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Abstract 

There are many developments in Ultrasound contrast agents (UCAs) which leads to improvement in medical image. Ultrasound 

contrast agents are micro scale gas bubbles encapsulated with thin shells on the order of nanometers thick. Therefore, there are 

many models which describe the behavior of microbubbles in the action of ultrasound. So the study of these models will help us 

in the future to describe the whole motion of the Microbubble which leads us to a new generation for medical imaging. 
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Objective 

In this thesis, we will study the behavior of microbubble under the action of ultrasound, this study 

will include small summary about models of UCAs for encapsulating bubble. 

UCAs models are derived for the radius of the bubble as a function of time in response to a time 

dependent driving pressure. The most fundamental of the nonlinear models is a second order, 

ordinary differential equation, called the Rayleigh-Plesset (RP) equation.  

Models of encapsulating contrast agents are of the utmost importance to understand biomedical 

signals. The behavior of the encapsulating shell is dependent on the thickness, shear modulus and 

viscosity of the shell medium. Several models exist for the encapsulating shell. 

In this thesis we will study two important models (Hoff and Marmottant), According to parameters 

of two models we implement a program which describes the behavior of bubble, and we will 

compare between each model. and then we explain the chaotic motion behavior for microbubble. 
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Chapter 1 

Introduction 

 

1-1 The history of Ultrasound contrast agents  

Ultrasound has been widely used in medical practice for at least 50 years. Ultrasound is defined as 

acoustic waves at frequencies greater than 20 kHz. Natural sources of ultrasound include bats, 

dolphins and other species that use it for echolocation. 

Lord Rayleigh 
[1]

 described the gas bubble in acoustic field; Medwin 
[4]

 gives an overview of 

linearized model for scatter and absorption of the sound from the bubble. Prospperetti 
[1]

 show 

nonlinear oscillation of the bubble. But Tucker and wallaby 
[2]

 did an experiment to show 

nonlinear behavior of the bubble and detect of the bubble by receiving scatter at 2nd harmonic of 

transmit frequency. Imaging at the second harmonic frequency is today commonly used in 

ultrasound contrast imaging. 

Fox and Herzfield 
[29]

 showed how an encapsulating shell increases resonance frequency. And then 

de Jong and Hoff 
[30]

 carry out some experiments and then they measured this increased resonance 

frequency when studying acoustic attenuation from the contrast agent Albunex
®
.  

Hoff and Sontum 
[5]

 investigated an experimental contrast agent from Nycomed, using a linear 

model based on bulk properties of the particles. Holm 
[2]

 incorporated these studies into a model 

for the transmission and scatter of ultrasound pulses in tissue. A more well-founded, nonlinear 

theoretical model for shell-encapsulated bubbles was presented by Church in 1995. Frinking and 

de Jong have presented a phenomenological model describing the contrast agent Quantison. All 

these studies show that the shell increases the mechanical stiffness of the contrast agent particles, 

and that shell viscosity increases sound absorption. 
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In the next Table show some product of the Microbubble substance, Manufacturer Company, Gas of 

the bubble, shell coating and year Manufacturer: 

Tab.(1.1) 

Name Manufacturer Gas Coating Approved Year 

Echovist Bayer Schering Pharma AG air galactose EU, Japan, Canada 1991 

Albunex Molecular Biosystems air Human albumin EU, USA, Canada 1994 

Levovist Bayer Schering Pharma AG air galactose, trace palmitin worldwide1 1996 

Optison GE Healthcare AS C3F8 Human albumin EU, USA 1997 

Definity Lantheus Medical Imaging C3F8 phospholipids EU, USA, Canada 2001 

SonoVue Bracco SF6 phospholipids EU, China, South Am. 2001 

Imagent Alliance Pharmaceutical Corp C6F14 phospholipids USA 2002 

Sonazoid Amersham Health C4F10 lipids Japan 2006 

1: Approved in 65 countries, but not in the USA 
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1-2 Ultrasound Contrast Agent models  

There are different model for the ultrasound contrast agent UCA for the Microbubble, and the 

different between each shell is the parameters which govern the bubble. For each model, the 

governing equation of motion for the bubble wall and the constitutive law for the coating material is 

given. 

 

1-2.1 Free Gas bubble: Rayleigh-Plesset equation 

Rayleigh-Plesset (RP) 
[1,23] 

equation is a second order nonlinear ODE for the radius of a bubble 

oscillating in a fluid. The RP equation models for gas bubble in an inviscid and incompressible 

fluid of constant density  . 

 

Figure (1.1) 

 It is assumed that far from the bubble the fluid pressure is   .If there is some driving sound field 

     the fluid pressure far from the bubble is            where    is constant.   

 ̈  
 

 
 ̇  

         

 
                                                             

where    is the liquid pressure on the surface of the bubble. 

 

𝑅 𝑡  

𝑟 

Pressure   G r,    

Liquid  

 
      P     The pressure far from the bubble  

 

 L  ,      Liquid pressure at bubble surface 

 

 𝜌         Density of the liquid   

Microbubble  
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Consider a spherically symmetric persistent bubble of radius      as sketched in Figure (1.1) with 

the bubble center located at the origin, in an infinite domain of inviscid, incompressible, constant 

density fluid. 

By conversion of mass, the inverse-square law requires that the radial outward velocity 

  r,    must be inversely proportional to the square of the distance from the center of the bubble. 

