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Agräıments
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per tots els becaris, professors i altres membres que han format part del Departament
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Abstract

Cache memories have been usually implemented with Static Random-Access Memory

(SRAM) technology since it is the fastest electronic memory technology. However, this

technology consumes a high amount of leakage currents, which is a major design concern

because leakage energy consumption increases as the transistor size shrinks. Alternative

technologies are being considered to reduce this consumption. Among them, embedded

Dynamic RAM (eDRAM) technology provides minimal area and leakage by design but

reads are destructive and it is not as fast as SRAM.

In this thesis, both SRAM and eDRAM technologies are mingled to take the advantatges

that each of them offers. First, they are combined at cell level to implement an n-bit

macrocell consisting of one SRAM cell and n-1 eDRAM cells. The macrocell is used to

build n-way set-associative hybrid first-level (L1) data caches having one SRAM way and

n-1 eDRAM ways. A single SRAM way is enough to achieve good performance given the

high data locality of L1 caches. Architectural mechanisms such as way-prediction, swaps,

and scrub operations are considered to avoid unnecessary eDRAM reads, to maintain

the Most Recently Used (MRU) data in the fast SRAM way, and to completely avoid

refresh logic. Experimental results show that, compared to a conventional SRAM cache,

leakage and area are largely reduced with a scarce impact on performance.

The study of the benefits of hybrid caches has been also carried out in second-level (L2)

caches acting as Last-Level Caches (LLCs). In this case, the technologies are combined

at bank level and the optimal ratio of SRAM and eDRAM banks that achieves the best

trade-off among performance, energy, and area is identified. Like in L1 caches, the MRU

blocks are kept in the SRAM banks and they are accessed first to avoid many eDRAM

reads. Nevertheless, refresh logic is not removed since data locality widely differs in this

cache level. Experimental results show that a hybrid LLC with an eighth of its banks

built with SRAM technology is enough to achieve the best target trade-off.

This dissertation also deals with performance of replacement policies in heterogeneous

LLCs mainly focusing on the energy overhead incurred by refresh operations. In this

thesis it is defined a new concept, namely MRU-Tour (MRUT), that helps estimate reuse

information of cache blocks. Based on this concept, it is proposed a family of MRUT-

based replacement algorithms that randomly select the victim block among those having

a single MRUT. These policies are enhanced to leverage recency of information for a

few blocks and to adapt to changes in the working set of the benchmarks. Results show
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xii Abstract

that the proposed MRUT policies, with simpler hardware complexity, outperform the

Least Recently Used (LRU) policy and a set of the most representative state-of-the-art

replacement policies for LLCs.

Refresh operations represent an important fraction of the overall dynamic energy con-

sumption of eDRAM LLCs. This fraction increases with the cache capacity, since more

blocks have to be refreshed for a given period of time. Prior works have attacked the

refresh energy taking into account inter-cell feature variations. Unlike these works, this

thesis proposes a selective refresh policy based on the MRUT concept. The devised

policy takes into account the number of MRUTs of a block to select whether the block

is refreshed. In this way, many refreshes done in a typical distributed refresh policy are

skipped (i.e., in those blocks having a single MRUT). This refresh mechanism is applied

in the hybrid LLC memory. Results show that refresh energy consumption is largely re-

duced with respect to a conventional eDRAM cache, while the performance degradation

is minimal with respect to a conventional SRAM cache.



Resumen

Las memorias caché o cache han sido implementadas normalmente con tecnoloǵıa Static

Random-Access Memory (SRAM) ya que es la tecnoloǵıa de memoria electrónica más

rápida. Sin embargo, esta tecnoloǵıa consume una gran cantidad de corrientes de fuga,

lo cual es un problema de diseño importante porque el consumo de corrientes de fuga

incrementa a medida que el tamaño del transistor encoge. Se están considerando tec-

noloǵıas alternativas para reducir este consumo. Entre ellas, la tecnoloǵıa embedded

Dynamic RAM (eDRAM) ofrece por diseño un área y corrientes de fuga mı́nimas pero

las lecturas son destructivas y no es tan rápida como SRAM.

En esta tesis, ambas tecnoloǵıas SRAM y eDRAM se mezclan para conseguir las ventajas

que cada una de ellas ofrece. En primer lugar, se combinan a nivel de celda para

implementar una macrocelda de n-bits consistente en una celda SRAM y n-1 celdas

eDRAM. La macrocelda se utiliza para construir caches h́ıbridas de datos de primer

nivel (L1) asociativas por conjuntos de n-v́ıas que tienen una v́ıa SRAM y n-1 v́ıas

eDRAM. Una sola v́ıa SRAM es suficiente para conseguir buenas prestaciones dado

que la localidad de los datos en caches L1 es elevada. Mecanismos arquitectónicos como

predicción de v́ıa, intercambio de datos (swaps) y operaciones de scrub se consideran para

evitar lecturas eDRAM innecesarias, mantener los datos más recientemente utilizados

(MRU) en la v́ıa SRAM rápida y eliminar completamente la lógica de refresco. Los

resultados experimentales muestran que, comparado con una cache convencional SRAM,

las corrientes de fuga y área se reducen considerablemente con un impacto escaso en las

prestaciones.

El estudio de los beneficios de las caches h́ıbridas también se ha llevado a cabo en caches

de segundo nivel (L2) actuando como caches de último nivel (LLCs). En este caso, las

tecnoloǵıas se combinan a nivel de banco y se identifica el ratio óptimo de bancos SRAM

y eDRAM que consigue el mejor compromiso entre prestaciones, enerǵıa y área. Como

en las caches L1, los bloques MRU se mantienen en los bancos SRAM y se acceden

primero para evitar muchas lecturas eDRAM. Sin embargo, la lógica de refresco no se

elimina ya que la localidad de los datos difiere ampliamente en este nivel de cache. Los

resultados experimentales muestran que una LLC h́ıbrida con un octavo de sus bancos

implementados con tecnoloǵıa SRAM es suficiente para conseguir el mejor compromiso.

Esta disertación también se ocupa de las prestaciones de las poĺıticas de reemplazo en

LLCs heterogéneas centrándose principalmente en la sobrecarga de enerǵıa incurrida por

xiii
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las operaciones de refresco. En esta tesis se define un concepto nuevo, llamado MRU-

Tour (MRUT), que ayuda a la estimación de información de reuso de los bloques de

cache. Basándose en este concepto, se propone una familia de algoritmos de reemplazo

basados en MRUT que seleccionan aleatoriamente los bloques v́ıctima entre aquellos

que tienen un solo MRUT. Estas poĺıticas se mejoran para hacer uso de la recencia

de información de unos pocos bloques y adaptarse a los cambios en el comportamiento

de las aplicaciones. Los resultados muestran que las poĺıticas MRUT propuestas, con

menor complejidad hardware, mejoran las prestaciones de Least Recently Used (LRU) y

de un conjunto representativo del estado del arte de algoritmos de reemplazo para las

LLC.

Las operaciones de refresco representan una fracción importante del consumo total de

enerǵıa dinámica de las LLC eDRAM. Esta fracción incrementa con la capacidad de

cache, ya que una cantidad mayor de bloques tienen que ser refrescados en un periodo

de tiempo dado. Algunos trabajos anteriores han atacado la enerǵıa de refresco teniendo

en cuenta las variaciones de los componentes entre celdas. A diferencia de estos trabajos,

esta tesis propone una poĺıtica de refresco selectiva basada en el concepto de MRUT.

La poĺıtica ideada tiene en cuenta el número de MRUTs de un bloque para seleccionar

si el bloque se refresca. De esta manera, muchos refrescos realizados en una poĺıtica de

refresco t́ıpica y distribuida se omiten, es decir, en aquellos bloques que tienen un solo

MRUT. Este mecanismo de refresco se aplica en la memoria LLC h́ıbrida. Los resultados

muestran que el consumo de enerǵıa de refresco se reduce ampliamente respecto a una

cache convencional eDRAM, mientras que la degradación de prestaciones es mı́nima

respecto a una cache convencional SRAM.



Resum

Les memòries cau o cache han estat normalment implementades amb tecnologia Static

Random-Access Memory (SRAM) ja que és la tecnologia de memòria electrònica més

ràpida. No obstant això, aquesta tecnologia consumeix una gran quantitat de corrents

de fugida, la qual cosa és un problema de disseny important perquè el consum de cor-

rents de fugida incrementa a mesura que la grandària del transistor encongeix. S’estan

considerant tecnologies alternatives per reduir aquest consum. Entre elles, la tecnologia

embedded Dynamic RAM (eDRAM) ofereix per disseny un àrea i corrents de fugida

mı́nimes però les lectures són destructives i no és tan ràpida com SRAM.

En aquesta tesi, ambdues tecnologies SRAM i eDRAM es barregen per aconseguir els

avantatges que cadascuna d’elles ofereix. En primer lloc, es combinen a nivell de cel·la

per implementar una macrocel·la de n-bits consistent en una cel·la SRAM i n-1 cel·les

eDRAM. La macrocel·la s’utilitza per construir caches h́ıbrides de dades de primer nivell

(L1) associatives per conjunts de n-vies que tenen una via SRAM i n-1 vies eDRAM.

Una sola via SRAM és suficient per aconseguir bones prestacions atès que la localitat

de les dades en caches L1 és elevada. Mecanismes arquitectònics com predicció de

via, intercanvi de dades (swaps) i operacions de scrub es consideren per evitar lectures

eDRAM innecessàries, mantenir les dades més recentment utilitzades (MRU) en la via

SRAM ràpida i eliminar completament la lògica de refresc. Els resultats experimentals

mostren que, comparat amb una cache convencional SRAM, els corrents de fugida i àrea

es redueixen considerablement amb un impacte escàs en les prestacions.

L’estudi dels beneficis de les caches h́ıbrides també s’ha dut a terme en caches de segon

nivell (L2) actuant com caches d’últim nivell (LLCs). En aquest cas, les tecnologies es

combinen a nivell de banc i s’identifica el ràtio òptim de bancs SRAM i eDRAM que

aconsegueix el millor compromı́s entre prestacions, energia i àrea. Com en les caches L1,

els blocs MRU es mantenen als bancs SRAM i s’accedeixen primer per a evitar moltes

lectures eDRAM. No obstant això, la lògica de refresc no s’elimina ja que la localitat

de les dades difereix àmpliament en aquest nivell de cache. Els resultats experimentals

mostren que una LLC h́ıbrida amb un vuitè dels seus bancs implementats amb tecnologia

SRAM és suficient per aconseguir el millor compromı́s.

Aquesta dissertació també s’ocupa de les prestacions de les poĺıtiques de reemplaçament

en LLCs heterogènies centrant-se principalment en la sobrecàrrega d’energia incorreguda

per les operacions de refresc. En aquesta tesi es defineix un concepte nou, anomenat

xv
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MRU-Tour (MRUT), que ajuda a l’estimació d’informació de reús dels blocs de cache.

Basant-se en aquest concepte, es proposa una famı́lia d’algorismes de reemplaçament

basats en MRUT que seleccionen aleatòriament els blocs v́ıctima entre aquells que tenen

un sol MRUT. Aquestes poĺıtiques es milloren per fer ús de la recència d’informació d’uns

pocs blocs i adaptar-se als canvis en el comportament de les aplicacions. Els resultats

mostren que les poĺıtiques MRUT propostes, amb menor complexitat hardware, milloren

les prestacions de Least Recently Used (LRU) i d’un conjunt representatiu de l’estat de

l’art d’algorismes de reemplaçament per les LLC.

Les operacions de refresc representen una fracció important del consum total d’energia

dinàmica de les LLC eDRAM. Aquesta fracció incrementa amb la capacitat de cache,

ja que una quantitat major de blocs han de ser refrescats en un peŕıode de temps

donat. Alguns treballs anteriors han atacat l’energia de refresc tenint en compte les

variacions dels components entre cel·les. A diferència d’aquests treballs, aquesta tesi

proposa una poĺıtica de refresc selectiva basada en el concepte de MRUT. La poĺıtica

ideada té en compte el nombre de MRUTs d’un bloc per seleccionar si el bloc es refresca.

D’aquesta manera, molts refrescs realitzats en una poĺıtica de refresc t́ıpica i distribüıda

s’ometen, és a dir, en aquells blocs que tenen un sol MRUT. Aquest mecanisme de refresc

s’aplica en la memòria LLC h́ıbrida. Els resultats mostren que el consum d’energia de

refresc es redueix àmpliament respecte a una cache convencional eDRAM, mentre que

la degradació de prestacions és mı́nima respecte a una cache convencional SRAM.
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Chapter 1

Introduction

This chapter introduces some concepts and presents the motivation for the work devel-

oped in this thesis. First, different semiconductor memory technologies are discussed,

showing their advantages and shortcomings. Then, the concept of Last-Level Cache

(LLC) is presented, and several issues related to these memories are discussed. Finally,

a summary about how the rest of this dissertation deals with hybrid cache designs and

their data management is given.

1
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1.1 Background

Computer architects have implemented cache memories [1] since late 1960s to mitigate

the huge gap between processor and main memory speed. Caches have been normally

built with Static Random-Access Memory (SRAM) technology since it is the fastest

electronic memory technology. However, SRAM incurs in high leakage or static energy

consumption, which is a major design concern given that this consumption aggravates

as the transistor size shrinks [2]. Thus, many leakage reduction techniques have been

proposed to mitigate this problem. Alternative technologies are also being considered.

For instance, Dynamic RAM (DRAM) technology provides minimal leakage currents by

design, but it has not been used to build caches because DRAM is difficult and expensive

to implement in logic-circuit technology.

Current microprocessors implement two or three cache levels to reduce the difference in

speed between processor and main memory. To reduce this penalty, LLCs are designed

as large memory structures, which significantly increases leakage consumption. Due to

this reason, LLCs are suitable for logic-compatible embedded DRAM or simply eDRAM

technology. However, the main drawbacks of eDRAM are that its reads are destructive,

it requires refresh operations, and it is not as fast as SRAM. Finally, researchers also

have noted that the LRU replacement algorithm does not reach good performance in

LLCs. One of the main reasons is that data locality in these memories is filtered by the

inner cache levels.

1.1.1 Memory Technologies

1.1.1.1 Static Random-Access Memory (SRAM)

Until now, SRAM has been the predominant technology used to build memory cells

in computer systems. SRAM cells are typically implemented with six transistors (6T

cells). Figure 1.1 illustrates the structure of a 6T SRAM cell. These cells are usually

designed for speed, which is the main reason because of they are used in cache memories,

especially in the first levels of the memory hierarchy. However, the major drawbacks of

SRAM-based caches are that they occupy a significant percentage of the overall die area

in current multicore processors and consume an important amount of energy, especially
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WL

BL

Vdd

BL

Figure 1.1: 6T SRAM cell. Labels WL and Vdd refer to the wordline and supply
voltage, respectively, whereas labels BL and /BL refer to the bitline and its comple-

mentary, respectively.

leakage energy which is proportional to the number of transistors. Furthermore, this

design concern aggravates as the transistor size continues shrinking. Therefore, using

SRAM cells impacts both in area and leakage currents.

1.1.1.2 Leakage Reduction Techniques for SRAM

Leakage energy reduction in SRAM cells has been widely investigated in the last decade.

The proposed techniques can be classified into two main categories depending on whether

the cache block state is preserved or not. In the first category, the supply voltage to

selected cache lines is reduced and these lines remain in state-preserving low-power

mode, so increasing the access time to such lines [3] [4]. In the second group, the

supply voltage to the cache blocks with poorer locality is removed; thus, losing the

block information [5] [6]. Subsequent accesses to such blocks will result on a cache miss;

thus, the next level of the memory hierarchy must be accessed.

1.1.1.3 Dynamic Random-Access Memory (DRAM)

Leakage currents can also be reduced taking into account alternative technologies like

DRAM, which is typically used for main memory. Figure 1.2 depicts the structure of

a 1T-1C DRAM cell. Unlike SRAM cells, DRAM cells only require an active power

supply during the memory access so their leakage currents are reduced by design. For
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WL

BL

C

Figure 1.2: 1T-1C DRAM cell. Label C refers to the capacitor of the cell.

a given technology node, these cells require less area than SRAM cells since they are

implemented with only one capacitor and the corresponding pass transistor. However,

these cells present two major drawbacks that make them inappropriate for processor

caches: low speed and information loss.

Regarding the first issue, technology advances have permitted to embed DRAM cells

using CMOS technology [7]. An eDRAM cell integrates a trench DRAM storage cell

into a logic-circuit technology and provides similar access delays as those presented by

SRAM cells. As a consequence, some recent commercial processors such as some IBM

POWER processors use eDRAM technology to build huge second-level (L2) caches or

LLCs [8] [9] [10] [11].

The latter drawback is caused because capacitors in both DRAM and eDRAM cells

store data as charge, which is lost either when contents are read (destructive read) or

progressively with time. The elapsed time since the capacitor is charged until the con-

tents are lost is referred to as retention time. To avoid capacitor discharges, contents

are periodically read out and written back in a process known as refreshing. Refresh

operations consume additional energy and affect performance since they compete for

memory with regular processor requests. This is a major design concern in first-level

(L1) caches, where data availability is critical. On the other hand, the refresh energy

problem is expected to aggravate in future technologies with much higher memory stor-

age capacities. For instance, as reported in [12], refresh consumption is expected to rise

up to 50% in future 64Gb DRAM chips.

An important advantage of eDRAM technology is that it can be manufactured by logic

technologies with minimal changes in the manufacturing process. This means that

SRAM and eDRAM technologies can be mingled in the same die to obtain the best
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Technology Speed Density Leakage
Refresh Destructive logic-circuit
logic reads compatible

SRAM fast low high no no yes
DRAM slow high low yes yes no
eDRAM slow high low yes yes yes

Table 1.1: Memory technology characteristics.

of each technology as already performed by some companies [13]. Table 1.1 summarizes

the main design characteristics of the discussed memory technologies.

1.1.1.4 Other Memory Technologies and Cells

Apart from the technologies discussed in this chapter, several technologies are being

developed, especially non-volatile technologies, such as Magnetic RAM (MRAM) and

Phase-change RAM (PRAM or PCM) [14] [15] [16].

The non-volatile property of these technologies allow them to consume less leakage than

eDRAM. MRAM and PRAM also provide high density, their reads are not destructive,

and they do not require refresh operations. However, manufacturing constraints prevent

from mixing them with logic-circuit technology using conventional two-dimensional (2D)

chips. In addition, the low speed and dynamic energy consumed by these technologies, in

particular for write operations, suggest that they are more appropriate for main memory

storage instead of caches.

Other research works have focused on the design of new DRAM-like cells for caches.

Liang et al. [17] proposed the 3T1D (three transistors and a diode) DRAM cell. The

speed of this cell is comparable to the speed of 6T SRAM cells. Thus, 3T1D cells can

be used for critical latency structures such as L1 data caches. However, although reads

are non-destructive, the diode charge get lost over time, requiring from refresh schemes

that might have a severe impact on performance. The 3T1D cell can be smaller than

the 6T SRAM cell but, the smaller the cell size the lower the retention time of the diode

capacitance.

Juang et al. [18] proposed a dynamic cell from a 6T SRAM cell which does not include

the two transistors connected to Vdd that restore the charge loss due to leakage currents.

Thus, the circuit results in a non-static cell with only 4 transistors (the quasi-static 4T

cell). This cell offers an easy method for DRAM implementation in a logic process
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production, especially in embedded systems. Compared to 6T SRAM cells, the 4T cells

require less area. In contrast, the data access is a bit slower and destructive. Like in the

1T-1C cell, this problem can be solved by re-writing the read data immediately after

the read operation or before the retention time expires.

1.1.2 Last-Level Caches

LLCs are designed as very large memory structures in order to keep as much informa-

tion as possible so reducing capacity misses. Therefore, their sizes range from several

hundreds of KB up to several tens of MB [11] [19]. In addition, in order to keep low the

number of conflict misses, current LLCs implement a high number of ways (e.g., 16 or

more ways).

1.1.2.1 Replacement Algorithms

Typically, cache memories exploit temporal locality by implementing the Least Recently

Used (LRU) replacement algorithm. This algorithm acts as a stack that places the Most

Recently Used (MRU) block on the top of the stack (MRU position) and the LRU

block, which is the evicted block when space is required, on the bottom (LRU position).

Although this algorithm works well in L1 caches with a low number of ways; with high

associativities, like 8 and 16 ways that are currently found in LLCs, strict LRU is too

expensive to implement. Therefore, approximations to LRU are the norm in commercial

processors but their performance start to deviate from the strict LRU [20].

