

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.amc.2012.08.030

http://hdl.handle.net/10251/34805

Elsevier

Vidal Maciá, AM.; Alonso Jordá, P. (2012). Solving systems of symmetric Toeplitz
tridiagonal equations: Rojo's algorithm revisited. Applied Mathematics and Computation.
219(4):1874-1889. doi:10.1016/j.amc.2012.08.030.

Solving systems of symmetric Toeplitz tridiagonal

equations: Rojo’s algorithm revisited

Antonio M. Vidal1, Pedro Alonso1,∗

Department of Information Systems and Computation.
Universidad Politécnica de Valencia.

Camino de Vera s/n. 46022 Valencia. Spain.

Abstract

More than 20 years ago, O. Rojo published [1] an algorithm for solving
linear systems where the matrix is tridiagonal symmetric Toeplitz and diag-
onal dominant. The technique proposed by Rojo is very efficient, O(n), and
has been applied successfully in the solution of other similar problems: circu-
lant tridiagonal systems, pentadiagonal Toeplitz systems, etc. In this article
we extend Rojo’s algorithm to the case of non–diagonal dominant matrices,
thus completing a good tool in the aforementioned applications. Other al-
gorithms that solve the same problem are also analysed and compared with
the new version of Rojo’s algorithm.

Keywords: Symmetric Tridiagonal Toeplitz, Rojo’s Algorithm, circulant
matrices

1. Introduction

More than 20 years ago, O. Rojo published [1] an algorithm for solv-
ing linear systems where the matrix is tridiagonal symmetric Toeplitz and
diagonal dominant.

The fundamental idea of the algorithm is to decompose the Toeplitz ma-
trix into a sum of a pair of matrices, so that one of them has a simple LU–

∗Corresponding author: Pedro Alonso
Email addresses: avidal@dsic.upv.es (Antonio M. Vidal), palonso@dsic.upv.es

(Pedro Alonso)
1Supported by Spanish Government (Projects TIN2008-06570-C04 and TEC2009-

13741), and Generalitat Valenciana (Project PROMETEO/2009/013).

Preprint submitted to Applied Mathematics and Computation July 16, 2012

type Toeplitzlike decomposition, which can be computed with constant cost
and allows to solve the triangular systems in O(n). Then, using Sherman–
Morrison’s formula in O(n), a modification to the partial solution can be
calculated that transforms it into the solution of the Toeplitz system. In
the algorithm proposed by Rojo, this decomposition can be carried out only
when the initial matrix is diagonally dominant.

This same idea arose some years before and appears in several refer-
ences. For example, Boisvert [2] presents a collection of algorithms that solve
this problem and cites references [3, 4, 5] in connection with what he called
Toeplitz factorization, and he indicates that Sherman–Morrison’s formula is
used in this factorization.

Unfortunately, the process of calculating LU decomposition requires the
Toeplitz matrix to be diagonal dominant. This limits the possible appli-
cations of the algorithm and makes it less robust in comparison to other
algorithms with a similar computational cost, such as LU, LDLT or the use
of techniques based on the implementation of the Discrete Sine Transform
(DST).

This algorithm has been successfully applied as computational core in
the resolution of other related matrix problems: in Rojo’s article it is ap-
plied to solve circulant tridiagonal systems of linear equations, but it can
also be used to solve Toeplitz pentadiagonal systems, block tridiagonal sys-
tems with circulant matrices, etc. [6, 7, 8]. Such algorithms can be used in
applications in many fields of engineering such as multi–channel 3D sound
applications, interpolation by splines in problems of partial differential equa-
tions discretization, etc. Let’s see, e.g., the solution of the following partial
differential equation

∂u

∂t
(x, t) = α2∂

2u

∂x2
(x, t) , for 0 < x < l and t > 0 ,

with conditions

u(0, t) = u(l, t) = 0 with t > 0 , and u(x, 0) = f(x) , for 0 ≤ x ≤ l ,

which arises in heat diffusion. A finite-difference method to approximate the
above heat equation consists of the solution of a linear equation Tx = b where
the system matrix T is a tridiagonal symmetric indefinite Toeplitz matrix
being (1 − 2λ) and λ the diagonal and off–diagonal entries, respectively. In
this case, λ = α2(k/h2) where h = l/m for a given m > 0, and k is the time
step size (see [9] for more details).

2

The technique proposed by Rojo, is efficient (O(n)) and robust, so it is
worth trying to extend it to the case of non–diagonal dominant matrices,
without changing substantially its cost. Also noteworthy is the numerical
stability of the algorithm that compares favorably with other approaches
based on LU decomposition.

In this paper, we extend Rojo’s algorithm to the case of non–diagonal
dominant matrices, thereby supplementing a good tool, useful in the appli-
cations mentioned above. The extension is accomplished without substan-
tially increasing the computational cost, O(n), of the algorithm proposed by
Rojo, while maintaining the characteristics of robustness and stability. This
article also analyzes other algorithms that solve the same problem. These
serve as a reference for comparison with the new version of Rojo’s algorithm
from the point of view of computational complexity and numerical stability.
The performance of the algorithms using a Linux environment where the al-
gorithms have been implemented in Fortran and C has also been analyzed.
The implementations have been executed on an Intel Xeon based computer.

The rest of the paper is organized as follows: In Section 2 we analyze the
numerical behavior of symmetric Toeplitz tridiagonal matrices, by means
of the singular value decomposition. In Section 3, we recall Rojo’s algo-
rithm and we present its extension to the case when the symmetric Toeplitz
tridiagonal matrices are non–diagonal dominant. In Section 4 we show two
algorithms based on LDLT decomposition and on the properties of the DST.
In Section 5, we compare the numerical stability of different algorithms, and
discuss algorithm performance from the point of view of their experimental
complexity. Section 6 shows how the new algorithm can also be used to solve
symmetric tridiagonal circulant systems in the case of non–diagonal domi-
nant matrices. We have taken the same example suggested by Rojo in his
paper. Section 7 is devoted to drawing some conclusions.

2. Analysis of the SVD of symmetric tridiagonal Toeplitz matrices

The problem we consider is the resolution of a system of linear equations
of the form Tx = b, where T ∈ <n×n is a matrix of the form

T =

t0 t1
t1 t0 t1

t1
.
. . .

