

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://doi.ieeecomputersociety.org/10.1109/TSE.2012.27

http://hdl.handle.net/10251/34974

Institute of Electrical and Electronics Engineers (IEEE)

Abrahao Gonzales, SM.; Gravino, .C.; Insfrán Pelozo, CE.; Scaniello, .G.; Tortora, .G.
(2013). Assessing the effectiveness of sequence diagrams in the comprehension of
functional requirements: results from a family of five experiments. IEEE Transactions on
Software Engineering. 39(3):327-342. doi:10.1109/TSE.2012.27.

 1

Assessing	 the	 Effectiveness	 of	 Dynamic	 Modeling	 in	 the	 Comprehension	 of	

Software	 Requirements:	 Results	 from	 a	 Family	 of	 Five	 Experiments	

Silvia Abrahão1, Carmine Gravino2, Emilio Insfran1, Giuseppe Scanniello3, Member, IEEE,

Genoveffa Tortora2, Senior Member, IEEE,

1Department of Computer Science, Universidad Politécnica de Valencia

c/ Camino de Vera, s/n, 46022, SPAIN

{sabrahao, einsfran}@dsic.upv.es

2Dipartimento di Matematica e Informatica, University of Salerno

Via Ponte Don Melillo, 84084, Fisciano (SA), ITALY

{gravino, tortora}@unisa.it

3Dipartimento di Matematica e Informatica, University of Basilicata

Viale Dell'Ateneo, Macchia Romana, 85100, Potenza, ITALY

giuseppe.scanniello@unibas.it

Abstract	

Modeling is a fundamental activity within the requirements engineering process and concerns the construction of

abstract descriptions of software requirements that are amenable to interpretation and validation. The choice of a

modeling technique is a critical issue whenever it is necessary to discuss the interpretation and validation of software

requirements. This is particularly true in the case of stakeholders with divergent goals and different backgrounds and

experience. This paper presents the results of a family of experiments conducted with students and professionals to

investigate whether the comprehension of software requirements is influenced by the use of dynamic models. The

family contains five experiments performed in different locations and with 112 subjects of different abilities and

levels of experience with UML. The results show that dynamic models improve the comprehension of software

requirements in the case of high ability and more experienced subjects.

Keywords – Documentation, Software Engineering, Requirements Specifications.

 2

1.	 Introduction	

Software requirements are validated to establish whether they provide an accurate account of stakeholders’ needs

[32]. Adapted from the problem of validating scientific knowledge, requirements validation is the task of making

sufficient empirical observations to verify that a real world problem is properly captured [41]. In order to assess

whether a requirement has been properly captured, the associated models should be interpreted and understood by

all the stakeholders [50]. It may occur that stakeholders do not correctly interpret and comprehend the software

requirements models [1], thus increasing the cost needed to fix these misinterpretations later in the development

process [11], [49].

Several methods with which to model software requirements have been proposed in the past, and of these,

behavioral modeling is one of the most broadly employed approaches [29], [41], [63]. Behavioral modeling involves

the modeling of the dynamic and/or functional behavior of users and software systems [15], [50] and produces the

functional, analysis object (or conceptual), and dynamic models.

In this paper, we present the results of a family of five controlled experiments1 carried out to investigate whether

the use of dynamic models improves the comprehension of software requirements. The original experiment was

conducted with a group of second-year Computer Science undergraduate students from the University of Basilicata

in Italy [36]. The data analysis shows that there was no significant effect of dynamic models on the comprehension

of software requirements, although the subjects considered these models to be useful.

In order to further investigate the results of the original experiment, we carried out four replications with subjects

of different backgrounds and experience in modeling with UML [52]. These replications were conducted with

Computer Science Master’s degree students from the University of Salerno in Italy, Software Engineering Master’s

degree students from the Universidad Politécnica de Valencia (UPV) in Spain, PhD students at UPV and Spanish

software professionals. In order to increase our confidence in the results attained, the latter two replications were

based on more complex software system requirements from different domains. The results of the replications show

that dynamic models significantly improve the comprehension of software requirements, whatever the complexity of

the requirements is. Furthermore, the data analysis on all the experiments suggests that subjects with a high ability

and more experience benefit more from the use of dynamic models than low ability and less experienced subjects.

1 A controlled experiment is normally conducted in a laboratory environment, thus providing a high level of control
and identifying cause-effect relationships. Controlled experiments are generally used to show with statistical
significance that a particular process, method, or tool is better than others.

