

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.future.2012.05.007

http://hdl.handle.net/10251/34867

Elsevier

Palanca Cámara, J.; Navarro Llácer, M.; García-fornes, A.; Julian Inglada, VJ. (2013).
Deadline Prediction Scheduling based on Benefits. Future Generation Computer Systems.
29(1):61-73. doi:10.1016/j.future.2012.05.007.

Deadline Prediction Scheduling based on Benefits

Javier Palanca, Marti Navarro, Ana García-Fornes and Vicente Julian
DSIC - Universitat Politècnica de València

Camino de Vera s/n, 46022
Valencia, SPAIN

jpalanca@dsic.upv.es

Abstract

This paper describes a scheduling algorithm that composes a scheduling plan
which is able to predict the completion time of the arriving tasks. This is done
by performing CPU booking. This prediction is used to establish a temporal
commitment with the client that invokes the execution of the task. This kind
of scheduler is very useful in scenarios where Service-Oriented Computing
is deployed and the execution time is used as a parameter for QoS. This
scheduler is part of an architecture that is based on the Distributed Goal-
Oriented Computing paradigm, which allows agents to express their own
goals and to reach them by means of service compositions. Moreover, the
scheduler is also able to prioritize those tasks which provide greater benefits
to the OS. In this work, the scheduler has been designed in several iterations
and tested by means of a set of experiments that compare the scheduler
algorithm with a representative set of scheduling algorithms.

Keywords: Guaranteed processor, Service-Oriented Computing, Scheduling

1. Introduction

Nowadays, service-oriented applications are a new way of developing flex-
ible and distributed solutions. In applications of this kind, the Quality of
Service (QoS) has become one of the highest priorities for service providers
and their clients. Due to the dynamic and unpredictable nature of the web,
providing an acceptable QoS is quite a challenging task. Service consumers
need guarantees that the services will be executed with a minimum level of
quality. For this reason, service providers must offer and fulfill this commit-
ment to quality.

Preprint submitted to Elsevier May 17, 2012

Service execution time is one of the most important QoS parameters
in web services. There are some systems, such as the RT-MOVICAB-IDS
system [Herrero et al. (2011)], where the execution of a service on time is
considered to be a critical parameter. Therefore, it is necessary to give a
valid response before a certain instant in time. Otherwise, the system may
become inefficient.

Time as a QoS parameter is not only important when executing a sin-
gle service but also when a set of services is executed as part of a service
composition. In this case, the problem resolution requires the collaboration
of several services and, therefore, both the execution time of each individual
service and the execution time of the service composition that fulfills the goal
must be taken into account.

There are several proposals that introduce the time parameter into web
services as a form of expressing temporal constraints. Some of these proposals
are shown in [Pan (2005)], [Hao and Zhi-jian (2006)], and [Martin-Diaz et al.
(2005)]. Moreover, there are other proposals such as [Naseri and Towhidi
(2007)], [Solanki et al. (2004)], and [Fernández-Olivares et al. (2007)] that use
the time parameter to guide the service composition. In all these proposals,
the time parameter is considered from the point of view of the descriptive
level, but at the execution level it provides no guarantee that these time
constraints will be fulfilled. Moreover, the service execution time is often not
known. This is because this time parameter may depend on many factors that
are not controlled by the service provider, such as the system workload where
the service is executed or the ending of other services that were previously
necessary to execute the service. In these cases, the system must be able
to diagnose how long it takes to complete each service. This is a very hard
and complex process to procure with current architectures, since they are
not focused on time predictability.

Therefore, it is very important to be able to determine the completion
time of a single service or a service composition taking into account how the
system workload is and, based on this, the system must be able to predict
when the service or the composition ends. With this information, the sys-
tem could become more efficient and could establish a commitment with the
service client indicating when it is going to fulfill the service goal. When the
system executes a service on time, it may gain a benefit offered by the ser-
vice client. Moreover, the more quickly the services are fulfilled, the greater
benefit the system gains. Thus, it would be desirable to have mechanisms
that help to fulfill all services on time with the highest possible benefit.

2

In previous works, we presented an operating system (OS) architecture
[Palanca et al. (2012)] that has the ability to control the service execution
and also the ability to build service compositions taking into account the
temporal constraints that the services have. This proposal increased the
abstraction level provided by the operating system and their services. This
allows us to offer an OS execution layer that is integrated into the network
and also to offer security and reliability mechanisms, which are not available
in lower levels of the OS architectures. Our OS architecture is based on
a new paradigm called Distributed Goal-Oriented Computing [Palanca et al.
(2011)]. This approach is based on Service-Oriented Computing concepts. Its
purpose is to find solutions to problems through composition and execution
of various services offered by different agents, taking the goal to be achieved
as a starting point. This Distributed Goal-Oriented Computing paradigm
suggests that agents are the components that provide services in a ubiquitous
environment where users express their goals. Thus, users can reach a solution
by finding a plan that achieves the selected goal with little user interaction.

The OS needs a scheduler to establish a proper commitment that guar-
antees that services end at a time agreed upon by both the client and the
provider. This module is an important part of the OS since it is responsible
for distributing the CPU time among all of the services in execution. The
scheduler distributes the CPU time by means of a scheduling algorithm. To
do this, the scheduling algorithm plans the order of the execution of the
services that were invoked by the distributed environment. There are many
schedulers used for general purpose operating systems. These approaches, as
discussed below, do not satisfy all the needs of the Distributed Goal-Oriented
Computing paradigm. Thus, in this paper, we propose new scheduling al-
gorithms that are not only able to schedule tasks from a distributed en-
vironment [Hsu et al. (2011)], but they are also able to analyze when the
service ends its execution and to plan the delivery of services with the in-
tention of maximizing the benefit obtained by the OS. In this paper, we also
compare the proposed scheduling algorithms with other classical scheduling
algorithms.

The paper is organized into the following sections: Section 2 describes the
state of the art for scheduling algorithms. Section 3 presents a new scheduling
algorithm based on planning-based scheduling. Section 4 presents a set of
experiments to compare and refine the different algorithms presented in this
paper. Finally, Section 5 presents our conclusions.

3

2. Scheduling algorithms

As started above, this paper presents a new scheduling algorithm that al-
lows the OS to make a scheduling plan that takes into account the prediction
of when a task is going to finish its execution and how much benefit (in quan-
titative terms) this execution will bring to the OS. This section explores a set
of representative schedulers that use different techniques to share the proces-
sor (fair algorithms, real-time algorithms, or non-preemptive algorithms). In
this section, we also explore a category of schedulers called Planning-based
scheduling which are closely related to the scheduler presented in this work.

General purpose Operating Systems schedulers usually use fair algorithms
that equally share the processor time among all of the tasks. The most repre-
sentative example is the Round Robin scheduling algorithm. This algorithm
divides the processor time into units called quantums and gives each task
the same number of quantums. When a task is running, it consumes its
quantums; when it runs out of time quantums, the task is expelled from the
processor in order to let another task with remaining quantums enter. This
algorithm shares the same amount of time with all the tasks, so the feeling
of interactivity is very high. However, this kind of scheduler algorithm does
not allow the time when a task ends to be predicted because it is not possible
to predict how many tasks the processor resources must be shared with.

There has been an interesting evolution of scheduling algorithms that try
to share the processor time fairly. There is an algorithm called the Completely
Fair Scheduler (CFS) by [Wong et al. (2008)]. This algorithm was designed
as a replacement of the O(1) algorithm in the Linux kernel. Instead of using
queues, this algorithm uses a complex structure called red-black trees. Red-
black trees have a time complexity of O(logn) for insert, search, and delete
operations. From the red black tree, CFS efficiently picks the process that
has used the least amount of time (this process is stored in the leftmost node
of the tree). Even through this is a very fair scheduling algorithm that boosts
multi-tasking performance, it is unable to predict when the tasks are going
to finish.