 , (1)

3

and b, x ∈ <n.
In order to check the robustness and stability of the methods that solve

this linear system of equations it seems appropriate to consider some proper-
ties of the matrix T . In particular, the two–norm, the condition number and
the invertibility of the system matrix. Such properties can be known from the
Singular Value Decomposition (SVD) of matrix T , more specifically through
knowledge of the minimum and maximum singular values. We denote these
values as σmin and σmax, respectively.

It can be shown that extreme singular values of T have the form:

σmax = max

{∣∣∣∣|t0|+ 2|t1| cos

(
jπ

n+ 1

)∣∣∣∣ , j = 1, 2, . . . ,
m

2

}
,

σmin = min

{∣∣∣∣ t0 + 2t1 cos

(
jπ

n+ 1

)∣∣∣∣ , j = 1, 2, . . . ,
m

2

}
,

where m =

{
n if n is even
n+ 1 if n is odd

.

Indeed, simple consideration of the matrix for the normalized Sine Trans-
form S [10] allows to diagonalize the displacement matrix

F + F T , with F =

0
1 0

1 0
.

 . (2)

Thus, given matrix S =
√

2
n+1

(Zij)
n
i,j=1, with Zij = sin

(
ijπ
n+1

)
, it can be easily

verified that SS = I, where I is the identity matrix, and S(F + F T)S = W
being W = diag(w1, w2, . . . , wn), with wi = 2 cos

(
iπ
n+1

)
.

Therefore, if we express the system matrix as T = t0I + t1(F + F T), we
have

STS = t0I + t1S(F + F T)S = t0I + t1W .

Since S is orthogonal, symmetric and STS is diagonal, (t0 + t1w1), (t0 +
t1w2), . . ., (t0 + t1wn) are the eigenvalues of T and |(t0 + t1w1)|, |(t0 +
t1w2)|, . . . , |(t0 + t1wn)| are the singular values of T . In particular, σmax =
max {|(t0 + t1wi)|, i = 1, . . . , n} and σmin = min {|(t0 + t1wi)|, i = 1, . . . , n}.

In this way, it can be stated that σmax =
∣∣|t0|+ 2|t1| cos

(
π
n+1

)∣∣.
4

The value of σmin can be determined by searching the ith value that
minimizes |t0 + t1wi|, for i = 1, 2, . . . , n.

Problem Tx = b can be rewritten as (−1/t1)Tx = (−1/t1)b obtaining
an equivalent linear system. For the sake of convenience we use the same
notation, Tx = b, to refer to this last linear system where

T =

α −1
−1 α −1

−1
.
. . .

 , α = −t0
t1

and bi ← −
bi
t1
. (3)

Assuming matrix T is defined as in (3), the maximum SVD has the form
σmax =

∣∣|α|+ 2 cos
(

π
n+1

)∣∣ and σmin = min{|α+ 2 cos
(
iπ
n+1

)
|, i = 1, 2, . . . , n}.

Algorithm 1 shows how to find σmin.

Algorithm 1 Computation of the minimum SVD (σmin) of a tridiagonal
symmetric Toeplitz matrix of the form (3).

Require: Value α as the quotient −t0/t1.
Ensure: σmin.
1: if |α| ≥ 2 then
2: σmin =

∣∣|α| − 2 cos
(

π
n+1

)∣∣
3: else

4: j =
(n+1) arccos(α2)

π

5: j1 = bjc
6: j2 = dje
7: β1 =

∣∣|α| − 2 cos
(
j1π
n+1

)∣∣
8: β2 =

∣∣|α| − 2 cos
(
j2π
n+1

)∣∣
9: σmin = min(β1, β2)

10: end if

Extreme singular values allow to analyze some of the properties of T .

2.1. The two–norm of T

The two–norm of T can be computed as

‖T‖2 = σmax =

∣∣∣∣|α|+ 2 cos

(
π

n+ 1

)∣∣∣∣ .
It is seen that ‖T‖2 is bounded in the form |α| ≤ ‖T‖2 ≤ |α| + 2, for any
n > 1.

5

2.2. Singularity of T

The condition of singularity for a matrix can be expressed as σmin = 0.
Thus, the singularity of T can be analyzed based on the value of parameter
|α|/2.

• If |α|
2
> 1,

σmin = 0⇒ |α| = 2 cos

(
π

n+ 1

)
≤ 2 .

Since |α|/2 > 1⇒ |α| > 2 it is obvious that T cannot be singular.

• If |α|
2

= 1,

σmin = 0⇒ |α| = 2 cos

(
π

n+ 1

)
≤ 2 .

Since |α|/2 = 1 ⇒ |α| = 2 it is obvious that T can only be singular if
cos
(

π
n+1

)
= 1. This only happens if

(
π
n+1

)
= 0, so T is singular only

for large values of n, that is, if |α| = 2 and n is large enough.

• If |α|
2
< 1, then 0 < arccos

(
|α|
2

)
≤ π

2
. Furthermore, for T to be singular

the condition |α| − 2 cos
(
jeπ
n+1

)
= 0, where je is a natural number be-

tween 1 and n, must be met. Let D(n+1) = {di, i = 1, 2, . . . , r} be the
set of divisors of n + 1, then the condition π

arccos(|α|2)
= di ∈ D(n + 1)

must be accomplished so that je = (n + 1)
arccos(|α|2)

π
∈ {1, 2, . . . , n}.

Then, π
di

= arccos
(
|α|
2

)
and |α|

2
= cos

(
π
di

)
; thus |α| − 2 cos

(
jeπ
n+1

)
= 0.

Hence, T is singular if and only if

|α| = 2 cos

(
π

di

)
, di ∈ D(n+ 1), and arccos

(
|α|
2

)
∈]0, π/2] .

For the particular case of |α| = 0, then 2 = di ∈ D(n + 1) if n is odd,
then 0 = |α| = 2 cos

(
π
2

)
. Thus, T is singular when n is odd.

2.3. Condition number of T

The two–condition number of a given matrix A is defined as κ2(A) =
σmax/σmin. This number tends to infinity when matrix A is singular. Large
values for κ2 show that small errors in input data of a linear system of
equations Ax = b can result in large errors in the computed solution.

6

In the case of matrix T as defined in (3), the value of κ2(T) will be
analyzed as a function of |α|.

If |α| > 2,

κ2(T) =
σmax
σmin

=
|α|+ 2 cos

(
π
n+1

)
|α| − 2 cos

(
π
n+1

) ≤ |α|+ 2

|α| − 2 cos
(

π
n+1

) ≤ |α|+ 2

|α| − 2
,

that is, there is an upper bound for κ2(T). This upper bound approaches 1
as |α| increases and can be large for values of |α| close to 2.