There for let      a function of time, 

  r,    
 

r 
                                                                                  

In the case of no mass transport across the boundary, the wall velocity at the boundary is simply 

the time rate of change of the radius. Thus at the cavity boundary: 

   ,    
  

  
  

     

  
                                                                     

which give, 

       
  

  
                                                                                         

In the case where no mass transport occurs, the rate of mass increase inside the bubble is given by  

  

  
   

  

  
   

         

  
      

 
  

  
                              

Where V the volume of the bubble, 

   

  
             

                                                                 

   is the velocity of the liquid relative to the bubble at    ,and A is the bubble surface  

   (
  

  
)
  

  
                                                                                      

Hence  

   ,    
  

  
    

  

  
 (

  

  
)
  

  
 (  

  

  
)
  

  
                    

Therefore 

     (  
  

  
)  
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The liquid density is much greater than the vapor density       , so that     can be 

approximated by the original zero mass transfer from          

  
  so that  

  r,    (
 

r
)
 

 ̇                                                                            

 
 

where   ̇  
  

  
 . Then, from the spherical symmetric momentum equation and the ideal fluid 

considered: 

 
 

 

   r,   

 r
 

  

  
  

  

 r
                                                              

 

Substituting (1.9) into (1.10): 

 

 
 

 

   r,   

 r
 (

   ̇     ̈

r 
 

    ̇ 

r 
)                                

 

Equation (1.11) is then integrated with respect to r from   to  , to give equation (3.10). 

For convenience assume that the driving field is only applied at         with   P        and 

assume that the bubble is initially stationary. The gas within the bubble is modeled as a Polytropic 

gas. The pressure at the bubble wall will be 

   ,     L     G (
  

 
)
  

                                               

 

where    is the initial bubble radius and  G    the initial gas pressure. Since the bubble is initially 

in equilibrium   G        . 

Finally upon integrating and applying the boundary conditions: 

 

       (  ̈  
 

 
 ̇ )    (

  

 
)
  

    P                                 

Which is the simple form for Rayleigh-Plesset Equation. 



THEORETICAL STUDY OF MICROBUBBLE DYNAMICS 

15 
 

1-2.2 Models for encapsulating bubble 

1-2.2.1 De Jong (1994)  

De Jong 
[2] 

and his group did some experimental studies in ultrasound contrast agent and modeling 

by their theoretical description of the vibration of an encapsulated microbubble. This model was 

about gas bubble in water and the bubble coated by albumin.as any theoretical description for 

microbubble this model based on Rayleigh-Plesset equation. 

From the equation (1.13), the modification of Rayleigh-Plesset Equation will be:  
 

 

  (  ̈  
 

 
 ̇ )  (P  

  

  
   ) (

  

 
)
  

    
  

 
 

   ̇

 
    P                                     

where    is vapor pressure. 

In his equation, the viscosity of surrounding liquid is not a separate term as in RP-eq, but it is part of 

a total damping term  t.and liquid viscosity  vis term thermal  th and radiation damping  rad were 

derived under linear conditions and lumped together in one damping parameter (Medwin, 1977). 

 

 

Fig.(1.2) Schematic sketch of an encapsulated bubble. 

 

Their values were determined under linear conditions for Albunex microbubbles by fitting calculated 

acoustic transmission and scattering values to measurements (de Jong and Hoff, 1993). 

 

R1 

R2 

Shell 

Air 
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Where    is the shell elasticity,    is the total damping,       Radiation damping,       is Viscosity damping, 

    is Thermal damping and      is friction damping   

    
  

       
                                                                              

where     is the shell friction. 
 

1-2.2.2 Church (1995)  

Church 
[2,23]

 derives his equation from Rayleigh-Plesset model that accounted for the shell thickness 

and viscoelastic properties.  

    ̈ (   
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 (  

  , 

  
)                                                               

 

The subscripts   and   refer to the inner and outer radius of the microbubble’s shell and the 

subscripts s and L refer to shell and liquid.  

      
     

                                                                               
 

   is the elastic modulus and µs is the shear viscosity of the shell.  
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1-2.2.3 Hoff (2000) 

Hoff et al. [2,5] derives his model from Church[23] (1995) in the limit of small shell thickness in 

comparison with the radius. Nycomed is composed of polymer coated, air-filled microbubbles. 

The shear modulus    and viscosity    of a polymeric material are in general frequency 

dependent, but it is assumed that they are constant for the frequencies considered (1-8 MHz). 

The following equation of motion was derived, 
 

 

  (  ̈  
 

 
 ̇ )  P ((

  

 
)
  

  )  P       

 ̈

 
     

  ,   
 

  

 ̇

 
     

  ,   
 

  
(  

  

 
) 

                                 

Where   ,  is the thickness of the shell at the resting state. 

 

1-2.2.4 Morgan (2000) 

Morgan [2] constructs his model from Herring equation [4]. Coating effects are represented by 

two additional terms. The first term is shell  erm inc r  ra es  he elas ici y  f  he shell      

The second shell term is a damping term because of the viscosity of the shell (  ) and is similar 

to the derivation of terms by Church (1989). The equation is given by: 
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)
  

(  
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c
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(
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c
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1-2.2.5 Chatterjee- Sarkar (2003-2005)  

Chatterjee-Sarkar [2] used Newtonian interfacial rheological in their model, which means that 

only viscous interfacial stresses are taken into account. The model considers thin-shelled 

agents. 

  (  ̈  
 

 
 ̇ )  (   

  

  
) (

  

 
)
  

    

 ̇

 
 

  

 
 

    ̇

  
    P                                    

 

The material properties were assumed to be independent of the amplitude of oscillation and 

the transmit frequency (1-10 MHz). The obtained values were  = 0.9 N/m and Ks = 0.08 kg/s.  
 

1-2.2.6 Marmottant (2005)  

Marmottant [2,6] takes into account the physical properties of a lipid monolayer coating on a gas 

microbubble in his model. Three parameters describe the properties of the shell: a buckling 

radius, the compressibility of the shell, and a break-   shell  ensi n   ,  s, Rbuckling, an   break-up). 

The model presents an original non-linear behavior at large amplitude oscillations, termed 

compression-only, induced by the buckling of the lipid monolayer. 

 

  (  ̈  
 

 
 ̇ )  (   

      

  
) (
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(  
  

c
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    ̇

  
      

                                 

This equation is identical to a free gas bubble equation, except from the effective surface 

tension      term and the shell viscosity term. The surface tension is expressed in terms of the 

bubble radius: 
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1-2.2.7 Tsiglifis-Pelekasis (2008)  

This model [2] aims to large acoustic pressures for microbubble so Tsiglifis and Pelekasis 

implement both types of materials in a Keller and Miksis [18] (1980) equation and compare the 

results with a Kelvin-Voigt [2] based model. 

