

Appl. Gen. Topol. 14, no. 2 (2013), 171-178 doi:10.4995/agt.2013.1587 © AGT, UPV, 2013

The combinatorial derivation

IGOR V. PROTASOV

Department of Cybernetics, Kyiv University, Volodimirska 64, Kyiv 01033, Ukraine (i.v.protasov@gmail.com)

Abstract

Let G be a group, \mathcal{P}_G be the family of all subsets of G. For a subset $A \subseteq G$, we put $\Delta(A) = \{g \in G : |gA \cap A| = \infty\}$. The mapping $\Delta : \mathcal{P}_G \to \mathcal{P}_G, A \mapsto \Delta(A)$, is called a combinatorial derivation and can be considered as an analogue of the topological derivation $d : \mathcal{P}_X \to \mathcal{P}_X, A \mapsto A^d$, where X is a topological space and A^d is the set of all limit points of A. Content: elementary properties, thin and almost thin subsets, partitions, inverse construction and Δ -trajectories, Δ and d.

2010 MSC: 20A05, 20F99, 22A15, 06E15, 06E25.

KEYWORDS: Combinatorial derivation; Δ-trajectories; large, small and thin subsets of groups; partitions of groups; Stone-Čech compactification of a group.

1. INTRODUCTION

Let G be a group with the identity e, \mathcal{P}_G be the family of all subsets of G. For a subset A of G, we denote

$$\Delta(A) = \{ g \in G : |gA \cap A| = \infty \},\$$

observe that $\Delta(A) \subseteq AA^{-1}$, and say that the mapping

$$\Delta: \mathcal{P}_G \to \mathcal{P}_G, A \mapsto \Delta(A)$$

is the combinatorial derivation.

In this paper, on one hand, we analyze from the Δ -point of view a series of results from Subset Combinatorics of Groups (see the survey [9]), and point out some directions for further progress. On the other hand, the Δ -operation is interesting and intriguing by its own sake. In contrast to the trajectory $A \rightarrow$

 $AA^{-1} \rightarrow (AA^{-1})(AA^{-1})^{-1} \rightarrow \ldots$, the Δ -trajectory $A \rightarrow \Delta(A) \rightarrow \Delta^2(A) \rightarrow \ldots$ of a subset A of G could be surprisingly complicated: stabilizing, increasing, decreasing, periodic or chaotic. For a symmetric subset A of G with $e \in A$, there exists a subset $X \subseteq G$ such that $\Delta(X) = A$. We conclude the paper by demonstrating how Δ and a topological derivation d arise from some unified ultrafilter construction.

We note also that $\Delta(A)$ may be considered as some infinite version of the symmetry sets well-known in Additive Combinatorics [11, p. 84]. Given a finite subset A of an Abelian group G and $\alpha \ge 0$, the symmetry set $Sym_{\alpha}(A)$ is defined by

$$Sym_{\alpha}(A) = \{g \in G : |A \cap (A+g)| \ge \alpha |A|\}.$$

2. Elementary properties

Claim 2.1. $(\Delta(A))^{-1} = \Delta(A), \ \Delta(A) \subseteq AA^{-1}.$ Claim 2.2. $\Delta(A) = \emptyset \Leftrightarrow e \notin \Delta(A) \Leftrightarrow A$ is finite.

Claim 2.3. For subsets A, B of G, we let

$$\Delta(A, B) = \{g \in G : |gA \cap B| = \infty\}$$

and note that

$$\Delta(A \cup B) = \Delta(A) \cup \Delta(B) \cup \Delta(A, B) \cup \Delta(B, A),$$
$$\Delta(A \cap B) \subseteq \Delta(A) \cap \Delta(B)$$

Claim 2.4. If F is a finite subset of G then

$$\Delta(FA) = F\Delta(A)F^{-1}.$$

Claim 2.5. If A is an infinite subgroup then $A = \Delta(A)$ but the converse statement does not hold, see Theorem 6.2.