There exists a very simple algorithm called FCFS (First-Come First-
Served), which serves the tasks in order of arrival. This algorithm was very
common in batch systems and implemented a queue that held the tasks in
the order they came in. It is a non-preemptive algorithm, which means that
until the active task is not finished it will not be interrupted. Of course, with
this kind of algorithm, it is easy to make a prediction of the deadline because,

4

in the worst case, it will be its WCET1, since it is certain that the task will
not be interrupted. Its main drawback is that it is a non-preemptive algo-
rithm. In a world where multi-tasking and interactivity are not just features
but are requirements, this is not acceptable for distributed systems, which is
a focus.

However, predicting the deadline of a task is also a different problem than
those found in real-time problems. Real-time systems have to schedule tasks
that must be run before an established instant of time, which is also called
deadline. This deadline is mandatory in hard real-time systems, although
deadline fails are not critical in soft real-time systems. These real-time sys-
tems use specific schedulers that ensure that every accepted task will be run
before its deadline. For this reason, it is very important to have an accurately
calculated WCET.

The most simple way of scheduling real-time tasks is to use a cyclic exec-
utive. This executive is a way of scheduling tasks in a real-time system that
using cyclic tasks. These tasks have a period and a WCET, so the cyclic
executive just has to create a fixed execution plan provided by the system
designer. The cyclic executive can replace the whole OS since it only takes
an infinite loop to run the tasks with the order established by the designer.

Planning-based Scheduling is a kind of real-time dynamic scheduling
that gives assurances to arriving jobs by implementing admission controls.
These assurances are related to the ability of the system to meet the time
constraints (deadlines) of the incoming tasks.

Planning-based scheduling (PBS) usually involves making a plan to run
all the enqueued tasks, which implies assigning priorities to the tasks. When
dynamic priorities are used, the relative priorities of tasks can change as time
progresses and also when tasks are executed.

In general, PBS has to go through three steps: Feasibility analysis, Sched-
ule construction, and Dispatching. The feasibility analysis is done to check
the schedulability of a task (i.e., whether or not the time constraints of the
task can be satisfied). This feasibility test is usually done when the task
arrives to the system. These tests are more suited for periodic tasks since
they have a periodic activation and the resources they need can be easily cal-
culated and reserved. In planning-based approaches, this test is also applied

1Worst-Case Execution Time: the maximum length of time a task could take to execute
on a specific hardware platform.[Lv et al. (2009)]

5

to aperiodic tasks.
The schedule construction is the process of ordering the tasks to be ex-

ecuted. This order is stored for use in the dispatch step. This schedule
construction is usually done when dynamic priorities are assigned. Finally,
the dispatch step is in charge of deciding which tasks to execute next. This
dispatch process may be to follow the established plan, depending on whether
the system is preemptive or non-preemptive, the nature of the execution plat-
form, or if the schedule construction is done as part of the feasibility analysis.

There are two reference algorithms for Planning-based Scheduling: RED
and Spring. RED (Robust Earliest Deadline) [Buttazzo and Stankovic (1993)]
is a robust scheduling algorithm that deals with aperiodic tasks in overloaded
environments. Robust schedulers separate timing constraints and importance
by considering two different policies: one for task acceptance and one for task
rejection. Spring is the algorithm implemented in the Spring Kernel that has
a planning-based admission control algorithm that can also accommodate
resource requirements of tasks beyond CPU resources.

3. Deadline Prediction Scheduler

One of the most important values that defines the quality of a service
provider is the accuracy of the temporal commitment that has been estab-
lished. As stated above, the client agents that are requesting a service ex-
ecution will take into account different values that set the value of quality.
One of these values is time. Client agents can use the deadline of a service
to assess how good that service is. While every agent is free to use its own
selection filter, the most commonly used filter is to choose those services with
the lowest deadline. That is why service provider agents will try to offer the
lowest deadline, but always being careful to meet the temporal commitments.

In this section, we are going to present the Deadline Prediction Scheduler
(DPS). In order to make a clear presentation of the DPS, we will present
different iterations of the algorithm that include different improvements at
each refinement.

3.1. The problem of scheduling with deadline predictions
The WCET value provides the maximum time that a service requires

in order to be completely run using the system resources (mainly CPU re-
sources). However, in current operating systems, it is necessary to keep
multitasking and interactivity. This means allowing tasks to use the system

6

resources with the maximum fairness in order to show users high interactivity
and low waiting times in applications.

The problem presented in this work does not have real-time requirements.
Services do not require a deadline in order to be executed. This is why current
real-time schedulers are not suitable algorithms for this problem. Services
establish temporal commitments with their clients, assuming the obligation
of completing the service before the negotiated time. This commitment is
given to the best bidder, who has probably offered the lowest service time, so
it is important for the service provider to satisfy its commitments in order to
keep the confidence of its customers. This is why the service provider must
make a precise and correct prediction of when the service is going to finish,
which implies not only knowing the service WCET but also the workload of
the system in the present and throughout the execution of the service.

Making this kind of prediction is quite difficult because what the workload
of the system is going to be in the future is not known, since the arrival rate
of service requests is unknown in an open system such as this. Therefore,
the question we must answer is how you can ensure that a service will have
enough time in the processor to finish its execution when it is not known how
many services will be running at the same time.

In this work, we refer to the instant of time when the task will finish in
the worst-case as the Deadline of task τ (Dτ). This is different from the
WCET, which is the amount of time that the task will be running in the
CPU in the worst-case, instead of the instant of time. We also refer to the
instant of time when the task is activated and therefore is ready to run as ta.

3.2. Deadline Prediction Scheduler with Processor Booking (DPS)
In this section we present the first iteration of a scheduler with deadline

prediction using processor booking, called the Deadline Prediction Scheduler
(DPS).

The main basis of this algorithm comes from a gap between fair schedulers
and non-preemptive schedulers. In a system where any job or service can be
accepted at any time in which we also want to keep interactivity without
breaking our temporal commitments, we need to ensure that the minimum
resources needed to fulfill a commitment are preserved. We accomplish this
by means of processor booking.

In order to fulfill a temporal commitment, the scheduler needs to ensure
that the task will have enough time in the processor. The processor time is
a valuable resource and is directly related to the moment when a task will

7

finish its execution. Thus, if we make a booking of the processor resource
that could never be diminished when we establish a temporal commitment,
we can ensure that the temporal commitment will be fulfilled. This technique
is known as Guaranteed Processor [Jones et al. (1997), Leinbaugh (1980)].
However, Guaranteed Processor techniques are usually applied to hard real-
time systems and using pre-computed schedulability graphs or acceptance
tests.

Note that if we book 100% of the processor for a task, we get a FCFS
scheduler again with no interactivity or multi-tasking capabilities, which is
not desirable. The solution for this problem is to book a percentage of the
processor that is ensured during the life of the task. The percentage of
processor time is dynamically delivered in order of arrival. For example, the
first process is assigned 50% of the processor, the second one 25% and so
on. You can choose any kind of distribution to deliver the percentage of
the processor: the shown example uses a distribution of 100

2n
, where n is the

order of arrival that is used to assign the processor time in slots. Another
approach could be to always share the same amount of processor (i.e., 10%),
which would be more similar to fair schedulers like Round Robin or CFS.
The main difference with fair schedulers is that if we had established the
commitment of booking a percentage of processor for a task, this percentage
will never be lower, no matter how many tasks arrive later.