 3

The paper is structured as follows: Section 2 presents the family of experiments. Section 3 provides details on the

design of the individual experiments, including the definition of the experiments, context selection, hypothesis

formulation and instrumentation. Section 4 reports on the results of each experiment, together with their

interpretations. Section 5 presents and discusses the results of the family of experiments. Section 6 discusses the

threats to validity, while Section 7 reports on related works. The paper concludes with final remarks and future

research directions.

2.	 The	 Family	 of	 Experiments	

An increasing understanding exists within the Software Engineering community that empirical studies are needed

to create, improve, or assess processes, methods, and tools for software development [7], [8], [31] and maintenance

[21], [30]. An empirical study is generally an act or operation by which to discover something that is unknown, or to

test hypotheses [6]. Research strategies include controlled experiments [12], [13], [24], qualitative studies [39], [59],

surveys [28], [46], and archival analyses [25], [37], [44]. In order to achieve greater validity of the results,

replications are necessary [48]. Unfortunately, in Software Engineering an excessive amount of empirical studies

tend to be isolated and are not replicated. For example, in [60], Sjøberg et al. report that 20 out of 113 controlled

experiments are replications, and of these, 15 are differentiated replications2.

The concept of replication is extended to that of the “family of experiments” reported by Basili et al. [9]. A family

is composed of multiple similar experiments that pursue the same goal in order to build the knowledge that is needed

to extract significant conclusions that can be applied in practice.

In this section, we present the family of experiments that we have performed. The method adopted is an extension

of the five-steps proposed by Ciolkowski et al. [20], in which the fifth step, “Family data analysis”, is replaced with

“Family data analysis and meta-analysis”.

Step 1. Experiment preparation. The goal of our study is to analyze the use of dynamic models with the purpose

of assessing whether they improve the comprehension of software requirements for different categories of users in

terms of experience and ability. The study is conducted from two perspectives: that of the researcher point of view

2 These replications introduce variations in essential aspects of the experimental conditions. Differentiated
replications can be conducted to identify potentially important environmental factors that affect the experimental
results. One prominent variation of the environmental factors concerns the executions of replications with different
kinds of subjects, thus enabling us to understand whether the conclusions from the original experimental context can
be generalized to the new context.

 4

in order to investigate the support provided by dynamic models in the comprehension of software requirements, and

that of the project manager point of view in order to evaluate the possibility of adopting these requirements to

enhance software requirements abstractions. We have therefore defined and investigated the following research

question:

• Do dynamic models improve the comprehension of software requirements for subjects with different

levels of experience and ability?

Step 2. Context definition. The groups of subjects with different level of experience are as follows:

• Undergraduate students in Computer Science, who can be considered as the next generation of

professional developers [45]. It has been shown that, under certain conditions, there is no great

difference between such students and professionals [9], [40].

• Master’s students in Computer Science, many of whom are, or have been, professionals in industry.

• PhD students in Computer Science, who have attended various Software Engineering courses.

• Software industry professionals, who design and develop software systems.

With regard to the subjects’ ability, the students were classified according to the average grades attained in their

academic degrees, i.e., for Italian subjects an average of below 24/30 is considered to be Low, otherwise High, while

for the Spanish subjects the threshold was 9/10. Each subject’s participation was voluntary. All the subjects were

given one point in their final grades, regardless of their performances. A different classification was applied for the

professionals (see Section 3.5).

Step 3. Material and Experimental Tasks. The material was composed of two experimental objects (containing a

set of UML models with an attached comprehension questionnaire), training material, and a post-experiment survey.

The experimental objects were the software requirements of an e-commerce system and other typical management

information systems (e.g., course management). The comprehension questionnaire included multiple-choice

questions in order to obtain a quantitative evaluation of requirements comprehension. The training materials

included: (i) a set of instructional slides describing an introduction to dynamic modeling containing examples of

UML models; (ii) comprehension tasks related to these models.

Similarly to [12], [13], [56], at the end of each controlled experiment, the subjects were asked to fill in the post-

experiment survey questionnaire. The aim of the questionnaire was to gain sufficient insight through which to

strengthen and explain the results; it included questions to assess the overall quality of the material provided, the

 5

perceived usefulness of the dynamic models, and the clearness of the tasks and the goals of the experiment.