On the other hand, the performance of the LRU algorithm in LLCs is quite far from the

optimal replacement strategy referred to as Belady’s algorithm [21]. There are several

reasons that explain why the LRU algorithm does not work well in LLCs with high

associativity. First, most accesses that hit in the inner caches are hidden to LLC so

information about temporal locality is lost. Second, LRU suffers from thrashing effects

in those workloads whose working set is greater than the available cache size, resulting in

cyclic accesses to blocks that walk through the stack without being reused. Third, LRU

forces a block to descend down to the bottom of the stack before eviction, which may

severely impact on performance since most blocks that are brought into the LLC are not

referenced again once they leave the MRU position (see Section 4.2). For example, in a
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16-way cache, a given block that leaves the MRU position and is not referenced again

will not be evicted until fifteen distinct blocks mapping to the same set are accessed.

This means that, instead, some useful blocks might be removed from the cache set so

hurting the performance. Recent research works have focused on how to improve this

shortcoming by predicting when a block can be evicted while it is still walking the LRU

stack to the bottom [22] [23] [24].

The following replacement policies are some of the most representative state-of-the-art

alternatives to the LRU policy in LLCs to date, and they will be compared against the

policy proposed in this thesis. Other replacement strategies can be found in Section 4.6.

The Bubble algorithm [25], proposed by Zhang and Xue, unlike the LRU scheme, uses

a queue instead of a stack that works as follows. An incoming block is allocated at the

bottom of the queue, which is the location with the lowest access frequency. Anytime a

block hits again, it is promoted one-position upwards the queue. In this way, the blocks

closer to the top of the queue evince a higher access frequency than those closer to the

bottom. When there is a lack of space, the block to be evicted is selected either from the

bottom or the top of the queue, depending on whether the previous access to that set

resulted in a cache miss or a cache hit, respectively. This work also presents a Divide-

and-Conquer technique referred to as DC-Bubble, which divides the blocks in each cache

set into independent groups, so that each group has its own replacement logic. In this

scheme, when a block is fetched, the target group within the set is randomly selected.

These schemes exploit both recency of information and frequency information and adapt

to changes in the working set.

In [26], three adaptive insertion policies based on LRU are proposed. The first one,

referred to as LRU Insertion Policy (LIP), inserts all incoming blocks in the LRU po-

sition, and then they are promoted to the MRU position if they are referenced again.

This behavior prevents LIP from the effect of cache thrashing. The second one, namely

Bimodal Insertion Policy (BIP), differs from LIP in that every x cache misses, the in-

coming block is inserted in the MRU position. This policy adapts to changes in the

working set and, like LIP, provides thrashing protection. Finally, the third policy, re-

ferred to as Dynamic Insertion Policy (DIP), dynamically combines LRU and BIP using

the Set Dueling strategy. DIP uses a small fraction of the cache sets to measure the
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performance of each policy, and applies to the remaining sets the policy that achieves

the best performance.

Jaleel et al. [27] propose a family of algorithms based on Re-Reference Interval Pre-

diction (RRIP) of cache blocks to deal with cache thrashing and bursts of accesses to

non-temporal data. The simplest version, called Static RRIP (SRRIP) policy, uses a sat-

urating counter per cache block to predict whether the block will be re-referenced sooner

or later in the future. On a cache insertion, the distance prediction of the incoming block

is set to be in the distant future (i.e., the counter is set to its maximum value), while

subsequent accesses to this block reduce its distance prediction to be in the near future

(i.e., decrease the counter by one each time the block is accessed). The victim block is

selected among those blocks predicted to be accessed in the distant future. If there are

not candidates, all the counters are increased by one until one of them saturates. An

enhancement of SRRIP is the Bimodal RRIP (BRRIP) policy. It differs from SRRIP

in that every x cache misses the counter of the incoming block is set to its maximum

value minus one. Finally, both SRRIP and BRRIP policies were used together using Set

Dueling as done in [26], resulting in the Dynamic RRIP (DRRIP) policy.

1.1.2.2 Refresh Mechanisms

Prior research works have concentrated on reducing the refresh energy by avoiding unnec-

essary refresh operations in off-chip DRAM memories. Regular read accesses to memory

implicitly trigger a refresh operation since DRAM contents are written back after they

are read. Based on this fact, some works have focused on delaying periodic refreshes of

frequently requested data [28]. Other works take into account the inter-cell variation

in retention time to enhance the refresh logic in order to adapt the refresh period for

each memory row [12] [29] [30]. Error-Correcting Codes (ECC) have been also used to

recover lost data due to extended refresh periods [31]. Finally, refresh can be skipped

for data identified as useless [29]. Please refer to Section 5.3 for further information.

Like in their counterparts off-chip DRAM memories, refresh operations in eDRAM LLCs

represent an important fraction of the total dynamic energy consumption of these devices

as shown in Figure 1.31. As observed, refresh energy increases with the cache capacity

1These results have been obtained with the machine parameters and methodology presented in Sec-

tion 5.2.
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Figure 1.3: Dynamic energy split into expenses due to refresh and non-refresh oper-
ations in conventional eDRAM LLCs.

and grows up to 62% for a 16MB cache. This is because more cache lines have to

be refreshed for a given retention time, which in eDRAM caches is by thousand times

shorter than in off-chip DRAM memories [32].

Due to their different characteristics, the refresh techniques proposed for off-chip DRAM

devices are not suitable for on-chip eDRAM caches. First, the access time among exter-

nal DRAM Dual In-line Memory Modules (DIMMs) and the next level of the hierarchy

(e.g., disks) is at least six orders of magnitude higher (from ns to ms), thus less aggressive

techniques should be used since the misspeculation penalty (i.e., a useful memory row

is not refreshed and then requested) is much higher. In contrast, techniques especially

designed for on-chip caches can be much more aggressive. Second, main memory is not

organized as a cache, so techniques such as way-prediction cannot be applied. Third,

external memory works at coarse (row or page) granularity, typically a couple of KB.

Instead, on-chip caches work with relatively smaller data blocks (e.g., 64 bytes).

The refresh problem in eDRAM caches has been previously attacked taking into account

inter-cell feature variations [32] [33]. These works are orthogonal to the selective refresh

proposed in this thesis. In [33], Emma et al. proposed to learn the appropriate refresh

period from each cache set via a regressive process. Initially, this process assumes the

worst-case refresh period for the entire cache. Then, refresh periods are increased step

by step until ECC detect data losses. In this way, the best refresh period for each cache

set is detected.
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Wilkerson et al. [32] proposed an ECC optimization to identify expired data due to

enlarged refresh periods. This approach provides both single-bit and multi-bit failure

detection. The single-bit error can be corrected, while those sections of the cache with

multi-bit errors are disabled to avoid the high latency and complexity of multi-bit error

correction.

Another recent work [34] delays periodic refreshes taking into account the implicit refresh

of regular accesses. In addition, authors propose a refresh policy that makes use of a

5-bit counter per cache line. The counter is set to its maximum value when the line

is accessed or written back, and it is decremented on each periodic refresh to the line.

When the counter reaches zero, the line is written back and set to valid if dirty, or

invalidated if non-dirty. This mechanism requires more hardware complexity and area

than the single-bit per line refresh policy proposed in this dissertation.

1.2 Objectives of the Thesis

The main objective of this dissertation is leveraging SRAM and eDRAM technologies

in order to build a hybrid cache hierarchy that optimizes performance and reduces

energy consumption. In addition, architectural design issues like refresh mechanisms

and replacement algorithms are tackled in both L1 data caches and L2 caches acting as

LLCs. Compared to a conventional SRAM cache, the performance degradation of hybrid

caches is minimal because the most likely data blocks to be referenced are stored in fast

SRAM technology, while eDRAM technology is used to store the remaining blocks so

providing significant leakage and area savings.

For LLCs, based on the observation that most cache blocks are not referenced again

once they leave the MRU position of the LRU stack, a set of replacement algorithms

aware of this property are proposed to reduce hardware complexity and to obtain better

performance than the traditional LRU policy. Finally, regarding the refresh problem, a

selective refresh mechanism is devised. Compared to a conventional refresh method, the

proposed selective refresh reduces the number of periodic refreshes by skipping refresh

operations in those blocks that are candidates for eviction.
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1.3 Contributions of the Thesis

The four major contributions of this thesis are described below:

• A hybrid eDRAM/SRAM cache architecture for L1 data caches is developed. Both

semiconductor technologies are mingled at cell level to form an n-bit macrocell,

which consists of one SRAM cell, n-1 eDRAM cells, and n-1 bridge transistors

that communicate the SRAM cell with the corresponding eDRAM cells. The

macrocell is used to build the data array of n-way set-associative hybrid caches.

These memories implement one SRAM way and n-1 eDRAM ways. Architectural

mechanisms are devised to maintain the MRU data in the fast SRAM way and to

completely avoid refresh logic.

• Since the macrocell design could be expensive to implement in high-associative

caches, this thesis combines both SRAM and eDRAM technologies at bank level

to build hybrid L2 caches. Like in the hybrid L1 cache, the MRU contents are

stored in SRAM technology. Since temporal locality is much less predictable in L2

caches, the optimal ratio of SRAM and eDRAM ways is explored to achieve the

best trade-off among performance, energy, and area.

• A family of low-cost replacement algorithms for LLCs is introduced, which exploits

reuse information by leveraging the concept of MRU-Tour (MRUT). The number

of MRUTs of a block is defined as the number of times that the block is placed in

the MRU position while it resides in cache. In this dissertation it is shown that

most blocks are not accessed again once they leave the MRU location. Thus, these

policies select as candidates for eviction those blocks having a single MRUT.

• A selective refresh policy to minimize the number of periodic refresh operations is

proposed. The devised mechanism aims to avoid energy wasting due to refreshing

useless blocks, which are identified by exploiting the MRUT concept. The selective

refresh policy does not refresh those blocks that have experienced one MRUT, and

it is applied in both pure eDRAM and hybrid eDRAM/SRAM L2 caches.
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1.4 Thesis Outline

This dissertation is composed of six chapters. Chapter 2 and Chapter 3 introduce

the hybrid eDRAM/SRAM architecture for L1 and L2 caches, respectively. Chapter 4

presents the MRUT replacement algorithm. Chapter 5 describes the selective refresh

mechanism, and finally, Chapter 6 summarizes this thesis, discusses future work, and

enumerates the related publications.



Chapter 2

Hybrid eDRAM/SRAM L1 Data

Cache Architecture

This chapter introduces the hybrid eDRAM/SRAM architecture for L1 data caches.

First, the implementation of the macrocell and the architecture design issues are pre-

sented. Then, experimental results including performance, energy consumption, and

area are discussed.

13
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Figure 2.1: Block diagram of an n-bit macrocell.

2.1 Memory Cell Proposal

The main components of an n-bit macrocell are a typical SRAM cell, n-1 eDRAM

cells, and n-1 bridge transistors communicating the SRAM cell and the corresponding

eDRAM cell. Figure 2.1 depicts the implementation of an n-bit macrocell. The static

part is limited to only one SRAM cell mainly due to leakage and area reasons. It has the

same structure as a typical 6T SRAM cell. Thus, read and write operations in this part

are managed like in a typical static cell through the bitline (BLs) and its complementary

(/BLs).

The dynamic part is composed of n-1 eDRAM cells, each one working like a typical

1T-1C DRAM cell. Each capacitor has an NMOS pass transistor (controlled by WLdi)

that keeps the capacitor charge insulated from the bitline (BLd). Like in the static part,

read and write operations are performed as in a conventional eDRAM cell through the

corresponding pass transistor.

Information movements among SRAM to eDRAM cells imply two main steps in a con-

ventional design: i) read the SRAM cell content and write it to an intermediate buffer
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and ii) read the buffer and write its content to the eDRAM cell. The main novelty of the

proposed design is that bridge transistors enable unidirectional transfers of data from

the SRAM cell to the eDRAM cells. Each bridge transistor is controlled by a distinct

s2di signal. In this way, the information state in the SRAM cell can be copied directly

to one of the capacitors, that is, no intermediate buffer is required. These transfers will

be referred to as internal since no bitline is involved.

Notice that implementing a cache using macrocells instead of splitting the L1 cache

in two different organizations (a standard SRAM cache and an independent eDRAM

cache) has important advantages. First, some resources (e.g., decoder and wordline)

can be shared. Second, when using two independent caches, the internal transfers (i.e.,

moving a block from static to dynamic part) involve more circuitry and wire delays,

which might prohibitively increase latency and energy dissipation.

In order to check the correctness of the electronic behavior, the proposed cell has been

modeled in NGSPICE, a Berkeley’s Spice3f5-based circuit simulator. NGSPICE allows

MOSFET behavior to be accurately simulated since it uses BSIM4 MOSFET model.

All simulations used the Predictive Technology Models (PTM) [35]. Transistor features

have been taken from the 2007 ITRS [2] for a 45nm technology node.

Two main design issues were addressed to ensure the correct functionality of the proposed

cell: i) to check that the capacitor is properly charged and ii) the absence of flips when

moving data from the SRAM cell to an eDRAM cell. Regarding the former issue, the

main problem in a typical 1T-1C cell is the voltage degradation when writing a logic

’1’ to the capacitor. This is due to NMOS pass transistors incur a voltage drop equal

to Vth when they transfer a logic ’1’. Thus, in order to charge the capacitor to the

maximum Vdd voltage, wordlines are usually boosted to a voltage V pp = V dd + V th.

In eDRAM cells, Vth and Vdd are normally set to 0.4 and 1.1V, respectively, for a 45nm

technology node. Regarding the macrocell, the wordlines controlled by WLdi and s2di

must be also boosted.

Concerning the second design issue, read operations in conventional SRAM cells must

be preceded by precharging high both bitlines. Precharge operations are necessary to

optimize the cell speed, area, and stability relationship [36]. This is mainly due to the

different features of NMOS and PMOS transistors. In this way, flips are avoided inside

the cell since NMOS transistors are stronger (i.e., they can drive more current) than
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PMOS transistors. Analogously, to prevent flips in the proposed design, the capacitor

of the eDRAM cell must be precharged to Vdd.

Figure 2.2 illustrates how the internal transfer operation between the SRAM cell and

three eDRAM cells works in a 4-bit macrocell, highlighting both the precharge process

and how flips are avoided1. Two internal transfers labeled as eDRAM1 and eDRAM2

are shown for illustrative purposes, both writing a ’0’ and a ’1’.

The number of bits in the macrocell device defines the number of ways of macrocell-

based caches. In other words, n-bit macrocells are required to implement an n-way

set-associative hybrid cache. Hence, these memories will have one way built with SRAM

cells (SRAM way) and n-1 ways implemented with eDRAM cells (eDRAM ways).

The proposed macrocell reduces both leakage and area. Since leakage is mainly pro-

duced by SRAM cells, the macrocell reduces leakage proportionally to the number of

implemented eDRAM cells. For instance, let’s assume a 4-bit macrocell that has one

SRAM cell and three eDRAM cells; ideally, as only the SRAM cell has leakage, the

4-way hybrid cache would achieve 75% (i.e., 3/4) less leakage than a conventional cache

with the same capacity implemented with SRAM cells (see Section 2.3.3 for a deeper

and accurate analysis). On the other hand, area is also reduced since eDRAM cells are

implemented with less transistors than SRAM cells (see Section 2.3.4). Finally, notice

that the higher the cache associativity degree, the higher the leakage savings and area

reduction achieved with macrocells.

As read operations in an eDRAM cell are destructive and capacitors progressively lose

their charge with time, refresh actions are normally required. In this context, new

architectural innovations are presented to avoid extra logic and energy dissipation due

to refresh operations.

2.2 Architectural Design Issues

As mentioned above, the proposed n-bit macrocell is designed in order to implement

the data array of an n-way set-associative cache, with one SRAM way and n-1 eDRAM

1Bridge transistor features have been assumed the same as the pass transistors of the eDRAM cells,

whose channel length and width are 45nm and 90nm, respectively.
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a) Transfering a logic ’0’

b) Transfering a logic ’1’

Figure 2.2: Static to dynamic write operation details.



18 Chapter 2. Hybrid eDRAM/SRAM L1 Data Cache Architecture

ways. From now on, it is assumed that the SRAM cells implement the way-0 of the

cache.

The tag array of hybrid caches is assumed to be built with SRAM cells, since it is much

smaller than the data array. Thus, much lower energy and area benefits can be obtained

in this structure, and implementing it with eDRAM technology would significantly affect

the access time.

The architectural proposal devised to manage this cell consists of three main strategies,

detailed below: i) accessing the eDRAM cells only in the case of a hit in the corresponding

tag, ii) increasing the percentage of hits in the SRAM blocks in order to minimize the

number of data movements between SRAM and eDRAM cells, and iii) minimizing the

number of writebacks to L2.

2.2.1 Accessing the eDRAM Ways

Typically, to achieve high performance, modern microprocessors overlap the access to

the tag and data arrays. In this way, the requested data can already be available in the

case of a successful tag comparison (i.e., a cache hit). Figure 2.3(a) shows the accessed

parts (dark boxes) in a 4-way cache. The narrow box in the left of each way represents

the tag array and the right box represents the data array. This working behavior is not

adequate for data arrays implemented with macrocells, since regardless of the result of

the access (i.e., cache hit or cache miss), reading the eDRAM cells is destructive and the

design does not include refresh logic. Due to this reason, architectural solutions have

been devised to avoid that cache blocks lose their contents.

In order to guarantee correct execution, the problem is not that a given cache block

loses its state with time but that the state becomes unrecoverable. In other words, the

information loss is not a problem for correctness when it can be recovered from another

location, for instance, from the L2 cache.

To deal with this problem, the devised solution has two main design goals: first, to

reduce the number of state losses due to reads, and second, to provide a recoverable

location without negatively impacting on performance.

To achieve the first design goal, the tags of all ways in the set are accessed in parallel with

the data array of the block located in way-0 (see the upper side of Figure 2.3(b)). On a hit
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mux-drive

way-0 way-1 way-2 way-3

tag array   data array

1 cycle

Hit

a) Conventional cache

mux-drive

way-0 way-1 way-2 way-3

tag array   data array

1 cycle

mux-drive

way-0 way-1 way-2 way-3

SRAM Hit

eDRAM Hit

1 / 2 cycles

b) Hybrid cache

Figure 2.3: Access and timing of conventional and hybrid caches.

in way-0 (SRAM hit), the processor is satisfied and no eDRAM cell is subsequently read.

This access could obtain the hit speed of a direct-mapped cache since the multiplexer

control signals could be set early as done in way-prediction techniques [37] [38]. On a

miss in way-0 but a hit in other tag associated to an eDRAM block, the corresponding

data way is accessed subsequently. To illustrate this case, the lower part of Figure 2.3(b)

represents a hit in way-2 (eDRAM hit). In this case, the contents are read and sent to

the processor. However, since this operation is destructive, the capacitor state is lost. A

straightforward solution to address this drawback is to implement a write-through policy

so that a copy of the data can be always read from L2 if the capacitor is discharged.

However, this would lead to a huge energy wasting in L2 caches as well as a poor

performance.
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Figure 2.4: L1 hit ratio (%) in a conventional 64B-line 16KB-2way cache.

Figure 2.5: Swap operation details.

2.2.2 Increasing the Percentage of Hits in the SRAM Way

Some previous works [4] concluded that, because of data locality, in a 2-way set-associative

L1 cache, most accesses hit the MRU blocks while few of them hit the non-MRU blocks.

This observation can be appreciated in Figure 2.42, and it can be generalized to caches

with higher associativities as shown in Section 2.3.2. Based on this assert, a simple

way-predictor could be implemented by predicting the MRU way.

To increase the percentage of hits in the fast SRAM way of hybrid caches, the previous

property is exploited by modifying the cache controller in order to keep the MRU block

always in the SRAM way. To this end, the cache controller has been enhanced in order to

internally manage a swap between eDRAM and SRAM cells in the case of an eDRAM

hit. The swap operation consists of three main steps as shown in Figure 2.5. First,

the contents in the eDRAM cells are transferred to an intermediate buffer. Then, the

2Details about the simulation environment can be found in Section 2.3.1.
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tag array LRU
bits

data way
location bits

A B C D01 0010 110010 01 11

data array

C AB D
SRAM way eDRAM way eDRAM way eDRAM way

Figure 2.6: Diagram of a 4-way cache with the control information to maintain the
mapping between tags and data blocks.

data stored in the SRAM cells are internally transferred to the eDRAM cells previously

accessed. Finally, the contents from the intermediate buffer are written to the SRAM

cells. If each step takes one cycle, the controller will be busy for three processor cycles.

However, the processor can get the requested data earlier from the intermediate buffer.

On a cache miss, a unidirectional transfer is triggered to move the data from the SRAM

cells to the eDRAM cells that hold the data selected to be victimized by the LRU

replacement algorithm. Then, the requested data, which comes from a lower level of the

memory hierarchy instead of from the intermediate buffer, are stored in the SRAM cells.

Notice that writes in the eDRAM cells are always performed as internal movements from

the SRAM cells and they are not always triggered by store instructions. They may be

caused by a hit (either a load or a store) in the eDRAM cells.

The hybrid design allows capacitors to lose their charge with time, but those capacitors

storing useful information (i.e., those cells accessed on a hit) will not need to be recharged

since their information will be saved in the SRAM cells.