The granularity of the processor time is limited, so the scheduler can
apply any policy that it considers appropriate when there is no more place
for new tasks: to delay the moment when the task switches to the prepared
status or even to reject the admission of the task.

With this algorithm, the scheduler can provide a Deadline prediction (D)
based on equation (1), where Pi is the position of the task i based on its order
of arrival and WCET i is the worst-case execution time of the task i. This is
obviously a very pessimistic calculation since it does not take advantage of
the gain time that is not used when there are not enough tasks to overload
the processor.

D = 2Pi ∗WCET i (1)

In this work, the gain time is defined as the time that is obtained when a
task finishes its execution before its WCET. This time can be reused to give
extra time to the rest of the tasks. In this work, the slack processor time
that is not booked by any task and can be reused when all the tasks have

8

spent all their booked time is also part of the gain time.
The gain time is used to anticipate the execution time of those tasks

that have consumed all their booked execution time. For example, if there
is only one task running in the processor, it has reserved a slot of 50% of
the processor time and its deadline is estimated as 21 ∗ WCET i. However,
since the gain time is used for the only task running in the processor, its real
utilization of the CPU is 100%.

The scheduler can use the policy that it considers the most appropriate
to share the remaining processor time. This gain time policy could be a
random policy, a round robin policy, an earliest deadline first policy (EDF), or
whatever the designer chooses. This policy can also be changed dynamically
according to the workload or the needs of the OS.

This DPS algorithm provides a deadline prediction with the full assurance
of being correct, subject to compliance with the reserves based on the order of
arrival and the correct calculation of the WCET. However, this value is still
too pessimistic since it ignores the relationship between the running tasks
and the gain time extracted from the slack. Nevertheless, this algorithm
has a time complexity of O(1) for the append and retrieve functions. These
functions are used to insert a new task in the scheduling queue and to remove
a task from the scheduling queue. This time complexity is obtained because it
only needs to push or pop tasks from the slot queue without going through the
entire queue. The deadline prediction is also constant due to the simplicity
of the equation (1). Finally, the sched function, which selects the next task
to be executed, is also constant. This is because the hard work has been done
in the append function and the tasks are scheduled following the percentage
of processor.

3.3. DPS with Processor Booking using Dynamic Priority Promotion (DPS-
Dy)

Processor booking is a good approach for solving the Deadline Prediction
problem, but it has some drawbacks that must be resolved. It is not possible
to improve the deadline prediction by assuming how much gain time the
task is going to be able to use because we do not know the rate of arrival of
new tasks. This algorithm is based on ensuring that the booked processor
is available during the execution of the task, and it is also based on having
resources available for new incoming tasks whenever possible, i.e., when the
CPU utilization is not 100%. In that case, the task will have to wait until

9

the resource is released. In this case, tasks should wait until a priority slot
is released.

We define a priority slot as a CPU time percentage that can be booked.
This value indicates the amount of CPU time that a task will be able to run
in a temporal window. Thus, a 50% value will have a higher priority than a
25% one.

However, there is one improvement that can be taken into account in
order to make the deadline calculation less pessimistic. This improvement
is to calculate not only when a task with a higher priority slot starts, but
also to anticipate when this task is going to end. In this way, when a task
ends and there is not another task scheduled to grab that slot at the same
moment, you can try to promote a task that is in a lower priority slot to the
processor slot that has just been released.

With this technique, the scheduler assigns dynamic priority slots to every
task at each moment (depending on which slots are available) and just making
sure that there is never a high priority slot available when there are tasks in
lower priority slots running. This promotion of priorities helps the scheduler
to make more realistic and optimistic deadline predictions than those made
with just the equation (1).

This algorithm makes the CPU booking by representing the use of the
processor in a timeline. This timeline is divided into temporal windows
for performance reasons and stores a queue with the booked tasks at that
moment at each step. These tasks are ordered by priority slots, where the
position in the queue is what indicates their slot. As shown in Algorithm
1, appending a new task for scheduling is to go over the timeline from the
activation time ta until the WCET has run out. This algorithm does this job
by appending the new task to each priority queue of each temporal window
and decreasing the task WCET according to the priority of the assigned slot
and the window size. For example, given a task τ with a WCET = 20 and a
window size ω = 10, if we append τ in a window at position 1 (i.e., with the
highest priority) its booked processor time will be 50%. This means that τ
will be able to use half of that window time, so the algorithm decreases its
WCET by ω

2
. This process is repeated along the timeline until the WCET

has run out. The index of the window when the WCET is 0 is the deadline
of the task. To calculate the instant of time when the task finishes, we need
to multiply the window index by the window size since the window size is
constant.

To better understand the proposed algorithm, we present an example

10

Input : A task τ with a worst-case execution time WCETτ
Input : Initial temporal window ta to run task τ
Input : Window Size ω
Output: The Deadline Dτ for task τ

Window ← ta;0.1

if Window ≤ CurrentWindow then0.2

Window ← CurrentWindow +10.3

end0.4

while WCETτ > 0 do0.5

Dτ ← Window;0.6

P ← EnqueueTaskAtWindow(τ , Window);0.7

WCETτ ← WCETτ − ω
2P
;0.8

Window ← Window +1;0.9

end0.10

Algorithm 1: Deadline Prediction Scheduler: Append Function

trace where we append a new task to be scheduled in the system. The
append function is used when a new task arrives to the system and must
be prepared to be run (by being placed in a priority queue or whatever
the scheduling algorithm needs to do). In our case, the append function is
particularly important because it is the moment when the deadline prediction
is calculated. It is also important since this is the most complex function of
the scheduler in terms of time.

Suppose there are three tasks already scheduled in the OS called τ1, τ2,
and τ3. They are scheduled in the timeline as shown in Figure 1 with a
window size ω = 8. The initial scenario is defined as follows:

Task ta WCET D
τ1 1 16 4
τ2 2 14 6
τ3 6 10 8

In this scenario with three scheduled tasks, we append a new task to book
the necessary resources and to calculate its deadline. The new task (τ4) has
a WCETτ4 = 16 and its ta is 4. The append function trace for task τ4 is
what follows (Figure 2):

11

w1 w10w9w8w7w6w5w4w3w2

T1 T1 T1 T1

T2 T2 T2

T2 T2

T3

T3 T3

T1
starts

T2
starts

T3
starts

T2
ends

T1
ends

T3
ends

slot 50%

slot 25 %

slot 12,5%

windows

Figure 1: DPS-Dy Append Task Example: Initial Situation

1. First τ4 is enqueued at w4. Since there are two tasks at that window,
τ4 is appended in a priority slot of 3. With this slot and a window
size ω = 8, the WCET is decremented to WCETτ4 = WCETτ4 − ω

2P
=

16− 8
23

= 15.
2. At w5, the task τ4 is promoted to a slot of priority 2, so the remaining

WCET is now 15− 8
22

= 13.
3. At w6, the task τ4 is enqueued again in a slot with priority 3, so the

WCET is now 13− 8
23

= 12.
4. At w7 and w8, the task τ4 is enqueued with priority slot of 2. After

these two steps, the remaining WCET is 12− 8
22
− 8

22
= 8.

5. At w9, the task has obtained the highest priority slot. Its WCET is
now 8− 8

21
= 4.

6. Finally, at w10, the task again has a priority slot of 1, the WCET is
now 4− 8

21
= 0 and, since the remaining WCET has just reached 0, the

append function is finished and the deadline is Dτ4 = 10.

