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RESUMEN ESPAÑOL

Luis A. Ricarte

Esta tesis doctoral está dedicada a investigar el problema de establecer

conexiones entre la teoŕıa de dominios y la teoŕıa de los espacios métricos

difusos (Fuzzy), en el sentido de Kramosil y Michalek, a través de la noción

de bola formal, construyendo modelos topológicos y computacionales para

espacios métricos (completos) difusos.

Los antecedentes de esta investigación son, principalmente, los conocidos

art́ıculos de A. Edalat y R. Heckmann [A computational model for met-

ricspaces, Theoretical Computer Science 193 (1998), 53-73] y R. Heckmann

[Approximation of metricspaces by partial metric spaces, Applied Categori-

cal Structures 7 (1999), 71-83], donde los autores obtuvieron enlaces directos

entre la teoŕıa de dominios y la teoŕıa de los espacios métricos -dos herramien-

tas cruciales en el estudio de las semánticas denotacionales- utilizando bolas

formales.

Puesto que cada métrica induce una métrica difusa (la llamada métrica

difusa estándar), el problema de extender los resultados de Edalat y Heck-

mann al problema difuso surge de manera natural.

En nuestro estudio proponemos esencialmente dos aproximaciones difer-

entes. Para la primera, válida para aquellos espacios métricos difusos cuya

t-norma continua es el mı́nimo, introducimos una nueva noción de com-

pletitud de un espacio métrico difuso, que nos permite construir un modelo

(topológico) que incluye la teoŕıa clásica como un caso particular. La se-

gunda, válida para aquellos espacios métricos difusos cuya t-norma continua

sea mayor o igual que la t-norma de Lukasiewicz, nos permite construir, entre

otros resultados satisfactorios, un espacio casi-métrico difuso en el dominio

continuo de las bolas formales, cuya restricción del conjunto de elementos

maximales es isométrica al espacio métrico difuso dado. Aśı obtenemos un

modelo computacional para los espacios métricos difusos completos.

ix



Asimismo probamos algunos nuevos teoremas de punto fijo en espacios

métricos difusos completos con versiones para el caso intuicionista y el caso

ordenado, respectivamente.

Finalmente, discutimos el problema de extender los resultados obtenidos

al problema asimétrico.
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RESUMEN VALENCIANO

Luis A. Ricarte Moreno

Esta tesi doctoral està dedicada a investigar el problema d’establir con-

nexions entre la teoria de dominis i la teoria dels espais mètrics difusos

(Fuzzy), en el sentit de Kramosil i Michalek, mitjançant la noció de bola

formal, construint models topològics i computacionals per a espais mètrics

(complets) difusos.

Els antecedents d’esta investigació són, principalment, els coneguts arti-

cles de A. Edalat i R. Heckmann [A computational model for metric spaces,

Theoretical Computer Science 193 (1998), 53-73] i R. Heckmann [Approxima-

tion of metric spaces by partial metric spaces, Applied Categorical Structures

7 (1999), 71-83], on els autors obtingueren enllaços directes entre la teoria de

dominis i la teoria dels espais mètrics -dues ferramentes crucials en l’estudi

de les semàntiques denotacionals- utilitzant boles formals.

Ja que cada mètrica indüıx una mètrica difusa (l’anomenada mètrica

difusa estàndard), el problema d’extendre els resultats d’ Edalat i Heckmann

al problema difuso sorgix de manera natural.

Al nostre estudi proposem, essencialment dues aproximacions diferents.

Per a la primera, vàlida per aquells espais mètrics difusos quan una t-norma

cont́ınua és el mı́nim, introdüım una nova noció d’un espai mètric difús com-

plet, que ens permet construir un model (topològic) que inclou la teoria

clàssica com un cas particular. La segona, vàlida per aquells espais mètrics

difusos quan una t-norma cont́ınua siga major o igual que la t-norma de

Lukasiewicz, ens permet construir, entre altres resultats satisfactoris, un es-

pai quasi-mètric difús en el domini continu de les boles formals, ja que la

restricció del conjunt d’elements maximals és isomètrica a l’espai mètric difús

donat. Aix́ı obtenim un model computacional per als espais mètrics difusos

complets.

xi



Aix́ı mateix probarem alguns nous teoremes de punt fixe en espais mètrics

complets amb versions per al cas intüıcionista i el cas ordenat, respectiva-

ment.

Finalment, discutim el problema d’estendre els resultats obtinguts al

problema asimètric.
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RESUMEN INGLES

Luis A. Ricarte

This doctoral thesis is devoted to investigate the problem of establishing

connections between Domain Theory and the theory of fuzzy metric spaces, in

the sense of Kramosil and Michalek, by means of the notion of a formal ball,

and then constructing topological and computational models for (complete)

fuzzy metric spaces.

The antecedents of this research are mainly the well-known articles of A.

Edalat and R. Heckmann [A computational model for metric spaces, Theoret-

ical Computer Science 193 (1998), 53-73], and R. Heckmann [Approximation

of metric spaces by partial metric spaces, Applied Categorical Structures 7

(1999), 71-83], where the authors obtained nice and direct links between Do-

main Theory and the theory of metric spaces - two crucial tools in the study

of denotational semantics - by using formal balls.

Since every metric induces a fuzzy metric (the so-called standard fuzzy

metric), the problem of extending Edalat and Heckmann’s works to the fuzzy

framework arises in a natural way.

In our study we essentially propose two different approaches. For the

first one, valid for those fuzzy metric spaces whose continuous t-norm is

the minimum, we introduce a new notion of fuzzy metric completeness (the

so-called standard completeness) that allows us to construct a (topological)

model that includes the classical theory as a special case. The second one,

valid for those fuzzy metric spaces whose continuous t-norm is greater or

equal than the Lukasiewicz t-norm, allows us to construct, among other

satisfactory results, a fuzzy quasi-metric on the continuous domain of formal

balls whose restriction to the set of maximal elements is isometric to the

given fuzzy metric. Thus we obtain a computational model for complete

fuzzy metric spaces.

xiii



We also prove some new fixed point theorems in complete fuzzy metric

spaces with versions to the intuitionistic case and the ordered case, respec-

tively.

Finally, we discuss the problem of extending the obtained results to the

asymmetric framework.
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Chapter 1

General Introduction, and

Preliminaries

1.1 General Introduction

The origin of Domain Theory is in the work of Danna Scott in the late

1960s, who used partially ordered structures on function spaces to the study

of denotational semantics for programming languages, in joint paper with

Christopher Strachey ([74]). From then, various authors have developed the

mathematical theory of domains (see, for instance, [2, 25, 75, 26]).

Since metric spaces also provide an efficient tool in the study of deno-

tational semantics (see e.g. [10]), several mathematicians have investigated

the natural problem of establishing links between metric spaces, and other

topological structures, and Domain Theory.

In this direction, an important first result was obtained by Lawson who

characterized in [44] Polish spaces (i.e., complete separable metric spaces)

in terms of ω-domains (see Chapter 2 for the notion of an ω-domain). It is

interesting to recall that, previously, Edalat ([18, 19]) constructed domain

theoretic models for metrizable locally compact spaces, and applied such

3



4 Chapter 1. General Introduction, and Preliminaries

constructions to dynamical systems, measures, iterated functions systems,

and fractals.

In their celebrated paper [20], Edalat and Heckmann presented nice, di-

rect and very visual connections between Domain Theory and the theory of

metric spaces by using the notion of a (closed) formal ball. In this way, they

proved, among other interesting results, that a metric space is complete if

and only if its poset of formal balls is a domain, and constructed a topological

model in the sense of Martin (see Chapter 2) for any complete metric space.

Later on, Heckmann ([36]) constructed a suitable bicomplete quasi-metric

on the domain of formal balls of a complete metric space which provides an

efficient computational model for metric spaces.

Further contributions to the construction of models for metric spaces and

other related structures by using domains may be found in [5, 21, 26, 41, 61,

62, 63, 66, 67, 68, 71, 78, 79].

Motivated on the one hand by the researches about the construction

of models for metric spaces and other related structures via domains cited

above, and on the other hand by the well-known fact that every metric on

a set induces in a natural way a fuzzy metric in the sense of Kramosil and

Michalek (see Chapter 2 for details), we shall investigate the problem of es-

tablishing relationships between the theory of (complete) fuzzy metric spaces

and Domain Theory.

Thus, in Section 1.2 of this chapter we recall some basic properties and

facts about fuzzy sets and fuzzy logic, and their origins.

In Chapter 2 we recall several pertinent concepts and properties on fuzzy

metric spaces and Domain Theory which will be useful in the rest of the

thesis.

Chapters 3 and 4 are devoted to study (complete) fuzzy metric spaces

from a domain theoretic approach. In Chapter 3 this is done taking as the

starting point the construction of the standard fuzzy metric of a given metric
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space. The domain of formal balls constructed in this way is characterized

by using a more general notion of fuzzy completeness, called standard fuzzy

completeness. This approach, which is valid for those fuzzy metric spaces

whose continuous t-norm is the minimum, allows us to deduce the classical

theory of Edalat and Heckmann as a special case.

In Chapter 4 we adapt to the fuzzy setting the poset structure given in

[20]. This approach is valid for those fuzzy metric spaces whose continu-

ous t-norm is greater or equal than the Lukasiewicz t-norm, and allows us

to construct, among other satisfactory results, a fuzzy quasi-metric on the

domain of formal balls whose restriction to the set of maximal elements is

isometric to the given fuzzy metric. Thus we obtain a computational model

for complete fuzzy metric spaces.

Chapter 5 deals with fixed point theorems in fuzzy metric spaces. Thus,

in Section 5.2 we obtain two fixed point theorems for a kind of ϕ -contractive

mappings on complete fuzzy metric spaces from which we easily deduce, in

Section 5.3, fixed point results for complete intuitionistic fuzzy metric spaces.

Such results improve in several directions the main fixed point theorem of

[38], and also provide a simplified proof of it. Finally, in Section 5.4 we

present a version for ordered complete fuzzy metric spaces of the main fixed

point theorem obtained in Section 5.2.

In Chapter 6 we explore the extension of the results obtained in Chapters

3, 4 and 5, to the context of fuzzy quasi-metric spaces.

1.2 Preliminaries

Everything is vague to a degree you do not realize till you have tried to make

it precise (Bertrand Russell).

In 1942 the austrian mathematician Karl Menger, while serving as a pro-

fessor at the University of Notre Dame in Chicago, introduced the concept
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of probabilistic metric space. Given a set X, Menger proposed to associate

a distribution function Fxy such that for each pair of elements x, y of X and

each t, Fxy(t) is a number belonging to the interval [0, 1].

It was interpreted as the probability that the distance between x and y

is less than t. Thus, he achieved some flexility in determining which points

belongs to a set: the degree of belonging is established by the distribution

function.

In the following years this concept was advanced in trying to generalize

the situations where there is no certainty that an item belongs to a set.

Likelihood function is passed to a situation known as fuzzy uncertainty.

Kramosil and Michalek ([42]) successfully reformulated probablistic met-

ric spaces in the fuzzy setting, introducing their celebrated notion of a fuzzy

metric space (see Chapter 2) which will be used in this thesis.

The concept of fuzzy logic was introduced by the azerbaijan professor of

the University of California at Berkley, Lotfi Zadeh, in an article published

in 1965 and titled “Fuzzy Sets”. Zadeh proposed in this work the concept

partial membership, or in other words, the existence of a certain degree of

membership of an element to a set.

The next comments are based on:

http://www.calvin.edu/˜pribeiro/othrlnks/Fuzzy/home.htm

and on the work of Prof. Ma José Gacto, Teoŕıa de Sistemas, Control de

Sistemas y Sistemas Inteligentes.

Although at the beginning of the introduction of fuzzy concepts the un-

derlying mathematics where not fully developed, and fuzzy logic was only

partially well accepted, especially in academic groups, it was recognized as

a very natural way of thinking and processing information, and applications

started to be developed.

To understand the objections made to fuzzy logic in its early days, it

is interesting to review some quotes from those days. Thus, and according
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to Professor William Kahan UC Berkeley (colleague of Lotfi Zadeh at UC

Berkeley) :

“Fuzzy theory is wrong, wrong, and pernicious. What we need is more

logical thinking, not less. The danger of fuzzy logic is that it will encourage

the sort of imprecise thinking that has brought us so much trouble. Fuzzy

logic is the cocaine of science.”

According to Professor Rudolf Kalman, University of Florida:

“Fuzzification is a kind of scientific permissiveness. It tends to result in

socially appealing slogans unaccompanied by the discipline of hard scientific

work and patient observation”

and according to Professor Myron Tribus, on hearing of the fuzzy-logic con-

trol of the Sendai subway system IEEE Institute:

“Fuzziness is probability in disguise. I can design a controller with prob-

ability that could do the same thing that you could do with fuzzy logic.” .

To understand the concept behind the Fuzzy Logic the following text from

http://www.calvin.edu/˜pribeiro/othrlnks/Fuzzy/home.htm is very appro-

priate:

“The way that people think is inherently fuzzy. The way that we perceive

the world is continually changing and cannot always be defined in true or

false statements. Take for example the set of all the apples and all the apple

cores in the world. Now take one of those apples; it belongs to the set of all

apples. Now take a bite out of that apple; it is still an apple right? If so,

it still belongs to the set of apples. After several more bites have been taken

and you are left with an apple core and it belongs to the set of apple cores.

At what point did the apple cross over from being an apple to being an apple

core? What if you could get one more bite out of that apple core, does that

move it into a different set?

The definition of the apple and apple core sets are too strictly defined

when looking at the process of eating an apple. The area between the two sets



8 Chapter 1. General Introduction, and Preliminaries

is not clearly defined since the object cannot belong to the set of apples and

apple cores because, by definition, an apple core is NOT an apple. The sets

defining apples and apple cores need to be redefined as fuzzy sets.

A fuzzy set allows for its members to have degrees of membership. If

the value of 1 is assigned to objects entirely within the set and a 0 is as-

signed to objects outside of the set, then any object partially in the set will

have a value between 0 and 1. The number assigned to the object is called

its degree of membership in the set. So an apple with one bite out of it

may have a degree of membership of 0.9 in the set of apples. This does not

mean that it has to have a degree of membership of 0.1 in the set of ap-

ple cores though. However as the apple is eaten it looses its membership in

the fuzzy set of apples and gains membership in the fuzzy set of apple cores.”

Fuzzy Sets:

In mathematics a set, by definition, is a collection of things that belong

to some definition. Any item either belongs to that set or does not belong

to that set. Let us look at another example: The set of tall men. We shall

say that people taller than or equal to 182 cm are tall. This set can be

represented graphically as follows:

The function shown above describes the membership of the ’tall’ set, you

are either in it or you are not in it. This sharp edged membership functions
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works nicely for binary operations and mathematics, but it does not work

as nicely in describing the real world. The membership function makes no

distinction between somebody who is 185 cm and someone who is 210 cm,

they are both simply tall. Clearly there is a significant difference between

the two heights. The other side of this lack of distinction is the difference

between a 180 cm and 182 cm man. This is only a difference of two cm,

however this membership function just says one is tall and the other is not

tall.

The fuzzy set approach to the set of tall men provides a much better

representation of the tallness of a person. The set, shown below, is defined

by a continuously inclining function.

The membership function defines the fuzzy set for the possible values

underneath of it on the horizontal axis. The vertical axis, on a scale of 0

to 1, provides the membership value of the height in the fuzzy set. So for

the two people shown above the first person has a membership of 0.3 and so

is not very tall. The second person has a membership of 0.95 and so he is

definitely tall. He does not, however, belong to the set of tall men in the way

that bivalent sets work; he has a high degree of membership in the fuzzy set

of tall men.

Fuzzy logic was developed in order to make judgments, reasoning, rep-

resentations, etc., based on inaccurate, vague knowledge, expressed with

variables that are excerpts from the natural speech. The following briefly
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introduce the main concepts of logic and fuzzy sets.

One of the first concept is that of the fuzzy set. For example, a clear

set (classic) A might be: Real numbers belonging to the interval X = [1, 4]

which values are between 2 and 3. In this case the characteristic function or

membership function µA : X → {0, 1} of the set A is:

In this case is perfectly clear what the function A means and there is not

any difficulty to understand its behaviour because we are using just numbers

with no relation to the real life. However, if we change the example, and talk,

for instance, about the set of the people considered young, then everything

change. Let’s have a look to this set using a clear set. The membership

function might be:

µB(x) =

{
1 if x ≤ 30

0 if x > 30

That mens that a 29 years old man should be considered young, but

another one 31 years old shouldn’t. Let’s consider now a fuzzy set B formed

by the age of a young person. In this case, the characteristic function of the

set might be:

µB : X → [0, 1]

where
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µB(x) =


1 if 0 ≤ x ≤ 20

40− x/20 if 20 < x ≤ 40

0 if 40 < x

The following chart shows the membership function µB

In this case µB(19) = 1, i.e. a young 19 years old man belongs completely

to the set of young people; but for example a 35 years old man has a mem-

bership degree equal to µB(30) = 0, 5 what could be interpreted saying that

is quite young but starts its maturity.

Let’s a have look to the the definition of a Fuzzy Set established by Lofti

A. Zadeh in his famous paper “Fuzzy sets”, Information and Control 8 (1965),

338-353.

