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Abstract

The development of communication technologies integrated in vehicles al-

lows creating new protocols and applications to improve assistance in traffic

accidents. Combining this technology with intelligent systems will permit to

automate most of the decisions needed to generate the appropriate sanitary re-

source sets, thereby reducing the time from the occurrence of the accident to

the stabilization and hospitalization of the injured passengers. However, gener-

ating the optimal allocation of sanitary resources is not an easy task, since there

are several objectives that are mutually exclusive, such as assistance improve-

ment, cost reduction, and balanced resource usage. In this paper, we propose

a novel approach for the sanitary resources allocation in traffic accidents. Our

approach is based on the use of multi-objective genetic algorithms, and it is

able to generate a list of optimal solutions accounting for the most representa-

tive factors. The inputs to our model are: i) the accident notification, which is

obtained through vehicular communication systems, and ii) the severity estima-

tion for the accident, achieved through data mining. We evaluate our approach

under a set of vehicular scenarios, and the results show that a memetic version

of the NSGA-II algorithm was the most effective method at locating the opti-

mal resource set, while maintaining enough variability in the solutions to allow
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applying different resource allocation policies.

Keywords: Resource Allocation; Traffic Accidents Assistance; Multi-objective

Genetic Algorithms

1. Introduction

During the last decades, traffic safety has become crucial in most countries

around the world. The growth of the number of vehicles leads to more dan-

gerous roads, which requires drivers to have higher levels of attention. This

situation has dramatically increased the amount of traffic accidents, producing

2,478 fatalities in Spanish roads during 2010, which means one death for every

18,551 inhabitants (Dirección General de Tráfico (DGT), 2010); additionally,

34,500 people died in the whole European Union as a result of a traffic accident

in 2009 (Eurostat: Statistical Office of the European Communities, 2012).

To reduce the number of road fatalities, vehicular networks will play an

increasing role in the Intelligent Transportation Systems (ITS) area (Figueiredo

et al., 2001). Most ITS applications, such as road safety, fleet management,

and navigation, will rely on data exchanged between vehicles and the roadside

infrastructure (V2I), or even directly between vehicles (V2V) (Miller, 2008).

The integration of sensoring capabilities on-board vehicles, along with peer-to-

peer mobile communication among vehicles, forecast significant improvements

in terms of safety in the near future.

In this scenario, the elapsed time from the accident occurrence to the mo-

ment where the affected passengers are stabilized and hospitalized is critical to

increase their survival probability, while reducing the severity of their injuries.

This concept is commonly known as the Golden Hour (Martinez et al., 2010).

ITS services and communication technologies may definitely help at reducing

this time by providing fast accident notification to the control centers in charge

of traffic surveillance; however, those services still demand an accurate estima-

tion of the severity of the accident, and the potential danger for the occupants

to generate an adequate emergency response to assist the injured. Therefore,
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communication between vehicles should be supported by an infrastructure pro-

viding intelligent systems, capable of automatically deploying the set of actions

required for each specific accident.

A preliminary assessment of the accident severity will help emergency ser-

vices to adapt the human and material resources to the conditions of the acci-

dent, with the consequent assistance quality improvement (Fogue et al., 2011,

2012a). Data mining and vehicular networks can be successfully used together to

notify and make a preliminary estimation of the severity of the accident, both in

the injuries produced on the passengers and the damages on the vehicles (Fogue

et al., 2012b). However, it is still necessary to define how this information can

be used to automatically achieve optimal resource allocation for the emergency

operatives assigned to a crash. In this paper, we propose a novel approach

based on i) the information collected by vehicular networks, and ii) the severity

estimations provided by data mining. Our solution provides i) the most ade-

quate set of resources for a specific traffic accident scenario, and ii) information

about which suppliers should provide these resources depending on factors like

their proximity to the affected area, available resources, and experience dealing

with similar accident situations. Our proposal is able to increase the chances of

survival for the affected people, focusing on improving post-collision assistance.

The rest of the paper is organized as follows: Section 2 presents a sanitary

resource classification for traffic accidents. Section 3 shows the basis of the

Multi-objective Optimization problems and how Genetic Algorithms (GA) can

solve these problems. Section 4 presents our proposal for resource allocation.

Section 5 evaluates the obtained results using a set of traffic accident scenarios.

Finally, Section 6 concludes this paper.

2. Sanitary resources required in a traffic accident

In every traffic accident involving injured people, it is essential to provide

health care as soon as possible to minimize the potential damage to the occu-

pants of the affected vehicles. However, not all the available ambulances and
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rescue teams incorporate the same equipment and medical staff, meaning that

there are different types of vehicles with different medical attention capabilities

(Spanish Ministry of Health, 1998).

A preliminary classification of sanitary vehicles divides them into assistance

and non-assistance vehicles. The former allow providing health care during the

transport of the patients, including the necessary sanitary equipment and staff,

whereas the latter are merely able to transport patients on stretchers, being not

specifically equipped for medical care. However, a closer look to the different

types of assistance ambulances shows that, depending on the severity of injuries

they are prepared to handle, they can be classified in the following groups (see

Figure 1):

• Non-assistance Ambulances: also known as transport-only or support am-

bulances, consist of vehicles designed for the evacuation of patients alone,

thereby not being specially equipped for providing assistance. The staff

usually consists of one or two technicians, and the equipment is very basic,

being unsuitable for the transportation of urgent patients. They usually

include a stretcher and two seats in the rear area of the ambulance.

• Basic Life Support (BLS) Assistance Ambulances: vehicles equipped with

all the equipment required to provide basic life support to the patient,

reducing the risk of death or other consequences resulting from the injury

or from the transport conditions. They are known as basic ambulances,

or just BLS. The staff includes two trained technicians equipped with the

basic equipment for the patient assistance and stabilization, i.e., material

for first aid and immobilization, and oxygen. They can be used for first

aid, as well as for the treatment and transportation of patients with minor

injuries.

• Advanced Life Support (ALS) or Mobile Intensive Care Ambulances: vehi-

cles with elements able to provide advanced life support, and the practice

of surgery to the patient. The staff includes a doctor, a nurse, and at
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least one trained driver. In addition to the material of BLS ambulances,

they include medication and electromedical equipment, providing all the

needed material to treat patients with serious injuries while being carried

to a hospital.

• Fast Intervention Vehicles (FIV): also known as medical vehicles, they are

usually SUVs or large cars equipped with sanitary equipment to attend

areas with rough terrain, under adverse weather conditions or in cases

where special services are carried. The staff includes a a doctor and/or

a nurse and a paramedic, and the available equipment is the same as for

ALS units; however, they are unable to move patients, since they do not

include stretchers. They are useful for their agility and speed, but they

require an extensive network of BLS ambulances to provide transportation

capabilities.