The improvement gained by the DPS scheduler using Dynamic Prior-
ity Promotion is remarkable with respect to the algorithm without priority
promotion where the deadline was calculated with equation (1). Note that
with the related equation the deadline would have been calculated taking
into account only the slot acquired at the moment ta (which was priority 3).
Therefore, the deadline would have been ta+2P ∗WCETτ4 = 4+23∗16 = 132,
which is clearly much more pessimistic than the value calculated with dy-
namic priority promotion.

With regard to the computational complexity: the append function has
a linear cost since it has no nested loops or complex operations at each

12

w1 w10w9w8w7w5w3w2

T1 T1 T1 T1

T2 T2 T2

T2 T2

T3

T3 T3slot 50%

slot 25 %

slot 12,5%

windows

T4

T4

T4

T4 T4

T4 T4

T4
starts

T4
ends

w6w4

Figure 2: DPS-Dy Append Task trace example

iteration. Thus, the append function for the Deadline Prediction Scheduler
is very fast.

Finally, the schedule function is run whenever the scheduler is invoked to
select and dispatch the new task that must be introduced in the processor.
This function aims to select one of the tasks that are booked for the current
active temporal window. The scheduler needs to go over the queue of the
active window and select a task that still has booked time to be consumed. If
all the tasks have consumed their booked time, the scheduler is in gain time
and can select a task using the method that it prefers, i.e. selecting a task
randomly or using techniques like SJF (Shortest Job First), EDF (Earliest
Deadline First), or RR (Round Robin). The computational complexity of
the Schedule function is O(n), where n is the number of tasks scheduled in
the current active window.

With this algorithm, we have presented a more accurate deadline predic-
tion, although we still can not predict how the gain time is going to be used.
This is because we do not know the arrival rate of the tasks. However, we
can still make another refinement of the algorithm to assign the percentage
of processor in a more intelligent way. The next iteration of the scheduler
will use a more informed assignment of the resources using the information
provided by the tasks.

3.4. DPS with Benefits-based Reasoning (BDPS)
Sharing the processor resource using the order of arrival as a criterion is

not always very fair or necessarily rational. Since there exists useful infor-
mation that can be retrieved from the client agents that are asking for a task
execution, the scheduler can use that information to make a better schedule
plan. We define a better schedule plan as a distribution of the resources

13

(CPU time slots) that maximizes the benefit that the operating system can
get from the execution of its clients tasks for the service providers. This ben-
efit is measured in quantitative terms and is the price that clients must pay
for the execution of the services that they are invoking, which is parametrized
depending on the time it took to run the services.

The order of arrival is not necessarily a good criterion for distributing the
CPU resource because there are some situations where some privileges should
prevail. An example of those privileges is the importance of the client, which
we call priority (Pr). When a client asks for an execution, it is not the same
if that client is the system administrator or a remote client that you don’t
trust very much. It is not just the hierarchy of the client that is relevant
but also the importance or urgency of the task. Priority-based scheduling
is widespread in preemptive schedulers that expel tasks that are running if
a higher priority task enters the system. However, in the scheduler that is
presented in this work, the priority is used to decide how much processor
time the client is able to book. For example, the scheduler may decide that a
low priority task can book a slot of, at most, 25% of processor time. Critical
tasks such as those that come from the operating system itself or from the
system administrator may book the biggest processor slot. Even so, tasks
will consume the gain time left over after all the booked slots have run out.

This reasoning method can still be improved further by introducing a
benefit model in the system. This scheduler is designed for a service-based
OS where several agents provide services and other agents consume those
services. It is very reasonable to suppose that a service provider will not offer
their services for free. The logical thing is to ask for some compensation, be it
financial or other. In this work, we refer to these compensations as benefits.

In this scenario, the scheduler may try to maximize its benefits by prior-
itizing those tasks that offer a higher gratification. It is even possible for the
benefit to degrade over time and the scheduler may use a reasoning process
to decide not only which process to prioritize but also at what point the
reported benefits are no longer interesting.

The benefit that a service execution will provide to the OS can be modeled
with a decreasing function; for example, a linear decreasing function f(x) =
b− ax or an exponential function f(x) = b ∗ e−ax, where x is a variable that
indicates the instant of time and a and b are constant parameters provided by
the client that represent the gradient and the point of intersection between
the graph of the function and the y-axis. In order to have a benefit that is
greater than 0, the b constant must be also positive. The client is able to

14

specify any other function to calculate the benefit (e.g. a constant, a step
function, a WCET-based, etc).

Thus, the scheduler calculates the percentage of processor time (Ψ) that
a task deserves using equation (2), where Pr is the assigned priority (a lower
Pr value indicates a higher priority), Prmax is the greatest value of priority,
and bmax is the greatest value of benefit established by the OS itself.

Ψ =
Prmax − Pr
Prmax

∗ b

bmax
∗ (1− a) (2)

The Ψ value does not take into account what percentage of free processor
time is available at the current temporal window (ϕ), so Ψ is adjusted as
described in equation (3). Finally, the append function for the Deadline
Prediction Scheduler with Benefits-based Reasoning is shown in Algorithm
2.

Ψ = min(ϕ,
Prmax − Pr
Prmax

∗ b

bmax
∗ (1− a)) (3)

Next, we present a trace example to show how several tasks are appended
to this scheduler and how their processor percentage and deadline are calcu-
lated. We use equation (3) to calculate the percentage of CPU assigned to
each task and an exponential function to calculate benefits (B(x) = b∗e−ax).
In this example, we assume that Prmax = 20 and bmax = 1000. The initial
scenario is defined as follows:

Task ta WCET Pr a b

τ1 1 16 8 0.001 900
τ2 2 14 1 0.0 300
τ3 4 10 3 0.005 800

1. First, τ1 enters the system. Applying equation (3), we calculate Ψ =
20−8
20
∗ 900

1000
∗ (1− 0.001) = 0.53946. Since the window size is ω = 8, the

assigned slot for this task is bω ∗Ψc = 4.
2. Thus, task τ1 has 4 quantums guaranteed in each window, so its dead-

line is the end of the fourth window Dτ1 = 5. If the task finishes at
that moment (x = (Dτ1 − 1) ∗ ω = 32), its benefit will be B(32) =
900e−0.001∗32 = 871.65.

3. At ω2, task τ2 gets activated. Ψ is min(ϕ, 20−1
20
∗ 300

1000
∗ (1 − 0.0)) =

min(1 − 0.53946, 0.285) = 0.285. This gives slot of 2 to task τ2, while
the new ϕ is 1− 0.53946− 0.285 = 0.17554.

15

Input : A task τ with a worst-case execution time WCETτ
Input : Initial temporal window ta to run task τ
Input : Window Size ω
Input : Benefit constants a and b
Input : Maximum benefit bmax
Input : Maximum priority Prmax
Output: The Deadline Dτ for task τ

Window ← ta;1.1

if Window ≤ CurrentWindow then1.2

Window ← CurrentWindow +11.3

end1.4

while WCETτ > 0 do1.5

Dτ ← Window;1.6

Pr ← getPriority(τ);1.7

ϕ ← getFreeSpace(Window);1.8

Ψ ← min(ϕ, Prmax−Pr
Prmax

∗ b
bmax
∗ (1− a)) ;1.9

if Ψ > 0 then1.10

EnqueueTaskAtWindow(τ , Ψ, Window);1.11

WCETτ ← WCETτ −bΨωc;1.12

end1.13

Window ← Window +1;1.14

end1.15

Algorithm 2: DPS with Benefits-based Reasoning: Append Func-
tion

4. With 2 quantums guaranteed at each window and a WCET = 14, τ2
will need at most 7 windows to finish its work. Thus, its deadline is
Dτ2 = 9 as shown in Figure 3.