Let X be a space of points, with a generic element of X denoted by x.

A fuzzy set A in X is characterized by a membership function fA(x) which

associates with each point in X a real number in the interval [0, 1], with the

values of fA(x) at x representing the ”grade of membership” of x in A. Thus,

the nearer the value of fA(x) to unity, the higher the grade of membership

of x in A.

Some examples of fuzzy sets could be:

A) Set of all trains crossing near a certain road.

B) Set of real numbers close to 1.



12 Chapter 1. General Introduction, and Preliminaries

C) Set of elderly people.

D) Set of supreme quality bottled wines.

Membership functions for fuzzy sets can be defined in any number of ways

as long as they follow the rules of the definition of a fuzzy set. The shape of

the membership function used defines the fuzzy set and so the decision on

which type to use is dependant on the purpose. The membership function

choice is the subjective aspect of fuzzy logic, it allows the desired values to

be interpreted appropriately.

[see http://www.dma.fi.upm.es/java/fuzzy/fuzzyinf/funpert en.htm]

Some of the most common membership functions are as follows:

• Triangular function: defined by a lower limit a, an upper limit b, and

a value m, where a < m < b:

µ(x) =


0 if x ≤ a

(x− a)/(m− a) if a < x ≤ m

(b− x)/(b−m) if m < x < b

0 if x ≥ b
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• Trapezoidal function: defined by a lower limit a, an upper limit d, a

lower support limit b, and an upper support limit c, where a < b < c <

d:

µ(x) =


0 if (x < a) or (x > d)

(x− a)/(b− a) if a ≤ x ≤ b

1 if b ≤ x ≤ c

(d− x)/(d− c) if c ≤ x ≤ d

There are two special cases of a trapezoidal function, which are called

R-functions and L-functions.

• Trapezoidal R-function: with parameters a = b = −∞

µ(x) =


0 if x > d

(d− x)/(d− c) if c ≤ x ≤ d

1 if x < c
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• Trapezoidal L-function: with parameters c = d = +∞

µ(x) =


0 if x < a

(x− a)/(b− a) if a ≤ x ≤ b

1 if x > b

• Gaussian function: defined by a central value m and a standard devi-

ation k > 0. The smaller k is, the narrower the ”bell”:
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µ(x) = e−
(x−m)2

2k2

The main properties that characterize a fuzzy set is listed below:

• Support: set of elements whose degree of membership is nonzero:

Support(A) = {x | µA(x) > 0, x ∈ X}

• Height: higher degree of membership of an element:

Height(A) = max {h | h = µA(x), x ∈ X}

• Kernel (Maximal Elements): set of all elements whose membership

degree equals to 1:

Kernel(A) = {x | µA(x) = 1, x ∈ X}

• Normal fuzzy set: every fuzzy set whose Height equals to 1.
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• Convex fuzzy set:

µA (λx+ (1− λ) y) ≥ min (µA(x), µB(y)) ,

where x, y ∈ X and λ ∈ [0, 1].

Relations and Operations in Fuzzy Sets:

A relationship between classic sets may be considered a set of n-tuples

that satisfy a certain condition: for example, considering the condition ”greater

than” between the elements of two classic sets, this relationship would include

all pairs of elements from both sets that satisfy the condition:

“Greater than” = {(x, y) | x ≥ y, x ∈ A, y ∈ B}

A relationship between fuzzy sets is a fuzzy subset of the cartesian product

of the two sets which includes all those elements that satisfy the condition in

some degree. For example, if we consider the ratio R = ”near to”, we have:

A = {1, 2, 3, 4}

R : A× A→ µR =


1 if x = y

0, 9 if |x− y| = 1

0, 7 if |x− y| = 2

0, 3 if |x− y| = 3
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Operations with fuzzy sets are an application of operations to fuzzy logic.

For example, we may list the following for every x ∈ X:

• Equality:

A = B ⇔ µA(x) = µB(x).

• Inclusion:

A ⊆ B ⇔ µA(x) ≤ µB(x).

• Union:

µA∪B = max (µA(x), µB(x)) .

• Intersection:

µA∩B = min (µA(x), µB(x)) .

There are generalizations of those operations to be used in the subsequent

mathematical development:
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• T-norm: generalizes the concept of fuzzy sets intersection:

T : [0, 1]× [0, 1]→ [0, 1] | µA∩B = T (µA(x), µB(x))

And satisfies the following properties:

i) Commutativity: T (a, b) = T (b, a)

ii) Associativity: T (a, T (b, c)) = T (T (a, b), c)

iii) Monotonicity: T (a, b) ≥ T (b, c) if a ≥ c and b ≥ d

iv) Identity element: T (a, 1) = a

Examples of t-norms:

• Standard intersection (Minimum t-norm or Gödel t-norm):

T (a, b) = min {a, b}
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• Product t-norm:

T (a, b) = a · b

• Bounded difference (Lukasiewicz t-norm):

T (a, b) = max {0, a+ b− 1}
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• Drastic t-norm:

T (a, b) =


b if a = 1

a if b = 1

0 otherwise
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• T-conorm (also called s-norm): generalizes the concept of fuzzy sets

intersection:

S : [0, 1]× [0, 1]→ [0, 1] | µA∪B = S (µA(x), µB(x))

And satisfies the following properties:

i) Commutativity: S(a, b) = S(b, a)

ii) Associativity: S (a, S(b, c)) = S (S(a, b), c)

iii) Monotonicity: S(a, b) ≤ S(b, c) if a ≤ c and b ≤ d

iv) Identity element: S(a, 0) = a

Examples of t-conorms:

• Maximum t-conorm (dual to the minimum t-norm):
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S(a, b) = max {a, b}

• Probabilistic sum (dual to the product t-norm):

S(a, b) = a+ b− a · b
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• Bounded sum (dual to the Lukasiewicz t-norm):

S(a, b) = min {0, a+ b− 1}
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• Drastic t-conorm:

S(a, b) =


b if a = 0

a if b = 0

0 otherwise

Linguistic Variables, Fuzzy Variables and Fuzzy Rules:

In papers published in 1973 and 1975, Professor Zadeh introduced the

concept of linguistic variable and fuzzy variable, while he was developing its

application in engineering.

The linguistic variables are variables whose possible values are linguistic

terms that become determined by fuzzy sets. They have the property to

provide a gradual transition between states, and due to the way they are

defined are much better for working with situations of uncertainty that the

crisp variables.
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A linguistic variable is defined by a set of parameters that can be described

as follows:

(V, T,X,G,M)

where

V : Variable name.

T : Set of linguistic terms.

X: Universe of discourse.

G: syntactic rule for generating linguistic terms.

M: semantic rule which associates with each linguistic term t its meaning

m(t), where m(t) is a fuzzy set in X.

The following diagram shows the elements of a linguistic variable:

Along with the linguistic variables is frequent the use of linguistic modi-

fiers. A linguistic modifier is a unitary operator h : [0, 1]→ [0, 1] applied to a

fuzzy set -no sense in a crisp set- to introduce a nuance like ”very”, ”much”,

”pretty”, etc.

The linguistic modifier is usually associated with a function to handle it
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within the fuzzy system. For example, some common associations are:

”Very” → h(a) = a2, where a ∈ [0, 1]

”More or less” → h(a) =
√
a, where a ∈ [0, 1]

In general, if h(a) < a to the modifier h is applied the adjective of strong

modifier. In the opposite case the switch is known as weak modifier.

Modifiers satisfy the following properties:

• h(0) = 0 and h(1) = 1

• h is a continuous function

• If h is strong then h−1 is weak

• Any composition of two modifiers is a new modifier

A similar concept of linguistic variable is the fuzzy variable. The fuzzy

variables take as values elements of fuzzy sets, but do not have associated

linguistic terms.

Fuzzy Logic Applied to the Control Systems:

The first theoretical developments of fuzzy logic were clearly geared to

solving the generic problem of control systems. These developments began to

be implemented in the mid-70s, when computer technology reached a certain

degree of maturity. Professor Zadeh proposed the implementation of control

systems based on the same paradigm with which a person acts: usually does

not require a completely accurate information, numerical, and yet is able to

present a high degree of adaptation in the control tasks. Translating that

principle, if the control systems are developed so that they are prepared

to work with inaccurate information will then be much more effective than

classical systems.
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In a way it is the same idea in the basis of technological development

that underlies the Internet, which begins to take shape in the late 60’s, and

consists of a communication protocol designed to operate in an imperfect en-

vironment, noisy, even with a number of nodes totally or partially damaged.

The network elements works under the premise of ”best can do”: when they

receive a packet, analyzes the source and destination addresses and forwarded

by the most appropriate interface based on these directions and the network

status. Thus, all nodes cooperate to the correct flow of messages, but the

action of each alone is very limited and can be replaced by the operation of

another.

In this context, fuzzy logic is a control systems methodology that provides

an easy way to reach a conclusion based on inaccurate, ambiguous, vague or

incomplete information. Fuzzy Logic Control addresses the problems mim-

icking the way a person solves small problems and make decisions.

Fuzzy Logic incorporates a rule IF X AND Y THEN Z to the problem

of control systems. The goal is to be based more on the experience that

an operator can have about the performance of a system than on precise

knowledge of the design, architecture or operating parameters.

For example, if it comes to controlling the temperature, instead of intro-

ducing clauses such T = 80, T > 60 T > 20 There are used these other:

IF (”The system is cold”) AND (”The system is increasingly cold”) THEN

(”Increase temperature”)

These terms are vague yet perfectly descriptive of what is happening and

therefore very suitable for decision making.

Applied Control Systems Fuzzy Logic:

Control Systems Fuzzy Logic are very robust since they do not require

accurate free from interference information and are easily adaptable to stop

or malfunction of one or more sensors, in a similar manner as the Internet to
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the fall of one or more nodes.

Allow easy modification of the control rules, since these rules are based

on user and machine behavior. For the same reason it is possible to easily

add or remove sensors.

They support general purpose and affordable sensors in many cases, since

no accurate system specific parameters or precise measurements are required.

Also, they allow more input rules and output responses.

They are suitable for nonlinear systems or systems that can not be mod-

eled mathematically, which opens a door to the control of systems that have

not traditionally been used in automation.

But how is applied in practice to fuzzy logic control systems? Here are

the basic steps of this implementation:

1. Define the objectives and criteria of the control system in terms of

questions like what system we want to control? What should I do to control

the system? What kind of answers I need? What are the possible situations

of system failure?

2. Identify relationships between inputs and outputs and select the set of

fuzzy variables (usually error conditions and degrees of change in the error

conditions).

3. Divide the control problem into a series of rules of the type IF X AND

Y THEN Z, that define the desired response based on a series of preset input

conditions.

4. Create the membership functions of fuzzy logic to define the meaning

of input and output terms used in the rules.

These terms are vague yet perfectly descriptive of what is happening and

therefore very suitable for decision making.
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Background

2.1 Fuzzy metric and fuzzy quasi-metric spaces

In this section we recall several notions and properties from the theory of

quasi-metric spaces and fuzzy (quasi-)metric spaces that will be useful later

on.

Throughout this work the letters R,R+, ω and N will denote the set of

real numbers, the set of nonnegative real numbers, the set of nonnegative

integer numbers and the set of positive integer numbers, respectively.

Our basic references for quasi-metric spaces are [22] and [43].

Following the modern terminology, a quasi-metric space is a pair (X, d)

such that X is a set and d is a function from X ×X to R+ such that for all

x, y, z ∈ X :

(i) x = y if and only if d(x, y) = d(y, x) = 0;

(ii) d(x, z) ≤ d(x, y) + d(y, z).

If (X, d) is a quasi-metric space, we say that d is a quasi-metric on X.

Given a quasi-metric d on X, the function d−1 defined on X × X by

d−1(x, y) = d(y, x), is also a quasi-metric on X, called the conjugate of d,

29
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and the function ds defined on X ×X by ds(x, y) = max{d(x, y), d−1(x, y)}
is a metric on X.

A quasi-metric space (X, d) is said to be bicomplete if (X, ds) is a complete

metric space. In this case, we say that d is a bicomplete quasi-metric on X.

Each quasi-metric d on X induces a T0 topology τd onX which has

as a base the family of open balls {Bd(x, ε) : x ∈ X, ε > 0}, where

Bd(x, ε) = {y ∈ X : d(x, y) < ε} for all x ∈ X and ε > 0.

Several authors have investigated the question of obtaining a suitable

notion of fuzzy metric spaces and various different definitions have been

proposed and discussed.

Here we shall use a slight modification of the notion of fuzzy metric space

as defined by Kramosil and Michalek in [42]. This notion, which is closely

related with the notion of a Menger space, has the advantage that induces,

in a natural way, a metrizable topology in the classical sense.

We need the following notion.

Definition 2.1 ([72, 73]). A binary operation ∗ : [0, 1]2 → [0, 1] is called

a continuous t-norm if: (i) ∗ is associative and commutative; (ii) ∗ is contin-

uous; (iii) a ∗ 1 = a for all a ∈ [0, 1]; and (iv) a ∗ b ≤ c ∗ d whenever a ≤ c

and b ≤ d.

Typical instances of continuous t-norm are ∧, · and ∗L, where, for all

a, b ∈ [0, 1], a ∧ b = min{a, b}, a · b = ab, and ∗L is the Lukasiewicz t-norm

defined by a ∗L b = max{a+ b− 1, 0}.

It is easy to check that ∗L ≤ · ≤ ∧. In fact ∗ ≤ ∧ for all continuous

t-norms ∗.



2.1. Fuzzy metric and fuzzy quasi-metric spaces 31

Definition 2.2 (compare [42]). A fuzzy metric space is a triple (X,M, ∗)
such that ∗ is a continuous t-norm and M is a fuzzy set in X ×X ×R+ (i.e.,

M is a function from X ×X × R+ to [0, 1]) such that for all x, y, z ∈ X :

(i) M(x, y, 0) = 0;

(ii) x = y if and only if M(x, y, t) = 1 for all t > 0;

(iii) M(x, y, t) = M(y, x, t);

(iv) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) for all t, s ≥ 0;

(v) M(x, y, ) : R+ → [0, 1] is left continuous.

If (X,M, ∗) is a fuzzy metric space, we say that the pair (M, ∗) is a fuzzy

metric on X.

Remark 2.3. The original notion of a fuzzy metric space given by

Kramosil and Michalek in [42], includes the condition limt→+∞M(x, y, t) = 1

for all x, y ∈ X. However, this condition will be not necessary in our context.

Remark 2.4. George and Veeramani introduced in [23] (see also [24]) a

stronger but interesting notion of fuzzy metric space which will not be dis-

cussed in this thesis.

It is well known, and easy to see, that for each x, y ∈ X, M(x, y, ) is a

nondecreasing function on R+.

We also recall that each fuzzy metric (M, ∗) on a set X induces a topology

τM on X which has a base the family of open balls {BM(x, ε, t) : x ∈ X,

ε ∈ (0, 1), t > 0}, where BM(x, ε, t) = {y ∈ X : M(x, y, t) > 1− ε}.

It immediately follows the useful fact that a sequence (xn)n in a fuzzy

metric space (X,M, ∗) converges to x ∈ X, with respect to τM , if and only

if limn→∞M(x, xn, t) = 1 for all t > 0.
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Definition 2.5 ([24, 72, 73]). Let (X,M, ∗) be a fuzzy metric space.

a) A sequence (xn)n in X is said to be a Cauchy sequence if for each

t > 0 and ε ∈ (0, 1) there exists n0 ∈ N such that M(xn, xm, t) > 1 − ε for

all n,m ≥ n0.

b) (X,M, ∗) is said to be complete if every Cauchy sequence converges

with respect to τM .

It is well known (see e.g. [31, 72, 73]) every fuzzy metric space (X,M, ∗)
is metrizable, i.e., there exists a metric d on X whose induced topology

coincides with τM .

The following two well-known examples show that the converse is also

true, i.e., every metrizable topological space (X, τ) admits a fuzzy metric

whose induced topology coincides with τ.

Example 2.6. Let (X, d) be a metric space. Define M01 : X×X×R+ →
[0, 1] by

M01(x, y, t) = 0 if t ≤ d(x, y), and

M01(x, y, t) = 1 if t > d(x, y).

Then, for each continuous t-norm ∗, (M01, ∗) is a fuzzy metric on X such

that its induced topology τM01 coincides with the topology induced by d.

Moreover (X,M01, ∗) is complete if and only if (X, d) is complete.

Example 2.7. Let (X, d) be a metric space. Define Md : X×X×R+ →
[0, 1] by Md(x, y, 0) = 0 and

Md(x, y, t) =
t

t+ d(x, y)
,

for all t > 0.

Then, for each continuous t-norm ∗, (Md, ∗) is a fuzzy metric on X (in

fact, it is a fuzzy metric in the sense of George and Veeramani) called the
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standard fuzzy metric of (X, d) ([23]). Moreover, the topology τMd
coincides

with the topology induced by d, and (X,Md, ∗) is complete if and only if

(X, d) is complete.

In [32] (see also [14]), Gregori and Romaguera introduced quasi-metric

generalizations of the notions of fuzzy metric space from Kramosil and Michalek,

and by George and Veeramani, respectively. We shall use the following.