The following nonlinear differential equation describing spherically symmetric oscillations in a 

compressible liquid is used 

 

(    ̇ )   ̈  (
 

 
 

  ̇ 

 
)  ̇   (    ̇ )(  ,      

  P    )     
 

  
(  ,    P    ) 
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1-2.3 Conclusion and Comparison  

Now, we have seen different types of ultrasound contrast agent models for encapsulating 

bubble so we can predict the dynamic behavior for the motion of the bubble under the action 

of ultrasound. And also we have seen that there are some Models which nearly have different 

parameters such as the different between Hoff model and Marmottant Model, one of them 

depend on viscosity and elasticity of the shell substance and the other depend on the buckling 

and rupture of the shell. 

The different between each bubble will help us in the future to create a new model which 

contains all the parameter and we can predict by behavior of the motion of the bubble. 

This table shows the comparison between the models and also governing equations for each 

model. There are some parameters which govern each model such as elasticity, viscosity, 

rupture of the shell and buckling radius. Also, the types of the liquid surround the bubble and 

there are some parameter such as density and viscosity 

 

 

Author Year Governing equation Constitutive equation 

De Jong 1994 Rayleigh-Plesset Viscoelastic 

Church 1995 Rayleigh-Plesset Kelvin-Voigt 

Hoff 2000 Rayleigh-Plesset Kelvin-Voigt 

Morgan 2000 Modified Herring Viscoelastic 

Khismatullin 2002 Keller-Miksis Kelvin-Voigt 

Chatterjee 2003 Rayleigh-Plesset Newtonian 

Allen 2004 Rayleigh-Plesset neo-Hookean 

Sarkar 2005 Keller-Miksis Viscoelastic 

Marmottant 2005 Rayleigh-Plesset viscolelastic 

Doinikov 2007 Rayleigh-Plesset Maxwell 

Stride 2008 Rayleigh-Plesset viscoelastic 

Tsiglifis 2008 Keller-Miksis Skalak 

Tsiglifis 2008 Keller-Miksis Mooney-Rivlin 

Tab.(1.2) 
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Chapter 2 

Simulation programs for the motion of UCAs.  

2-1    Simulation program for Radial motion of Microbubble 

2-1.1 Rayleigh-Plesset Equation for free gas bubbles 

From Rayleigh-Plesset [3] Equation (1.13), we repeat for convenience in (2.1), we will 

implement a function by using Matlab (Mathworks,) this function depend on two variable 

which are the radius of the bubble (R) and time (t) 

 (  ̈  
 

 
 ̇ )    (

  

 
)
  

    P                                                               

 

We can solve this Equation by using ODEs and we will use ode45 in Matlab, The equation 

parameters have been set to model an air filled bubble surround by water at ambient 

temperature and pressure. An overview of the simulation settings is given in Tab. 2.1.  

 

 

Characteristic values of gas (air) and surrounding liquid (water) that have 

been used for the simulation (Tab.2.1) 

Liquid pressure    100 kPa 

Liquid density   998 kg/m3 

Dynamic liquid viscosity   1 mPa 

Vapour pressure    5945 Pa 

Surface tension   72.5mN/m 

Polytropic exponent   1 
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The next simulation between two liquid; water with density            and blood with 

density             and we can notice that two line is nearly the same but in the damping the 

oscillation frequency will change, because of the difference between  Blood and water in 

physical parameters not much different as shown in Tab.(3.2). 

 

Fig.(2.1) The simulated radial response of a 5µm radius RP air microbubble in Blood (line) water 

(dots); Hanning pulse with center frequency 5 MHz, 5 cycles in length, 0.3 MPa amplitude. 

 

 Water Blood 

Ambient pressure [Pa]                       

Density of liquid  [kg/m3] 1000 1025 

Viscosity in liquid   [Pas]                     

Speed of sound in liquid  [m/s] 1500 1570 

Tab.2.2 Physical parameter for Blood and water 
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By using the water as liquid, we will increase the pulse amplitude from         to         

we will notice the change in Radius amplitude but in frequency more or less the same. 

 

Fig(2.2) The simulated radial response of a 5µm radius RP air microbubble in water ; 300 KPa 

(dots) 600 KPa (dots); Hanning pulse with center frequency 5 MHz, 5 cycles in length. 

 

Linearization  

In the clinical range 2-15 MHz, the primary oscillatory response is linear with the driving 

Frequency   Therefore it is useful to linearize the nonlinear ODEs for       

This will give linear ODEs of the generic form [5] 

   ̈    ̇    
    f                                                                                     

where    is the resonance frequency of the undamped oscillator,   is the constant coefficient 

of damping. f    is a periodic function with frequency   .   is the amplitude of the forcing term.  

And we have pressure P    with low amplitude and the radius can be assume to have the form  

                                                                                          

 where  | |    and retain only first order terms in  . 

From (2.1) Rayleigh-Plesset equation:  

 ̈  
 

 
 ̇  

  (
  
 )

  

    P   
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Substituting                into the Rayleigh-Plesset equation: 

  (
 

   )
  

    P   

 
   

       ̈  
 

 
 ̇                                         

Neglecting second order terms in   . This yield: 

  (
 

   )
  

    P   

 
   

  ̈                                                                  

 

The pressure term is simplified using the binomial theorem: 

   
 

   
                                                                                          

 

Substitute (2.7) into (2.6), and dividing by   
  to get a familiar equation: 

 ̈  
     

   
  

 
 P   

   
                                                                                             

This is a driven linear oscillator equation with resonant frequency: 

   
 

  
√
    

 
                                                                                                     

f  
  

  
 

 

    
√
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The simulation below shows the radial motion for Microbubble by linear solution for pulse 

amplitude         and        . 

 

Fig(2.3) The simulation radial response for the solution of linearized equation; where pulse 

amplitude 300 KPa  (dots) and 600 KPa (line) for microbubble radius a 5µm in water to a Hanning pulse 

with center frequency 5 MHz, 5 cycles in length. 

 

If we compare between the linear solution and Rayleigh-Plesset Equation we will find agreement 

between the results. 