If |α| = 2,

κ2(T) =
σmax
σmin

=
2 + 2 cos

(
π
n+1

)
2− 2 cos

(
π
n+1

) =
1 + cos

(
π
n+1

)
1− cos

(
π
n+1

) .
This value can be large if n is large, since cos

(
π
n+1

)
→ 1 and

1+cos(π
n+1)

1−cos(π
n+1)

→ 1
0
.

For small values of n the value of κ2(T) is not expected to be very
large. For example, see the following pairs: (n, bκ2(T)c):(10,48), (50,1053),
(100,4133), (500,10172), (1000,406095).

If |α| < 2,

κ2(T) =
σmax
σmin

=
|α|+ 2 cos

(
π
n+1

)
|α| − 2 cos

(
jeπ
n+1

) ,
where je must be a natural number between 1 and n.

If
∣∣|α|+ 2 cos

(
jeπ
n+1

)∣∣ > K > 0, with a large K, then κ2(T) need not be
large. That is, if π

arccos(|α|2)
is not close to any divisor of n+ 1, then matrix T

is not ill–conditioned.

If π

arccos(|α|2)
= di ∈ D(n+ 1), then je = (n+ 1)

arccos(|α|2)
π

∈ {1, 2, . . . , n}.
Hence,

|α| − 2 cos

(
jeπ

n+ 1

)
→ 0 ,

and therefore κ2(T) = σmax/σmin → ∞. Thus, the matrix will be ill–

conditioned if |α| → 2 cos
(
π
di

)
, with di ∈ D(n + 1) and arccos

(
|α|
2

)
∈

]0, π/2].
In the particular case in which |α| = 0, we have 2 = d ∈ D(n+ 1) if n is

odd, so 0 = |α| = 2 cos
(
π
2

)
and κ2(T) = σmax/σmin →∞ if n is odd.

7

3. Extension of Rojo’s algorithm to the non–diagonal dominant
case

3.1. Rojo’s Algorithm for diagonal dominant matrices

First, we show the original algorithm from Rojo [1] for diagonal dominant
matrices. Although in Rojo’s paper the algorithm is based on use of the LU
decomposition, for the sake of coherence we use the LDLT decomposition to
develop the rest of this paper. The diagonal dominant feature of matrix T
in this case makes both developments equivalent.

We consider the linear system of equations Tx = b, that is,

Tx =

α −1
−1 α −1

−1
.
. . .

x1
x2
x3
...

 =

b1
b2
b3
...

 = b , (4)

with |α| ≥ 2. Matrix T can be decomposed into the sum T = C + βe1e
T
1 ,

so that C have a LDLT decomposition of Toeplitz tridiagonal type, that is,
T = LDLT + βe1e

T
1 where

L =

1 0
l 1 0

l
.
. . .

 , D =

d 0
0 d 0

0
.
. . .

 , and β = α− d , (5)

where e1 ∈ <n is the first column of the identity matrix.
Values l and d can be obtained from the equality T = LDLT +βe1e

T
1 and

they must verify l = −1
d

and d + 1
d

= α, that is, they must be a solution of

equation d2 − αd + 1 = 0. Hence, d = α
2
±
√(

α
2

)2 − 1, and d can be chosen

so that |d| > 1 : d = α
2

+ sign(α)
√(

α
2

)2 − 1.

We assume the solution of Tx = b can be expressed as a sum of vectors of
unknowns x = z+η where z is chosen in such a way that LDLT z = b. Thus,
the system Tx = b can be expressed as (LDLT + βe1e

T
1)(z + η) = b, and

using the hypothesis LDLT z = b we obtain (LDLT + βe1e
T
1)η = −β(eT1 z)e1,

that is, Tη = −βz1e1.

8

To obtain the solution of Tη = −βz1e1, Rojo proposes to use of the
Sherman–Morrison formula [11] that allows to express the inverse of the sum
of two matrices, (A+ UV T), of the form,

(A+ UV T)−1 = A−1 − A−1U(I + V TA−1U)−1V TA−1 , (6)

with A ∈ <n×n, U, V ∈ <n×r, and I ∈ <r×r the identity matrix.
Matrix T = LDLT + βe1e

T
1 in the form (6) can be used to calculate the

inverse of T−1,

T−1 = (LDLT + βe1e
T
1)−1 =

(LDLT)−1 − β(LDLT)−1e1(1 + βeT1 (LDLT)−1e1)
−1eT1 (LDLT)−1 ,

and thus η can be calculated as η = −βz1T−1e1, hence,

η = −βz1((LDLT)−1e1−β(LDLT)−1e1(1+βeT1 (LDLT)−1e1)
−1eT1 (LDLT)−1e1) .

If we call u = (LDLT)−1e1, then we have,

η = −βz1(u− βu(1 + βeT1 u)−1eT1 u)

= −βz1(u− βu(1 + βu1)
−1u1)

= −βz1(1− β(1 + βu1)
−1u1)u .

Thus,

η = −βz1
(

1

1 + βu1

)
u .

Computation of the solution vector x = z+η involves the following steps:

1. Compute l and d that provide L and D.

2. Solve the system LDLT z = b.

3. Solve the system LDLTu = e1.

4. Compute vector η = −βz1
(

1
1+βu1

)
u.

5. Sum both vectors to have x = z + η.

Step 1 can be computed in O(1) flops. Steps 2 and 3 are recurrences that
can be carried out in O(n) flops. Also, steps 4 and 5 have a cost of O(n)
flops. Thus, an algorithm (Algorithm 2) can be generated to solve system
Tx = b in O(n) flops.

The special case of α = 2 can be solved with the same operations and the
following values: d = 1, β = 1 and u1 = n.

The cost of Algorithm 2 is 9n+6 flops, where the flop is defined as in [11].

9

Algorithm 2 (Rojo’s Algorithm): Solution of linear system Tx = b (4).

Require: α so |α| ≥ 2, n > 1, b ∈ <n and T = αI − (F + F T).
Ensure: Solution x of the system Tx = b in the form of (4).

1. d = α
2

+ sign(α)
√(

α
2

)2 − 1.

