data in order to fit the data with the model.

Hence, following the ideas developed in [54–56] about how to scale models where

the population is varying in size, our model is scaled. The resulting equations

are more complex and longer although they contain the same parameters as the

non-scaled model (3.3) keeping their meaning. For sake of clarity and, due to the

large size of the equations, we can see in detail an example of the development of

this process in [57].

Now, in order to avoid introducing new notation corresponding to the obtained

scaled model, we are going to keep the same notation to the subpopulation con-

sidered previously in our model (Section 3.2.2) corresponding to the percentage

of Girls and Boys in the promotable and non–promotable groups, in the First

and Second course of Bachillerato (G1(t), G1(t), B1(t), B1(t), G2(t), G2(t), B2(t),

B2(t)).
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Notice that in the model developed in Chapter 2 this process was not needed be-

cause, in that case, we considered a mathematical model where the population are

constant and there were not inputs and outputs as in this improved mathematical

model.

3.3 Deterministic parameter estimation and pre-

diction over the next few years

This section is addressed to estimate the parameters of model (3.3). This task

has been performed by fitting the scaled model in the mean square sense to the

available data collected in Table 3.1.

Once the model built by epiModel is scaled as it is indicated in Section 3.2.3,

the system of differential equations (3.3) (in its scaled version) is numerically

solved by taking as initial conditions the data of the academic year 1999 − 2000

(corresponding to t = 0) in Table 3.1. Note that we take the same initial conditions

as in the model shown in Chapter 2. Then, we obtain the model parameters

that best fit (in the mean square sense) following the same procedure shown in

Section 2.3, that is, the parameters that best fit the model using the Nelder-Mead

algorithm [53] included in the Mathematica command NMinimize. Tables 3.2 and

3.3 collect the estimation of the model parameters.

In Table 3.2, we show these values for both, negative and positive autonomous

decision and abandon rates. In Table 3.3, we show the corresponding values for

negative and positive transmission rates. According to the obtained parameters,

we could read into that:

• Negative and positive autonomous decision (α and γ parameters) is higher

for girls and boys in the First Stage of Bachillerato (see Table 3.2).

• Abandon rates (η parameter) are higher for girls belonging in both stages,

First and Second Stage of Bachillerato (see Table 3.2).

• Negative transmission of academic habits (β parameter) is higher from non–

promotable boys in First and non–promotable girls and boys in Second Stage
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of Bachillerato to the promotable girls in the First and Second Stage, respec-

tively. However, the boys are more negatively influence by the girls in case

of the First Stage and the boys in case of the Second one (see Table 3.3).

• Positive transmission of academic habits (δ parameter) is low from girls who

promote to non–promotable girls in the Second Stage while it is higher to

the non–promotable boys in the same academic level (see Table 3.3).

Negative autonomous Positive autonomous Abandon

decision decision rates

Gender Parameter Value Parameter Value Parameter Value

Girls αG1 0.04501 γG1 0.08685 ηG1 0.07480

αG2 0.00366 γG2 0.00385 ηG2 0.06431

Boys αB1 0.04610 γB1 0.11643 ηB1 0.02676

αB2 0.01208 γB2 0.04163 ηB2 0.00232

Table 3.2: Estimation of positive and negative autonomous decision and aban-
don rates.

Negative transmission Positive transmission

Gender Parameter Value Parameter Value

Girls βGG1 0.00002 δGG1 0.03699

βGB1 0.11093 δGB1 0.09793

βGG2 0.08939 δGG2 0.00607

βGB2 0.09837 δGB2 0.06962

Boys βBG1 0.08700 δBG1 0.01881

βBB1 0.02852 δBB1 0.04922

βBG2 0.01837 δBG2 0.11703

βBB2 0.11679 δBB2 0.07805

Table 3.3: Estimation of positive and negative transmission parameters.

Notice that, in contrast the model parameters shown in Chapter 2 (see Table

2.2), this improved model includes new parameters which are estimated (Tables

3.2 and 3.3). This makes difficult the comparison between both sets of estimated

parameters. However, according to the common parameters in both models related

to the autonomous decision of Bachillerato students (α and γ parameters), we

can see that the negative and positive autonomous decision parameters, in both
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models, seems to follow the same pattern, that is, they are higher in students in

the First Stage of Bachillerato than in the Second one.

Then, once the model is stated and the parameters estimated, we are able to

give predictions of each subpopulation over the next few years by computing the

solutions of the model for values of time t in the forthcoming future. In Table 3.4

we can see the model output for t = 1999−2000, . . . , 2014−2015. Note that from

2009 − 2010 the obtained values are the model predictions. It can be compared

the model output values for t = 1999 − 2000, . . . , 2008 − 2009 to the data values

in Table 3.1 to verify the goodness of the fitting. Graphically, it can be seen in

the left-hand side of the graphs in Figure 3.2 (Page 35).

First Stage of Bachillerato Second Stage of Bachillerato

(Girls | Boys) (Girls | Boys)

Academic % Promote % Non–Promote % Promote % Non–Promote

year (G1 | B1) (G1 | B1) (G2 | B2) (G2 | B2)

1999− 2000 19.68 | 15.24 9.75 | 9.33 16.21 | 11.64 9.52 | 8.63

2000− 2001 19.94 | 15.29 9.24 | 9.07 16.73 | 12.13 9.16 | 8.44

2001− 2002 20.14 | 15.34 8.80 | 8.82 17.18 | 12.61 8.85 | 8.26

2002− 2003 20.29 | 15.38 8.43 | 8.56 17.58 | 13.07 8.60 | 8.09

2003− 2004 20.39 | 15.42 8.11 | 8.31 17.94 | 13.51 8.39 | 7.93

2004− 2005 20.46 | 15.46 7.84 | 8.07 18.25 | 13.93 8.21 | 7.78

2005− 2006 20.49 | 15.50 7.60 | 7.83 18.54 | 14.35 8.06 | 7.63

2006− 2007 20.49 | 15.53 7.40 | 7.60 18.79 | 14.75 7.94 | 7.50

2007− 2008 20.47 | 15.57 7.22 | 7.37 19.02 | 15.14 7.84 | 7.37

2008− 2009 20.44 | 15.60 7.06 | 7.15 19.22 | 15.51 7.76 | 7.26

2009− 2010 20.38 | 15.63 6.92 | 6.94 19.40 | 15.88 7.69 | 7.15

2010− 2011 20.31 | 15.67 6.80 | 6.73 19.57 | 16.43 7.64 | 7.05

2011− 2012 20.22 | 15.70 6.69 | 6.53 19.72 | 16.58 7.60 | 6.96

2012− 2013 20.13 | 15.72 6.59 | 6.34 19.86 | 16.92 7.56 | 6.87

2013− 2014 20.03 | 15.75 6.50 | 6.16 19.99 | 17.25 7.54 | 6.79

2014− 2015 19.91 | 15.78 6.42 | 5.98 20.10 | 17.57 7.52 | 6.72

Table 3.4: The model output corresponding to the First and Second Stage
of Bachillerato, in both, state and private high schools all over Spain during
academic years 1999− 2000 to 2014− 2015. Each row shows the percentage of
girls and boys who promote (Gi | Bi) and do not promote (Gi | Bi) for each
level i = 1, 2. It can be compared the model output values for t = 1999 −
2000, . . . , 2008− 2009 to the data values in Table 3.1 to verify the goodness of
the fitting. Graphically, it can be seen in the left-hand side of the graphs in
Figure 3.2.
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3.4 Introducing uncertainty in the model param-

eters and predicting the next few years

Uncertainty is a key part of the real world and it should be considered in modeling.

Therefore, the assumption that parameters always are constant or the parameter

estimation does not contain errors is not appropriate. Thus, it is natural to con-

sider that the model parameters contain uncertainties. Hence, the deterministic

prediction can give us an idea about the future trends but the obtained values

may not be as accurate as expected.

Thus, we propose forecasting future evolutions using confidence intervals. In order

to calculate these confidence intervals, let us use the technique called bootstrap-

ping. Bootstrapping is an efficient method for determining a non–parametric prob-

abilistic estimation of model parameters [58–61]. Specifically, the non-parametric

probabilistic estimation of the parameters is performed using a residual bootstrap-

ping approach. In order to do it, we are going to follow the next steps:

Step 1 Compute the error terms for the estimated parameters (deterministic param-

eters) by the difference between our predictions model in Table 3.4 and their

corresponding real data in Table 3.1. We analyze these error terms to find

out their probabilistic distribution to resample them using bootstrapping.

Step 2 Obtain new perturbed data by adding the resampled error (obtained in

Step 1) to output of the model collected in Table 3.4 for t = 1999 −
2000, . . . , 2008− 2009.

Step 3 For each new data perturbation calculated (in Step 2), we compute the

parameters that best fit the model (in the mean square sense).

Step 4 For each set of parameter values obtained by fitting the model with the

perturbed data, we solve the model with these parameters and compute the

outputs in the required time instants.

Step 5 Taking 95% confidence interval (of each output) from each subpopulation by

percentile 2.5 and percentile 97.5 we will be able to conclude the percentage

of students who promote/do not promote.

Now, we will show the details of the procedure followed in this section.
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3.4.1 Error term analysis

In order to analyse the error terms and to obtain their probability distribution,

we have followed the next steps:

• We compute the output of the model with the parameters in Tables 3.2

and 3.3 at the time instants t = 1999− 2000, . . . , 2008− 2009 and compute

their differences (errors) with the corresponding data from Table 3.1. Let

us denote these errors by eG1(t), eG2(t), eB1(t), eB2(t), eG1
(t), eG2

(t), eB1
(t),

eB2
(t) for each subpopulation. The results are shown in Table 3.5.

First Stage of Bachillerato Second Stage of Bachillerato

(Girls | Boys) (Girls | Boys)

Academic % Promote % Non–Promote % Promote % Non–Promote

year eG1 (t) | eB1 (t) eG1
(t) | eB1

(t) eG2 (t) | eB2 (t) eG2
(t) | eB2

(t)

2000− 2001 (t=1) -0.02699 | -0.02250 -0.00660 | -0.01048 0.02657 | 0.02091 0.00919 | 0.01009

2001− 2002 (t=2) 0.00901 | 0.01107 0.00194 | -0.00293 -0.00678 | -0.00454 -0.00465 | -0.00331

2002− 2003 (t=3) 0.01418 | 0.01191 0.00072 | 0.00054 -0.01556 | -0.00907 -0.00160 | -0.00112

2003− 2004 (t=4) 0.00462 | 0.00372 0.00373 | 0.00435 -0.01251 | -0.00294 -0.00053 | -0.00033

2004− 2005 (t=5) 0.00347 | 0.00321 0.00189 | 0.00131 -0.00645 | 0.00013 -0.00181 | -0.00175

2005− 2006 (t=6) 0.00419 | 0.00099 -0.00038 | -0.00097 -0.00604 | 0.00377 -0.00019 | -0.00147

2006− 2007 (t=7) 0.00434 | 0.00195 -0.00273 | -0.00270 -0.00353 | 0.00458 -0.00041 | -0.00151

2007− 2008 (t=8) 0.00225 | -0.00241 -0.00351 | -0.00286 -0.00357 | 0.00526 0.00239 | 0.00255

2008− 2009 (t=9) -0.00284 | -0.00968 -0.00217 | -0.00276 -0.00204 | 0.00653 0.00707 | 0.00598

Table 3.5: Differences between the real data in Table 3.1 and the out-
put model in Table 3.4 corresponding to the First and Second Stage of
Bachillerato, both state and private high schools all over Spain during
academic years 1999 − 2000 to 2008 − 2009, for Girls|Boys who promote
(Gi|Bi) and do not promote (Gi | Bi) for each level i = 1, 2.

• We analyse if the error terms in Table 3.5 are correlated. Pearson correlation

coefficient was used. The results obtained indicate that the set of all pairs

of errors were correlated (see Table 3.6) as all the p-values associated to the

coefficients are statistically significative (p− values < 0.05).

• Taking into account the Box-Ljung test [62], we also analyze if each er-

ror term is autocorrelated. Note that this non-parametric test can be used

to check the hypothesis that the elements of a sequence are mutually in-

dependent. In our case, none of the test statistic values associated to

each error corresponding to each academic year is statistically significant
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eG1 (t) eB1 (t) eG1
(t) eB1

(t) eG2 (t) eB2 (t) eG2
(t) eB2

(t)

eG1 (t) Pearson correlation coef. 1 0.744 -0.968 -0.851 0.957 0.783 -0.945 -0.887

P-value 0.022* 0.000* 0.004* 0.000* 0.012* 0.000* 0.001*

eB1 (t) Pearson correlation coef. 0.744 1 -0.811 -0.791 0.803 0.880 -0.860 -0.775

P-value 0.022* 0.008* 0.011* 0.009* 0.002* 0.003* 0.014*

eG1
(t) Pearson correlation coef. -0.968 -0.811 1 0.771 -0.897 -0.900 0.939 0.819

P-value 0.000* 0.008* 0.015* 0.001* 0.001* 0.000* 0.007*

eB1
(t) Pearson correlation coef. -0.851 -0.791 0.771 1 -0.951 -0.661 0.851 0.978

P-value 0.004* 0.011* 0.015* 0.000* 0.053* 0.004* 0.000*

eG2 (t) Pearson correlation coef. 0.957 0.803 -0.897 -0.951 1 0.735 -0.961 -0.940

P-value 0.000* 0.009* 0.001* 0.000* 0.024* 0.000* 0.000*

eB2 (t) Pearson correlation coef. 0.783 0.880 -0.900 -0.661 0.735 1 -0.813 -0.710

P-value 0.012* 0.002* 0.001* 0.053* 0.024* 0.008* 0.032*

eG2
(t) Pearson correlation coef. -0.945 -0.860 0.939 0.851 -0.961 -0.813 1 0.836

P-value 0.000* 0.003* 0.000* 0.004* 0.000* 0.008* 0.005*

eB2
(t) Pearson correlation coef. -,887 -,775 ,819 ,978 -,940 -,710 0.836 1

P-value 0.001* 0.014* 0.007* 0.000* 0.000* 0.032* 0.005*

* P-value statistically significative to 95%

Table 3.6: Matrix of Pearson correlation coefficients for the
error terms.

(p − value > 0.05), therefore the claim that there is autocorrelation should

be rejected.

• The normality of the distribution of errors is determined by using a non-

parametric test. Taking into account that our error terms are correlated,

E-statistic (Energy) Test of Multivariate Normality is applied [63]. In our

case, this test has a p-value equal to 0.9963. Therefore, we can accept that

errors eG1(t), eB1(t), eG1
(t), eB1

(t), eG2(t), eB2(t), eG2
(t) and eB2

(t) present

a multivariate normal distribution. To be precise, we accept that

e(t) =
(
eG1(t), eG1

(t), eB1(t), eB1
(t), eG2(t), eG2

(t), eB2(t), eB2
(t)
)
,

where

e(t) ∼ N8 (µe,Σe) , (3.4)

being the components of vector µe the expectations of each component of

vector e(t) and Σe its variance-covariance matrix. These parameters have

been estimated using the errors in Table 3.5:
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µe = (0.0014,−0.0008,−0.0033, 0.0011,−0.0002,−0.0018, 0.0027, 0.0010) ,

Σe =


1.3464 10−4 · · · −4.5276 10−5

2.8025 10−5 · · · −1.1065 10−5

...
. . .

...

−4.52763 10−5 · · · 1.9350 10−5

 .

3.4.2 Generating new output perturbed data

The process carried out to generate new output perturbed data has been the fol-

lowing. To our approach, from a computational standpoint, we consider enough to

generate 1 000 random error terms following the multivariate normal distribution

given by the expression (3.4) assumed by E-statistic (Energy) Test of Multivariate

Normality. For each one of these 1 000 random error terms:

• We add these error terms (1 000 times) to data in Table 3.4 for t = 1999−
2000, . . . , 2008− 2009, obtaining a new set of perturbed data. Note that we

obtained 1 000 sets of perturbed data.

• And we compute the parameters which best fit the model with the set of

perturbed data (in the least square sense) and store them, using the same

procedure we used to estimate the parameters in Tables 3.2 and 3.3. Note

that this procedure allows us to have 1 000 sets of values for the parameters

of the model.