Finally, it has been assumed that the tag array is built with typical 6T memory cells,

so tags do not need to be swapped. Therefore, control information may be required

to track the mapping between tags and the associated data blocks. In particular, for

a 4-way cache, two additional control bits (data way location) apart from the LRU

bits are required as depicted in Figure 2.6. Notice that the LRU bits keep the access

order of blocks, while the additional bits indicate the way in the data array where the

associated block is stored. On the other hand, for a 2-way cache, no additional control

bits are required, since in this case the LRU bit distinguishes between the SRAM and
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the eDRAM way. Remark that accessing these control bits is not in the critical path

since they are read together with the tag array and the SRAM way.

2.2.3 Devised Writeback Policies

Although the architectural choices discussed in the previous sections avoid many capac-

itor state losses, they do not guarantee data preservation. Information loss may happen

when a given dirty block stored in eDRAM cells is rarely accessed. Thus, incorrect

execution could occur when accessing this block after its retention time expires. To deal

with this shortcoming, two new writeback policies have been devised. These policies will

be referred to as early writeback and delayed writeback.

The early writeback policy avoids the problem by preventing dirty blocks to be stored

in eDRAM cells. As a block can only be written into eDRAM cells due to an internal

swap operation, this policy checks the state of the block located in way-0 (SRAM way)

when a swap arises and, if dirty, the block is written back to L2. The main drawback of

this policy is that it might increase the number of writes to L2 so turning on excessive

energy wasting. The early writeback policy assumes that the valid bit of each eDRAM

way is implemented as a 1T-1C cell, including a capacitor with less capacitance than the

macrocell capacitors to work as a sentry bit. In this way, if the capacitor of the sentry

bit is not discharged, the contents of the associated data bits will be correct. On the

contrary, if the capacitor of the sentry bit is discharged, the macrocell may still contain

valid data, but the design conservatively assumes that the associated data has expired,

what is equivalent to a non-valid content.

The delayed writeback policy is aimed at minimizing the number of writebacks to L2.

To this end, this policy allows that dirty blocks move to the eDRAM cells. Once moved,

capacitors maintain their state as dirty during the retention time. In this case, if the

block is accessed again within the retention time, the block is moved to the SRAM cells

so preserving its state, otherwise the state is lost. To avoid the latter case, the proposed

solution is to access each block periodically (scrubbing) before the retention time expires,

and if it is dirty, the block is written back to L2. This idea can be implemented with a

single global binary counter [5] [17] for all the eDRAM blocks. The counter is decreased

every cycle, and each time the counter reaches zero, an eDRAM block accessed following

a given criterion (e.g., round-robin) is checked to be written back. The counter must be
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initialized to the retention time (in cycles) divided by the number of eDRAM blocks.

Since this mechanism guarantees that every eDRAM block is checked before its retention

time expires, the valid bit is not implemented as a sentry bit. Instead, this control bit

is cleared each time the associated block is checked regardless of it is written back to L2

or not.

2.3 Experimental Evaluation

This section presents the simulation environment and experimental results of hybrid

L1 caches implemented with macrocells. The presented results include an analysis of

the hit ratio, performance degradation, retention time, and the impact of the devised

writeback policies. In addition, leakage currents, dynamic energy, and area results are

also estimated.

2.3.1 Simulation Framework

The macrocell-based hybrid caches have been modeled on top of an extensively mod-

ified version of the SimpleScalar simulation framework [39], which is a cycle-by-cycle

trace-driven simulator that implements the microarchitecture of a superscalar processor.

The simulation results include the execution time of the applications and the generated

memory events (i.e., cache accesses, SRAM hits, eDRAM hits, misses, writebacks, and

swaps) required to estimate leakage and dynamic energy, respectively. The CACTI 5.3

tool [40] [41] includes an analytical model for timing, energy, and area of caches and

main memories, and it has been used to calculate the capacitances, retention time, leak-

age currents, dynamic energy per access type, and area for a 45nm technology node.

The obtained values were used to feed the SimpleScalar simulator. The overall energy

consumption was calculated combining the results of both simulators.

Experimental results were performed configuring the SimpleScalar for the Alpha Instruc-

tion Set Architecture (ISA) using the SPEC CPU benchmark suite [42]. Both Integer

(Int) and Floating-Point (FP) benchmarks were run using the ref input set. Statistics

were collected simulating 500M instructions after skipping the initial 1B instructions.

Table 2.1 summarizes the main architectural machine parameters used throughout the

experiments. These parameters and the presented simulation tools, ISA, benchmarks,
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Microprocessor core

Issue policy Out of order
Branch predictor type Hybrid gShare/Bimodal:

gShare has 14-bit global history plus 16K 2-bit counters,
Bimodal has 4K 2-bit counters, and choice predictor has
4K 2-bit counters

Branch predictor penalty 10 cycles
Fetch, issue, and commit width 4 instructions/cycle
ROB size (entries) 256
# ALUs 4 integer, 4 floating-point

Memory hierarchy

L1 data cache 16KB, 32KB, and 64KB, 2-way and 4-way, 64 byte-line
L1 data cache access time Split into hits in the static and dynamic parts:

1-cycle hit in the static part and x -cycle hit in the
dynamic part, with x = {1, 2} (see Section 2.3.2.2)

# L1 data cache banks 8
L2 unified cache 512KB, 8-way, 64 byte-line
L2 cache access time 10-cycle
Main memory access time 100-cycle

Table 2.1: Architectural machine parameters.

etcetera will be used to obtain all the experimental results presented in this thesis unless

otherwise stated.

Multi-banked caches have been modeled to represent a more realistic approach. Each

bank can support only one access at a time, but accesses to different banks can be

performed concurrently. If a memory request refers to a bank that is already being

accessed, that request must wait until the previous access (e.g., hit and writeback)

finishes and the cache controller releases the corresponding bank. The waiting time also

includes the time taken for a swap operation (if needed) in hybrid caches.

To reduce the likelihood of waiting due to bank contention, the cache sets are distributed

among all the banks. Experimental results showed that, regardless of the cache scheme

and organization, 8 banks provide less than 0.7% performance degradation with respect

to an unlimited number of banks. Therefore, the number of banks has been set to 8

across all the experiments. This number of banks is reasonable and it is common to

find other designs in the literature with more banks [43]. Finally, since one bank only

can perform one swap operation at a given time, the number of banks also matches the

number of intermediate buffers.
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2.3.2 Performance

2.3.2.1 SRAM and eDRAM Hit Ratio

In an eDRAM-based cache, a read access requires a refresh operation since reads are

destructive, even if the access results in a cache miss. Hence, to avoid unnecessary

refresh operations in the hybrid design, eDRAM cells are only accessed after checking

the tags. This section characterizes such accesses.

From now on, the terms SRAM hit ratio and eDRAM hit ratio are used to refer to the

percentage of cache accesses that hit the SRAM and eDRAM cells, respectively. The

sum of both gives the total L1 hit ratio. Figure 2.7 shows the results for different cache

sizes (16KB, 32KB, and 64KB) and associativity (2 and 4 ways).

As an n-bit macrocell has only one SRAM cell, the storage capacity of the SRAM cells

is the cache size divided by the number of bits of the macrocell, that is, divided by the

number of cache ways. For instance, the static storage capacity of a 16KB-2way and a

32KB-4way cache is 8KB.

An important observation is that, due to the architectural mechanism that enforces the

storage of the MRU block in the SRAM way, the number of hits in this way only depends

on its storage capacity. For instance, the SRAM hit ratio of a 16KB-2way cache matches

that of a 32KB-4way cache, since both caches have a static data array of the same size

(i.e., 8KB). Hence, both arrays will have the same amount of misses, being the difference

that the incoming block may be fetched from different memory structures (e.g., eDRAM

cells or other level of the memory hierarchy).

Notice that for a given cache size, the higher the associativity degree the smaller the

size of the SRAM way. Hence, although increasing the number of ways leads to a higher

overall L1 hit ratio, the SRAM hit ratio decreases with the number of ways and the

eDRAM hit ratio increases. In contrast, for a given associativity degree, enlarging the

cache size results in a lower eDRAM hit ratio and a higher overall L1 hit ratio.

Results show the effectiveness of the devised architectural mechanisms since the eDRAM

hit ratio is on average less than 4.1% for 2-way caches regardless of the benchmark type

(Int or FP) and cache size. This value grows up to 9.2% for FP benchmarks in the

16KB-4way cache configuration, but in this case, the overall L1 hit ratio is also larger



26 Chapter 2. Hybrid eDRAM/SRAM L1 Data Cache Architecture

92.9

86.7

3.8
4.1

0%

20%

40%

60%

80%

100%

g
z
ip

v
p

r
g

c
c

m
c
f

c
ra

ft
y

p
a

rs
e

r
e

o
n

p
e

rl
b

m
k

g
a

p
v
o

rt
e

x
b

z
ip

2
tw

o
lf

w
u

p
w

is
e

s
w

im
m

g
ri

d
a

p
p

lu
m

e
s
a

g
a

lg
e

l
a

rt
e

q
u

a
k
e

fa
c
e

re
c

lu
c
a

s
fm

a
3

d
s
ix

tr
a

c
k

a
p

s
i

In
t

F
P

Int FP Avg

L
1

H
it

R
a

ti
o

SRAM eDRAM

a) 16KB-2way

81.8
89.6

7.6
9.2

0%

20%

40%

60%

80%

100%

g
z
ip

v
p

r
g

c
c

m
c
f

c
ra

ft
y

p
a

rs
e

r
e

o
n

p
e

rl
b

m
k

g
a

p
v
o

rt
e

x
b

z
ip

2
tw

o
lf

w
u

p
w

is
e

s
w

im
m

g
ri

d
a

p
p

lu
m

e
s
a

g
a

lg
e

l
a

rt
e

q
u

a
k
e

fa
c
e

re
c

lu
c
a

s
fm

a
3

d
s
ix

tr
a

c
k

a
p

s
i

In
t

F
P

Int FP Avg

L
1

H
it

R
a

ti
o

SRAM eDRAM

b) 16KB-4way

89.9
95.3

2.3
3.3

0%

20%

40%

60%

80%

100%

g
z
ip

v
p

r
g

c
c

m
c
f

c
ra

ft
y

p
a

rs
e

r
e

o
n

p
e

rl
b

m
k

g
a

p
v
o

rt
e

x
b

z
ip

2
tw

o
lf

w
u

p
w

is
e

s
w

im
m

g
ri

d
a

p
p

lu
m

e
s
a

g
a

lg
e

l
a

rt
e

q
u

a
k
e

fa
c
e

re
c

lu
c
a

s
fm

a
3

d
s
ix

tr
a

c
k

a
p

s
i

In
t

F
P

Int FP Avg

L
1

H
it

R
a

ti
o

SRAM eDRAM

c) 32KB-2way

86.7

92.9

4.9
7.0

0%

20%

40%

60%

80%

100%

g
z
ip

v
p

r
g

c
c

m
c
f

c
ra

ft
y

p
a

rs
e

r
e

o
n

p
e

rl
b

m
k

g
a

p
v
o

rt
e

x
b

z
ip

2
tw

o
lf

w
u

p
w

is
e

s
w

im
m

g
ri

d
a

p
p

lu
m

e
s
a

g
a

lg
e

l
a

rt
e

q
u

a
k
e

fa
c
e

re
c

lu
c
a

s
fm

a
3

d
s
ix

tr
a

c
k

a
p

s
i

In
t

F
P

Int FP Avg

L
1

H
it

R
a

ti
o

SRAM eDRAM

d) 32KB-4way

96.7
93.7

1.8
1.3

0%

20%

40%

60%

80%

100%

g
z
ip

v
p

r
g

c
c

m
c
f

c
ra

ft
y

p
a

rs
e

r
e

o
n

p
e

rl
b

m
k

g
a

p
v
o

rt
e

x
b

z
ip

2
tw

o
lf

w
u

p
w

is
e

s
w

im
m

g
ri

d
a

p
p

lu
m

e
s
a

g
a

lg
e

l
a

rt
e

q
u

a
k
e

fa
c
e

re
c

lu
c
a

s
fm

a
3

d
s
ix

tr
a

c
k

a
p

s
i

In
t

F
P

Int FP Avg

L
1

H
it

R
a

ti
o

SRAM eDRAM

e) 64KB-2way

89.9

95.3

2.7
3.9

0%

20%

40%

60%

80%

100%

g
z
ip

v
p

r
g

c
c

m
c
f

c
ra

ft
y

p
a

rs
e

r
e

o
n

p
e

rl
b

m
k

g
a

p
v
o

rt
e

x
b

z
ip

2
tw

o
lf

w
u

p
w

is
e

s
w

im
m

g
ri

d
a

p
p

lu
m

e
s
a

g
a

lg
e

l
a

rt
e

q
u

a
k
e

fa
c
e

re
c

lu
c
a

s
fm

a
3

d
s
ix

tr
a

c
k

a
p

s
i

In
t

F
P

Int FP Avg

L
1

H
it

R
a

ti
o

SRAM eDRAM

f) 64KB-4way

Figure 2.7: L1 hit ratio (%) for different hybrid cache organizations.

than in a 16KB-2way cache. Notice that a low eDRAM hit ratio is interesting due to

two main reasons: first, the overall access time of the eDRAM cells requires additional

processor cycles for tag comparison, and second, a hit in an eDRAM way incurs a swap

between the static and dynamic parts.

2.3.2.2 Impact of eDRAM Access Time

Results provided by CACTI indicate that an eDRAM cell can be accessed as fast as an

SRAM, as also stated in [7], although writes can be slightly slower.
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Figure 2.8: Normalized performance (%) with respect to the conventional cache for
different access times (in processor cycles).

This section evaluates the impact on performance of the hybrid cache varying the access

time of the eDRAM ways (1 and 2 cycles), while keeping constant (1 cycle) the access

time of the SRAM way. Notice that a fast conventional cache with just 1-cycle access

time imposes an upper-bound in performance (Instructions Per Cycle –i.e., IPC) to the

proposal, since there is no performance loss.

Figure 2.8 plots the normalized performance with respect to the conventional cache

with the same organization. For comparison purposes, the values of a 2-cycle access

time conventional cache are also plotted. The X axis shows the access times of the

different cache organizations. Conventional caches are labeled as 1-cycle and 2-cycle.
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Access times of the hybrid caches are labeled as pairs (1,x), where the first and second

elements refer to the access time of the SRAM and eDRAM ways in processor cycles,

respectively. Remember that a hit in an eDRAM way requires an additional processor

cycle to check the tags.

The performance degradation of the hybrid cache mainly comes from the access to

eDRAM ways and swap operations. Anyway, the performance degradation is always less

than 2%. In contrast, the performance of the 2-cycle conventional cache drops down to

about 3%. Regarding floating-point benchmarks, minor performance differences appear

both in the slower 2-cycle conventional cache and in the proposed hybrid cache.

2.3.2.3 Impact of Retention Time

In the previous section, the performance degradation of the hybrid cache has been eval-

uated with respect to a conventional SRAM cache. In that study, a perfect capacitor

with no charge loss has been assumed. Nevertheless, real capacitors lose their state after

a given retention time. Therefore, accessing the eDRAM cells after this time requires

the access to a lower level of the memory hierarchy to get the requested data; thus,

adversely impacting on performance. This section explores the impact of the retention

time on performance with respect to a hybrid cache with perfect capacitors.

Figure 2.9 shows the results ranging the retention time from 100 to 50K processor cycles.

Retention times longer than 50K cycles do not improve the cache hit ratio in any of the

analyzed organizations; thus, no performance degradation can be observed.

For a given associativity degree, the larger the cache size (e.g., 64KB) the lower the

performance losses (due to the larger static part of the cache). In contrast, for a given

cache size, the higher the associativity degree the larger the performance degradation

(due to the larger number of eDRAM hits –i.e., larger dynamic part). Finally, large

dynamic parts require long retention times to reach the performance of the baseline.

To sum up, the proposal just requires from capacitors that retain their charge for a

few thousands of processor cycles in order to achieve its maximum performance. As

obtained with CACTI, a relatively low capacitance of 10fF gives a retention time of

about 63K processor cycles for a 1GHz processor speed. This is half the capacitance of

typical eDRAM devices [40] [41]. Finally, notice that for a given retention time (in µs),



Chapter 2. Hybrid eDRAM/SRAM L1 Data Cache Architecture 29

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

100 500 1000 5000 10000 50000

Retention Time (cycles)

P
e

rf
o

rm
a

n
c
e

D
e

g
ra

d
a

ti
o

n Int FP

a) 16KB-2way

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

100 500 1000 5000 10000 50000

Retention Time (cycles)

P
e

rf
o

rm
a

n
c
e

D
e

g
ra

d
a

ti
o

n Int FP

b) 16KB-4way

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

100 500 1000 5000 10000 50000

Retention Time (cycles)

P
e

rf
o

rm
a

n
c
e

D
e

g
ra

d
a

ti
o

n Int FP

c) 32KB-2way

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

100 500 1000 5000 10000 50000

Retention Time (cycles)

P
e

rf
o

rm
a

n
c
e

D
e

g
ra

d
a

ti
o

n Int FP

d) 32KB-4way

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

100 500 1000 5000 10000 50000

Retention Time (cycles)

P
e

rf
o

rm
a

n
c
e

D
e

g
ra

d
a

ti
o

n Int FP

e) 64KB-2way

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

100 500 1000 5000 10000 50000

Retention Time (cycles)

P
e

rf
o

rm
a

n
c
e

D
e

g
ra

d
a

ti
o

n Int FP

f) 64KB-4way

Figure 2.9: IPC losses (%) with respect to the perfect hybrid cache for different
retention times (in processor cycles).

increasing the processor frequency implies smaller capacitances since the cycle time is

reduced.

2.3.2.4 Writeback Policies

A writeback to L2 in a conventional writeback cache arises when a dirty block is evicted

from the L1 cache. In addition to writebacks due to replacements, new types of write-

backs can be identified in the devised policies. Regarding the early writeback policy,
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Figure 2.10: Writeback ratio (%) for the devised policies and the conventional cache.

two types of writebacks can be distinguished. First, the SRAM block must move to

an eDRAM way in order to make room to the missing block. In such a case, if the

SRAM block is dirty it must be written back to L2. In addition, a writeback can be

also performed due to a swap risen as a consequence of an eDRAM hit. Thus, there are

writebacks both due to replacements and due to internal swaps. Regarding the delayed

policy, writebacks due to replacements only can occur in the eDRAM ways. In addition,

writebacks can also rise driven by the internal counter. This kind of writebacks will be

referred to as sporadic writebacks.

To evaluate the effectiveness of the devised policies, it has been obtained the correspond-

ing writeback ratio for each writeback class, calculated as the number of written back

blocks divided by the number of accesses to the L1 cache.

Figure 2.10 shows the average writeback ratio of both policies in the hybrid cache con-

figurations for a 10fF capacitance. For comparison purposes, the figure also depicts the

average writeback ratio of the conventional cache (Conv).

As observed, for a given cache organization and benchmark type, the replacement write-

back ratio is quite uniform across the analyzed policies. Regarding the early policy, its

swap writeback ratio leads to an important amount of blocks written back to L2. The

comparison between this ratio and the sporadic ratio of the delayed policy leads to the

conclusion that the early policy is too conservative since many blocks are written back

unnecessarily, so incurring in an energy wasting.
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In short, the proposed delayed writeback policy performs, without refresh, a similar

amount of writebacks as a conventional cache with the same organization, so no signifi-

cant energy wasting is incurred due to additional writebacks.

2.3.3 Energy Consumption

This section discusses the methodology used to obtain both dynamic and leakage energy

consumed by each cache scheme. Then, energy results are presented and analyzed for

different cache organizations.

2.3.3.1 Methodology

An access to a conventional cache consumes energy due to the fact that all the com-

ponents in the cache set (i.e., all the tags and data ways) are accessed in parallel. In

contrast, only the SRAM way of the data array is accessed in the hybrid cache, although

in parallel with all the tags of the set. Therefore, on an SRAM hit, the hybrid cache

consumes less dynamic energy than the conventional cache. Nevertheless, additional

energy is consumed on an SRAM miss (i.e., an eDRAM hit or cache miss), since the

cache controller must drive a swap operation between the corresponding eDRAM and

SRAM cells.

To estimate the energy consumption, each of the three steps involved in a swap operation

(see Section 2.2.2) has been modeled as follows: i) a destructive read in an eDRAM way,

ii) a store in an eDRAM way, and iii) a store in the SRAM way. While the dynamic

energy consumed in the second step involves only the row decoder, in the first and third

steps it also involves all the data array components (e.g., bitlines, senseamps, subarray

output drivers, and so on). In addition, the energy consumption due to wordline voltage

boosting and precharging capacitors in the second step (see Section 2.1) has been also

taken into account in the results.