5. Finally, τ3 is activated at ω4. The percentage of processor assigned is
Ψ = 20−3

20
∗ 800
1000
∗(1−0.005) = 0.6766. However, since the value ϕ > Ψ at

ω4, the percentage of processor is Ψ = ϕ = 0.17554 at the first window.
At ω5, the value ϕ = 1 − 0.285 = 0.715, so Ψ = min(0.715, 0.6766) =
0.6766.

6. The window ω4 is now fully booked, so the quantums assigned to τ3
are all the remaining quantums, which are 2. From ω5 until the end of
its WCET , the guaranteed processor is 0.6766, which is translated to

16

5 quantums. This means that the deadline of τ3 is Dτ3 = 7.

w6w4w1 w10w9w8w7w5w3w2

T1
starts

T1
ends

T1
(0.53)

T1
(0.53)

T1
(0.53)

T1
(0.53)

T2
(0.28)

T2
(0.28)

T2
(0.28)

T2
starts

T2
ends

T3
starts

T3
ends

T3
(0.67)

T3
(0.67)

T3
(0.17)

T2
(0.28)

T2
(0.28)

T2
(0.28)

T2
(0.28)

Figure 3: BDPS Append Task trace example

As this section shows, the BDPS scheduler is an algorithm that tries to
maximize the benefit to be drawn from the execution of tasks, while at the
sometime keeping the constraints that are desirable (i.e. the possibility of
sharing the CPU fairly among all tasks and calculating an accurate deadline
prediction to establish a temporal commitment with the client).

4. Experiments and Results

In order to evaluate the new scheduler presented in this work, a discrete
simulator has been developed to test all the features and advantages provided
by an Operating System that implements the benefits-based scheduler with
deadline prediction. The operating system simulator allows us to test the
functionality proposed by this work but avoids the complexity of developing
the full operating system low-level abstractions. This simulator will help us
to evaluate how the scheduler behaves in a distributed service-based environ-
ment where time and quality parameters (measured as benefits) are a key
factor.

In this section, we present how the simulator works and the different tests
that have been done by analyzing the different approaches and how they
contribute to the operating system behavior. We will also compare these
results with a representative set of some of the most well-known scheduling
techniques.

17

4.1. The simulator
This operating system simulator software represents a distributed envi-

ronment according to the Distributed Goal-Oriented Computing paradigm
followed by the OS [Palanca et al. (2012)]. Inside this environment, there are
several goal-oriented operating system nodes represented that offer services to
the rest of the network. Each OS node also implements the different versions
of the scheduler presented in this work. To discover and use these services,
the OS uses a common publish-subscribe protocol. Some of these protocols
are ZeroConf [Guttman (2001)] and XMPP PubSub [Millard et al. (1999)].
The XMPP PubSub protocol is used by this simulator to allow agents to be
subscribed to a service directory. Thus, agents are notified when a service
that matches their preferences is registered or unregistered.

Communications between nodes of the network are a key factor in allow-
ing temporal commitments when invoking services. The best case for this
specific-purpose operating system is a time-bounded network where commu-
nication lapses are predictable. For this reason, the communication module
includes a message-passing system that simulates a time-bounded network,
which allows end-to-end operations to be predicted. Providing guaranteed
latency times in communications to establish message-based protocols in dis-
tributed environments was developed in works by [Tindell et al. (1995)] and
[Schmidt and Kuhns (2000)].

Although clock synchronization is not a hard restriction for this simu-
lated OS, it is a desirable option to simplify the management of temporal
commitments between nodes. The simulator assumes a temporal-bounded
environment which requires clock synchronization and predictable communi-
cations with respect to time. Several proposals are currently using a global
time service which synchronizes the clock in every OS in the network [Kopetz
and Ochsenreiter (1987)]. With these proposals, when a new operating sys-
tem is added to the network, it automatically gets synchronized with the
rest of the network nodes. This global time service is very useful for es-
tablishing proper temporal commitments and uses known solutions for clock
synchronization in distributed real-time systems.

However, an environment with time-bounded communications is not al-
ways possible. In a real scenario where the network communication cannot
be temporal-bounded (e.g. the Internet), time predictions will be less reli-
able. However, in the OS, prediction failures are not critical. These failures
have the side effect of diminishing the trust that the client will have in the
OS in the future.

18

This OS simulator allows us to set some parameters that change the con-
ditions of the OS environment or the scheduler configuration. We can change
the schedule policy, the number of concurrent tasks, the size of temporal win-
dows and quantum bursts, etc.

The simulator has a scripting system that loads a configuration for the
desired environment. The script can define the initial configuration of the
environment (number of nodes, agents, distribution of the services by agent,
etc) by setting up the scenario that is desired for the simulation. It can
also schedule different events that will be processed during the simulation in
order to change the environment at runtime. The scripting system is also
able to generate a random task load for the OS. This is useful when we want
to evaluate the same scenario with as many task loads as possible.

All the experiments were conducted using the same methodology and with
at least 1000 repetitions. We found that the standard deviation converges
after 1000 repetitions. The t-student test of significance was applied to the
results of the experiments. This test aims to prove that the differences be-
tween the approaches applied in the experiments are statistically significant.
The probability of obtaining equal results for different approaches (which is
our null hypothesis) is very low (it was always below 0.05).

All the experiments were run in the same scenario. This scenario was
configured as follows:

• Two OS nodes: one called ClientHost, which hosts a ClientAgent, and
one called ProviderHost, which hosts a ProviderAgent.

• ProviderAgent is an agent that offers up to 500 different atomic services.
Since services are atomic services, each one will be represented by the
scheduler as a task.

• ClientAgent is an agent that invokes each one of the registered services.
The system load is activated at the beginning of the experiment. This
means that the complete set of services is activated at the beginning of
the experiment.

Some simulator parameters were changed during the experiments, de-
pending on the nature of the experiment. However, they had default values
which were used when not otherwise specified:

• The WCET of each service was assigned following a Gaussian distribu-
tion between 1 and 200 time units.

19

• The default temporal window size was set to 256.

• The default size of the quantum burst was set to 64.

• The benefit function was an exponential function (f(x) = b ∗ e−ax),
where the a and b parameters were assigned following a Gaussian dis-
tribution. It was mandatory for the a parameter to be in the range
[0− 1]. The b parameter was in the range [1− 500000], which was high
enough for the purposes of these experiments. The exponential func-
tion is used for purposes of clarity and simplicity. The selected benefit
function defines the curve which makes fall the benefit value. Since the
a and b parameters also affect the benefit fall, we have used the same
function for all nodes in order to keep things simple in the analysis
of the experiment. In this way, any other function could be used in
the experiment. This would change the global values of benefit but it
would not alter the conclusions obtained in the experiments, because
the function does not modify the behavior of the scheduler.

The set of tests performed in this work are presented below. They were
divided into four test suites. The first experiment analyzed the three re-
finements of the scheduler to test how accurate their deadline prediction
was. The second experiment focused on the benefits feature, comparing the
three schedulers with some well-known schedulers. In the third test suite,
we present an experiment that analyzed some relevant scheduler metrics like
utilization, throughput, and measurements of time, comparing them with
other schedulers. Finally, the last experiment focused on the BDPS algo-
rithm in an attempt to find the parameters that improve the behavior of the
scheduler.

4.2. Experiment 1: Deadline Prediction Accuracy
This first experiment was designed to compare the three refinements of

the Deadline Prediction Scheduler. The main difference between them is
how accurately they predict the instant of time when a task is going to
finish, which we call its deadline. Each one of the refinements incrementally
includes all the features of its predecessor. This means that DPS-Dy includes
Resource Booking and adds the Dynamic Priority Promotion feature, while
BDPS includes both Resource Booking and Dynamic Priority Promotion and
adds the Benefits-Based reasoning.