• Health Emergency Helicopters (HEH): air vehicles especially useful for

reaching areas far away from hospitals. The staff includes a pilot, a me-

chanic, a doctor, a nurse, and sometimes a medical technician. The equip-

ment is the same as for ALS ambulances, but they may not be used in

urban areas due to the difficulty of finding adequate landing areas, and

they require the existence of heliports at the final destination hospitals.

2.1. Features of the different sanitary vehicles

The existing sanitary vehicles used to provide support for traffic accidents

can be classified according to several factors, related to the type of injured

passengers they are able to assist, their ability to reach the crash site, and so

on.

2.1.1. Severity of injuries supported

The injury severity or assistance category indicates the type of injuries for

which the vehicle includes medical supplies and human resources. This assis-

tance category is divided into three levels:
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(a) (b)

(c) (d)

(e)

Figure 1: Classification of sanitary vehicles needed in a traffic accident: (a) Non-assistance

ambulance, (b) BLS ambulance, (c) ALS ambulance, (d) FIV vehicle, and (e) HEH helicopter.
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• Non-assistance: the vehicle does not include enough material to heal any

type of wound that can not be stabilized by first aid. This type of vehi-

cle can only be used for the transportation of passengers without serious

injuries, and when the transportation time is not especially important.

Non-assistance ambulances belong to this category.

• Basic Life Support (BLS): the vehicle contains additional material to sta-

bilize the patient (immobilization equipment and oxygen), so it is possible

to transport passengers with moderately severe injuries, or those which

can be stabilized on the way to the hospital. BLS ambulances belong to

this category.

• Advanced life support (ALS): the vehicle incorporates intensive care mate-

rial and allows practicing surgery for severely injured patients. This type

of transportation is particularly suitable for occupants who have suffered

a severe accident, and so a fast intervention is crucial to ensure their sur-

vival. This category includes ALS ambulances, FIV vehicles, and HEH

helicopters.

2.1.2. Passenger capacity

The capacity of a vehicle is expressed by the maximum number of passenger

that can be transported in a standard service (depending on the seriousness of

injuries). Passengers with severe injuries should be evacuated individually in

different vehicles, due to the difficulty to stabilize them.

The maximum passenger capacity for the different medical vehicles is usually:

• Non-assistance Ambulance: 1 or 2 occupants

• BLS Ambulance: 1 or 2 occupants

• ALS Ambulance: 1 occupant

• Fast Intervention Vehicle (FIV): 0 occupants

• Helicopter (HEH): 1 occupant

7



Vehicles in charge of evacuating people with minor injuries would be able

to carry more than one person at once, if they have been previously stabilized.

FIV vehicles can not transport any patients. Finally, both ALS ambulances as

HEMS helicopters are capable of transporting seriously injured passengers.

2.1.3. Accessible areas

According to the characteristics of the vehicles, there are areas where access

may be more or less complicated, or that directly impede their use in that

area. The different zones can be classified as urban (cities or environments with

a high density of buildings), interurban (roads and highways between cities or

small towns with few buildings), and rough terrain (difficult road conditions and

mountain area, among others). If an accident happens in an area with rough

terrain, vehicles will find difficult reaching the accident area, and therefore their

speed may be considerably reduced. Ambulances should generally move more

slowly to reach an area of difficult access, whereas FIV vehicles are less affected

and helicopters are not affected at all by the terrain. However, helicopters

are not usually able to land with enough security in urban areas with many

buildings.

2.1.4. Average speed

Each vehicle presents different speed depending on the area where it is mov-

ing, mostly due to the road conditions or the traffic laws. Our approach will

consider the average speeds for the sanitary vehicles shown in Table 1.

2.1.5. Cost of service

Each vehicle type has different costs associated with its use, due to fuel

consumption, required staff, operation licenses requirements, maintenance and

insurance. The total cost depends on the total time of use and the distance

traveled. Hence, we can divide the cost in three different items: a fixed usage

cost, a staff cost depending on the required time for the emergency operation,

and a variable cost per kilometer. For each sanitary vehicle, we define the cost

of service in Table 2, obtaining the total cost as the sum of the values for each
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Table 1: Average speeds of sanitary vehicles

Vehicle type
Area type

Urban Interurban Rough terrain

Non-assistance Ambulance 50 km/h 100 km/h 40 km/h

BLS Ambulance 50 km/h 100 km/h 40 km/h

ALS Ambulance 50 km/h 100 km/h 40 km/h

Fast Intervention Vehicle (FIV) 60 km/h 120 km/h 70 km/h

Helicopter (HEH) 250 km/h 250 km/h 250 km/h

Table 2: Cost of use of sanitary vehicles

Vehicle type
Cost

Fixed Medical Staff Distance Traveled

Non-assistance Ambulance 29 e 36 e/hour 0.68 e/km

BLS Ambulance 29 e 72 e/hour 0.68 e/km

ALS Ambulance 156 e 81 e/hour 1.56 e/km

Fast Intervention Vehicle (FIV) 156 e 45 e/hour 1.56 e/km

Helicopter (HEH) 468 e 81 e/hour 4.68 e/km

column. The data shown in Table 2 was obtained from an existing sanitary

transport company in Spain (Amcoex, Inc., 2012).

2.2. Sanitary vehicles allocation policy

To correctly decide the sanitary resources required to assist a traffic accident,

it is convenient to do an a priori classification of the accident in order to optimize

the resource usage. In our model, accidents are classified and handled according

to the percentage of injured passengers, including their corresponding severity

(Fogue et al., 2012b).
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In general, there is no standardized method to allocate sanitary vehicles to

accidents. Traditionally, resources are over-allocated, in anticipation of a par-

ticularly severe accident. However, some guidelines are provided in Medynet

(2012), where it is always recommended that the rescue operation includes a

nurse and/or doctor, and at least one of the ambulances should be an ALS.