3.4.3 Obtaining confidence intervals for model outputs

Finally, the confidence intervals are obtained as follows:

• For each one of the 1 000 set of parameters, we solve the system of differential

equations (3.3) in order to compute the model output for each subpopulation

of students and t = 2009− 2010, . . . , 2014− 2015.

• For each t and each subpopulation, we have a set of 1 000 model output

values. Then, we compute the mean, median and the 95% confidence interval
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by percentiles 2.5 and 97.5. These confidence intervals give us the non–

parametric probabilistic prediction of the evolution in the next few years.

The obtained results can be seen in Table 3.7.

Thus, in Figure 3.2 (Page 35) we can see graphically, for each subpopulation, the

data from Table 3.4 (red points), the deterministic model prediction (line), the

95% confidence intervals (error bars). The points in the middle of the confidence

intervals are the mean of the 1 000 outputs for each subpopulation at each time

instant where we have data about the academic results of Spanish Bachillerato

students. These mean values are the ones appearing in Table 3.7. Also, we can

observe that there is a slight decreasing in the non–promotable groups. However,

the sum of the students in non–promotable groups predicted is around 27% similar

to the corresponding percentage obtained in the mathematical model developed

in Chapter 2 (around 30%). Furthermore, we can see how uncertainty increases

in the predictions for the two stages of promoted girls and the First Stage of

promoted boys due to the own uncertainty in the process to generate the 1 000

set of parameters to obtain the 1 000 model outputs.

As time goes, new academic results have been published, in particular, the aca-

demic results of students of Bachillerato in the academic year 2009 − 2010, data

that could not be used initially to fit the model because they were not available

at that time. These new data allow us to compare the obtained predictions from

our model with the new real data. In Figure 3.2 (Page 35), we also include,

for each subpopulation, the obtained academic results during the academic year

2009 − 2010 (square black points). These values are the ones appearing in Table

3.8. We can see that probabilistic predictions by 95% confidence intervals either

the black points lie inside the confidence intervals or they are close of them making

and error in order of, at most, 10−2 in absolute terms.

Furthermore, to remark that the predictions in Chapter 2 are also either in the

the obtained confidence intervals or near of them. The order of the absolute error

is, at most, of 10−2 (see Tables B.1 and B.2 in Appendix B).
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Group Time (t) Mean Median Confidence interval

G1 2009− 2010 0.20205 0.20414 [ 0.17993 , 0.21227 ]

G1 2009− 2010 0.06851 0.06866 [ 0.06512 , 0.07041 ]

G2 2009− 2010 0.18859 0.19092 [ 0.16987 , 0.19554 ]

G2 2009− 2010 0.07847 0.07875 [ 0.07564 , 0.08020 ]

B1 2009− 2010 0.16101 0.15807 [ 0.15286 , 0.18575 ]

B1 2009− 2010 0.06853 0.06834 [ 0.06574 , 0.07340 ]

B2 2009− 2010 0.16176 0.16099 [ 0.15632 , 0.17254 ]

B2 2009− 2010 0.07100 0.07097 [ 0.06852 , 0.07391 ]

G1 2010− 2011 0.20126 0.20346 [ 0.17870 , 0.21222 ]

G1 2010− 2011 0.06719 0.06734 [ 0.06333 , 0.06920 ]

G2 2010− 2011 0.18999 0.19241 [ 0.16938 , 0.19734 ]

G2 2010− 2011 0.07787 0.07816 [ 0.07471 , 0.07969 ]

B1 2010− 2011 0.16165 0.15852 [ 0.15283 , 0.18840 ]

B1 2010− 2011 0.06646 0.06624 [ 0.06346 , 0.07173 ]

B2 2010− 2011 0.16557 0.16470 [ 0.15965 , 0.17752 ]

B2 2010− 2011 0.06994 0.06991 [ 0.06728 , 0.07287 ]

G1 2011− 2012 0.19969 0.20220 [ 0.17673 , 0.21202 ]

G1 2011− 2012 0.06607 0.06630 [ 0.06179 , 0.06830 ]

G2 2011− 2012 0.19053 0.19355 [ 0.16803 , 0.19898 ]

G2 2011− 2012 0.07744 0.07770 [ 0.07392 , 0.07949 ]

B1 2011− 2012 0.16306 0.15924 [ 0.15291 , 0.19165 ]

B1 2011− 2012 0.06453 0.06430 [ 0.06137 , 0.07001 ]

B2 2011− 2012 0.16957 0.16870 [ 0.16287 , 0.18219 ]

B2 2011− 2012 0.06903 0.06899 [ 0.06613 , 0.07221 ]

G1 2012− 2013 0.19730 0.20043 [ 0.17223 , 0.21172 ]

G1 2012− 2013 0.06510 0.06536 [ 0.06044 , 0.06749 ]

G2 2012− 2013 0.19021 0.19409 [ 0.16952 , 0.20041 ]

G2 2012− 2013 0.07715 0.07760 [ 0.07322 , 0.07948 ]

B1 2012− 2013 0.16530 0.16126 [ 0.15361 , 0.19406 ]

B1 2012− 2013 0.06277 0.06247 [ 0.05941 , 0.06848 ]

B2 2012− 2013 0.17378 0.17278 [ 0.16616 , 0.18630 ]

B2 2012− 2013 0.06826 0.06826 [ 0.06513 , 0.07170 ]

G1 2013− 2014 0.19497 0.19850 [ 0.17036 , 0.21135 ]

G1 2013− 2014 0.06416 0.06444 [ 0.05934 , 0.06691 ]

G2 2013− 2014 0.18999 0.19112 [ 0.16989 , 0.20172 ]

G2 2013− 2014 0.07686 0.07736 [ 0.07242 , 0.07916 ]

B1 2013− 2014 0.16736 0.16410 [ 0.15372 , 0.19705 ]

B1 2013− 2014 0.06109 0.06072 [ 0.05772 , 0.06713 ]

B2 2013− 2014 0.17783 0.17656 [ 0.16943 , 0.19088 ]

B2 2013− 2014 0.06756 0.06760 [ 0.06426 , 0.07116 ]

G1 2014− 2015 0.19361 0.19730 [ 0.16837 , 0.21089 ]

G1 2014− 2015 0.06315 0.06351 [ 0.05798 , 0.06610 ]

G2 2014− 2015 0.19077 0.19262 [ 0.16786 , 0.20304 ]

G2 2014− 2015 0.07645 0.07694 [ 0.07180 , 0.07888 ]

B1 2014− 2015 0.16821 0.16442 [ 0.15377 , 0.19860 ]

B1 2014− 2015 0.05940 0.05898 [ 0.05586 , 0.06554 ]

B2 2014− 2015 0.18140 0.17994 [ 0.17236 , 0.19516 ]

B2 2014− 2015 0.06680 0.06685 [ 0.06333 , 0.07060 ]

Table 3.7: The 95% confidence interval prediction corresponding to the
First and Second Stage of Bachillerato, in both, state and private high
schools all over Spain during academic years 2009−2010 to 2014−2015.
Each row shows the rate of girls/boys who promote (Gi|Bi) and do not
promote (Gi|Bi) for each level i = 1, 2. Graphically, it can be seen in
Figure 3.7.
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Figure 3.2: Real data (red points on the left side of vertical axis) and
prediction (line) with confidence intervals (on the right side of verti-
cal axis) of the academic performance of Bachillerato Spanish students
over the academic years 1999 − 2000 to 2014 − 2015. Smaller confi-
dence intervals, represent less uncertainty in the predictions, the points
in the middle of the confidence intervals are their means. The square
black point represents the last academic results published recently cor-
responding to the academic year 2009 − 2010. Notice that each graph
has its own scale.
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Group Time (t) Real data Confidence Interval Absolute

Predicted Error

G1 2009− 2010 0.20923 [ 0.17993 , 0.21227 ] −
G1 2009− 2010 0.07005 [ 0.06512 , 0.07041 ] −
G2 2009− 2010 0.19525 [ 0.16987 , 0.19554 ] −
G2 2009− 2010 0.06399 [ 0.07564 , 0.08020 ] 0.01165

B1 2009− 2010 0.17037 [ 0.15286 , 0.18575 ] −
B1 2009− 2010 0.07485 [ 0.06574 , 0.07340 ] 0.00145

B2 2009− 2010 0.15286 [ 0.15632 , 0.17254 ] 0.00346

B2 2009− 2010 0.06340 [ 0.06852 , 0.07391 ] 0.00512

Table 3.8: The 95% confidence interval prediction, the real academic results
and the distance between these real data from its corresponding confidence
interval. The dash indicates that the point lies inside its confidence interval.
Data corresponding to the First and Second Stage of Bachillerato, in both, state
and private high schools all over Spain during the academic year 2009 − 2010.
Each row shows the rate of girls/boys who promote (Gi|Bi) and do not promote
(Gi|Bi) for each level i = 1, 2.

3.5 Abandon analysis

One of the most difficult aspects in academic performance is the study and anal-

ysis of the abandon, because there are not much available data and the experts

still do not agree with a consensuoused definition [64]. In fact, we have made a

decision in order to include this issue in the model and this is to consider abandon

when, during the academic year, the student leaves the academic system. It is an

improvement over the model presented in Chapter 2. The student may resume

her/his studies in the future, but our model will consider her/him as a new stu-

dent. Thus, the model allows us to quantify the number of students who leave

yearly the system by computing:

∫ t+1

t

(ηG1 G1(s) + ηG2 G2(s) + ηB1 B1(s) + ηB2 B2(s)) ds, (3.5)

where t = 2009− 2010, . . . , 2013− 2014. The results obtained by 3.5 are collected

in Table 3.9.

Moreover, taking advantage of the bootstrapping analysis carried out in Section

3.4, we can predict the evolution of abandon rate in the next few years by means
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Academic Total

year Percentage of abandon

1999− 2000 1.58

2000− 2001 1.51

2001− 2002 1.46

2002− 2003 1.41

2003− 2004 1.37

2004− 2005 1.33

2005− 2006 1.30

2006− 2007 1.27

2007− 2008 1.25

2008− 2009 1.22

2009− 2010 1.21

2010− 2011 1.19

2011− 2012 1.17

2012− 2013 1.16

2013− 2014 1.15

2014− 2015 1.13

Table 3.9: Estimation of the percentage of abandon
in Spanish Bachillerato during the academic years from
1999− 2000 to 2014− 2015.

of 95% confidence intervals. The obtained results are shown in Table 3.10.

Academic Year 2009− 2010 2010− 2011 2011− 2012 2012− 2013 2013− 2014 2014− 2015

Mean 1.25 1.23 1.21 1.19 1.18 1.16

Median 1.25 1.23 1.21 1.19 1.18 1.16

Percentile 2.5 1.20 1.17 1.15 1.13 1.12 1.10

Percentile 97.5 1.30 1.27 1.25 1.23 1.23 1.21

Table 3.10: Descriptive analysis of the percentage of abandon in Spanish
Bachillerato during the academic years from 2009− 2010 to 2014− 2015.

According to the estimated abandon rates given in Tables 3.9 and 3.10, we can

see that the evolution of the number of students who leave the high school seems

to decrease slightly over the next few years.
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3.6 Conclusions

Based on the dynamical model developed in Chapter 2 in which we considered,

among other factors, the transmission of bad academic habits, in this chapter,

we propose an improved dynamical model to study the students’ academic per-

formance in high school in Spain. The main idea behind our approach is that

academic performance depends on students’ autonomous academic behavior and

the influence of their classmates with both bad and good academic habits. The

abandon is a crucial issue to analyze academic underachievement that has also

been considered in this model. To make more realistic our approach, we have

included uncertainty in the study. This fact allows us to predict the students’

academic performance in the next few years through confidence intervals. In ad-

dition, the model presented in this chapter is validated verifying that the 95%

confidence intervals predicted either collect or are nearby (with an error, at most,

of order 10−2, in absolute terms) of the deterministic estimations provided by the

model developed in Chapter 2. Furthermore, the model predictions for 2009−2010

have been compared with the recently available data with aceptable predictions

for most of the student groups.

The results inform us that there is a slight decreasing of the percentage of students

in the non–promotable groups and who leave the high school. It seems to reach a

stationary situation passing, on average, from 28% in the academic year 2010 to

26.5% in 2015. See Tables 3.9 and 3.10 and, graphically, Figure 3.2. The current

and predicted scenarios are still worrying as around 27% of the students have bad

academic results similar to the percentage obtained in the mathematical model

developed in Chapter 2 (around 30%).

Finally, we point out that in Chapter 4, we will take advantage of the ability of

the proposed model to be adapted to other foreign academic systems. This will be

made by applying the model to the educational system belonging to the German

region of North Rhine-Westphalia.
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Chapter 4

Modelling the dynamics of the

students academic performance in

the German region of North

Rhine-Westphalia: an

epidemiological approach with

uncertainty

4.1 Introduction

In the previous chapter, we have applied the proposed model to the Spanish ed-

ucational level of Bachillerato. In this chapter, we adopt the improved model

developed in Chapter 3 to study the dynamics of the students academic perfor-

mance in the German region of North Rhine-Westphalia. This study has been

motivated by my research stay during three months (from 7th April to 29th June,

2012) in Bergische Universität Wuppertal (Germany) working under supervision

of Prof. M. Ehrhardt. This study has been possible since the required data were

available.

This new approach is supported by the same idea that we stated in the Spanish

mathematical model in the Chapter 3, that is, both, good and bad study habits,
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are susceptible to be transmitted among students in the same academic level. This

model also allows us to forecast the student academic performance by means of

confidence intervals over the next few years. Moreover, this application could be of

great interest since it allows us to prove that our dynamic model stated in Chapter

3 is not only suitable to the Spanish Bachillerato with two educational levels but

also to other educational systems, in particular, for the German educational system

in North Rhine-Westphalia. This also allows us to compare the academic results

in the last courses of high school in both countries. Following the same reasons as

we presented for the Spanish academic performance, we apply our mathematical

model focusing on the last courses of the high school before accessing the university

which, in this case and according to the German educational system [65, 66], are

made up of three educational courses (Levels 11, 12 and 13).

4.2 Model building

4.2.1 Available data

According to the data and in the same way we set out in the Spanish model

developed in Chapter 3, we consider that a student promotes if, in case the course

finishes now, she/he will pass to the next level or graduate satisfying the current

legislation into force in North Rhine-Westphalia [65]. Otherwise, this student is

in the non–promote group. In contrast to the Spanish educational system, the

German legislation in North Rhine-Westphalia establishes that the grades are

”very good” (1), ”good” (2), ”satisfactory” (3), ”sufficient” (4), ”bad” (5) and

”very bad” (6). A student in Level 11 and 12 does not promote to the next level

if she/he has in 2 or more main subjects (like Maths, Physics, German, English)

or in 3 or more minor subjects (like Music, Arts, Sports), a grade of 5 or 6. In

case the student is in the last level (Level 13), she/he has to pass all the subjects

to obtain the grade [66, 67].

The available data that we have considered in this chapter correspond to the

academic results belonging to the students of the last three courses of high schools

during the academic years from 2006 − 2007 to 2010 − 2011, in both, state and

private high schools all over North Rhine-Westphalia, divided by gender, level and

promote/non–promote. The corresponding data can be seen in Table 4.1 [68]. In
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GIRLS 2006− 2007 2007− 2008 2008− 2009 2009− 2010 2010− 2011

Level 11 % Promote 19.37 19.09 19.1 19.24 18.27

% Non–Promote 0.81 0.67 0.59 0.53 0.44

Level 12 % Promote 18.23 17.96 18.15 17.77 18.29

% Non–Promote 0.75 0.68 0.58 0.47 0.47

Level 13 % Promote 15.34 15.96 15.94 16.25 16.44

% Non–Promote 0.25 0.25 0.19 0.19 0.17

BOYS 2006− 2007 2007− 2008 2008− 2009 2009− 2010 2010− 2011

Level 11 % Promote 16.05 15.92 15.95 16.3 15.87

% Non–Promote 0.96 0.88 0.81 0.73 0.6

Level 12 % Promote 14.7 14.73 14.77 14.72 15.21

% Non–Promote 0.85 0.81 0.67 0.67 0.64

Level 13 % Promote 12.38 12.77 13.04 12.94 13.39

% Non–Promote 0.31 0.28 0.21 0.19 0.21

Table 4.1: The available data corresponding to Levels 11, 12 and 13, in
both, state and private high schools all over North Rhine-Westphalia from
academic year 2006 − 2007 to 2010 − 2011 divided by gender, level and
promote/non–promote over the total number of students in the three lev-
els.

contrast to the Spanish academic results shown in Table 3.1. In particular, from

2006 − 2007 to 2008 − 2009, we notice a remarkable difference in relation to the

percentage of students not promoted being much lower in the case of the German

students with figures lower than 1%.