20

The three approaches of the scheduler (DPS, DPS-Dy and BDPS) were
compared in this experiment in order to prove that the accuracy of the dead-
line prediction improves with Dynamic Priority Promotion.

This experiment ran the simulation with different numbers of services
(from 10 to 500 in steps of 10) and compared the difference between the
real execution time and the deadline that was predicted. The results are
shown in Figure 4. This graph shows how low the accuracy of the DPS
algorithm is since it situates the deadline in the worst case, without taking
into account the possible interactions between tasks. However, the DPS-Dy
and BDPS algorithms made a better deadline prediction. This is because
they precisely calculated when each task was going to be finished by taking
into account the Dynamic Priority Promotion mechanism. DPS-Dy made
the promotion by looking at the order of arrival of the tasks, while BDPS
used the guaranteed percentage of CPU based on the supposed benefits. The
slight differences between the prediction and the real execution time are due
to the gain time bursts. When all the booked CPU was consumed and the
temporal window had not yet finished, the scheduler entered in gain time
mode, where the execution of active tasks was advanced using a different
policy. In the experiments of this work, we used a gain time policy that we
have called Highest Benefit First (HBF). This policy selects the task with the
highest benefit in order to obtain the CPU during the next quantum burst.

The worst case where the DPS algorithm calculates the deadline is when
all the CPU time is full and it never enters in gain time. This means that
all tasks get activated at the same time and they also have the same WCET.
But this worst case is a very rare situation. What is usual is that a task that
finishes its execution leaves the booked CPU it had and then other tasks are
able to use it. The DPS-Dy and BDPS algorithms can make a more accurate
deadline prediction since they use the Dynamic Priority Promotion technique
presented in this work.

The results of this experiment show us that the approach of the DPS
algorithm is a very pessimistic approach since it gives us a very high and un-
real deadline prediction, especially when the number of tasks grows. On the
other hand, DPS-Dy and BDPS have a very similar and acceptable prediction
since it is very close to the real execution time. This experiment proves that
the Dynamic Priority Promotion approach improves the deadline calculation
accuracy.

We have to take into account that we do not know the arrival rate of
the tasks, which makes it difficult to create an off-line schedule plan without

21

Figure 4: Deadline Precision Accuracy

breaking our commitments; however, the CPU booking technique solves this
problem on-line. Moreover, the advantage of this scheduling algorithm is
that, even if we have lots of gain time due to a low task arrival rate, the
scheduler will still be able to reach a better execution time. In any case, the
real execution time of the task will always be below the deadline prediction.

4.3. Experiment 2: Benefits
This experiment was designed to test how a benefit-oriented algorithm

helps the server to reach the highest rates of benefits. It aims to compare the
behavior of the three schedulers presented in this work (DPS, DPS-Dy, and
BDPS) with a representative set of well-known operating system schedulers.

We briefly present these scheduling algorithms:

FCFS First-Come First Served algorithm [Silberschatz et al. (1998)] is a non-
preemptive scheduler that gives the CPU to the tasks in order of arrival.

22

When a task gets the CPU, it keeps the processor busy until it finishes
its execution.

RR Round Robin [Silberschatz et al. (1998)] is an algorithm made for shar-
ing the CPU with the same percentage of time. Round Robin splits
the time in quantums and gives the CPU cyclically to each task during
the duration of a quantum burst.

CFS The Completely Fair Scheduler [Wong et al. (2008)] is an algorithm
that tries to make the most fair use of the CPU. It works by giving
the CPU to the task that has used the least amount of time. This way
it maximizes the interactive performance, while keeping a high CPU
utilization.

SRTF Shortest Remaining Time First [Silberschatz et al. (1998)] is an evo-
lution of the well-known SJF algorithm (Shortest Job First). This
scheduler selects the task with the smallest execution time to execute
next. SJF is a non-preemptive scheduler, while SRTF is the preemptive
variant that takes into account the remaining execution time instead of
the full execution time. SRTF makes the decision of assigning the CPU
when a task arrives or completes. SJF and SRTF achieve better per-
formance than FCFS. However, unlike FCFS, there is the potential for
starvation in these schedulers. Starvation occurs when a large process
never gets run because shorter tasks keep entering the queue.

We also compare the schedulers with an algorithm developed with the
single purpose of optimizing the benefit. We have called this algorithm the
Highest Benefit First (HBF) scheduler. HBF is an algorithm that selects
the task with the highest benefit for execution. This is a non-preemptive
scheduler which was originally designed for the gain time stage of the BDPS
algorithm instead of using approaches unrelated to the benefit like FCFS, ran-
dom. etc. However, for experimental purposes, we developed a full scheduler
using HBF in order to compare it with the rest of the schedulers.

The experiment under consideration consisted of a set of tasks executed by
all these algorithms. The system workload was the same for every algorithm,
so the only change was the order in which tasks were executed (depending
on each algorithm’s policy). At the end of the experiment, it calculated how
much benefit the provider agent acquired at the server OS.

23

In this experiment, each task used an exponential benefit function (f(x) =
b ∗ e−ax), where the a and b parameters were assigned following a Gaussian
distribution. The a parameter was always in the range [0 − 1]. For the
b parameter, we selected a smaller range ([1 − 500]) in order to make the
results more manageable. Every time a task leaves the CPU, it gets a benefit
following the f(x) function.

Figure 5: Benefit experiment results for each tested algorithm

Figure 5 shows the results of the experiment. This graph shows that the
algorithm that reached the highest benefit rate was the HBF scheduler. This
makes sense since this algorithm was optimized to always run the task that
gave the most benefits in the short-term. Since each task provides a part of
the benefit each time it reaches the CPU, the Round Robin scheduler (which
shares the CPU in equal amounts of time between each task) also reaches a
high quota of benefit.

24

The Benefits-based Deadline Prediction Scheduler (BDPS) meets all the
desired conditions presented in this work. BDPS shares the CPU time us-
ing the benefit function of the tasks and uses temporal windows where the
guaranteed processor is assigned in quantum bursts. Thus, it reaches high
rates of benefits without starvation or interactive performance problems and
it is also able to calculate an accurate deadline prediction. This allows the
agents to establish proper temporal commitments with their clients. The
SRTF scheduler has one of the highest rates of executed tasks per unit time.
This makes this algorithm also reach a good benefit value, which is close to
the RR rates.

The FCFS, DPS and DPS-Dy algorithms are similar in that they do not
care about benefits when scheduling nor do they share the CPU time between
tasks fairly. These scheduling algorithms share the CPU using the order of
arrival as priority, which results in very low benefit values.

In this experiment, the BDPS reached very good values of benefit. How-
ever, there was another scheduler (the HBF one) that reached even better
results when we only measured benefits. However, there were other metrics
that must be taken into account, like response time, utilization, or the dead-
line prediction. In later experiments, this metric (the deadline prediction)
invalidated the HBF option, because it must necessarily accept every task
that enters the system and, therefore, share the CPU time with that new
task.

4.4. Experiment 3: Scheduler Metrics
In this experiment we present some common scheduler metrics [Tanen-

baum (2008)] that allow us to compare the algorithms presented in this work
with some of the reference algorithms in terms of performance, utilization,
etc. We selected five metrics to compare the same algorithms from experi-
ment 2.

The metrics are the following:

Utilization This metric measures how busy the CPU is. The definition that
we used in this work for utilization is presented in (equation 4), where
nQ is the total amount of used quantums, nCS is the number of context
switches, and cCS is the cost of a context switch. A context switch
occurs every time the OS suspends the execution of a task to make way
for the execution of another task. Suspending a task involves storing
its state (registers, program counter, etc), which is computationally

25

intensive. That is the reason why the OS designs aim to optimize the
use and cost of context switches.