 

Fig(2.4) The simulation radial response for the solution of linearized (Dots) equation and Rayleigh-

Plesset Equation (Line) for microbubble radius a 5µm in water to a Hanning pulse with center frequency 

5 MHz, 5 cycles in length; Pulse amplitude 300 KPa 

 

The dimension of Fig(2.3) and Fig(2.4) not the same because of we have to enlarge the graph 

to obtain a good view. 
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Resonance frequency
 
 

Knowledge of resonant frequencies
 [5]

 of contrast microbubbles is important for the 

optimization of ultrasound contrast imaging and therapeutic techniques. To date, however, 

there are estimates of resonance frequencies of contrast microbubbles only for the regime of 

linear oscillation. 

 

For the Equation (2.10) we will calculate the resonance frequency for the bubble with Radius 

5µm in fluid density about         m , and the pressure 101.3 KPa: 

For free bubble (Rayleigh-Plesset Equation): 

 

Fig (2.5) Resonance frequency for Rayleigh-Plesset equation; Radius R0=5µm with initial value 

2µm, Maximum value 10µm; Fluid density           m  

 

In the Equation (2.10) we will find that the resonance frequency is inversely proportional to 

the radius of the bubble  

f  
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As shown in the figure (2.5), increasing in bubble radius decrease the resonance frequency.  

We finally compare between the resonance frequency for Rayleigh-Plesset Equation and 

Church model for encapsulating bubble, and we will find a big difference between them due to 

the shell term in Church model  so the resonance frequency for encapsulating bubble is higher 

than the free bubble. 

 

Fig(2.6) The difference between Resonance frequency for Rayleigh-Plesset equation (dash) and 

church model (line); Radius R0=5µm with initial value 2µm, Maximum value 10µm; Fluid density  

          m   
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2-2 Numerical analysis for encapsulating bubble with Viscous-Elastic properties (Hoff’s 

Model) 

2-2.1 Equation of Motion for Microbubble 

Assume that we have a bubble with radius R and the shell thickness ds which not exceed 5% of 

the whole bubble. This bubble in a liquid with viscosity   L, and density  Lin the action of 

ultrasound as shown in figure (2.7). Frequency Range in Medical imaging applications (2 MHz 

to 15 MHz).  

 

     where     is the shell thickness at rest, 

The nonlinear equation of motion [5] for Church Model for the bubble surface is 
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where       and        are the inner and outer shell radii,   and    are the densities of the shell 

material and of the surrounding liquid,    is the equilibrium pressure in the gas inside the 

bubble,     and     are the inner and outer shell radii at equilibrium,        is the pressure in 

the liquid far from the particle,   is the polythropic exponent of the gas, 

      
    

                                                                         

 

R1 

R2 

ds 

Air 

Liquid  

µL, ρL 

 

Polymer shell 

µs, ρs, Gs  

 Bubble Diameter (1µm to 10µm) 

 The Shell thickness 5% of the 

Particle radius. 

 The shell reduce surface tension at 

the Shell-liquid and Shell-gas 

interfaces so we can neglect the 

surface tension  

Figure 2.7 

Figure (2.7) 
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Equation (2.11) is Ch rch’s Eq  we have to modify this Equation to identify the different terms, 

using the conservation of mass relation for an incompressible shell; 

 ̇   
   ̇    

                                                                   

 

According to this description, the thickness     of the shell varies as the particle oscillates, so 

that the shell volume is constant. The shell is thin compared to particle radius, and use of this, 

        allows simplification of Equation (2.11). 

Now, Equation (2.11) contains different terms. The left side consist of inertia of shell, inertia of 

liquid and     and      and we have to simplify this term 

  (  ̈      
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 )                                       

 

Hence, the shell contributes to the inertia of the oscillating bubble through a term of 

order      , which can be neglected. 

The right side of Equation (2.11) represents restoring stiffness and damping viscous forces. 

The first three terms are known from the Rayleigh–Plesset equation for unshelled bubbles. 

The last two terms represent viscous and elastic forces due to movement and tension in the 

shell. The shell is thin, and terms of order       are neglected. This reduces the last two terms 

in Equation (2.11) to 
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While the shell contribution to inertia is small and neglected, the contributions from the shell 

to stiffness and viscosity depend on shear modulus     and shell viscosity   , and must be 

considered. 
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The result of these simplifications is a version of Equation (2.11) suitable when the 

encapsulating shell is thin compared to the particle diameter. 
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Equation (2.17) contains both inner radius   and outer radius    of the shell. It is reduced to 

an equation in outer radius        ) alone by setting 
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At equilibrium, the pressure in the gas inside the bubble is assumed to be equal to the 

hydrostatic pressure in the surrounding liquid,        . 
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This is equation for Hoff model and we have to solve it. To simulate bubble oscillation      as a 

response to an applied acoustic pressure field      , the elastic and viscous shell parameters    

and    must be determined. The shell material is not easily made in bulk quantities that allow 

conventional measurements of elastic properties. Instead,    and    are estimated from 

measurements of ultrasound absorption in a particle suspension. 
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Linearization 

The parameters    and    are estimated from acoustic measurements at low pressure 

amplitudes. Here, the oscillation is linear and Equation (2.19) is solved analytically. The 

particle radius      is written 

       (      ),    |    |                                   

 

Equation (2.19) is expanded in the radial displacement      , 

m   ̈       ̇  s        
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Equation (2.21) is best handled in the frequency domain. Fourier transformation yields 
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The linear resonance frequency f of the shell encapsulated bubble is 

     f  
  

  
 

 

    
√
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From the equation (2.10) which describes the resonance frequency of free bubble and 

compare with (2.30) we will find adding of shell term     
   

  
  , the graph below shows the 

difference between resonance frequency of Rayleigh-Plesset equation (free bubble) and the 

resonance frequency of encapsulating bubble models. 

 

Fig(2.8) Resonant frequency as a function of initial bubble radius R0=2:10 µm for 3 different bubble 

models. Rayleigh-Plesset equation (Dots) and shell model (Line) 
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2-2.2 Simulation Program for Hoff Model  

Hoff solved this model numerically by using Matlab (package BubbleSim) and he simulated the 

behavi r  f b bble m  i n in  he ac i n  f  l ras  n    s we  n w H ff’s m  el  e en   n 

some parameters which is the viscosity and elasticity of the shell. 