4.2.2 The type-epidemiological model

As it has been stated previously in our Spanish mathematical model, we fit our

mathematical model to the German academic results based on ideas of Christakis

and Fowler where individual habits may be transmitted by social contact [29, 30]

considering as main idea that the academic performance of a student, Girl (G)

or Boy (B), is a mixture of her/his own study habits and the study habits, good

or bad, of their classmates. We have also taken into account pedagogical studies

[42–45] which confirm that exist a significative difference of academic performance

depending on genre and also consider that the transmission of academic habits is

carried out between students of the same academic level [23, 46, 47].

The subpopulation of the model will be (time t in years and i = 1 for Level 11,

i = 2 for Level 12 and i = 3 for Level 13):

• Gi = Gi(t) is the number of girls of Level i who promote at time t.
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• Bi = Bi(t) is the number of boys of Level i who promote at time t.

• Gi = Gi(t) is the number of girls of Level i who do not promote at time t.

• Bi = Bi(t) is the number of boys of Level i who do not promote at time t.

To build the German model, we will assume the same hypotheses we have consid-

ered in Chapter 3 to formulate the Spanish model. These assumptions are:

• Let us assume a homogeneous population mixing. We follow the same rea-

soning as we stated in the improved Spanish model (Chapter 3) and also

following to other recently published works [30, 32–36, 50] in which it is

considered that a particular attitude of any person is not only influenced

by her/his autonomous behaviour but also by the social environment sur-

rounded.

• Negative autonomous decision: For each academic level, i = 1, 2, 3, students

belonging to the promotable groups Gi or Bi may change their personal

study habits and, this change may lead them to obtain bad academic results,

moving to Gi or Bi. We assume that this transition is proportional to the

number of pupils in Gi and Bi, and it is modeled by the linear terms αGi Gi

and αBi Bi. According to educational experts, as we considered in the Spanish

model, it is assumed that the academic attitude is different in the same

educational level depending on gender: girls are usually more responsible for

their academic performance than boys [51]. This leads us to suppose the

following inequality constraints:

αG1 < αB1 , α
G
2 < αB2 , α

G
3 < αB3 . (4.1)

In addition, we will assume that:

αG1 > αG2 > αG3 , α
B
1 > αB2 > αB3 , (4.2)

because students in the higher levels are more mature than their mates in

the lower levels [51].

• Negative habits transmission: For each academic level, i = 1, 2, 3, students

in Gi or Bi may move to the non–promotable group, Gi or Bi respectively,
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due to the negative influence transmitted by encounters between students

(girls and boys) in the non–promotable group in the same academic level.

Hence, these transitions are modeled by the non-linear terms βGGi GiGi +

βGBi GiBi and βBGi BiGi + βBBi BiBi, where βGGi , βGBi , βBGi and βBBi are the

corresponding transmission rates where the first letter in the superindexes

denotes the group susceptible to acquire bad study habits and, the second

one denotes the group that transmit bad study habits. All specific factors

and social encounters involved in the transmission of the bad academic habits

are embedded in β parameters.

• Positive autonomous decision: Analogously to negative autonomous deci-

sion, students belonging to the non–promotable groups may change their

personal behavior towards their study habits and, this change may lead the

students to improve their academic results, moving to Gi or Bi. We assume

that this transition is proportional to the number of pupils in Gi and Bi,

and it is modeled by the linear terms γGi Gi and γBi Bi.

• Positive habits transmission: Students in non–promotable group may move

to the promotable groups due to the positive influence transmitted in the

encounters between students (girls and boys) in the promotable group in the

same academic level. Hence, these transitions are modeled by the non-linear

terms δGGi GiGi + δGBi GiBi and δBGi BiGi + δBBi BiBi. The interpretation

of the transmission rate parameters is the same as in the negative habits

transmission.

• Passing courses and graduation: The students in Gi and Bi, in September,

transit automatically to next level Gi+1 and Bi+1, respectively, for i = 1, 2.

Students in G3 and B3 will graduate in September according to the German

educational law in force [65] and it was also defined in the Spanish model.

These transitions are modeled by εG1, εG2, εG3, εB1, εB2, εB3, where

ε =

 1 if
9

12
+ j ≤ t ≤ 10

12
+ j,

0 otherwise,

where j = 0, 1, 2, 3, 4, correspond to the academic years 2006−2007, . . . , 2010−
2011, respectively. As in the previous model shown in Chapter 3, this pa-

rameter allows to model the transitions of students who pass successfully in
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September (ninth month of the year) from Levels: 11 to 12 and 12 to 13, as

well as, when the graduation takes place.

• Abandon: For each academic level, i = 1, 2, 3, a proportion of the students in

Gi or Bi with bad academic results may leave their studies by autonomous

decision. We also assume that these transitions are proportional to the

number of pupils in Gi and Bi. This situation is modeled by the linear

terms ηGi Gi and ηBi Bi.

• Access : New students enter into the Level 11 in the month of September in

the promotable groups of girls and boys. It is modeled by the functions

σG =

 τG if
9

12
+ j ≤ t ≤ 10

12
+ j,

0 otherwise,
σB =

 τB if
9

12
+ j ≤ t ≤ 10

12
+ j,

0 otherwise,

where j = 0, 1, 2, 3, 4, correspond to the academic years 2006−2007, . . . , 2010−
2011, respectively, and τG and τB to be determined. As in the improved

Spanish model, this parameters allow us to model the incorporation of stu-

dents into the Level 11 (see Figure 4.1).

Thus, under the above assumptions, we build the non-linear system of ordinary

differential equations (4.3)-(4.5) using epiModel software (see Appendix A), as it

was performed for the Spanish model in Chapter 3. This non-linear system is

built in order to describe the dynamics of students academic performance in the

German region of North Rhine-Westphalia.
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G′1(t) = σG − εG1(t)− αG1 G1(t) + γG1 G1(t)

−
[
βGG1 G1(t)G1(t)

T (t)
+ βGB1 G1(t)B1(t)

T (t)

]
+
[
δGG1 G1(t)G1(t)

T (t)
+ δGB1 G1(t)B1(t)

T (t)

]
,

G
′
1(t) = αG1 G1(t)− γG1 G1(t)− ηG1 G1(t)

+
[
βGG1 G1(t)G1(t)

T (t)
+ βGB1 G1(t)B1(t)

T (t)

]
−
[
δGG1 G1(t)G1(t)

T (t)
+ δGB1 G1(t)B1(t)

T (t)

]
,

G′2(t) = εG1(t)− εG2(t)− αG2 G2(t) + γG2 G2(t)

−
[
βGG2 G2(t)G2(t)

T (t)
+ βGB2 G2(t)B2(t)

T (t)

]
+
[
δGG2 G2(t)G2(t)

T (t)
+ δGB2 G2(t)B2(t)

T (t)

]
,

G
′
2(t) = αG2 G2(t)− γG2 G2(t)− ηG2 G2(t)

+
[
βGG2 G2(t)G2(t)

T (t)
+ βGB2 G2(t)B2(t)

T (t)

]
−
[
δGG2 G2(t)G2(t)

T (t)
+ δGB2 G2(t)B2(t)

T (t)

]
,

G′3(t) = εG2(t)− εG3(t)− αG3 G3(t) + γG3 G3(t)

−
[
βGG3 G3(t)G3(t)

T (t)
+ βGB3 G3(t)B3(t)

T (t)

]
+
[
δGG3 G3(t)G3(t)

T (t)
+ δGB3 G3(t)B3(t)

T (t)

]
,

G
′
3(t) = αG3 G3(t)− γG3 G3(t)− ηG3 G3(t)

+
[
βGG3 G3(t)G3(t)

T (t)
+ βGB3 G3(t)B3(t)

T (t)

]
−
[
δGG3 G3(t)G3(t)

T (t)
+ δGB3 G3(t)B3(t)

T (t)

]
,

(4.3)

B′1(t) = σB − εB1(t)− αB1 B1(t) + γB1 B1(t)

−
[
βBG1 B1(t)G1(t)

T (t)
+ βBB1 B1(t)B1(t)

T (t)

]
+
[
δBG1 B1(t)G1(t)

T (t)
+ δBB1 B1(t)B1(t)

T (t)

]
,

B
′
1(t) = αB1 B1(t)− γB1 B1(t)− ηB1 B1(t)

+
[
βBG1 B1(t)G1(t)

T (t)
+ βBB1 B1(t)B1(t)

T (t)

]
−
[
δBG1 B1(t)G1(t)

T (t)
+ δBB1 B1(t)B1(t)

T (t)

]
,

B′2(t) = εB1(t)− εB2(t)− αB2 B2(t) + γB2 B2(t)

−
[
βBG2 B2(t)G2(t)

T (t)
+ βBB2 B2(t)B2(t)

T (t)

]
+
[
δBG2 B2(t)G2(t)

T (t)
+ δBB2 B2(t)B2(t)

T (t)

]
,

B
′
2(t) = αB2 B2(t)− γB2 B2(t)− ηB2 B2(t)

+
[
βBG2 B2(t)G2(t)

T (t)
+ βBB2 B2(t)B2(t)

T (t)

]
−
[
δBG2 B2(t)G2(t)

T (t)
+ δBB2 B2(t)B2(t)

T (t)

]
,

B′3(t) = εB2(t)− εB3(t)− αB3 B3(t) + γB3 B3(t)

−
[
βBG3 B3(t)G3(t)

T (t)
+ βBB3 B3(t)B3(t)

T (t)

]
+
[
δBG3 B3(t)G3(t)

T (t)
+ δBB3 B3(t)B3(t)

T (t)

]
,

B
′
3(t) = αB3 B3(t)− γB3 B3(t)− ηB3 B3(t)

+
[
βBG3 B3(t)G3(t)

T (t)
+ βBB3 B3(t)B3(t)

T (t)

]
−
[
δBG3 B3(t)G3(t)

T (t)
+ δBB3 B3(t)B3(t)

T (t)

]
,

(4.4)
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Figure 4.1: Flow diagram of the model (4.3)-(4.5). The boxes represent
the students depending on their gender, level and academic results. The
arrows denote the transit of students labelled by the cause of the flow.

T (t) = G1(t) +G1(t) +B1(t) +B1(t) +G2(t) +G2(t) +B2(t) +B2(t)

+ G3(t) +G3(t) +B3(t) +B3(t).

(4.5)

The flow diagram, associated to the above model, is plotted in Figure 4.1.

4.3 Scaling, fitting and predictions

Following the same procedure adopted to scale the Spanish model shown in Section

3.2.3, the German model has also been scaled. In this case, over again, in order to

avoid introducing new notation, we will consider that the subpopulations G1(t),

G1(t), B1(t), B1(t), G2(t), G2(t), B2(t), B2(t), G3(t), G3(t), B3(t), B3(t) corre-

spond to the percentage of Girls and Boys in the promotable and non–promotable

groups in the Levels 11, 12 and 13, respectively. As we mentioned previously, this

process can be entirely seen in [57].
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The system of differential equations (4.3)-(4.5), in its scaled version, is numerically

solved by taking as initial conditions the data of the academic year 2006 − 2007

(corresponding to t = 0). We also compute the model parameters that best fit

(in the mean square sense) the scaled model following the same procedure shown

in the Spanish model (see Section 2.3). The best estimated model parameters are

collected in Tables 4.2 and 4.3.

According to the foregoing definition of the model parameters, we notice that:

• Negative autonomous decision (α parameter) is very low for both girls and

boys in the three educational levels (Level 11, 12 and 13) (see Table 4.2).

• Positive autonomous decision (γ parameter) is much higher in case of the

girls in the Level 12 and boys in the Levels 11 and 12, respectively (see Table

4.2).

• Abandon rates seems to be higher for girls in the Levels 11 and 13 and for

boys in Levels 11 and 12 (see Table 4.2).

• Negative transmission (β parameter). Promotable girls in the Level 13 are

more negatively influenced by non–promotable girls and boys in the same

academic level while promotable boys in Level 11 also by the non–promotable

girls. Boys in Levels 11 and 12 are also negatively influenced by non–

promotable boys in their corresponding levels (see Table 4.3).

• Positive transmission (δ parameter). Non–promotable girls in Levels 11 and

12 are more positively influenced by promotable boys and also by promotable

girls in case the group of non–promotable girls in Level 12. Besides, non–

promotable boys in Levels 11 and 13 are more positively influenced by other

promotable boys in their corresponding levels and also by other promotable

girls in case of the non–promotable boys in Level 12 (see Table 4.3).

Comparing these parameters against the corresponding ones to the Spanish model

(see Tables 3.2 and 3.3 in Section 3.3), some significant differences can be quoted.

The rates of negative autonomous decision and the abandon are lower in the

case of German model. Whereas, the rates of transmission of the positive and

negative academic habits in both countries are varying depending on the different

educational levels.
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Negative autonomous Positive autonomous Abandon

decision decision rates

Gender Parameter Value Parameter Value Parameter Value

Girls αG1 0.00060 γG1 0.03113 ηG1 0.12966

αG2 0.00000 γG2 0.14896 ηG2 0.00163

αG3 0.00000 γG3 0.00061 ηG3 0.11675

Boys αB1 0.00590 γB1 0.14688 ηB1 0.12641

αB2 0.00585 γB2 0.00799 ηB2 0.14986

αB3 0.00004 γB3 0.14933 ηB3 0.00691

Table 4.2: Estimation of positive and negative autonomous decision and abandon rates.

Negative transmission Positive transmission

Gender Parameter Value Parameter Value

Girls βGG1 0.05398 δGG1 0.06951

βGB1 0.08182 δGB1 0.11225

βGG2 0.00093 δGG2 0.14570

βGB2 0.00118 δGB2 0.14777

βGG3 0.14628 δGG3 0.00016

βGB3 0.12087 δGB3 0.00625

Boys βBG1 0.14022 δBG1 0.05547

βBB1 0.12587 δBB1 0.13882

βBG2 0.07844 δBG2 0.01273

βBB2 0.12687 δBB2 0.01189

βBG3 0.00714 δBG3 0.14485

βBB3 0.02304 δBB3 0.12842

Table 4.3: Estimation of positive and negative transmission parameters.

4.4 Introducing uncertainty in the model param-

eters and predicting the next few years

As in the previous chapter, in order to calculate these confidence intervals, let

us use the technique called bootstrapping. Bootstrapping is an efficient method
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for determining a non–parametric probabilistic estimation of model parameters

[58, 59], which allow us to obtain predictions with confidence intervals. Specifi-

cally, the probabilistic estimation of the parameters is performed using a residual

bootstrapping approach. In order to do it, we have applied an adaptation of the

general procedure presented in [59].

As it was stated in the improved Spanish mathematical model, we are going to

follow the next steps:

Step 1 Compute the error terms for the estimated parameters (deterministic pa-

rameters) by the difference between the output of the model with the es-

timated parameters (deterministic parameters) at the time instants t =

2006 − 2007, . . . , 2010 − 2011 and their corresponding real data collected

in Table 4.1. We analyze these error terms to find out their probabilistic

distribution to resample them using bootstrapping.

Step 2 Obtain new perturbed data by adding the resampled error (obtained in

Step 1) to output of the model collected in Table 4.1 for t = 2006 −
2007, . . . , 2010− 2011, obtaining a new set of perturbed data.

Step 3 For each new data perturbation calculated (in Step 2), we compute the

parameters that best fit the model (in the mean square sense).

Step 4 For each set of parameter values obtained by fitting the model with the

perturbed data, we solve the model with these parameters and compute the

outputs in the required time instants.

Step 5 Taking 95% confidence interval (of each output) from each subpopulation by

percentile 2.5 and percentile 97.5 we will be able to conclude the percentage

of students who promote/do not promote.

Next, we will show the details of the procedure followed in this section.

4.4.1 Error term analysis

In order to obtain their probability distribution of the error terms (residual terms),

we have followed the next steps:
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• We compute the output of the model with the estimated parameters (deter-

ministic parameters) at the time instants t = 2006 − 2007, . . . , 2010 − 2011

and compute their differences (errors) with the corresponding data from Ta-

ble 4.1.

