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USING LOCATION-ALLOCATION ALGORITHMS 
TO DISTRIBUTE MULTIOUTLET HYDRANTS IN 

IRRIGATION NETWORKS DESIGN 
 

Francisco González Villa1; Alberto García Prats2  

Abstract  

Location-allocation algorithms allow for situating services in an efficient way in zones 

where the demand is disperse accross the territory. In the present work, the minisum 

location-allocation algorithm has been used to optimize the situation of the multioutlet 

hydrants, which needs an irrigable zone to be supplied. The objective function aims at 

minimizing the total access costs of the service. In this sense, an application case has 

been solved. The total number of hydrants is the same as the currently existing, in such 

a way that the results can be compared with the presented solution. The model reduces 

the total distance run to access the service, from 16,177 m to 13,560 m (16.17%) and 

also the objective function (proportional to the cost) by 28.95 %. 

 

CE Database subjetc headings:  Multioutlet hydrant; Irrigation network; Location-

allocation algorithm; Minisum; Operational research; Geographical information system 

(GIS). 

 

 

Introduction 

To approach the design of a pipe-network distribution system for irrigation, certain 

steps need be taken (Labye et al. 1988). First, the hydrants (delivery points) are 

distributed around the area to be irrigated by grouping together a number of plots 

according to their size, approximately between four and six. In the second stage, the 

hydrants join the supply point through a pipe network. This stage is referred to as the 

layout design. In the third stage, the flow circulating through the pipes is determined 
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according to the hypothesis of on-demand supply (Clement 1966) or through a turn-

taking system (Labye et al. 1988). Finally, every pipeline is sized. This last stage is 

usually carried out by employing mathematical optimization procedures. The exact 

position of the hydrants depends on the agreement reached among the consumers, who 

all wish to be near the hydrants, and the network management company, whose aim is 

to economize and install only those points that are strictly necessary (Labye et al. 1988). 

In the last three decades a significant number of methodologies have been developed for 

solving the last stage only, or the second, third and last stage together, using several 

mathematic methodologies. 

 

However, very few methodologies have been developed to solve only the second stage 

(García-Prats and Guillem-Picó 2007, 2009). Despite its importance, not many approach 

exist in the scientific literature about how to distribute multioutlet hydrants in irrigation 

networks design. 

 

Location-allocation problems concern the provision of a service to satisfy a spatially 

dispersed demand. For reasons of cost, service must be provided from a few centralized 

locations (hydrants). The problem has two elements: where to put the hydrants 

(location), and which subsets of demand (irrigated plots) should be served by each 

hydrant (allocation). Location theory was first formally introduced in 1909 by Alfred 

Weber (1909, 1971), who considered the problem of locating a single warehouse to 

minimize the total travel distance between the warehouse and a set of spatially 

distributed customers. Location-allocation problems was first discussed by Miehle 

(1958) and later accurately formulated by Cooper (1963, 1964, 1967). Today, location-

allocation problems are an important part of operational research science. 

 

In this work, the use of a location-allocation algorithm to place or distribute the 

hydrants in an irrigation network is proposed. The spatial information required is 

obtained by implementing the studied zone in to a geographical information system. 

The information is processed using the General Algebraic Modeling System (GAMS) 

mathematical optimization software. In this study, a real irrigable zone is presented. 

Hydrants and connecting pipes to current plots are compared with the results obtained in 

the application of the developed model. 

 



MATERIALS AND METHODS 

 

Model description 

 

Among the different location-allocation models, the selected one for the hydrants 

situation is the so called minisum. The objective of the model is to assign –to each 

demand point- the offer point that succeeds in minimizing the total movement costs. In 

our case, we aim at minimizing the total cost of the required pipes to link every plot 

with a hydrant. Due to the fact that the cost of a pipe is proportional to both the supplied 

area and the distance run, we will utilize the product of these two variables as a tool for 

estimating the cost. The objective function does not define a real cost in itself, but a 

value directly proportional to it. 

 

The objective function minimizes the sum of distances weighted by the size of plots and 

is as follows: 
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where: Z is the value of the objective function (m2·m; proportional to the overall cost of 

the pipes; units with no physical sense); aj is the area of each irrigated plot (m2); dij is 

the distance (m) from every candidate point (for a hydrant i and a plot j); and sij is a 

binary term called “service”, it being 1 when the plot j is served by a hydrant i and 0 in 

the opposite case. The total number of plots is n, whereas the total number of candidate 

points where hydrants can be located is m. Taking into account that the latter is far 

higher than the number of hydrants, another binary variable hi should be defined, in 

such a way that hi equals 1 when a location contains a hydrant, and 0 in the opposite 

case.  