Definition 2.8 ([14, 32]). A fuzzy quasi-metric space is a triple (X,M, ∗)
such that ∗ is a continuous t-norm and M is a fuzzy set in X ×X ×R+ such

that for all x, y, z ∈ X :

(i) M(x, y, 0) = 0;

(ii) x = y if and only if M(x, y, t) = M(y, x, t) = 1 for all t > 0;

(iii) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s) for all t, s ≥ 0;

(iv) M(x, y, ) : R+ → [0, 1] is left continuous.

If (X,M, ∗) is a fuzzy quasi-metric space, we say that the pair (M, ∗) is

a fuzzy quasi-metric on X.

As in the fuzzy metric case, if (M, ∗) is a fuzzy quasi-metric on X, then

for each x, y ∈ X, M(x, y, ) is a nondecreasing function on R+.

If (M, ∗) is a fuzzy quasi-metric on X, then (M−1, ∗) is also a fuzzy

quasi-metric on X, where M−1 is the fuzzy set in X × X × R+ defined by

M−1(x, y, t) = M(y, x, t). Moreover (M i, ∗) is a fuzzy metric on X where M i

the fuzzy set inX×X×R+ defined byM i(x, y, t) = min{M(x, y, t),M−1(x, y, t)}
([32]).

A fuzzy quasi-metric space (X,M, ∗) is said to be bicomplete if the fuzzy

metric space (X,M i, ∗) is complete. In this case we say that (M, ∗) is a

bicomplete fuzzy quasi-metric on X.



34 Chapter 2. Background

Similarly to the fuzzy metric case (see [14, 32]), each fuzzy quasi-metric

(M, ∗) on a set X induces a topology τM on X which has a base the family

of open balls {BM(x, ε, t) : x ∈ X, ε ∈ (0, 1), t > 0}, where BM(x, ε, t) =

{y ∈ X : M(x, y, t) > 1− ε}.

It immediately follows that a sequence (xn)n in a fuzzy quasi-metric

space (X,M, ∗) converges to x ∈ X, with respect to τM , if and only if

limn→∞M(x, xn, t) = 1 for all t > 0.

Gregori and Romaguera showed in [32] that every fuzzy quasi-metric

space (X,M, ∗) is quasi-metrizable, i.e., there exists a quasi-metric d on X

whose induced topology coincides with τM .

Conversely, if (X, d) is a quasi-metric space, then (M01, ∗) and (Md, ∗),
defined as in Examples 2.6 and 2.7, respectively, are fuzzy quasi-metrics on X

whose induced topologies coincide with the topology induced by d. Moreover,

bicompleteness of (X, d), (M01, ∗) and (Md, ∗) are equivalent conditions.

We conclude this section by recalling the notion of isometry for fuzzy

(quasi-)metric spaces.

Definition 2.9. Let (X,M, ∗) and (Y,N, ∗′) be two fuzzy (quasi-)metric

spaces. An isometry from (X,M, ∗) to (Y,N, ∗′) is a mapping f : X → Y

such that

N(f(x), f(y), t) = M(x, y, t),

for all x, y ∈ X and t > 0.

If f is an isometry from (X,M, ∗) onto (Y,N, ∗′), we say that (X,M, ∗)
and (Y,N, ∗′) are isometric.
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2.2 Domain Theory

In this section we collect several notions and properties from Domain Theory

that will be useful later on.

Our basic reference for Domain Theory is [26].

Let us recall that a (partial) order on a (nonempty) set X is a binary

relation ≤ on X such that for all x, y, z ∈ X:

(i) x ≤ x for all x ∈ X (reflexivity);

(ii) x ≤ y and y ≤ x imply x = y (antisymmetry);

(iii) x ≤ y and y ≤ z imply x ≤ z (transitivity).

A partially ordered set, or poset for short, is a set L equipped with a

partial order ≤ . It will be denoted in the sequel by (L,≤).

Example 2.10. It is well known that if (X, d) is a quasi-metric space,

then the binary relation ≤d on X given by

x ≤d y ⇐⇒ d(x, y) = 0,

is a partial order on X, which is called the partial order induced by d, or the

order of specialization.

Hence (X,≤d) is a poset.

Example 2.11. If (X,M, ∗) is a fuzzy quasi-metric space, then the

binary relation ≤M on X given by

x ≤M y ⇐⇒M(x, y, t) = 1 for all t > 0,

is a partial order on X, which is called the partial order induced by (M, ∗).

Hence (X,≤M) is a poset.
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Definition 2.12. A subset D of a poset (L,≤) is directed provided that

it is nonempty and every finite subset of D has an upper bound in D (equiv-

alently, if for each a, b ∈ D there is c ∈ D such that a ≤ c and b ≤ c).

A sequence (xn)n in a poset (L,≤) is said to be increasing if xn ≤ xn+1

for all n.

Definition 2.13. A poset (L,≤) is said to be directed complete, and is

called a dcpo, if every directed subset of L has a least upper bound.

The least upper bound of a subset D of (L,≤) is denoted by tD if it

exists. An element x of L is called maximal if condition x ≤ y implies x = y.

The set of all maximal elements of L is denoted by Max((L,≤)), or simply

by Max(L) if no confusion arises.

Definition 2.14. Given a poset (L,≤), we say that x is way-below y, in

symbols x � y, if for each directed subset D of L for which tD exists, the

relation y ≤ tD implies the existence of some z ∈ D with x ≤ z.

Definition 2.15. A poset (L,≤) is called continuous if it satisfies the

axiom of approximation, i.e., for all x ∈ L, the set ⇓ x = {u ∈ L : u� x} is

directed and x = t(⇓ x).

Definition 2.16. A continuous poset which is also a dcpo is called a

continuous domain or, simply, a domain.

A subset B of a poset (L,≤) is a basis for L if for each x ∈ L, the set

⇓ xB = {u ∈ B : u� x} is directed and x = t(⇓ xB).

Recall that a poset has a basis if and only if it is continuous. Therefore,

a dcpo has a basis if and only if it is a domain.
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Definition 2.17. A dcpo having a countable basis is said to be an ω-

continuous domain or simply an ω-domain.

The Scott topology σ(L) of a dcpo (L,≤) is constructed as follows (Chap-

ter II in [26]): A subset U of L is open in the Scott topology provided that:

(i) U =↑ U, where ↑ U = {y ∈ X : x ≤ y for some x ∈ U};

(ii) for each directed subset D of L such that tD ∈ U, it follows that

D ∩ U 6= ∅.

If (L,≤) is a domain, then the sets ⇑ x, x ∈ L, form an open base for

the Scott topology, where ⇑ x = {y ∈ X : x� y} (see Proposition II-1.10 of

[26]).

Furthermore, the Scott topology has a countable base if and only if (L,≤)

is an ω-domain; in this case, if B is a countable basis for (L,≤), then the sets

⇑ x, x ∈ B, is a countable base for the Scott topology (Theorem III-4.5 in

[26]).

In case that (L,≤) is a continuous poset it is possible to show yet that the

sets ⇑ x, x ∈ L, form an open base for a topology on L, which is also called

the Scott topology of (L,≤) and is also denoted by σ(L) (see, for instance,

p. 58 in [20]).

We conclude this chapter with the notions of a topological model and of

a computational model.

Definition 2.18 ([45]). A model for a topological space (X, τ) is a pair

(L, φ) such that L is a domain and φ : X → Max(L) is a homeomorphism,

where Max(L) is endowed with the restriction of the Scott topology of L.
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Definition 2.19 (compare [66]). A computational (or quantitative) model

for a complete metric space (X, d) is a triple (L, q, φ) such that L(= (L,v))

is a domain, q is a bicomplete quasi-metric on L and φ is a map from X into

L such that:

(i) τq = σ(L).

(ii) φ is an isometry from (X, d) into (L, q).

(iii) φ(X) = Max(L).



Chapter 3

A domain theoretic approach

to fuzzy metric spaces based on

the standard fuzzy metric

3.1 Introduction

As we indicated above our main interest is to establish connections between

the theory of fuzzy metric spaces and domain theory. In fact, we are inter-

ested in extending the theory developed by Edalat and Heckmann ([20, 36])

to the fuzzy framework.

Let us recall that a formal ball in a (non-empty) set X is simply a pair

(x, r), with x ∈ X and r ∈ R+.

The set of formal balls of X is the Cartesian product X ×R+ which will

be denoted by BX in the sequel.

Edalat and Heckmann showed in [20] that if (X, d) is a metric space, then

the binary relation vd defined on BX by

(x, r) vd (y, s)⇐⇒ d(x, y) ≤ r − s, (3.1)

39
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for all (x, r), (y, s) ∈ BX, is a partial order.

Moreover, they proved, among other interesting results, that (BX,vd) is

a domain if and only if (X, d) is complete [20, Theorem 6 and Corollary 10].

In order to extending the constructions of Edalat and Heckmann to the

fuzzy metric setting, two initial procedures seem to be quiet natural.

The first one consists in noting that condition (3.1) can be formulated as

(x, r) vd (y, s)⇐⇒ y ∈ Bd(x, r − s),

(where Bd(x, 0) = {x}), and then to adapt this equivalence to the fuzzy

metric context.

The second one consists in noting that condition (3.1) can be formulated

in terms of the standard fuzzy metric (Md,∧) as

(x, r) vd (y, s)⇐⇒Md(x, y, t) ≥ t

t+ r − s
for all t > 0, (3.2)

and then take this equivalence as a starting point to define a possible suitable

partial order on the set of formal balls of any fuzzy metric space.

In this chapter we study this second approach, whereas the first one will

be discussed in Chapter 4.

In fact, we shall show that for any fuzzy metric space of type (X,M,∧),

the binary relation suggested by (3.2), and denoted by vM , is a partial order

on BX. Moreover, we characterize when the poset (BX,vM) is a domain.

This will be done by means of a new notion of fuzzy metric completeness

that generalizes the usual one.

The results in this chapter are contained in the papers by L.A. Ricarte

and S. Romaguera, “The set of formal balls of a complete fuzzy metric space

viewed as a continuous domain” published in the Proceedings of the Work-

shop in Applied Topology WiAT’12 (cf. [56]), and “A domain-theoretic ap-

proach to fuzzy metric spaces”, accepted for publication in Topology and its

Applications (cf. [57]).
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3.2 The poset (BX,vM) of formal balls of a

fuzzy metric space (X,M,∧)

We begin this section with the following notion which is suggested by the

equivalence (3.2) given above.

Definition 3.1. For a fuzzy metric space (X,M, ∗) we define a binary

relation vM on the set BX of formal balls of X, by

(x, r) vM (y, s)⇐⇒M(x, y, t) ≥ t

t+ r − s
for all t > 0.

Remark 3.2. Note that if (x, r) vM (y, s), then r ≥ s. Indeed, choose

t0 > 0 such that t0 + r − s > 0. Then

1 ≥M(x, y, t0) ≥
t0

t0 + r − s
> 0,

so t0 + r − s ≥ t0, and thus r ≥ s.

Next we show that for ∗ = ∧, (BX,vM) is a poset, and give an example

of a fuzzy metric space (X,M, ·) for which (BX,vM) is not a poset.

Proposition 3.3. Let (X,M,∧) be a fuzzy metric space. Then (BX,vM)

is a poset.

Proof. Let (x, r), (y, s), (z, u) ∈ BX. Then we have

• Reflexivity: (x, r) vM (x, r) because M(x, x, t) = 1 for all t > 0.

• Antisymmetry: Let (x, r) vM (y, s) and (y, s) vM (x, r). Then (x, r) =

(y, s), because under the above assumption, r = s, by Remark 3.2, and

hence M(x, y, t) = 1 for all t > 0 and thus x = y.
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• Transitivity: Let (x, r) vM (y, s) and (y, s) vM (z, u). Then (x, r) vM

(z, u) because, assuming without loss of generality that r > s > u, and

putting for each t > 0, v = t/(r − u), we obtain

M(x, z, t) = M(x, z, v(r − u))

≥ M(x, y, v(r − s)) ∧M(y, z, v(s− u))

≥ v(r − s)
v(r − s) + r − s

∧ v(s− u)

v(s− u) + s− u

=
v

v + 1
=

t

t+ r − u
.

Thus, we have proved that vM is a partial order on BX. �

Remark 3.4. Note that Max((X,vM)) = {(x, 0) : x ∈ X}.

Remark 3.5. It is clear that if (X, d) is a metric space, the partial orders

vd and vMd
coincide.

The following example shows that we cannot guarantee that the binary

relation vM is a partial order when ∗ is the product.

Example 3.6. Let X = {a, b, c} and M : X ×X × R+ → [0, 1] defined

by

M(x, y, 0) = M(y, x, 0) = 0 for all x, y ∈ X,

M(a, a, t) = M(b, b, t) = M(c, c, t) = 1 for all t > 0,

M(a, b, t) = M(b, a, t) = M(b, c, t) = M(c, b, t) = t/(t+ 1) for all t > 0,

M(a, c, t) = M(c, a, t) = t2/(t+ 2)2 for all t > 0.
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It was proved in [34, Example 1] that (X,M, ·) is a fuzzy metric space.

Now observe that for r = 2, s = 1 and u = 0, one has

M(a, b, t) =
t

t+ 1
=

t

t+ r − s
,

and

M(b, c, t) =
t

t+ 1
=

t

t+ s− u
,

for all t > 0. So (a, r) vM (b, s) and (b, s) vM (c, u). However, for 0 < t < 1,

we obtain

M(a, c, t) =
t2

(t+ 2)2
<

t

t+ r − u
.

Therefore, the binary relation vM is not transitive, and thus (BX,vM) is

not a poset.

Remark 3.7. In a first moment one can think that the following alter-

native definition of vM , also could provide a partial order on the set BX :

(x, r) vM (y, s)⇐⇒M(x, y, t) ≥ t

t+ r − s
for some t > 0,

However, this is not the case as the next example shows.

Example 3.8. Let (X, d) be a metric space, with |X| ≥ 2, and consider

the fuzzy metric (M01,∧) on X constructed in Example 2.6.

Then, for x 6= y and r = t > d(x, y), we have (x, r) vM01 (y, r) and

(y, r) vM01 (x, r), so vM01 is not antisymmetric.

3.3 Complete fuzzy metric spaces of type (X,M,∧)

and the dcpo (BX,vM)

In this section we study the relation between completeness of a fuzzy metric

space (X,M,∧) and the fact that its poset of formal balls is a dcpo. We
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shall show the contrarily to the classical metric space, while completeness of

(X,M,∧) implies that (BX,vM) is a dcpo, the converse does not hold, in

general.

We first state some auxiliary results that generalize the corresponding

ones obtained by Edalat and Heckmann for metric spaces in [20].

Lemma 3.9. Let (X,M,∧) be a fuzzy metric space and let D be a di-

rected subset of (BX,vM). Then, there is an ascending sequence in D which

has the same upper bounds as D.

Proof. Let

s = inf{r : (x, r) ∈ D}.

Then, for each n ∈ N there is (yn, sn) ∈ D such that sn ≤ s+ 1/n.

Put (x1, r1) = (y1, s1). As D is directed there is (x2, r2) ∈ D such that

(x1, r1) vM (x2, r2) and (y2, s2) vM (x2, r2).

Applying the same reasoning successively we obtain that for each n > 1

there is (xn, rn) ∈ D which is an upper bound of (xn−1, rn−1) and (yn, sn).

Then ((xn, rn))n is an ascending sequence in D.

We shall show that any upper bound of ((xn, rn))n is an upper bound of

any element of D.

Indeed, let (z, u) ∈ D such that (xn, rn) vM (z, u) for all n ∈ N and let

(a, v) be an arbitrary element of D. Since D is directed, for each n ∈ N there

is (bn, vn) ∈ D which is an upper bound of (a, v) and (xn, rn).

Note that for each n ∈ N, rn ≤ sn, so

rn − vn ≤ sn − vn ≤ s− vn +
1

n
≤ 1

n
,

for all n ∈ N.
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Now given t > 0, put

tn =
t

v − u+ 2/n
,

for all n ∈ N.

(Note that tn is well-defined because from (xn, rn) vM (z, u) it follows

that u ≤ rn, and from (xn, rn) vM (bn, vn) it follows that vn ≤ rn ≤ vn +

1/n ≤ v + 1/n. Hence v − u + 1/n ≥ 0, and thus, v − u + 2/n > 0, for all

n ∈ N).

Therefore

tn(v − u+ 2rn − 2vn) ≤ t(v − u+ 2/n)

v − u+ 2/n
= t,

for all n ∈ N, so

M(a, z, t)

≥ M(a, bn, tn(v − vn)) ∧M(bn, xn, tn(rn − vn)) ∧M(xn, z, tn(rn − u))

≥ tn(v − vn)

tn(v − vn) + v − vn

∧ tn(rn − vn)

tn(rn − vn) + rn − vn

∧ tn(rn − u)

tn(rn − u) + rn − u

=
tn

tn + 1
=

t

t+ v − u+ 2/n
,

for all n ∈ N. Hence

M(a, z, t) ≥ t

t+ v − u
.