• We analyze if the error terms are correlated. The Pearson correlation coef-

ficient is used. The obtained results from the matrix of Pearson correlation

coefficients for the errors terms indicate that none of the test statistic values

is statistically significant (p− value > 0.05), therefore the set of all pairs of

errors were not correlated in contrast to the obtained Spanish ones which

are correlated.

• Taking into account the Box-Ljung test [62], we also analyze if each error

term is autocorrelated in order to find out if there is correlation between error

of the process at different times. The obtained results allow us to accept that

the error term corresponding to the Level 13 - Promoted Boys is statistically

significant (p− value = 0.027), therefore there is autocorrelation. However,

the rest of the test statistic values are not (p− value > 0.05), that is, there

is not autocorrelation in any of them.

Notice that starting from here, due to the error corresponding to the Level 13 -

Promoted Boys is autocorrelated, we will try to get its probability distribution

using an autoregressive (AR) time series model, not in case of the others errors

that are not autocorrelated and we will try to get them by statistical tests, as we

will see in Section 4.4.2.

• For all the non-autocorrelated error terms, initially, the normality of the

distribution of errors is checked by the Shapiro-Wilk Normality test [64].

We have obtained the p-values corresponding to each error term and they

are not statistically significant (p − value > 0.05), except for the error of

the Level 11 - Promoted Girls, whose p-value is 0.034. Therefore, we can

accept that all the errors present a univariate normal distribution excluding

the error corresponding to the Level 11 - Promoted Girls.
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4.4.2 Generating new output perturbed data

In the previous subsection, we have obtained the probability distribution of each

error terms (residual terms). Then, in this subsection, we generate the new per-

turbed output. To our approach and taking into account the limited data available

(five academic years), in this case, we obtain 10 000 random error terms following

different processes according to the statistical properties of each error term:

• For all the error terms, except the ones corresponding to the Level 11 -

Promoted Girls and Level 13 - Promoted Boys, we sample 10 000 random

error terms following the univariate normal distribution with their means

and variances, respectively, obtained from the error terms.

For the autocorrelated error term corresponding to the Level 13 - Promoted

Boys, we sample 10 000 random error terms using autoregressive techniques

[69]. This has been carried out by fitting an autoregressive (AR) time series

model to the data [70]. In this case, the obtained autoregressive function,

AR(1), whose coefficient has been estimated by the The R Project for Sta-

tistical Computing [71] using the Stats package, it is given by:

et = −0.7833397et−1 + rt, (4.6)

where et is the obtained error and rt is the white noise at times t = 2006−
2007, . . . , 2010− 2011.

Once we have obtained the autoregressive function, AR(1), we need to an-

alyze if the white noise generated satisfies the necessary statistical require-

ments, that is, white noise must be a random process of random variables

that are uncorrelated, have zero mean, and a finite variance [69, 70]. Of-

ten one assumes a normal distribution for it, in which case the distribution

is completely specified by the mean and variance. In our case, we check

the white noise (rt) obtained is uncorrelated using the non-parametric Box-

Ljung test [62] which indicates, with p−value = 0.9855, that autocorrelation

should be rejected. We also check its probability distribution, testing pre-

viously the univariate normal distribution, using for that the Shapiro-Wilk

Normality Test with p− value = 0.8088 which confirms that the white noise

terms follow an univariate normal distribution with µ = 0, σ = 0.000367.
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Now, we are in conditions to generate a set of 10 000 white noises. We

add these generated white noises, rt, (10 000 times) to the expression (4.6)

obtaining a set of 10 000 error terms.

For sake of clarity, we point out that, until now, we have generated a set of 10 000

errors which have been obtained using different statistical techniques. Firstly, to

the autocorrelated error (the corresponding one to the Level 13 - Promoted Boys)

is treated by using an autoregressive (AR) time series model. Secondly, the rest

of the errors have been tested by applying the Shapiro-Wilk Normality tests for

each one which have confirmed that they follow a univariate normal distribution,

except the error corresponding to the Level 11 - Promoted Girls. Finally, this

error (corresponding to the Level 11 - Promoted Girls) has been obtained after

assuming that the total sum of the errors of each instant t is 0.

• To conclude, we compute the parameters which best fit (in the mean square

sense) the model with the set of perturbed data and store them, using the

same procedure we used to estimate the obtained parameters in Section 4.3.

Note that this procedure allows us to have 10 000 sets of values for the model

parameters.

4.4.3 Obtaining confidence intervals for model outputs

Finally, the confidence intervals are obtained as follows:

• For each one of the 10 000 set of parameters, we solve the scaled system of

differential equations in order to compute the model output for each subpop-

ulation of students and t = 2011− 2012, . . . , 2014− 2015. Once the models

are solved, we select the set of parameters which the resulting mean square

error value is, at most, 5% greater than the best fit obtained of the model

in Section 4.3. This percentage has been selected by convenience in order

to remove those set of parameters that do not provide a good fit and, there-

fore, obtain a best estimate of the confidence intervals. Moreover, it gives us

an aceptable number of set parameters to generate model output perturbed

that, in this case, has been reduced to 1 000.
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• For each t and each subpopulation, we have a set of 1 000 model output

values. Then, we compute the mean, median and the 95% confidence interval

by percentiles 2.5 and 97.5. These confidence intervals give us the non–

parametric probabilistic prediction of the evolution in the next few years.

The obtained results can be seen in Table 4.4.

Thus, in Figure 4.2 we can see graphically, for each subpopulation, the real data

from Table 4.1 (black points) and the 95% confidence intervals (red lines). The

dashed line in the middle of the confidence intervals represents the mean of the 1

000 outputs for each subpopulation of German students at each time. These mean

values are the ones obtained from our model and these predicted values from the

academic year 2011− 2012 to 2014− 2015 are collected in Table 4.4.

We can see that our predictions draw different tendencies in the plots in each sub-

population. We notice that there is also a slight decreasing in the non–promotable

groups, in both, Girls and Boys, as occurs in the predictions obtained in the

Spanish model shown in Chapter 3 although with the great difference that in the

Spanish model seems to lie at worries rates (around 27%) while in the German

one is not higher than 1%.

In both, Table 4.4 and, graphically, in Figure 4.2, we can observe that, although

not all the points lie inside the red bands (95% confidence intervals), they are close

to them taking into account the small scale of these graphs. This can also be seen

in Table C.1 in Appendix C where the higher errors correspond to the promotable

groups with associated error, at most, of the order 10−2 (in absolute terms).

Note that there are high differences in the scale of the graphs between the pro-

motable and non–promotable students, specially with very small values in the

non–promotable groups.
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Level Groups Time (t) Mean Median Confidence Interval

Level 11 Promoted Girls 2012 0.18836 0.19160 [ 0.18093 , 0.19173 ]

Non–Promoted Girls 2012 0.00393 0.00393 [ 0.00391 , 0.00411 ]

Promoted Boys 2012 0.16100 0.16005 [ 0.15997 , 0.16325 ]

Non–Promoted Boys 2012 0.00831 0.00830 [ 0.00827 , 0.00845 ]

Level 12 Promoted Girls 2012 0.18039 0.18167 [ 0.17719 , 0.18180 ]

Non–Promoted Girls 2012 0.00505 0.00505 [ 0.00501 , 0.00522 ]

Promoted Boys 2012 0.15026 0.14959 [ 0.14955 , 0.15198 ]

Non–Promoted Boys 2012 0.00549 0.00549 [ 0.00547 , 0.00554 ]

Level 13 Promoted Girls 2012 0.16228 0.16089 [ 0.16080 , 0.16517 ]

Non–Promoted Girls 2012 0.00096 0.00096 [ 0.00096 , 0.00109 ]

Promoted Boys 2012 0.13258 0.13094 [ 0.13078 , 0.13647 ]

Non–Promoted Boys 2012 0.00127 0.00125 [ 0.00125 , 0.00146 ]

Level 11 Promoted Girls 2013 0.18843 0.18674 [ 0.17693 , 0.19230 ]

Non–Promoted Girls 2013 0.00346 0.00345 [ 0.00343 , 0.00366 ]

Promoted Boys 2013 0.16061 0.16103 [ 0.15942 , 0.16385 ]

Non–Promoted Boys 2013 0.00813 0.00812 [ 0.00807 , 0.00828 ]

Level 12 Promoted Girls 2013 0.18034 0.17964 [ 0.17564 , 0.18196 ]

Non–Promoted Girls 2013 0.00482 0.00482 [ 0.00477 , 0.00501 ]

Promoted Boys 2013 0.15069 0.15091 [ 0.14986 , 0.15356 ]

Non–Promoted Boys 2013 0.00503 0.00503 [ 0.00500 . 0.00508 ]

Level 13 Promoted Girls 2013 0.16312 0.16393 [ 0.16144 , 0.16719 ]

Non–Promoted Girls 2013 0.00079 0.00079 [ 0.00079 , 0.00094 ]

Promoted Boys 2013 0.13340 0.13400 [ 0.13139 , 0.13927 ]

Non–Promoted Boys 2013 0.00106 0.00104 [ 0.00104 , 0.00128 ]

Level 11 Promoted Girls 2014 0.18864 0.18724 [ 0.17736 , 0.19283 ]

Non–Promoted Girls 2014 0.00306 0.00305 [ 0.00303 , 0.00327 ]

Promoted Boys 2014 0.16014 0.16047 [ 0.15887 , 0.16341 ]

Non–Promoted Boys 2014 0.00796 0.00795 [ 0.00790 , 0.00812 ]

Level 12 Promoted Girls 2014 0.18032 0.17975 [ 0.17574 , 0.18206 ]

Non–Promoted Girls 2014 0.00463 0.00464 [ 0.00457 , 0.00484 ]

Promoted Boys 2014 0.15107 0.15122 [ 0.15017 , 0.15396 ]

Non–Promoted Boys 2014 0.00460 0.00460 [ 0.00457 , 0.00466 ]

Level 13 Promoted Girls 2014 0.16382 0.16454 [ 0.16204 , 0.16780 ]

Non–Promoted Girls 2014 0.00066 0.00065 [ 0.00065 , 0.00082 ]

Promoted Boys 2014 0.13408 0.13455 [ 0.13192 , 0.13991 ]

Non–Promoted Boys 2014 0.00089 0.00087 [ 0.00087 , 0.00113 ]

Level 11 Promoted Girls 2015 0.18877 0.18771 [ 0.17768 , 0.19330 ]

Non–Promoted Girls 2015 0.00272 0.00272 [ 0.00269 , 0.00295 ]

Promoted Boys 2015 0.15967 0.15989 [ 0.15828 , 0.16322 ]

Non–Promoted Boys 2015 0.00781 0.00780 [ 0.00774 , 0.00799 ]

Level 12 Promoted Girls 2015 0.18025 0.17981 [ 0.17576 , 0.18213 ]

Non–Promoted Girls 2015 0.00448 0.00449 [ 0.00442 , 0.00470 ]

Promoted Boys 2015 0.15145 0.15151 [ 0.15046 , 0.15445 ]

Non–Promoted Boys 2015 0.00420 0.00420 [ 0.00417 , 0.00427 ]

Level 13 Promoted Girls 2015 0.16449 0.16509 [ 0.16261 , 0.16837 ]

Non–Promoted Girls 2015 0.00054 0.00054 [ 0.00054 , 0.00071 ]

Promoted Boys 2015 0.13473 0.13505 [ 0.13240 , 0.14050 ]

Non–Promoted Boys 2015 0.00075 0.00073 [ 0.00073 , 0.00100 ]

Table 4.4: The 95% confidence interval predictions corresponding to the Levels
11, 12 and 13, in both, state and private high schools all over the German region of
North Rhine-Westphalia during academic years 2011− 2012 to 2014− 2015. Each
row shows the percentage of girls/boys who promote and do not promote for each
academic level.
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Figure 4.2: Real data (black points) and prediction with 95% confidence in-
tervals (red line) of the academic performance of German students in the North
Rhine-Westphalia over the academic years 2006 − 2007 to 2014 − 2015. Smaller
confidence intervals, represent less uncertainty in the predictions, the dashed lines
in the middle of the confidence intervals are their means. Note that there are high
differences in the scale of the graphs between the promotable and non–promotable
students, specially with very low rates in the non–promotable groups.

4.5 Conclusions

In this chapter, we have presented an application of the Spanish mathematical

model developed in Chapter 3 in order to study the dynamics of the students

academic performance in the German region of North Rhine-Westphalia. In this

model, we have divided the students by gender and academic levels, and it is based

on the assumption that both, good and bad study habits, are a mixture of personal

decisions and influence on classmates. Using the academic results of German

students, we have estimated the model parameters fitting the model with the data.

Thus, we can predict with confidence intervals the student’s academic performance

in the next few years. From Figure 4.2, it is expected that the decreasing trend in

all non–promotable groups remains in the next years, as occurs in the predictions

obtained in the Spanish model shown in Chapter 3. However, there is a significant

difference between the academic underachievement performance of both academic

systems, namely, the Spanish model seems to be stabilizing at worry levels (around

27%) whereas in the German system this value is much lower. For instance, in the

course 2014− 2015 less than 2% of the students will not promote (see Table 4.4).
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As it has been shown in previous chapters, we have developed a mathematical

model which has been applied to both the Spanish and German educational sys-

tem. Besides, this has also allowed us to confirm the alarming situation that the

Spanish education system will have to face considering the predictions of bad aca-

demic results obtained from our model (see Tables 3.8 and 3.10 in Chapter 3),

with average rates of academic underachievement around 27%. This motivates

the study to be presented in next Chapter 5, where we will quantify the cost of

these high rates of academic underachievement to be faced to both the Spanish

Government and Spanish families.
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Chapter 5

Estimation of the cost of the

academic underachievement in

high school in Spain over the next

few years

5.1 Introduction

In Chapter 3, we have developed our improved Spanish mathematical model that

predicts the academic results of Spanish Bachillerato over the next few years.

The predictions are given in 95% confidence intervals. In this chapter, we will

take advantage of these predictions, in particular, of the high rates of academic

underachievement (around 27%) in order to quantify the economical cost that will

have to support both, the Spanish Government and the Spanish families. The

estimations will be performed separately for the Spanish Government (Section

5.2) and Spanish families (Section 5.3) by 95% confidence intervals for the next

few years. Finally, conclusions are given in Section 5.4.
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5.2 Estimation with 95% confidence intervals of

the cost of the academic underachievement

in Bachillerato for the next few years for the

Spanish Government

In this section, as we said previously, we will pay special attention on the predic-

tions of the percentage of Spanish Bachillerato students who may abandon or not

promote in the next few years (see Tables 3.7 and 3.10 in Chapter 3). These pre-

dictions will allow us, with the required suitable economical data, to predict the

cost to the academic underachievement in this educational level for the Spanish

Government.

To perform estimations as close as possible, we will follow the next steps:

Step 1 We obtain the average Spanish Government cost of each Bachillerato stu-

dent during the academic years 1999− 2000 to 2008− 2009.

Step 2 We predict the Spanish Government investment in each Spanish Bachiller-

ato student during the academic years 2009− 2010 to 2014− 2015 using the

cost of each Bachillerato student given in Step 1.

Step 3 We predict the number of Bachillerato students registered during the

academic years 2009 − 2010 to 2014 − 2015. This is required to obtain the

number of Bachillerato students that will not promote and abandon at that

period using the corresponding percentages estimated in Tables 3.7 and 3.10

in Chapter 3.

Step 4 We compute the total of the Spanish Government investment in Bachiller-

ato students that will not promote and abandon during the academic years

2009− 2010 to 2014− 2015 using the predictions given in Step 2 and 3.