Thus, the medical staff will have the corresponding medical equipment to ad-

equately assist serious injuries. However, for minor injuries, a BLS ambulance

is enough to provide the required first aid. Therefore, each accident should be

individually studied to define the required equipment and personnel depending

on the severity of the accident. This issue will be included into our system by

distinguishing three levels for accident classification:

• Minor accidents: Situations where there has been a minor collision and

there is no risk of death for the occupants. In this type of accidents, there

might be slight injuries among the passengers, but most occupants are

considered unharmed. Since it is highly unlikely that this type of colli-

sions need medical supplies beyond first aid, at least a BLS ambulance

should be sent containing enough material for 3 passengers estimated to

have minor injuries. The rest of the ambulances to be sent can be of

the non-assistance type, allowing to evacuate the passengers to a hospi-

tal for further exploration. Many of these injuries will not even require

transportation, being assisted in the accident site, so the allocated ambu-

lances should be enough to transport 50% of the injured. We obtained

this percentage by studying the accidents in the General Estimates Sys-

tem (GES) database maintained by the National Highway Traffic Safety

Administration (NHTSA) (2012), showing that accidents with these char-

acteristics usually present about 30-50% of people involved with possible

injuries greater than the initially estimated. However, the percentage is

mainly orientative and it could be adapted to better represent accidents

happening in a specific area if we had enough information collected using

our system.
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• Intermediate accidents: These accidents are not the most severe ones,

although they may be potentially lethal for some of the passengers. Often,

most passengers suffer from minor injuries, but there is at least one of

them with a high probability of severe injuries. The rescue operation

should include an ALS unit with material for every 3 injured passengers,

as well as enough additional ALS vehicles to correctly evacuate the severely

injured occupants individually. Due to the higher probability of dangerous

injuries, it would be convenient to send enough BLS vehicles to transfer

at least 75% of the rest of injured passengers. Again, the selection of this

percentage is based on data from the GES database.

• Severe accidents: They represent the highest severity for a traffic acci-

dent. The collision was important enough to produce very severe injuries

to the passengers. Hence, most of the occupants in the vehicles are es-

timated as severely injured. The rescue operation requires sending ALS

vehicles for every passenger with potentially lethal injuries. Additional

ALS units with support material should also be sent for every 3 people

with minor injuries. To avoid unexpected complications on the affected

passengers, all of them should be transfered to the nearest hospital by

using BLS vehicles.

The selected resources for each accident will also depend on the conditions

of the accident itself. Hence, for minor or intermediate accidents, the use of

rescue helicopters should only be acceptable if they occur in areas located very

far away from health centers. If the accident happens in a poor access area, it

could be convenient to send a FIV vehicle in charge of the stabilization of the

affected people before the arrival of other emergency vehicles.

Another possibility consists of sending vehicles with less assistance category

than needed, due to the proximity to the crash site. This would be beneficial

if it is possible to correctly evacuate the injured passengers to a health center

faster than the required resources would need to reach the accident.
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2.3. Objectives of the resource allocation

The greatest difficulty of the resource allocation problem resides in the dif-

ferent conflicting objectives when obtaining an optimal set. We would want

to select the nearest resources from the accident area, but this is not always

possible due to the cost of some of the resources: sending a helicopter to an

accident without serious injuries would not be affordable, even though it is the

fastest of all the available vehicles. Hence, the optimal solution must offer a bal-

ance between different objectives, often contradictory. We defined the following

objectives for traffic accident assistance:

• Assistance quality: The first and most obvious of the objectives to be

met is based on the assistance quality received by those injured in the

accident. This parameter is measured in terms of the time it takes for

medical teams to access the crash site, as well as the type of injuries

they are able to attend. Thus, if a seriously injured passenger requires

advanced life support to maximize his survival chances, and the system

selects a basic life support equipment instead, this should be reflected in

the assistance quality with a penalty.

• Cost: The second parameter to consider is the cost of the rescue oper-

ation. As we showed in the classification of resources, the cost for each

resouce can be subdivided into several elements: licenses, insurance, travel,

staff, etc. The value used to represent the cost will come from the sum of

the individual costs of all vehicles, with their corresponding medical staff,

dispatched to the scene of the accident.

• Reduced resource overuse: To avoid excessive wearing out of the

equipment and vehicles, and fatigue in medical personnel involved in res-

cue missions, the equipment and human resources of the different suppliers

should be used in the most equitable manner possible. This parameter has

lower priority, since the care of the equipment should never overcome the

health of the passengers, but there may be situations where different solu-
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tions provide similar assistance quality, and then this parameter may be

used to choose between one or the other.

• Balanced resource deployment: The last factor to be considered avoids

having any of the existing health centers deprived from all its resources at

a given time, thereby preventing situations where a serious accident could

occur in the vicinity.

It is easy to observe that these objectives are contradictory, since increasing

the quality of the assistance to the injured is often only possible by increasing

the cost of the emergency operative. The most adequate solution to the problem

should take into account all these factors to reach an acceptable balance, that

will also depend on the scenario and the economical and social environment.

3. Multi-objective Optimization: Search through Genetic Algorithms

The problem of resource allocation to traffic accidents is considered an op-

timization problem, since we know the model representing the system, and the

goals to achieve. So, the objective is to find the input that achieves the given

goals, i.e., the set of selected resources to be sent to the accident site. However,

the goal is not simple, since we have four different objective functions: assistance

quality, cost, reduced resource overuse, and balanced resource deployment. We

propose to address this issue using an optimization problem approach following

a multi-objective optimization based on genetic algorithms.

The rest of the Section is organized as follows: Section 3.1 presents the differ-

ent existing approaches to multi-objective optimization. Section 3.2 introduces

the evolutionary algorithms with their main features. Finally, Section 3.3 shows

why evolutionary algorithms are appropriate for multi-objective optimization

problems.

3.1. Multi-objective Optimization

The problem we face has a special feature compared to standard optimization

approaches, where there is only one objective function to optimize and selecting
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the best solution is the common approach. Multi-objective problems are those

having several objectives which are usually mutually exclusive, so that all of

them can not be optimized at the same time. Those kind of problems are very

common in engineering, where in most cases the performance or reliability is

maximized with minimum cost.

Several approaches can be followed to address multi-objective optimization

problems. The straightforward method consists on combining the individual ob-

jective functions into a single composite function, using methods such as utility

theory or weighted averages. This approach has the advantage of being simple,

not requiring changes in the optimization algorithm used with a single objective

function. However, the selected weights or utility functions must be carefully

tuned to characterize the preferences of the entity responsible for making deci-

sions. In addition, very small changes in the weights may lead to very different

solutions.

However, during a decision-making process, it may be preferable to have a

good set of potential solutions on which to decide which better address each

particular situation, rather than having just a single solution as obtained with

the methods presented so far. This approach relies on generating a Pareto set

of optimal solutions, also called Pareto front or Pareto frontier (Teich, 2001).

The concept of Pareto efficiency was initially defined in the area of economy.

According to Pareto, a situation Y is superior or preferable to a situation X

when the change from X to Y is an improvement for all the members of the

society; or an improvement for some, but no one is adversely affected (Pareto,

1909). This concept can be also applied to multi-objective optimization prob-

lems. Therefore, a solution S1 is Pareto-optimal when no other solution S2

improves an objective without worsening at least one of the other objectives.