On a cache miss, the requested block is fetched from L2 (or main memory) and the

victim block of L1, if dirty, is written back to L2. These read and write requests to L2

have been also considered to compute the dynamic energy.
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Figure 2.11: Energy consumption (in mJ) for the analyzed schemes.

To quantify energy savings, the proposed hybrid cache uses the ITRS high-performance

device type for the SRAM cells and the logic-process based DRAM for the eDRAM cells.

CACTI provides the dynamic energy consumed per access and categorized by cache

component. Using these values, dynamic energy was calculated per access according to

different events: SRAM hit, eDRAM hit, misses, and writebacks. Then, we measured the

times that each event rises during each benchmark execution (i.e., 500M instructions).

Finally, the overall dynamic energy was computed by multiplying the energy per access

for a given event by the times that the event rises. Regarding leakage consumption,

it is accumulated each cycle taking into account that there is minimal leakage energy

associated to the eDRAM cells.

2.3.3.2 Energy Results

The proposed hybrid cache is compared not only to the conventional scheme but also

to another conventional scheme implementing way-prediction as done by the proposal.

This model will be referred to as WP scheme. In this way, the benefits due to the

prediction technique can be identified. For the hybrid cache, 10fF capacitors and the

delayed writeback policy were used.

Figure 2.11 illustrates the dynamic and leakage energy results for the analyzed schemes.

The dynamic energy consumed by the L1 data array is classified according to the type of

event (i.e., loads, stores, writebacks, and misses), whereas the tag array energy comprises
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all the accesses to this structure. Finally, the represented leakage refers to the leakage

consumption of the whole L1 cache. The sum of all these values gives the total energy

consumed by the cache memory.

Notice that leakage energy consumption is obtained by accumulating each cycle the

leakage consumption of the entire cache. In contrast, dynamic energy is only consumed

when there is an access to the cache. Thus, in those execution periods where the cache

is not accessed, the leakage energy consumption dominates the overall energy consump-

tion of the L1 cache. Such periods are usually common since many memory reference

instructions access to the cache in a burst mode. Moreover, when the processor pipeline

is stalled due to a long latency event (e.g., an L2 miss), the L1 cache is not accessed for

hundreds of cycles.

Due to the aforementioned reasons, leakage dominates the overall energy consumption.

As a consequence, the hybrid cache, which incurs in less leakage consumption because of

the use of eDRAM cells, shows the best energy results. In particular, regarding integer

benchmarks, the proposed memory reduces the overall energy consumption by 36% and

54% for a 64KB-2way and a 64KB-4way cache organizations with respect to the Conv

scheme, respectively. This trend is similar in the remaining analyzed cache organizations

as well as for floating-point benchmarks. Notice that the leakage energy consumption is

quite similar in the Conv and WP schemes, since both schemes use only SRAM cells for

data storage.

Leakage consumption increases with the cache size for both the Conv and WP schemes.

However, to appreciate significant differences in the hybrid cache, the associativity degree

must be fixed. More precisely, the static part of the cache must be enlarged. Although

theoretically the hybrid cache should reduce leakage by 50% and 75% for 2 and 4 ways,

respectively, compared to the conventional caches, experimental results do not reach

these values. The main reason is that this theoretical reduction is restricted to cells in

the data array (where the eDRAM technology is being applied) while other parts of the

cache structure, like the tag array and the remaining cache controller logic are not being

considered.

Regarding dynamic energy, the WP cache exhibits the lowest consumption, closely fol-

lowed by the hybrid cache. This is because both schemes save a significant amount of

dynamic energy by applying way-prediction. However, the overall dynamic consumption
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is higher in the hybrid cache mainly due to swap operations, wordline voltage boosting,

and precharge of capacitors. The consumption due to loads and stores also increases

with the cache size (although more slowly than leakage consumption) since the dynamic

energy consumed per access grows with the cache size. On the other hand, the consump-

tion due to writebacks is quite uniform across the analyzed schemes since the delayed

writeback policy performs a similar amount of writebacks as the Conv and WP schemes.

Finally, larger caches show lower miss and writeback rates, thus devoting less energy to

such events.

All the analyzed schemes implement the same tag array (i.e., using typical 6T SRAM

cells). Therefore, the energy consumed by this structure slightly differs across the

schemes for a given cache organization. Nevertheless, its contribution to the overall

energy consumption increases with the cache size and associativity.

2.3.4 Area Savings

The n-bit macrocell saves area with respect to n conventional SRAM cells, since the

former is partly implemented with eDRAM cells. The width and height of the proposed

macrocell have been estimated with CACTI by adding the area of the conventional

SRAM and eDRAM cells. In addition, the area overhead due to the wordline voltage

boosting and the bridge transistors has been taken into account, assuming a conservative

design where each bridge transistor occupies the same area as a 1T-1C cell.

The area of an SRAM and an eDRAM cell is 0.296µm2 and 0.062µm2 for a 45nm

technology node, respectively. Using these values, since an n-bit macrocell consists of

one SRAM cell and n-1 eDRAM cells, the area of a 2-bit and a 4-bit macrocell is

0.566µm2 and 0.836µm2, respectively. These area values were used as input to CACTI

to obtain the area of the entire hybrid cache.

Recall that eDRAM cells of the macrocell are assumed to be built with trench storage

capacitors. These capacitors etch deep holes into the wafer and are formed in the silicon

substrate instead of above it. The deeper the hole the higher the capacitance. Thus,

the macrocell area is not affected by the capacitance value [44].

Table 2.2(a) shows the area (in mm2) of the tag and data arrays of both conven-

tional (Conv) and hybrid schemes varying the size (from 16KB to 64KB) of a 2-way
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Cache Tag array Data array (mm2) Reduction
size (mm2) Conv Hybrid (%)

16KB 0.008 0.273 0.259 5
32KB 0.015 0.332 0.316 5
64KB 0.018 0.446 0.424 5

a) 2-way caches

Cache Tag array Data array (mm2) Reduction
size (mm2) Conv Hybrid (%)

16KB 0.008 0.446 0.318 28
32KB 0.015 0.498 0.355 28
64KB 0.020 0.602 0.431 28

b) 4-way caches

Table 2.2: Tag array and data array area (in mm2) for both conventional and hybrid
schemes.

set-associative cache. Table 2.2(b) shows the corresponding results for a 4-way set-

associative cache. The last column of each table shows the total reduction (in per-

centage) achieved by the hybrid cache. This percentage increases with the number of

eDRAM cells and it is quite uniform regardless of the cache size. It is around 5% and

28% for 2- and 4-way caches, respectively.

2.4 Summary

This chapter has presented the hybrid eDRAM/SRAM macrocell-based L1 cache ar-

chitecture. The macrocell has been shown as an efficient device to implement cache

memories, since its design deals with energy consumption and area while maintaining

the performance. Architectural mechanisms such as swap operations, way-prediction,

and special writeback policies have been considered to maintain the most likely data to

be accessed in SRAM technology as well as to avoid unnecessary destructive reads and

refresh logic required in typical eDRAM memories.

Experimental results have shown that, compared to a 4-way set-associative conventional

SRAM cache with the same organization, a hybrid cache obtains energy and area savings

up to 54% and 28% respectively; while having scarce impact on performance (lower than
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2%). In addition, a relatively low capacitance of 10fF is enough to avoid performance

losses due to retention time constraint.

The work discussed in this chapter has been published in [45] [46] [47].



Chapter 3

Hybrid eDRAM/SRAM L2

Cache Architecture

As L2 caches are larger than L1 caches, more energy and area savings can potentially

be reached when the hybrid architecture is applied to them. This chapter presents the

hybrid eDRAM/SRAM cache architecture for L2 caches. First, the distribution of cache

hits across the ways of the L2 cache is studied to provide insights about the optimal

distribution of SRAM and eDRAM ways. Then, the hybrid design and its associated

architectural mechanisms are presented. The experimental evaluation is performed from

both storage capacity and area points of view, and it covers performance and energy

consumption. The optimal percentage of SRAM and eDRAM ways is identified using

the Energy-Delay squared Product (ED2P ) and Energy-Delay-Area Product (EDAP)

metrics.

37



38 Chapter 3. Hybrid eDRAM/SRAM L2 Cache Architecture

3.1 Motivation

As shown in the previous chapter, most hits concentrate in the MRU blocks in L1 data

caches. Therefore, for hybrid L1 eDRAM/SRAM caches, it is enough to build a single

cache way with fast SRAM technology and force this cache way to store the MRU

block for performance purposes. However, it is widely known that data locality in L2

caches is much poorer than it is in L1 caches, thus this implementation might yield to

unacceptable performance in L2 caches. In addition, the macrocell design would become

too complex and expensive to implement in huge LLCs with high associativity.

Due to the latter reason, the hybrid proposal works at a coarse granularity in L2 caches,

that is, at cache bank level instead of cell level. To identify which is the most appropriate

ratio of SRAM and eDRAM banks in terms of performance, energy, and area, a design

space exploration for hybrid L2 caches is performed.

The two extremes of this design space exploration are defined by caches implemented

with a single technology. These caches are referred to as pure SRAM and pure eDRAM

caches. Both extremes provide, respectively, the maximum performance but higher

energy expenses and area, as well as the minimum performance but lower leakage en-

ergy consumption and area. Between these points, the percentage of SRAM banks and

eDRAM banks can be varied in order to benefit performance or energy and area savings.

In summary, the design space exploration is useful to find out the optimal hybrid

eDRAM/SRAM L2 cache, which provides the best trade-off among performance, en-

ergy consumption, and area.

For analysis purposes, two cache organizations have been considered, a 512KB-16way

and a 1MB-16way set-associative LLCs (L2 caches) implementing the LRU replacement

algorithm. With the aim to serve as a guide to estimate how many ways should be

built with SRAM banks and how many with eDRAM banks, this section explores the

distribution of cache hits.

The distribution of cache hits has been obtained with the aim of analyzing if hits con-

centrate in a few blocks at the top of the LRU stack. In such a case, these blocks should

be stored in fast SRAM banks and a swap mechanism should enable the movement of

blocks between banks built with different technologies. Figure 3.1(a) and Figure 3.1(b)
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Figure 3.1: Percentage of cache hits across the locations of the LRU stack.

show the results of both conventional 512KB-16way and 1MB-16way L2 caches, respec-

tively. Those applications exhibiting an L2 hit ratio greater than 85% in both cache

organizations were skipped for this study, since they do not represent a realistic behav-

ior in this level. Label loc-0 refers to the location storing the MRU block, while loc-15

is the position storing the LRU block. Label loc-{x-y} denotes hits in a location falling

in between x and y in the stack, both inclusive.

Results indicate that, unlike L1 caches where more than 90% of hits concentrate in the

MRU way, hits are distributed among different locations of the LRU stack in L2 caches.

Although the distributions are clearly skewed to the first ways, the 512KB cache requires

half the cache ways (8 ways) to cover by 95% of the cache hits, while this percentage
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Cache SRAM eDRAM SRAM eDRAM SRAM
configuration ways ways banks banks ratio (%)

16S 16 0 8 0 100
8S-8D 8 8 4 4 50
4S-12D 4 12 2 6 25
2S-14D 2 14 1 7 12.5
16D 0 16 0 8 0

Table 3.1: Pure and hybrid caches with the corresponding number of ways, banks,
and ratio (%) of SRAM banks

drops down to 85% for the 1MB cache. Notice too that, for the 512KB cache, the

MRU way captures only around 50% of the cache hits in 7 of 13 applications. This

number of applications grows up to 9 for the 1MB cache. Anyway, the percentage of

hits in the MRU way is on average by 60% for both cache organizations. Thus, these

results confirm that implementing only the MRU way with SRAM technology would

yield to unacceptable performance. Finally, remark that there is no need to maintain a

bidirectional relationship between cache ways and positions of the LRU stack (e.g., way

4 stores the block in position 4 of the stack) but only to find out which percentage of

blocks should be stored in fast SRAM ways, which simplifies the design.

3.2 Hybrid Last-Level Cache Design

This section discusses how the hybrid L2 cache is accessed to avoid unnecessary destruc-

tive reads and introduces how the swap operations between eDRAM and SRAM banks

are performed to keep the MRU data in the latter banks. In addition, a distributed

refresh mechanism to avoid capacitor discharges is presented.

This work assumes that each cache bank stores a pair of ways, which results in an LLC

with 8 banks for the studied 16-way caches. As each bank of the data array can be

implemented with either SRAM or eDRAM technology, several design choices can be

explored. Table 3.1 summarizes the studied design choices, specifying the number of

SRAM and eDRAM ways and banks of each cache configuration and the ratio of SRAM

banks. The conventional schemes in both extremes of the table are the pure SRAM (16S)

and the pure eDRAM (16D), which have all their banks implemented with SRAM and

eDRAM technology, respectively. The tag array of all the studied cache configurations
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Figure 3.2: Diagram of the hybrid cache access. Dark boxes represent the accessed
parts of the cache. The second stage is performed only on a hit in an eDRAM way

detected in the first stage.

is assumed to be implemented with typical SRAM cells; thus, analogous to the hybrid

L1 cache, the reading of any tag is not a destructive operation.

3.2.1 Accessing the Hybrid Cache: Bank-Prediction

Like in the hybrid L1 design, the energy wasting of the destructive reads due to accessing

all the cache ways is also avoided in hybrid L2 cache designs. However, unlike previous

works, the proposed hybrid L2 caches predict various ways (instead of only one) that

will be accessed during a first stage. Hence, the access of these memories is split into

two stages as depicted in Figure 3.2. In the first stage, all the tags (which are built with

SRAM technology) and all the SRAM banks (SRAM data array) are accessed in parallel.

This technique will be referred to as bank-prediction. If the requested block is stored in

an SRAM way, the access time of the hybrid cache is as fast as a hit in a conventional

SRAM cache and the second stage is not performed (i.e., no eDRAM way is accessed).

On a miss in the SRAM data array but a hit in a tag associated to an eDRAM way,

the second stage is performed and only the target eDRAM way is accessed. In this case,

the access time includes the tag comparison plus the access to the eDRAM data. On a

cache miss, no eDRAM way is accessed and the requested block is fetched from main

memory.

3.2.2 Keeping the Last Accessed Blocks in SRAM Banks

To keep the MRU data in fast SRAM banks, the cache controller manages a swap opera-

tion between SRAM and eDRAM banks, similar to the swap performed in the proposed

hybrid L1 architecture. To properly select the blocks to be transferred, the design

maintains a separate LRU stack order in both SRAM and eDRAM data arrays, which

allows reduce the required number of LRU control bits. Figure 3.3(a) and Figure 3.3(b)
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Figure 3.3: Diagrams of the involved actions in an eDRAM hit and a cache miss to
keep the MRU data in SRAM banks.

illustrate the 4S-12D cache configuration with the different actions carried out on an

eDRAM hit and a cache miss, respectively, to maintain the MRU data in the SRAM

data array.

On an eDRAM hit, the requested eDRAM block (labeled as b1 ) is transferred from its

eDRAM bank to the SRAM bank that holds the LRU block of the SRAM data array

(referred to as b2 ), which in turn is moved to the eDRAM bank. To properly perform

the swap operation, block b1 is temporarily placed in a buffer associated to the eDRAM
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bank while block b2 moves to the target eDRAM bank. Finally, block b1 is transferred

from the auxiliary buffer to the SRAM bank. After this operation, the involved blocks

are set as the MRU ones of each data array by updating both LRU stacks.

Remark that a block is not evicted from the SRAM data array neither moves to the

eDRAM array until it becomes the LRU and is selected to be swapped. Before being

evicted from the SRAM array, a block always resides in the same SRAM bank. In other

words, an SRAM hit does not imply any data movement between banks.

On a cache miss, the LRU block of the eDRAM data array (block b3 ) is selected for

replacement. The cache controller triggers a unidirectional transfer from the SRAM

LRU block (block b4 ) to the eDRAM bank that contains the victim block, while the

incoming data block that is fetched from main memory (block b5 ) is allocated in the

SRAM bank. Of course, the control bits must be accordingly updated.

Finally, tags are not swapped in the hybrid L2 cache. Instead, four control bits (i.e.,

data way location bits) per tag are required to maintain the mapping between tags and

cache ways of 16-way caches (see Section 2.2.2).

3.2.3 Distributed Refresh

Unlike hybrid L1 caches, refresh logic cannot be removed in the L2 cache. This is

because data located in the L2 cache may be accessed after very long periods of time

since L1 filters most cache accesses to L2. As a consequence, depending on the cache

configuration, the retention time has to be set to millions of processor cycles to avoid

the need of refresh operations, which corresponds to a capacitance far beyond from the

typical capacitances of eDRAM devices [40] [41].

For both hybrid and pure eDRAM L2 caches, the capacitance has been set to 10fF,

which is the optimal capacitance obtained for the hybrid L1 design. This capacitance

corresponds to a retention time of 190K processor cycles for a 3GHz frequency. Analo-

gous to the hybrid L1 cache, the eDRAM cells of the hybrid L2 scheme are considered

to be implemented with trench capacitors.

To avoid capacitor losses, refresh cycles can be used either in a distributed or burst

method in typical DRAM memories [48]. This thesis assumes the distributed refresh



44 Chapter 3. Hybrid eDRAM/SRAM L2 Cache Architecture

for eDRAM banks since it is the commonly used method. In order to mitigate the

refresh penalty, the refresh operations have been interleaved among banks and performed

following a round-robin policy, where each eDRAM block is regularly refreshed. Similar

to the delayed writeback policy of the hybrid L1 approach, the period between two

consecutive refresh operations is established as the retention time divided by the number

of eDRAM blocks. This guarantees that all the eDRAM blocks are refreshed before their

retention time expire.

Finally, notice that special writebacks policies are not required since data losses are

avoided by the distributed refresh. Thus, like in conventional caches, writeback opera-

tions only occur during block replacements.

3.3 Experimental Evaluation

This section evaluates area, performance, and energy consumption for each studied

distribution of cache banks. The analysis is carried out on the basis of both storage

capacity and area. Performance results include both hit ratio and IPC analysis. The

energy expenses are split into leakage and dynamic energy. In addition, the energy

consumption of the distributed refresh has been considered too. Both ED2P and EDAP

metrics will be considered to determine which is the most efficient distribution of cache

banks.

The architectural machine parameters are the same as those presented in the hybrid L1

cache analysis (see Section 2.3.1) with the following exceptions. In this study, the L1

data cache is assumed to be a conventional SRAM cache with a fixed 16KB-2way cache

organization and an access time of 2 cycles. This configuration remains unchanged for

the remainder of the thesis. The L2 cache is evaluated for both 512KB and 1MB cache

capacities with an associativity of 16 ways. The access time of the tag array, SRAM

banks, and eDRAM banks has been set to 2, 6, and 9 cycles, respectively. All the access

time numbers were obtained with CACTI for a 3GHz processor speed, resembling that of

most existing commercial processors. Remark that the access time (in ns) increases with

the cache capacity; however, for the L2 cache organizations studied in this chapter, the

differences are hidden when the access time is rounded up to processor cycles. Finally,
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Figure 3.4: Area (in mm2) of the analyzed caches. The circle groups those 1MB
eDRAM-based configurations with less area than the 512KB SRAM cache.

bank contention in both hybrid and pure eDRAM caches includes the refresh memory

events.

3.3.1 Area

To estimate the area of the studied caches, it is first obtained the area of an SRAM and

an eDRAM bank. Then, these values have been accumulated according to the number

of banks in each cache to calculate the area of the data array. The area overhead due to

the control bits to keep the mapping between tags and ways has been taken into account

in the hybrid caches.

Figure 3.4 plots the cache area results (in mm2) including both tag and data arrays.

Notice that no area benefits come from the tag array since it is built with SRAM

technology regardless of the cache configuration. As can be seen, the higher the number

of eDRAM banks of the data array the larger the area savings. Compared to the

conventional 16S cache with the same capacity, the 16D cache is the scheme that most

reduces the area (by 47% in the 512KB cache), closely followed by the 2S-14D hybrid

cache (41%). These area reductions are larger for the 1MB cache size. In this case, area

savings are up to 46% for the 2S-14D approach.

In the figure, it can be appreciated that 4S-12D, 2S-14D, and 16D (highlighted with

the circle) 1MB eDRAM-based configurations present area savings with respect to the

pure 512KB SRAM cache despite their storage capacity is twice as large. Based on



46 Chapter 3. Hybrid eDRAM/SRAM L2 Cache Architecture

this observation, it makes sense to compare different approaches not only on a capacity

basis but also on an area basis. Thus, to perform the analysis on the basis of area,

the highlighted 1MB eDRAM-based caches will be compared against the conventional

512KB SRAM cache. Note that some of these 1MB caches significantly reduce the

area of the 512KB cache, thus this type of study provides conservative results for the

highlighted configurations.

3.3.2 Performance

To provide insights in performance, the hit ratio in the different cache banks is quan-

tified first. Remember that the hybrid designs do not allow information loss due to

capacitor discharges. Thus, the total hit ratio matches the obtained in pure SRAM

caches. Figure 3.5(a) and Figure 3.5(b) depict the results for the 512KB and 1MB

caches, respectively.