First, we obtain the Spanish Government cost of each Bachillerato student during

the academic years 1999 − 2000 to 2008 − 2009 (Step 1). For that, we collect

the total investment in education (in euros) and calculate the percentage of the

Spanish Government investment amount of money expended in Bachillerato edu-

cational level, in both, state and private high schools all over Spain from academic

60



Section 5.2 Chapter 5

t Academic Year Euros

1 1999− 2000 2 610,70

2 2000− 2001 2 796,50

3 2001− 2002 2 991,48

4 2002− 2003 3 384,28

5 2003− 2004 3 691,93

6 2004− 2005 3 972,37

7 2005− 2006 4 224,20

8 2006− 2007 4 569,65

9 2007− 2008 5 130,38

10 2008− 2009 5 146,88

Table 5.1: Investment per Spanish stu-
dent in the First and Second Stage of
Bachillerato, in both, state and private
high schools all over Spain from academic
year 1999−2000 to 2008−2009 by the Gov-
ernment [1].

year 1999 − 2000 to 2008 − 2009 [1]. These available data let us know the total

the Spanish Government investment in Bachillerato at that period of time. Fur-

thermore, we also know the number of students registered during the mentioned

period given in [2].

The aforementioned data allow us to work out (dividing the Spanish Government

investment in Bachillerato by the number of Bachillerato students registered in

each academic year) the amount of money in euros that the Spanish Government

has invested in each Bachillerato student in recent years. The obtained results

can be seen in Table 5.1. Notice that these figures have progressively increased as

time goes on ranging between 2 610,70 euros in 1999 − 2000 until 5 146,88 euros

in 2008− 2009.

Then, we need to predict the Spanish Government investment in each Bachillerato

student during the academic years 2009− 2010, . . . , 2014− 2015 (Step 2). To do

that, we are going to use statistical techniques, in particular, time series analysis

[70, 72, 73]. This statistical technique provides tools for selecting a model in or-

der to forecast future events. In our case, the application of these techniques will

return predictions of the investment in each Bachillerato student over the next
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Model RMSE MAPE

Random walk with trend 151.187 2.56029

Linear trend 104.440 1.78572

Simple moving average of 3 terms 633.230 14.7076

Simple exponential smoothing with alpha 0.999 315.820 6.49393

Brown’s Linear Exponential Smoothing with alpha 0.853 222.497 4.35632

Table 5.2: The indicators (RMSE and MAPE) considered for the validation
of the different models in order to determine the model that best fit the data
in Table 5.1. The best is the Linear Trend Model.

few years taking into account the known Spanish Government investment the pre-

vious years (Table 5.1). We will address our approach using Statgraphics Plus

for Windows 5.1 software [74]. This powerful statistical tool provides the user

five different forecasting models: Random Walk with Trend, Linear Trend, Simple

Moving Average, Simple Exponential Smoothing and Brown’s Linear Exponential

Smoothing. Then, the models are validated by their corresponding Root Mean

Square Error (RMSE) and Percentage of the Mean Absolute Error (MAPE). Fi-

nally, it is selected the model that best fit the available data and provide us the

predictions with 95% confidence intervals, both analytically and graphically. The

model that best fit our data is the Linear Trend Model because it returns the

minimum Root Mean Square Error (RMSE=104.44) whose corresponding Mean

Absolute Percentage of Error is 1.79, as can be seen in Table 5.2 (see Section D.2

and D.3, in Appendix D). Therefore, the obtained equation which allows us to

predict the Spanish Government investment in euros in each Bachillerato student

over the next few years is stated as follows:

Gt = −601795.0 + 302.144t, (5.1)

where Gt is the estimation of the investment at time t = 1, 2, 3, . . . where t =

1 corresponds to the academic year 1999 − 2000, t = 2 to the academic year

2000− 2001 and so on.

According to the time series model stated, in Table 5.3, we show the obtained

estimations with 95% confidence intervals given by Statgraphics Plus for Win-

dows 5.1 (See Section D.4, Appendix D) of the cost in euros that the Spanish

Government would invest in each Bachillerato student during the academic years
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from 2009−2010 to 2014−2015. Graphically, this results can be seen in Figure 5.1.

t Academic Year Prediction (Euros) 95% Confidence interval (Euros)

11 2009− 2010 5 513,62 [5 221,95 , 5 805,29]

12 2010− 2011 5 815,77 [5 509,97 , 6 121,56]

13 2011− 2012 6 117,91 [5 796,43 , 6 439,39]

14 2012− 2013 6 420,05 [6 081,52 , 6 758,58]

15 2013− 2014 6 722,20 [6 365,47 , 7 078,92]

16 2014− 2015 7 024,34 [6 648,42 , 7 400,26]

Table 5.3: The prediction of euros invested by the Spanish Government in each
Spanish student in the First and Second Stage of Bachillerato, in both, state and
private high schools during the academic years from 2009− 2010 to 2014− 2015.

Figure 5.1: Graph of the prediction of euros invested by the Spanish
Government in each Spanish student in the First and Second Stage of
Bachillerato, in both, state and private high schools during the aca-
demic years from 2009− 2010 to 2014− 2015.

The next step is to predict the number of Bachillerato students registered during

the academic years 2009−2010 to 2014−2015 (Step 3). Due to the predictions of

Bachillerato students are given in percentages (see Tables 3.7 and 3.10, Chapter 3),

we need to estimate the number of students registered in both First and Second

Stage of Bachillerato to be able to estimate the number of them who do not

promote and abandon over the next few years using our predictions. To do that,
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Academic Year Number of Bachillerato Students

1999− 2000 766 964

2000− 2001 738 407

2001− 2002 676 107

2002− 2003 654 655

2003− 2004 626 926

2004− 2005 613 581

2005− 2006 604 806

2006− 2007 595 571

2007− 2008 584 693

2008− 2009 629 247

Table 5.4: Number of Spanish student in the First
and Second Stage of Bachillerato in both, state and
private high schools, all over Spain from academic year
1999− 2000 to 2008− 2009 [2].

Model RMSE MAPE

Random walk with trend 27978.4 2.70597

Linear trend 32784.3 3.83946

Simple moving average of 3 terms 43745.2 6.28963

Simple exponential smoothing with alpha 0.999 30496.7 3.49021

Brown’s Linear Exponential Smoothing with alpha 0.853 29404.0 3.209

Table 5.5: The indicators (RMSE and MAPE) considered for the validation of
the different models in order to determine the model that best fit the data in Table
5.4. The best is the Random Walk with Trend Model

we will again use the time series models mentioned above following the same

procedure as it was shown previously, applied, in this case, to the number of

Bachillerato students in the specific period of time given in Table 5.4 [2].

In this case, using Statgraphics Plus for Windows 5.1, the time series model se-

lected that best fit our data in Table 5.4 is the Random Walk with Trend Model.

This has the least Root Mean Square Error (RMSE) and Percentage of the Mean

Absolute Error (MAPE), as can be seen in Table 5.5 (see Section D.2 and D.3, in

Appendix D).

As regards to the definition of the Random Walk with Trend Model (see Section
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Academic Number of estimated Bachillerato Students

Year Predicted 95% Confidence Intervals

2009− 2010 613 945 [562 245 , 665 646]

2010− 2011 598 643 [525 528 , 671 759]

2011− 2012 583 341 [493 793 , 672 889]

2012− 2013 568 039 [464 638 , 671 441]

2013− 2014 552 738 [437 132 , 668 343]

2014− 2015 537 436 [410 796 , 664 076]

Table 5.6: Estimations with 95% confidence intervals of the
number of Spanish students in the First and Second Stage of
Bachillerato in both, state and private high schools, all over
Spain from academic year 2009− 2010 to 2014− 2015.

D.2, Appendix D), we consider Yt as the observed number of Bachillerato students

in a specific academic year at time t and Ft(k) the obtained forecast. Despite the

Statgraphics Plus for Windows 5.1 software only gives us the predictions if all the

required assumptions are fulfilling, we will also confirm them analyzing statistically

if the obtained white noise in this process follows a normal distribution, as is

required. In order to check this, we apply the Shapiro-Wilks normality test which,

with a significative p-value at significance level of 0.05 (p-value=0.407). The p-

value confirms that the white noise follows a univariate normal distribution. This

fact is also supported by having a closed mean and median (-13 345 and -15 302,

respectively) and the kurtosis is 3.198, approximately 3, value considered as a

reference to data following a univariate normal distribution [75].

Then, as the model is stated, in Table 5.6 we show the estimation with 95%

confidence intervals of the number of Spanish Bachillerato students during the

academic years from 2009− 2010 to 2014− 2015 (see Section D.4, Appendix D).

Finally, we compute the Spanish Government total investment in Bachillerato

students that will not promote and abandon during the academic years 2009−2010

to 2014 − 2015 (Step 4). To obtain them, we take into account the Spanish

Government investment in each Bachillerato student given in Table 5.3 and the

estimated number of Bachillerato students in Table 5.6. After some algebraic

operations (simply multiplications of the extremes of the intervals obtained in

each mentioned tables), Table 5.7 collects the estimated number of students who
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will not promote and abandon and their corresponding costs that would have for

the Spanish Government in the next few years.

As we can see, if expectations are fulfilled and educational measures are not

taken, the Spanish Government would lose a huge amount of money in groups

of Bachillerato students who, most of them, would not promote and abandon the

year or access to the labor market without sufficient qualification to perform works

requiring improved training. Notice that, for example, this investment could be

ranging between 39 226 440,83 and 68 848 080,60 euros in the academic year

2012− 2013.

Estimated number of Estimated

Academic Bachillerato students who Spanish Government

year will not promote and abandon investment (in euros)

2009− 2010 [8 293 , 10 636] [43 306 812,55 , 61 747 912,30]

2010− 2011 [7 561 , 10 502] [41 661 939,75 , 64 294 039,41]

2011− 2012 [6 978 , 10 362] [40 449 413,28 , 66 728 551,64]

2012− 2013 [6 450 , 10 186] [39 226 440,83 , 68 848 080,60]

2013− 2014 [6 005 , 10 121] [38 225 011,05 , 71 646 592,10]

2014− 2015 [5 541 , 9 902] [36 842 317,83 , 73 278 632,94]

Table 5.7: Estimation with 95% confidence intervals of the number of Bachiller-
ato students who do not promote and abandon in the First and Second Stage of
Bachillerato, in both, state and private high schools all over Spain from academic
year 2009 − 2010 to 2014 − 2015 and their corresponding cost for the Spanish
Government also given with 95% confidence intervals.

5.3 Estimation with 95% confidence intervals of

the investment in education by Spanish fam-

ilies of Bachillerato students in the next few

years

In the previous section, we have estimated the cost that would have for the Span-

ish Government the predicted negative academic results of Bachillerato students.

However, Government not only has to make those educational investments but

also students’ families. Undoubtedly, families have a very important role on their
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children’s education, in fact, most of students depend heavily on their parents for

their studies, parents that, with their efforts, try to support and provide them the

best conditions to develop their children’s knowledge. That effort is commonly

shown through their understanding, their care and, of course, with financial sup-

port. This financial support that, especially in periods of economical crisis as we

are suffering at this moment, is really difficult for most families.

In this section, we will show that high rates of academic underachievement (in-

cluding the abandon rates) not only have negative economical consequences on

the Spanish Government but also to Spanish families, in particular, of Bachiller-

ato students. To address this approach, we will estimate the Spanish families

investment following the same procedure as it is shown in Section 5.2. For sake of

clarity, in this case, we will follow the next steps:

Step 1 We obtain the Spanish families cost of each Bachillerato student during

the academic years 1999− 2000 to 2008− 2009.

Step 2 We predict the Spanish families investment in each Bachillerato student

during the academic years 2009− 2010 to 2014− 2015 using the cost of each

Bachillerato student given in Step 1.

Step 3 We compute the Spanish families total investment in Bachillerato students

that will not promote and abandon during the academic years 2009 − 2010

to 2014− 2015 using the predictions given in the previous step (Step 2) and

in the Step 3 shown in Section 5.2.

First of all, we need to obtain the Spanish families cost of Bachillerato student

during the academic years 1999− 2000 to 2008− 2009 (Step 1). For this, we col-

lect the Spanish families investment over the total registered students in the non-

university Spanish education during the corresponding academic years 1999−2000

to 2008 − 2009 given in [1]. Furthermore, we know the total number of non-

university Spanish students registered [2]. These available data allow us to work

out (dividing the Spanish families total investment over the total of registered

non-university students by the corresponding number of non-university students)

the Spanish families investment on each non-university Spanish student. Unfortu-

nately, it has not been possible to get this information corresponding only to the

Bachillerato educational level. As a consequence, we will consider these figures as

a reference to determine, on average, the cost of a Spanish Bachillerato student for

67



Section 5.3 Chapter 5

Spanish families Investment per

Bachillerato student

t Academic Year Euros

1 1999− 2000 889,21

2 2000− 2001 900,85

3 2001− 2002 951,66

4 2002− 2003 1 008,23

5 2003− 2004 1 028,53

6 2004− 2005 1 067,29

7 2005− 2006 1 131,23

8 2006− 2007 1 156,78

9 2007− 2008 1 173,82

10 2008− 2009 1 141,92

Table 5.8: Spanish families investment, on aver-
age, per Spanish student in the First and Second
Stage of Bachillerato in both, state and private
high schools, all over Spain from academic year
from 1999− 2000 to 2008− 2009 [1].

their families. Thus, in Table 5.8, we show, on average, the assumed Spanish fami-

lies investment in each Bachillerato student during the academic years 1999−2000

to 2008− 2009.

Then, we predict the Spanish families investment in each Bachillerato student

during the academic years 2009− 2010 to 2014− 2015 (Step 2) using the cost of

each Bachillerato student given in Step 1. These predictions, as it was developed

in the previous section, have also been obtained by best time series model that

fit the available data in Table 5.8 using, again, Statgraphics Plus for Windows 5.1

software. After applying them, we consider that the model that best fit our data

is the Linear Trend Model because it returns the minimum Root Mean Square

Error (RMSE=27.705) whose corresponding Mean Absolute Percentage of Error

is 1.71 (see Table 5.9). As a consequence, Statgraphics Plus for Windows 5.1

software provides, by the model selected, 95% confidence intervals predictions of

the Spanish families investment in each Bachillerato student over the next few

years (see Appendix D). The obtained results can be seen in Table 5.10 and,

graphically, in Figure 5.2.

Finally, we compute the Spanish families total investment in Bachillerato students

68



Section 5.3 Chapter 5

Model RMSE MAPE

Random walk with trend 29.1247 2.04206

Linear trend 27.7048 1.70595

Simple moving average of 3 terms 74.3422 6.37513

Simple exponential smoothing with alpha 0.999 39.2763 2.9957

Brown’s Linear Exponential Smoothing with alpha 0.999 29.95 2.31063

Table 5.9: The indicators (RMSE and MAPE) considered for the validation of
the different models in order to determine the model that best fit the data in Table
5.8. The best is the Linear Trend Model

t Academic Year Prediction (Euros) 95% Confidence interval (Euros)

11 2009− 2010 1 232,24 [1 154,86 , 1 309,61]

12 2010− 2011 1 266,29 [1 185,17 , 1 347,40]

13 2011− 2012 1 300,34 [1 215,06 , 1 385,62]

14 2012− 2013 1 334,39 [1 244,59 , 1 424,19]

15 2013− 2014 1 368,44 [1 273,81 , 1 463,07]

16 2014− 2015 1 402,49 [1 302,77 , 1 502,21]

Table 5.10: The prediction of euros Spanish families will invest in each Spanish
student in the First and Second Stage of Bachillerato, in both, state and private
high schools during the academic years from 2009− 2010 to 2014− 2015.

Figure 5.2: Graph of the prediction (in euros) the Spanish families
will invest in each Bachillerato student during the academic years
from 2009− 2010 to 2014− 2015.

that will not promote and abandon during the academic years 2009−2010 to 2014−
2015 (Step 3). To obtain them, we use the estimated number of Bachillerato
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students that will not promote and abandon (see Table 5.7) and the cost for the

Spanish families of each Bachillerato student during the academic years 2009 −
2010 to 2014 − 2015 (see Table 5.8). After some algebraic operations (simply

multiplications of the extremes of the intervals obtained in each mentioned tables),

in Table 5.11, we show the estimation of the Spanish families total investment in

education during the academic years from 2009− 2010 to 2014− 2015.

Notice that these values could be ranging between 8 027 735,83 and 14 507 891,88

euros in the current academic year. No negligible amount of money if we consider

the economic difficult situation of most Spanish families as a result of the severe

economic crisis in Spain is immersed.