3. Thin and almost thin subsets

A subset A of a group G is said to be [8]:

- thin if either A is finite or $\Delta(A) = \{e\};$
- almost thin if $\Delta(A)$ is finite;
- k-thin $(k \in \mathbb{N})$ if $|gA \cap A| \leq k$ for each $g \in G \setminus \{e\}$;
- sparse if, for every infinite subset $X \subseteq G$, there exists a non-empty finite subset $F \subset X$ such that $\bigcap_{g \in F} gA$ is infinite;
- k-sparse $(k \in \mathbb{N})$ if, for every infinite subset $X \subseteq G$, there exists a subset $F \subset X$ such that $|F| \leq k$ and $\bigcap_{g \in F} gA$ is finite.

The following statements are from [8].

Theorem 3.1. Every almost thin subset A of a group G can be partitioned in $3^{|\Delta(A)|-1}$ thin subsets. If G has no elements of odd order, then A can be partitioned in $2^{|\Delta A|-1}$ thin subsets.

The combinatorial derivation

Theorem 3.2. A subset A of a group G is 2-sparse if and only if $X^{-1}X \not\subseteq \Delta(A)$ for every infinite subset X of G.

Theorem 3.3. For every countable thin subset A of a group G, there is a thin subset B such that $A \cup B$ is 2-sparse but not almost thin.

Theorem 3.4. Suppose that a group G is either torsion-free or, for every $n \in \mathbb{N}$, there exists a finite subgroup H_n of G such that $|H_n| > n$. Then there exists a 2-sparse subset of G which cannot be partitioned in finitely many thin subsets.

By Theorem 3.2, every almost thin subset is 2-sparse. By Theorems 3.3, 3.4, the class of 2-sparse subsets is wider than the class of almost thin subsets. By Theorem 3.3, a union of two thin subsets needs not to be almost thin. By Theorem 2.3, a union $A_1 \cup \ldots \cup A_n$ of almost thin subset is almost thin if and only if $\Delta(A_i, A_j)$ is finite for all $i, j \in \{1, \ldots, n\}$, By Claim 2.4, if A is almost thin and K is finite then KA is almost thin.

The following statements are from [7].

Theorem 3.5. For every infinite group G, there exists a 2-thin subset such that $G = XX^{-1} \cup X^{-1}X$.

Theorem 3.6. For every infinite group G, there exists a 4-thin subset such that $G = XX^{-1}$.

Since $\Delta(X) = \{e\}$ for each infinite thin subset of G, Theorem 3.6 gives us X with $\Delta(X) = \{e\}$ and $XX^{-1} = G$.

4. Large and small subsets

A subset A of a group G is called [8]:

- *large* if there exists a finite subset F of G such that G = FA;
- Δ -large if $\Delta(A)$ is large;
- small if $(G \setminus A) \cap L$ is large for each large subset L of G;
- P-small if there exists an injective sequence (g_n)_{n∈ω} in G such that the subsets {g_nA : n ∈ ω} are pairwise disjoint;
- almost *P*-small if there exists an injective sequence $(g_n)_{n \in \omega}$ in *G* such that the family $\{g_n A : n \in \omega\}$ is almost disjoint, i.e. $g_n A \cap g_m A$ is finite for all distinct $n, m \in \omega$.
- weakly *P*-small if, for every $n \in \omega$, one can find distinct elements g_1, \ldots, g_n of G such that the subsets g_1A, \ldots, g_nA are pairwise disjoint.

Let G be a group, A is a large subset of G. We take a finite subset F of G, $F = \{g_1, \ldots, g_n\}$ such that G = FA. Take an arbitrary $g \in G$. Then $g_i A \cap gA$ is infinite for some $i \in \{1, \ldots, n\}$, so $g_i^{-1}g \in \Delta(A)$. Hence, $G = F\Delta(A)$ and A is Δ -large. By Theorem 3.6, the converse statement is very far from being true.

If A is not small then FA is thick (see Definition 5.2) for some finite subset F. It follows that $\Delta(FA) = G$. By Claim 2.4, $\Delta(FA) = F\Delta(A)F^{-1}$, so if G is Abelian then A is Δ -large.