Step 4. Individual experiments. With regard to Figure 1, the second and third experiments (Italy 2 and Spain 1,

respectively) were differentiated replications which aimed to replicate the original experiment (i.e., Italy 1) in

different settings with different subjects. In particular, Italy 2 was an internal replication (the same experimenters as

the original one), while Spain 1 was an external replication (different experimenters to verify whether the results are

independent both of the experimenters and of the setting). In Italy 2 and Spain 1 the same experimental objects were

employed as with Italy 1. The fourth and fifth experiments (Spain 2 and Spain 3, respectively) were differentiated

replications whose goal was to repeat the first experiment with different subjects and materials (different

experimental objects). These experiments were also conducted by an independent group of experimenters, and can

thus be considered as external replications.

Figure 1. Experiments in the family

Step 5. Family data analysis and meta-analysis. The results of each experiment and of the family of experiments

were collected and analyzed. We also performed meta-analysis, since the experimental conditions were the same or

very similar within each experiment. This enabled us to extract more general conclusions with regard to the analysis

of each individual experiment.

3.	 Design	 of	 Individual	 Experiments	

In the following sub-sections we present the design of the experiments according to the guidelines for

experimental software engineering proposed by Wohlin et al. [64] and Juristo and Moreno [42]. The experimental

material and the raw data are available for download at www.scienzemfn.unisa.it/scanniello/RE_Exp1/.

 6

3.1	 The	 Original	 Experiment	

The software requirements were abstracted by considering the method suggested in [15], in which a requirements

analysis document includes a functional model, an analysis object (or conceptual) model, and a dynamic model. A

functional model focuses on the software functionality, while an analysis object model focuses on the individual

concepts of the problem domain that will be manipulated by the software system. Finally, a dynamic model concerns

the software system behavior of the meaningful use cases presented in the functional model. In this study, use case

diagrams were used to characterize a functional model, while class diagrams and sequence diagrams were employed

to abstract analysis object models and system behavior, respectively.

3.1.1	 Planning	

Context. The experimental objects were selected within the requirements analysis specifications of the following

two systems:

• ECP – An e-commerce platform from which CDs and books can be ordered via the Internet from an on-

line catalogue.

• E-Plat – A software system for the management of courses, lecturers, and students of a given

University.

We randomly selected the functional requirement “Processing an order” for the first system (from here on, ECP),

while “Adding a course” was the requirement employed for the latter system (from here on, E-Plat). In order to

assess the complexity of the functional requirements used and to identify possible mistakes in the associated models,

a pilot experiment was carried out by a Master’s student before the actual experiment. From the pilot, we deduced

that the complexity of the two requirements could be considered comparable since the student involved spent almost

the same time on accomplishing both the tasks using dynamic models (30 minutes on average).

The subjects that participated in this study were a group of 24 Computer Science undergraduate students from the

University of Basilicata in Italy. The students were chosen for convenience (they were students enrolled on the

“Software Engineering” course at the University of Basilicata in the first semester, from September 2007 to January

2008). One of the main topics of the course is the modeling of object-oriented systems using UML. The subjects

also had experience in object-oriented programming and Web technology. During the course, the subjects were

grouped in teams, and each team was involved in the modeling and development of a software system. Two young

 7

researchers were responsible for coordinating the projects, which were based on requirements analysis, on the high-

level design of the software system, and on an incremental development of the identified subsystems. The subjects’

participation was voluntary. One point was added to each subject’s final grade, regardless of their performances.

Hypotheses formulation. We have formulated the following one-tailed null hypothesis:

• Hn0: The use of dynamic models does not significantly improve the comprehension of software

requirements.

In the case of it being possible to reject the null hypothesis with relatively high confidence, it is possible to

formulate an alternative hypothesis that admits a positive effect:

• Ha0: The use of dynamic models significantly improves the comprehension of software requirements.

In the experiment, the Control Group is “requirements specifications without dynamic models”, while the

Treatment Group is “requirements specifications with dynamic models”. The only independent variable (also named

main factor) is, therefore, Method, which is a nominal variable that can assume two possible values: DM (Dynamic

Model) and NO_DM (NO Dynamic Model).

In order to verify the null hypothesis, we considered a measure based on the subjects’ comprehension of the

software requirements. The comprehension questionnaire consisted of eight multiple-choice questions with one or

more correct answers for each of a set of four answers (see Figure 2). The number of possible answers was the same

for each question. The purpose of this questionnaire was to rapidly evaluate various comprehension aspects of the

system requirements.

Figure 2. A sample question from the comprehension questionnaire for ECP

Q3. The end-user of the system can*:
¨ Add a delivery.
¨ Modify an order.
¨ Modify the data of an invoice.

¨ Create an order.