2. Solve system LDLT z = b:
2.1. Solve Lw = b:

w1 = b1.
for i = 2 : n do
wi = bi + wi−1

d
.

end for
2.2. Solve LTw = D−1w:

zn = wn/d.
for i = n− 1 : −1 : 1 do
zi = wi+zi+1

d
.

end for
3. Solve system LDLTu = e1:

3.1. Solve Lv = e1:
v1 = 1.
for i = 2 : n do
vi = vi−1

d
.

end for
3.2. Solve LTu = D−1v:

un = vn/d.
for i = n− 1 : −1 : 1 do
ui = vi+ui+1

d
.

end for
4. Compute η = −βz1

(
1

1+βu1

)
u.

5. Compute x = z + η.

3.2. Yan and Chun variants for diagonal dominant matrices

Step 3 of Algorithm 2 consists of successive divisions of a number, initially
set to 1, by number d, whose modulus is greater than 1. When the iteration
from 1 to n reaches a certain value t, the quotient vi = vi−1

d
is almost 0. This

allows to build an approximated algorithm in such a way that the number of
iterations in recurrences 3.1 and 3.2 in Algorithm 2 can be limited to t. The
value of t depends on |α| and the precision. For example, working in double

10

precision in Matlab, if |α| = 3 then v36 = 0.00000000000000, that is t = 36;
if |α| = 6 then v20 = 0.00000000000000, that is t = 20. A suitable value for

t can be obtained in the form t =
∣∣∣ log10(bound)log10(d)

∣∣∣, where bound is the minimum

floating point number capable of representation. This approximation results,
for example, for bound = 10−14 in the following pairs: (α, t): (2.1,103), (3,34),
(6,19), . . .

With these ideas, step 3 of Rojo’s Algorithm can be modified as fol-
lows:

bound = 10−14 (or the desired value of the precision)
t = d− log10 (bound) / log10 (t)e.
3. Solve system LDLTu = e1:

3.1. Solve system Lv = e1:
v1 = 1
for i = 2 : t do
vi = vi−1

d
.

end for
3.2. Solve LTu = D−1v:

ut+1:n = 0.
for i = t− 1 : −1 : 1 do
ui = vi+ui+1

d
.

end for

The cost of Rojo’s Algorithm with this variant is 5n+ 4t+ 10 flops.
This approximation was presented in [12]. In that work, step 3 of the

algorithm is based on this approach, being possible to build a vector p with
the last n − t components equal to 0 so that Tp = e1 and the solution can
be approximated as x = z + γp.

3.3. Rojo’s Algorithm for non–diagonal dominant matrices

In the following, we consider the general case in which α ∈ < has no
bound on its absolute value, that is, without imposing the condition of being
diagonal dominant to matrix T .

Obviously, the case |α| ≥ 2 has already been studied, but it may also
happen that |α| < 2. This case may be dealt with as follows. Since the
linear system Tx = b is real defined, it has a real solution if T is invertible.
The use of Rojo’s Algorithm involves working with complex arithmetic that,
after carrying out the operations, leads to a real solution in which the imag-
inary part will be null after such operations. Therefore, an algorithm can be

11

implemented that involves only the use of real arithmetic with only searching
for the real component of the solution, by splitting the real and imaginary
parts in the successive operations that arise in the process.

Note that matrix T can be decomposed as before in the sum T = C +
βe1e

T
1 so that C has a tridiagonal Toeplitz type LDLT decomposition, that

is, T = LDLT + βe1e
T
1 with the L and D factors defined in (5).

As in the former case, values l and d can be obtained from the equality
T = LDLT +βe1e

T
1 and they must verify l = −1

d
and d+ 1

d
= α, that is, they

must be a solution of equation d2 − αd+ 1 = 0. Hence, d = α
2
±
√(

α
2

)2 − 1.

But now,
(
α
2

)2−1 < 0, so the solution will be a complex number of the form:

d =
α

2
±
√

1−
(α

2

)2
i , with i =

√
−1 .

Let us choose d as d = α
2

+ sign (α)
√

1−
(
α
2

)2
i. Given the form of d, it

is accomplished that |d| = 1.

We denote c = α
2

and s = sign (α)
√

1−
(
α
2

)2
. Thus d = c + si and

d∗ = c− si, where ∗ denotes the complex conjugated.
Since l and d are now complex numbers, the components of matrices L

and D are complex too and also the scalar β = α − d. Hence, to tackle the
linear systems LDLT z = b and LDLTu = e1, we must take into account that
z and u will also be vectors with complex components. In the same way,

the scalar −βz1
(

1
1+βu1

)
will be a complex number and therefore vector η

will have complex components. However, the solution vector computed as
x = z + η will have all its components real, that is, x = <(x) = <(z) +<(η)
(in the sequel we denote <(a) and =(a) as the real and imaginary part,
respectively, of a scalar or a complex array).

The operations planned for the real case (|α| ≥ 2) can be modified now
in a simple way to be affordable by using real arithmetic, although the com-
ponents of vectors and matrices will be complex.

Thus, the system LDLT z = b can be solved using the same recurrences
used in the previous section but ensuring that z = <(z) + =(z)i. If we deal
with the system Lw = b, with w = <(w) + =(w)i, the recurrences that
produce the solution are:

w1 = b1
for i = 2 : n do

12

wi = bi + wi−1d
∗

end for

and

zn = wnd
∗

for i = n− 1 : −1 : 1 do
zi = (wi + zi+1)d

∗

end for

The corresponding recurrences by separating the real and imaginary parts
have the form

<(w1) = b1, =(w1) = 0.
for i = 2 : n do
<(wi) = bi + <(wi−1)c−=(wi−1)(−s)
=(wi) = <(wi−1)(−s) + =(wi−1)c

end for

and

<(zn) = <(wn)c−=(wn)(−s)
=(zn) = =(wn)c+ <(wn)(−s)
for i = n− 1 : −1 : 1 do
<(zi) = (<(wi) + <(zi+1))c− (=(wi) + =(zi+1))(−s)
=(zi) = (=(wi) + =(zi+1))c+ (<(wi) + <(zi+1))(−s)

end for

In the same way, the solution to system LDLTu = e1 can be obtained by
solving first Lv = e1 and later LTu = D−1v.

The following recurrences solve these systems taking into account that
u = <(u) + =(u)i and v = <(v) + =(v)i.