Academic Estimated Spanish families

Year investment (in euros)

2009− 2010 [9 577 515,21 , 13 929 654,41]

2010− 2011 [8 961 297,64 , 14 151 586,96]

2011− 2012 [8 479 092,15 , 14 358 567,46]

2012− 2013 [8 027 735,83 , 14 507 891,88]

2013− 2014 [7 649 301,83 , 14 807 905,66]

2014− 2015 [7 219 319,24 , 14 875 138,87]

Table 5.11: 95% confidence intervals of the Spanish
families cost in the group of Bachillerato students with
academic underachievement over the next few years.

5.4 Conclusions

In this chapter, we quantify the important social problem of the academic un-

derachievement, we take advantage of our predictions of the Spanish academic

performance to propose an estimation of the Spanish Government and families

investment in the Bachillerato students over the next few years, paying special

attention on the groups of students who abandon and do not promote during their

corresponding academic year. According to our results, notice that, for example,

in the academic year 2012− 2013, the Spanish Government will invest in students
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with academic underachievement a large amount of money, ranging between 39

226 440,83 and 68 848 080,60 euros and, in case of the Spanish families, the costs

will range between 8 027 735,83 and 14 507 891,88 euros. According to our pre-

dictions (the total number of Bachillerato student and the cost per Bachillerato

student for the Spanish Government and families given in Tables 5.4, 5.3, 5.10,

respectively), these amounts of money, on average, would represent around the

1.5% of the Spanish Government total investment predicted and the 1.4% Spanish

families total investment predicted in the academic year 2012− 2013.

From our expectations and if new and innovative educational measures are not

taken, the Spanish Government and families would lose a huge amount of money

in groups of Bachillerato students who, most of them, would have to repeat a year

or access to the labor market without sufficient qualification to perform works

requiring improved training.
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Chapter 6

Conclusion and discussion

In this dissertation, we have proposed a non-linear system of differential equations

to model the evolution of the academic performance in the educational level of

Bachillerato in Spain over the next few years using mathematical epidemiology

modeling techniques. We have focused on this educational level since it represents

a milestone in the career training of students because they have to make important

decisions about academic and professional future: keep studying to get a better

qualification or access to the labor market [23]. We have paid special attention

on the academic underachievement in the Spanish Bachillerato since, although

the percentage of high school academic underachievement in this educational level

has slightly reduced over the last years, nowadays it seems to be at a worrying

steady-level (around 30%) [11]. This is becoming a major social and political

concern because of the negative effects on the country’s economic development

[18], especially in the unemployment and its serious consequences.

The major novelty of this contribution is the treatment of academic performance

as a problem that is transmitted through social contact using mathematical type-

epidemiological modeling. This is based on the idea that academic habits of any

student is a mixture of personal decisions and influence of classmates [29, 30].

We have developed a first mathematical model (Chapter 2) in which we have

considered the academic attitude of Bachillerato students depends on their au-

tonomous positive/negative academic behavior and the transmission of bad aca-

demic habits transmitted by other students in the same academic level [23, 46, 47].

Moreover, in order to reflect as truthfully as possible the attitude of students to-

wards their studies, we have taken into account pedagogical studies [42–45] which
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state that exists a significative difference of academic performance depending on

genre. This model has allowed us to predict the academic underachievement evo-

lution over the next few years. Then, this mathematical model has been improved

in Chapter 3. It is based on the same ideas developed in the previous chapter

but, in this case, we consider that not only the bad academic habits are socially

transmitted but also the good ones. We have also decomposed the transmission

parameters into good and bad academic habits in order to analyze with more

detail which group of students are more susceptible to be influenced by good or

bad academic students. Besides, we have introduced uncertainty in the model.

This enables us to predict the evolution of the Spanish Bachillerato academic per-

formance by 95% confidence intervals. The model presented in this chapter is

validated verifying that the predictions given by 95% confidence intervals either

collect or are nearby (with an error, at most, of order 10−2, in absolute terms)

of the deterministic estimations provided by the model developed in Chapter 2

including new available data which were published during the development of this

dissertation. Other important improvement in this model is the quantification of

the abandon rates. The results inform us that there is a slight decreasing of the

percentage of students in the non–promotable groups and the ones who leave the

high school. It seems to reach a stationary situation passing, on average, from 28%

in the academic year 2010 to 26.5% in 2015. However, the current and predicted

scenarios are worrying because around 27% of the students have bad academic

results.

An important characteristic of the proposed mathematical model is its ability to

be adapted, although in this research we have focused on Bachillerato educational

level, to other Spanish educational levels and also foregoing any educational sys-

tems. This is illustrated in Chapter 4 where the proposed model for Spanish

Bachillerato has been adapted successfully to study the academic performance in

the German region of North Rhine-Westphalia. The obtained results show that

there is a significant difference between the academic underachievement perfor-

mance of both academic systems, namely, the Spanish model seems to be stabiliz-

ing at worrying levels whereas in the German system this value is much lower. For

instance, in the course 2014− 2015 less than 2% of the students will not promote.

In the treatment of social issues as the study of education, it has been inevitable

to refer to the current critical economic situation in which most of the European

countries are immersed, mainly, countries like Spain where the unemployment
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rates are much higher than the rest of the European Countries [21]. In order to

contribute positively to this important social problem, in Chapter 5 of this dis-

sertation, we have quantified and estimated the Spanish Government and Spanish

families investment in the Spanish Bachillerato over the next few years, especially,

focused on the groups of students who abandon and do not promote whose aca-

demic attitude could lead an increasing of the economic costs. According to our

predictions and if any educational measure is not taken, the Spanish Government,

families and Society in general would lose a huge amount of money in groups of

Bachillerato students who, most of them, would have to repeat a year or access

to the labor market without sufficient qualification to perform works requiring

improvement training. For example, in the academic year 2012− 2013, the Span-

ish Government will invest in students with academic underachievement a large

amount of money, ranging between 39 226 440.83 and 68 848 080.60 euros. In case

of the Spanish families, these figures could be ranging between 8 027 735,83 and

14 507 891,88 euros. No negligible and alarming amounts of money if we consider

the severe economic crisis that is currently affecting to Spain.

The proposed approach will allow us to understand better the mechanisms behind

the academic performance as well as to predict and quantify the evolution of the

Spanish Bachillerato students in the coming years. As it has been stated, our

model gives us information about how academic results will evolve over the next

future among different groups of Bachillerato students according to their gender,

academic level and their academic results. In this way, it could provide relevant

information in order to policymakers make appropriate decisions, for instance,

policies of inclusion or gather to improve the transmission of good academic habits

and avoid the transmission of the bad ones. In general terms, the results inform us

that there is a slight decreasing of the number of students in the non–promotable

groups and who leave the high school, and it seems to reach a stationary situation.

The current and predicted scenarios are very worrying because around 27% of the

total of Bachillerato students could get bad academic results in the coming years.

To conclude, we want to point out that this contribution constitutes a first step

in the modeling of academic underachievement applying a type-epidemiological

approach. We think that more research following the proposed approach must be

done in the network framework.
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epiModel: A system to build

automatically systems of

differential equations of

compartmental

type-epidemiological models

A.1 Introduction

In this dissertation we propose a non-linear system of differential equations to

model the evolution of the academic performance in the educational level of

Bachillerato in Spain using modelling techniques in mathematical epidemiology

also applied to the German educational system. As the model is stated the build-

ing of its corresponding non-linear system of differential equations could be a

tedious work because of the large number of equations could contain. For this

reason, in this appendix, we present the software developed to facilitate the con-

struction of that system of equations facilitating users to work in models as we

can see through this dissertation.

From Kermarck-McKendricks seminal paper of 1927 [76] epidemiologists and math-

ematicians have developed mathematical models to understand the transmission

dynamics of diseases. The advances in this area have led to more complex models

77



Appendix A

and, therefore, larger systems of differential equations. For instance, the model

developed in [77] for the study of the spread of Human Papillomavirus (HPV) is

made up of more than 7,000 equations, the model described in [78] for the dynam-

ics of meningococcal disease with around nine hundred equations or the models

described in chapters 2, 3 and 4 of this dissertation.

Compartmental diagrams have enabled the development of the epidemiological

models and their expression as differential equations. However, when the models

include a lot of subpopulations and take into account age and/or sex groups,

the building of the system of differential equations become more complex when

handling a large number of functions and parameters.

Thus, in order to facilitate researchers in the epidemiology area to build model

equations for linear or quadratic epidemiological models, in this appendix we

present epiModel, a code developed in Mathematica capable of automatically gen-

erating the system of differential equations and its parameters from a short and

easy description of the model contained in a text file.

epiModel consists of three files (see scheme in Figure A.1):

• ”ModelDefinition”. In this file the user describes the characteristics of the

model using a simple syntax explained in Section 2.

• ”epiModel”. This file contains the code that carries out the transformation of

the data model in ”ModelDefinition” into a system of differential equations.

• ”ModelBuilder.nb”. This Mathematica file loads the files ”ModelDefinition”

and ”epiModel” and executes them in order to generate two new files:

– ”Model.data” with the system of differential equations.

– ”parameters.data” with a list of all the model parameters.

This appendix is organized as follows. In Section 2 we describe how to build the

file ”ModelDefinition”. Once the ”ModelDefinition” has been built, in Section

3 we explain how to generate the files ”Model.data” and ”parameters.data”. In

Section 4, three examples are presented: in the first, we generate the system of

differential equations corresponding to a typical SIRS (Susceptible - Infected -

Recovered - Susceptible) epidemiological model; in the second, the same is done
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Figure A.1: Proccess of how epiModel works. ”ModelBuilder.nb” loads data
from ”ModelDefinition” and ”epiModel” creates ”Model.data” and ”parame-
ters.data”.

for a SIR (Susceptible - Infected - Recovered) epidemiological model with two age

groups; finally, the equations for a SIR model with two age and two sex groups

are generated. In Section 5, conclusions are given.

This appendix does not aim to explain the code line by line, it should be stated

that this represents a slight improvement on the idea of Capasso [79, 80] as to how

to represent an epidemiological model in matrix form. In fact, when a model is

generated, the file ”Model.data” contains the system of equations and the matrices

corresponding to the matrix form of the model.

Thus, if the vector z(t) = (z1(t), . . . , zn(t))T contains as entries the model subpop-

ulation functions and we denote by

diag(z(t)) =


z1(t) . . . 0

...
. . .

...

0 . . . zn(t)

 ,

any compartmental model (even including age and/or sex groups) can be written

as

dz(t)

dt
= c+ Lz(t) +

∑
i

Ai diag(z(t)) Biz(t), (A.1)
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where c is a vector of size n and L, Ai and Bi are matrices of size n × n. c

contains parameters corresponding to the model independent terms, L to the linear

terms and Ai and Bi to the model non-linear terms, placed in the appropriate

coordinates.

The variations on Capasso’s idea is the inclusion of matrices Ai and Bi that allow

us to take several subpopulations (usually the same in different age/sex groups)

as a part of the same transmission (non-linear) term. In Section 4, in the first and

second example, we will provide the obtained matrices c, L, Ai and Bi.

A.2 How to build the file ”ModelDefinition”

This is a text file and is made up of three parts: a general variable; the definition

of subpopulations; and the definition of the parameters. Note that the syntax of

this file should fit the Mathematica syntax.

It is important to preserve the names of the variables defined below (\[NTilde],

SP, TI, LIN, NOLIN, x) as they will be called by ”epiModel”.

A.2.1 General variable

This variable indicates the structural characteristics of the model, i.e. age groups.

The variable is

Name Value Description

1. \[NTilde] number Number of age groups.

A.2.2 Definition of the subpopulations

Data corresponding to subpopulations are stored in a list named SP. Each row of

the list consists of the following fields

Name Value Description

1. Number Number Subpopulation ID number.

2. Description String Name of the subpopulation.
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In the following example, three subpopulations of a model are defined.

SP = {

{1, "Susceptible"},

{2, "Infected" },

{3, "Recovered" }

};

A.2.3 Defining Parameters

The parameters have two ways of being classified. The first is dependent on the

part of the model to which they contribute:

• Those that are included in the independent term of the model, being in list

TI.

• Those that are linear terms of the model, being in list LIN.

• Those that are part of the non-linear term of the model, being stored in list

NOLIN.

The second classification is dependent on the type of parameter. To explain this,

we should note that compartmental models are illustrated by diagrams where the

boxes represent the subpopulations and the arrows represent the terms involving

the model parameters. However, not all the arrows are equal: some only enter

into a box; some of them only exit from a box; others exit from a box and enter

into another; some of the latter are special because they connect the same box for

different age groups (see Figure A.2). These four possibilities lead to the second

parameter classification:

• Type 1: also called birth type, because this parameter comes from arrows

that only enter into a subpopulation, e.g. newborns.

• Type 2: also called death type, because it is related to an arrow that only

exits from a subpopulation, e.g. dead people leaving the system.
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S I
Type 1

S I

Type 3

Type 3

Type 4 Type 4

Type 2

Figure A.2: Parameter types dependent on where the arrows enter and exit
in compartmental models.

• Type 3: also called input-output type, because this parameter measures

the flow from one box or subpopulation to another, for instance, disease

transmission or recovering illness average time.

• Type 4: also called between ages type, because this parameter is related to

population growth and connects the same box in two consecutive age groups.

A.2.3.1 Parameters of independent term and linear term

Each independent term or linear term parameter is encoded with a list containing

the following fields:
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Name Value Description

1. Name Parameter name.

2. Type 1, 2, 3, 4 Parameter type.

3. The arrow

exits from

the subpop-

ulations

{n1, n2, . . .} Subpopulations from which the

arrow related to the current pa-

rameter, exits. The list {} means

that the arrow does not exit from

any box (e.g., a birth type param-

eter) .

4. The arrow

enters into

the subpop-

ulations

{n1, n2, . . .} Subpopulations from which the

arrow related to the current pa-

rameter, enters. The list {}
means that the arrow does not

enter into any box (e.g., a death

type parameter).

5. Depending

on the age

group?

True/False True means that this parameter

can be different depending on the

age group.

6. Description String Description of the parameter.

The following considerations concerning with the definition of parameters should

be taken into account:

• Any parameter should not be named x because this variable defines the

subpopulations.

• A parameter of Type 3 can not have common elements in the fields 3 and

4 of the above table. These situations can be avoided by defining various

parameters properly.

• If a parameter does not depend on age groups, i.e. the field 5 in the table is

False, it will appear only in the first age group between the boxes included

in the lists of the fields 3 and/or 4.

• Type 4 parameters cannot appear in the variable TI.

• The Type 4 parameters have always to be dependent on age group.
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In order to avoid confusion, it is not convenient to use the same or similar variable

names for different parameters. Now, let us show some examples of how to encode

parameters corresponding to independent and linear model terms:

• Type 1: Suppose that newborns enter directly into subpopulation 1 at a

rate \[Mu]. The model does not consider age group. Then, this term is

encoded as

{\[Mu], 1, {}, {1}, False, "Birth rate"}

• Type 2: Now, we consider an age group model with three subpopulations

where the death rate depends on age group and all people of any subpopu-

lation is susceptible to death. This is encoded as:

{d, 2, {1,2,3}, {}, True, "Death rate"}

• Type 3: Let us suppose that, after recovering from a disease, the individuals

have an average temporary immunity \[Gamma] in a typical SIRS model

with age groups. This parameter will be encoded as:

{\[Gamma], 3, {3}, {1}, True, "Average immunity time"}

• Type 4: In an age group model with three subpopulations, the growth rate

c is encoded as follows:

{c, 4, {1,2,3}, {}, True, "Growth rate"}

A.2.3.2 Parameters of non-linear terms

Each non-linear term parameter is encoded using the following fields:
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Name Value Description

1. Name Parameter name.

2. Transmission

is affected

by the sub-

populations

{n1, n2, . . .} Those subpopulations related to

any infectious state (infectious,

latent, etc.).

3. The arrow

exits from

the subpop-

ulation

{n1} Subpopulation whose individuals

are susceptible to be infected.

4. The arrow

enters into

the subpop-

ulation

{n2} Subpopulation where an infected

individual enters (latent, infec-

tious, etc.).

5. Depending

on the age

groups?

True/False True means that this parameter

can be different depending on the

age group.

6. Description String Description of the parameter.

The same advice given for independent and linear parameters can be applied to

non-linear ones. In the following example, the list

{\[Beta], {3,4}, {1}, {2}, True, Transmission rate}

indicates that if an individual A in subpopulation 1 of any age group has suc-

cessful contact (the disease is transmitted) with another individual belonging to

subpopulations 3 or 4 of any age group, individual A moves to subpopulation 2 in

the same age group as A was previously.