J. Erde proved that every non-small subset of an arbitrary infinite non-Abelian group $G \Delta$ -large.

It is easy to see that A is P-small (almost P-small) if and only if there exists an infinite subset X of G such that $X^{-1}X \cap PP^{-1} = \{e\} (X^{-1}X \cap \Delta(X) = \{e\})$. A is weakly P-small if and only if, for every $n \in \omega$, there exists $F \subset G$ such that |F| = n and $F^{-1}F \cap PP^{-1} = \{e\}$.

By [8, Lemma 4.2], if AA^{-1} is not large then A is small and P-small. Using the inverse construction from Section 6, we can find A such that A is not Δ -large and A is not P-small.

Every infinite group G has a weakly P-small not P-small subsets [1]. Moreover, G has almost P-small not P-small subset and , if G is countable, weakly P-small not almost P-small subset. By [8], every almost P-small subset can be partitioned in two P-small subsets. If A is either almost or weakly P-small then $G \setminus \Delta(A)$ is infinite, but a subset A with infinite $G \setminus \Delta(A)$ could be large: $G = \mathbb{Z}, A = 2\mathbb{Z}.$

5. Partitions

Let G be a group and let $G = A_1 \cup \ldots A_n$ be a finite partition of G. In section 7, we show that at least one cell A_i is Δ -large, in particular, $A_i A_i^{-1}$ is large. If G is infinite amenable group and μ is a left invariant Banach measure on G, we can strengthened this statement: there exist a cell A_i and a finite subset F such that $|F| \leq n$ and $G = F\Delta(A_i)$. To verify this statement, we take A_i such that $\mu(A_i) \geq \frac{1}{n}$ and choose distinct g_1, \ldots, g_m such that $\mu(g_k A_i \cap$ $g_l A_i) = 0$ for all distinct $k, l \in \{1, \ldots, m\}$, and the family $\{g_1 A_i, \ldots, g_m A_i\}$ is maximal with respect to this property. Clearly, $m \leq n$. For each $g \in G$, we have $\mu(gA_i \cap g_k A_i) > 0$ for some $k \in \{1, \ldots, m\}$ so $g_k^{-1}g \in \Delta(A_i)$ and $G = \{g_1, \ldots, g_m\}\Delta(A_i)$.

By [10, Theorem 12.7], for every partition $A_1 \cup \ldots \cup A_n$ of an arbitrary group G, there exist a cell A_i and a finite subset F of G such that $G = FA_iA_i^{-1}$ and $|F| \leq 2^{2^{n-1}-1}$. S. Slobodianiuk strengthened this statement: there are F and A_i such that $|F| \leq 2^{2^{n-1}-1}$ and $G = F\Delta(A_i)$.

It is an old unsolved problem [5, Problem 13.44] whether *i* and *F* can be chosen so that $G = FA_iA_i^{-1}$ and $|F| \leq n$, see also [10, Question 12.1].

Question 5.1. Given any partition $G = A_1 \cup \ldots \cup A_n$, do there exist F and A_i such that $G = F\Delta(A_i)$ and $|F| \leq 2^n$?

Definition 5.2. A subset A of a group G is called [11]:

- thick if $G \setminus A$ is not large;
- k-prethick $(k \in \mathbb{N})$ if there exists a subset F of G such that $|F| \leq k$ and FA is thick;
- prethick if A is k-prethick for some $k \in \mathbb{N}$.

By [3, Theorem 5.3.2], for a group G, the following two conditions (i) and (ii) are equivalent:

The combinatorial derivation

- (i) for every partition $G = A \cup B$, either $G = AA^{-1}$ or $G = BB^{-1}$;
- (ii) each element of G has odd order.

If G is infinite, we can show that these conditions are equivalent to

(iii) for every partition $G = A \cup B$, either $G = \Delta(A)$ or $G = \Delta(G)$.

6. Inverse construction and Δ -trajectories

Theorem 6.1. Let G be an infinite group, $A \subseteq G$, $A = A^{-1}$, $e \in A$. Then there exists a subset X of G such that $\Delta(X) = A$.