We conclude that (z, u) is an upper bound of D. �

Lemma 3.10. Let (X,M,∧) be a fuzzy metric space. If ((xn, rn))n

is an ascending sequence in (BX,v), then (xn)n is a Cauchy sequence in



46 Chapter 3. Approach based on the standard fuzzy metric

(X,M,∧) and (rn)n is a Cauchy sequence in R+.

Proof. Since the sequence ((xn, rn))n is ascending, (xn, rn) vM (xn+1, rn+1),

so rn ≥ rn+1 for all n ∈ N.

Hence, there exists r ∈ R+ such that lim
n→∞

rn = r. So, in particular, (rn)n

is a Cauchy in R+.

Now, let us prove that (xn)n is a Cauchy sequence in (X,M,∧).

Indeed, choose ε ∈ (0, 1) and t > 0. It is clear that there is δ > 0 such

that t/(t+ δ) > 1− ε.

Since (rn)n is a Cauchy sequence, there is n0 ∈ N such that 0 ≤ rn−rm < δ

whenever n0 ≤ n ≤ m. Hence

t

t+ rn − rm

>
t

t+ δ
> 1− ε,

for m ≥ n ≥ n0.

Since (xn, rn) vM (xm, rm), it follows that

M(xn, xm, t) ≥
t

t+ rn − rm

> 1− ε,

for m ≥ n ≥ n0.

We conclude that (xn)n is a Cauchy sequence in (X,M,∧). �

Lemma 3.11. Let (X,M,∧) be a fuzzy metric space. If ((xn, rn))n is an

ascending sequence in (BX,vM), with limn→∞ xn = x and limn→∞ rn = r,

then (x, r) = tD, where D = {(xn, rn) : n ∈ N}.

Proof. We first prove that (x, r) is an upper bound of D. Indeed, fix

k ∈ N. We want to show that (xk, rk) vM (x, r).

Since (rn)n is a decreasing sequence, then r ≤ rn for all n ∈ N, so, in

particular, r ≤ rk.
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• If r = rk, we deduce that r = rn for all n ≥ k. Hence, from the fact

that (xk, rk) vM (xn, rn) for all n ≥ k, it follows that

M(xk, xn, t) ≥
t

t+ rk − rn

=
t

t+ r − r
= 1,

for all n ≥ k and t > 0.

Therefore xn = xk for all n ≥ k, and thus, x = xn for all n ≥ k.

Consequently (x, r) is an upper bound of D.

• If r < rk, we have that
t

t+ rk − r
< 1,

for all t > 0. Then, there exists ε0 > 0 such that

t

t+ rk − r
< 1− ε0,

for all t > 0.

Now fix t > 0. For each ε ∈ (0, ε0 ∧ t), there exists m > k such that

M(x, xm, ε) > 1− ε because limn→∞ xn = x. Hence

M(x, xk, t) ≥ M(x, xm, ε) ∧M(xm, xk, t− ε) >

> (1− ε) ∧ t− ε
t− ε+ rk − rm

≥ (1− ε) ∧ t− ε
t− ε+ rk − r

.

Taking limits as ε→ 0, we obtain

M(x, xk, t) ≥
t

t+ rk − r
.

Since t > 0 is arbitrary, we conclude that (xk, rk) vM (x, r), so (x, r)

is an upper bound of D.

Finally, suppose that there is (z, u) ∈ BX such that (xn, rn) vM (z, u)

for all n ∈ N. This implies that rn ≥ u for all n ∈ N, and since

lim
n→∞

rn = r, we have r ≥ u.

We distinguish two cases, again.
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• If u = r, we have (xn, rn) vM (z, r) for all n ∈ N, so

M(z, xn, t) ≥
t

t+ rn − r
,

for all n ∈ N and t > 0. Since limn→∞ rn = r, it follows that, for each

t > 0,

lim
n→∞

M(z, xn, t) = 1,

so z = x. We have shown that (x, r) = (z, u).

• If u < r, we shall suppose that r < rn for all n ∈ N (otherwise, there is

k ∈ N such that r = rn and x = xn for all n ≥ k, as we proved above,

and thus (x, r) vM (z, u)).

Take an arbitrary t > 0. For each n ∈ N put vn = t/(rn − u). Then

M(x, z, t) ≥ M(x, xn, vn(rn − r)) ∧M(xn, z, vn(r − u))

≥ vn(rn − r)
vn(rn − r) + rn − r

∧ vn(r − u)

vn(r − u) + r − u

=
vn

vn + 1
=

t

t+ rn − u
.

Taking limits as n→∞, we obtain

M(x, z, t) ≥ t

t+ r − u
.

Therefore (x, r) vM (z, u). We conclude that (x, r) = tD. �

Proposition 3.12. If (X,M,∧) is a complete fuzzy metric space, then

(BX,vM) is a dcpo.

Proof. Let D a directed subset of (BX,vM). By Lemma 3.9 we know that

there is an ascending sequence ((xn, rn))n in D which has the same upper
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bounds as D. By Lemma 3.10, (xn)n is a Cauchy sequence in (X,M,∧)

and (rn)n is a Cauchy sequence in R+, so there exists r ∈ R+ such that

limn→∞ rn = r.

Since (X,M,∧) is complete, there exists x ∈ X such that lim
n→∞

xn = x.

Finally, by Lemma 3.11, (x, r) = tE, where E = {xn : n ∈ N}, and by

Lemma 3.10, (x, r) = tD. We conclude that (BX,vM) is a dcpo. �

In the classical metric case, a fundamental result ([20, Theorem 6]) states

that a metric space is complete if and only if its poset of formal balls is a

dcpo. Although Proposition 3.12 above provides a natural extension to our

context of the “only if” part of this result, the next example shows that,

nevertheless, there exists a non complete fuzzy metric space (X,M,∧) for

which (BX,vM) is a dcpo.

Example 3.13. Let X = {1/n : n ∈ N} and let d be the restriction of

the usual metric on R to X, i.e., d(1/n, 1/m) = |1/n− 1/m| for all n,m ∈ N.

Then (X, d) is a non complete metric space.

Consider the fuzzy metric (M,∧) on X constructed as in Example 3.8,

i.e.,

M(x, y, t) = 1 if d(x, y) < t, and M(x, y, t) = 0 if d(x, y) ≥ t.

Then (X,M,∧) is a non complete fuzzy metric space. In fact, a sequence

in X is a Cauchy sequence in (X,M,∧) if and ony if it is a Cauchy sequence

in (X, d).

Let D be a directed subset of (BX,vM). By Lemma 3.9, there is an

ascending sequence ((xn, rn))n in D which has the same upper bounds as

D, and by Lemma 3.10, (xn)n is a Cauchy sequence in (X,M,∧) (hence in

(X, d)), and (rn)n is a Cauchy sequence in R+.
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Fix ε ∈ (0, 1). Then, there exists nε ∈ N such that d(xnε , xn) < ε and

|rnε − rn| < ε for all n ≥ nε. Since (xnε , rnε) vM (xn, rn) for all n ≥ nε, it

follows

M(xnε , xn, t) ≥
t

t+ rnε − rn

≥ t

t+ ε
,

for all n ≥ nε and t > 0. By definition of M we deduce that

M(xnε , xn, t) = 1,

for all n ≥ nε and t > 0. So xnε = xn for all n ≥ nε.

Hence (xnε , r) = tD, where r = limn→∞ rn. We conclude that (BX,vM)

is a dcpo.

3.4 Characterizing (BX,vM) as a domain: Stan-

dard complete fuzzy metric spaces

In this section, and motivated by Example 3.13 above, we discuss the prob-

lem of obtaining a fuzzy counterpart of the aforementioned theorem of Edalat

and Heckmann that a metric space (X, d) is complete if and only if (BX,vd)

is a domain. To this end, we introduce a new notion of completeness which

is suitable to characterize those fuzzy metric spaces (X,M,∧) such that

(BX,vM) is a domain.

Definition 3.14. A sequence (xn)n in a fuzzy metric space (X,M, ∗) is

called a standard Cauchy sequence if for each ε ∈ (0, 1) there exists n0 ∈ N
such that

M(xn, xm, t) >
t

t+ ε
,

for all n,m ≥ n0 and t > 0.
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Definition 3.15. A fuzzy metric space (X,M, ∗) is called standard com-

plete if every standard Cauchy sequence converges.

It is easy to see that every standard Cauchy sequence in a fuzzy metric

space is a Cauchy sequence, and, hence, every complete fuzzy metric space

is standard complete.

Although the notion of standard Cauchy sequence certainly yields a strong

property, it is not hard to construct fuzzy metric spaces having non-eventually

constant standard Cauchy sequences as the following example shows.

Example 3.16. Let (X,M, ·) be a stationary fuzzy metric space (i.e.,

for each x, y ∈ X, the function t → M(x, y, t) is constant [29, Definition

2]), having non-eventually constant Cauchy sequences, and let ϕ : (0,∞)→
(0,∞) be a non-decreasing and continuous function such that ϕ(t) ≥ t for

all t > 0.

According to [29, Example 15], (X,Mϕ, ·) is a fuzzy metric space, where

Mϕ(x, y, 0) = 0 for all x, y ∈ X, and

Mϕ(x, y, t) =
M(x, y, t) + ϕ(t)

1 + ϕ(t)
,

for all x, y ∈ X and t > 0.

Finally, it is routine to check that any Cauchy sequence in (X,M, ·) is a

standard Cauchy sequence in (X,Mϕ, ·).

The following result, whose easy proof is omitted, provides a significative

class of fuzzy metric spaces for which the notions of completeness and stan-

dard completeness coincide, and, in addition, justifies the names of “standard

Cauchy” and “standard complete”, respectively.
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Proposition 3.17. Let (X, d) be a metric space and let ∗ be a continuous

t-norm. Then:

(a) A sequence in (X,Md, ∗) is standard Cauchy if and only if it is

Cauchy.

(b) (X,Md, ∗) is standard complete if and only if it is complete.

In order to prove our main result we also need the following lemmas (note

that the first one improves Lemma 3.10 above).

Lemma 3.18. Let (X,M,∧) be a fuzzy metric space. If ((xn, rn))n is an

ascending sequence in (BX,v), then (xn)n is a standard Cauchy sequence in

(X,M,∧) and (rn)n is a Cauchy sequence in R+.

Proof. By Lemma 3.10, (rn)n is a Cauchy sequence in R+.

In order to prove that (xn)n is a standard Cauchy sequence in (X,M,∧)

choose an arbitrary ε ∈ (0, 1). Then, there is n0 ∈ N such that 0 ≤ rn−rm < ε

whenever n0 ≤ n ≤ m.

Since (xn, rn) vM (xm, rm) we deduce that

M(xn, xm, t) ≥
t

t+ rn − rm

>
t

t+ ε
,

for m ≥ n ≥ n0 and t > 0.

Therefore (xn)n is a standard Cauchy sequence in (X,M,∧). �

Lemma 3.19. Let (xn)n be a standard Cauchy sequence in the fuzzy

metric space (X,M,∧). Then, there is a subsequence (xnk
)k of (xn) such

that (xnk
, 2−k)k is an ascending sequence in (BX,vM).

Proof. Since (xn)n is standard Cauchy, there is n1 ∈ N such that

M(xn1 , xn, t) ≥
t

t+ 2−2
,
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for all n ≥ n1 and t > 0. Similarly, there is n2 > n1 such that

M(xn2 , xn, t) ≥
t

t+ 2−3
,

for all n ≥ n2 and t > 0. Continuing this process, we construct a subsequence

(xnk
)k of (xn) such that

M(xnk
, xnk+1

, t) ≥ t

t+ 2−(k+1)
,

for all k ∈ N and t > 0.

Therefore (xnk
, 2−k) vM (xnk+1

, 2−(k+1)) for all k ∈ N. This concludes the

proof. �

Lemma 3.20. Let (X,M,∧) be a standard complete fuzzy metric space.

Then (x, r + ε)� (x, r) for all (x, r) ∈ BX and for all ε > 0.

Proof. Let D be a directed subset of BX such that there is (z, u) = tD
with (x, r) vM (z, u).

By Lemma 3.9, there exists an ascending sequence ((zn, un))n in D for

which (z, u) is its least upper bound.

Given ε > 0 we shall show that (x, r + ε) vM (zk, uk) for some k ∈ N.

Indeed, by Lemma 3.18, (zn)n is a standard Cauchy sequence in (X,M,∧)

and (rn)n is a Cauchy sequence in [0,∞), so there is (y, v) ∈ BX such that

limn→∞ zn = y and limn→∞ un = v. By Lemma 3.11, y = z and v = u.

Now take k ∈ N such that uk < u+ ε/2. We distinguish two cases.

• r = u. Then M(x, z, t) = 1 for all t > 0 because (x, r) vM (z, u),

so x = z. Hence (x, r) is the least upper bound of ((zn, u))n, and, in

particular,

M(x, zk, t) ≥
t

t+ uk − r
,
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for all t > 0, so

M(x, zk, t) >
t

t+ (r + ε)− uk

,

for all t > 0, i.e., (x, r + ε) vM (zk, uk).

• r > u. In this case, we have for each t > 0,

M(x, zk, t) ≥ M

(
x, z,

r − u
r + ε− uk

t

)
∧M

(
z, zk,

(
1− r − u

r + ε− uk

)
t

)

≥

(
r−u

r+ε−uk

)
t(

r−u
r+ε−uk

)
t+ r − u

∧

(
1− r−u

r+ε−uk

)
t(

1− r−u
r+ε−uk

)
t+ uk − u

=
(r − u)t

(r − u)t+ (r − u)(r + ε− uk)

∧ (ε− uk + u)t

(ε− uk + u)t+ (uk − u)(r + ε− uk)

=
t

t+ r + ε− uk

∧ t

t+
(

uk−u
ε−(uk−u)

)
(r + ε− uk)

.

Since

uk − u
ε− (uk − u)

=
1

ε
uk−u

− 1
< 1,

it follows that

t

t+ r + ε− uk

∧ t

t+
(

uk−u
ε−(uk−u)

)
(r + ε− uk)

=
t

t+ r + ε− uk

,

so

M(x, zk, t) ≥
t

t+ r + ε− uk

,



3.4. Standard complete fuzzy metric spaces 55

for all t > 0. We conclude that (x, r + ε)� (x, r). �

Lemma 3.21. Let (X,M,∧) be a fuzzy metric space. If (x, r)� (y, s),

then there is ε ∈ (0, 1) such that

M(x, y, t) >
t

t+ r − (s+ ε)
.

So, in particular, r > s.

Proof. Take the ascending sequence (y, s+ 1/n)n.

Since limn→∞(s+ 1/n) = s and {y} may be seen as a constant sequence,

by Lemma 3.11 we deduce that (y, s) is the least upper bound of the sequence

((y, s+ 1/n))n.

Since, by hypothesis, (x, r) � (y, s), then there exists n0 ∈ N such that

(x, r) vM (y, s+ 1/n0), i.e.,

M(x, y, t) ≥ t

t+ r − (s+ 1/n0)
,

for all t > 0. Taking ε ∈ (0, 1/n0), we deduce that

M(x, y, t) >
t

t+ r − (s+ ε)
,

and, thus, r > s+ ε. �

Theorem 3.22. For a fuzzy metric space (X,M,∧) the following condi-

tions are equivalent.

(1) (X,M,∧) is standard complete.

(2) (BX,vM) is a domain.

(3) (BX,vM) is a dcpo.

Proof. (1) =⇒ (2) We first show that (BX,vM) is a dcpo.
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Let D be a directed subset of (BX,vM). By Lemma 3.9, there is an

ascending sequence ((xn, rn))n in D which has the same upper bounds as D,

and by Lemma 3.18, (xn)n is a standard Cauchy sequence in (X,M,∧) and

(rn)n is a Cauchy sequence in R+.

Since (X,M,∧) is standard complete, there exists x ∈ X such that

limn→∞ xn = x. Then, by Lemma 3.11, (x, r) = tD, where r = limn→∞ rn.

Hence (BX,vM) is a dcpo.

In order to show that (BX,vM) is continuous take (x, r), (y, s), (z, u) ∈
BX such that (y, s) � (x, r) and (z, u) � (x, r). By Lemma 3.21, there is

ε ∈ (0, 1) such that

M(x, y, t) >
t

t+ s− (r + ε)
and M(x, z, t) >

t

t+ u− (r + ε)
,

for all t > 0. Hence (y, s) vM (x, r + ε), and (z, u) vM (x, r + ε).

Since, by Lemma 3.20, (x, r + ε) ∈⇓ (x, r), we deduce that ⇓ (x, r) is

directed. Moreover (x, r) is, obviously, an upper bound of ⇓ (x, r).

Finally, let (z, u) ∈ BX be such that (y, s) vM (z, u) for all (y, s) ∈⇓
(x, r). In particular (x, r + 1/n) vM (z, u) for all n ∈ N by Lemma 3.20, so

for each t > 0 we have

M(x, z, t) ≥ t

t+ r + 1
n
− u

,

whenever n ∈ N.

Consequently M(x, z, t) ≥ t/(t+r−u), i.e., (x, r) vM (z, u). We conclude

that (x, r) = t (⇓ (x, r)) , and hence (BX,vM) is continuous.

(2) =⇒ (3) Obvious.