Recurrence for v:

<(v1) = I, =(v1) = 0.
for i = 2 : n do
<(vi) = <(vi−1)c−=(vi−1)(−s)
=(vi) = <(vi−1)(−s) + =(vi−1)c

end for

Recurrence for u:

<(un) = <(vn)c−=(vn)(−s)
=(un) = =(vn)c+ <(vn)(−s)
for i = n− 1 : −1 : 1 do
<(ui) = (<(ui) + <(ui+1))c− (=(vi) + =(ui+1))(−s)

13

=(ui) = (=(ui) + =(ui+1))c+ (<(vi) + <(ui+1))(−s)
end for

Now it is necessary to evaluate the constant χ = −βz1
(

1
1+βu1

)
to com-

pute

η = −βz1
(

1

1 + βu1

)
u .

As

χ = −βz1
(

1

1 + βu1

)
=
−z1

1
β

+ u1
=
−z1

β∗ + u1
,

if we denote βu = |β∗ + u1|2, then we have χ =
(
−1
βu

)
z1(β

∗ + u1)
∗ and, thus,

<(χ) =

(
−1

βu

)
(<(z1)<(β + u∗1)−=(z1)=(β + u∗1))

and

=(χ) =

(
−1

βu

)
(=(z1)<(β + u∗1) + <(z1)=(β + u∗1))

with <(β + u∗1) = (α− c) + <(u1) and =(β + u∗1) = −s−=(u1).
Hence, η = χu with <(η) = <(χ)<(u) − =(χ)=(u). The solution vector

is expressed now as x = <(z) + <(η).
The algorithm for non–diagonal dominant matrices can be expressed as

shown in Algorithm 3.
The cost of Algorithm 3 is 36n+ 20 flops.

3.4. The special cases α = 1 and α = 0

The algorithm works fine when matrix T is invertible, that is, in the case
α = 1 it is required that n ∈ {3k, 3k + 1; k ∈ Z+}, and in the case α = 0 it
is required that n be even.

4. Other algorithms of reference

In this section we present two algorithms which can be used to solve the
linear system (1). These algorithms also exploit the special structure of the
symmetric tridiagonal Toeplitz matrix. The first algorithm is based on the
LDLT factorization of the system matrix (LDLT method) and the second one
is based on Discrete Sine Transformation (DST method).

14

Algorithm 3 (Modified Rojo’s Algorithm): Solution of linear system
Tx = b (4).

Require: α ∈ <, n > 1, b ∈ <n and T = αI − (F + FT).
Ensure: Solution x of the system Tx = b in the form of (4).

1. Compute the real and imaginary parts of l and d in order to compute L and D:

c =
α

2
, s = sign (α)

√
1−

(α
2

)2
.

2. Solve system LDLT [z u] = [b e1]:
2.1. L[w v] = [b e1]:

rw1 = b1, iw1 = 0.
rv1 = 1, iv1 = 0.
for i = 2 : n do
rwi = bi + rwi−1 ∗ c+ iwi−1 ∗ s
iwi = −rwi−1 ∗ s+ iwi−1 ∗ c
rvi = rvi−1 ∗ c+ ivi−1 ∗ s
ivi = −rvi−1 ∗ s+ ivi−1 ∗ c

end for
2.2. LT [z u] = D−1[w v]:

rzn = rwn ∗ c+ iwn ∗ s
izn = iwn ∗ c− rwn ∗ s
run = rvn ∗ c+ ivn ∗ s
iun = ivn ∗ c− rvn ∗ s
for i = n− 1 : −1 : 1 do
rzi = (rwi + rzi+1) ∗ c+ (iwi + izi+1) ∗ s
izi = (iwi + izi+1) ∗ c− (rwi + rzi+1) ∗ s
rui = (rui + rui+1) ∗ c+ (ivi + iui+1) ∗ s
iui = (iui + iui+1) ∗ c− (rvi + rui+1) ∗ s

end for
3. Compute real part of η = −βz1

(
1

1+βu1

)
u = χu.

3.1. Compute χ:
rδ = (α− c) + ru1
iδ = −s− iu1
βu = rδ2 + iδ2

rχ =
(

−1
βu

)
(rz1 ∗ rδ − iz1 ∗ iδ)

iχ =
(

−1
βu

)
(iz1 ∗ rδ + rz1 ∗ iδ)

3.2. Compute real part of η:
η = rχ ∗ ru− iχ ∗ iu

4. Obtain the solution x = rz + η.

4.1. The LDLT method
This method consists of the factorization of the Toeplitz matrix T =

LDLT , where L is unit lower triangular and D is diagonal, to solve after-

15

wards the associated triangular systems. The factorization algorithm lets
to exploit the tridiagonality of the Toeplitz matrix so the lower triangular
matrix L is real bidiagonal. Since all the elements of the diagonal of L are
1, only the subdiagonal must be stored. Let d be the array where the di-
agonal of D is stored and l the array where the subdiagonal of L is stored,
then the following recurrence allows to obtain the LDLT factorization of
T .

d1 = t0
for i = 1 : n− 1 do
li = t1

d1
di+1 = t0 − t1li

end for

The following two recurrences that solve the two associated triangular
linear systems, Ly = b:

y1 = b1
for i = 2 : n do
yi = bi − li−1yi−1

end for

and LTx = D−1y:

xn = yn/dn
for i = n− 1 : −1 : 1 do
xi = yi/di−l − lixi+1

end for

allow to obtain the solution of (1).
An important note about this method is that it can only be used when

the leading principal submatrices of T are non–singular [11].
The cost of this algorithm is 8n− 7 flops.

4.2. The DST method

This method is based on the fact that a symmetric tridiagonal Toeplitz
matrix T is diagonalizable by the matrix that defines the Discrete Sine Trans-
form (DST). Let S be the matrix that defines the DST [10], then, the columns
of S are the eigenvectors of T . Hence, the linear system Tx = b can be trans-
lated to an equivalent linear system as follows,

STSSx = Sb→ Dy = z ,

16

where D is a diagonal matrix. The diagonal elements of D are the eigenvalues
of T . Recall from Section 2 that S is symmetric and orthogonal.

Matrix D can be obtained as follows,

STS = S(t0+ t1(F +F T))S = t0I+ t1S(F +F T)S = t0I+ t1(SFS+SF TS) ,

where I the identity matrix and F the one position down shift matrix as
defined in (2).