As expected, for a given cache size, the hit ratio in eDRAM banks (eDRAM hit ratio)

increases with the number of eDRAM ways. Nevertheless, this is not the case in a few

applications. For instance, the eDRAM hit ratio in art holds constant for both 512KB

and 1MB caches regardless of the cache bank distribution. For the 512KB cache, this

behavior can be explained by looking the values of this benchmark in Figure 3.1(a),

where only the MRU way and the following one (i.e., loc-0 and loc-1 ) are enough to

capture almost all the cache hits, so no eDRAM hit ratio can be observed in any hybrid

cache organization. On the other hand, for the 1MB cache, this pair of ways capture

around 50% of cache hits, while locations from 8 to 15 in the LRU stack capture almost

all the remaining hits.

For the 512KB cache, the eDRAM hit ratio is on average by 4%, 7%, and 11% for 8S-

8D, 4S-12D, and 2S-14D hybrid approaches, respectively. These percentages grow up to

10%, 14%, and 18%, respectively, for the 1MB cache. Similarly, for the 512KB cache,

the SRAM hit ratio is on average by 49%, 46%, and 42% for 8S-8D, 4S-12D, and 2S-14D

hybrid configurations, respectively, while for the 1MB cache, these percentages are by

53%, 49%, and 45%. This is due to, compared to the 512KB hybrid cache, the SRAM

data array of the 1MB hybrid cache is twice as large. Overall, the 512KB cache achieves

on average a higher miss ratio (by 47%) than the 1MB cache (by 37%).
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Figure 3.5: Hit ratio (%) split into hits in SRAM and eDRAM banks. XS-YD
configuration refers to a hybrid cache having X ways in SRAM banks and Y ways built

with eDRAM banks.

To achieve enhanced performance, it is important that the percentage of eDRAM hits

remains as low as possible since an access to an eDRAM way takes more cycles than an

access to an SRAM way. Performance losses due to bank contention also rise because of

periodic refresh operations. These losses are not constant across the different cache con-

figurations, since the elapsed time between two consecutive periodic refreshes becomes

shorter as the number of eDRAM blocks increases. In addition, in the pure eDRAM

cache (16D), reads require to refresh data since these operations are destructive, which

also induces bank contention. In contrast, the bank contention on an eDRAM hit in

hybrid caches is induced by the swap operation between the involved banks. The swap

operation has been modeled as a read access to the target eDRAM bank, a write access
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Figure 3.6: Slowdown (%) of the analyzed cache configurations with respect to the
pure SRAM cache on the basis of capacity.

to that bank, and another write access to the target SRAM bank. Bank contention is

considered in these three steps.

Figure 3.6(a) and Figure 3.6(b) show the slowdown of the studied 512KB and 1MB

caches, respectively, compared to a pure SRAM cache with the same capacity (the

lower is the better). As expected, the slowdown increases with the number of eDRAM

ways regardless of the cache size. Enlarging the eDRAM data array results in a higher

number of refresh operations, slow accesses to eDRAM data, and swap operations. In

general, the performance loss is higher in those applications with a high eDRAM hit

ratio. For instance, in twolf, the eDRAM hit ratio can be as high as 29% in the 512KB
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Figure 3.7: Speedup (%) of the selected 1MB eDRAM-based caches with respect to
the SRAM scheme on the basis of area.

cache with the 2S-14D configuration, which leads to 7.7% slowdown. In comparison, for

the 1MB cache, the eDRAM hit ratio is up to 34% and its slowdown is by 9%. The

pure eDRAM architecture is strongly affected both by the slow access time and bank

contention induced by refresh operations. For instance, in twolf, the slowdown is around

16.2% for the 1MB cache with the 16D scheme, resulting in a very poor performance.

The slowdown for a 512KB cache is on average by 1.8%, 2.5%, and 3.0% in the 8S-8D,

4S-12D, and 2S-14D hybrid approaches, respectively. In comparison, minor differences

appear in these percentages for the 1MB hybrid cache. In the 16D configuration, the

slowdown grows up to 4.5% and 5.0% for the 512KB and 1MB caches, respectively.

Finally, the analysis on the basis of area is presented. Figure 3.7 plots the speedup of

the selected 1MB eDRAM-based caches with respect to the conventional 512KB SRAM

cache. As observed, the hybrid caches, with much longer access time when accessing

eDRAM data, improve performance in 8 of 13 applications. The speedup in applications

like vpr and twolf comes from the fact that the hit ratio significantly increases with the

cache capacity (see Figure 3.5). For example, the hit ratio of vpr is by 61% and 76% for

the 512KB and 1MB cache size, respectively. On the contrary, in some other benchmarks

such as mcf and bzip2, the increase of the hit ratio (if any) does not compensate the

bank contention of the higher number of refresh operations. Again, regardless of the

application, the performance increases with the number of SRAM ways. To sum up,

the speedup of both 2S-14D and 4S-12D hybrid caches is on average by 5.2% and 5.9%,

respectively, while this percentage drops down to 3.0% for the pure eDRAM cache.
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Type of energy 16S 8S-8D 4S-12D 2S-14D 16D

Total leakage (mJ) 70.7 42.6 28.2 21.0 13.8
Tag array (mJ) 0.2 0.2 0.2 0.2 0.2
SRAM hits (mJ) 4.9 2.3 1.1 0.5 0
eDRAM hits (mJ) 0 0.2 0.3 0.3 4.9

Swaps (mJ) 0 0.9 1.0 1.1 0
Writebacks (mJ) 0.3 0.3 0.3 0.3 0.3

Misses (mJ) 7.5 4.2 2.5 1.7 7.4
Refreshes (mJ) 0 1.1 1.7 2.0 13.7

Total dynamic (mJ) 13.0 9.2 7.1 6.0 26.5
Total consumption (mJ) 83.7 51.9 35.3 27.0 40.3
Total reduction (%) – 38.0 57.9 67.7 51.8

a) 512KB-16way

Type of energy 16S 8S-8D 4S-12D 2S-14D 16D

Total leakage (mJ) 120.2 70.2 44.4 31.6 18.9
Tag array (mJ) 0.2 0.2 0.2 0.2 0.2
SRAM hits (mJ) 8.7 3.5 1.6 0.7 0
eDRAM hits (mJ) 0 1.2 0.9 0.7 9.5

Swaps (mJ) 0 1.5 1.6 1.8 0
Writebacks (mJ) 0.3 0.3 0.3 0.3 0.3

Misses (mJ) 8.6 4.8 2.9 1.9 9.3
Refreshes (mJ) 0 3.2 4.9 5.7 24.7

Total dynamic (mJ) 17.8 14.6 12.5 11.4 44.1
Total consumption (mJ) 138.0 84.8 56.9 43.0 63.1
Total reduction (%) – 38.5 58.8 68.8 54.3

b) 1MB-16way

Table 3.2: Leakage and dynamic energy consumption (in mJ) and the reduction (%)
compared to the pure SRAM scheme.

3.3.3 Energy Consumption

This section analyzes both leakage and dynamic energy consumption (in mJ) of the

studied L2 caches. Table 3.2(a) and Table 3.2(b) show the results for the 512KB and

1MB cache organizations, respectively. Leakage energy includes the consumption of

both tag and data arrays. To provide insights in energy savings, it has been analyzed

separately the dynamic energy of the tag array, which is looked up on every cache access,

and the data array energy, which has been classified into several categories according to
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the access type. Six different categories have been identified: SRAM hits, eDRAM hits,

swaps, writebacks, misses, and refreshes.

The SRAM hits category denotes the energy consumed by the access to the SRAM array,

whereas the eDRAM hits category takes into account the previous access to the SRAM

banks (which is useless, as there is an SRAM miss) and the access to the target eDRAM

bank. The swaps category includes the expenses of transferring the involved blocks in

the swap operation of hybrid caches. This category also includes the consumption of

the unidirectional transfers from SRAM to eDRAM banks that arise on a cache miss

in hybrid approaches. The writeback category considers the energy of accessing just

the bank containing the victim block. The misses category includes the energy required

to access the SRAM banks, the eDRAM ones (if any), and the access to the bank

where the incoming block is allocated. The refresh category takes into account the

energy consumed by the periodic refresh and the energy due to restoring the eDRAM

contents after a destructive read. Notice that, as there is not information loss due to

capacitor discharges regardless of the cache scheme, the energy penalty of accessing to

main memory has not been considered since it is the same for all the studied caches.

As observed, both eDRAM-based and hybrid approaches reduce leakage currents by

design thanks to the use of eDRAM banks. Indeed, leakage decreases with the number

of eDRAM ways. Compared to the 16S cache, the 2S-14D approach reduces leakage by

70% for the 512KB cache. This percentage grows up to 74% for the 1MB cache size. As

expected, for a given cache scheme, the 1MB caches consume a larger amount of leakage

with respect to the 512KB caches since they double the cache capacity.

Regarding dynamic energy, the tag array consumption is almost negligible compared

to the energy of the data array. As expected, the 16S cache is by far the scheme that

consumes more energy in the SRAM hits category since all the cache ways are accessed in

parallel, while the values in this category decrease with the number of eDRAM ways. As

opposite, the eDRAM hits energy increases with the number of eDRAM ways, although

the fact of accessing the SRAM ways ahead of the eDRAM target may prevent from

obtaining low values even for a low number of eDRAM ways. This is the case of the

8S-8D configuration for the 1MB cache (1.2 mJ).

The expenses of the swap operation do not represent an important fraction of the dy-

namic energy consumption. The worst case can be found in the 2S-14D configuration
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for the 512KB cache, where the swap energy consumption (1.1 mJ) represents about

18% of the total dynamic energy (6.0 mJ). Nevertheless, in spite of this fact, this is the

configuration that most reduces the dynamic energy among all the studied caches.

The consumption due to writebacks slightly affects the total energy, and it is roughly

the same across the studied schemes. In contrast, noticeable differences appear in the

misses category. The 16S and 16D caches consume a large amount of energy because of

the entire data array is involved on each access. For the hybrid caches, the consumption

due to misses decreases with the number of SRAM ways.

The energy due to refresh operations increases with the eDRAM ways, since more

eDRAM blocks are checked to be refreshed. Recall that this category also includes

the energy expenses due to writing the contents after a destructive read in the 16D

approach.

Overall, for a given cache scheme, the dynamic consumption increases with the cache

capacity, similar to the leakage expenses. Compared to the 16S scheme, the 2S-14D

configuration reduces dynamic energy by 36% in the 1MB cache. This percentage is up

to 54% for the 512KB cache size. Note also that, compared to the conventional scheme,

the 16D approach doubles the dynamic consumption in the 512KB cache, while in the

1MB cache the consumption increases by a 2.48x factor.

An interesting observation is that, for the study on the basis of area, both 4S-12D and

2S-14D configurations for the 1MB cache reduce the total dynamic energy in spite of

having a capacity twice as large. In contrast, the 1MB 16D cache significantly increases

the total dynamic energy with respect to the 512KB SRAM approach.

Regarding total energy consumption, for a given cache capacity, the 16D configuration

reduces it by 52% and 54% for the 512KB and 1MB caches, respectively. This percent-

age grows up to 58–59% and 68–69% when using the 4S-12D and 2S-14D configurations,

respectively. However, for the 8S-8D approach, the obtained energy savings are lower

than those of the pure eDRAM scheme. This is mainly due to the high leakage consump-

tion when the hybrid cache capacity is half SRAM-based. Compared to the 512KB 16S

cache, both 4S-12D and 2S-14D hybrid schemes for the 1MB cache reduce the overall

energy by 32% and 49%, respectively. This percentage drops down to 25% for the pure

1MB eDRAM cache.
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Finally, remark that, in general, the leakage contribution represents a high percentage

of the total energy consumption. This is due to leakage is always consumed indepen-

dently of whether the cache is being accessed or not, while there is not dynamic energy

consumption in L2 if blocks are found in L1 (except from the periodic refresh).

3.3.4 Energy-Delay Squared Product

This section evaluates the trade-off between performance and energy consumption using

the ED2P metric. Figure 3.8(a) and Figure 3.8(b) show the normalized ED2P of the

studied configurations for both 512KB and 1MB caches, respectively (the lower is the

better).

Results indicate that compared to the pure SRAM cache, all the studied configurations

reduce the ED2P despite the lower performance obtained. This is mainly due to hybrid

and pure eDRAM caches significantly reduce leakage currents by design. This fact points

out the importance of eDRAM-based Last-Level Cache designs, and especially hybrid-

based designs, since 4S-12D and 2S-14D present on average a higher reduction of ED2P

compared to the 16D scheme. In particular, for the 512KB cache, the 4S-12D approach

reduces ED2P in 7 of 13 benchmarks over the 16D scheme, while 2S-14D does it in 11

workloads. Although the 8S-8D scheme performs better than the pure eDRAM cache

(see Figure 3.6), it does not reduce the ED2P with respect to this scheme. As mentioned

above, this is mainly because the 8S-8D approach consumes a high amount of leakage

energy.

On average, regardless of the cache organization, the reduction of ED2P is quite uniform.

It is up to 56–57% and 66–67% in 4S-12D and 2S-14D configurations, respectively. These

results are by 48–50% in the 16D approach. Therefore, a hybrid cache design with 12.5%

of its banks built with SRAM technology (2S-14D) or 25% (4S-12D) is a better cache

design option than a pure eDRAM cache.

Figure 3.9 plots the normalized ED2P of the 1MB caches with respect to the 512KB

SRAM cache. The reduction of ED2P on the basis of area is not as large as the analyzed

reduction on the basis of capacity. The reason is that, although the eDRAM-based

caches perform better than 512KB 16S on average (see Figure 3.7), the energy savings
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Figure 3.8: Normalized ED2P (%) with respect to the pure SRAM approach on the
basis of capacity.

are considerably reduced. Moreover, for the 1MB 16D cache, the ED2P is above 100%

in apsi and art.

Regardless of the cache configuration, twolf and sixtrack applications achieve a larger

ED2P reduction than in the analysis on the basis of capacity. This fact can be explained

by looking at Figure 3.7, where these benchmarks obtain the highest speedups. On

average, the ED2P reduction is by 40%, 54%, and 30% for 4S-12D, 2S-14D, and 16D,

respectively.
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Figure 3.9: Normalized ED2P (%) with respect to the pure SRAM scheme on the
basis of area.

3.3.5 Energy-Delay-Area Product

The recently proposed EDAP metric [49] has been used for the sake of completeness in

the trade-off analysis. Figure 3.10(a) and Figure 3.10(b) plot the normalized results on

the basis of capacity.

Results indicate that all the eDRAM-based caches reduce the EDAP with respect to

the 16S design. These reductions are larger than those obtained with the ED2P metric,

confirming that when considering area, which is a major design concern in LLCs, the

hybrid approach is even further the best design choice. Similar to the ED2P analysis, the

2S-14D approach is the best configuration on average. Compared to the pure eDRAM

cache, such a hybrid configuration reduces the EDAP in 9 of 13 applications regardless of

the cache capacity. These results point out that, on the basis of capacity and taking into

account performance, energy, and area, the 2S-14D hybrid design is still the best choice

despite the 16D cache provides larger leakage and area savings. The energy-delay-area

reduction is on average by 72–75% and 81–83% for 4S-12D and 2S-14D, respectively,

depending on the cache organization. These percentages are by 74–78% for the 16D

eDRAM cache.

Finally, Figure 3.11 shows the normalized EDAP results on the basis of area. In this

case, the reduction is not as large as in the previous study, because the area differences

between the eDRAM-based approaches and the conventional SRAM have been relaxed.
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Figure 3.10: Normalized EDAP (%) with respect to the pure SRAM approach on the
basis of capacity.

Anyway, the proposed 2S-14D hybrid scheme is the one that most reduces the EDAP.

The reductions range on average from 42% to 61% depending on the number of eDRAM

ways.
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Figure 3.11: Normalized EDAP (%) with respect to the pure SRAM cache on the
basis of area.

3.4 Contemporary Hybrid Architectures

This section describes recent research works on hybrid architectures that were published

during the development of this dissertation.

To take advantage of the properties that each technology offers, the following works have

focused on hybrid architectures in different memory structures such as Non-Uniform

Cache Architectures (NUCAs), main memories, and multi-threaded register files.

In [16], Wu et al. proposed two hybrid NUCA designs: LHCA and RHCA. The former

design implements the third-level (L3) cache with eDRAM, MRAM, or PRAM, while

both L1 and L2 levels are built with SRAM technology. In the latter design both L2

and L3 caches are flatten into a pair of regions to form a single level. One region

is SRAM-based and the other is eDRAM, MRAM, or PRAM-based, whereas the L1

is SRAM-based. The RHCA design requires much hardware complexity than in the

proposed hybrid L2 cache to manage data movements between regions, since the design

requires not only the LRU stack of all the lines in a set, but also an additional sticky bit

for the SRAM lines and a 2-bit saturating counter per eDRAM line. Unlike this thesis,

there is not a design space exploration varying the size of the SRAM region, which is

fixed to 256KB across all the experiments.

Lira et al. [50] proposed two different architectures (homogeneous and heterogeneous)

for a hybrid eDRAM/SRAM NUCA. In the homogeneous organization, the fast SRAM
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banks store the frequently accessed blocks and they are placed close to the cores, whereas

the eDRAM banks are located in the center of the NUCA. However, this approach is

penalized by the shared data, since it is usually located in slow eDRAM banks. On the

other hand, the heterogeneous architecture balances the number of SRAM and eDRAM

banks with the location of them (close to the cores or in the center of the NUCA).

Authors argue that the same number of SRAM and eDRAM banks provide the best

trade-off among performance, power, and area in this organization.

Qureshi et al. [51] proposed a PRAM-based main memory system that includes a DRAM

buffer. The requested pages from hard disk and main memory are stored in the DRAM

buffer, while the PRAM memory is only written (if required) when the page is evicted

from the buffer. The PRAM technology provides higher density with respect to DRAM,

while the DRAM buffer allows reduce the number of accesses to the slow PRAM memory

and the number of write operations to minimize its write endurance problems.

In [52], Yu et al. presented an augmented 1-bit SRAM cell with several eDRAM cells,

resulting in a multiple-bit eDRAM/SRAM cell to implement register files. The fast

SRAM cell is aimed at storing the active context, whereas each pair of eDRAM cells

store a dormant context. An additional pair of eDRAM cells is used as a replica of the

active context. A dormant context becomes active by transferring the data from the

pair of eDRAM cells to the SRAM one. Performance, energy, and area are evaluated

using this hybrid cell.

3.5 Summary

In this chapter, both SRAM and eDRAM technologies have been mingled in the LLC,

resulting in a hybrid LLC design consisting of SRAM and eDRAM banks. The optimal

percentage of SRAM banks has been explored to achieve the best trade-off among per-

formance, energy, and area. The cache controller is enhanced to allow data migration

between banks to keep the MRU data in fast SRAM banks. On a cache access, these

banks are accessed first to avoid many destructive reads of eDRAM data. This tech-

nique is referred to as bank-prediction. A conventional and distributed refresh policy is

considered to avoid data losses due to capacitor discharges.
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Experimental results have shown that, compared to a conventional SRAM LLC with

the same storage capacity and number of ways, performance degradation never exceeds

on average 3%, whereas energy and area savings are on average by 69% and 46%, re-

spectively, for a 1MB-16way hybrid cache. Compared to a conventional SRAM cache on

the basis of area, the hybrid cache improves performance on average up to 5.9%, while

the total energy reduction is by 32%. For a 45nm technology node, the energy-delay

squared product confirms that, on average, a hybrid cache is a better design than the

conventional SRAM cache regardless of the number of eDRAM banks, and also better

than a pure eDRAM cache when the percentage of SRAM banks is 12.5% and 25%.

Furthermore, taking into account performance, energy, and area in the trade-off analy-

sis, the hybrid approach with a 12.5% of its banks built with SRAM is still the better

design choice.

The work discussed in this chapter has been partially published in [53].





Chapter 4

MRU-Tour Replacement

Algorithms

This chapter introduces the family of replacement algorithms for LLCs based on the

MRUT concept. First, the shortcomings of the LRU algorithm are discussed, leading

to the necessity of alternative algorithms for LLCs. Then, it is presented the MRUT

concept and how the baseline MRUT algorithm works. In the experimental section, the

performance of the baseline MRUT algorithm is enhanced considering recency of infor-

mation, adapting the policy to changes in the behavior of the applications, and using a

small victim cache for the LLC. In addition, both performance and hardware complex-

ity are compared against a set of the most representative state-of-the-art replacement

algorithms.