*Mark the right answer/s

 8

The use of comprehension questionnaires enabled us to assess each subject’s comprehension in terms of the

measures: recall, precision, and F-measure [5]. Similarly to [3], [65], the recall and precision measures have been

defined as follows:

∑

∑ ∩
=

i
i

i
iis

s correct

correctanswers
recall

,

 (1)

∑

∑ ∩
=

i
is

i
iis

s answer

correctanswers
precision

,

,

 (2)

where answers,i is the set of responses that the subjects s provided for the question i. On the other hand, correcti is

the set of correct responses expected for the question i.

Precision concerns the correctness of the responses provided by the subject s, while the completeness of the

responses is measured by employing recall. In order to obtain a balance between correctness and completeness, we

used the harmonic mean of precision and recall [5]:

ss

ss
s recallprecision

recallprecisionmeasureF
+

=−
**2

 (3)

To test the previously presented null hypothesis, the following dependent variable was then considered:

– Comprehension: the F-measure of the precision and recall values of all the questions of the comprehension

questionnaire.

Since we were also interested in assessing the effect of ability on the comprehension of software requirements

(see Section 2), the Ability nominal variable was additionally considered and its effect was also analyzed. The

values that the Ability co-factor can assume are Low and High.

Experiment Design. We adopted a counterbalanced design by dividing the subjects into four groups, namely A, B,
C, D (see

 9

Table 1). The subjects in each group were asked to perform the tasks without interacting with each other. The two

tasks were performed in sequence. The chosen design mitigates possible learning effects and permits the study of the

effect of other factors, which are discussed as follows.

 10

Table 1. Design of the controlled experiments

 Groups
 A B C D

Task1 ECP, DM ECP, NO_DM E-Plat, DM E-Plat, NO_DM
Task2 E-Plat, NO_DM E-Plat, DM ECP, NO_DM ECP, DM

Other Factors to be Controlled. Although Method is the only factor of interest, other factors (also named co-

factors) may influence the results. In particular, different extraneous factors may have an undesirable effect on the

subjects’ comprehension of the requirements, and this effect may be confused with the Method effect:

• Object. The complexity of the requirements and the subjects’ familiarity with the application domain of the

systems may affect the subjects’ comprehension of the requirements.

• Order of Method. The order in which the subjects perform the tasks may produce learning effects, thus

biasing the results.

3.1.2	 Operation	 	

Preparation and Execution. The experiment took place in a single room. We gave the subjects all the materials

described in Section 2. All the subjects attended an introductory lesson in which detailed instructions on the tasks to

be performed were presented, although only the goal of the experiment was highlighted, and details on the

experimental hypothesis were not provided. The experiment’s execution was controlled, and no interaction between

subjects was allowed. Furthermore, no time limit was imposed in order to avoid a possible ceiling effect [61]. The

subjects were told that their answers would be treated anonymously and were also informed that their grade on the

course would not be affected by their performance in the experiment. The subjects were also aware of the

pedagogical purpose of the exercises.

After the comprehension tasks, the subjects were asked to fill in the post-experiment survey questionnaire shown

in Table 2.

Analysis procedure. We used statistic tests to analyze the collected data. In all the tests we decided, as usual, to

accept a probability of 5% of committing a Type-I-Error [64], i.e., of rejecting the null hypothesis when it is actually

true.

The defined null hypothesis was tested by using the non-parametric Wilcoxon test [23] since a statistical

 11

difference between two dependent groups (paired analysis) was under investigation. In contrast, in order to analyze

the effect of Ability and Object, we performed an unpaired analysis by applying the Mann–Whitney test [23]. These

tests have been chosen since they are very robust and sensitive, and have been used in experiments similar to ours in

the past, e.g., [12], [56].

Table 2. The post-experiment survey questionnaire

Id Question Possible Answers

Q1 I had enough time to perform the tasks. (1-5)

Q2 The task objectives were perfectly clear to me. (1-5)

Q3 The tasks I performed were perfectly clear to me. (1-5)

Q4 Judge the difficulty of the task on the e-commerce system. (A-E)

Q5 Judge the difficulty of the task on the system for the management of
courses, lecturers, and students.

(A-E)

Q6 Assess your experience level in analysis object modeling and the UML class
diagrams.

(A-E)

Q7 Assess your experience level in dynamic modeling and the UML sequence
diagrams.

(A-E)

Q8 What is the most useful method to comprehend and interpret software
requirements?

