Contents

1	Introduction.	1
	1.1 Context.	1
	1.2 Motivation and objectives.	3
	1.3 Structure.	6
2	Optical access networks.	9
	2.1 Access networks overview.	9
	2.1.1 Future services and network requirements.	9
	2.1.2 Legacy infrastructures and technologies.	11
	2.1.3 Optical access networks.	16
	2.1.4 Passive optical networks: architecture description.	19
	2.1.5 Multiple access techniques in PONs: TDM- and WDM- PONs.	21
	2.2 Enabling technologies and challenges for a large scale deployment of WDM-PONs.	25
	2.2.1 CWDM-PONs based on spectrum sliced optical broadband sources.	26
	2.2.2 DWDM-PONs based on the centralization of coherent light sources.	28
	2.2.3 Network reconfigurability.	32
	2.2.4 Radio over fiber technology for wired and wireless service convergence in WDM-PONs.	33
	2.2.5 Subcarrier multiplexing technique to increase the bandwidth utilization in WDM-PONs.	37
	2.3 Summary.	38
	2.4 References.	40
3	Fundamental transmission features and limitations in fiber- based optical communication links.	47
	3.1 Introduction.	47
	3.2 Theoretical description of the transmission architecture over SMF links.	48
	3.3. Impact of fiber chromatic dispersion in third communication	55

band.

4

3.3.1 Description of the chromatic dispersion mechanism.	55		
3.3.2 Transmission limitations inherent to the optical modulation format.	56		
3.3.3 Typical strategies to reduce the impact of fiber chromatic dispersion.	60		
3.3.4 Transmission limitations due to the spectral characteristics of the source.	62		
3.4 Transmission over MMF links: impact of modal dispersion.	67		
3.4.1 Description of the modal dispersion mechanism.	67		
3.4.2 Transmission limitations for coherent sources.	70		
3.4.3 Transmission limitations employing broadband sources.	71		
3.5 Summary.	72		
3.6 References.	75		
Chromatic dispersion-tolerant optical transmission systems based on optical broadband sources and Mach-Zehnder interferometers.			
4.1 Optical transmission system adapted to RoF signals transport.	79		
4.1.1 Theoretical description of the transmission architecture.	80		
4.1.2 Experimental characterization for transmission of DSB-AM carriers.	86		
4.1.3 Comparison between the first and second system configuration.	92		
4.1.4 Effect of the third order dispersion parameter.	94		
4.1.5 Experimental evaluation of the transmission performance in SMF links.	96		
4.1.6 Employment of MMF links.	98		
4.2 CWDM transport of RoF signals using spectrum sliced OBSs.			
4.2.1 Description of the network architecture.	102		
4.2.2 Experimental characterization.	103		
4.2.3 Experimental evaluation of the network performance.	106		
4.2.4 Employment of phase modulation of the optical broadband source.	109		
4.2.5 Photonic suppression of non-linear distortion and all-optical frequency generation and up-conversion.	114		
4.3 Full-duplex reconfigurable CWDM optical access network for	119		

	wireless and wired service convergence.	
	4.3.1 Description of the network architecture.	119
	4.3.2 Experimental characterization and performance evaluation.	121
	4.4 Summary.	125
	4.5 References.	127
5	Light sources centralized full-duplex optical transmission architectures based on the PoIMUX technique.	131
	5.1 Introduction: historical background and applications.	131
	5.2. Light sources centralized full-duplex optical transmission system based on the PoIMUX technique.	134
	5.2.1 Description of the transmission architecture and principle of operation.	134
	5.2.2 Experimental characterization.	137
	5.2.3 Experimental evaluation of the system performance.	140
	5.3 Reconfigurable WDM optical access network using the PolMUX technique.	146
	5.3.1 Description of the network architecture.	147
	5.3.2 Experimental characterization.	149
	5.3.3 Experimental evaluation of the network performance.	153
	5.4 Summary.	157
	5.5 References.	159
6	Conclusions and future prospects.	163
	6.1 Conclusions	163
	6.1.1 Converged signal transmission using optical broadband sources.	164
	6.1.2 High capacity bidirectional signal transmission using the PoIMUX technique.	166
	6.2. Future prospects.	167
I	Index of figures.	169
II	Index of tables.	177
ш	List of acronyms.	179
IV	List of publications.	183