 

The model is subjected to the following restrictions that allow for delimiting the feasible 

region: 
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Where lb and ub are the lower limit (minimum number) and upper limit (maximum 

number) of plots respectively, that can be assigned to the same hydrant; NH is the total 

number of hydrants to be located. 

 

The feasible region contains all possible values that decision variables may take. A 

given plot can never be supplied by more than a hydrant. Therefore, only one service 

can be assigned from a hydrant to a plot (eq. 2). 

 

The total number of hydrants that will supply the plots should be a fixed number, NH, 

known in advance (eq. 3).  

 

To prevent some hydrants from remaining unlocated (no plots assigned) and others with 

a great deal of plots, both lower and upper limits of supplied plots by the same hydrant 

are set (eq. 4 and 5). 

 

The initial data to solve the problem are the total number of plots n, their respective 

areas aj, the total number of hydrants NH, the total number of candidate points where a 

hydrant m can be located, and the distances between these candidate points and each 

plot dij. The resulting mathematical model is the type of binary integer programming 

(BIP).  The decisión variables are sij y hi , which can only take the values 0 or 1 since 

they are binary-type variables.  

 

The GAMS (General Algebraic Modeling System) optimization software (Brooke et al., 

1992) has been used to solve the optimization model. The solver chosen in this case has 

been Cplex version 10.1.1, which easily adapts itself to the BIP models. 

 

 

Getting distances 



 

Within the initial information required to solve the problem we can find the distance 

between candidate points (for placing hydrants) and plots. This distance can be 

measured following different procedures, Figure 1 showing the two most frequent 

methods: Euclidean distances (ED) and distances through the plot network (DTNP). 

 

The euclidean distance is the straight line distance between two points. The first point is 

the hydrant, whereas the second one is the plot centroid. It can be easily obtained, with 

low computation costs, although it scarcely resembles the reality, since supply pipes 

never cross through the parcels (they run along the plot boundaries instead). The final 

result is an m x n distance matrix (with m candidate to hydrant points and n plots). 

 

Distances through the plot network are rather difficult to calculate, but they in turn 

provide a high precisión since they exactly fit the reality. In this case network means the 

set of plot boundaries and the nodes formed in the confluence of two or more 

boundaries. The starting point is the hydrant and the arrival is the closest vertex to the 

supplied plot. Figure 2 shows the irrigable zone decomposed as a network so as to be 

able to utilize it in the calculation of distances.  

 

Both alternatives are studied using a geographic information system (GIS). 

 

The distance across the plot network requires the obtainment of the shortest path 

between the origin and the target. This is the popular problem of the “shortest path” in 

graph theory. The difference consists of the fact that in the former case we have one 

origin but several targets. For each plot we are interested in the distance between the 

candidate point to become a hydrant and the closest vertex to all of them. For this 

reason the problem is solved in two stages:  

 Firstly, we obtain the shortest path between each candidate point to be a hydrant 

and all the vertices of each plot. Shortest paths are obtained with the Dikjstra's 

algorithm (Dijkstra, 1969) implemented in Matlab. The result is an array with 

the minimum distances between all vertices. The sequence of boundaries 

forming each path is also obtained. 



 Afterwards, for each plot and for each candidate to hydrant point, the minimum 

route is selected. Thus, we again obtain an m x n matrix, with m candidate to 

hydrant points and n plots. 

 

Case study 

 

The studied case corresponds to an irrigable zone with a total area of 202 ha. The 

number of plots is n=374. The average area per plot is 0.54 ha. Irrigation zones have a 

pressurized branched irrigation network organized to work on-demand supply.  Figure 3 

shows the present distribution of the plots and the hydrants that supply them.  

 

The candidate points for hydrants are all the vertices formed by the confluence of two or 

more plot limits. In the studied zone we have obtained m = 659 candidate points of n = 

374 plots.  

 

In order to compare the result of the model with the present situation, the number of 

hydrants to be located is the same as the currently existing: NH= 47. 

 

The lower and upper limits of the plots assigned to the same hydrant are set at lb=6 and 

ub=10.    

 

The use of a geographical information system (GIS) allows for obtaining the lengths of 

each plot boundary, the connectivity matrix between vertices and boundaries, as well as 

the area of each plot. The ED distance matrix can also be obtained through the 

utilization of GIS. The DTNP distance matrix is obtained from the connectivity matrix 

and the length of the boundaries, employing MATLAB.  