The Table below shows the value of each parameter and the liquid surrounding the bubble: 

 

Parameters and Values(Tab 2.3) 

Parameter Value Description 

   1.013 x 105 Pa Ambient pressure 

  1000 kg/m3 Density of liquid 

  1.4 Polytropic exponent 

Shell parameters 

Albunex
©

 

  15 nm Shell thickness 

   88,8 MPa Shell elastic modulus 

   0,5 Pa s Shell viscosity 

  7 Pa m Surface Tension 

Nycomed
©

 

  250 nm Shell thickness 

   11 MPa Shell elastic modulus 

   0,45 Pa s Shell viscosity 

  7 Pa m Surface Tension 

Sonazoid
©
 

  4 nm Shell thickness 

   50 MPa Shell elastic modulus 

   0.8 Pa s Shell viscosity 

 

 

Hoff used Stiff ordinary diffraction equations to solve the Equation by using (ode15s) code. 

This model based on the Solution of Rayleigh-Plesset Equation and also modified by adding the 

viscosity and elasticity parameters term. 
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The table below shows Bulk modulus of for different shell: 

 

Particle stiffness. Bulk modulus of the investigated polymer shelled 

Particles compared with other substances. Tab.(2.4) 

Substance                                                                     Bulk modulus K[MPa]  

Air (isothermal) 0.10 

Air (adiabatic) 0.14 

Polymer-shelled air bubbles 2.5 

Water 2250 

Steel 160 000 

 

The acoustic pressure is function was Sinusoid with angular frequency     The Hanning 

window of width x, was chosen as it is a typical medical ultrasound pulse.  

     
 

 
   c s                                                         

 

Results are stored in the Matlab struct-variables; pulse: Driving ultrasound pulse; particle: 

Parameters of the contrast agent particle, or bubble; linear: Results of linear calculation; 

simulation: Results of nonlinear simulation; graph Plotting and saving parameters 
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For example we will take Sonazoid© and Albunex© for describe the simulation, 

Simulation for Sonazoid©: 

 

Fig(2.9) Bubble response for Hoff Model for Water; Radius R0=3µm; pulse amplitude=0.3 MPa; Pulse length 5 

cycles under frequency 2 MHz: shell Parameter for shear modulus 50 MPa, shell viscosity 0.8 Pas and shell 

thickness 4 nm 

The power spectrum is the amplitude of the discrete Fourier transform of the driving pulse 

and the scattered pulse. The spectrum shows the amplitude of the various frequency responses 

of the bubble radius. Hence, the linear response and the higher and possibly subharmonics 

may be observed. 

 

Fig(2.10) Power spectra for Hoff Model for Water; Radius R0=3µm; pulse amplitude=0.3 MPa; Pulse length 5 

cycles under frequency 2 MHz: shell Parameter for shear modulus 50 MPa, shell viscosity 0.8 Pas and shell 

thickness 4 nm 
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For Albunex©: 

Albunex [24] is a new ultrasound contrast agent for medical imaging. The product consists of 

air-filled albumin microspheres suspended in a solution of 5% (w/v) human albumin. The 

suspension is sterile and a viscosity of 1.4 relative to water. The contrast effect is caused by the 

air-filled microspheres, which range in diameter from 1 to 15 microns, with less than 5% being 

larger than 10 microns.  

 

Fig(2.11) Bubble response for Hoff Model; Simulation (Line), Linearization (Dots); Radius R0=15µm; pulse 

amplitude=0.3 MPa; Pulse length 5 cycles under frequency 2 MHz: shell Parameter for shear modulus 88.8 

MPa, shell viscosity 0.7 Pas and shell thickness 15 nm 

The relation between Amplitude and frequency shows that there are a large difference 

between linearize equation and Hoff model as shown in the figure  

 

Fig(2.12) Power Spectra for Hoff Model; Simulation (Line), Linearization (Dots); Radius R0=15µm; pulse 

amplitude=0.3 MPa; Pulse length 5 cycles under frequency 2 MHz: shell Parameter for shear modulus 88.8 

MPa, shell viscosity 0.7 Pas and shell thickness 15nm 
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2-2.3 Conclusion  

Hoff Model has been developed describing oscillations of gas bubbles encapsulated in a thin 

polymer shell. Hoff model depends on viscoelastic parameters of the shell material. 

A linearized version of the model was used to estimate the shell material properties shear 

modulus and shear viscosity from acoustic attenuation spectra. 

This study shows the week point between linear solution and theoretical Model. The results 

show that the polymer shell increases particle stiffness 20 times compared to a free gas 

bubble. 

 The fundamental assumptions of the models, such as spherically symmetric and stationary 

bubbles are unrealistic for contrast agents in the body. Smaller blood vessels are often of 

comparable size to the microbubble and the presence of boundaries will break the spherical 

symmetry. 

Blood is also much more viscous with a slightly higher sound speed than water. The red blood 

cells are of comparable size to the contrast agent, hence there will be collisions between the 

cells and the contrast agents. 
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2-3 Numerical analysis for buckling and rupture properties (Marmottant’s Model) 

2-3.1 Equation of motion of the particle  

Marmottant [6] model based on Rayleigh-Plesset equation (1.13) in phospholipid coated 

microbubble at large amplitude. By count the surface tension which depends on the molecule 

substance.  

 

Fig(2.13) 

This model has three parameters to describe the surface tension: the buckling area of the 

bubble             as shown the fig.(2.13) when the surface buckles, an elastic modulus   that 

gives the slope of the elastic regime. The third parameter which to describe the moment of 

rupture: the elastic regime holds until a critical break-up tension called          . When this 

limi  has been reache   he ma im m s rface  ensi n sa  ra es a   water. 

 

Fig(2.14)the relation between Surface tension and Area per molecule 
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We motivate here the modeling of the three states: 

 Buckled state,   = 0   . 