(3) =⇒ (1) Let (xn)n be a standard Cauchy sequence in (X,M,∧). By

Lemma 3.19, there is a subsequence (xnk
)k of (xn)n such that (xnk

, 2−k)k is

an ascending sequence in (BX,vM).
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Then, there is (x, r) ∈ BX such that (x, r) = tD, whereD = {(xnk
, 2−k) :

k ∈ N}. Clearly r = 0, so (xnk
, 2−k) vM (x, 0) for all k ∈ N, and consequently

M(x, xnk
, t) ≥ t

t+ 2−k
,

for all k ∈ N and t > 0,which implies limk→∞M(x, xnk
, t) = 1 for all t > 0,

i.e., limk→∞ xnk
= x.

Since (xn)n is standard Cauchy, it is, in particular, a Cauchy sequence

and hence, limn→∞ xn = x.

We conclude that (X,M,∧) is standard complete. �

Corollary 3.23 ([20]). For a metric space (X, d) the following conditions

are equivalent.

(1) (X, d) is complete.

(2) (BX,vd) is a domain.

(3) (BX,vd) is a dcpo.

Proof. (1) =⇒ (2) By Proposition 3.17, (X,Md,∧) is standard complete,

so (BX,vMd
) is a domain by Theorem 3.22. Now the conclusion follows

from Remark 3.5.

(2) =⇒ (3) Obvious.

(3) =⇒ (1) By Remark 3.5, (BX,vMd
) is a dcpo, so (X,Md,∧) is stan-

dard complete by Theorem 3.22. The conclusion follows from Proposition

3.17. �

Remark 3.24. Note that Theorem 3.22 generalizes and improves Propo-

sition 3.12.
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3.5 A notion of computational model for com-

plete fuzzy metric spaces

By analogy with the notion of a computational model for a complete metric

space as given in Definition 2.19, we propose the following

Definition 3.25. A computational (or quantitative) model for a com-

plete fuzzy metric space (X,M, ∗) is a triple (L,Q, φ) such that L(= (L,v))

is a domain, Q(= (Q, ∗′)) is a bicomplete fuzzy quasi-metric on L and φ is a

map from X into L such that:

(i) τQ = σ(L).

(ii) φ is an isometry from (X,M, ∗) into (L,Q, ∗′).
(iii) φ(X) = Max(L).

Question 3.26. Is (BX,vM) a computational model for the complete

fuzzy metric space (X,M,∧)?



Chapter 4

A computational model for

complete fuzzy metric spaces

4.1 Introduction

In this chapter we study connections between the theory of fuzzy metric

spaces and Domain Theory via the first procedure suggested in Section 3.1.

We shall show that the proposed binary relation v on the set of formal balls

BX of a fuzzy metric space (X,M, ∗) satisfying ∗ ≥ ∗L, is a partial order

on BX. In fact, it provides a structure of continuous poset for BX. We also

show that (X,M, ∗) is complete if and only if (BX,v) is a domain. Finally,

we prove that if (X,M, ∗) is complete then it admits a computational model.

We shall use the following concepts for a fuzzy metric space (X,M, ∗).
For each x ∈ X, ε ∈ [0, 1] and t > 0 we define the closed ball BM(x, ε, t)

of center x and radius ε and t, as

BM(x, ε, t) = {y ∈ X : M(x, y, t) ≥ 1− ε}.

Note that, in particular, we have BM(x, 1, t) = X for all t > 0.

The main results in this chapter are contained in the paper by L.A. Ri-

carte and S. Romaguera, “A quantitative computational model for complete

59
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fuzzy metric spaces”, submitted for possible publication (cf. [60]) (a prelimi-

nary version of this work was presented by the authors at the 2012 Iberoamer-

ican Conference on Topology and Applications, Guanajuato, Mexico, April

2012).

4.2 The poset (BX,v) of formal balls of a

fuzzy metric space (X,M, ∗) with ∗ ≥ ∗L
Our approach is motivated (see Section 3.1) by the simple observation that

the relation

(x, y) vd (y, s)⇐⇒ d(x, y) ≤ r − s,

can be written as

(x, y) vd (y, s)⇐⇒ y ∈ Bd(x, r − s).

In the light of this fact one can conjecture that the following relation

could provide a suitable structure of poset on the set of formal balls of a

fuzzy metric space (X,M, ∗) :

(x, r) v (y, s)⇐⇒ y ∈ BM(x, (r − s) ∧ 1, r − s). (4.1)

However, this relation has some disadvantages. The first one is that r− s
should be greater than 0, so the important case that r = s is excluded.

Although we could try to solve this problem by defining BM(x, ε, 0) = {x}
for all ε ∈ [0, 1), a second and more important hurdle occurs due to the

impossibility of recuperating the theory developed for metric spaces from

the partial order vd by using the relation (4.1). The next easy two examples

illustrate this situation.

Example A) Let X = {0, 2} and let d be the restriction of the usual

metric on R to X. Let (Md,∧) be the standard fuzzy metric on X. Note



4.2. The poset (BX,v) of formal balls 61

that (x, r) v (y, s) for x = 0, y = 2, r = 1, s = 0 because, in this case,

(r − s) ∧ 1 = (1− 0) ∧ 1 = 1, and thus

Md(x, y, r − s) ≥ 0 = 1− ((r − s) ∧ 1).

However d(x, y) > r − s.

Example B) Let X = {0, 1/2} and let d be the restriction of the usual

metric on R toX. Let (M,∧) be the fuzzy metric onX defined byM(x, y, t) =

0 if d(x, y) ≥ t and M(x, y, t) = 1 if d(x, y) < t. Note that (x, r) vd (y, s) for

x = 0, y = 1/2, r = 1/2, s = 0.

However M(x, y, r − s) = 0 < 1/2 = 1− ((r − s) ∧ 1).

To avoid, at least in part, the above difficulties (see Proposition 4.3 below)

we shall consider in the rest of the chapter the following alternative definition

for the relation v on BX :

(x, r) v (y, s)⇐⇒ y ∈
⋂

t>r−s

BM(x, (r − s) ∧ 1, t).

The following equivalence is easily seen and will be used in the sequel.

(x, r) v (y, s)⇐⇒ inf
t>r−s

M(x, y, t) ≥ 1− ((r − s) ∧ 1).

Remark 4.1. From the definition of v we immediately deduce the fol-

lowing easy but useful facts:

a) (x, r) v (y, s)⇒ r ≥ s.

b) (x, r) v (y, r)⇔ x = y.

c) r − s ≥ 1⇒ (x, r) v (y, s).

Proposition 4.2. Let (X,M, ∗) be a fuzzy metric space with ∗ ≥ ∗L.
Then (BX,v) is a poset.

Proof. Let (x, r), (y, s), (z, u) ∈ BX. Then we have
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• Reflexivity: By Remark 4.1 b), (x, r) v (x, r) for all x ∈ X and r ∈ R+.

• Antisymmetry: Let (x, r) v (y, s) and (y, s) v (x, r). Then, by Remark

4.1 a), r = s, and thus

inf
t>0

M(x, y, t) ≥ 1,

i.e., M(x, y, t) = 1 for all t > 0, so x = y.

• Transitivity: Let (x, r) v (y, s) and (y, s) v (z, u). By Remark 4.1 a),

r ≥ s ≥ u.

Let t > r − u. Choose ε ∈ (0, 1) such that t > r − u+ 2ε. Then

M(x, z, t) ≥ M(x, y, r − s+ ε) ∗M(y, z, s− u+ ε)

≥ inf
t′>r−s

M(x, y, t′) ∗ inf
t′>s−u

M(y, z, t′)

≥ (1− ((r − s) ∧ 1)) ∗ (1− ((s− u) ∧ 1))

≥ (1− ((r − s) ∧ 1)) ∗L (1− ((s− u) ∧ 1))

≥ 1− ((r − u) ∧ 1).

Hence

inf
t>r−u

M(x, z, t) ≥ 1− ((r − u) ∧ 1).

We conclude that (x, r) v (z, u). The proof is complete. �

Observe that Max((BX,v)) = {(x, 0) : x ∈ X}.

Although for a given metric space (X, d), the partial order vd and the

partial order v induced by the standard fuzzy metric (Md,∧) are not related
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in general as Example A above shows, it is possible to prove the following.

Proposition 4.3. Let (X, d) be a metric space with d ≤ 1, and let

(M01, ∗) with ∗ ≥ ∗L, be the fuzzy metric on X constructed in Example 2.6.

Then vd=v on BX.

Proof. Suppose that (x, r) vd (y, s). Then d(x, y) ≤ r − s, so for each

t > r − s, M01(x, y, t) = 1, and hence

inf
t>r−s

M01(x, y, t) = 1,

i.e., (x, r) v (y, s).

Conversely, suppose that (x, r) v (y, s). If there exists t0 > r − s such

that M01(x, y, t0) = 0, we deduce that 0 ≥ 1− ((r− s)∧ 1), so r− s ≥ 1, and

thus 1 < t0 ≤ d(x, y), a contradiction. Consequently (x, r) vd (y, s). �

The following slight modification of Example A shows that condition

d ≤ 1 cannot be omitted in Proposition 4.3.

Let X = {0, 2} and let d be the restriction of the usual metric on R to

X. Let (M,∧) defined as in Proposition 4.3. Then (x, r) v (y, s) for x = 0,

y = 2, r = 1, and s = 0, because, in this case, (r − s) ∧ 1 = (1− 0) ∧ 1 = 1,

and thus

M(x, y, r − s) ≥ 0 = 1− ((r − s) ∧ 1).

However d(x, y) > r − s.

Next we give an example which shows that Proposition 4.2 cannot be

generalized for every continuous t-norm.
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Example 4.4. Denote by ∗Y the continuous t-norm of the Yager class

given by

a ∗Y b = 1−min

{
1,
(√

1− a+
√

1− b
)2
}

for all a, b ∈ [0, 1].

It is well known that ∗Y � ∗L.

Now let X = {0, 1, 2} and let M : X ×X × R+ → [0, 1] defined as

M(x, y, 0) = 0 for all x, y ∈ X;

M(x, x, t) = 1 for all x ∈ X and t > 0;

M(0, 2, t) = M(2, 0, t) = 1/4 for all t > 0, and

M(x, y, t) = 3/4 otherwise.

It is easy to check that (M, ∗Y ) is a fuzzy metric on X (note, in particular,

that (3/4) ∗Y (3/4) = 0).

We show that for the metric space (X,M, ∗Y ), v is not a partial order on

BX because it is not transitive. To this end, first note that (0, 1/2) v (1, 1/4)

and (1, 1/4) v (2, 0). In fact

inf
t>( 1

2
− 1

4
)
M(0, 1, t) =

3

4
= 1−

(
(
1

2
− 1

4
) ∧ 1

)
,

and

inf
t>( 1

4
−0)

M(1, 2, t) =
3

4
= 1−

(
(
1

4
− 0) ∧ 1

)
.

However

inf
t>( 1

2
−0)

M(0, 2, t) =
1

4
< 1−

(
(
1

2
− 0) ∧ 1

)
.

We conclude this section by watching that the partial order vM defined

in Chapter 3 and the partial order v defined in this chapter are not related

in general.



4.3. Fuzzy metric spaces and Domain Theory 65

Indeed, note that in Example A) for x = 0, y = 2, r = 1, s = 0, one has

inf
t>r−s

Md(x, y, t) = Md(x, y, r − s) =
r − s

r − s+ d(x, y)

=
1

3
> 1− ((r − s) ∧ 1),

so (x, r) v (y, s).

However, the relation (x, r) vMd
(y, s) does not hold by Remark 3.5

because d(x, y) > r − s.

Now, consider the fuzzy metric space (X,M,∧) where X = {0, 1} and

(M,∧) is the fuzzy metric on X defined by M(x, y, 0) = 0 for all x, y ∈ X,
M(x, x, t) = 1 for all x ∈ X and t > 0, and

M(x, y, t) =
t

t+ 1
3

,

otherwise.

Take x = 0, y = 1, r = 1/3 and s = 0. Then

M(x, y, t) =
t

t+ 1
3

=
t

t+ r − s
,

for all t > 0, so (x, r) vM (y, s).

However, the relation (x, r) v (y, s) does not hold because

inf
t>r−s

M(x, y, t) =
1

2
<

2

3
= 1− ((r − s) ∧ 1).

4.3 Relations between fuzzy metric spaces and

properties of Domain Theory via the poset

(BX,v)

In this section we shall obtain a crucial result that allows us to deduce several

nice relations between (complete) fuzzy metric spaces and relevant properties
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of Domain Theory from the corresponding ones for (complete) metric spaces

obtained by Edalat and Heckmann in [20].

Recall (see e.g. [49, 54]) that given a fuzzy metric space (X,M, ∗) with

∗ ≥ ∗L, then the function d(M) defined by

d(M)(x, y) = sup {t ≥ 0 : M(x, y, t) ≤ 1− t} ,

is a metric on X, with d(M) ≤ 1, whose induced topology coincides with the

topology induced by (M, ∗). In fact, for each x, y ∈ X and each ε ∈ (0, 1) we

have

M(x, y, ε) > 1− ε⇐⇒ d(M)(x, y) < ε,

and, as a consequence, the following two facts which will be useful latter on.

Proposition 4.5. Let (xn)n be a sequence in a fuzzy metric space (X,M, ∗)
where ∗ ≥ ∗L. Then (xn)n is a Cauchy sequence in (X,M, ∗) if and only if

it is a Cauchy sequence in (X, d(M)).

Corollary 4.6. Let (X,M, ∗) be a fuzzy metric space with ∗ ≥ ∗L. Then

(X,M, ∗) is complete if and only if (X, d(M)) is complete.

The next result gives us the precise relationship between the partial or-

der v of the fuzzy metric space (X,M, ∗), with ∗ ≥ ∗L and the partial

order vd(M) of Edalat and Heckmann on the formal balls of the metric space

(X, d(M)).

Proposition 4.7. Let (X,M, ∗) be a fuzzy metric space with ∗ ≥ ∗L.

Then:

(x, r) v (y, s) ⇔ (x, r) vd(M) (y, s), for all (x, r), (y, s) ∈ BX, i.e.,

v=vd(M) on BX.
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Proof. Suppose that (x, r) v (y, s). Then, for each t > r − s, we have

M(x, y, t) ≥ 1− ((r − s) ∧ 1) > 1− t.

Hence, t ≤ r − s whenever M(x, y, t) ≤ 1 − t, and thus d(M)(x, y) ≤ r − s,
i.e., (x, r) vd(M) (y, s).

Conversely, suppose that (x, r) vd(M) (y, s).

If r − s ≥ 1, then (x, r) v (y, s) by Remark 4.1 c).

If r − s ∈ [0, 1), put α = inft>r−sM(x, y, t). Choose an arbitrary δ ∈
(0, 1). Then, there is t0 > r − s such that α + δ > M(x, y, t0). Then for

t1 ∈ (r − s, r − s+ δ) with t1 ≤ t0, we have the following relations:

α + δ > M(x, y, t0) ≥M(x, y, t1) > 1− t1 > 1− (r − s+ δ),

and thus 2δ + α > 1− (r − s). We conclude that

inf
t>r−s

M(x, y, t) ≥ 1− (r − s) = 1− ((r − s) ∧ 1),

i.e., (x, r) v (y, s). �

The main result of this section (Theorem 4.9) is now a direct consequence

of the preceding proposition and the next one that collects several results by

Edalat and Heckmann.

Proposition 4.8 ([20]). Let (X, d) be a metric space. Then, the following

hold:

(1) (BX,vd) is a continuous poset.

(2) (X, d) is complete if and only if (BX,vd) is a domain.

(3) (X, d) is complete and separable if and only if (BX,vd) is an ω-

domain.
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Theorem 4.9. Let (X,M, ∗) be a fuzzy metric space with ∗ ≥ ∗L. Then,

the following hold:

(1) (BX,v) is a continuous poset.

(2) (X,M, ∗) is complete if and only if (BX,v) is a domain.

(3) (X,M, ∗) is complete and separable if and only if (BX,v) is an ω-

domain.

4.4 A computational model for complete fuzzy

metric spaces (X,M, ∗) with ∗ ≥ ∗L
For each a ∈ R, we shall denote by a+ the non-negative real number a ∨ 0.

Given a fuzzy metric space (X,M, ∗) with ∗ ≥ ∗L, define a fuzzy set

M : BX ×BX × R+ → [0, 1] by

M((x, r), (y, s), 0) = 0,

for all (x, r), (y, s) ∈ BX, and

M((x, r), (y, s), t) =
[(
M(x, y, (t+ r − s)+) ∧ (1− (|r − s| ∧ 1))

)
+ ((r − s) ∧ 1)

]+
for all (x, r), (y, s) ∈ BX and t > 0.

Remark 4.10. Note that if t+ r− s ≤ 0, then M(x, y, (t+ r− s)+) = 0

and r < s, so M((x, r), (y, s), t) = 0.

We omit the easy proof of the following auxiliary fact.

Lemma 4.11. Let a, b, c, d ∈ R+. Then
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(a+ b− 1)+ ∧ (c+ d− 1)+ ≥ (a ∧ c) + (b ∧ d)− 1.

Now we prove the main result in this section.

Theorem 4.12. Let (X,M, ∗) be a fuzzy metric space such that ∗ ≥
∗L. Then

(1) (BX,M, ∗L) is a fuzzy quasi-metric space.