This is defined on the concepts of Pareto dominance and Pareto optimality:

• Pareto dominance: Given a vector u = (u1, · · · , uk), it dominates an-

other vector v = (v1, · · · , vk) if:

∀i ∈ {1, · · · , k} , ui ≤ vi ∧ ∃i0 ∈ {1, · · · , k} | ui0 < vi0 (1)

14



• Pareto optimality: A solution x∗ is Pareto-optimal if there is no dif-

ferent vector x so that v = f(x) = (v1, ...., vk) dominates u = f(x∗) =

(u1, ...., uk).

In general, the solution to a problem of multi-objective optimization is not

unique: the solution will consist of the set of all non-dominated vectors, which

are known as the non-dominated set, Pareto front or Pareto frontier. The Pareto

frontier may have different sizes (even infinite), and the Pareto set size usually

grows while increasing the number of objective functions (as a result of increased

dimensionality of the problem). As a result, obtaining the full set of optimal

solutions is not feasible for many problems. Thus, for practical purposes, the

aim is to investigate a rough set of solutions that represent the best possible

Pareto optimal set, leading to several conflicting objectives (Zitzler et al., 2000):

• The approximate Pareto frontier should be as close to the true Pareto set

as possible. Ideally, this approximate boundary should be a subset of the

actual border. This requires intensifying the search in a particular region

of the Pareto frontier.

• Solutions in the rough set should be evenly distributed along Pareto fron-

tier, to provide decision-makers a clear picture of the sacrifices to be made

to achieve the different solutions.

• The approximate set should capture the full spectrum of the Pareto fron-

tier, which requires investigating the solutions at the ends of the space of

objective functions, extending the set of Pareto.

In the existing literature, we can find different analytical and numeric algo-

rithms to approximate the Pareto front, such as Normal Boundary Intersection

(NBI) (Indraneel and Dennis, 1998), Normal Constraint (NC) (Messac et al.,

2003; Messac and Mattson, 2004), and Directed Search Domain (DSD) (Erfani

and Utyuzhnikov, 2010). However, these methods present several shortcomings

due to the significant number of redundant solutions that they can generate
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(Utyuzhnikov et al., 2009), and the problems that arise when the Pareto fron-

tier is not continuous (Shukla and Deb, 2007). Nowadays, most of the existing

related work about multi-objective optimization is based on the use of evolu-

tionary algorithms, which could overcome those important drawbacks.

3.2. Evolutionary algorithms

Evolutionary algorithms have the ability to simultaneously search different

regions of the solution space, including those with non-convex spaces, discon-

tinuous, or multi-modal. Although there are different variants of evolutionary

algorithms, the idea behind them all is the same: given a population of indi-

viduals, the environmental pressure produces a natural selection process that

causes an increase in the adaptation level of the individuals to the environment.

For each generation, some of the best candidates are chosen to create a new gen-

eration by applying the recombination and mutation operators, producing new

individuals that will compete again in the environment. The general scheme of

an evolutionary algorithm (Eiben and Smith, 2003) is shown in Algorithm 1.

The recombination or crossover operator is usually the most important factor

in this type of algorithms. It is based on combining two or more genotypes, i.e.,

gene sequences, called parents to form new genotypes, the offspring. Parents are

selected from existing individuals based on their level of adaptation or fitness,

so you can expect that the offspring inherits the good genes that make their

parents the fittest. Applying iteratively this operator, it is more likely that the

best chromosome genes appear more frequently in the population, ultimately

leading to a convergence towards the best solutions.

The mutation operator is responsible for introducing random changes in the

characteristics of the chromosomes, and it is usually applied at the gene level.

As a rule, the mutation rate (probability of change in a gene) is usually very

small and dependent on the length of the genotype, so that the new genotypes

produced after the mutation will not be very different from the originals. The

role of the mutation in the evolutionary algorithms is also very relevant, since

the recombination operator makes the individuals converge rapidly toward the
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Algorithm 1: General scheme for an evolutionary algorithm

BEGIN

INITIALISE population with random candidate solutions;

EVALUATE each candidate;

REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO

1 SELECT parents;

2 RECOMBINE pairs of parents;

3 MUTATE the resulting offspring;

4 EVALUATE new candidates;

5 SELECT individuals for the next generation;

OD

END

best solutions found so far. However, there may be a region of the state space

not previously explored, and so the mutation is used to reintroduce genetic

diversity in the population, thereby avoiding local optima.

3.3. Multi-objective Optimization based on Evolutionary Algorithms

Through an appropriate use of the recombination and mutation operators

of evolutionary algorithms, it is possible to obtain good solutions with respect

to different objectives, obtaining new non-dominated solutions in the Pareto

frontier. In addition, most of the developed evolutionary algorithms do not re-

quire the objective functions to be prioritized over each other, to be scaled, or

to use weights to find weighted aggregate functions. For that reason, most opti-

mization algorithms are multi-objective meta-heuristics based on an underlying

evolutionary algorithm (Jones et al., 2002).

The classical (and straightforward) approach to the problem of multi-objective

optimization was based on assigning a weight (wi) for each normalized objec-

tive function (f ′

i), so the problem is reduced to a single objective formed as

the weighted sum of these values. This method is known as a priori, since the

user has to supply the values for the weights. A unique solution is obtained for
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each weight vector. However, as discussed above, the major drawback of this

approach is that small variations in the weight vector can lead to completely

different solutions.

More sophisticated versions of these algorithms approximate the Pareto fron-

tier using different approaches. The first multi-objective genetic algorithm that

appeared to approximate the Pareto frontier was the Vector Evaluated Genetic

Algorithm (VEGA) (Schaffer, 1985). VEGA divides the population into sub-

populations and assigns a different objective function to each of them. This

approach could be easily implemented; however, the solutions tend to converge

towards the extremes of the objective functions, achieving good results for one

function but behaving very poorly for the rest.

The posterior Multi-Objective Genetic Algorithm (MOGA) (Fonseca and

Fleming, 1993) uses the fitness sharing concept, so that the search towards

unexplored sections of the Pareto frontier is favored by penalizing the fitness

value of the solutions in densely populated areas. The fitness value is obtained

by assigning ranks to the different solutions, depending on whether they are in

the Pareto front, and their distance to it. MOGA is an extension of a standard

genetic algorithm, but it has slow convergence and requires additional parame-

ters specification, which is not always easy and may require several tests to find

them.