61
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Bench. Pret

LRU stack location

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

swim 24.6 38.2 61.4 0.3 0 0 0 0 0 0 0 0 0 0 0 0

mgrid 69.1 72.6 3.5 0.7 0.9 0.4 0.5 1.0 6.4 0.6 6.8 6.3 0.1 0 0 0

applu 8.4 92.6 4.9 1.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

vpr 59.0 49.4 5.4 0.7 0.5 0.9 2.8 2.5 3.9 3.7 4.9 3.1 3.5 5.2 6.9 7.0

galgel 91.4 85.7 7.2 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 1.2 3.8

art 13.5 9.8 0 0 0 0 0 0 11.1 45.7 7.0 6.0 7.1 5.4 4.7 3.2

mcf 21.2 53.4 16.3 11.6 6.9 3.6 1.9 1.2 0.9 0.8 0.7 0.6 0.6 0.5 0.5 0.5

facerec 47.2 6.7 0.2 0 0 0 0.1 69.2 7.7 3.1 2.5 2.2 1.6 1.9 1.4 3.5

ammp 5.6 4.9 2.4 3.1 3.4 4.5 4.7 5.3 7.0 7.6 7.7 7.9 7.8 9.4 11.1 13.2

lucas 37.5 44.8 15.0 1.6 1.1 1.2 1.7 1.6 2.8 2.9 3.6 3.6 4.7 4.7 5.0 5.8

bzip2 75.1 38.9 13.7 6.8 4.8 4.5 4.5 4.4 4.2 3.8 3.2 2.8 2.4 2.2 2.0 1.9

twolf 84.9 31.1 12.8 8.4 6.8 5.8 5.2 4.6 4.1 3.7 3.4 3.2 3.0 2.8 2.7 2.5

apsi 89.8 37.5 9.1 8.3 1.8 0.4 0.1 0.1 0.1 16.5 20.6 4.7 0.9 0.1 0 0

Table 4.1: Probability of a block to be referenced again using the LRU algorithm.

4.1 Weaknesses of LRU

In the LRU algorithm, when a block is not being referenced it descends the LRU stack

as other blocks are referenced. During this walk, if the block is accessed again, it returns

to the MRU position. However, for caches with high associativities, the likelihood of

coming back to the MRU position is not uniformly distributed among the locations of

the stack. Table 4.1 shows this probability for a 128B-line 1MB-16way L2 (LLC) cache1.

The Pret column refers to the probability of a block to return to the MRU position. For

instance, Pret = x means that a block has a likelihood of x% to return and (100− x)%

to be evicted before being referenced again. The other columns indicate the conditional

probability of a block residing on a given (non-MRU) stack location given that the

block is referenced again (over 100%). Location 0 is the MRU position and it is not

represented, while location 15 refers to the bottom of the stack.

As observed, for most applications, when a non-MRU block is referenced it is more likely

to stay in locations closer to the MRU (mainly locations 1 and 2). This information is

useful to analyze why LRU achieves good or bad performance for a given application, as

experimental results will show. For instance, LRU would not work well in applications

like art or ammp, since this probability is higher in lower positions (closer to the bottom)

than in the middle or upper positions. Note that blocks located in lower LRU positions

are more likely to be evicted and, in such a case, causing misses if they are finally

requested.

1Some applications have been skipped following the criteria discussed in Section 4.4.
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Figure 4.1: Generation time of the cache block A.

Furthermore, these results also show that keeping the whole stack location is not impor-

tant for most applications in high-associative caches. Nevertheless, the LRU algorithm

spends a significant number of bits (e.g, 4 bits in a 16-way cache) to maintain the order

of reference for each cache line in the set.

4.2 MRUT Concept and MRUT-based Algorithms

This section presents the MRUT concept and characterizes current benchmarks accord-

ing to this concept. Then, the family of MRUT-based algorithms is presented, beginning

by the simplest one, which will be referred to as baseline.

4.2.1 Overview

The concepts of live and dead times of a block [54] have been widely used in cache

research. The generation time of a block defines the elapsed time since the block is

fetched into the cache until it is replaced. This amount of time can be divided into live

and dead times. The live time refers to the elapsed time since the block is brought until

its last access before it is replaced, and the dead time refers to the time from its last

access until eviction.

Figure 4.1 shows the concept of MRUT in the context of the live time of the cache block

A. Assuming the LRU replacement policy, block A is initially allocated at time t1 in

the MRU position at the top of the LRU stack. The block maintains this position while

it is being accessed. Then, the block leaves this position because block B is referenced.

At this point, it can be said that block A has finished its first MRUT. After accessing

block B, block A is referenced again so returning to the MRU position and starting a
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Figure 4.2: Number of replacements split into single and multiple MRUTs.

second MRUT. At time t2, block A finishes its third MRUT, which is the last MRUT

of this block before leaving the cache at time t3.

To explore the potential benefits of taking into account the MRUT concept on the

replacement algorithm, the accessed blocks have been split depending on whether they

exhibit a single or multiple MRUTs at the time they are evicted. Figure 4.2 depicts

the results for the 1MB-16way L2 cache under the LRU algorithm. As observed, blocks

having a single MRUT dominate those having multiple MRUTs, especially in those

applications having a high number of replacements.

4.2.2 MRUT-based Algorithms

MRUT-based replacement algorithms exploit reuse information by being aware of the

number of MRUTs (one or multiple) for each cache block. Figure 4.3 shows the imple-

mentation of the baseline algorithm. This scheme uses one bit attached to each cache

block, referred to as MRUT-bit, to indicate if the block has experienced one or multiple

MRUTs. This control bit is updated each time the block reaches the MRU position

during its live time. The algorithm works as follows. Each time a block is fetched into

the cache, its associated MRUT-bit is reset to indicate that the first MRUT has started.

When the block leaves the MRU position for the first time, it can potentially be re-

placed. Then, if the same block is referenced again, it returns to the MRU position and

a new MRUT starts. This is indicated by setting the MRUT-bit to one. That is, an

MRUT-bit value of one indicates that the block has experienced multiple MRUTs, but

no additional bits are included to record how many.
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Algorithm: Baseline MRUT

Cache hit in block x:

if (x is not in the MRU position)

set the MRUT-bit of x to 1

Cache miss:

a) select the block to be replaced

if (there are candidates with MRUT-bit=0)

randomly among candidates (except the MRU)

else

randomly among all the blocks (except the MRU)

b) set the MRUT-bit of the incoming block to 0

End Algorithm

Figure 4.3: Baseline MRUT algorithm.

This simple algorithm aims to avoid that those blocks with only one MRUT stay in

cache, resulting in a negative impact on performance, by choosing them as candidates

for eviction. If a block exhibits good locality, it will come back to the MRU position, so

this block will not be considered for eviction. In this way, this approach acts as a catalyst

to expel those blocks accessed during only one MRUT. To make hardware simple, the

victim block is randomly selected among the candidate blocks except the MRU block. If

there is no block with its associated MRUT-bit cleared, all the blocks (except the MRU

one) are considered as candidates and the victim is randomly selected among them.

On the other hand, as shown in Table 4.1, storing the order of the last referenced

blocks may be also important for performance improvements in most applications. The

MRUT-x family extends the baseline algorithm to exploit both the MRUT behavior

and also recency of information. The latter is exploited by storing the order of the last

x referenced blocks. These x blocks will not be considered as candidates for eviction.

For instance, MRUT-2 will not consider as candidates the current MRU block and the

following one, while MRUT-1 refers to the baseline MRUT algorithm. Notice that

complexity is largely reduced with respect to the LRU policy which keeps the order of

all the blocks in the stack.

4.3 MRUT Patterns

In order to improve the performance of the MRUT algorithm, the MRUT patterns of

the blocks should be gathered, and it has to be analyzed whether the devised scheme

will be able to capture such behavior.
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Pattern
Generation time

1st 2nd 3rd 4th 5th 6th 7th 8th 9th

Regular-1 1 1 1 1 1 1 1 1 1
Regular-n 3 3 3 3 3 3 3 3 3
Irregular-n 4 4 4 4 3 3 4 4 4
Irregular-1-n 1 1 1 8 1 1 8 1 1

Table 4.2: MRUT patterns. Numbers in the cells indicate the number of MRUTs
exhibited during the generation times.

Table 4.2 shows a sample of different patterns that have been found in the applications.

Patterns show the number of MRUTs exhibited during nine consecutive generation times.

Longer patterns (30 generation times) were analyzed, but only a subset is shown for

representative purposes. Patterns’ values were gathered with the LRU algorithm. Four

different patterns have been identified:

• Regular-1. Blocks exhibiting this pattern only have a single MRUT during their

live time.

• Regular-n. This pattern is presented by those blocks having a constant number

of MRUTs but greater than one.

• Irregular-n. Blocks showing this pattern have a different number of MRUTs

during their live times (cyclic or not) but all of them are greater than one.

• Irregular-1-n. This pattern is exhibited by blocks that present a variable number

of MRUTs (cyclic or not), some of them equal to one, and some others greater

than one.

The proposed algorithm, by design, is able to capture the three first patterns; but it is

unlikely that catches the Irregular-1-n pattern. More precisely, if some or most blocks in

a given set present an Irregular-1-n pattern, blocks with a potential number of MRUTs

might be discarded. In such a case, these blocks would be referenced again soon so

incurring in performance losses. Notice that regardless of the patterns’ mix, the LRU

algorithm would work well if the blocks are referenced again before reaching the bottom

of the stack. That is, the LRU performance does not depend on the pattern mix but in

the number of active blocks that are being referenced by the program.

Nevertheless, the potential performance loss due to the random component of our pro-

posal can be solved by simply adding a small victim cache for the LLC. In this way,
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Figure 4.4: Block diagram of the MRUT-3 policy working with a victim cache.

evicted blocks are placed close to the LLC and, if the random strategy fails, these blocks

can be quickly returned to the LLC with the MRUT-bit set to one. Figure 4.4 shows a

block diagram of the MRUT-3 variant working with a victim cache.

4.4 Experimental Evaluation

This section presents the experimental results of the proposed family of replacement

algorithms. The Misses Per Kilo-Instruction (MPKI) metric has been used to quantify

the performance of the proposed policies. Results include the dynamic energy consump-

tion and the speedup of the best performing variant of the family when using the victim

cache. In addition, this policy is compared against some recently proposed algorithms

in terms of performance and hardware complexity. The complexity has been estimated

by obtaining the required number of control bits for each policy.

Benchmarks that do not stress the L2 cache have been removed for evaluation purposes;

that is, those benchmarks where negligible performance benefits can come from any re-

placement policy. To this end, the percentage of compulsory misses for each benchmark

has been obtained. Figure 4.5 shows the results for the 1MB-16way L2 cache. Ap-

plications showing an MPKI value less than one or a percentage of compulsory misses

higher than 75% were skipped for this study. The MPKI differences shown among

all the replacement algorithms analyzed in this work are less than 0.4 for the skipped

benchmarks.

4.4.1 Performance of the Baseline MRUT

This section evaluates the performance of the proposed baseline MRUT algorithm. To

this end, its performance is compared against the LRU algorithm. Figure 4.6(a) and
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Figure 4.5: Percentage of compulsory misses.

Figure 4.6(b) show the MPKI results split into benchmarks with MPKI lower and higher

than 10, respectively. The MRUT algorithm shows, on average, the best results and

reduces MPKI by 15% compared to LRU. As observed, MRUT performs much better

than LRU in applications showing a high MPKI (see average for MPKI>10), while it

performs a bit worse in applications achieving low MPKI (see average for MPKI≤10).

Two cases are worth to be analyzed in detail. The MPKI in ammp is around 68.7 and

49.7 in LRU and MRUT, respectively. The poor performance of LRU in this case can be

explained by looking at the results presented in Table 4.1. For instance, in the case of

ammp, blocks have a high likelihood to be referenced again when they are on the lower

positions of the stack (e.g., from 8 to 15), where they have a higher probability of being

evicted by the LRU algorithm. The behavior of art is similar. In this case, the baseline

MRUT policy reduces the MPKI by 37% compared to LRU.

4.4.2 Enhancing MRUT Performance

Although the MRUT algorithm works well for some benchmarks, the MPKI is a bit worse

than the achieved by LRU in some others (e.g., facerec). There are several reasons that

could explain this behavior. First, baseline MRUT selects the victim among all the

blocks having only one MRUT, regardless of recency of information. Second, blocks

change dynamically their behavior with time. For example, a block can have several

MRUTs at a given period of time when it exhibits good temporal locality. In such a

case, the block will not be considered as candidate for eviction. However, if its locality
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Figure 4.6: MPKI of the baseline MRUT and LRU algorithms.

changes or expires with time, the block will not be considered for eviction (unless all the

blocks in the set are in the same conditions). Despite this fact, the block is occupying

a cache line although it does not exhibit locality any more.

The first problem is attacked by MRUT-x algorithms, where the last x referenced blocks

are not candidates to be replaced regardless of their MRUT-bit value. Notice that values

of x have been evaluated ranging from 1 to 4 (MRUT-1 refers to the baseline MRUT

algorithm). Figure 4.7(a) and Figure 4.7(b) plot the MPKI split into applications with

MPKI lower and higher than 10, respectively. MRUT-3 shows on average a slightly

better MPKI than the others. Again, the reason can be explained by looking at the
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Figure 4.7: MPKI of MRUT-x algorithms varying x from 1 to 4.

results presented in Table 4.1. Most applications show a high probability to reference

blocks near the MRU position (e.g., swim and mcf ). Compared to the baseline and

LRU, the MRUT-3 algorithm reduces MPKI on average by 4% and 19%, respectively.

Nevertheless, notice that increasing x does not always improve performance. This is the

case of art and ammp. The reason is that the likelihood of accessing one of the last x

referenced blocks is quite poor (about 10% for x = 3). Thus, if they are not considered

for eviction, they can hurt the performance because a block with higher probability of

reuse could be wrongly replaced. As opposite, increasing x slightly improves performance

on average in those applications showing a low MPKI (e.g., apsi). To sum up, MRUT-3

improves on average both MRUT-2 and MRUT-4 replacement algorithms.
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Benchmarks
Reset interval

32K 256K 2M 8M ∞

mgrid 4.9 4.8 5.3 5.5 5.5
vpr 1.8 1.8 1.9 2.2 2.3

galgel 1.2 1.2 1.1 1.1 1.1
facerec 6.0 5.9 6.3 6.8 6.6
lucas 8.2 8.2 8.2 8.2 8.3
bzip2 2.0 2.0 2.1 2.2 2.2
twolf 3.5 3.2 3.1 3.2 3.2
apsi 2.3 2.4 5.4 6.7 7.3

a) Benchmarks with MPKI lower than 10

Benchmarks
Reset interval

32K 256K 2M 8M ∞

swim 11.6 11.6 11.6 11.6 11.6
applu 11.5 11.4 11.2 11.2 11.2
art 66.8 59.2 50.5 49.2 48.3
mcf 16.5 16.0 15.6 15.6 15.5

ammp 61.5 59.9 58.9 58.1 51.1

b) Benchmarks with MPKI higher than 10

Table 4.3: MPKI of MRUT-3 varying the reset interval.

To deal with the second problem (i.e., block behavior changing with time), the MRUT-

bit of each block should be updated at run-time according to its behavior. With this

aim, the MRUT-3 scheme has been enhanced to address two main issues: i) reset the

MRUT-bit at regular intervals and ii) choose the best interval length at run-time for the

next execution period.

The first enhancement pursues to clear the MRUT-bit of a block when its temporal lo-

cality expires. Different intervals have been evaluated ranging from 32K to 8M number

of committed instructions. Table 4.3(a) and Table 4.3(b) show the MPKI results lower

and higher than 10, respectively, achieved by MRUT-3 for each regular interval length.

The column labeled as ∞ means that no reset is performed. As observed, 256K instruc-

tions is the interval that provides, in general, the best performance for those applications

showing an MPKI less than 10. On the other hand, for the remaining applications, the

performance increases with the interval length.
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Figure 4.8: MPKI achieved by MRUT-3-adaptive, MRUT-3, and LRU algorithms.

Based on this empirical information, the reset algorithm has been extended to be adap-

tive as follows. The policy resets the MRUT-bits every 256K committed instructions

in those workloads with an MPKI less than 10, while MRUT-bits are never reset for

the remaining applications. This new policy is referred to as MRUT-3-adaptive. Notice

that the number of committed instructions is usually available in the set of performance

counters of processors. Thus, storing the LLC misses during a given interval is enough

to distinguish if the MPKI is higher or lower than 10. Figure 4.8(a) and Figure 4.8(b)

show the obtained results. MPKI values of both MRUT-3 and LRU algorithms have

been plotted for comparison purposes. MRUT-3-adaptive shows on average an MPKI

reduction by about 3% and 22% compared to MRUT-3 and LRU, respectively.
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Notice that this variant of the proposal provides noticeable MPKI improvements on

applications with low MPKI like mgrid, vpr, facerec or apsi. Results are on average

roughly the same as those of LRU for these applications, while they are much better in

those benchmarks exhibiting a higher MPKI.

4.4.3 Introducing the Victim Cache

Although the adaptive MRUT algorithm significantly improves on average the perfor-

mance with respect to LRU, there are still a few applications such as mgrid and lucas

where LRU performs better. To mitigate these performance differences, both policies are

evaluated under a victim cache of L2. In this way, evicted blocks due to inaccuracy in

the random strategy will have another chance to return to L2 without accessing to main

memory. It has been assumed a fixed size of 64KB for the victim cache, which is much

smaller (sixteen times) than the size of L2 (1MB in this testbed). Both a full-associative

and a 32-way victim caches have been tested. Results of MPKI, hit ratio of the victim

cache, speedup, and dynamic energy consumption are presented.

Figure 4.9 shows the MPKI results split into benchmarks with MPKI lower and higher

than 10. Remark that, to these MPKI values, the corresponding number of hits in the

victim cache have been subtracted. This is done to analyze the impact of the victim

cache on the MPKI of L2. As can be seen, the use of a victim cache mitigates the impact

of evicting some blocks that are likely to be referenced sooner. Most of these blocks are

those exhibiting an Irregular-1-n pattern (see Section 4.3). In particular, MRUT with a

victim cache reduces the MPKI of those benchmarks where LRU obtained better results.

This is the case of lucas, twolf and apsi, where the MPKI values obtained by MRUT

with the victim cache are better than those obtained by LRU with the additional victim

cache. In some other cases, although the use of a victim cache does not allow MRUT to

outperform LRU, the differences are reduced. This is the case ofmgrid and bzip2. On the

other hand, as expected, the use of the victim cache also helps improve the performance

of LRU in some benchmarks (vpr and galgel). Finally, it can be appreciated that it is

not necessary a fully-associative victim cache, instead a 32-way cache reaches similar

performance with simpler complexity. From now on it is assumed such a victim cache

organization.
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Figure 4.9: MPKI of MRUT-3-adaptive working with victim cache.

Figure 4.10 shows the hit ratio of the victim cache (VC) when applying both replacement

algorithms in L2. Of course, the applications in which the MPKI is strongly reduced

with a victim cache present a high hit ratio. For instance, the best hit ratio for MRUT

is achieved by lucas (more than 10%), which obtains a reduction in MPKI (see Fig-

ure 4.9(a)) from more than 8 to 6. For LRU, the best hit ratio corresponds to galgel,

which improves MPKI from 4 to less than 0.5. LRU and MRUT-3-adaptive achieve a

hit ratio on average by 0.8% and 1.2%, respectively.

Figure 4.11 shows the relative execution time of the analyzed schemes compared to strict

LRU (the higher is the better). As observed, although the addition of the victim cache
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Figure 4.10: Hit ratio (%) in the victim cache.
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Figure 4.11: Impact (%) of adding a victim cache in the relative execution time with
respect to strict LRU.

allows improve LRU, this effect is more noticeable in MRUT, which, on average, obtains

the best performance. Taking into account that the MRUT replacement algorithm is

simpler to implement (see Section 4.5), these results demonstrate that MRUT-3-adaptive

replacement algorithm combined with a victim cache is an efficient replacement for LRU

in LLCs.

Finally, it has been quantified the dynamic energy consumed by the analyzed replace-

ment algorithms. The CACTI tool was used to compute the dynamic energy per access

for each memory structure. It has been assumed a 1MB-16way SRAM LLC, a 64KB-

32way SRAM victim cache, and a commodity 1GB DRAM main memory. Main memory

energy has been taken into account to estimate the energy costs of satisfying a miss in
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Figure 4.12: Normalized dynamic energy (%) with respect to strict LRU.

both the LCC and the victim cache. Results provided by CACTI were used with the

number and type of memory operations measured during the benchmark execution to

calculate the total dynamic energy of each algorithm.

Figure 4.12 depicts the normalized dynamic energy for the analyzed algorithms with

respect to strict LRU without victim cache. Regarding the victim cache exempt policies,

a miss in the LLC means accessing the power-hungry main memory. Thus, the MRUT-

3-adaptive policy achieves more energy savings than LRU in those applications where

LLC misses are reduced. The proposed policy reduces dynamic energy by 3% compared

to LRU. On the other hand, the schemes with victim cache consume less energy than

those without victim cache since a hit in the victim prevents main memory from being

accessed. The LRU policy using a victim cache obtains energy savings by 6% on average,

whereas this reduction is by 8% in the proposal.