(2) v=≤M on BX.

(3) (X,M, ∗) and (Max((BX,v)),M, ∗L)are isometric.

(4) The topology induced by (M, ∗L) coincides with the Scott topology of

(BX,v).

(5) (X,M, ∗) is complete if and only if (BX,M, ∗L) is bicomplete.

Proof. (1) We first note that for each (x, r) ∈ BX and each t > 0, we

have

M((x, r), (x, r), t) = M(x, x, t) = 1.

Now let (x, r), (y, s) ∈ BX be such that

M((x, r), (y, s), t) =M((y, s), (x, r), t) = 1,

for all t > 0. We show that (x, r) = (y, s). Suppose r > s. Then

M((y, s), (x, r), t) = 1⇒
(
M(y, x, (t+ s− r)+) ∧ (1− ((r − s) ∧ 1))

)
+s−r = 1,

for all t > 0, so, in particular

1− ((r − s) ∧ 1) ≥ 1 + r − s,

and hence s− r ≥ (r − s) ∧ 1 > 0, a contradiction. Therefore r ≤ s.
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Similarly we show that s ≤ r, and thus r = s. So

M(x, y, t) = M(x, y, t).

for all t > 0, which implies that M(x, y, t) = 1 for all t > 0. Hence x = y.

We conclude that (x, r) = (y, s).

Next we show that for (x, r), (y, s), (z, u) ∈ BX and t1, t2 > 0, one has

M((x, r), (z, u), t1 + t2) ≥M((x, r), (y, s), t1) ∗LM((y, s), (z, u), t2). (4.2)

We shall assume that M((x, r), (y, s), t1) ∗LM((y, s), (z, u), t2) > 0, be-

cause otherwise the inequality (4.2) is obvious.

ThenM((x, r), (y, s), t1) > 0 andM((y, s), (z, u), t2) > 0. So, by Remark

4.10, t1 +r−s > 0 and t2 +s−u > 0, and hence t1 +t2 +r−u > 0. Therefore

M((x, r), (y, s), t1) ∗LM((y, s), (z, u), t2)

= (M(x, y, t1 + r − s) ∧ (1− (|r − s| ∧ 1))) + ((r − s) ∧ 1)

+ (M(y, z, t2 + s− u) ∧ (1− (|s− u| ∧ 1))) + ((s− u) ∧ 1)− 1

Since

M(x, z, t1 + t2 + r − u) ≥ M(x, y, t1 + r − s) ∗L M(y, z, t2 + s− u)

= [M(x, y, t1 + r − s) +M(y, z, t2 + s− u)− 1]+ ,

and

1− (|r − u| ∧ 1) ≥ [(1− (|r − s| ∧ 1) + (1− (|s− u| ∧ 1)− 1]+ ,
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we deduce that

M(x, z, t1 + t2 + r − u) ∧ (1− (|r − u)| ∧ 1))

≥ [M(x, y, t1 + r − s) +M(y, z, t2 + s− u)− 1]+

∧ [(1− (|r − s| ∧ 1)) + (1− (|s− u| ∧ 1))− 1]+ ,

so, by Lemma 4.11

(M(x, z, t1 + t2 + r − u) ∧ (1− (|r − u)| ∧ 1)))

≥ ((M(x, y, t1 + r − s) ∧ (1− (|r − s| ∧ 1)))

+ ((M(y, z, t2 + s− u) ∧ (1− (|s− u| ∧ 1)))− 1.

Therefore

(M(x, z, t1 + t2 + r − u) ∧ (1− (|r − u)| ∧ 1))) + ((r − u) ∧ 1)

≥ ((M(x, y, t1 + r − s) ∧ (1− (|r − s| ∧ 1))) + ((r − s) ∧ 1)

+ ((M(y, z, t2 + s− u) ∧ (1− (|s− u| ∧ 1))) + ((s− u) ∧ 1)− 1

i.e.,

M((x, r), (z, u), t1 + t2) ≥M((x, r), (y, s), t1) ∗LM((y, s), (z, u), t2).
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Finally, fix (x, r), (y, s) ∈ BX. Since the function M(x, y, ) : R+ → [0, 1]

is left continuous, it immediately follows that the functionM((x, r), (y, s), ) :

R+ → [0, 1] is left continuous.

We conclude that (M, ∗L) is a fuzzy quasi-metric on BX.

(2) Let (x, r), (y, s) ∈ BX. Then

(x, r) v (y, s)⇐⇒ inf
t>r−s

M(x, y, t) ≥ 1− ((r − s) ∧ 1))

⇐⇒ inf
t>0

M(x, y, t+ r − s) ≥ 1− ((r − s) ∧ 1))

⇐⇒ inf
t>0
M((x, r), (y, s), t) = 1⇐⇒ (x, r) ≤M (y, s).

Therefore vM=≤M on BX.

(3) Define i : X → BX by i(x) = (x, 0) for all x ∈ X. Then, for each

x, y ∈ X and t > 0, we obtain

M(i(x), i(y), t) =M((x, 0), (y, 0), t) = M(x, y, t).

Since (Max((BX,v)) = {(x, 0) : x ∈ X}, we conclude that i is an isom-

etry between (X,M, ∗) and (Max((BX,v)),M, ∗L).

(4) We first recall ([20, Proposition 7]) that for a metric space (X, d) and

(x, r), (y, s) ∈ BX it follows that

(x, r)� (y, s)⇐⇒ d(x, y) < r − s. (4.3)

Now we shall prove that τM ⊆ σ(BX), where σ(BX) denotes the Scott

topology of (BX,v).

Let (x, r) ∈ BX and ε ∈ (0, 1).We wish to show that

⇑ (x, r +
ε

2
) ⊆ BM((x, r), ε).
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Indeed, take (y, s) ∈⇑ (x, r + ε/2). By Proposition 4.7 and equivalence

(4.3) it follows that

d(M)(x, y) < r +
ε

2
− s. (4.4)

If r + ε/2− s < 1, we deduce from (4.4) that

M(x, y, r +
ε

2
− s) > 1− (r +

ε

2
− s).

Hence

M(x, y, (ε+ r − s)+) + ((r − s) ∧ 1) = M(x, y, ε+ r − s) + r − s

> 1− (r +
ε

2
− s) + r − s

= 1− ε

2
.

Moreover, since, from our hypothesis, r − s < 1 and, by (4.4), s − r <
ε/2,we deduce that

1− (|r − s| ∧ 1) + ((r − s) ∧ 1) = 1− |r − s|+ r − s > 1− ε

2
.

We conclude that

M((x, r), (y, s)), ε) > 1− ε

2
,

i.e., (y, s) ∈ BM((x, r), ε/2) ⊆ BM((x, r), ε).

If r + ε/2− s ≥ 1, we have

(r − s) ∧ 1 ≥ (1− ε

2
) ∧ 1 > 1− ε,

so

M((x, r), (y, s)), ε) > 1− ε,
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i.e., (y, s) ∈ BM((x, r), ε).

We conclude that τM ⊆ σ(BX).

It remains to prove that σ(BX) ⊆ τM.

To this end, let (x, r) ∈ BX and suppose (x, r) ∈⇑ (y, s) in (BX,v) for

some (y, s) ∈ BX. By Proposition 4.7 and (4.3), there exists ε ∈ (0, 1) such

that

d(M)(y, x) < s− r − 2ε.

We deduce that (x, r) ∈⇑ (x, r + 2ε) ⊆⇑ (y, s) in (BX,vd(M)) and hence

in (BX,v).

We shall show that BM((x, r), ε, ε) ⊆⇑ (x, r + 2ε).

Indeed, choose (z, u) ∈ BM((x, r), ε, ε).

If r − u ≥ 1− ε, we deduce that

d(M)(x, z) ≤ 1 ≤ r + ε− u < r + 2ε− u.

By (4.3), (z, u) ∈⇑ (x, r+2ε) in (BX,vd(M)), and thus (z, u) ∈⇑ (x, r+2ε)

in (BX,v) by Proposition 4.7.

Now suppose r− u < 1− ε. Then we have ε+ r− u > 0, since otherwise

one has

M(x, z, (ε+ r − u)+) = 0,

and hence

M((x, r), (z, u), ε) = ((r − u) ∧ 1)+ = 0,

which contradicts our assumption that (z, u) ∈ BM((x, r), ε, ε).

Thus, from r−u < 1−ε, ε+r−u > 0 and the fact thatM((x, r), (z, u), ε) >

1− ε, we deduce that

M(x, z, r + ε− u) > 1− ε− ((r − u) ∧ 1) = 1− (r + ε− u).

Therefore

d(M)(x, z) < r + ε− u < r + 2ε− u.
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We conclude that (z, u) ∈⇑ (x, r+2ε) in (BX,vd(M)) and thus in (BX,v
).

Consequently σ(BX) ⊆ τM.

(5) Suppose that (X,M, ∗) is complete and let ((xn, rn))n be a Cauchy

sequence in the fuzzy metric space (BX,Mi, ∗L).

Given ε ∈ (0, 1) there is n0 such that

M((xn, rn), (xm, rm), ε) > 1− ε, (4.5)

whenever n,m ≥ n0.

If there exist n,m ≥ n0 satisfying rm − rn ≥ 1, we deduce that

M((xn, rn), (xm, rm), ε) = 0,

so that |rn − rm| < 1 eventually.

Hence, and assuming without loss of generality that rm ≥ rn, we obtain

by (4.5) that

1− (|rn − rm| ∧ 1) + ((rn − rm) ∧ 1) = 1− (rm − rn) + rn − rm

> 1− ε,

eventually. Therefore 2 |rn − rm| < ε eventually, so (rn)n is a Cauchy se-

quence in R+ with respect to the usual metric. There exists r ∈ R+ such

that limn rn = r.

Next we show that (xn)n is a Cauchy sequence in (X,M, ∗). In fact, from

(4.5) and assuming, without loss of generality, that rm < rn < ε + rm, we

deduce that

M(xn, xm, ε+ rn − rm) + (rn − rm) > 1− ε,

eventually. Since M(xn, xm, 2ε) ≥M(xn, xm, ε+ rn − rm), it follows that

M(xn, xm, 2ε) > 1− ε− (rn − rm) > 1− 2ε,
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eventually.

We have shown that (xn)n is a Cauchy sequence in (X,M, ∗). Since it is

complete, there exists x ∈ X such that (xn)n converges to x with respect to

τM .

Now it is routine to check that ((xn, rn))n converges to (x, r) in the fuzzy

metric space (BX,Mi, ∗L).We conclude that (BX,M, ∗L) is bicomplete.

The converse is almost obvious. Indeed, let (xn)n be a Cauchy sequence

in (X,M, ∗). Then ((xn, 0))n is a Cauchy sequence in (BX,Mi, ∗L). Let

(x, 0) ∈ BX such that ((xn, 0))n converges to (x, 0) with respect to τMi .

Then (xn)n converges to x with respect to τM , so (X,M, ∗) is complete. �

Corollary 4.13. Every complete fuzzy metric space (X,M, ∗), with ∗ ≥
∗L, has a computational model.



Chapter 5

Fixed point theorems for

ϕ-contractions on fuzzy metric

spaces with application to the

intuitionistic setting

5.1 Introduction

In the last years several authors have studied the existence of fixed points for

some kinds of ϕ-contractive mappings in fuzzy metric spaces, or, equivalently,

in Menger spaces (see. e.g. [1, 15, 27, 40, 49, 70]). Recently, Huang, Zhu and

Wen [38] have obtained, among other results, an extension of Golet’s fixed

point theorem [27, Theorem 3] to intuitionistic fuzzy metric spaces.

Here we shall obtain two fixed point theorems for a kind of ϕ-contractive

mappings on complete fuzzy metric spaces from which we easily deduce fixed

point results for complete intuitionistic fuzzy metric spaces. Such results

improve in several directions the main fixed point theorem of [38], and also

provide a simplified proof of it.

Finally, we present a version for ordered complete fuzzy metric spaces of

77
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the main fixed point theorem obtained in Section 5.2.

The results given in Sections 5.2 and 5.3 are contained in the paper by

L.A. Ricarte and S. Romaguera, “On ϕ-contractions in fuzzy metric spaces

with application to the intuitionistic setting”, accepted in Iranian Journal

of Fuzzy Systems (cf. [58]), while the ones given in Section 5.4 are con-

tained in the paper by L.A. Ricarte, S. Romaguera and P. Tirado, “A fixed

point theorem for generalized contractions on ordered complete fuzzy metric

spaces”, published in the Proceedings of the Conference on Applied Topology

WiAT’13 (cf. [59]).

5.2 Fixed point theorems for complete fuzzy

metric spaces

In [46] Matkowski proved his celebrated (partial) generalization of the Boyd-

Wong fixed point theorem [12].

Theorem 5.1 (Matkowski [46]). If f is a self mapping on a complete

metric space (X, d) and there exists a non-decreasing function ϕ : R+ → R+

satisfying limn→∞ ϕ
n(t) = 0 for all t > 0, and d(fx, fy) ≤ ϕ(d(x, y)) for all

x, y ∈ X, then f has a fixed point.

Recently, Jachymski [40] obtained a probabilistic version of Matkowski’s

theorem by using continuous t-norms of Hadžić type (or h-type) [35] and an

appropriate notion of ϕ-contraction.

In our main result we shall prove a fuzzy metric version of Matkowski’s

theorem with a different approach to the ones given in [40]. In fact, our

notion of ϕ-contraction is motivated by the recent work of Huang, Zhu and

Wen [38], where the authors extended the notion of C-contraction, as given
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by Hicks [37], to intuitionistic fuzzy metric spaces and obtained some fixed

point theorems in this framework.

Definition 5.2. A fuzzy ϕ-contraction on a fuzzy metric space (X,M, ∗)
is a mapping f : X → X such that there is a non-decreasing function ϕ :

R+ → R+ satisfying limn→∞ ϕ
n(t) = 0 for all t > 0, and

M(x, y, t) > 1− t⇒M(fx, fy, ϕ(t)) > 1− ϕ(t),

for all x, y ∈ X and t > 0.

Recall that if ϕ : R+ → R+ is non-decreasing and satisfies limn→∞ ϕ
n(t) =

0 for all t > 0, then ϕ(t) < t for all t > 0.

Theorem 5.3. Every fuzzy ϕ-contraction on a complete fuzzy metric

space has a unique fixed point.

Proof. Let (X,M, ∗) be a complete fuzzy metric space and let f : X → X

be a ϕ-contraction on (X,M, ∗).

Then, there is a function ϕ verifying the conditions of Definition 5.2.

Take t0 > 1. Then, for each x, y ∈ X we have M(x, y, t0) > 1− t0, so

M(fx, fy, ϕ(t0)) > 1− ϕ(t0).

Repeating the process, we obtain that

M(fnx, fny, ϕn(t0)) > 1− ϕn(t0),

for all x, y ∈ X and n ∈ N.

Now choose x0 ∈ X. We show that (fnx0)n is a Cauchy sequence in

(X,M, ∗).
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Indeed, given ε ∈ (0, 1) and t > 0, there exists nε ∈ N such that ϕn(t0) <

min{ε, t} for all n ≥ nε.

Let m > n ≥ n0. Then m = n+ k for some k ∈ N, and thus

M(fnx0, f
mx0, t) = M(fnx0, f

nfkx0, t)

≥ M(fnx0, f
nfkx0, ϕ

n(t0))

> 1− ϕn(t0)

> 1− ε.

Consequently (fnx0)n is a Cauchy sequence in (X,M, ∗).

So there is z ∈ X such that the sequence (fnx0)n converges to z for τM ,

i.e., limn→∞M(z, fnx0, t) = 1 for all t > 0.

Next we show that z is the unique fixed point of f.

Indeed, given t > 0 and ε ∈ (0, t) there exists nε ∈ N such thatM(z, fnx0, ε) >

1− ε for all n ≥ nε. Hence

M(fz, fn+1x0, ϕ(ε)) > 1− ϕ(ε),

for all n ≥ nε. Since ϕ(ε) < ε < t, we deduce that

M(fz, fn+1x0, t) ≥ M(fz, fn+1x0, ε) ≥M(fz, fn+1x0, ϕ(ε))

> 1− ϕ(ε) > 1− ε,

for all n ≥ nε.

Hence limn→∞M(fz, fnx0, t) = 1 for all t > 0, and thus, z = fz.

Finally, suppose that u ∈ X satisfies u = fu. Then

M(u, z, ϕn(t0)) = M(fnu, fnz, ϕn(t0)) ≥ 1− ϕn(t0),
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for all n ∈ N.

Given an arbitrary t > 0, there is nε ∈ N such that ϕn(t0) < t for all

n ≥ nε. Hence

M(u, z, t) ≥ 1− ϕn(t0),

for all n ≥ nε.

Since limn→∞ ϕ
n(t0) = 0, we conclude that M(u, z, t) = 1. Since t is ar-

bitrary, it follows that u = z. The proof is complete. �

Motivated by the notions of a fuzzy contractive sequence and of a fuzzy

contractive mapping given in [33], Radu introduced in [54] the notion of a

strict B-contraction for which he obtained a nice fixed point theorem for any

complete fuzzy metric space (X,M, ∗) satisfying ∗ ≥ ∗L (recall that by ∗L
we denote the Lukasiewicz t-norm).