The Pareto Envelope-based Selection Algorithm (PESA) (Corne et al., 2000)

divides each dimension of the objective space into cells, where the cell size is

defined by the user. The number of solutions in each cell is defined as the cell

density, and this density information is used to achieve diversity in the individ-

uals. PESA is easy to implement and efficient, but its performance depends on

the size of the cells in each dimension, requiring prior knowledge of the objec-

tive space to decide how to divide it efficiently. The PESA-II extension (Corne

et al., 2001) selects cells instead of individual solutions, but the cell size problem

persists.

The Nondominated Sorting Genetic Algorithm (NSGA) (Srinivas and Deb,

1994) is a fitness-sharing algorithm characterized by its fast convergence towards
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the Pareto front. The population is classified as non-domination fronts, and each

one receives a value of fitness that penalizes the nearest solutions. Similarly to

other methods based on fitness sharing, it is difficult to adjust the parameters.

To overcome this problem, a new version called NSGA-II (Deb et al., 2002) was

proposed, which employs a crowding distance for a uniform distribution of the

solutions in every front. This algorithm is very efficient and does not require

additional parameters in the search, although the concept of crowding distance

can be only applied to the objective function space, not to the solution space.

The different algorithms proposed were designed to guide the evolutionary

process in order to obtain the optimal solution to a specific problem, being

the NSGA-II algorithm, in theory, the most efficient variant in the literature.

However, we still need to define the rest of the parameters needed to achieve

proper results, such as the representation of individuals, and the crossover and

mutation operators.

3.4. Hybridization with other techniques: Memetic Algorithms.

In practice, evolutionary algorithms are frequently applied to a problem in

which a considerable amount of experience and knowledge is available. This

information can then be used as specialized operators to produce performance

benefits. In these cases, it is usual that the combination of evolutionary algo-

rithm and a heuristic method performs better than either of the two original

algorithms separately.

This type of hybrid algorithms, combining evolution with heuristics, are of-

ten based on the idea of “memes” (Dawkins, 1976), which can be seen as units

of cultural transmission, in the same way that genes are units of biological

transmission. These memes are selected according to their utility, and trans-

mitted through interpersonal communication. The idea of using information

not encoded in the genes, increasing the evolutionary search process with dif-

ferent local search processes, makes these hybrid algorithms to be often known

as Memetic Algorithms (MA) (Moscato, 1989).
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Hybridization of genetic algorithms with local search algorithms are fre-

quently applied in single-objective approaches. Generally, a local search algo-

rithm proceeds as follows: (i) start with an initial solution x, (ii) generate a set

of neighboring solutions around the solution x using a simple rule of variation,

and (iii) if the best solution on the set of neighbors is better than x, replace x

with this solution and return to the second step, otherwise stop the search.

Hybridization in the multi-objective algorithms has not been extensively

studied so far. There have been only few attempts in problems with two ob-

jective functions (Paquete and Stutzle, 2003) or applying local search only to

the final solutions to ensure their dominance (Deb and Goel, 2001). A more

comprehensive attempt to generate a multi-objective memetic algorithm was

developed in Knowles and Corne (2000), which presents the algorithm M-PAES

(memetic version of PAES), employing the concept of dominance to evaluate lo-

cal solutions. When a neighboring solution is created, it is only compared with

the set of nondominated solutions. The local search is finished after a number

of local movements without any improvement.

4. Genetic algorithm for sanitary resource allocation

We propose a novel method to improve the resource allocation process in

a traffic accident: Genetic Algorithm for Traffic Accidents Resource Allocation

(GATARA). Our model will provide a set of resources (final solution) to be

sent to the accident area, based on the necessary resource types defined by the

allocation policy presented in Section 2.

To accomplish that, our model makes use of the Genetic Algorithm (GA)

subtype among the general Evolutionary Algorithms. In the problem of san-

itary resource allocation for traffic accidents, we must consider that the final

solution will consist of a set of selected resources, and therefore the search pro-

cess should determine, for each available resource, if it is sent or not. We are

facing a problem where we must be decided for a number of elements, which

can be represented in a vector, whether they are selected or not. This situation
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could be expressed as selected = true or selected = false. In other words, each

possible solution can be represented by a vector of Boolean values, and each

element is associated with a resource. The Genetic Algorithms (GA) represent

the candidate solutions as strings over a defined alphabet, making them the

most appropriate type of algorithm.

Our algorithm is based on the execution cycle performed by the Nondom-

inated Sorting Genetic Algorithm, Fast version (NSGA-II) (Deb et al., 2002),

which allows efficiently searching the solution space to generate uniform Pareto

front approximations. However, we will include a hybridization of this algo-

rithm to improve its convergence speed towards the optima. The results of

our proposal will be compared with other genetic algorithms that could be

adopted, making use of the simple a priori approach, or approximating the

Pareto front: Vector Evaluated Genetic Algorithm (VEGA) (Schaffer, 1985),

and Multi-Objective Genetic Algorithm (MOGA) (Fonseca and Fleming, 1993).

4.1. Parameter Definition for the Genetic Algorithm

Our genetic algorithm require a series of components that need to be defined

to determine their functioning, which are dependent on the specific problem to

solve. In our case, we must adapt the general parameters of genetic algorithms

to the sanitary resource allocation problem.

• Representation of individuals:

The first step in defining the algorithm is to determine how to represent real-

world situations in our genetic algorithm. The representation of the individuals

is the link between genotypes, i.e., chromosomes containing genetic information

for each of the individuals, and the phenotypes, the different solutions to the

original problem.

The phenotype for the search of medical resources consists of a set of vehicles

to be sent to the crash site for treatment and stabilization of the injured before

being evacuated to hospital to complete their assistance. Each individual, i.e.,

possible solution, is represented in the population by using a vector of bits where
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Figure 2: Representation of individuals in the genetic algorithm for resource allocation.

each position is associated with an available resource. A value of 1 indicates

that the resource associated to that position is selected; otherwise, the value in

the vector is 0. Figure 2 shows an example with six available resources.

• Evaluation functions:

When determining the most appropriate sanitary resources for a traffic ac-

cident, we must take into account that different providers may have different

priorities, being the closest resources not always the most appropriate ones.

There are many factors that may be important in the decision of the final set.