We assume a near vanishing surface tension in the buckled state. 

The buckling area of the bubble depends on the number n of lipid molecules at the interface 

and on the molecular area at buckling abuckling 

 

            n a                                              

And we can consider that  

a             nm  

 

 

 

 Elastic state,   (
 

         
  )   

This is the area between Buckling and rupture. The lower limit for this area is            and 

the Upper limit is the maximum surface tension which depend on the substance molecule, 

which is              before rupture of the shell giving 

                      (                  )
   

                                

 

Or  water after rupture giving  
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The elastic regime holds only in a narrow range of radii, since   is usually large compared to 

             or         . The value of the elastic modulus can also incorporate the presence of any 

solid-like shell material that sustains tensile stress. 

Within this regime the surface tension is a linear function of the area, or of the 

square of the radius, and for small variations around a given radius R0, it can be 

written as: 

            (
  

  
   )          (

 

  
  )                             

 

When 

|    |     

 

 Ruptured state,                 

A fast expansion, such as the one triggered on a bubble by an ultrasonic pressure pulse, does 

not allow much time for any phase change and the monolayer is likely to break at a critical 

tension             , exposing bare gas interfaces to the liquid.  

The bare interface has a tension value of          . The break-up tension can be higher 

than          , since any polymer component confers more cohesion to the shell, and shifts the 

break-up to higher tensions.  

The introduction of a high tension break-up was motivated by the observation of resistant 

bubbles, as will be exposed further. 

 

Whereas the elasticity of the coating depends on the bubble radius, the viscosity remains 

constant. The modified Rayleigh-Plesset equation by Keller and Miksis [2] (1980) was used.  
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This is the equation of motion for Marmottant model, where        is acoustic pressure . 

This equation is identical to a free gas bubble equation, except from the effective surface 

tension      term and the shell viscosity term. The surface tension is expressed in terms of the 

bubble radius: 

 

     

{
 
 

 
 
                                                                                                                         if            

  (
  

         
   )                                                             if                       

                                                                                         if r    re  an              

 

                          

 

 

Shell  arame ers  elas ici y  , visc si y  s, buckling radius Rbuckling, an   break-up) were 

determined by fitting to optical recordings of vibrating contrast agent microbubbles. 
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Simulation Program for Marmottant Model  

The models derived were solved numerically using the Mathematica (Wolfram, Version 8) 

simulation of ultrasound contrast agents. The parameters for the liquid, gas and shell, if 

present, are shown in Table below. All the solutions assume an adiabatic process, containing 

air, and the external liquid is water.  

 

 

Magnitude  Value  

Acoustic pressure    (Pa) 130*103 

Initial radius    (m) 0.975*10-6 

Shell viscosity    (N) 15*10-9 

Central frequency   (Hz) 2.9*106 

Shell elasticity    (N/m) 1 

Interfacial tension    (N/m) 1.07 

liquid density    (Kg/m3) 1000 

Surface tension of liquid    (N/m) 0.072 

Speed of sound   (m/s) 1480 

  

Tab. (2.5) Marmottant Parameters 
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Fig(2.15) Radius-time curve (radius in microns, time in microseconds) for Marmottant Model; Radius Buckling 

R0=0.975 µm; f           χ=1 N/m; ks=15x10-9 N; σbreak up>1 N/m; Liquid density            m  ; 

c=1480 m/s and polytrophic gas exponent is k=1.095 

 

The next graph describe the relation between Amplitude (40 KPa) and timefor bubble with 

radius            m . the Liquid density            m . 

 

 

Fig(2.16) Driving pressure (amplitude in Pa, time in microseconds) for Marmottant Model; Radius Buckling 

R0=0.975 µm; f           χ=1 N/m; ks=15x10-9 N; σbreak up>1 N/m; Liquid density            m  ; 

c=1480 m/s and polytrophic gas exponent is k=1.095 
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scattering of phospholipid-shell [30] microbubbles excited at relatively low acoustic pressure 

amplitudes (<30 kPa) has been associated with echo responses from compression-only 

bubbles having initial surface tension values close to zero(30). 

 

Fig(2.17) Scattered pressure-time curve at L = 0.01 m (amplitude in Pa, time in microseconds) for Marmottant 

Model; Radius Buckling R0=0.975 µm; f           χ=1 N/m; ks=15x10-9 N; σbreak up>1 N/m; Liquid density  

           m  ; c=1480 m/s and polytrophic gas exponent is k=1.095 

 

 

 

Conclusion  

The behavior of the coated microbubble in an ultrasound field was studied. We presented a 

simple model for the dynamical properties of coated contrast agents bubbles, with three 

parameters: a buckling surface radius, a shell compressibility, and a break-up shell tension. It 

predicts a compression-only behavior of the bubble, a highly non-linear response. It occurs 

when its radius is close to the buckling radius, a state that naturally occurs with dissolution of 

gas, or that can be accelerated by repeated pulses. 

High-frequency image recordings with lipid coated microbubbles reveal the existence of such 

asymmetric oscillations, and validate the model. The break-up of the shell is modeled by a 

third parameter, a finite tension of the bubble shell above which bare interfaces are created, 

with a corresponding change in bubble dynamics. 
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Chapter 3 

The Chaotic Motion of Microbubble  

2-1 Introduction  

The dynamics of UCAs are inherently nonlinear and an understanding of the response to 

ultrasound is necessary to enable the effective use of UCAs in clinical applications. The purpose 

of this chapter is to develop an understanding of the nonlinear dynamics of UCAs subject to 

acoustic forcing for various types of shells under typical clinical conditions in frequency 2 MHz. 

This understanding will aid in the selection of shell materials, ultrasound frequency, and 

forcing amplitude for a particular application. 

 

2-2 The Chaotic Motion of Microbubble  

The nonlinear response of spherical ultrasound contrast agent microbubbles is investigated to 

understand the effects of common shells on the dynamics. A compressible form of the 

Rayleigh–Plesset equation is combined with a thin-shell model developed by Lars Hoff to 

simulate the radial response of contrast agents subject to ultrasound. Parameters of the shell 

in table (2.3). 