Proof. First, assume that G is countable and write the elements of A in the list $\{a_n : n < \omega\}$, if A is finite then all but finitely many a_n are equal to e. We represent $G \setminus A$ as a union $G \setminus A = \bigcup_{n \in \omega} B_n$ of finite subsets such that $B_n \subseteq B_{n+1}, B_n^{-1} = B_n$. Then we choose inductively a sequence $(X_n)_{n \in \omega}$ of finite subsets of G,

 $X_n = \{x_{n0}, x_{n1}, \dots, x_{nn}, a_0 x_{n0}, \dots, a_n x_{nn}\}$

such that $X_m X_n^{-1} \cap B_n = \{e\}$ for all $m \leq n < \infty$.

After ω steps, we put $X = \bigcup_{n \in \omega} X_n$. By the construction, $\Delta(X) = A$.

If $|A| \leq \aleph_0$ but G is not countable, we take a countable subgroup H of G such that $A \subseteq H$, forget about G and find a subset $X \subseteq H$ such that $\Delta(X)$ is equal to A in H. Since $gA \cap A = \emptyset$ for each $g \in G \setminus H$, we have $\Delta(X) = A$.

At last, let $|A| > \aleph_0$. By above paragraph, we may suppose that |A| = |G|. We enumerate $A = \{a_\alpha : \alpha < |G|\}$ and construct inductively a sequence $(X_\alpha)_{\alpha < |G|}$ of finite subsets of G and an increasing sequence $(H_\alpha)_{\alpha < |G|}$ of subgroup of G such that if $\alpha = 0$ or α is a limit ordinal, $n \in \omega$,

 $X_{\alpha+n} = \{x_{\alpha+n,0}, x_{\alpha+n,1}, \dots, x_{\alpha+n,n}, a_{\alpha}x_{\alpha+n,0}, \dots, a_{\alpha+n}x_{\alpha+n,n}\},\$

 $X_{\alpha+n} \subseteq H_{\alpha+n+1} \setminus H_{\alpha+n}, \ X_{\alpha+n} X_{\alpha+n}^{-1} \subseteq A \cup (H_{\alpha+n+1} \setminus H_{\alpha+n}).$

After |G| steps, we put $X = \bigcup_{\alpha < |G|} X_{\alpha}$. By the construction, $\Delta(X) = A$. \Box

Let A_1, \ldots, A_m be subsets of an infinite group G such that $G = A_1 \cup \ldots \cup A_m$. By the Hindman theorem [4, Theorem 5.8], there are exists $i \in \{1, \ldots, m\}$ and an injective sequence $(g_n)_{n \in \omega}$ in G such that $FP(g_n)_{n \in \omega} \subseteq A_i$, where $FP(g_n)_{n \in \omega}$ is a set of all element of the form $g_{i_1}g_{i_2} \ldots g_{i_l}, i_1 < \ldots, i_k < \omega,$ $k \in \omega$.

We show that there exists $X \subseteq FP(g_n)_{n \in \omega}$ such that $\Delta(X) = \{e\} \cup FP(g_n)_{n \in \omega} \cup (FP(g_n)_{n \in \omega})^{-1}$. We note that if G is countable, at each step n of the inverse construction, the elements x_{n0}, \ldots, x_{nn} can be chosen from any pregiven infinite subset Y of G. We enumerate $FP(g_n)_{n \in \omega}$ in a sequence $(a_n)_{n \in \omega}$ and put $Y = \{g_n : n \in \omega\}$. Using above observation, we get the desired X.

If G is countable, we can modify the inverse construction to get X such that $\Delta(X) = A$ and $|X \cap g_1 \cap g_2 X| < \infty$ for all distinct $g_1, g_2 \in G \setminus \{e\}$, in particular, X is 3-sparse and, in particular, small.

Another modification, we can choose X such that $X \cap gX \neq \emptyset$ for each $g \in G$. If we take A not large, then we get X which is not P-small and X is not Δ -large, see Section 4.