U =
nQ

nQ+ nCS ∗ cCS
(4)

Throughput This metric measures the number of tasks (nT) that complete
their execution per time unit (equation 5).

T =
nT

nQ+ nCS ∗ cCS
(5)

Turnaround Time This is the amount of time needed to execute a partic-
ular task. This measures the time since a task was activated until it
finishes its execution. This value is usually calculated as the average of
all the turnaround times of every task.

Waiting Time This metric measures the time that a task has been waiting
in the ready queue. It is always a lower value than the turnaround time
since it includes the waiting time and the execution time.

Response Time This is the amount of time that a task takes since it is
activated until the first execution is produced. In this work, we measure
this value as the instant of time when a task first gets the CPU.

Figure 6: Utilization and Throughput

26

Figure 6 presents the results of the utilization and throughput metrics for
each one of the algorithms. It can be observed how the vast majority of the
algorithms keep a high rate of utilization since they are completely dependent
on the number of context switches that are performed. The BDPS algorithm
is the algorithm that performed the most context switches. This occurred
because the size of the temporal window that we adopted was four times the
size of a quantum burst, which produced many potential context switches
inside each window because BDPS does not always use the full quantum burst
size to change the running task. The booked CPU for a task inside a window
may be smaller than a quantum burst (depending on the benefit it provides
and its priority), so, on average, there are more context switches than using
other fair algorithms like RR or CFS. However, the CPU Utilization of the
BDPS algorithm is still over the 90%, which is a very acceptable rate. The
algorithms with the higher CPU Utilization rate are the non-preemptive ones
because they minimize the number of context switches. The Throughput
metric has a very close relationship with the Utilization metric. Thus, the
results are very similar to the CPU Utilization ones.

Figure 7 shows the Average Turnaround Time and the Average Waiting
Time. We can confirm that the SRTF scheduler was the one that provided
the best rates of turnaround time (and, therefore, waiting times) because it
selects every task that is closer to its end. However, all the fair algorithms
(RR, CFS, DPS, DPS-Dy and BDPS) that share the CPU more equitably
have longer turnaround times and longer stays in the ready queue. The other
non-preemptive scheduler (FCFS) and the HBF scheduler have intermediate
values for the turnaround time metric.

Figure 8 shows the Average Response Time for each of the studied al-
gorithms. The Response Time is an interesting metric that shows how fast
the user may receive an interaction from the service. That is why we mea-
sure how much time a task takes to first get the CPU since the task has
been activated. The group of the fair algorithms traditionally have a good
Response Time rate because they give the same opportunities to each task.
The opposite occurs with algorithms with a high starvation risk (like FCFS
or HBF) since a task may be blocked for long time periods if higher priority
tasks are persistently entering the system.

The BDPS has a special position in this metric since it gets a very good
Response Time rate. This is because it uses temporal windows and, inside
each temporal window, it splits the time into bursts with a size that depends
on the benefit parameters. This is why every task has a chance, even a small

27

Figure 7: Average Turnaround and Waiting Time

one, to get the CPU at an early stage. Note that the DPS and DPS-Dy do
not have Response Time rates that are as good as the BDPS one. This is
because the DPS and DPS-Dy schedulers book the CPU always following
the same method (the half of the remaining window time). This has a worse
granularity and supports fewer tasks per window, which delays the entry of
the last task to arrive.

Finally, Table 1 presents a qualitative comparison of all the algorithms
using a normal distribution of their error differences. The table uses the
following legend: a indicates that the algorithm has a good assessment
in the metric; a # indicates that the algorithm has a bad assessment in the
metric; a H# indicates that the algorithm is in the middle of the metric, which
means that this scheduler is not distinguished by the metric; a 4 indicates
that the metric is not applicable for this algorithm, which invalidates the
scheduler for the purposes of the case of study of this work.

The summary table shows that there is no algorithm that gets the max-
imum score in all the metrics. The SRTF scheduler obtains one of the best
ratings inasmuch as it presents very good utilization and turnaround values,
while it still presents acceptable values for benefit and response time. How-
ever, the impossibility of calculating a deadline prediction does also invalidate
this scheduling algorithm for the purposes of our work. The non-preemptive
approach (SJF) would simplify the action of calculating this prediction, but
nowadays a non-preemptive scheduler has the starvation and interactive per-
formance counterparts [Tanenbaum (2008)]. In addition to the algorithms

28

Figure 8: Average Response Time

presented in this work, the only algorithm that is capable of performing
deadline predictions is the FCFS scheduler. Since it is a non-preemptive
scheduler, as long as the WCET value is well calculated, it would be easy to
know when a task is going to finish its execution. Nevertheless, the FCFS
algorithm presents very bad results for the benefit and response time metrics.

The results presented in the experiments show us that the BDPS algo-
rithm has good results for almost all the metrics, providing acceptable benefit
results, turnaround times, and really good response times, and very accurate
deadline predictions. This makes the BDPS a good choice for the operating
system architecture presented in this work [Palanca et al. (2011, 2012)].

4.5. Experiment 4: Tuning the BDPS scheduler
Since the BDPS has been selected as the most appropriate scheduling

algorithm for the OS architecture based on the Distributed Goal-Oriented

29

Benefit Utilization Turnaround ResponseTime Deadline Pred.
DPS # H# H# H# #
DPS-Dy # # H# H#
BDPS H# # H#
HBF H# # 4
FCFS # H# #
RR H# H# # H# 4
CFS # H# # H# 4
SRTF H# H# 4

Table 1: Comparison Table

Computing paradigm, we now focus on this scheduler. The purpose of this
experiment was to tune the algorithm by paying attention to the different
parameters that could modify the behavior of the scheduler. We selected
two parameters that could be modified in order to change how the scheduler
behaved thereby changing the results of the metrics that tell us how good
the algorithm was. The two parameters that changed were the size of the
temporal windows and the size of the quantum bursts.

We designed an experiment where we ran 500 tasks using different sizes for
the temporal windows (from 64 to 2048). The maximum size of the quantum
burst was set again to a quarter of the window size. The scenario for each test
was replicated exactly, and we only changed the size of the temporal window.
Figure 9 shows how the utilization and throughput metrics increased when
we increased the size of the window. This is because higher values of window
sizes generate fewer context switches, which leaves more time to run tasks.

Figure 10 presents the results for the Average Turnaround Times and
Average Waiting Times of the same experiments. These graphs show how
the average times had their lowest value for intermediate values of temporal
window sizes.

It can be observed that the bigger the window is, the better the turnaround
times it gets. This is because a bigger window allows the scheduler to book
larger CPU time slots, which makes the algorithm like a non-preemptive
scheduler. This behavior is compensated by using quantum bursts like fair
algorithms (RR, CFS), which ensures that the scheduler shares the CPU
time fairly and avoids starvation. However, increasing the size of the quan-
tum burst produces the same situation as with big temporal windows.

30

Figure 9: Window Size: Utilization and Throughput

Figure 10: Window Size: Turnaround and Waiting Times

It is important to note that these values are directly proportional to the
size of the quantum bursts. This means that with big temporal windows and
small quantum bursts, there is a high number of context switches, what will
decrease our utilization metric. On the other hand, lower response times are
obtained. To compare this, we performed an experiment where we kept the
size of the quantum burst constant in a small size. Figure 11 compares the
Response Time for different windows with the quantum burst proportional
to the window size (the value was a quarter of the window size value (a) with
a constant quantum burst value, which was set to 32 (b)).