 

Pipes linking the hydrants with the existing plots have been carried out following the 

Plot limits (distances across the plot network). Hydrants are then linked with the nearest 

point of the supplied Plot. The results of the application of the model (using both ED 

distances and DTNP distances) will be compared with the currently installed pipes 

(CIP). 

 

 



RESULTS AND DISCUSSION 

 

After the optimization process, the result obtained for each case is a matrix of distances 

between each one of the selected NH vertices (where the hydrants will be located) and 

the supplied plots. The vertices selected as hydrants are those that minimize the total 

cost of plot access to the service (irrigation water) concentrated on the hydrants. The 

model is solved for ED distances as well as for DTNP distances.  ED distances (shown 

in Figure 4) are only used to solve the location-allocation model. After knowing the 

vertices containing the hydrants and the plots assigned to each hydrant, we calculate the 

distances to be run between each hydrant and their plots through the Plot network; 

otherwise the results would not be comparable, since a hydrant-plot pipe is never built 

crossing other plots and arriving at the centroid. This may be clearly noticed in the 

detail of Figure 4.   

 

The resulting distance matrices are implemented in the GIS. Figures 4 and 5 show –for 

each type of plot employed- the vertices selected as hydrants and the plots assigned to 

each hydrant. 

 

The cost of the pipe linking a hydrant and a plot is a function of the supplied plot and 

the distance. In order to simplify the model, we have decided to use the product between 

areas and distances (m2·m) (instead of a more complex function related to the diameter 

calculation). The optimization model minimizes the value of the objective function.   

 

This objective function gets a value of 99,103,243 m2·m for ED distances and 

43,048,586 in case of DTNP distances. CIP pipes result in a value of 60,596,559. All 

these data are summarized in Table 1. If we simply take into account the total distance 

required for linking all plots with some hydrant, the corresponding values are 25,238 m 

for ED, 13,560 m for DTNP, and 16,177 m for CIP. Therefore the application of the 

optimization model with DTNP allows for a 28.95 % reduction in the value of the 

objective function (proporcional to the real cost), and a 16,18 % decrease in the total 

pipe length, when compared to CIP . The model makes the existing actual situation get 

worse when ED is employed. The value of the objective function increases by 63.54 %, 

whilst the increase in the required pipe length is 56.01 %. Mean value and standard 

deviation have been calculated from both the value of the objective function and the 



distance among plots and hydrants. We may notice that a lower dispersion exists when 

distances measured through the plot network are used, and therefore the average value 

of lengths among hydrants and plots is not only lower but it has less uncertainty.     

 

When the result shown in Figures 4 and 5 is analyzed, it may seem that the application 

of the location-allocation model yields similar results for both types of distances used. 

However, we have seen that from a numerical point of view they are completely 

different. The DTNP makes CIP improve, whereas ED notably worsens it. This can be 

attributed to the meaning of the word “near” for each of the distance types. As shown in 

the detail of Figure 3, a plot that remains close to a hydrant following a straight line 

may stay far away through the plot network, since it requires to surround others. In the 

optimization process, those locations that are affected by the last fact are being rejected 

when the distances are measured through the plot network.  

 

Another important aspect to be remarked in the performance of the model is the one 

deriving from the structure of the objective function. This objective function is the 

product between an area and a distance, which is proportional to the cost of the pipe. In 

the DTNP case, a hydrant located in a plot vertex does not cause an increase in the 

objective function, since the distance to be run for reaching it is zero. This means that, 

in the optimization process, the plots with the highest areas have a hydrant in their 

perimeter. Nevertheless, in case of ED, the plots we may see near the hydrant 

(following a straight line) through the plot network often result in a certain distance 

which, no matter how small it may be, makes the objective function increase.        

 

Another way of observing this effect is presented in Figure 6. It shows the average plot 

length required to link a plot with its hydrant, plot areas being segmented in ranges. The 

success of the DTNP case (Figure 6A) is due to the fact that the model aims at locating 

hydrants in touch with the biggest plots, in such a way that the objective function does 

not increase. With respect to ED case (Figure 6B), plots that were seemingly near were 

really far away through the network, which means that we have lengths over 50 m in 

nearly all area ranges. Finally, in Figure 6C we can notice how the network designer, by 

defining CIP, has followed a similar criterion to that shown in Figure 6A. He has placed 

the hydrants in contact with the biggest plots, so that the farthest plots are the smallest 

and consequently their pipes connecting the hydrant will have the lowest cost. 