Matrix (SFS + SF TS) is diagonal. Assuming n is even, it can be

shown that the diagonal of SFS is an array of the form

(
s
−s̄

)
, where

s̄ is vector s in the reverse order. Vector s can be constructed as fol-
lows,

for i=1:n/2 do
si = S2i,1/Si,1

end for

Algorithm 4 shows the process of computing the solution of the linear
system. The algorithm is valid for both even or odd problem sizes.

To calculate the cost of the algorithm it must be noted that computation
of the DST of an array is an FFT related operation that can be applied
rapidly [10], that is, there are fast algorithms that enable this computation
in O(n log2 n) in the best case. The best case is for a size n such that the
quantity n+1 is a power of 2. So, the cost of the algorithm in the best case is
5 + 3n log2(n) + 9

2
n flops. In the worst case, that is, n+ 1 is a prime number,

the algorithm might be of O(n2).

5. Experimental study: analysis of algorithm precision and perfor-
mance

In order to carry out this study we implemented a Linux application that
allows to solve system (1) by means of the three described methods. The
results have been obtained in a workstation Fujitsu Siemens Celsius R650
with a Intel Quad-Core Xeon E5430 processor at 2.66 GHz.

We study two error types, forward and backward error. To evaluate the
forward error we compute

‖x− x̂‖2
‖x‖2

,

17

Algorithm 4 (DST method) Computation of the linear system Tx = b

Require: t0, t1 ∈ < and b ∈ <n.
Ensure: Solution x of the system Tx = b.
1: m = bn

2
c

2: k = 1
2(n+1)

3: s = Se1
4: for i = 1 : m do
5: vi = s2i

si
6: end for
7: y = Sb
8: for i=1:m do
9: xi = kyi

(t0+t1vi))

10: end for
11: if mod(n, 2)=1 then
12: xm+1 = kxm+1

t0
13: m = m+ 1
14: end if
15: for i = m+ 1 : n do
16: xi = kyi

(t0+t1vn/2−i+(m+1)))

17: end for
18: x← Sx.

where x = e1 is the real solution and x̂ is the computed solution. Backward
error is assessed by computing

‖T x̂− b‖2
‖T‖2‖x̂‖2

.

We use σmax as ‖T‖2.
The study is divided into different cases. In the first one (Table 1) we

deal with the diagonal dominant case. Results in Table 1 have been obtained
with t0 = 3.0 and t1 = 1.0. These results are representative for the entire
spectrum of diagonal dominant matrices. For this range of matrices, the
accuracy of the solution obtained with the three methods is similar. It is
slightly better in the case of the LDLT method for the forward error. The
time obtained is also better for the same method as it is foreseen by the
theoretical cost analysis. The DST method is somewhat lower in precision
and clearly inferior in performance. We used the Intel MKL package (Version

18

10.1) to compute the DST. This package does not include a routine for the
direct computation of the DST, so we used the routine to compute the FFT
to implement the DST [10]. The routine for the application of the FFT
included in this package is very efficient in the target machine with regard
to efficiency and precision. The DST method is more efficient the smaller
the largest prime number of the prime numbers into which it is decomposed
n + 1. For the size used in the table it is n + 1 = 853 × 3517. However, we
obtained a time of 1.5 sec. with a more favorable problem size, n = 2999999
so that n+1 = 3000000 = 26×3×56, a time still larger than the one obtained
with the other methods.

Table 1: Diagonal dominant case. n = 3000000, σmax = 5.0, σmin = 1.0.

Method Time (sec.) Forward error Backward error
Modified Rojo 0.22 4.42× 10−17 6.25× 10−17

DST 4.82 1.24× 10−15 2.83× 10−13

LDLT 0.12 2.03× 10−19 6.07× 10−17

The following case (Table 2) is a special case where the matrix is diagonal
dominant but it is in the border with the non–diagonal case, that is, t0 = 2.0
and t1 = 1.0. In addition, the matrix is close to singularity since κ2 =
3.64× 1012.

Table 2: Diagonal dominant case. n = 3000000, σmax = 4.0, σmin = 1.1× 10−12.

Method Time (sec.) Forward error Backward error
Modified Rojo 0.18 0.00 1.71× 10−16

DST 4.80 4.91× 10−8 2.06× 10−11

LDLT 0.13 6.23× 10−7 3.01× 10−17

The next study shows the non–diagonal dominant case (Table 3) where
t0 = 1.5 and t1 = 1.0. The DST and LDLT methods remain unchanged
in time. The Modified Rojo method is more expensive dealing with the
non–diagonal dominant case as foreseen in the theoretical cost analysis. The
precision of the three methods is similar, and has even been improved in the

19

Table 3: Non–diagonal dominant case. n = 3000000, σmax = 3.5, σmin = 5.56× 10−7.

Method Time (sec.) Forward error Backward error
Modified Rojo 0.31 6.60× 10−10 6.06× 10−17

DST 4.80 6.15× 10−13 4.47× 10−16

LDLT 0.14 1.59× 10−10 3.77× 10−14

case of the DST method. The results show that, in general, the forward error
obtained with the DST method is lower.

Table 4 shows a special case for non–diagonal dominant matrices (t0 =
t1 = 1.0). The Modified Rojo method is backward stable in all cases even for
singular matrices (n = 2999999). The DST method is stable for non–singular
matrices resulting in a good accuracy of the results. The drawback of the
DST method is that it relies on the disparity of computation time. The LDLT

is useless for this case since its effectiveness depends on the non–singularity
of the leading principal submatrices. In this example the LDLT method
fails due to the existing singular principal minors. Pivoting techniques need
to be included in the method, but that would make the method lose its
competitiveness in execution time.

Table 4: Non–diagonal dominant case, σmax = 3.0 (time in sec.).

n Method Time Forward err. Backward err. Min. SVD
M. Rojo 0.30 1.50× 10−12 5.42× 10−17

2999998 DST 4.81 1.05× 10−12 2.94× 10−16 6.05× 10−07

LDLT 0.12 nan nan
M. Rojo 0.31 8.13× 101 3.76× 10−17

2999999 DST 1.51 nan nan 2.22× 10−16

LDLT 0.11 nan nan
M. Rojo 0.30 1.57× 10−12 6.01× 10−17

3000000 DST 4.81 9.53× 10−13 2.70× 10−16 6.05× 10−07

LDLT 0.11 nan nan

A similar behavior has been obtained in the case t0 = 0.0 and t1 = 1.0.
The LDLT method fails for the same reason. The precision obtained with

20

the DST method is acceptable. The Modified Rojo method offers the exact
solution.