The objective functions used are designed to transform the problem in a min-

imization one, and hence greater values are considered as penalties and they

should be reduced. The four evaluation functions defined are:

1. Assistance quality penalty (f1): The assistance quality is measured as

the time required for the medical teams to access the crash site, and

the type of injuries they are able to handle. Thus, if a serious injury

requires advanced life support to maximize their survival chances, and if

our algorithm selects a basic life support equipment, the assistance quality

should be penalized. Since the rescue time is the most critical factor in a

traffic accident, the penalty in the assistance quality due to the time past

since the notification of the accident will be quadratic. In addition, we

differentiate between two types of resources: transport vehicles, needed to
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transfer the injured passengers to a hospital in a safe way; and support

vehicles, that provide additional equipment and medical staff. The arrival

time of the sanitary vehicles is computed using a map representing the

streets and roads around the crash site. Road vehicles are supposed to

use the shortest path from their locations to the accident area, whereas

helicopters use a straight line for their route. Algorithms 2 and 3 show

our proposed scheme, which is used to assign assistance quality penalties

for each type of resource. These algorithms allow obtaining the final value

for the assistance quality function, defined as:

f1(R) =
m∑

i=1

wi ·assistance quality(R, pi)+
n∑

j=1

wj ·support quality(R, aj)

(2)

Where R is the set of selected resources, m is the number of passengers

(pi), n is the number of required support resources (with assistance cate-

gory aj). The weights w depend on the category requested, being defined

as 1 for non-assistance vehicles, 2 for BLS resources, and 4 for ALS vehicles

to reflect the higher importance of ALS equipment for severe injuries.

2. Cost (f2): The total cost of the rescue operative, representing the overall

cost of all the individual resources selected to be deployed at the crash

site. The values to determine the cost of each resource are obtained from

Table 2, and it is calculated using Equation 3, where n is the number of

selected resources.

f2(R) =

n∑

i=1

cost(ri) (3)

3. Resource overuse penalty (f3): In an ideal situation, the resources from

the different suppliers would be used in an equitable manner to avoid an

overusing on the equipment and vehicles, as well as reducing fatigue in the

medical personnel. The calculation of this value is done by determining

the time elapsed since the last time when the resource was used. The

smaller this value, the greater the penalty provided by the resource when

used again. Equation 4 shows how this function is calculated for n selected

resources and the time being indicated in hours.
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Algorithm 2: Pseudo-code representing the calculation of the assistance

quality penalty for transport resources.

Input: The set of selected resources, and a target passenger p

Output: Assistance quality penalty for passenger p

r ← determine assigned resource(resources, p);

if r = undefined then

// 5 hours penalty

time = 5 ;

else if r.categoria < p.gravedad then

// Inappropriate resource: penalization with double time

time = compute arrival time(r) * 2

else

time = compute arrival time(r)

penalty = time2

f3(R) =

n∑

i=1

2

current time− ri.last use time+ 2
(4)

4. Emergency threshold penalty (f4): This function tries to avoid health care

centers to be deprived of all their resources at any given time, so maintain-

ing their clinical operatives in case of nearby accidents. Each health care

center has thresholds defined for BLS and ALS resources, and a penalty is

added if the number of resources available is lower than the corresponding

threshold. The final value is the sum of the penalties for each of the k

health centers:

thr penalty(hc) = 0.4 ·
bls thr − bls units

bls thr
+ 0.6 ·

als thr − als units

als thr

f4(R) =

k∑

i=1

thr penalty(hci) (5)

• Population:
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Algorithm 3: Pseudo-code representing the calculation of the assistance

quality penalty for support resources.

Input: The set of selected resources, and the assistance category

required

Output: Assistance quality penalty for the resource

r ← determine support resource(resources, category);

if r = undefined then

// 5 hours penalty

time = 5 ;

else if r.categoria < p.gravedad then

// Inappropriate resource: penalization with quad time

time = compute arrival time(r) * 4

else

time = compute arrival time(r)

penalty = time2

The population contains the possible candidate solutions to be evaluated at a

particular time (generation). We will use populations with a fixed number of in-

dividuals, which have been commonly used. Although there are algorithms with

a variable number of individuals in the population (Affenzeller et al., 2007), the

benefits are purely spatial, since it allows storing fewer individuals in memory.

However, the convergence speed of the algorithm does not change significantly.

In general, the population size influences the speed of the problem solving

algorithm. Reducing the population size increases the speed optimization to

some extent, from which a premature convergence occurs reducing the speed

(Koljonen and Alander, 2006). In addition, the reliability of the optimization,

i.e., the ability to find the optimal value, normally increases monotonically with

the size of the population. We selected 10 individuals for populations based

on the a priori approach, and 30 individuals when the objective is to find the

Pareto front, since more solutions should give a more detailed idea of the shape

of the frontier.
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Figure 3: Example of crossover operator using two cutoff points.

• Parent selection:

The main purpose of the parent selection phase is to determine which in-

dividuals are best suited to have children and pass their genes to the next

generation. Most algorithms (such as VEGA, MOGA and a priori approaches)

do not define a specific mechanism for parent selection. However, NSGA-II is

specifically designed to use a binary deterministic tournament mechanism (k =

2) (Bäck, 1996). In the comparisons of the different algorithms, all of them will

be configured to make use of this mechanism.

• Crossover operator:

Crossover or recombination is a binary operator that joins the information

from the genotypes of two parents in one or more offspring genotypes. There

are several types of recombinations in genetic algorithms. The classical operator

has been the 1-point crossover. Given two parent genotypes, a cutoff point is

chosen and the offspring genotype genes take values from the first parent before

the cut, and from the second parent after the cut. In our case, we will employ

an extension of this scheme using two cutoff points, in order to increase the

variability on the genotype of the offspring, as shown in Figure 3.

• Mutation operator:

Mutation in genetic algorithms has been traditionally defined as the prob-

ability of change for a single gene. This probability is usually low to avoid

excessive changes in the offspring that could move the individual away from the
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area that it is currently exploring, but this mechanism should exist to success-

fully avoid local optima. In our proposal we will use a probability of 0.02, i.e.,

one change for every 50 genes on average.

• Survival selection:

The selection of survivors, or environmental selection, is aimed at select-

ing individuals depending on their quality to create the next generation. It is

usual to use a standard generational replacement, where the new offspring com-

pletely replaces the individuals from last generation. However, NSGA-II and

GATARA are elitist schemes, thus the best individuals from the last generation

are included in the next generation to keep track of the best solutions found so

far.

4.2. Constraint handling

In optimization problems where the variable values are not subject to any

restriction, i.e., those in which the variables can take any value in the domain,

the concept of Pareto dominance presented so far is sufficient to compare two

solutions. However, most engineering problems have restrictions that may cause

some of the obtained solutions to be unfeasible.

If we analyze our problem of resource allocation, all possibilities are feasible

in terms of sets of resources to be sent to an accident area. However, some of

them are clearly more suitable than others. The simplest example is the solution

that sends no resources to the crash site. It is easy to see that this solution will

never be dominated by any other, since the objective functions based on cost,

overuse penalty, and emergency threshold violation would present the minimum

value, although the assistance quality will be null. Therefore, we must prevent

solutions excessively neglecting the assistance of the injured.