Theorem 6.2. Let G be a countable group such that, for each $g \in G \setminus \{e\}$, the set $\sqrt{g} = \{x \in G : x^2 = g\}$ is finite. Then the following statements hold:

- (Tr₁) Given any subset $X_0 \subseteq G$, $X_0 = X_0^{-1}$, $e \in X_0$, there exists a sequence $(X_n)_{n \in \omega}$ of subsets of G such that $\Delta(X_{n+1}) = X_n$ and $X_m \cap X_n = \{e\}$, $0 < m < n < \omega$.
- (Tr₂) There exists a sequence $(X_n)_{n\in\mathbb{Z}}$ of subsets of G such that $\Delta(X_n) = X_{n+1}, X_m \cap X_n = \{e\}, m, n \in \mathbb{Z}, m \neq n.$
- (Tr_3) There exists a subset A of G such that $\Delta(A) = A$ but A is not a subgroup.
- (Tr_4) There exists a subset A such that $A \supset \Delta(A) \supset \Delta^2(A) \supset \ldots$
- (Tr_5) There exists a subset A such that $A \subset \Delta(A) \subset \Delta^2(A) \subset \ldots$
- (Tr₆) For each natural natural number n, there exists a periodic Δ -trajectory X_0, \ldots, X_{n-1} of length n: $X_1 = \Delta(X_0), X_2 = \Delta(X_1), \ldots, X_n = \Delta(X_{n-1})$ such that $X_i \cap X_j = \{e\}, i < j < n$.

Proof. We use the following simple observation

(*) if F is a finite subset of an infinite group G and $g \notin F$ then the set $\{x \in G : x^{-1}gx \notin F\}$ is infinite.

In constructions of corresponding trajectories, at each inductive step, we use a finiteness of \sqrt{g} and (*) in the following form:

(**) if $a \in G$, F is a finite subset of G, $F \cap \{e, a^{\pm 1}\} = \emptyset$ then there exists $x \in G$ such that

$$\{x^{\pm 1}, (ax)^{\pm 1}\}\{x^{\pm 1}, (ax)^{\pm 1}\} \cap F = \emptyset.$$

We show how to get a 2-periodic trajectory: $X, Y, \Delta(X) = Y, \Delta(Y) = X, X \cap Y = \{e\}$. We write G as a union $G = \bigcup_{n \in \omega} F_n$ of increasing chain $\{F_n : n \in \omega\}$ of finite symmetric subsets $F_0 = \{e\}$. We put $X_0 = Y_0 = \{e\}$ and construct inductively with usage of (**) two chains $(X_n)_{n \in \omega}, (Y_n)_{n \in \omega}$ of finite subsets of G such that, for each $n \in \omega$,

$$X_{n+1} = \{ (x(y))^{\pm 1}, (yx(y))^{\pm 1} : y \in Y_0 \cup ... \cup Y_n \}, Y_{n+1} = \{ (y(x))^{\pm 1}, (xy(x))^{\pm 1} : x \in X_0 \cup ... \cup X_n \}, (X_0 \cup ... \cup X_n) \cap (Y_0 \cup ... \cup Y_n) = \{e\}, X_{n+1}X_{n+1} \cap (F_{n+1} \setminus (Y_0 \cup ... \cup Y_n)) = \emptyset, Y_{n+1}Y_{n+1} \cap (F_{n+1} \setminus (X_0 \cup ... \cup X_n)) = \emptyset, (X_0 \cup ... \cup X_n)X_{n+1} \cap (F_{n+1} \setminus (Y_0 \cup ... \cup Y_n)) = \emptyset, (Y_0 \cup ... \cup Y_n)Y_{n+1} \cap (F_{n+1} \setminus (X_0 \cup ... \cup X_n)) = \emptyset.$$

After ω steps, we put $X = \bigcup_{n \in \omega} X_n$, $Y = \bigcup_{n \in \omega} Y_n$.

© AGT, UPV, 2013

The combinatorial derivation

7. Δ and d

For a subset A of a topological space X, the subset A^d of all limit points of A is called a *derived subset*, and the mapping $d : \mathcal{P}(X) \to \mathcal{P}(X), A \to A^d$, defined on the family of $\mathcal{P}(X)$ of all subsets of X, is called *the topological derivation*, see [6, §9].

Let X be a discrete set, βX be the Stone-Čech compactification of X. We identify βX with the set of all ultrafilters on X, X with the set of all principal ultrafilters, and denote $X^* = \beta X \setminus X$ the set of all free ultrafilters. The topology of βX can be defined by the family $\{\overline{A} : A \subseteq X\}$ as a base for open sets, $\overline{A} = \{p \in \beta X : A \in p\}, A^* = \overline{A} \cap G^*$. For a filter φ on X, we put $\overline{\varphi} = \{p \in \beta X : \varphi \subseteq p\}, \varphi^* = \overline{\varphi} \cap G^*$.