31

(a) (b)

Figure 11: Window Size: Response Times varying the quantum burst size

As expected, these results show that higher values of window size and
lower values of quantum burst size provided the best response times for the
BDPS algorithm. However, there are some drawbacks to take into account
if these values are used. The smaller the quantum burst size is, the smaller
the algorithm utilization will be. And, what is most important, since the
deadline prediction is always adjusted to the end of a window. This is because
we predict that a task is going to finish before the end of a window, but we
do not know the exact instant of time inside that window, higher values
of temporal window sizes will have a worse deadline prediction accuracy
(Figure 12).

In summary, in these test suites, we have experimented with how the size
of the temporal window and the size of the quantum bursts directly affect the
behavior of the BDPS algorithm. A good proportion between the two pa-
rameters might decrease the response time significantly. However, depending
on which metric you are interested in boosting, the OS can select different
values for these parameters to tune the scheduler. High values of window size
provide high utilizations and throughput, but they deteriorate the deadline
prediction and the turnaround and waiting times. This experiment showed
that with a ratio of 1 to 4 between the window size and the quantum burst,
intermediate values of window size (around 512) return acceptable average
results for these metrics. This is the tuning that we have selected for the
scheduler. However, the OS is able to change these parameters depending on

32

Figure 12: Deadline Prediction Accuracy for different window sizes

the environment (average WCET values, average arriving rate, etc) or the
metrics it wants to boost.

5. Conclusions

This work has presented a scheduling algorithm that can be used to pre-
dict the completion time of a task in an Operating System that implements
the Distributed Goal-Oriented Computing paradigm. This scheduler is use-
ful for prioritizing tasks with functions that provide high benefits and to
establish temporal commitments with the clients that invoke those tasks.

Guaranteeing the completion time of a running task is a hard task when
performing this guarantee on-line and taking into account parameters pro-
vided by the task (i.e. the benefit that is obtained by running the task). The
BDPS algorithm is able to create a scheduling plan that predicts when the

33

tasks are going to be completed. This is done by using guaranteed processor
techniques. BDPS books the CPU resource according to the priority of the
client and the benefit function.

In summary, the experiments have demonstrated that the BDPS sched-
uler properly fits into a Distributed Goal-Oriented environment. It is also
capable of calculating accurate deadline predictions, which allows the sched-
uler to establish temporal commitments with its clients. BDPS has also
demonstrated a really good response time, which is a signal of how fairly
the CPU is shared. The algorithm is also parameterizable (both the window
size and the quantum size), which opens up the possibility of dynamically
adapting these parameters according to the workload. One of the biggest
advantages of BDPS is that it creates scheduling plans using the benefit pa-
rameter, which allows the OS to sort the execution of tasks, maximizing the
potential benefits to be achieved. The rest of the analyzed metrics were quite
similar to the other well-known schedulers.

Acknowledgments

This work is supported by the TIN2009-13839-C03-01 project of the
Spanish government, PROMETEO/2008/051 project, FEDER funds and
CONSOLIDER-INGENIO 2010 under grant CSD2007-00022.

References

Buttazzo, G., Stankovic, J., 1993. Red: Robust earliest deadline scheduling.
In: Proc. International Workshop on Responsive Computing Systems. pp.
100–111.

Fernández-Olivares, J., Garzón, T., Castillo, L., García-Pérez, Ó., Palao, F.,
2007. A Middle-Ware for the Automated Composition and Invocation of
Semantic Web Services Based on Temporal HTN Planning Techniques.
Current Topics in Artificial Intelligence. Springer, 70–79.

Guttman, E., 2001. Autoconfiguration for IP networking: enabling local com-
munication. Internet Computing, IEEE 5 (3), 81–86.

Hao, J., Zhi-jian, S., 2006. The tcpn-based verification of temporal consis-
tency in web service process. In: ICEBE ’06: Proceedings of the IEEE
International Conference on e-Business Engineering. IEEE Computer So-
ciety, pp. 302–306.

34

Herrero, A., Navarro, M., Corchado, E., Julián, V., 2011. RT-MOVICAB-
IDS: Addressing real-time intrusion detection. Future Generation Com-
puter Systems (http://dx.doi.org/10.1016/j.future.2010.12.017).

Hsu, C.-C., Huang, K.-C., Wang, F.-J., 2011. Online scheduling of workflow
applications in grid environments. Future Generation Computer Systems
27 (6), 860–870.

Jones, M., Roşu, D., Roşu, M., 1997. CPU reservations and time con-
straints: Efficient, predictable scheduling of independent activities. In:
ACM SIGOPS Operating Systems Review. Vol. 31. ACM, pp. 198–211.

Kopetz, H., Ochsenreiter, W., Aug. 1987. Clock Synchronization in Dis-
tributed Real-Time Systems. IEEE Transactions on Computers C-36 (8),
933–940.

Leinbaugh, D., 1980. Guaranteed response times in a hard-real-time environ-
ment. IEEE Transactions on Software Engineering 1, 85–91.

Lv, M., Guan, N., Zhang, Y., Deng, Q., Yu, G., Zhang, J., 2009. A Survey of
WCET Analysis of Real-Time Operating Systems. In: Embedded Software
and Systems, 2009. ICESS ’09. International Conference on. pp. 65–72.

Martin-Diaz, O., Cortes, A. R., Duran, A., Müller, C., 2005. An Approach to
Temporal-Aware Procurement of Web Services. In: ICSOC. pp. 170–184.

Millard, P., Saint-Andre, P., Meijer, R., 1999. XMPP Publish-Subscribe Ex-
tension. Tech. Rep. XEP-0060, XMPP Standards Foundation.
URL http://xmpp.org/extensions/xep-0060.html

Naseri, M., Towhidi, A., 2007. QoS-Aware Automatic Composition of Web
Services Using AI Planners. In: Second International Conference on Inter-
net and Web Applications and Services, 2007. ICIW’07. IEEE, p. 29.

Palanca, J., Julián, V., García-Fornes, A., 2011. A Goal-Oriented Execution
Module Based on Agents. In: 44th Hawaii International Conference on
System Sciences (HICSS 2011). pp. 1–10.

Palanca, J., Navarro, M., Julian, V., García-Fornes, A., 2012. Dis-
tributed Goal-oriented Computing. Journal of Systems and Software
(http://dx.doi.org/10.1016/j.jss.2012.01.045).

35

Pan, F., 2005. Temporal aggregates for web services on the semantic web.
In: IEEE International Conference on Web Services, 2005. ICWS 2005.
pp. 831–832.

Schmidt, D., Kuhns, F., 2000. An overview of the real-time CORBA specifi-
cation. Computer 33 (6), 56–63.

Silberschatz, A., Galvin, P., Gagne, G., Silberschatz, A., 1998. Operating
system concepts. Vol. 4. Addison-Wesley.

Solanki, M., Cau, A., Zedan, H., 2004. Augmenting semantic web service
description with compositional specification. In: Proceedings of the 13th
international conference on World Wide Web. ACM, pp. 544–552.

Tanenbaum, A. S., 2008. Modern Operating Systems. 3rd edition. Vol. 2.
Prentice Hall New Jersey.

Tindell, K., Burns, A., Wellings, A. J., 1995. Calculating controller area net-
work (CAN) message response times. Control Engineering Practice 3 (8),
1163–1169.

Wong, C. S., Tan, I., Kumari, R. D., Wey, F., 2008. Towards achieving
fairness in the Linux scheduler. SIGOPS Oper. Syst. Rev. 42 (5), 34–43.
URL http://doi.acm.org/10.1145/1400097.1400102

36