An interesting approach (Deb et al., 2002) makes use of the constraint-

dominance concept, where a solution i dominates another solution j if any of

these conditions is true:

1. Solution i is feasible, while solution j is not.
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2. Both solutions are unfeasible, but solution i presents less violation to the

feasibility condition.

3. Both solutions are feasible, but solution i dominates over j.

In our algorithm for sanitary resource allocation, a solution is considered

feasible if it provides at least the amount of resources required by the accident

using the proposed allocation policy, even when their assistance category is not

optimal. That is, the number of vehicles sent should allow evacuating all the

person according to the allocation policy, which also depends on the accident

severity estimation. Thus, the solution of not sending any resources will be

dominated by any other solution subject to these restrictions. Between two

unfeasible solutions, the solution able to evacuate a greater number of occupants

is preferred. Finally, from two feasible solutions, we would select the Pareto-

dominating one.

4.3. Hybridization of the NSGA-II Algorithm in GATARA

The original NSGA-II algorithm could be improved by adding knowledge

about the problem that could help to find better solutions in fewer generations.

When a hybrid, or memetic, multi-objective algorithms is developed, we should

take into account the solutions to which local search will be applied, and how

to identify a solution in the vicinity as the new best solution when there are

multiple local non-dominated solutions.

Generating neighboring solutions to the problem at hand can be simple us-

ing inversion of bits, or bit-flipping, since the new solution only differs from the

original one in a single resource to be added or removed from the rescue team.

Moreover, local search must be applied selectively to be computationally effi-

cient. Hence, instead of checking all solutions of the offspring, GATARA only

investigates those that are not dominated by any other solution, also know as

rank 1 solutions, after all the solutions have been assigned to different domina-

tion fronts in NSGA-II. The local search process will finish when the first better

solution is found in the vicinity, or when there are no more neighbors left to

explore.
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Table 3: Parameters for the Resource Allocation Genetic Algorithm

Representation Binary strings

Recombination 2-point crossover

Recombination probability 90%

Mutation Bit-flipping

Mutation probability 2%

Parent selection Tournament k = 2

Survival selection Generational

Population size 10 (a priori), 30 (Pareto Front approach)

Initialization Random

Termination condition 200 generations (a priori), 300 generations

(Pareto Front approach)

Number of executions 20

5. Algorithm evaluation

The proposed model will now be evaluated using a series of pre-generated

scenarios representing accidents occurring in different situations. The data for

the accidents is taken from the GES database to represent realistic situations.

5.1. Definition of the evaluation problem

To evaluate the chosen algorithms, we generated two situations in which, for

the same accident, the number of providers is different. The specific accident

is a multiple collision set in an interurban road which took place in the minute

3,000. The potential resources for the accident are searched in the 10,000 km2

surrounding area. That is, we consider a 100 km × 100 km square area in which

the accident is located in the central coordinates (50, 50). The collision involved

the following vehicles and passengers:

• A tourism with severe damage estimation. Three passengers were in the
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(a)

(b)

Figure 4: Example scenarios for a traffic accident resource allocation in a 100 km × 100 km

area with (a) 10 suppliers, and (b) 20 suppliers.

30



vehicle at the time of the accident, where two of them are estimated to

present severe injuries, and the third one just minor injuries.

• A truck with minor damage, having the driver as the only passenger, with

minor injuries estimation as well.

• A small vehicle with severe damage, occupied by 3 passengers with severe

injuries estimation.

According to our resource allocation model, the incident would be classified

as severe, and the estimated resources for assistance would consist of:

• 5 Advanced Life Support vehicles for the possible transport of the seriously

injured in the collision.

• 2 Basic Life Support vehicle for the possible transport of minor injured

passengers.

• 1 Advanced Life Support vehicle to support BLS vehicles (for example, to

provide additional material).

In our case, our scenarios will include several sanitary resource suppliers,

such as rescue centers and hospitals. As shown in Figure 4, we generated two

random scenarios with potential suppliers around the crash site: the first one

includes 10 suppliers, and the second one involves 20 suppliers. The available

resources for each of them were also generated randomly. The map was obtained

from the area around Madrid (Spain), using OpenStreetMap (OpenStreetMap,

2012). The parameters of the executions of the selected genetic algorithms are

shown in Table 3.

5.2. Drawbacks of the simple a priori approach

The straightforward method for adapting a genetic algorithm to be multi-

objective is to generate a new function resulting from the combination of the

multiple chosen objective functions. We may perform a weighted mean using

the normalized values from the four functions, with a set of weights varying
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Table 4: Weight sets used in the a priori approach

Objective Function Weight
Weight set #

1 2 3 4 5

Assistance Quality Penalty w1 0.7 0.5 0.5 0.4 0.3

Cost w2 0.15 0.2 0.2 0.4 0.5

Resource Overuse Penalty w3 0.075 0.05 0.25 0.1 0.1

Emergency Threshold Penalty w4 0.075 0.25 0.05 0.1 0.1

depending on the relative importance of each function. Hence, the fitness value

for each individual i of the population at time t will be obtained through the

following formula:

f(i, t) =

4∑

j=0

wj · fj(i, t) (6)

where wj represents the weight assigned to the objective function fj .

We performed several executions using the weight sets included in Table

4, which represent different allocation policies with more preference for one or

more objective function. For example, the weight set 1 presents a clear pref-

erence towards assistance quality, while the weight sets 4 and 5 try to achieve

a balance between assistance quality and cost, probably indicating a situation

where the cost could be highly reduced. These weights must be manually in-

cluded into the algorithm, meaning that the specific weight for each function is

an approximation of the intentions of the entity in charge of the decision.

The optimal solutions found using the a priori approach after 20 executions

of 200 generations are shown in Figure 5. The differences between the five

weight sets presented are very noticeable. Even when two weight sets that are

not too different, like sets 2 and 3, where only the two functions with less priority

change their weight values, totally different solutions are obtained, making it

very difficult to adjust them to represent a given allocation scheme. We can

observe in Figure 5(a) how the values for the functions change noticeably for
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Figure 5: Different solutions obtained using different weight sets for the a priori approach in

the (a) 10 suppliers scenario, and (b) 20 suppliers scenario.
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them, obtaining a totally different shape in the graph bar. A similar effect

is appreciated when studying weight sets 4 and 5, where the cost function is

reduced by greatly increasing the assistance quality and the overuse penalty.

In addition, comparing Figures 5(a) and 5(b), it is shown that the differ-

ences between the solutions found is more important when fewer suppliers are

taken into account. Therefore, having less options makes the solution vary sig-

nificantly, which may be a problem in areas with few health centers available.