Let G be a discrete group, $p \in \beta G$. Following [2, Chapter 3], we denote

$$cl(A,p) = \{g \in G : A \in gp\}, \ gp = \{gP : P \in p\}$$

say that cl(A, p) is a closure of A in the direction of p, and note that

$$\Delta(A) = \bigcap_{p \in A^*} cl(A, p).$$

A topology τ on a group G is called *left invariant* if the mapping $l_g: G \to G$, $l_g(x) = gx$ is continuous for each $g \in G$. A group G endowed with a left invariant topology τ is called *left topological*. We note that a left invariant topology τ on G is uniquely determined by the filter φ of neighbourhoods of the identity $e \in G$, $\overline{\varphi}$ and φ^* are the sets of all ultrafilters an all free ultrafilters of G converging to e. For a subset A of G, we have

$$A^d = \bigcap_{p \in (\tau^*)} cl(A, p),$$

and note that $A^d \subseteq \Delta(A)$ if A is a neighbourhood of e in (G, τ) .

Now we endow G with the discrete topology and, following [4, Chapter 4], extend the multiplication on G to βG . For $p, q \in \beta G$, we take $P \in p$ and, for each $g \in P$, pick some $Q_g \in q$. Then $\bigcup_{g \in p} gQ_p \in pq$ and each member of pq contains a subset of this form. With this multiplication, βG is a compact right topological semigroup. The product pq can also be defined by the rule [2, Chapter 3]:

$$A \subseteq G, \ A \in pq \Leftrightarrow cl(A,q) \in p.$$

If (G, τ) is left topological semigroup then $\overline{\tau}$ is a subsemigroup of βG . If an ultrafilter $p \in \overline{\tau}$ is taken from the minimal ideal $K(\overline{\tau})$ of $\overline{\tau}$, by [2, Theorem 5.0.25]. there exists $P \in p$ and finite subset F of G such that Fcl(P,p) is neighbourhood of e in τ . In particular, if τ indiscrete ($\tau = \{\emptyset, G\}$), $p \in$ $K(\beta G)$) and $P \in p$ then cl(P,p) is large. If G is infinite, $p \in K(\beta G)$ is free, so $cl(P,p) \subseteq \Delta(P)$ and P is Δ -large. If a group G is finitely partitioned $G = A_1 \cup \ldots \cup A_n$, then some cell A_i is a member of p, hence A_i is Δ -large.

© AGT, UPV, 2013

References

- T. Banakh and N. Lyaskovska, Weakly P-small not P-small subsets in groups, Intern. J. Algebra Computations 18 (2008), 1–6.
- [2] M. Filali and I. Protasov, Ultrafilters and Topologies on Groups, Math. Stud. Monorg. Ser., Vol. 13, VNTL Publishers, Lviv, 2010.
- [3] V. Gavrylkiv, Algebraic-topological structure on superextensions, Dissertation, Lviv, 2009.
- [4] N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification, Walter de Grueter, Berlin, New York, 1998.
- [5] The Kourovka Notebook, Novosibirsk, Institute of Math., 1995.
- [6] K. Kuratowski, Topology, Vol. 1, Academic Press, New York and London, PWN, Warszawa, 1969.
- [7] Ie. Lutsenko, Thin systems of generators of groups, Algebra and Discrete Math. ${\bf 9}$ (2010), 108–114.
- [8] Ie. Lutsenko and I. V. Protasov, Sparse, thin and other subsets of groups, Intern. J. Algebra Computation 19 (2009), 491–510.
- [9] I. V. Protasov, Selective survey on Subset Combinatorics of Groups, J. Math. Sciences 174 (2011), 486–514.
- [10] I. Protasov and T. Banakh., Ball Structure and Colorings of Groups and Graphs, Math. Stud. Monorg. Ser., Vol. 11, VNTL Publishers, Lviv, 2003.
- [11] T. Tao and V. Vu, Additive Combinatorics, Cambridge University Press, 2006.