DM, NO_DM,
Neutral

Q9 Which models did you perceive as the most useful to comprehend and
interpret software requirements?

Functional, Analysis
Object, Dynamic

1 = Strongly agree, 2 = Agree, 3 = Neutral, 4 = Disagree, 5 = Strongly disagree

A = Very high, B = High, C = Medium, D = Low, E = Very low

These tests allow the presence of a significant difference between dependent or independent groups to be verified,

but they do not provide any information about this difference. We therefore used the Cohen’s “d” [19] to obtain the

standardized difference between two groups that can be considered negligible for |d| < 0.2, small for 0.2 ≤ |d| < 0.5,

medium for 0.5 ≤ |d| < 0.8, and large for |d| ≥ 0.8. Similarly to [56], in the context of paired analyses, we used the

difference between the means of the distributions divided by the standard deviation of the (paired) differences

between the samples. In the context of unpaired analyses, we used the difference between the means of the

distributions divided by the pooled standard deviation.

The counterbalanced experimental design also allows the interaction of the co-factors with the main factor to be

analyzed. We use interaction plots to study the interaction between Ability and Method and between Object and

Method. Interaction plots [27] are simple line graphs in which the means of the dependent variables for each level of

one factor are plotted over all the levels of the second factor. The resulting lines are parallel when there is no

interaction and nonparallel when interaction is present.

 12

In order to test the effect of Order of Method (the measurement differences between the subjects’ observations

when using and not using dynamic models), we used the method suggested by Briand et al. in [12]. In particular, let:

Diff(NO_DM) be the differences in comprehension of those subjects who performed the tasks using NO_DM first

and then DM; and Diff(DM) be the differences in comprehension of those subjects who performed the tasks using

DM first and then NO_DM. We used the one-tailed t-test to verify whether Diff (NO_DM) is greater than Diff

(DM). When applying this test, the normal distribution assumption should be verified using the Shapiro-Wilk test

[58]. In the case of this assumption not being verified, we planned to use the non-parametric Mann–Whitney test. In

our case we expected that Diff (NO_DM) would be larger than Diff (DM). The rationale behind this concern relies

on the fact that the capability of using dynamic models may improve during the tasks. As a result, we should verify

the null hypothesis H0d: Diff (NO_DM) = Diff (DM). On the other hand, the alternative hypothesis is Had: Diff

(NO_DM) > Diff (DM).

3.2	 Italy	 2	

Italy 2 was conducted by the same experimenters (internal replication). The same design and conditions were

employed, while the kind of subjects was changed. This replication was necessary to increase our confidence in the

conclusion validity of the original experiment.

The subjects were 24 students from a Computer Science Master’s degree program at the University of Salerno in

Italy who were enrolled on the Software Advanced Software Engineering course. The experiment was conducted as

part of a series of laboratory exercises carried out within this course. This course was held in the second semester

(from March 2008 to June 2008). All the students had a comparable level of background since they were all

graduate students of the same Bachelor’s degree program.

The subjects were required to have a reasonable level of technical maturity and knowledge of UML-based, object-

oriented software development, and software project management. In particular, the subjects were familiar with

concepts of the requirements engineering process and had experience in supervising teams of developers.

3.3	 Spain	 1	

The same experimental objects as those used in Italy 1 and Italy 2 were employed. The experiment was an

external replication since it was performed by an independent group of experimenters at the UPV in Spain.

The subjects were 33 students enrolled on a Master’s degree program in Software Engineering, Formal Methods

 13

and Information Systems at the UPV. They were asked to perform the experiment as a part of a series of optional

laboratory exercises conducted within the Software Engineering with Models course. This course was held in the

first semester, from September 2008 to January 2009, and was selected because it is a specialized teaching unit in

which students learn advanced techniques regarding conceptual modeling, UML, and model-driven engineering.

Most of the students on this course had completed two Software Engineering courses in which they had acquired

training in UML modeling.

3.4	 Spain	 2	

This experiment varied the manner in which the other experiments were run with the intention of increasing

confidence in the experimental results by testing the same hypothesis as before, but altering the details of the

experiment to increase external validity. In particular, different experimental objects were employed and the study

participants were PhD students. The systems from which we selected these objects were:

• M-Shop – A software system for managing the sales in a music shop.

• Theater – A software system for managing a theater’s ticket reservations.