Obviously, and although the philosophy is the same, the fact of carrying out the process 

manually does not permit to be as rigorous as the optimization model; thus the results 

obtained are worse.  

 

Another way of analyzing the behavior of the model according to the distance employed 

is shown in Figure 7; the number of cases and the percentage of total area in each length 

range have been represented. With respect to DTNP, and using zero meters of pipe 

length (plots having a hydrant in a vertex of its perimeter), more than 80 % of the area 

was assigned to a hydrant, whereas in case of ED the figure scarcely reached 70 %. As 

far as CIP is concerned, the corresponding percentage was also close to 80 %. 

 

As regards the maximum length assigned, the DTNP method is 295 m, 692 m being for 

ED and 228 m for CIP. In this case, DTNP exceeds the maximum length between a 

hydrant and an assigned plot, because no restriction has (deliberately) been imposed in 

this sense on the optimization model so as to observe its behavior. 

    

 

CONCLUSIONS 

 

In pressurized Irrigation systems with multiuser hydrants the service remains somewhat 

far away from the plot where it is used. The literature scarcely reports any case 

describing how the hydrants should be placed within the irrigation network. The cost of 

pipes among hydrants and plots depends on both the hydrants location and the plots 

assigned to each one of them. Location-allocation algorithms help to find solutions that 

minimize the aforementioned cost. In this work, the minisum algorithm has been 

utilized to carry out this task, and two ways of measuring distances have been employed 

and later compared with the currently existing pipes. 

 

The application of this technique requires the use of geographical information systems 

(GIS) for spatial information management, as well as mathematical programming 

software to solve the optimization model raised. 

 



The utilization of distances through the plot network is indispensable, since the 

employment of euclidean distances causes the loss of a great amount of information and 

unsuitable solutions are generated. 

 

An important parameter in the model is the number of hydrants to be allocated. It 

influences on the average number of plots per hydrant and also on the pipe length 

required to link all the plots to any hydrant. In this case, the number of hydrants (NH) 

used is the same as the one actually existing, so that solutions can be compared. Future 

works will study the effect of increasing or decreasing NH, taking into account the high 

cost of these structures. This would permit to obtain –in a single process- the optimum 

number of hydrants that minimize the total cost due to the hydrants themselves plus the 

linking pipes with the parcels. 
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FIGURES 

 

Figure 1. Euclidian distances (a) and distances across the plot network (b). 

Figure 2. Network formed by the plot limits. The confluence of two or more limits 

forms the vertices. 

Figure 3. Present location of hydrants in the studied area and assigned plots. 

Figure 4. Location of hydrants and allocated plots, for euclidean distances.  

Figure 5. Location of hydrants, assigned plots, and pipes, for distances measured 

through the plot network. 

Figure 6. Average length for different plot sizes  

Figure 7. Percentage of total area and number of cases in each length range  

 

 



TABLES 

Table 1. Total, mean, and dispersión value of the objective function and the total pipe 

length required to link hydrants and assigned plots.  



NOTATION 

 

Z = value of the objective function (m2·m; proportional to the overall cost of the pipes; 

units with no physical sense). 

aj = area of each irrigated plot (m2) . 

dij = distance from every candidate point (for a hydrant i and a plot j) (m). 

sij = binary term called “service”, it being 1 when the plot j is served by a hydrant i and 

0 in the opposite case.  

n = total number of plots. 

m = total number of candidate points where hydrants can be located is.  

 hi = binary variable in such a way that hi equals 1 when a location contains a hydrant, 

and 0 in the opposite case.  

lb and ub = lower limit (minimum number) and upper limit (maximum number) of plots 

respectively, that can be assigned to the same hydrant. 

NH = total number of hydrants to be located. 
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Table 1. Total, mean, and dispersión value of the objective function and the total pipe 

length required to link hydrants and assigned plots.  

  Total Mean STDV 

Distance 
Type  

O. F. Value 
(m2 × m) 

Length 
(m) 

O. F. Value  
(m2 × m) 

Length 
(m) 

O. F. Value 
 (m2 × m) 

Length 
(m) 

DTNP 43,048,586 13,560 115,103 36 155,744 46 

ED 99,103,243 25,238 264,982 67 439,368 86 

CIP 60,596,559 16,177 162,023 43 225,715 48 
 

 
 
 
 
 
