A.3 Steps to building the system of differential

equations

As we said before, the code was developed using Mathematica 7 or higher [52].

Then, in order to build the system of differential equations, we need to have
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Mathematica installed in the computer. Moreover, the files ”ModelDefinition”,

”epiModel” and ”ModelBuilder.nb” have to be in the same directory. Then, open

the notebook ”ModelBuilder.nb” using Mathematica. This notebook has 4 cells.

1st. This cell allows us to set the current directory (the directory containing the

files to build the model) as the working directory.

2nd. The second cell loads the text file ”ModelDefinition” where we have defined

the model, following the rules described in Section 2.

3rd. The third cell loads ”epiModel” and executes it. Then the files ”Model.data”

and ”parameter.data” appear in the working directory.

4th. Once the system of equations is in the ”Model.data” file, this cell loads this

file and displays the resulting system of equations. This is useful to verify

that no errors have occurred and check the correctness of the equations.

Figure A.3: Screenshot of ”ModelBuilder.nb” in Mathematica.

Given that no errors appeared, two files will be generated: ”Model.data” and

”parameters.data”.

A.3.1 The file ”Model.data”

This file contains the variables ti, mc, mcNoL1, mcNoL2, Fvars, eqns, vars.
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• ti corresponds to the vector independent term of the model, i.e. vector c in

expression (A.1).

• mc corresponds to the coefficient matrix of the linear model, i.e matrix L in

(A.1).

• mcNoL1 and mcNoL2 are the coefficient matrices which enable the con-

struction of the non-linear part of the model, i.e. matrices Ai and Bi in

(A.1), respectively.

• Fvars is a vector function where each entry corresponds to each subpopula-

tion in the model.

• eqns is a list with the system of differential equations. It is built computing

the expression (A.1) using all the above matrices.

• vars is the same as Fvars but removing t in the functions.

Thus, if we want numerically to solve a model in Mathematica (system of differ-

ential equations) we execute

sol = NDSolve[ eqns, vars, {t, t0, tEnd} ]

and in order to evaluate and draw the solutions we can execute

Plot[ Evaluate[ Fvars /. sol ], {t, t0, tEnd} ]

A.3.2 The file ”parameters.data”

This file has a complete list of the parameters appearing in the model. This is

useful because some of them can be replaced by known values and the ones that

can not, can be included in a procedure to be estimated.

A.4 Examples

In this section let us show three examples with different options to build type-

epidemiological models.
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A.4.1 SIRS model

The first example is the classical SIRS model, where we have three subpopulations:

Susceptible (S), Infectious (I) and Recovered (R). The transmission is carried out

with effective contacts between a susceptible individual and an infectious individ-

ual. Once an individual has been infected he/she recovers and acquires temporal

immunity. When this finishes, the individual again becomes susceptible. This

description has been depicted in Figure A.4.

S I R
µ 

d I

! R

" S I 

d S d R

v I 

Figure A.4: Diagram of a Susceptible-Infectious-Recovered-Susceptible model.

To build the ”ModelDefinition” file, we should take into account that:

• It is a model without age groups.

• µ is a Type 1 parameter belonging to the independent term model, because

this represents newborns that enter directly into the susceptible subpopula-

tion.

• Parameter d is the death rate (Type 2) and exits from all the subpopulations.

• β is the transmission parameter belonging to the non-linear term.

• The Type 3 parameters γ and ν belong to linear terms. They are the average

time of infection and immunity respectively.

Note that the number of age groups indicated is 1 and there are no parameters

depending on the age groups. In this way, the ”ModelDefinition” file will be as

follows:

(* Number of age groups *)

\[NTilde] = 1;
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(* Subpopulations *)

SP = {

{1, "Susceptible"},

{2, "Infected" },

{3, "Recovered" }

};

(* INDEPENDENT TERM *)

TI = {

{\[Mu], 1, {}, {1}, False, "Birth rate"}

};

(* LINEAR TERM *)

LIN = {

{ \[Nu], 3, {2}, {3}, False, "Average time of infection"},

{\[Gamma], 3, {3}, {1}, False, "Average time of immunity"},

{ d, 2, {1,2,3}, {}, False, "Death rate"}

};

(* NON LINEAR TERM *)

NOLIN = {

{\[Beta], {2}, {1}, {2}, False, "Transmision rate"}

};

After running ”epiModel” and building the model from the above data in the

”ModelDefinition” file, Mathematica returns the following system of differential

equations (x[1, 1] is susceptible, x[2, 1] infectious and x[3, 1] recovered subpopula-

tions):

x[1, 1]′[t] == µ− dx[1, 1][t]− βx[1, 1][t]x[2, 1][t] + γx[3, 1][t]

x[2, 1]′[t] == (−d− ν)x[2, 1][t] + β[1, 1]x[1, 1][t]x[2, 1][t]

x[3, 1]′[t] == νx[2, 1][t] + (−d− γ)x[3, 1][t]

x[1, 1][t0] == cIni[1]

x[2, 1][t0] == cIni[2]

x[3, 1][t0] == cIni[3]
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and the matrices that, computing the expression (A.1), enable the construction of

the above system are:

c =


µ

0

0

 , L =


−d 0 γ

0 −d− ν 0

0 ν −d− γ

 ,

A1 =


−1 0 0

1 0 0

0 0 0

 , B1 =


0 β 0

0 0 0

0 0 0

 .

A.4.2 SIR model with two age groups

This is a typical SIR (Susceptible-Infectious-Recovered) model with two age groups.

We have two susceptible groups, S1 and S2, one for each age group, the same for

infectious, I1 and I2 and for recovered R1 and R2. An individual in S1, I1 or R1

grows up and can enter in the corresponding box of the 2nd age group, S2, I2

or R2, respectively. Transmission is carried out with effective contacts between

a susceptible individual and an infectious individual of any age group. Once an

individual has been infected, after set time, he or she recovers. This description

has been depicted in Figure A.5.

S1 I1 R1

µ 

d1 I1

!11 S1 I1 + 

!12 S1 I2 

d1 S1 d1 R1

v1 I1 

S2 I2 R2

d2 I2d2 S2 d2 R2

v2 I2 

c1 S1 c1 I1 c1 R1

!21 S2 I1 + 

!22 S2 I2 

c2 S2 c2 I2 c2 R2

Figure A.5: Diagram of a Susceptible-Infectious-Recovered model with two
age groups.

To build the ”ModelDefinition” file, we take into account that:
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• It is a model with 2 age groups.

• µ is a Type 1 parameter belonging to the independent term model that enters

directly into the susceptible subpopulation of the first age group, i.e. it does

not depend on age group.

• β is the transmission parameter belonging to the non-linear term. ”epi-

Model” will generate four different parameters (β[1, 1], β[1, 2], β[2, 1] and

β[2, 2]) depending on the crossed products between susceptible and infec-

tious subpopulations.

• The Type 2 death parameter d depends on the age group. ”epiModel” will

generate d[1] parameter for the first age group and d[2] for the second one.

• The Type 3 parameter ν belongs to linear term. It is the average recovery

time and also depends on age group.

• Parameter c is Type 4 and is the population growth rate between these age

groups.

Thus, the ”ModelDefinition” file will be as follows:

(* Number of age groups *)

\[NTilde] = 2;

(* Subpopulations *)

SP = {

{1, "Susceptible"},

{2, "Infected" },

{3, "Recovered" }

};

(* INDEPENDENT TERM *)

TI = {

{\[Mu], 1, {}, {1}, False, "Birth rate"}

};
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(* LINEAR TERM *)

LIN = {

{ \[Nu], 3, {2}, {3}, True, "Average time of infection"},

{ d, 2, {1,2,3}, {}, True, "Death rate"},

{ c, 4, {1,2,3}, {}, True, "Growth rate"}

};

(* NON LINEAR TERM *)

NOLIN = {

{\[Beta], {2}, {1}, {2}, False, "Transmision rate"}

};

Then, running ”epiModel” and building the model from the above data in the

”ModelDefinition” file, Mathematica returns the following system of differential

equations (x[1, 1], x[2, 1] and x[3, 1] which are susceptible, infectious and recovered

subpopulations, respectively, of the first age group, and x[1, 2], x[2, 2], x[3, 2] for

the second one):

x[1, 1]′[t] == µ+ (−c[1]− d[1])x[1, 1][t]

−β[1, 1]x[1, 1][t]x[2, 1][t]− β[1, 2]x[1, 1][t]x[2, 2][t]

x[2, 1]′[t] == (−c[1]− d[1]− ν[1])x[2, 1][t]

+β[1, 1]x[1, 1][t]x[2, 1][t] + β[1, 2]x[1, 1][t]x[2, 2][t]

x[3, 1]′[t] == ν[1]x[2, 1][t] + (−c[1]− d[1])x[3, 1][t]

x[1, 2]′[t] == c[1]x[1, 1][t] + (−c[2]− d[2])x[1, 2][t]

x[2, 2]′[t] == c[1]x[2, 1][t] + (−c[2]− d[2]− ν[2])x[2, 2][t]

x[3, 2]′[t] == ν[2]x[2, 2][t] + c[1]x[3, 1][t] + (−c[2]− d[2])x[3, 2][t]

x[1, 1][t0] == cIni[1]

x[2, 1][t0] == cIni[2]

x[3, 1][t0] == cIni[3]

x[1, 2][t0] == cIni[4]

x[2, 2][t0] == cIni[5]

x[3, 2][t0] == cIni[6]

and the matrices that permit the construction of the above system, computing the

expression (A.1), are:
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L =



−c[1]− d[1] 0 0 0 0 0

0 −c[1]− d[1]− ν[1] 0 0 0 0

0 ν[1] −c[1]− d[1] 0 0 0

c[1] 0 0 −c[2]− d[2] 0 0

0 c[1] 0 0 −c[2]− d[2]− ν[2] 0

0 0 c[1] 0 ν[2] −c[2]− d[2]


,

c =



µ

0

0

0

0

0


, A1 =



−1 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


, B1 =



0 β[1, 1] 0 0 β[1, 2] 0

0 0 0 0 0 0

0 0 0 0 0 0

0 β[2, 1] 0 0 β[2, 2] 0

0 0 0 0 0 0

0 0 0 0 0 0


.

Note that the model includes parameter c[2]. This parameter makes sense if people

in the second age group leave the system in a form different from death, otherwise,

c[2] would be redundant because d[2] plays the same role and then, c[2] should be

zero.

A.4.3 SIR model with two age groups and two sexes

”epiModel” is not designed to build systems of differential equations from gender

models, however, considering some ”tricks”, we can transform a typical age group

model into an age group and gender model. These ”tricks” are:

• Consider first the age groups for females and then for males. Then, if there

are n age groups for each sex, we should consider a model with 2n age groups

(\[NTilde]=2n).

• The growth parameter c[n] connecting the last female age group (group n)

with the first male age group (group n+ 1) is zero.

• Birth rate should be considered age dependent in order to take into account

different birth rates for females and males. Then, Birth rate, say µ[i] is a

Type 1 parameter depending on age group. However, newborns enter into
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the first age group, group 1 for females (µ[1]) and group n + 1 for males

(µ[n+ 1]). The remainder µ[i] are zero.

This example consists of a typical SIR (Susceptible-Infectious-Recovered) model

with two age groups and two sexes for each age group. We have two susceptible

female groups, S1 and S2, and two susceptible male groups, S3 and S4, one for

each age group. The same for infectious, I1, I2, I3 and I4, and for recovered, R1,

R2, R3 and R4. An individual in S1, I1, R1, S3, I3, R3 grows up and can enter

into the box S2, I2, R2, S4, I4, R4 of the 2nd age group, respectively. People leave

the system by death.

For this example, let us suppose that the disease considered is heterosexually

transmitted. The transmission is carried out with effective contacts between a

susceptible male or female and an infectious individual of any age group of the

other sex. Once an individual has been infected, after some time, recovers. To

build the ”ModelDefinition” file, we take into account that:

• It is a model with 4 age groups, two for females and two for males.

• µ is a Type 1 parameter belonging to the independent term model that enters

directly into the susceptible subpopulations of the first age group for males

and females. This requires that µ depends on age group and µ[2] = µ[4] = 0.

• β is the transmission parameter belonging to the non-linear term. ”epi-

Model” will generate β[i, j] for i, j = 1, 2, 3, 4, one for each type of contact.

Taking into account that this disease is heterosexually transmitted, parame-

ters β[1, 1], β[1, 2], β[2, 1], β[2, 2], β[3, 3], β[3, 4], β[4, 3] and β[4, 4] are zero.

• The Type 2 death parameter d depends on age group. ”epiModel” will

generate d[i] parameters for i = 1, 2, 3, 4, the two first for the female age

groups and the remainder for male age groups.

• The Type 3 parameter ν belongs to linear term. It is the average recovery

time and also depends on age group and gender.

• Parameter c is of Type 4 and denotes the population growth rate between

these age groups. As we mentioned before, c[2] = 0. Moreover, as people

leave the system by death, c[4] = 0 because it plays the same role as the

death parameter d[4].
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Thus, the ”ModelDefinition” file will be as follows:

(* Number of age groups *)

\[NTilde] = 4;

(* Subpopulations *)

SP = {

{1, "Susceptible"},

{2, "Infected" },

{3, "Recovered" }

};

(* INDEPENDENT TERM *)

TI = {

{\[Mu], 1, {}, {1}, True, "Birth rate"}

};

(* LINEAR TERM *)

LIN = {

{ \[Nu], 3, {2}, {3}, True, "Average time of infection"},

{ d, 2, {1,2,3}, {}, True, "Death rate"},

{ c, 4, {1,2,3}, {}, True, "Growth rate"}

};

(* NON LINEAR TERM *)

NOLIN = {

{\[Beta], {2}, {1}, {2}, False, "Transmision rate"}

};

Then, running ”epiModel”, files ”Model.data” and ”parameters.data” appear.

Now, in order to obtain the desired system of differential equations, we have to as-

sign the following values to parameters: c[2] = c[4] = 0, µ[2] = µ[4] = 0, β[1, 1] =

β[1, 2] = 0, β[2, 1] = β[2, 2] = 0, β[3, 3] = β[3, 4] = 0 and β[4, 3] = β[4, 4] = 0.

Thus, we obtain the system:
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x[1, 1]′[t] == µ[1] + (−c[1]− d[1])x[1, 1][t]

−β[1, 3]x[1, 1][t]x[2, 3][t]− β[1, 4]x[1, 1][t]x[2, 4][t]

x[2, 1]′[t] == (−c[1]− d[1]− ν[1])x[2, 1][t]

+β[1, 3]x[1, 1][t]x[2, 3][t] + β[1, 4]x[1, 1][t]x[2, 4][t]

x[3, 1]′[t] == ν[1]x[2, 1][t] + (−c[1]− d[1])x[3, 1][t]

x[1, 2]′[t] == c[1]x[1, 1][t]− d[2]x[1, 2][t]

x[2, 2]′[t] == c[1]x[2, 1][t] + (−d[2]− ν[2])x[2, 2][t]

x[3, 2]′[t] == ν[2]x[2, 2][t] + c[1]x[3, 1][t]− d[2]x[3, 2][t]

x[1, 3]′[t] == µ[3] + (−c[3]− d[3])x[1, 3][t]

x[2, 3]′[t] == (−c[3]− d[3]− ν[3])x[2, 3][t]

x[3, 3]′[t] == ν[3]x[2, 3][t] + (−c[3]− d[3])x[3, 3][t]

x[1, 4]′[t] == c[3]x[1, 3][t]− d[4]x[1, 4][t]

x[2, 4]′[t] == c[3]x[2, 3][t] + (−d[4]− ν[4])x[2, 4][t]

x[3, 4]′[t] == ν[4]x[2, 4][t] + c[3]x[3, 3][t]− d[4]x[3, 4][t]

x[1, 1][t0] == cIni[1]

x[2, 1][t0] == cIni[2]

x[3, 1][t0] == cIni[3]

x[1, 2][t0] == cIni[4]

x[2, 2][t0] == cIni[5]

x[3, 2][t0] == cIni[6]

x[1, 3][t0] == cIni[7]

x[2, 3][t0] == cIni[8]

x[3, 3][t0] == cIni[9]

x[1, 4][t0] == cIni[10]

x[2, 4][t0] == cIni[11]

x[3, 4][t0] == cIni[12]

where x[i, j][t] is the susceptible subpopulation for i = 1, infectious for i = 2 and

recovered for i = 3, and age group 1 females for j = 1, age group 2 females for

j = 2, age group 1 males for j = 3 and age group 2 males for j = 4.