Later on, Mihet [47] generalized the notion of a strict B-contraction, in-

troducing the concept of (ϕ− k)-B contraction.

Then, he proved [47, Theorem 3.11] that if (X,M∗) is a complete fuzzy

metric space and f : X → X is a (ϕ−k)-B contraction satisfyingM(x, fx, t) >

0 for some x ∈ X and t > 0, then f has a (non necessarily unique) fixed point

in X.

Let us recall [47, Definition 3.6] that a self-mapping f on a fuzzy metric

space (X,M, ∗) is said to be a (ϕ − k)-B contraction if there is a function

ϕ ∈ Φ and a constant k ∈ (0, 1) satisfying the following condition

M(x, y, t) > 1− λ⇒M(fx, fy, kt) > 1− ϕ(λ),

for all x, y ∈ X, t > 0 and λ ∈ (0, 1), where by Φ is denoted the class of all

functions ϕ : (0, 1) → (0, 1) such that ϕ is an increasing bijection satisfying

ϕ(λ) < λ for all λ ∈ (0, 1).
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Note that if ϕ ∈ Φ, then limn→∞ ϕ
n(λ) = 0 for all λ ∈ (0, 1).

The following two easy examples illustrate the differences between Theo-

rem 5.3 and Mihet’s theorem cited above.

Example 5.4. Let X = {0, 1}, and (M,∧) be the complete fuzzy metric

on X given by M(x, x, t) = 1 for all x ∈ X and t > 0, and M(x, y, t) = 0

otherwise.

Define f : X → X by fx = x for all x ∈ X. Clearly f is a (ϕ − k)-B

contraction for every ϕ ∈ Φ and k ∈ (0, 1). So, the hypotheses of Mihet’s

theorem are verified.

However f is not a fuzzy ϕ-contraction because f has no a unique fixed

point. In fact, if f was a fuzzy ϕ-contraction for some ϕ satisfying the

conditions of Definition 5.2, then, from M(0, 1, t) > 1 − t we would have

M(f0, f1, ϕ(t)) > 1− ϕ(t).

Hence ϕ(t) > 1 for all t > 1, and thus limn→∞ ϕ
n(t) ≥ 1 whenever t > 1,

which contradicts the definition of fuzzy ϕ-contraction. So, indeed, we can-

not apply Theorem 5.3 to this example.

Example 5.5. Let X = [0, 1], and (M,∧) be the complete fuzzy metric

on X given by M(x, y, t) = |x− y| if t > 0 and |x− y| < t, and M(x, y, t) = 0

otherwise.

Define f : X → X by fx = x/2 for all x ∈ X, and ϕ : R+ → R+

by ϕ(0) = 0, ϕ(t) = 1/(n + 1) whenever t ∈ (1/(n + 1), 1/n], n ∈ N, and

ϕ(t) = t/2 whenever t > 1.

We prove that f is a fuzzy ϕ-contraction on (X,M, ∗).

It is clear that ϕ is non-decreasing with t/2 ≤ ϕ(t) < t for all t > 0.

Moreover, it is easy to check that limn→∞ ϕ
n(t) = 0 for all t > 0.

Let M(x, y, t) > 1−t. If M(x, y, t) = 0, it follows that t > 1 and |x− y| ≥
t,which is not possible because x, y ∈ [0, 1]. Hence, we shall suppose that
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M(x, y, t) = 1. Then |x− y| < t, so |x− y| < 2ϕ(t), i.e., M(fx, fy, ϕ(t)) = 1.

We have shown that f is a fuzzy ϕ-contraction on (X,M,∧), and thus the

hypotheses of Theorem 5.3 are verified.

However, the restriction of ϕ to (0, 1) does not belong to the class Φ be-

cause it is not one-to-one on (0, 1).

Remark 5.6. Note that both in Example 5.4 and Example 5.5, there

exist x, y ∈ X and t > 0 for which M(x, y, t) = 0.

Next we give other two examples that also allow us to distinguish between

Theorem 5.3 and Mihet’s theorem, and for which the considered fuzzy metric

space (X,M, ∗) verifies that M(x, y, t) > 0 for all x, y ∈ X and t > 0.

Example 5.7. Let X = R+ and let d be the Euclidean metric on X.

Then (X,Md,∧) is a complete fuzzy metric space and Md(x, y, t) > 0 for all

x, y ∈ X and t > 0.

Define f : X → X by fx = x/4 for all x ∈ X and ϕ : R+ → R+ by

ϕ(t) = t/(2− t) whenever t ∈ [0, 1) and ϕ(t) = 1 whenever t ≥ 1.

Since limn→∞ ϕ
n(t) = 1 for all t ≥ 1 we deduce that f is not a fuzzy

ϕ-contraction, so we cannot apply Theorem 5.3 to this case.

However, it is easy to check that f is a (ψ−k)-B contraction for ψ the re-

striction of ϕ to (0, 1) and k = 1/2. Moreover Md(x, fx, t) > 0 for x ∈ X\{0}
and t > 0, so the hypotheses of Mihet’s theorem are verified.

Example 5.8. Let (X,Md,∧) defined as in Example 5.7, let fx = 0 for

all x ∈ X and ϕ : R+ → R+ defined as in Example 5.5.

Obviously, f is a ϕ-contraction, and hence we can apply Theorem 5.3.

However, the restriction of ϕ to (0, 1) does not belong to the class Φ (see

Example 5.5).
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Next we generalize our notion of fuzzy ϕ-contraction as follows.

Definition 5.9 (compare [27, 38]). A fuzzy (g, ϕ)-contraction on a fuzzy

metric space (X,M, ∗) is a mapping f : X → X such that there exist a

bijective mapping g : X → X and a non-decreasing function ϕ : R+ → R+

satisfying limn→∞ ϕ
n(t) = 0 for all t > 0, and

M(gx, gy, t) > 1− t⇒M(fx, fy, ϕ(t)) > 1− ϕ(t),

for all x, y ∈ X and t > 0.

Now we extend Theorem 5.3 to the case of fuzzy (g, ϕ)-contractions. Ac-

tually, this will be done by a direct application of that theorem.

It is interesting to point out that Mihet [48] already used a similar ap-

proach to deduce the fixed point theorem proved by Golet in [27, Theorem

3] from the ones proved by Radu in [53] for C-contractions.

Theorem 5.10. Let (X,M, ∗) be a complete fuzzy metric space. If

f : X → X is a fuzzy (g, ϕ)-contraction on (X,M, ∗), then there is a unique

z ∈ X such that fz = gz.

Proof. Since f is a fuzzy (g, ϕ)-contraction, there exist a bijective map-

ping g : X → X and function ϕ verifying the conditions of Definition 5.9.

Define h := g−1. Then g(h) = 1X . Clearly f(h) is a fuzzy ϕ-contraction

on (X,M, ∗).

Indeed, let M(x, y, t) > 1 − t. Since x = g(h)x and = g(h)y, it follows

that M(f(h)x, f(h)y, ϕ(t)) > 1− ϕ(t).

Therefore, by Theorem 5.3, there exists a unique u ∈ X such that u =

f(h)u. Let z = hu. Then fz = f(h)u = u = g(h)u = gz.
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Finally, if fv = gv, it follows that fhgv = gv, so gv is a fixed point of

fh, and thus u = gv. Since u = gz and g is injective we conclude that v = z.

This completes the proof. �

5.3 Application to intuitionistic fuzzy metric

spaces

The fixed point theorems obtained in Section 2 admit an easy and natural

extension to the intuitionistic framework.

We first recall some pertinent concepts and properties.

A continuous t-conorm [72] is a binary operation ♦ : [0, 1]× [0, 1]→ [0, 1]

which satisfies the following conditions:

(i) ♦ is associative and commutative;

(ii) a♦0 = a for every a ∈ [0, 1];

(iii) a♦b ≤ c♦d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1];

(iv) ♦ is continuous.

It is well known, and easy to see, that for each continuous t-conorm ♦,

one has ∧ ≤ ∨ ≤ ♦, where, as usual ∨ denotes the continuous t-conorm of

maximum.

It is also well known that if ∗ is a continuous t-norm (respectively, a

continuous t-conorm), then ∗′ is a continuous t-conorm (respectively, a con-

tinuous t-norm), where a ∗′ b = 1− [(1− a) ∗ (1− b)] for all a, b ∈ [0, 1].

Definition 5.11 ([3]). An intuitionistic fuzzy metric on a (non-empty)

set X is a 4-tuple (M,N, ∗,♦) such that (M, ∗) is a fuzzy metric on X, ♦ is

a continuous t-conorm and N is a fuzzy set in X ×X ×R+ such that for all

x, y, z ∈ X :
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(N1) N(x, y, 0) = 1;

(N2) N(x, y, t) = 0 for all t > 0 if and only if x = y;

(N3) N(x, y, t) = N(y, x, t) for all t > 0;

(N4) N(x, y, t)♦N(y, z, s) ≥ N(x, z, t+ s) for all t, s ≥ 0;

(N5) N(x, y, ) : R+ → [0, 1] is left continuous;

(MN) M(x, y, t) +N(x, y, t) ≤ 1.

An intuitionistic fuzzy metric space is a 5-tuple (X,M,N, ∗,♦) such that

X is a (non-empty) set and (M,N, ∗,♦) is an intuitionistic fuzzy metric on

X.

We point out that Park gave in [52] (see also [30, 69]) a more strict notion

of intuitionistic fuzzy metric space which is based on the notion of a fuzzy

metric due to George and Veeramani [23]. Nevertheless, Park’s results and

concepts which will be consider here are also valid for intuitionistic fuzzy

metric spaces as defined above.

Park showed in [52] (see also [64, 65]) that, as for fuzzy metric spaces,

every intuitionistic fuzzy metric (M,N, ∗,♦) on a (non-empty) set X in-

duces a topology τ(M.N) on X which has as a base the family of open balls

{B(M,N)(x, ε, t) : ε ∈ (0, 1), t > 0}, where

B(M,N)(x, ε, t) = {y ∈ X : M(x, y, t) > 1− ε and N(x, y, t) < ε}

for all x ∈ X, t > 0 and ε ∈ (0, 1).

Similarly to [52], we say that a sequence (xn)n in an intuitionistic fuzzy

metric space (X,M,N, ∗,♦) is a Cauchy sequence if for each t > 0 and

each ε ∈ (0, 1) there exists n0 ∈ N such that M(xn, xm, t) > 1 − ε and

N(xn, xm, t) < ε for all n,m ≥ n0. (X,M,N, ∗,♦) is called complete if every

Cauchy sequence converges with respect to τ(M,N).
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As direct consequences of condition (MN) in Definition 5.11 we have the

following easy but crucial facts.

Proposition 5.12 (see e.g. [30, 64, 65]). Let (X,M,N, ∗,♦) be an in-

tuitionistic fuzzy metric space. Then B(M,N)(x, ε, t) = BM(x, ε, t) for all

x ∈ X, t > 0 and ε ∈ (0, 1). Hence the topologies τ(M.N) and τM coincide on

X.

Proposition 5.13 (see e.g. [65]). Let (X,M,N, ∗,♦) be an intuitionistic

fuzzy metric space. Then:

(a) A sequence in X is a Cauchy sequence in (X,M,N, ∗,♦) if and only

if it is a Cauchy sequence in (X,M, ∗).
(b) (X,M,N, ∗,♦) is complete if and only if (X,M, ∗) is complete.

The following is a typical example of an intuitionistic fuzzy metric space.

Example 5.14 ([3, 38, 52]). Let (X, d) be a metric space. Define Md, Nd :

X ×X × R+ → [0, 1] by Md(x, y, 0) = 0, Nd(x, y, 0) = 1, and

Md(x, y, t) =
t

t+ d(x, y)
, Nd(x, y, t) =

d(x, y)

t+ d(x, y)

for all x, y ∈ X and t > 0.

Then (X,Md, Nd, ∗,♦) is an inuitionistic fuzzy metric space for each con-

tinuous t-norm ∗ and each continuous t-conorm ♦, with τd = τ(M,N).

Moreover, from Proposition 5.13 and the well-known fact that (X,Md, ∗)
is complete if and only (X, d) is complete, it follows that (X,Md, Nd, ∗,♦) is

complete if and only if (X, d) is complete.

Now the following results are direct consequences of Proposition 5.13, and

Theorems 5.3 and 5.10, respectively.
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Theorem 5.15. Let (X,M,N, ∗,♦) be a complete intuitionistic fuzzy

metric space. If f : X → X is a fuzzy ϕ-contraction on the fuzzy metric

space (X,M, ∗), then f has a unique fixed point.

Theorem 5.16. Let (X,M,N, ∗,♦) be a complete intuitionistic fuzzy

metric space. If f : X → X is a fuzzy (g, ϕ)-contraction on the fuzzy metric

space (X,M, ∗), then there is a unique z ∈ X such that fz = gz.

In [28] Grabiec introduced the following notion of completeness for fuzzy

metric spaces, in order to obtain fuzzy extensions of the classical Banach

contraction principle and the Edelstein fixed point theorem, respectively.

Definition 5.17 ([28]). (a) A sequence (xn)n in a fuzzy metric space

(X,M, ∗) is called G-Cauchy if for each p ∈ N and each t > 0, limn→∞M(xn, xn+p, t) =

1.

(b) A fuzzy metric space is called G-complete if every G-Cauchy sequence

converges.

Alaca, Turkoglu and Yildiz [3] generalized Definition 5.17 to the intu-

itionistic setting as follows.

Definition 5.18 ([3]). (a) A sequence (xn)n in an intuitionistic fuzzy

metric space (X,M,N, ∗,♦) is called G-Cauchy if for each p ∈ N and each

t > 0, limn→∞M(xn, xn+p, t) = 1 and limn→∞N(xn, xn+p, t) = 0.

(b) An intuitionistic fuzzy metric space (X,M,N, ∗,♦) is called G-complete

if for every G-Cauchy sequence (xn)n there is x ∈ X such that limn→∞M(x, xn, t) =

1 and limn→∞N(x, xn, t) = 0 for all t > 0.

Similarly to Proposition 5.13 we have the following.
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Proposition 5.19 ([64, Propositions 1 and 2]). Let (X,M,N, ∗,♦) be

an intuitionistic fuzzy metric space. Then:

(a) A sequence in X is a G-Cauchy sequence in (X,M,N, ∗,♦) if and

only if it is a G-Cauchy sequence in (X,M, ∗).

(b) (X,M,N, ∗,♦) is G-complete if and only if (X,M, ∗) is G-complete.

Obviously, every Cauchy sequence in a fuzzy metric space is a G-Cauchy

sequence, and hence, every G-complete fuzzy metric space is complete. So,

by Propositions 5.13 and 5.19, every G-complete intuitionistic fuzzy metric

space is complete.

The converse is not true, in general. In fact, there exist compact, and

hence complete, fuzzy metric spaces that are not G-complete [76]. Further-

more, if we denote by e the Euclidean metric on R, then (R,Me, ∗) pro-

vides a distinguished example of a complete fuzzy metric space that is not

G-complete (see [77]). Hence, by Proposition 5.19, (R,Me, Ne, ∗,♦) is a com-

plete intuitionistic fuzzy metric space that is not G-complete.

Huang, Zhu and Wen discussed in [38] the existence of fixed points for

(g, ϕ)-contractions in the realm of G-complete intuitionistic fuzzy metric

spaces. To this end, they introduced the following notion.

Definition 5.20 ([38, Definition 11]). An intuitionistic fuzzy (g, ϕ)-

contraction on an intuitionistic fuzzy metric space (X,M,N, ∗,♦) is a map-

ping f : X → X such that there exist a bijective mapping g : X → X

and a non-decreasing right continuous function ϕ : R+ → R+ satisfying

limn→∞ ϕ
n(t) = 0 for all t > 0, and

M(gx, gy, t) > 1− t⇒M(fx, fy, ϕ(t)) > 1− ϕ(t),

and

N(gx, gy, t) < t⇒ N(fx, fy, ϕ(t)) < ϕ(t),
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for all x, y ∈ X and t > 0.

Then, they proved, among other, the following main result.

Theorem 5.21 ([38, Theorem 1]). Let (X,M,N, ∗,♦) be a G-complete

intuitionistic fuzzy metric space. If f : X → X is an intuitionistic fuzzy

(g, ϕ)-contraction on (X,M,N, ∗,♦), then there is a unique z ∈ X such that

fz = gz.

Note that Theorem 5.21 is a direct consequence of Theorem 5.16. In fact,

G-completeness can be relaxed to completeness, and both right continuity of

ϕ and the contractive condition of N in Definition 5.20 can be omitted.

5.4 A version for ordered fuzzy metric spaces

Motivated by the problem of the resolution of certain linear and nonlinear

matrix equations, Ran and Reurings proved, in [55], a version of the classical

Banach fixed point theorem to ordered complete metric spaces. Indepen-

dently, Nieto and Rodŕıguez-López [50] obtained a slightly different version

to the one given by Ran and Reurings and presented applications of their

result to the existence of a unique solution for a first-order ordinary differ-

ential equation with periodic boundary conditions. In Theorem 5.22 below

we present these results in a unified way.