This undesirable effect makes this simple scheme less useful when we need to

define a precise allocation policy, and using the Pareto front approach becomes

an option to overcome this drawback.

5.3. Comparison between GATARA and other algorithms approximating the

Pareto front

Given the limitations observed in the a priori approach for multi-objective

search, we conclude that it is more beneficial to present a set of non-dominated

solutions representing the Pareto front, instead of just selecting a single solu-

tion with the a priori approach. Our proposed scheme GATARA is based on

the NSGA-II algorithm, and we will compare it to the original version of this

algorithm, as well as other existing multi-objective genetic algorithms: VEGA

and MOGA. These algorithms will be evaluated using the scenarios previously

presented, both with 10 suppliers and 20 suppliers.

Figure 6 shows the results obtained with the four algorithms in the 10 sup-

pliers scenario. The data series indicate the mean value of the four objective

functions while increasing the number of generations of the population. The

three schemes obtain very similar results in terms of assistance quality and

cost. It is noticeable how they treat the assistance quality, since VEGA and

MOGA are approximately constant during all the execution, whereas NSGA-II

and GATARA worsen their results during the first generations to explore the

solutions space, and later they stabilize with results that are similar to the other

two algorithms. There are more differences related to the overuse penalty func-

tion, with clear advantage for GATARA, and the emergency threshold penalty
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Figure 6: Evolution of the mean value of the objective functions for the individuals in the

population when varying the genetic algorithm in the 10 suppliers scenario.
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Figure 7: Pareto front obtained when varying the genetic algorithm in the 10 suppliers sce-

nario: (a) VEGA, (b) MOGA, (c) NSGA-II, and (d) GATARA.
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Figure 8: Evolution of the mean value of the objective functions for the individuals in the

population when varying the genetic algorithm in the 20 suppliers scenario.
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Figure 9: Pareto front obtained when varying the genetic algorithm in the 20 suppliers sce-

nario: (a) VEGA, (b) MOGA, (c) NSGA-II, and (d) GATARA.
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function, where VEGA is the winner.

The convergence speed of the three schemes is similar, even if GATARA

reaches a stabilization point sooner than the rest of the approaches, thus mak-

ing difficult to select the best algorithm. That is the reason why we study

the distribution of the final solutions obtained in the four dimensions after 300

generations, as shown in Figure 7. Among the four algorithms, GATARA and

NSGA-II generate fewer extreme values, with a fairly even distribution of solu-

tions in all dimensions. In fact, since GATARA mainly increases the convergence

speed of the NSGA-II algorithm, it is logical to obtain such similarity in the

distribution of solutions for both algorithms. VEGA achieves very good results

for the emergency threshold penalty, but several of the values for the assistance

quality are too high or too close to each other. MOGA is not able to achieve

enough variety in the assistance quality, with little differences between the so-

lutions, although there is considerable diversity in the other functions. Our

proposal is the most appropriate algorithm to obtain a variety of solutions with

acceptable quality, allowing decisions to be flexible enough to adapt to different

situations and priorities.

Since the behavior of the algorithms may vary in different environments, we

studied how the results are affected by using the scenario with 20 suppliers. As

shown in Figure 8, GATARA clearly outperforms the rest of schemes after 300

generations for all the functions, except the assistance quality penalty, where all

the algorithms behave similarly. The convergence speeds of the four schemes is

similar during the first 50 generations. Surprisingly, NSGA-II presents problems

to reach the optimum solutions for the cost and emergency threshold functions,

requiring more than 150 generations to stabilize. Again, this behavior indicates

that NSGA-II explores the search space during the first few generations to later

focus on the best areas detected. The hybridization allows GATARA to over-

come this drawback, achieving the best solution set in less than 80 generations.

Finally, Figure 9 represents the distribution of the values for the four ob-

jective functions in the 20 suppliers scenario. Both VEGA and MOGA present

excessively high values for the cost and overuse functions, while MOGA again
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shows deficiencies in terms of variety of values for the assistance quality func-

tion. The values for the assistance quality penalty function are also very high

in NSGA-II, whereas GATARA is able to find a set of solutions with values

that are reduced and diverse enough for all the penalty functions. Therefore,

GATARA is a suitable algorithm to generate approximations to the Pareto front

with a high degree of uniformity.

6. Conclusions

Intelligent Transportation Systems are beginning to be implemented in vehi-

cles from different manufacturers, as a combination of communication systems

between vehicles (V2V), and between vehicles and the external infrastructure

(V2I). Using this technology together with Artificial Intelligence (AI) systems

can be helpful at reducing the assistance time of the injured people in an ac-

cident. In this work we showed how Multi-objective Genetic Algorithms make

it possible to generate optimal resource sets automatically when an accident is

notified and its severity estimated.

Using the resource model presented, there are different multi-objective al-

gorithms that can be used to select the most appropriate resource set, taking

into account four main objectives: maximizing the assistance quality, minimiz-

ing cost, minimizing the penalty for overuse of resources, and minimizing the

penalty for violation of the emergency threshold. We propose a Genetic Algo-

rithm for Traffic Accidents Resource Allocation (GATARA), based on the exist-

ing NSGA-II algorithm, modifying it to include hybridization through memetics

to increase the convergence speed towards the Pareto front. GATARA still has

the advantages of the original NSGA-II approach with respect to other algo-

rithms, such as VEGA and MOGA, since our proposal does not give preference

to one function over others, and it is very efficient at obtaining a uniform dis-

tribution for solutions using the different objective functions. However, the

memetic version of NSGA-II allows for a faster search by improving the non-

dominated suboptimal solutions found during the search process.
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As future work, it would be interesting to study the system for a long time

period to assess its behavior once deployed in a real environment. The simula-

tion would include the modeling of traffic accidents in terms of their frequency

and other factors, such as vehicles involved, average number of occupants, etc.

Acknowledgments

This work was partially supported by the Ministerio de Ciencia e Inno-

vación, Spain, under Grant TIN2011-27543-C03-01, and by the Diputación

General de Aragón, under Grant “subvenciones destinadas a la formación y

contratación de personal investigador”.

References

Affenzeller, M., Wagner, S., Winkler, S., 2007. Self-adaptive Population Size

Adjustment for Genetic Algorithms. In: Moreno Daz, R., Pichler, F., Que-

sada Arencibia, A. (Eds.), Computer Aided Systems Theory EUROCAST

2007. Vol. 4739 of Lecture Notes in Computer Science. Springer Berlin / Hei-

delberg, pp. 820–828.

Amcoex, Inc., 2012. Cost of use of sanitary vehicles pro-

vided by Amcoex Ambulances, Spain. Available at

http://www.amcoex.es/WebAmbulancias/tarifas.htm.
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