6. Applications: Solution of a circulant system

We now apply the Modified Rojo’s Algorithm to solve a special circulant
system Mx = f .

Let M be a matrix that can be expressed as M = M1 + a(ene
T
1 + e1e

T
n),

with M1 = cI + a(F + F T), where F is the one position down shift matrix
defined in (2), and e1 and en are the first and last columns of the identity
matrix of order n, respectively. It should be noted that matrix M does not
need to be diagonal dominant. We only set the obvious condition a 6= 0.

If we take λ = c
−a , the equation system Mx = f should be equivalent to

the equation system Ax = b, with A = λI − (F + F T) − (ene
T
1 + e1e

T
n) and

b = −f/a. Thus, we propose the solution of the system Ax = b.

6.1. Solution using the Sherman–Morrison formula with rank–one modifica-
tions

Let us consider the following partition of matrix A:

A =

(
T −e
−eT λ

)
,

where e = e1 + en−1, being now e1 and en−1 the first and last columns of the
identity matrix of order n− 1, respectively, and

T =

λ −1
−1 λ −1

−1
.
. . .

 ∈ <(n−1)×(n−1) . (7)

System Ax = b can be written as(
T −e
−eT λ

)
x = b↔

{
Tx1:n−1 − xne = b1:n−1
−eTx1:n−1 + λxn = bn

.

Thus,
xn = λ−1(bn + eTx1:n−1) ,

21

and
Tx1:n−1 − λ−1(bn + eTx1:n−1)e = b1:n−1 .

Therefore, there is a linear system with n − 1 unknowns that, once known,
allow to calculate also xn.

Regrouping terms gives

(T − λ−1eeT)x1:n−1 = b1:n−1 + λ−1bne . (8)

Using again the Sherman–Morrison formula (6) we obtain

(T − λ−1eeT)−1 =

T−1 + T−1(λ−1e)(1− eTT−1(λ−1e))−1eTT−1 .

Defining g = b1:n−1 + λ−1bne the solution of (8) can be expressed as

x1:n−1 = T−1g + T−1(λ−1e)(1− eTT−1(λ−1e))−1eTT−1g .

If we take z = T−1g and w = T−1e,

x1:n−1 = z + λ−1w(1− λ−1eTw)−1eT z .

After some changes,

x1:n−1 = z + λ−1(1− λ−1(w1 + wn−1))
−1(z1 + zn−1)w .

The system can be simplified as x1:n−1 = z + χw, with χ = λ−1(1 −
λ−1(w1 + wn−1))

−1(z1 + zn−1) and xn = λ−1(b+ (x1 + xn−1)).
Algorithm 5 shows how to perform the solution of Ax = b.
Steps 2 and 3 of Algorithm 5 can be tackled by means of the Modified

Rojo’s Algorithm even in the case of matrix A being non– diagonal dominant.
The cost of Algorithm 5 can be evaluated as 74n+ 53 flops.

6.2. Solution by means of Sherman–Morrison formula with rank–two modi-
fications

The original approach in [1] utilized the Serman–Morrison formula with
rank–two modifications. For the sake of completeness, we show here how to
solve system Ax = b with this approach in the general case where A can be
non–diagonal dominant.

22

Algorithm 5 Solution of the system Ax = b for a Circulant matrix by the
Modified Rojo’s Algorithm.

Require: λ ∈ < and b ∈ <n.
Ensure: The solution vector x of Ax = b.
1: Compute g = b1:n−1 + λ−1bne, with e1, en−1 ∈ <n−1 and e = e1 + en−1.
2: Solve system Tz = g.
3: Solve system Tw = e.
4: Compute χ = λ−1(1− λ−1(w1 + wn−1))

−1(z1 + zn−1).
5: Compute x1:n−1 = z + χw.
6: Compute xn = λ−1(b+ (x1 + xn−1)).

Let us consider again system Ax = b and let µ ∈ < verifying µ− λ = 1
µ
,

that is,

µ =

 λ
2

+ sign (λ)
√(

λ
2

)2 − 1 , if |λ| ≥ 2

λ
2

+ sign (λ)
√

1−
(
λ
2

)2
i , if |λ| < 2

.

Matrix T (7) can be decomposed as T = C + βe1e
T
1 , with C = LDLT and

β = λ− µ and the former system can be expressed as(
C + βe1e

T
1 − λ−1eeT

)
x1:n−1 = b1:n−1 + λ−1bne ,

being e1, en−1 ∈ <n−1 and e = e1 + en−1. Alternatively, the system can be
expressed as (

C + βe1e
T
1 − λ−1eeT

)
x1:n−1 = g ,

that is,

xn−1 =
(
C + βe1e

T
1 − λ−1eeT

)−1
g ,

similarly to Section 6.1.
Note that

H =
(
C + βe1e

T
1 − λ−1eeT

)
=

C +
[
βe1 −λ−1e

] [eT1
eT

]
.

Using again the Sherman–Morrison formula (6),

H−1 = C−1 − C−1
[
βe1 −λ−1e

](
I2 +

[
eT1
eT

]
C−1

[
βe1 −λ−1e

])−1 [eT1
eT

]
C−1 ,

23

so x1:n−1 = H−1g can be expressed as a linear combination of the solution of
the following three systems

z = C−1g ↔ LDLT z = g

u = C−1e1 ↔ LDLTu = e1

w = C−1e ↔ LDLTw = e ,

that is,

x1:n−1 = z −
[
βu −λ−1w

](
I2 +

[
eT1
eT

] [
βu −λ−1w

])−1 [eT1
eT

]
z ;

since(
I2 +

[
eT1
eT

] [
βu −λ−1w

])−1
=

[
1 + βu1 −λ−1w1

β(u1 + un−1) 1− λ−1(w1 + wn−1)

]−1
,

and [
eT1
eT

]
z =

[
z1

z1 + zn−1

]
,

calling[
ϕ1

ϕ2

]
=

[
1 + βu1 −λ−1w1

β(u1 + un−1) 1− λ−1(w1 + wn−1)

]−1 [
z1

z1 + zn−1

]
,

we have

x1:n−1 = z −
[
βu −λ−1w

] [ϕ1

ϕ2

]
= z − ϕ1βu+ ϕ2λ

−1w

xn = λ−1(bn + (x1 + xn−1)) .

Algorithm 6 summarizes the steps to solve the circulant linear system
Ax = b with rank–two modifications in the Serman–Morrison formula.