 

In Figure (3.1) shows the relation between Radius-Time in pulse amplitude 300 KPa which we 

can notice that the relation is harmonic, periodic and has one peak, and if we increase pulse 

amplitude to 400 KPa the relation will also be periodic but it has two different peak. By 

increasing the pulse amplitude again, we will find that the bubble starts in a chaotic motion as 

shown in the figure (3.1) and (3.2). 
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Fig(3.1) The simulated radial response of a 3µm radius for microbubble in water to a rectangular pulse with 

center frequency 2 MHz; Amplitude 0.3 MPa. 

The next relation between the velocity of the shell and the Radius, the small line inside the 

graph describes irregular motion (as shown in Fig. 3.1) and then a dense line shows the 

harmonic and periodic behavior. 

 

Figure (3.2) Phase portraits of Sonazoid© UCA with f = 2 MHz, ae=3 µm, for 

 Pac =300 kPa 
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(a) 

 

 

 

 

(b) 

 

 

 

 

 

(c) 

 

 

 

 

 

(d) 

Fig. (3.3) Radius vs. time plots and Phase portraits of Sonazoid© UCA with f = 2 MHz, Re=3 µm, For (a) Pac 

=300 kPa, (b) Pac =400 kPa, (c) Pac =450 kPa, and (d) Pac =500 kPa. 
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Bifurcation diagrams [6] provide a better perspective to identify exactly where the period 

doubles and when chaos occurs. The bifurcation diagram and Lyapunov exponents for the 

shells listed in Table (2.3) are calculated for four combinations of acoustic frequency and 

equilibrium radius, as presented in Hoff, over the acoustic pressure range of 10 kPa to 1MPa. 

Figure (3.4) shows the bifurcation diagram along with the corresponding maximum Lyapunov 

exponent. At points where the period doubles, the Lyapunov exponent approaches zero, then 

decreases, indicating a bifurcation of the periodic orbit. The chaotic regions are indicated at a 

given acoustic pressure by spread on the bifurcation diagram, which corresponds to a positive 

Lyapunov exponent [6]. 

 

 

Fig.(3.4). Bifurcation diagram (upper figure) and maximum Lyapunov exponent (lower figure) for Sonazoid© 

UCA with f =2 MHz and Re=3 µm. 

 

2-3 Conclusion  

We studied the chaotic motion of microbubble, and we noticed that by increasing pulse 

amplitude the bubble start in chaotic motion. And also we have examined the nonlinear 

response of spherical UCAs in typical clinical ranges of acoustic pressure and frequency. 

Based on the results of this work, it is clear that the encapsulating material of the contrast 

agent significantly influences the dynamic response of the UCA to incident ultrasound. 

Studying the chaotic motion will be important in the future research to develop a nonlinear 

control system to control the UCA response through modulation of the applied ultrasound. 
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Appendix  

MATLAB code 

A-1 Resonance frequency for Rayleigh-Plesset equation, RPNNP, church Model and Newtonian shell 

%% Resonance frequency 

R0=[2:1e-3:10]; 

p0=101300; %reference pressure Pa 

R0=R0*1e-6; %define vector of R0s 

d=15e-9; %shell thickness 

R01=R0; %inner radius 

R02=R0+d; %outer radius 

sigma=7; 

sigma1=4;% Pa 

sigma2= 0.5;% Pa 

rho=1000; %fluid density kg/m3 

rhoS= 1100; %shell density kg/m3 

gamma=1.4; %polytropic exponent 

Gs=88.8e6;% Pa 

Vs=R02.^3-R01.^3; 

alpha=(1+((rho-rhoS)/rhoS)*(R01./R02)); 

Z=(2*sigma1./R01+2*sigma2./R02).*(R02.^3./Vs)./(4*Gs); 

w0rp=R0.^(-1)*sqrt(3*gamma*p0/rho); % rp resfreq. 

w0rp=w0rp./1e6; 

w0rpnnp=R0.^(-1).*sqrt((3*gamma*(p0+2*sigma./R0)-2*sigma./R0)/rho); %rpnnp 

w0rpnnp=w0rpnnp./1e6; 

%church: 

w0sh2=(rhoS*R01.^2.*alpha).^(-1).*(3*gamma*p0-2*sigma1./R01-... 

2*sigma2.*R01.^3./(R02.^4)+4*Vs*Gs./(R02.^3).*(1+Z.*(1+3*R01.^3./R02.^3))); 

w0sh=sqrt(w0sh2); 

w0sh=w0sh./1e6; 

%newtonian shell 

w0n2=(rhoS*alpha.*R01.^2).^(-1).*(3*(p0 + 2*sigma1./R01 ... 

+2*sigma1./R02)*gamma-2*sigma1./R01-2*sigma2.*R01.^3./(R02.^4)); 

w0n=sqrt(w0n2); 

w0n=w0n./1e6; 

lstr1=['NF Shell ', num2str(d*1e9),'nm']; 

lstr2=['VE Shell ', num2str(d*1e9),'nm']; 

plot(R0, w0rp, 'r'),xlabel('Initial bubble radius, m'),ylabel('Resonant frequency, 

MHz'),title('Resonant frequency') 

figure 

plot( R0, w0rpnnp, 'g'),xlabel('Initial bubble radius, m'),ylabel('Resonant frequency, 

MHz'),title('Resonant frequency') 

figure  
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plot( R0, w0sh, 'k',R0, w0rp, 'r'),xlabel('Initial bubble radius, m'),ylabel('Resonant frequency, 

MHz'),title('Resonant frequency')  

figure  

plot(R0, w0rp, 'r', R0, w0rpnnp, 'g',R0, w0n,'b', R0, w0sh, 'k') 

h =legend('Rayleigh-Plesset equation ','RPNNP', lstr1, lstr2); 

set(h,'Interpreter','none') 

xlabel('Initial bubble radius, m') 

ylabel('Resonant frequency, MHz') 

title('Resonant frequency') 

 