4.4.4 Comparison Against Other Recent Approaches

This section evaluates the performance of MRUT-3-adaptive without victim cache against

a set of the most representative state-of-the-art approaches such as Bubble [25], adaptive

insertion policies [26], and RRIP [27] (see Section 1.1.2.1). Results for both strict and

pseudo-LRU algorithms are also shown in this study. A binary tree-based variant of the

pseudo-LRU algorithm has been implemented. Since most recent approaches usually
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Figure 4.13: MPKI achieved by MRUT-3-adaptive, pseudo-LRU, LRU, and other
recent policies (DRRIP, BIP, and DC-Bubble).

propose several adaptive variants, the algorithms have been adjusted for this testbed

and chosen, for comparison purposes, the best performing variant of each proposal2.

Figure 4.13 shows the results. As observed, LRU performs slightly better than pseudo-

LRU for some benchmarks such as facerec, lucas, and twolf. However, both policies

achieve on average almost the same MPKI. On the other hand, the other recently pro-

posed approaches perform better than LRU on average and, like the MRUT-based al-

gorithms, the major benefits are achieved in those applications showing a high MPKI,

2The Bubble algorithm uses the DC technique and 4-block groups; the best adaptive insertion policy

is BIP with ǫ = 1
32
; and the 3-bit DRRIP HP with 32-entry SDMs, 10-bit PSEL counter, and ǫ = 1

32
is

the best cache replacement with RRIP.
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whereas the MPKI is similar on average for applications showing an MPKI less than 10.

Nevertheless, the MRUT-3-adaptive is the policy achieving more MPKI reduction on

average. In particular, it reduces MPKI by 10%, 11%, and 11% compared to DRRIP,

BIP, and DC-Bubble, respectively.

4.5 Hardware Complexity

This section analyzes the hardware complexity in terms of area for the studied policies.

In addition, results for both counter-based Access Interval Predictor (AIP) and Live-time

Predictor (LvP) approaches proposed in [22] are presented (please refer to Section 4.6).

It has been assumed that area overhead is mainly dominated by the control bits and

additional hardware structures (e.g., tables and counters) required to implement the

replacement/placement strategies.

The strict LRU replacement algorithm requires log2(n) bits per cache block (LRU coun-

ters) to maintain the order of the blocks of the LRU stack in an n-way set-associative

cache. This results in log2(n) × n control bits per cache set. For instance, in a 16-way

cache, up to 4 bits per block and 64 bits per set are required. In addition, keeping the

order of all the stack requires a circuitry to update the counters, which is expensive

in terms of area. In contrast, the pseudo-LRU scheme implemented with a binary tree

only uses n − 1 bits per set, which is the studied algorithm requiring the least number

of control bits.

Concerning the counter-based cache replacement algorithms, the LvP approach saves

area with respect to AIP, since the former requires 17 control bits per cache block instead

of 21 that uses the latter scheme. However, both approaches have a hardware overhead

larger than the required by strict LRU. In addition, both policies use a prediction table

to store the counter values of the victimized blocks. This table has 256 × 256 entries,

each one storing 5 bits, resulting in an area overhead of 40KB.

Regarding the Bubble algorithm, it requires as many control bits as LRU, since the

entire stack order must be maintained. In addition, a bit per set is required to indicate

whether the previous access to the set resulted in a hit or in a miss. Dividing the set in

groups helps Bubble to reduce the number of control bits. DC-Bubble requires log2(n/g)

control bits per block, where g is the number of groups in each set. For example, in a
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16-way cache, each 4-block group requires 2 control bits per block. Like Bubble, it also

uses the aforementioned bit per set to record the previous access result.

In the adaptive insertion policies, the number of control bits of each policy is at least

equal to the number required by LRU since they are based on it. LIP does not require

more control bits since the only difference with respect to LRU is that the incoming

block is placed in the LRU position and then promoted to the MRU. The BIP policy

requires as many control bits as LIP, plus a 5-bit counter that is increased on each cache

miss to indicate which incoming block is inserted in the MRU position. Finally, the DIP

algorithm requires the same amount of bits as BIP, plus a 10-bit saturating counter to

implement the duel between the competing algorithms.

In contrast to the adaptive insertion policies, the y-bit SRRIP policy uses y control

bits per block regardless of the number of ways. On the other hand, the y-bit BRRIP

algorithm requires as many control bits as y-bit SRRIP and, similar to BIP, a 5-bit

counter. Finally, the y-bit DRRIP policy requires as many control bits as y-bit BRRIP

and, analogous to DIP, a 10-bit counter to choose between SRRIP and BRRIP. For

example, when y = 2, SRRIP, BRRIP, and DRRIP require 32, 37, and 47 control bits

per set, respectively, whereas they require 48, 53, and 63 bits, respectively, when y = 3.

The baseline MRUT algorithm reduces the hardware complexity compared to the policies

analyzed above, since it only requires 2 bits per block regardless of the cache associa-

tivity: the MRUT-bit and an extra bit that indicates the MRU block (MRU-bit). In

addition, by randomly selecting the victim among the candidate blocks, circuit complex-

ity is largely simplified, not only compared to the LRU policy but also, to the best of

our knowledge, with any recent proposal. On the other hand, the MRUT-x family of

replacement algorithms maintains the order of the last x referenced blocks using z bits.

A special combination of these bits is also used to register that the block order is not

kept for the remaining n − x blocks. Thus, z = ⌈log2(x+1)⌉ MRU-bits per block are

required. For instance, MRUT-2 and MRUT-3-adaptive policies need 3 control bits per

block (2 bits for the block order and the MRUT-bit).

Table 4.4 summarizes the area overhead (in number of control bits) per cache set for

the analyzed policies in an n-way cache. Results for the 128B-line 1MB-16way cache

account the total control bits (in Kbits) for the whole cache. As in the previous section,

only results for the best variant of each proposal in terms of performance are shown.
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Algorithm n-way cache 1MB-16way cache

LRU log2(n)× n 32Kb
pseudo-LRU n− 1 7.5Kb

AIP 21× n 488Kb
LvP 17× n 456Kb

DC-Bubble log2(n/g)× n+ 1 16.5Kb
BIP log2(n)× n 32Kb + 5b

3-bit DRRIP 3× n 24Kb + 15b
Baseline MRUT 2× n 16Kb
MRUT-3-adaptive 3× n 24Kb

Table 4.4: Area overhead (in number of control bits) in an n-way cache (per set) and
a 1MB-16way cache for the studied algorithms.

As mentioned above, the binary tree implementation permits pseudo-LRU to be the

cheapest algorithm in terms of area. However, the performance of this algorithm might

be even worse than strict LRU in LLCs. The DC-Bubble is the policy, among the

recent proposals, which most reduces the number of control bits since it applies the DC

technique that considers each set divided into several groups (i.e., only the order in the

group needs to be maintained). Nevertheless, the baseline MRUT algorithm obtains

even better reduction in area in spite of considering the entire cache sets. Finally, only

keeping recency of information for three blocks is quite enough to occupy smaller area

than LRU, AIP, LvP, BIP, and DRRIP policies.

4.6 Reuse Information and Other Replacement Algorithms

There is an impressive amount of research works that attempt to improve the cache per-

formance. This section first introduces some proposals that leverage reuse information.

Then, some other recent replacement algorithms are summarized.

Reuse information has been intensively investigated in the past to enhance the cache

performance, especially in L1 data caches. Tyson et al. proposed the Cacheable/Non-

Allocatable (C/NA) cache [55], where the data block placement depends on the program

counter of the accessing memory instruction. Data blocks are marked as cacheable or

not depending on the reuse behavior of previously accessed blocks sharing the same

instruction. Blocks with multiple references are marked as cacheable, whereas blocks

referenced only once before eviction are allowed to bypass the cache. In [56], Rivers

and Davidson proposed the Non-Temporal Streaming (NTS) scheme, where a block is
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classified as temporal or non-temporal based on the reuse behavior during its previous

generation time. Blocks that are not accessed during a generation time are considered as

non-temporal and stored in a separate cache. In this scheme, the data placement depends

on the effective address of the requested block. The Memory Address Table (MAT) cache

scheme [57], proposed by Johnson and Hwu, also makes use of the effective address for

data placement purposes. However, it classifies cache blocks into two groups: frequently

and infrequently accessed blocks. The granularity for grouping blocks is augmented with

respect to the other proposals, and it is defined as a contiguous group of blocks showing

the same usage pattern.

In [23], Lin and Reinhardt propose a couple of hardware approaches that predict when

to evict a block before it reaches the bottom of the LRU stack. The first approach

is referred to as sequence-based prediction. This approach records and predicts the

sequence of memory events leading up to the last touch of a block. The second one is

the time-based approach, which tracks a line’s timing to predict when a line’s last touch

will likely occur.

The counter-based L2 cache replacement [22] also predicts when to replace a block before

it occupies the bottom of the stack. Two approaches were presented: the Access Interval

Predictor (AIP) and the Live-time Predictor (LvP). The former bases its predictions by

using counters to keep track of the number of accesses to the same set during a given

access interval of a cache block. If the counter reaches a threshold value (learned from

the previous behavior of the block), the associated block can be selected for replacement.

The latter differs from the first one in that it counts the number of accesses to each block

instead of to the same set.

The cache burst-based prediction [58] is applied in L1 caches and predicts the number

of bursts that a block will exhibit during its live time in L1. Authors argue that such

a predictor does not work in L2 caches, since most cache accesses are filtered by the L1

cache and are not seen by L2. As a result of this observation, they propose another kind

of predictor (i.e., reference counter-based) for L2 caches. Contrary to this work, in this

dissertation it is claimed that the MRUT concept can contribute to performance in L2

caches since it has been found that most blocks have a single MRUT in L2. In addition,

it can be done with simple hardware and without help of any assistant predictor.
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The instruction-based reuse-distance prediction [59] attempts to relate the reuse distance

of a cache line to memory-access instructions in LLCs. These instructions normally ac-

cess lines that exhibit predictable reuse behavior due to program locality. The predictor

uses a history table indexed by the Program Counter (PC) of the instruction, and each

entry contains a reuse-distance value and a confidence value for the prediction. To

update the predictor at run-time, the approach employs two sampler structures. The

replacement policy selects the line to be evicted from those having a long reuse distance

prediction (they will be referenced again far into the future) or those that were not

accessed in the cache.

In the context of victim caches, the Scavenger [60] scheme consists of an LLC architecture

that divides the cache organization in two exclusive parts: a traditional LLC and a

victim file. The latter part aims to retain the blocks that most frequently missed the

LLC structure. On a miss in the LLC structure but a hit in the victim file, the block

is transferred to the LLC structure. On a miss in both LLC and victim file, a Bloom

filter is used to keep track of the frequency of misses to the target block address. The

replaced block from the LLC is allocated in the victim file depending on its frequency

value and the lowest frequency value of the blocks residing in the victim. A pipelined

priority heap is used in the victim file to maintain the priority values of all the blocks.

Other state-of-the-art approaches improve the performance of LRU by using modified

LRU [61] [62] [63] or a pseudo-LIFO stack [24].

4.7 Summary

This chapter has presented the devised MRUT replacement algorithms for LLCs. The

number of MRUTs of a block has been defined as the number of times that the block

occupies the MRU position during its live time. Based on the fact that most blocks have a

single MRUT when they are replaced using the LRU policy, the proposed baseline policy

randomly selects as candidates for eviction those blocks with only one MRUT. Variants

of this policy leveraging recency of information for a few blocks and adapting to changes

in the working set of the applications have been also evaluated.

Experimental results have shown that the best performing variant achieves MPKI reduc-

tions on average by 10–11% and 22% compared to a set of recently proposed algorithms
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and traditional LRU, respectively. The addition of a small victim cache helps mitigate

the negative effect of the random component of the algorithm, and allows the MRUT

algorithm to reduce the dynamic energy consumption on average by 8% with respect

to LRU without victim cache. Speedup improvements reached by this scheme are on

average by 4% and 2% compared to LRU and LRU with victim cache, respectively. Fi-

nally, hardware complexity is largely reduced since the stack order is just kept for a few

blocks.

The work discussed in this chapter has been published in [64] [65] [66].





Chapter 5

Selective Refresh

This chapter presents the distributed and selective refresh mechanism devised for on-chip

caches. This mechanism relies on the MRUT algorithm proposed in the previous chapter,

and it is applied in an energy-aware eDRAM L2 cache and the hybrid L2 architecture

proposed in Chapter 3. First, the hit distribution across the cache ways is analyzed

again taking into account the MRUT replacement algorithm. Then, both architectures

are introduced together with the proposed selective refresh mechanism. Experimental

results cover performance and dynamic energy consumption.

85
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Figure 5.1: Percentage of cache hits across the ways of a 2MB-16way L2 cache using
the MRUT policy.

5.1 Energy-Aware eDRAM and Hybrid Cache Architec-

tures

5.1.1 Cache Hit Distribution and Bank-Prediction

This chapter assumes that both cache architectures implement the analyzed MRUT

replacement algorithm. Since this policy might affect the percentage of hits across the

cache ways, a new study is performed to discern how many ways (or banks) should be

predicted to be accessed at the first stage of the bank-prediction technique.

Figure 5.1 plots the results for a 128B-line 2MB-16way L2 cache. Recall that the MRUT

policy does not keep all the LRU stack order; however, the LRU counters have been

considered to perform this study. Analogous to Figure 3.1, labels loc-0 and loc-1 refer

to the locations of the LRU stack storing the MRU block and the following MRU block,

respectively. Label loc-15 refers to the position holding the LRU block. Positions from

2 to 3, 4 to 7, and 8 to 15 have been grouped together for illustrative purposes.

Results indicate that, on average, by 68% of cache hits concentrate on loc-0. This

percentage rises up to 79% when considering an additional position, that is, both loc-0

and loc-1. In such a case, this percentage is above 90% in 16 of 26 benchmarks, while

only 6 benchmarks fulfill this condition if only loc-0 is considered. It has been analyzed
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the benefits of adding more than a pair of positions to be predicted but, as can be seen

in the graph, each additional location provides a small marginal benefit. For instance,

including both loc-2 and loc-3 only increases the hit ratio on average by 3%. Thus,

accessing both loc-0 and loc-1, which correspond to the MRU way and the second MRU

way, respectively, during the first stage of the bank-prediction technique is enough to

achieve good performance in L2 caches using the MRUT policy. Notice that these results

are similar to those presented in Chapter 3, where it was shown that a single SRAM

cache bank storing both MRU and second MRU ways (from now on MRU bank) is the

best design option in hybrid eDRAM/SRAM L2 caches. In this study it is assumed this

cache configuration for the hybrid approach, and the MRU bank will be accessed first

during the first stage of the bank-prediction. The only difference between the energy-

aware eDRAM and the hybrid cache is that the MRU bank is implemented with eDRAM

technology in the former. This cache is proposed with the aim to be compared against

the hybrid approach. The tag array of both cache architectures is assumed to be built

with SRAM technology.

5.1.2 Coupling the MRUT Algorithm with the Proposed Caches

The results analyzed in the previous section were obtained using the MRUT-2-adaptive

policy, which achieves roughly the same performance as the best version of the MRUT

family (i.e., MRUT-3-adaptive). The MRUT-2-adaptive has been chosen instead of

MRUT-3-adaptive because, for the devised bank distribution with a bank containing

the two MRU blocks, the former simplifies the replacement and refresh logic. This

proposed implementation works as follows.

The stack order is maintained just for the blocks stored in the MRU bank, and they

will not be selected for replacement to leverage recency of information. The remaining

blocks are considered as candidates for eviction if they have a single MRUT. Complexity

is largely reduced with respect to the traditional LRU algorithm, since blocks in the

MRU bank only require the MRU and MRUT control bits (see Section 4.2.2), whereas

blocks stored in non-MRU banks do not require any status bit apart from the MRUT-

bit. Figure 5.2 depicts a block diagram of the proposed eDRAM cache with a possible

set of values of the control bits used by the MRUT policy.
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Figure 5.2: Diagram of the data array of the energy-aware eDRAM cache with the
control bits of the MRUT algorithm.

As done in Chapter 3, the cache controller is enhanced to allow swap operations between

blocks to maintain the MRU blocks in the MRU bank. On a cache hit in a non-MRU

bank, the target block is swapped with the LRU block of the MRU bank (second MRU

block). That is, the target block becomes the MRU and moves to the MRU bank, while

the LRU block of the MRU bank is transferred to the non-MRU bank that contained the

target block. On a cache miss, the requested block is fetched from main memory and

stored in the MRU bank. In such a case, the LRU block of the MRU bank moves to the

non-MRU bank which has the victim block according to the MRUT replacement policy.

Of course, on a hit in the MRU bank, no data movements between ways or banks are

performed; instead the MRU-bit of the MRU bank is updated. Remember that tags are

not swapped, meaning that 4 control bits per tag are needed to keep the correspondence

between tags and ways in the 16-way cache.

5.1.3 Selective Refresh Policies

Three different refresh policies are evaluated in both energy-aware eDRAM and hybrid

caches. The first one, hereafter referred to as Always, is the conventional and distributed

refresh policy presented in Section 3.2.3. This policy will be considered as the baseline

since it avoids capacitor discharges. The two remaining devised policies exploit the

MRUT concept for saving energy. These selective refresh policies are referred to as

Conditional and Adaptive. The three policies work as follows:

• Always. This policy always refreshes the target block regardless of the value of

the control bits.

• Conditional. Refresh is only applied if the following condition is satisfied: the

target block is stored in the MRU bank or its MRUT-bit=’1’ (multiple MRUTs).
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Otherwise the block is marked as invalid and written back to main memory if dirty

(early writeback).

• Adaptive. This policy dynamically adapts between Always and Conditional at

run-time.

The Conditional policy aims to reduce refresh energy wasting with respect to the baseline

without refreshing all the cache blocks. It allows data losses in those blocks less likely

to be useful. Since this policy is speculative, it can yield to performance degradation on

misspeculation because of, in such a case, the block must be fetched from main memory

if it is requested after capacitors discharge. The Conditional mechanism uses both the

MRU-bit and the MRUT-bit to decide whether the refresh should be performed or not.

In the case of a high prediction accuracy, it would achieve substantial energy savings

with minimal performance loss. However, if prediction accuracy is low, this policy would

yield to severe performance drops.

The Adaptive policy dynamically selects which of the previous policies should be applied

depending on the cache behavior. This policy requires a pair of counters to track the

number of standard cache misses x as well as the number of cache misses y that hit

in the tag array but the associated data line has lost its contents. The latter occur

when the requested block has been previously invalidated using the Conditional refresh

mechanism.

Both counters are initially reset to zero when a sampling period starts. A sampling

period finishes when the x counter reaches a given value (e.g., 128). At that point, if the

y counter exceeds a given threshold (e.g., 8), the Always refresh policy is applied during

the next period. Otherwise the Conditional policy is selected. Then, both counters are

reset and a new period starts. Threshold values of x and y counters are defined as a

power of two to make hardware simple. That is, it is enough to check just a single bit

of each counter to decide which policy has to be applied during the next period.

Notice that, for the hybrid cache, the refresh period is longer than that of the energy-

aware eDRAM, since blocks located in the MRU bank do not have to be refreshed, so

reducing bank contention. In addition, contention due to restoring the contents after

destructive read accesses is also reduced.
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Finally, in both eDRAM and hybrid proposals, the contents of the MRU bank are never

lost, since in the former approach they are periodically refreshed (independently of the

refresh policy) while in the latter design these contents are stored in SRAM technology.

5.2 Experimental Evaluation

This section evaluates the performance and energy consumption of the proposed selective

refresh policies when they are applied in both energy-aware eDRAM and hybrid L2

caches.

Figure 1.3 showed (see Chapter 1) how the refresh energy overhead increases with the

cache capacity. Because of this reason, it has been considered a 2MB-16way L2 cache for

evaluation purposes. According to CACTI, the access time of such a cache organization

is 2, 8, and 12 cycles for the tag array, SRAM banks, and eDRAM banks, respectively.

For comparison purposes, both conventional SRAM and eDRAM cache schemes were

also modeled. The latter applies the Always distributed refresh policy. That is, no

mechanism to improve refresh energy is considered. These caches access in parallel the

tag array and all the cache ways of the data array. Like in both energy-aware and hybrid

proposals, the tag array is assumed to be implemented with SRAM cells.

5.2.1 Energy Consumption

This section evaluates the dynamic energy savings of the proposed refresh policies for

a 45nm technology node. The dynamic energy has been broken down into expenses

related to three major components: i) accessing the L2 cache (Access consumption), ii)

refreshing the L2 stored data (Refresh consumption), and iii) fetching blocks to L2 from

main memory and L2 writebacks to main memory (Miss and writeback consumption).

The first component covers the energy spent in the access to the L2 cache, including swap

operations between banks. The L2 refresh consumption takes into account the expenses

due to refreshing the contents after read accesses and the periodic refresh operations.