A.5 Conclusions

In this appendix, we have presented a Mathematica code that translates the de-

scription of a type-epidemiological linear or quadratic compartmental model in a

96



Appendix A

simple syntax into a system of differential equations. The obtained system can

be used to estimate parameters, simulate different scenarios or predict short and

long-term behavior, as we used to model the academic performance of Spanish

and German students in high school in Chapters 3 and 4.

This code is easy to use, saves time building the systems and avoids errors. More-

over, it can be applied to models involving age groups and/or gender. It is partic-

ularly interesting when we have to handle a large number of groups. You can test

it, changing the variable \[NTilde] by 100 (one hundred one-year age groups), in

any of the shown examples in Section 4, thus generating 300 equations.

epiModel is available at http://epimodel.imm.upv.es.
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Validation of our Spanish

mathematical model results
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A
ppen

dix
B

First Stage of Bachillerato Second Stage of Bachillerato

(Girls | Boys) (Girls | Boys)

Academic % Promote % Do not promote % Promote % Do not promote

year (G1 | B1) (G1 | B1) (G2 | B2) (G2 | B2)

Predictions mathematical model (Chapter 2)

2009− 2010 0.21197 | 0.16033 0.08233 | 0.08537 0.18945 | 0.13692 0.06785 | 0.06578

2010− 2011 0.21246 | 0.16063 0.08184 | 0.08508 0.19073 | 0.13783 0.06657 | 0.06487

2011− 2012 0.21287 | 0.16087 0.08143 | 0.08483 0.19187 | 0.13865 0.06543 | 0.06406

2012− 2013 0.21324 | 0.16109 0.08106 | 0.08461 0.19289 | 0.13939 0.06441 | 0.06331

2013− 2014 0.21360 | 0.16129 0.08070 | 0.08441 0.19386 | 0.14010 0.06344 | 0.06260

2014− 2015 0.21397 | 0.16150 0.08033 | 0.08420 0.19480 | 0.14080 0.06250 | 0.06190

Predictions mathematical model (Chapter 3)

2009− 2010 0.20380 | 0.15630 0.06920 | 0.06940 0.19400 | 0.15880 0.07690 | 0.07150

2010− 2011 0.20310 | 0.15670 0.06800 | 0.06730 0.19570 | 0.16430 0.07640 | 0.07050

2011− 2012 0.20220 | 0.15700 0.06690 | 0.06530 0.19720 | 0.16580 0.07600 | 0.06960

2012− 2013 0.20130 | 0.15720 0.06590 | 0.06340 0.19860 | 0.16920 0.07560 | 0.06870

2013− 2014 0.20030 | 0.15750 0.06500 | 0.06160 0.19990 | 0.17250 0.07540 | 0.06790

2014− 2015 0.19910 | 0.15780 0.06420 | 0.05980 0.20100 | 0.17570 0.07520 | 0.06720

95% confidence intervals of predictions mathematical model (Chapter 3)

2009− 2010 [ 0.17993 , 0.21227 ]|[ 0.15286 , 0.18575 ] [ 0.06512 , 0.07041 ]|[ 0.06574 , 0.07340 ] [ 0.16987 , 0.19554 ]|[ 0.15632 , 0.17254 ] [ 0.07564 , 0.08020 ]|[ 0.06852 , 0.07391 ]

2010− 2011 [ 0.17870 , 0.21222 ]|[ 0.15283 , 0.18840 ] [ 0.06333 , 0.06920 ]|[ 0.06346 , 0.07173 ] [ 0.16938 , 0.19734 ]|[ 0.15965 , 0.17752 ] [ 0.07471 , 0.07969 ]|[ 0.06728 , 0.07287 ]

2011− 2012 [ 0.17673 , 0.21202 ]|[ 0.15291 , 0.19165 ] [ 0.06179 , 0.06830 ]|[ 0.06137 , 0.07001 ] [ 0.16803 , 0.19898 ]|[ 0.16287 , 0.18219 ] [ 0.07392 , 0.07949 ]|[ 0.06613 , 0.07221 ]

2012− 2013 [ 0.17223 , 0.21172 ]|[ 0.15361 , 0.19406 ] [ 0.06044 , 0.06749 ]|[ 0.05941 , 0.06848 ] [ 0.16952 , 0.20041 ]|[ 0.16616 , 0.18630 ] [ 0.07322 , 0.07948 ]|[ 0.06513 , 0.07170 ]

2013− 2014 [ 0.17036 , 0.21135 ]|[ 0.15372 , 0.19705 ] [ 0.05934 , 0.06691 ]|[ 0.05772 , 0.06713 ] [ 0.16989 , 0.20172 ]|[ 0.16943 , 0.19088 ] [ 0.07242 , 0.07916 ]|[ 0.06426 , 0.07116 ]

2014− 2015 [ 0.16837 , 0.21089 ]|[ 0.15377 , 0.19860 ] [ 0.05798 , 0.06610 ]|[ 0.05586 , 0.06554 ] [ 0.16786 , 0.20304 ]|[ 0.17236 , 0.19516 ] [ 0.07180 , 0.07888 ]|[ 0.06333 , 0.07060 ]

Table B.1: The model output corresponding to the mathematical model shown in both, Chapter 2 and Chapter 3 and the predictions
with corresponding 95% confidence intervals obtained in Chapter 3 of the First and Second Stage of Bachillerato, in both, state and private
high schools all over Spain during academic years 2008− 2009 to 2014− 2015.
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ppen

dix
B

First Stage of Bachillerato Second Stage of Bachillerato

(Girls | Boys) (Girls | Boys)

Academic % Promote % Do not promote % Promote % Do not promote

year (G1 | B1) (G1 | B1) (G2 | B2) (G2 | B2)

Absolute Error. Deterministic predictions (Chapter 2) vs 95% confidence intervals (Chapter 3)

2009− 2010 − | − 0.01192 | 0.01197 − | 0.01940 0.00780 | 0.00274

2010− 2011 0.00024 | − 0.01264 | 0.01335 − | 0.02182 0.00814 | 0.00242

2011− 2012 0.00085 | − 0.01313 | 0.01482 − | 0.02423 0.00849 | 0.00208

2012− 2013 0.00152 | − 0.01357 | 0.01613 − | 0.02677 0.00882 | 0.00182

2013− 2014 0.00225 | − 0.01380 | 0.01728 − | 0.02933 0.00898 | 0.00166

2014− 2015 0.00308 | − 0.01423 | 0.01865 − | 0.03157 0.00930 | 0.00143

Absolute Error. Deterministic predictions (Chapter 3) vs 95% confidence intervals (Chapter 3)

2009− 2010 − | − − | − − | − − | −
2010− 2011 − | − − | − − | − − | −
2011− 2012 − | − − | − − | − − | −
2012− 2013 − | − − | − − | − − | −
2013− 2014 − | − − | − − | − − | −
2014− 2015 − | − − | − − | − − | −

Table B.2: Absolute errors corresponding to the distance between the deterministic predictions given in Chapter 2 and 3 (also
shown in Table B.1) and the low or high 95% confidence interval extremes stated in Chapter 3 of the First and Second Stage of
Bachillerato, in both, state and private high schools all over Spain during academic years 2008− 2009 to 2014− 2015. The dashes
indicate that the deterministic prediction lies inside its corresponding 95% confidence interval.
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Validation of our German

mathematical model results

Time (t) Level Groups Model Real Absolute Error

output data |Model output-Real data|

2006− 2007 Level 11 Promoted Girls 19.37 19.37 0.00

Non–Promoted Girls 0.80 0.81 0.01

Promoted Boys 18.23 16.05 2.18

Non–Promoted Boys 0.75 0.96 0.21

Level 12 Promoted Girls 15.34 18.23 2.89

Non–Promoted Girls 0.25 0.75 0.50

Promoted Boys 16.05 14.7 1.35

Non–Promoted Boys 0.96 0.85 0.11

Level 13 Promoted Girls 14.70 15.34 0.64

Non–Promoted Girls 0.85 0.25 0.60

Promoted Boys 12.38 12.38 0.00

Non–Promoted Boys 0.31 0.31 0.00

2007− 2008 Level 11 Promoted Girls 18.87 19.09 0.22

Non–Promoted Girls 0.69 0.67 0.02

Promoted Boys 18.04 15.92 2.12

Non–Promoted Boys 0.68 0.88 0.20

Level 12 Promoted Girls 15.75 17.96 2.21

Non–Promoted Girls 0.21 0.68 0.47

Promoted Boys 16.19 14.73 1.46

Non–Promoted Boys 0.93 0.81 0.12

Level 13 Promoted Girls 14.82 15.96 1.14

Non–Promoted Girls 0.78 0.25 0.53

Promoted Boys 12.78 12.77 0.01

Non–Promoted Boys 0.26 0.28 0.02

2008− 2009 Level 11 Promoted Girls 18.41 19.1 0.69

Non–Promoted Girls 0.60 0.59 0.01

Promoted Boys 17.86 15.95 1.91

Non–Promoted Boys 0.62 0.81 0.19

Level 12 Promoted Girls 16.09 18.15 2.06

Non–Promoted Girls 0.17 0.58 0.41

Promoted Boys 16.31 14.77 1.54
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Non–Promoted Boys 0.90 0.67 0.23

Level 13 Promoted Girls 14.96 15.94 0.98

Non–Promoted Girls 0.72 0.19 0.53

Promoted Boys 13.16 13.04 0.12

Non–Promoted Boys 0.22 0.21 0.01

2009− 2010 Level 11 Promoted Girls 18.49 19.24 0.75

Non–Promoted Girls 0.52 0.53 0.01

Promoted Boys 17.90 16.3 1.60

Non–Promoted Boys 0.57 0.73 0.16

Level 12 Promoted Girls 16.18 17.77 1.59

Non–Promoted Girls 0.14 0.47 0.33

Promoted Boys 16.26 14.72 1.54

Non–Promoted Boys 0.88 0.67 0.21

Level 13 Promoted Girls 14.99 16.25 1.26

Non–Promoted Girls 0.66 0.19 0.47

Promoted Boys 13.24 12.94 0.30

Non–Promoted Boys 0.18 0.19 0.01

2010− 2011 Level 11 Promoted Girls 18.04 18.27 0.23

Non–Promoted Girls 0.45 0.44 0.01

Promoted Boys 17.71 15.87 1.84

Non–Promoted Boys 0.53 0.6 0.07

Level 12 Promoted Girls 16.44 18.29 1.85

Non–Promoted Girls 0.12 0.47 0.35

Promoted Boys 16.36 15.21 1.15

Non–Promoted Boys 0.85 0.64 0.21

Level 13 Promoted Girls 15.15 16.44 1.29

Non–Promoted Girls 0.60 0.17 0.43

Promoted Boys 13.57 13.39 0.18

Non–Promoted Boys 0.15 0.21 0.06

Table C.1: The model output obtained with the estimated param-
eters (Tables 4.2 and 4.3) in our German model, the real data and
their associated absolute errors corresponding the Levels 11, 12 and
13, in both, state and private high schools all over the German re-
gion of North Rhine-Westphalia during academic years 2006 − 2007
to 2010 − 2011. Each row shows the percentage of girls/boys who
promote and do not promote for each academic level.
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Time series analysis: Forecasting

models in Statgraphics Plus 5.1.

D.1 Introduction

In this appendix, we show the procedure followed by the Statgraphics Plus for

Windows 5.1 software to obtain the time series models which allow us to predict

the necessary information to achieve the aims proposed, in particular, in Chapter

5 of this dissertation.

This powerful statistical tool provides the user five different forecasting models

that best fit the available data. Each one of the forecasted models takes a differ-

ent approach to predict future values with 95% confidence intervals [74]. In the

discussion below, the following notation will be used:

Yt = Observed value at time t, t = 1, . . . , n.

n = Sample size (number of observations used to fit the model).

m = Observations have been used to validate the model.

n+m = Total sample size.

Ft(k) = Forecast for time t+ k done at time t.

et = Prediction errors calculated by :

(D.1)
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et = Yt − Ft−1(1). (D.2)

Moreover, this software only states the time series model and its corresponding

predictions with confidence intervals if the following assumptions are satisfied:

• The proper model have been selected.

• The selected model is valid for all historical data.

• The selected model continues being valid in the future.

• The errors follow a normal distribution [75].

This appendix is organized as follows. In Section D.2, we present a brief expla-

nation of the five forecasting models used by the Statgraphics Plus for Windows

5.1 software to obtain the best model that fit the available data. The validation

of the mentioned models is given in Section D.3. Finally, in Section D.4 we show

how the Statgraphics Plus for Windows 5.1 software obtain the 95% confidence

intervals of the corresponding predictions.

D.2 Forecasting models

In this section, we will present a brief explanation about the five forecasting models

shown by this software to select the best fit.

The mentioned forecasting models are the following:

• Random Walk with Trend. Randomly forecasts the next observation

based on the current observation and the mean and standard deviation of

the difference of the values. This model, included a constant, uses the current

value of the series to forecast all the future values [73, 74]. This forecast is

given by:

Ft(k) = Yt + k∆̂ (D.3)

106



Appendix D

where ∆̂ estimates the average change from one period to another.

• Linear Trend. Fits a straight line through the data and into the forecasting

periods. This model estimates a regression model to the available data, using

time as a independent variable. It is fitted by least squares [74, 81, 82]. The

forecasts of the model are obtained by:

Ft(k) = â+ b̂(t+ k) (D.4)

where â and b̂ are estimated constants.

• Simple Moving Average. Uses the moving average to smooth the data

and to predict future values. This model uses the average of the most recent

m observations to predict future values. The forecasts are given by:

Ft(k) =

∑m−1
i=0 Y t− i
m

(D.5)

• Simple Exponential Smoothing. Smoothes the data and predicts future

values by exponentially weighting the values in the time series [74, 83]. Let S ′

denote the singly-smoothed series obtained by applying simple exponential

smoothing to series Y. That is, the value of S ′ at period t is given by:

S ′t = αYt + (1− α)S ′t−1, 0 < α < 1 (D.6)

where α is the ”smoothing constant” (α number between 0 and 1).

Therefore, the forecasts are given by:

Ft(k) = S ′t (D.7)

• Brown’s Linear Exponential Smoothing. This model is similar to the

Simple Exponential Smoothing, although in this case, smoothes the data and

107



Appendix D

predicts future values by applying a double-smoothing formula to the data

using one parameter, α [74, 83]. Now, let S ′′ denote the doubly-smoothed

series obtained by applying simple exponential smoothing (equation D.6),

that is,

S ′′t = αS ′t(k) + (1− α)S ′′t−1, 0 < α < 1 (D.8)

where α is the ”smoothing constant” (α number between 0 and 1).

Therefore, the forecasts are given by:

Ft(k) = 2S ′t − S ′′t + k
α

1− α
(S ′t − S ′′t ) (D.9)

D.3 Validation of the model

Once the models are stated, the software considers m observations of the available

data to validate the model (see Section D.1). This process is addressed taking as

a reference the minimum error generated by the forecasted model according to the

available data. The indicators considered for this validation are:

• RMSE: Root Mean Square Error over the validation period, given by:

RMSE =

√∑m
i=1 e

2
n+i

m
(D.10)

• MAPE: Percentage of the mean absolute error on the validation period, given

by:

MAPE = 100

∑m
i=1 |

en+i
Yt+i
|

m
% (D.11)
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The RMSE estimated standard deviation forecast errors a step forward. The

MAPE estimates the average percentage forecast error one step ahead. The small

values are desirable for RMSE and MAPE, respectively.

D.4 Obtaining 95% confidence intervals

In this section, we show how the Statgraphics Plus for Windows 5.1 software

provides the 100(1− α)% confidence intervals for each forecast model.

They are computed assuming that the errors in the model follow a normal distri-

bution [74]. The confidence intervals are given by:

Ft(k)± zα
2

√
V̂ (k), (D.12)

where V̂ (k) is the estimated variance of the forecast of k periods before the end

of the data.
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