Let us recall that an ordered metric space is a triple (X,�, d) such that �
is a (partial) order on X and (X, d) is a metric space. If, in addition, (X, d)

is complete we say that (X,�, d) is an ordered complete metric space.

An ordered metric space (X,�, d) is called regular if for any nondecreas-

ing sequence (xn)n∈ω for �, which converges to some z ∈ X it follows xn � z

for all n ∈ ω.
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Theorem 5.22 ([50, 55]). Let (X,�, d) be an ordered complete metric

space and f : X → X a nondecreasing mapping for �, such that there exists

a ∈ (0, 1) with

d(fx, fy) ≤ ad(x, y),

for all x, y ∈ X satisfying x � y.

If there is x0 ∈ X such that x0 � fx0, and f is continuous or (X,�, d)

is regular, then f has a fixed point.

Later on, Agarwal, El-Gebeily and O’Regan [9] proved an ordered version

of the well-known fixed point theorem of Matkowski [46], generalizing in this

way Theorem 5.22 above (see e.g. [8, 11, 16, 39, 51] for further contributions

with applications, in this framework).

Theorem 5.23 ([9]). Let (X,�, d) be an ordered complete metric space

and f : X → X a nondecreasing map for �, such that

d(fx, fy) ≤ ϕ(d(x, y)),

for all x, y ∈ X with x � y, where ϕ : R+ → R+ is a nondecreasing function

satisfying limn→∞ ϕ
n(t) = 0 for all t > 0.

If there is x0 ∈ X such that x0 � fx0, and f is continuous or (X,�, d)

is regular, then f has a fixed point. Moreover, the set of fixed points of f is a

singleton if and only it is well-ordered.

The problem of obtaining fuzzy metric counterparts of fixed point theo-

rems on ordered complete metric spaces has been discussed by some authors

(see e.g. [4, 6, 7, 17]).

By an ordered fuzzy metric space we mean a 4-tuple (X,�,M, ∗) such

that � is a partial order on X and (X,M, ∗) is a fuzzy metric space. If, in

addition, (X,M, ∗) is a complete fuzzy metric space, we say that (X,�,M, ∗)
is an ordered complete fuzzy metric space
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An ordered fuzzy metric space (X,�,M, ∗) is called regular if for any

nondecreasing sequence (xn)n∈ω for �, which converges to some z ∈ X with

respect to τM , it follows xn � z for all n ∈ ω.

Our main result in this section is the following.

Theorem 5.24. Let (X,�,M, ∗) be an ordered complete fuzzy metric

space and f : X → X a nondecreasing mapping for �, such that

M(x, y, t) > 1− t⇒M(fx, fy, ϕ(t)) > 1− ϕ(t), (5.1)

for all x, y ∈ X with x � y and t > 0, where ϕ : R+ → R+ is a nondecreasing

function satisfying limn→∞ ϕ
n(t) = 0 for all t > 0.

If there is x0 ∈ X such that x0 � fx0, then f has a fixed point z ∈ X.
Moreover, the set of fixed points of f is a singleton if and only it is well-

ordered.

Proof. Take t0 > 1. Let x, y ∈ X with x � y. From M(x, y, t0) > 1 − t0,
it follows that

M(fx, fy, ϕ(t0)) > 1− ϕ(t0). (5.2)

Since f is nondecreasing, we have that fnx � fny for alll n ∈ ω, so, by

(5.1) and (5.2), we immediately deduce that

M(fnx, fny, ϕn(t0)) > 1− ϕn(t0), (5.3)

for all x, y ∈ X with x � y and n ∈ ω.
Now let x0 ∈ X such that x0 � fx0. Put xn = fnx for all n ∈ ω. Since f

is nondecreasing it follows that (xn)n∈ω is a nondecreasing sequence for �
Next we show that (xn)n∈ω is a Cauchy sequence in (X,M, ∗). To this

end, choose ε ∈ (0, 1) and t > 0. Then, there exists nε ∈ N such that

ϕn(t0) < min{ε, t} for all n ≥ nε. Let m > n ≥ nε. Then m = n+ k for some
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k ∈ N, so, by (5.3),

M(xn, xm, t) = M(fnx0, f
nfkx0, t)

≥ M(fnx0, f
nfkx0, ϕ

n(t0))

> 1− ϕn(t0)

> 1− ε.

Therefore (xn)n∈ω is a Cauchy sequence in (X,M, ∗). Since (X,M, ∗) is com-

plete there exists z ∈ X such that limn→∞M(z, xn, t) = 1 for all t > 0.

It remains to show that z is a fixed point of f and that z is the unique

fixed point of f if and only if the set of fixed points of f is well-ordered.

Given t > 0 and ε ∈ (0, t) there exists nε ∈ N such that

M(xn, z, ε) > 1− ε,

for all n ≥ nε. Since xn � z and ϕ(ε) < ε < t, we deduce from (5.1) that

M(xn+1, fz, t) > 1− ϕ(ε),

for all n ≥ nε, so M(xn+1, fz, t) > 1− ε for all n ≥ nε.

We conclude that limn→∞M(fz, xn, t) = 1 for all t > 0. Hence, z = fz.

Finally, if the set of fixed point is well-ordered and u ∈ X is a fixed point

of f,we deduce by (5.3) and assuming u � z, that

M(fnu, fnz, ϕn(t0)) > 1− ϕn(t0),

for all n ∈ ω, i.e., M(u, z, ϕn(t0)) > 1−ϕn(t0) for all n ∈ ω. Given ε ∈ (0, 1)

and t > 0, there exists k ∈ N such that ϕk(t0) < min{ε, t}. Hence

M(u, z, t) ≥M(u, z, ϕk(t0)) > 1− ϕk(t0) > 1− ε,

which implies that M(u, z, t) = 1 for all t > 0, and thus u = z. The converse

is obvious. �
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Remark 5.25. Theorem 5.24 provides an ordered counterpart of Theo-

rem 5.3 and a fuzzy extension of Theorem 5.22.

The following easy example illustrates the usefulness of Theorem 5.24

with respect to Theorem 5.3.

Example 5.26. Let (X,M,∧) be the complete fuzzy metric space where

X = {a, b, c}, M(a, a, t) = M(b, b, t) = M(c, c, t) = 1 for all t > 0, and

M(x, y, t) = 0, otherwise. Define f : X → X as fa = fc = a and fb = c,

and let � be the (partial) order on X given by

x � y if and only if x = a and y = c, or x = y.

We show that the contraction condition of Theorem 5.3 does not hold

for the complete fuzzy metric space (X,M, ∗) and the map f. Indeed, as-

sume the contrary. Then there is a nondecreasing function ϕ : R+ → R+

with limn→∞ ϕ
n(t) = 0 for all t > 0, and such that M(fb, fc, ϕ(t)) >

1 − ϕ(t) whenever t > 1, because M(b, c, t) > 1 − t whenever t > 1. Since

M(fb, fc, ϕ(t)) = 0, it follows that ϕ(t) > 1 whenever t > 1, which contra-

dicts that limn→∞ ϕ
n(t) = 0. Therefore, we cannot apply Theorem 5.3 to this

example.

However, since a � fa, and condition (5.1) trivially holds sinceM(fa, fc, t) =

1 for all t > 0, the conditions of Theorem 5.24 are satisfied. In fact a is the

unique fixed point of f.



Chapter 6

The fuzzy quasi-metric case

6.1 Introduction

The fact that the relation vd defined by Edalat and Heckmann on the set

of formal balls of a metric space (X, d), preserves its structure of partial

order in the case that (X, d) is a quasi-metric space, suggests the natural

and interesting question of extending the theory developed for metric spaces

to the quasi-metric setting. This questions was discussed, among others, by

Aliakbari, Honari, Pourmahdian and Rezaii ([5]), and Romaguera and Valero

([66, 67]).

The purpose of this chapter is to explore the extension and generalization

of the main results obtained in Chapters 3, 4 and 5, to the fuzzy quasi-metric

framework.

6.2 The results

We start this section by discussing the problem of extending the main results

of Chapter 3 to the quasi-metric framework.

95
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As in the fuzzy metric case, for a fuzzy quasi-metric space (X,M, ∗) we

define a binary relation vM on the set BX := X × R+ of formal balls of X,

by

(x, r) vM (y, s)⇐⇒M(x, y, t) ≥ t

t+ r − s
for all t > 0.

Note (compare Remark 3.2) that condition (x, r) vM (y, s) implies r ≥ s.

Then, we can generalize Proposition 3.3 as follows.

Proposition 6.1. Let (X,M,∧) be a fuzzy quasi-metric space. Then

(BX,vM) is a poset.

Proof. Since reflexivity and transitivity of vM follows as in the fuzzy met-

ric case (see the proof of Proposition 3.3), we only check the antisymmetry.

Indeed, suppose (x, r) vM (y, s) and (y, s) vM (x, r). Then

M(x, y, t) ≥ t

t+ r − s
and M(y, x, t) ≥ t

t+ s− r
,

for all t > 0. Thus r = s, and consequently

M(x, y, t) = M(y, x, t) = 1,

for all t > 0. Hence x = y. �

However, the main result of Chapter 3 (Theorem 3.22) only admits a

partial generalization to the quasi-metric setting.

To show this, we first extend the notion of a standard complete fuzzy

metric space as follows.

Definition 6.2. A fuzzy quasi-metric space (X,M, ∗) is called standard

complete if every standard Cauchy sequence converges in (X,M−1, ∗), where
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a sequence (xn)n in X is said to be standard Cauchy if for each ε ∈ (0, 1)

there exists n0 ∈ N such that

M(xn, xm, t) >
t

t+ ε
,

whenever m ≥ n ≥ n0 and t > 0.

Then, we can prove the following result.

Proposition 6.3. Let (X,M,∧) be a fuzzy quasi-metric space. If (BX,vM

) is a dcpo, then (X,M,∧) is standard complete.

Proof. Let (xn)n be a standard Cauchy sequence in (X,M,∧). As in the

proof of Lemma 3.19, choose n1 ∈ N such that

M(xn1 , xn, t) ≥
t

t+ 2−2
,

for all n ≥ n1 and t > 0. Similarly, take n2 > n1 such that

M(xn2 , xn, t) ≥
t

t+ 2−3
,

for all n ≥ n2 and t > 0. Continuing this process, we construct a subsequence

(xnk
)k of (xn) such that

M(xnk
, xnk+1

, t) ≥ t

t+ 2−(k+1)
,

for all k ∈ N and t > 0. Therefore (xnk
, 2−k) vM (xnk+1

, 2−(k+1)) for all k ∈ N.

Since (BX,vM) is a dcpo there is (x, r) ∈ BX such that (x, r) = tD,
where D = {(xnk

, 2−k) : k ∈ N}. Clearly r = 0, so (xnk
, 2−k) vM (x, 0) for

all k ∈ N, and consequently

M(xnk
, x, t) ≥ t

t+ 2−k
,
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for all k ∈ N and t > 0. Therefore limk→∞M(xnk
, x, t) = 1 for all t > 0. It

immediately follows that, in fact, one has

lim
n→∞

M(xn, x, t) = 1,

for all t > 0. We conclude that (X,M,∧) is standard complete. �

The next example shows the unfortunately, and contrarily to the fuzzy

metric case, the converse of Proposition 6.3 is not true.

Example 6.4. Let A be the family of all nonempty countable subsets

of R and let (M,∧) be the fuzzy quasi-metric on A given by M(A,B, t) = 1

if A ⊆ B and M(A,B, t) = 0 otherwise. Clearly (A,M,∧) is standard

complete because if (An)n is a standard Cauchy sequence then An ⊆ An+1

for all n, and

lim
n→∞

M(An,
∞⋃

n=1

An, t) = 1,

for all t > 0 (of course,
⋃∞

n=1An ∈ A).

However, the subset of BA

{(A, 0) : A is a nonempty finite set consisting of irrational numbers},

is directed but has no upper bound.

With respect to the results obtained in Chapter 4, we notice that if

(X,M, ∗) is a fuzzy quasi-metric then we may define, as in the fuzzy metric

case, a binary relation v on BX given by

(x, r) v (y, s)⇐⇒ y ∈
⋂

t>r−s

BM(x, (r − s) ∧ 1, t).

It is easily follows that

(x, r) v (y, s)⇐⇒ inf
t>r−s

M(x, y, t) ≥ 1− ((r − s) ∧ 1).
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In fact, Proposition 4.2 can be generalized to fuzzy quasi-metric spaces.

Proposition 6.5. Let (X,M, ∗) be a fuzzy quasi-metric space with ∗ ≥
∗L. Then (BX,v) is a poset.

Proof. Since reflexivity and transitivity follow exactly as in the proof of

Proposition 4.2, we only verify the antisymmetry of v .

Let (x, r) v (y, s) and (y, s) v (x, r). Then r = s, and thus

inf
t>0

M(x, y, t) ≥ 1 and inf
t>0

M(y, x, t) ≥ 1

i.e., M(x, y, t) = M(y, x, t) = 1 for all t > 0, so x = y. �

Furthermore, the proof of Proposition 4.3 shows that this result also ad-

mits a natural generalization.

Proposition 6.6. Let (X, d) be a metric space with d ≤ 1. Then vd=v
on BX, where v is the partial order on BX corresponding to the fuzzy quasi-

metric space (X,M01, ∗), ∗ ≥ ∗L.

It is well known (see e.g. [13]) that given a fuzzy quasi-metric space

(X,M, ∗) with ∗ ≥ ∗L, then the function d(M) defined by

d(M)(x, y) = sup {t ≥ 0 : M(x, y, t) ≤ 1− t} ,

is a quasi-metric on X, with d(M) ≤ 1, whose induced topology coincides

with the topology induced by (M, ∗). In fact, for each x, y ∈ X and each

ε ∈ (0, 1) we have

M(x, y, ε) > 1− ε⇐⇒ d(M)(x, y) < ε,

Then, we can deduce the following result (compare Corollary 4.6).



100 Chapter 6. The fuzzy quasi-metric case

Proposition 6.7. Let (X,M, ∗) be a fuzzy quasi-metric space with

∗ ≥ ∗L. Then (X,M, ∗) is bicomplete if and only if (X, d(M)) is bicom-

plete.

Moreover, the proof of Proposition 4.7 allows its generalization to the

quasi-metric framework as follows.

Proposition 6.8. Let (X,M, ∗) be a fuzzy quasi-metric space with

∗ ≥ ∗L. Then v=vd(M) on BX.

In Theorem 4.9 it was proved that a fuzzy metric space (X,M, ∗) is

complete if and only if (BX,v) is a domain.

Next we show that this crucial result cannot be generalized to the quasi-

metric case. To this end we shall use Example 6.4 above.

Let A be the family of all nonempty countable subsets of R and let

(M,∧) be the fuzzy quasi-metric on A given by M(A,B, t) = 1 if A ⊆ B and

M(A,B, t) = 0 otherwise. Clearly (A,M,∧) is bicomplete because if (An)n

is a Cauchy sequence in (A,M i,∧), it is eventually constant.

However, as in Example 6.4, the subset of BA

{(A, 0) : A is a nonempty finite set consisting of irrational numbers},

is directed in (BA,v) but has no upper bound.

Despite this, it is still possible to recover to the quasi-metric context some

results of Theorem 4.12.

In fact, if (X,M, ∗) is a fuzzy quasi-metric space with ∗ ≥ ∗L, the result

(1) of Theorem 4.12 remains valid, so we have that (M, ∗L) is a fuzzy quasi-

metric on BX, where
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M((x, r), (y, s), 0) = 0,

for all (x, r), (y, s) ∈ BX, and

M((x, r), (y, s), t) =
[(
M(x, y, (t+ r − s)+) ∧ (1− (|r − s| ∧ 1))

)
+ ((r − s) ∧ 1)

]+
for all (x, r), (y, s) ∈ BX and t > 0.

We also can show, with an adaptation of the corresponding proofs in

Theorem 4.12, the following facts:

(a) v=≤M on BX.

(b) (X,M, ∗) and (BX0,M, ∗L) are isometric, where BX0 = {(x, 0) :

x ∈ X}.

(c) (X,M, ∗) is complete if and only if (BX,M, ∗L) is bicomplete.

We conclude by deducing from the main theorem of Chapter 5 a quasi-

metric version of it.

Proposition 6.9. Let (X,M, ∗) be a bicomplete fuzzy quasi-metric space

and f : X → X a map such that

M(x, y, t) > 1− t⇒M(fx, fy, ϕ(t)) > 1− ϕ(t),

for all x, y ∈ X and t > 0, where ϕ : R+ → R+ is a nondecreasing function

satisfying limn→∞ ϕ
n(t) = 0 for all t > 0. Then f has a unique fixed point.

Proof. Let x, y ∈ X and t > 0 such that M i(x, y, t) > 1 − t, then

M(x, y, t) > 1− t and M(y, x, t) > 1− t. Therefore

M(fx, fy, ϕ(t)) > 1− ϕ(t) and M(fy, fx, ϕ(t)) > 1− ϕ(t),
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so

M i(fx, fy, ϕ(t)) > 1− ϕ(t).

Hence, all conditions of Theorem 5.3 are satisfied for the complete fuzzy

metric space (X,M i, ∗), and consequently, f has a unique fixed point. �
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