Finally, the latter takes into account the energy consumed by a commodity 1GB DRAM

main memory due to L2 misses and L2 writebacks. The number of these L2 memory
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Figure 5.3: Dynamic energy (in mJ) of the conventional eDRAM cache and the
energy-aware eDRAM cache for the studied refresh policies.

events differs among the studied refresh policies since they present different prediction

accuracy.

Figure 5.3 shows the dynamic energy (in mJ) consumed, for Int and FP benchmarks,

by the energy-aware eDRAM cache working with the proposed refresh policies: Always

(labeled as Alw in the graph), Conditional (Cond), and Adaptive (Adp). The energy

consumption of the conventional eDRAM cache using Always refresh (Conv) is also

included for comparison purposes.

As observed, for a given refresh policy, results widely differ across benchmarks due to

two main reasons. First, both Access and Miss and writeback consumption depend on

the number of accesses to L2 and main memory, respectively. The higher the number

of accesses the higher the energy consumption. Second, applications achieve different
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IPCs so they have different execution times. The lower the IPC (longer execution time)

the higher the energy dissipated by refresh operations.

Compared to Conv, the consumption of the three policies is largely reduced. Note

that for most benchmarks, only the Access consumption of the conventional eDRAM

cache exceeds the total dynamic energy consumption of the proposed eDRAM approach.

This means that, although the proposed cache wastes energy in swap operations, this

consumption is minimal compared to the benefits brought by the bank-prediction mech-

anism. These benefits come from two sides: i) only the MRU bank is accessed first and

ii) less accesses and refresh operations are carried out in non-MRU banks since only the

target non-MRU bank is accessed after the tag comparison.

Conv and Alw refresh policies present the same consumption in the Miss and writeback

component since they always refresh the cache blocks. On the other hand, the Cond

policy significantly increases the consumption of this component due to misses and

early writebacks caused by non-refreshed blocks. This increase does not compensate on

average the refresh energy savings of Cond ; thus, this policy increases the total energy

consumption with respect to the Adp refresh policy, meaning that Adp is the most

energy-efficient refresh method.

The refresh energy savings of Alw and Adp are on average by 57% and 75%, respec-

tively, compared to Conv. The refresh reduction of Alw comes from the bank-prediction

mechanism, while the savings of Adp are given both by bank-prediction and selective

refresh. Taking into account the three components, the overall energy savings of Alw

are on average by 58% with respect to Conv, while the Adp method reduces the overall

energy by 63%. This percentage can be as high as 84% in some applications.

Different threshold values for both x and y counters were analyzed for the Adp pol-

icy. The presented results were obtained with a threshold of 128 and 8 for x and y,

respectively, since it was found that this pair is the most energy-efficient. Increasing the

y threshold reduces the Refresh consumption, but the Miss and writeback component

increases much more due to additional induced misses and writebacks. In contrast, a

smaller threshold value makes the behavior of Adp closer to that of Alw. For the x

threshold, larger values allow the Cond refresh to be applied for a long period, which
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Figure 5.4: Dynamic energy (in mJ) of the conventional eDRAM cache and the hybrid
cache for the proposed refresh policies.

may yield to severe performance drops. On the contrary, lower values shorten the sam-

pling period in such a way that the mechanism does not have enough information to

decide which is the most appropriate policy for the next period.

Figure 5.4 shows the dynamic energy consumed by the hybrid cache. Compared to

the results presented in Figure 5.3, the Access and Miss and writeback expenses are

quite similar in both proposed eDRAM and hybrid caches for a given refresh method.

This is because both approaches implement the devised bank-prediction and the swap

mechanism. Minor differences appear because the MRU bank is built with distinct

technologies.

On the other hand, the hybrid cache reduces the refresh consumption. While the refresh

savings of Alw applied in the energy-aware eDRAM cache are on average by 57% with
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Figure 5.5: Hit ratio (%) split into hits in the MRU and non-MRU banks of the
energy-aware eDRAM cache for the studied refresh policies.

respect to Conv, this percentage is up to 72% for the hybrid approach. This is due to

the SRAM-based MRU bank prevents the stored blocks from being refreshed, either by

a read access or by the periodic refresh mechanism. The Refresh consumption is further

reduced by Adp and Cond. Compared to Conv, Adp and Cond achieve refresh energy

savings by 89% and 94%, respectively.

Taking into account the whole dynamic energy consumption, Alw saves on average by

63% the consumption of the Conv policy. Similar to the energy-aware eDRAM proposal,

Adp is the most energy-efficient refresh method. This policy improves the overall energy

savings by 68%, while this percentage is up to 92% in some benchmarks.

5.2.2 Performance

Figure 5.5 presents the cache hit ratio of the energy-aware eDRAM design, splitting it

into hit ratio in MRU and non-MRU banks. Notice that the hit ratio of Alw matches

the hit ratio of Conv, since both refresh methods avoid capacitor discharges.

As observed, on average, the MRU hit ratio is around 70%. This percentage is above

80% in half of the applications, so confirming the effectiveness of the bank-prediction

technique and the swap mechanism. In other words, most cache accesses hit the MRU

bank at the first stage.

An interesting observation is that the MRU hit ratio remains constant for each bench-

mark regardless of the refresh policy. This is due to the placement/replacement strategies

are the same in the studied refresh methods and blocks stored in the MRU bank are

always refreshed.
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Figure 5.6: Slowdown (%) of the conventional eDRAM cache and the energy-aware
eDRAM cache for the proposed refresh policies with respect to the conventional SRAM

cache.

As expected, the non-MRU hit ratio of the Cond policy is lower than that of the Alw

policy. This is because a significant amount of non-MRU blocks are not periodically

refreshed in Cond. This situation yields to performance degradation if non-refreshed

blocks are required later since, in such a case, their contents must be retrieved from

main memory. For this reason, noticeable non-MRU hit ratio differences appear in some

benchmarks (9 of 26) like parser or galgel, which yield to unacceptable performance as

shown in Figure 5.6. In contrast, the non-MRU hit ratio differences between Alw and

Adp are rather low with the only exception of ammp (by 8.1%).

Moreover, in some benchmarks such as apsi and art, the non-MRU hit ratio remains

almost constant regardless of the refresh policy, which means that most non-MRU blocks

in these applications exhibit good locality (i.e., multiple MRUTs) and they are periodi-

cally refreshed.

Figure 5.6 shows the slowdown of the energy-aware eDRAM scheme with respect to a fast

conventional SRAM cache that accesses the tag array and all the ways of the data array

in parallel. In addition, performance of the conventional eDRAM cache applying Always

refresh (Conv) is also shown for comparison purposes. As can be seen, on average, the

performance loss of Conv (by 8.7%) is roughly the same as that of the proposed eDRAM

cache with Alw refresh (by 8.6%). However, differences appear in individual benchmarks.

For example, in some applications like crafty, Conv slightly outperforms Alw. This is

mainly due to the latter has to wait for the tag comparison before accessing the target

non-MRU bank. On the other hand, in some other benchmarks such as mcf, Alw obtains

better results than the conventional cache. This is because the latter presents higher

bank contention since on each cache access, all the cache banks are accessed in parallel.
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Figure 5.7: Slowdown (%) of the conventional eDRAM cache and the hybrid cache
for the proposed refresh policies with respect to the conventional SRAM cache.

Thus, a given memory request may be stalled by a previous access, independently of the

target bank.

As explained above, performance differences between Alw and Cond refresh policies are

mostly caused by L2 misses due to misspeculation in Cond. These performance drops

are highly reduced by the Adp policy. Nevertheless, in some benchmarks, the slowdown

is too high even for the Alw policy.

The proposed hybrid design tackles the performance problems of the energy-aware

eDRAM cache by implementing the MRU bank with fast SRAM technology. In ad-

dition, the period between two consecutive refresh operations increases, so alleviating

bank contention. Figure 5.7 presents the slowdown of the studied policies with respect

to the conventional SRAM cache.

As expected, Alw is the refresh method with the lowest slowdown. Its performance

loss is lower than when the same refresh policy is applied in the energy-aware eDRAM

cache and Conv (see Figure 5.6). On average, it is by 1.8%, and never exceeds 6.6%

(reached by swim) in any application. These results confirm that a hybrid cache built

with a single SRAM bank composed of a couple of cache ways is enough to achieve

near-zero slowdown as well as that the swap operation does not substantially impact on

performance.

As studied in the energy-aware eDRAM approach, both Cond and Adp policies increase

the slowdown with respect to the Alw policy. Nevertheless, the slowdown of Adp in the

hybrid design is on average only by 3.1%.
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5.3 Refresh Mechanisms in Off-Chip Memories

Prior research works that have attacked the refresh energy consumption in off-chip

DRAM devices can be classified into three main categories: i) those works that exploit

the property that normal accesses implicitly refresh the contents after a destructive read,

ii) those works that adapt the refresh period according to the variability of the retention

time, and iii) those works that do not refresh useless data.

The Smart Refresh [28] proposed by Ghosh and Lee falls into the first category. This

scheme employs a time-out counter for each DRAM row, which counts from its maximum

value down to zero within the refresh period of the DRAM row. Whenever the row is

accessed or refreshed, the counter is set to its maximum value since the charge has been

fully restored, and every time that the counter reaches zero the refresh is performed.

Some works fall into the second category [12] [30] [31] [29]. Liu et al. [12] proposed a

refresh mechanism, referred to as Retention-Aware Intelligent DRAM Refresh (RAIDR).

This mechanism is based on the observation that most DRAM cells are able to hold their

data for more than 64ms, which is the common refresh interval in DRAM. The cache

controller employs Bloom filters to group DRAM rows having the same retention time.

A different refresh rate is applied to each group of rows.

In [30], Venkatesan et al. proposed the Retention-Aware Placement In DRAM (RAPID)

mechanism. Three variants of this mechanism were presented. The simplest approach,

namely RAPID-1, discards memory pages with a short retention time from being pop-

ulated. This yields to a longer overall refresh period for the populated pages at the

expense of performance degradation. The second approach, namely RAPID-2, sepa-

rates the memory into different regions (bins) depending on the associated retention

time. Bins with long retention times are filled first. When all bins have been occupied,

freeing bins with short retention times is a matter of chance, since it depends on the

application. Finally, the third approach, referred to as RAPID-3, allows data migration

among bins. That is, pages stored in shorter bins are transferred to longer bins when

space is available.

Kim and Papaefthymiou [31] use multiple refresh periods for each DRAM array according

to the retention time of the associated DRAM cells. ECC is used to restore corrupted
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cells and thus allowing extended refresh periods. Authors propose an algorithm that

calculates optimal refresh periods for a given DRAM array.

Ohsawa et al. [29] proposed a pair of DRAM refresh architectures, namely Variable Re-

fresh Architecture (VRA) and Selective RA (SRA), which belong to the second and third

category of approaches, respectively. The VRA approach determines the refresh period

according to the retention time of the DRAM rows. To reduce hardware complexity,

this strategy is applied in regions of several rows, each one having a different refresh

period. The SRA approach requires a control bit per DRAM row to indicate which ones

should not be refreshed. These rows are those containing useless data. Authors propose

SRA for a writeback cache memory system, where rows in off-chip DRAM memory are

marked as useless if the same data block stored in cache is dirty, which means that this

data block has to be written back to main memory.

5.4 Summary

This chapter has introduced the distributed and selective refresh mechanism for on-chip

caches. This mechanism exploits reuse information by using the MRUT replacement

policy. The periodic refresh operations of the distributed mechanism are skipped in those

blocks candidates to be evicted by the MRUT policy. That is, the proposed selective

mechanism allows data losses in those blocks exhibiting poor locality (i.e., they have

a single MRUT). This leads to dynamic energy savings at the expense of performance

degradation if these blocks are requested later.

The proposed refresh mechanism was applied in both an energy-aware eDRAM and

hybrid eDRAM/SRAM L2 caches. The latter approach was built with eDRAM banks

except the MRU bank which is SRAM-based. Like the hybrid cache, the former eDRAM

cache also implements the bank-prediction technique and keeps the MRU data in a single

bank by performing swap operations. In both approaches, blocks stored in the MRU

bank are never selected as candidates to be replaced by the MRUT policy. As the

selective refresh can be quite aggressive given the high number of blocks with a single

MRUT, it is enhanced to adapt between the selective and a conventional mechanism.

The selective or conventional refresh policies are selected at run-time whenever the

number of cache misses due to data losses exceeds a given threshold.
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Experimental results have shown that, compared to a conventional eDRAM cache, the

proposed energy-aware and hybrid caches reduce the refresh energy on average by 75%

and 89%, respectively, when the devised selective refresh is applied. These percentages

are by 63% and 68%, respectively, when the overall dynamic consumption is considered.

Compared to a conventional SRAM cache, the performance loss of the hybrid cache is

only on average by 1.8% when the conventional refresh is applied. For the proposed

refresh policy, this percentage is by 3.1%, which is much lower than the performance

degradation of both conventional eDRAM (by 8.7%) and energy-aware eDRAM (by

8.6%) using the conventional refresh method.

The work discussed in this chapter has been partially published in [67].





Chapter 6

Conclusions

This thesis has proposed hybrid eDRAM/SRAM cache architectures as alternatives to

conventional SRAM and eDRAM designs in both L1 and L2 caches (LLCs) of the mem-

ory hierarchy. In addition, this dissertation has presented a family of replacement

algorithms for LLCs based on the MRUT concept that improve the performance of

traditional LRU with much lower hardware complexity. Finally, the hybrid L2 cache

architecture and the MRUT policy have been combined to reduce the number of refresh

operations in on-chip eDRAM-based caches. All these architectured solutions have been

implemented and evaluated on top of extensively used simulation tools. In this chap-

ter, the main contributions of these proposals are summarized, followed by a discussion

about future work and an enumeration of the scientific publications related with this

dissertation.

101
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6.1 Contributions

In Chapter 2, the macrocell device consisting of one SRAM cell and n-1 eDRAM cells

has been presented. The macrocell has been used to implement n-way set-associative

L1 data caches having one SRAM way and n-1 eDRAM ways. Such a memory design

largely reduces both leakage and area thanks to the use of eDRAM technology. Archi-

tectural mechanisms were considered to sustain the performance of these memories and

to avoid costly refresh logic. In this way, by accessing just the SRAM way first, many

destructive reads of eDRAM data are prevented. Swap operations between ways ensure

that the MRU blocks are always stored in the fast SRAM way. The performance degra-

dation with respect to a conventional SRAM cache is minimal given the confirmed high

data locality of L1 caches. The hybrid design does not include any refresh mechanism,

instead, eDRAM blocks are regularly checked to be written back and invalidated before

their retention time expires. Experimental results have also shown that a relatively low

capacitance is enough to guarantee the maximum performance.

Chapter 3 has introduced the hybrid L2 architecture. In this case, both technologies

have been mingled at bank level since the macrocell could be expensive to implement

in high-associative caches like LLC memories. A design space exploration varying the

percentage of SRAM and eDRAM banks has been considered given that data locality in

the LLC is filtered by the L1 cache. As in Chapter 2, the hybrid LLC scheme performs

swap operations to keep the MRU data in SRAM banks, which are accessed first. Unlike

hybrid L1 caches, refresh operations are not skipped because data in the LLC can be

accessed after very long periods of time. Experimental results have shown that a hybrid

cache with an eighth of its banks built with SRAM is enough to achieve the best trade-off

among performance, energy, and area.

Chapter 4 has presented a family of replacement algorithms for LLCs based on the

MRUT concept, which is related to the number of times that a block occupies the

MRU position during its live time. Based on the observation that most blocks have

a single MRUT when they are evicted by the LRU policy, the baseline MRUT policy

randomly select as candidates to be replaced those blocks with one MRUT. This policy

has been refined by exploiting recency of information for a few blocks and by adapting

it to changes in the working set of the applications. In addition, it has been analyzed

the effect of adding a victim cache of the LLC. Results have shown that the MRUT



Chapter 6. Conclusions 103

policies, with simpler hardware complexity, perform better than LRU and a set of the

most representative replacement policies for LLCs.

Finally, in Chapter 5, a refresh policy for LLCs has been discussed. This policy has been

applied in both the hybrid L2 cache and an energy-aware eDRAM L2 cache that differs

from the former in that all its banks are built with eDRAM technology. The proposed

refresh policy leverages the MRUT concept to reduce the number of refresh operations

in these caches. In this way, those blocks candidates to be evicted by the MRUT

replacement algorithm are not periodically refreshed. Combining the cache architectures

and the refresh policy, results have shown that, compared to a conventional eDRAM

cache, the refresh energy savings can be largely reduced. For the hybrid cache, these

benefits come at cost of minimal performance loss with respect to a conventional SRAM

cache.

6.2 Future Directions

As for future work, it is planned to apply the four main contributions of this thesis

in multithreaded and multicore processors. The energy and area benefits brought by

the hybrid caches can potentially increase, since these processors are normally imple-

mented with much larger caches. However, the interferences among threads and cores

sharing the cache can significantly change both the cache usage and data behavior of

the applications. In this context, data locality is less predictable in shared caches.

In L1 data caches for multithreaded processors, a new distribution of the cache hits across

the locations of the LRU stack must be carried out to check whether the macrocell should

be implemented with just a single SRAM cell or multiple ones to preserve performance

for individual threads. The macrocell design must be revisited. For instance, leakage

and area savings brought by the eDRAM cells would not be as high as those presented

for superscalar processors. In addition, the optimal capacitance of the macrocell that

ensures the maximum performance must be estimated again. In such a system with

interferences among co-runners, capacitor constraints could limit the capacitance and

the refresh logic could not be removed. Like in L1 caches, conclusions will also change

in hybrid LLCs of multithread and multicore processors.
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The potential of the MRUT concept must be also evaluated again in such processors,

since the cache coherence protocol could impact on the number of MRUTs of the blocks.

For instance, the shared data could cause that more blocks exhibit multiple MRUTs, so

reducing the benefits brought by both replacement and refresh policies.

On the other hand, leveraging reuse information brought by other replacement algo-

rithms to reduce refresh energy in LLCs is also planned as for future work. For example,

the information used by the RRIP policies [27] can be useful to predict which blocks

should not be refreshed. These blocks would be those with a distance prediction set to

be in the distant future.

Finally, the benefits of alternative technologies such as PRAM and MRAM to build

cache memories is also left as for future work. These memory technologies are being

seen as promising alternatives that can replace SRAM technology in the near future,

since they address leakage currents by design and refresh logic is not required. Aside

from manufacturing constraints, a hybrid memory architecture could hide the problems

associated with these technologies, such as the write endurance and the slow access

time for writes. For example, by combining SRAM and PRAM to form a single cache,

architecture mechanisms could ensure that most writes are performed in the SRAM

cells.
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An Hybrid eDRAM/SRAM Macrocell to Implement First-Level Data Caches. In

Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microar-

chitecture (MICRO), pages 213-221, New York, NY, USA, 2009. This publication

received a HiPEAC Paper Award.

• A. Valero, J. Sahuquillo, S. Petit, P. López, and J. Duato. Improving Last-Level
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Italy, 2012.

In addition, other related papers have been published in domestic conferences:

• A. Valero, V. Lorente, J. Sahuquillo, S. Petit, P. López, and J. Duato. Memoria

dinámica en cachés de datos de primer nivel sin necesidad de refresco. In Actas de

las XX Jornadas de Paralelismo (JP), pages 265-270, A Coruña, Spain, 2009.

• A. Valero, J. Sahuquillo, S. Petit, P. López, and J. Duato. Impacto en las presta-

ciones y enerǵıa de una cache de datos de primer nivel basada en macroceldas. In

Actas de las XXI Jornadas de Paralelismo (JP), pages 281-288, València, Spain,

2010.

• A. Valero, J. Sahuquillo, S. Petit, P. López, and J. Duato. Algoritmo de reemplazo

para cache de último nivel basado en periodos MRU. In Actas de las XXII Jornadas

de Paralelismo (JP), pages 557-562, La Laguna, Spain, 2011.

• A. Valero, J. Sahuquillo, S. Petit, P. López, and J. Duato. Incremento en las
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• A. Valero, J. Sahuquillo, S. Petit, P. López, and J. Duato. Prestaciones y consumo

de caches h́ıbridas variando la proporción de bancos SRAM. To appear in Actas

de las XXIV Jornadas de Paralelismo (JP), Madrid, Spain, 2013.
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All works listed above are exclusively related with this thesis. The specific contributions

of the Ph.D. candidate reside mostly in the implementation of the proposed techniques,

the setup and execution of most simulation experiments, the writing of the paper drafts

describing the work as well as the presentation in the conferences. Along these processes,

the co-authors have repeatedly provided useful hints and advices, which the Ph.D. can-
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for publication:
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very-low power modes. In Proceedings of the Conference on Design, Automation,

and Test in Europe (DATE), pages 83-88, Grenoble, France, 2013.

• V. Lorente, A. Valero, and R. Canal. Enhancing Performance and Energy Con-
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