A-2 to create Ultrasound  pulse in Hoff model  

function [t,p]= BS_MakePulse(A,Nc,f0,fs,envelope) 
% function [t,p]= BS_MakePulse(A,Nc,f0,fs,envelope) 
% 
%         A : Amplitude 
%        Nc : No. of cycles 
%        f0 : Centre frequency [Hz] 
%        fs : Sample frequency [Hz] 
%  envelope : Name of pulse envelope, windowing funtion 
% 
%   Construct ultrasound pulse 
%-- Time --- 
T = Nc/f0;               % Pulse length 
dt= 1/fs;                % Sample interval 
tp= (0:dt:T )';          % Time vector, containing oscillations 
t = (0:dt:4*T )';        % Time vector, total  
%--- Pulse --- 
W  = BS_Window( envelope{1}, length(tp), envelope{2}); 
po = sin(2*pi*f0*tp) ;    % Carrier wave 
    po = A*po.*W;             % Pulse with envelope 
%--- Place pulse --- 
p= zeros( size(t) ); 
n= [1:length(po) ]; % Index to put oscillations into 
p(n)= po; 
return 

  

 

A-3   Simulate Rayleigh-Plesset equation for gas encapsulated in a shell. 

function dxv= BS_Rayleigh( T, xv, flag, Q, parameter ) 
% function dxv= BS_Rayleigh( T, xv, flag, Q, parameter ) 
% 
% Simulate Rayleigh-Plesset equation for gas encapsulated  
% in a shell 
% Written for Matlab's ODE solvers 
% Normalized radial displacement, pressure and time 
% T     : Normalized time T = t*w0, w0= sqrt(p0/(rho*a0^2)) 
% x     : Radial displacement  a(t)= a0(1+x) 
% flag  : Parameters for ODE solver, not used 
% Q     : Normalized acoustic pressure: P= p(t)/p0 
% parameter : Normalized visco-elastic parameters 
qi= interp1( Q.t, Q.p, T, '*cubic' );   % Driving pressure 
x = xv(1,:);  % Strain 
dx= xv(2,:);  % Velocity 
%--- Physical parameters --- 
gs   = parameter.gs; 
ns   = parameter.ns; 
nL   = parameter.nL; 
kappa= parameter.k; 

  
%--- Pressure at bubble surface --- 
[qL,q1,q2]= BS_SurfacePressure(x,dx,gs,ns,nL,kappa); 
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%--- ODE --- 
q3 =  1+x; 
ddx= -1./q3.*(3/2*dx.^2 +1+qi-qL ); 
%--- ODE as vector equation --- 
dxv= [dx; ddx]; 
return 

  
  

A-4   Simulate Rayleigh-Plesset equation with damping. 

 
function dxv= BS_ModifiedRayleigh( T, xv, flag, pi, parameter ) 
% function dxv= BS_ModifiedRayleigh( T, xv, flag, pi, parameter ) 
% Simulate modified Rayleigh-Plesset equation for gas encapsulated in a shell 
% Equation modified by adding radiation damping term, dp/dt 
% Written for Matlab's ODE solvers 
% Normalized radial displacement, pressure and time 
% 
% T     : Normalized time T = t*w0, w0= sqrt(p0/(rho*a0^2)) 
% x     : Radial displacement  a(t)= a0(1+x) 
% flag  : Parameters for ODE solver, not used 
% pi    : Normalized acoustic pressure: P= p(t)/p0 
% parameter : Normalized bubble and liquid parameters 
qi= interp1( pi.t, pi.p, T, '*cubic' );   % Driving pressure 
x = xv(1,:);  % Strain 
dx= xv(2,:);  % Velocity 
 %--- Physical parameters --- 
gs   = parameter.gs; 
ns   = parameter.ns; 
nL   = parameter.nL; 
cn   = parameter.c; 
kappa= parameter.k; 
%--- Pressure at bubble surface --- 
[qL,q1,q2]= BS_SurfacePressure(x,dx,gs,ns,nL,kappa); 
%--- ODE --- 
q3 = (1+x) -1/cn.*(1+x).*q2; 
ddx=-1./q3.*(3/2*dx.^2 -1/cn*(1+x).*q1.*dx +1+qi-qL ); 
%--- ODE as vector equation --- 
dxv= [dx; ddx]; 
return 

 

 

 A-5   Solution of Rayleigh-Plesset equation . 

[T,R]=ode45('BS_Rayleigh', [0 3e-6], [1e-6 70]); 
plot(T,R(:,1),'-o') 

 

A-6   Simulation of the Pressure at the bubble surface 

 

function [qL,q1,q2]= BS_SurfacePressure(x,dx,gs,ns,nL,kappa); 
% function [qL,q1,q2]= BS_SurfacePressure(x,dx,gs,ns,nL,kappa); 
% Pressure at the bubble surface 
%   x : Radial strain 
%  dx = dx/dt 
%  gs : Normalized shell shear modulus 
%  ns : Normalized shell shear viscosity 
%  nL : Normalized liquid viscosity 
%  kappa: Polytropic exponent 
%  qL : Pressure at bubble surface 
%  q1 = dqL/dx 
%  q2 = dqL/ddx 
%  Calcualate pressure at bubble surface 
%  Boundary condition for ODE giving bubble motion 
%--- Gas pressure --- 
qg = (1+x).^(-3*kappa); 
dqg= -3*kappa*(1+x).^(-3*kappa-1); 



THEORETICAL STUDY OF MICROBUBBLE DYNAMICS 

8 
 

  
%--- Shell pressure --- 
%--- Exponential shell model --- 
x0= 1/8; eg= exp(-x/x0);  % Stiffness 
x1= 1/4; en= exp(-x/x1);  % Viscosity 
qs  = -12*( gs*x0*(1-eg) + ns   *en.*dx); 
dqs1= -12*( gs*eg        - ns/x1*en.*dx); 
dqs2= -12*ns*en; 
%--- Pressure at bubble wall --- 
qL =-4*nL*dx./(1+x)    +  qs + qg; 
q1 = 4*nL*dx./(1+x).^2 +dqs1 +dqg; 
q2 =-4*nL* 1./(1+x)    +dqs2; 
return 

 

 

 

 

 

 

 

 