Note that with this approach, vectors z, u and w might have complex
components. The same happens with scalars ϕ1, ϕ2 and β. In order to
compute vector x1:n−1 = z−ϕ1βu+ϕ2λ

−1w only the real part of the second
term is required since the solution of Ax = b is real if it exits.

Using the Sherman–Morrison formula with rank–two modifications pro-
posed in the article from Rojo means more complications to avoid complex

24

Algorithm 6 Solution of the system Ax = b for a Circulant matrix by the
Serman–Morrison Formula.
Require: λ,∈ < and b,∈ <n.
Ensure: The solution vector x of Ax = b.
1: Compute g = b1:n−1 + λ−1bne, with e1, en−1 ∈ <n−1 and e = e1 + en−1.
2: Compute l and d of the factors L and D.
3: Solve system LDLT z = g.
4: Solve system LDLTu = e1.
5: Solve system LDLTw = e.
6: Solve system(

1 + βu1 −λ−1w1

β(u1 + un−1) 1− λ−1(w1 + wn−1)

)(
ϕ1

ϕ2

)
=

(
z1

z1 + zn−1

)
.

7: Compute x1:n−1 = z − ϕ1βu+ ϕ2λ
−1w.

8: Compute xn = λ−1 = (bn + (x1 + xn−1)).

arithmetic than if done as proposed in the current algorithm with modifica-
tions of rank–one. Since the Rojo article only applies to diagonally dominant
matrices, it makes sense to use Rojo’s algorithm there, as it never presents
complex arithmetic. The algorithm based on rank–one modifications is more
efficient for the non–diagonal dominant case as the problems of avoiding com-
plex arithmetic are confined to solving a tridiagonal Toeplitz system, where
complex arithmetic has already been avoided.

6.3. Using the LDLT

In order to have a reference algorithm we describe the solution of system
Ax = b with A = λI − (F + F T)− (ene

T
1 + e1e

T
n), with b = −f/λ, by means

of the utilization of the LDLT decomposition.
Note that the structure of A determines the structure of matrix L in the

LDLT decomposition too. In this case we have,

A =

(
T −e
−eT λ

)
=

(
L1

zT 1

)(
D1

dn

)(
LT1 z

1

)
,

where L1 ∈ <(n−1)×(n−1) is unit lower triangular, D1 = diag(d1, d2, . . . , dn−1) ∈
<(n−1)×(n−1), dn ∈ <, z ∈ <n−1 and e = e1 + en−1, being now e1 and en−1 the
first and the last columns of the (n− 1) identity matrix, respectively.

25

Therefore, L1 and D1 can be obtained by computing the LDLT decom-
position of T , vector z by solving the lower triangular system L1D1z = −e,
and dn = λ− zTD1z.

From this decomposition the solution of the system can be obtained from
the solution of triangular systems and some scalar operations in O(n) flops.

Algorithm 7 allows to obtain the solution of Ax = b with the same re-
strictions of the LDLT presented in Section 4.

Algorithm 7 Solution of the system Ax = b for a Circulant matrix by the
LDLT decomposition.

Require: λ ∈ < and b ∈ <n.
Ensure: The solution vector x of Ax = b, with

A =

(
T −e
−eT λ

)
.

and e = e1 + en−1 with e1, en−1 ∈ <n−1.
1: Compute the LDLT of T , T = L1D1L

T
1 .

2: Solve system L1y = −e.
3: Compute z = D−11 y.
4: Compute dn = λ− zTy.
5: Solve system L1u1:n−1 = b1:n−1.
6: Compute un = bn − zTu1:n−1.
7: Compute xn = un/dn.
8: for i = 1 : n− 1 do
9: wi = ui/di.

10: end for
11: Solve system LT1 x1:n−1 = w1:n−1 − xnz.

The cost of Algorithm 7 can be evaluated as 18n− 22 flops.

7. Conclusions

In this work we have extended Rojo’s algorithm to the case of non–
diagonal dominant matrices. The benefits of this method are good both
in terms of runtime and in terms of backward stability. Its application to
special systems of equations has been also analyzed. It has been applied to

26

solve circulant tridiagonal linear systems with non–diagonal dominant circu-
lant matrices. Also, it is possible to apply it to other kinds of special systems
such as pentadiagonal, heptadiagonals, etc.

References

[1] O. Rojo. A new method for solving symmetric circulant tridiagonal sys-
tems of linear equations. Computers & Mathematics with Applications,
20(12):61–67, 1990.

[2] Ronald F. Boisvert. Algorithms for special tridiagonal systems. SIAM
J. Sci. Stat. Comput., 12(2):423–442, March 1991.

[3] D. J. Evans. An algorithm for the solution of certain tridiagonal systems
of linear equations. The Computer Journal, 15(4):356–359, 1972.

[4] D. Fischer, G. Golub, O. Hald, C. Leiva, and O. Widlund. On fourier–
toeplitz methods for separable elliptic problems. Mathematics of Com-
putation, 28(126):349–368, April 1974.

[5] Donald J. Rose. An algorithm for solving a special class of tridiagonal
systems of linear equations. Commun. ACM, 12(4):234–236, 1969.

[6] Jeffrey Mark McNally. A fast algorithm for solving diagonally dominant
symmetric pentadiagonal toeplitz systems. J. Comput. Appl. Math.,
234(4):995–1005, 2010.

[7] Salah M. El-Sayed. A direct method for solving circulant tridiagonal
block systems of linear equations. Applied Mathematics and Computa-
tion, 165(1):23–30, 2005.

[8] S.M. El-Sayed, I.G. Ivanov, and M.G. Petkov. A new modification of the
rojo method for solving symmetric circulant five-diagonal systems of lin-
ear equations. Computers and Mathematics with Applications, 35(10):35
– 44, 1998.

[9] J.D. Faires and R.L. Burden. Numerical Methods. 4 edition. Cengage
Learning, 2012.

[10] C. Van Loan. Computational Frameworks for the Fast Fourier Trans-
form. SIAM Press, Philadelphia, 1992.

27

[11] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns
Hopkins Studies in the Mathematical Sciences. The Johns Hopkins Uni-
versity Press, Baltimore, MD, USA, third edition, 1996.

[12] W. M. Yan and K. L. Chung. A fast algorithm for solving special tridi-
agonal systems. Computing, 52(2):203–211, 1994.

28