We randomly selected the functional requirement “Search Album by Singer” for the first system (from here on,

M-Shop). For the second system (from here on, Theater) we selected “Buy Theater Ticket”. As with Italy 1, we

conducted a pilot experiment. This was carried out with a more experienced subject, namely a research fellow from

the University of Salerno. The results indicated that 45 minutes were, on average, sufficient to accomplish each task

using dynamic models. The time needed to accomplish the tasks, the size of the models within the experimental

objects, and the experience of the pilot subjects enabled us to deduce that the M-Shop and Theater objects were

more complex than those used in the previous experiments (i.e., Italy 1, Italy 2, and Spain 1).

The subjects were 20 PhD students enrolled in the Software Engineering, Formal Methods and Information

Systems PhD program at the UPV in Spain. The experiment was conducted in the Software Engineering with

Models course. The experiment was conducted as part of a series of laboratory exercises carried out within this

course. This course was held in the first semester (from September 2008 to February 2009).

3.5	 Spain	 3	

Spain 3 also varied the manner in which the original experiment was run. The same design and materials as those

used in Spain 2 were employed. The subjects involved were 16 professionals from Spanish software development

 14

companies. The experiment was performed in the context of the Modeling with UML course. The main objective of

this course was to teach its participants the principles of object-oriented analysis and design. The subjects in this

experiment had various backgrounds. They primarily worked as software analysts and programmers in industry and

had various levels of experience in modeling with UML (from 3 months to 4 years). In order to group the

professionals as Low and High ability subjects we considered their grades in the Modeling with UML exam. Those

subjects that had attained a grade of less than 9/10 were qualified as Low, otherwise High. This enabled us to

classify subjects as being of high and low ability in a repeatable and just manner. The professionals’ participation

was voluntary.

4.	 	 Results	 and	 Discussion	

In this section the results of the single experiments is discussed by analyzing: (i) the influence of the method; (ii)

the Influence of Object, Ability, and Order of Method; (iii) the results of the post-experiment survey questionnaire.

4.1	 Influence	 of	 Method	

Table 3 shows descriptive statistics for Comprehension. The descriptive statistics show that the mean

comprehension scores obtained for the subjects when using dynamic models were superior to those obtained when

not using them. Upon analyzing the comprehension mean scores grouped by Object, we can observe that the

subjects from Spain 1 were less effective than the other subjects when answering the ECP questionnaire. One

possible reason for this might be that the subjects perceived ECP to be more complex than E-Plat. This must be

analyzed in greater detail in the subsequent steps of the data analysis.

The results of the Wilcoxon test performed to study the effect of Method on the software requirements

comprehension are summarized in Table 4. The test revealed that the null hypothesis Hn0 cannot be rejected (p-value

= 0.260) for Italy 1 with a negligible effect size. This table also shows the number of subjects who benefitted from

DM in the comprehension tasks, those who achieved the same results from both DM and NO_DM, and those who

obtained better comprehension scores with NO_DM. For example, 11 out of 24 Italy 1 subjects benefitted from the

use of dynamic models, while 10 subjects did not benefit from them. The remaining 3 subjects obtained almost the

same comprehension level when performing the tasks regardless of whether or not they used dynamic models.

 15

Table 3. Descriptive Statistics for Comprehension

Data set Object
DM NO_DM

Med. Mean Std.
Dev. Med. Mean Std.

Dev.

Italy 1
All 0.625 0.633 0.198 0.630 0.612 0.159

ECP 0.730 0.638 0.205 0.690 0.647 0.142
E-Plat 0.595 0.629 0.199 0.620 0.578 0.173

Italy 2

All 0.685 0.673 0.115 0.565 0.526 0.089
ECP 0.670 0.649 0.097 0.595 0.564 0.071

E-Plat 0.720 0.697 0.130 0.500 0.488 0.092

Spain 1
All 0.458 0.423 0.172 0.353 0.356 0.111

ECP 0.235 0.286 0.110 0.353 0.307 0.117
E-Plat 0.556 0.561 0.092 0.444 0.405 0.083

Spain 2

All 0.727 0.727 0.088 0.591 0.618 0.166
M-Shop 0.727 0.709 0.103 0.546 0.519 0.123
Theater 0.727 0.746 0.072 0.636 0.655 0.200

Spain 3

All 0.636 0.631 0.122 0.546 0.534 0.119
M-Shop 0.636 0.602 0.047 0.500 0.523 0.106
Theater 0.682 0.659 0.167 0.546 0.546 0.137

The null hypothesis Hn0 can be rejected for all the replications with an effect size ranging from small (i.e., almost

medium) to large. This means that the use of dynamic models significantly improves the comprehension of software

requirements. For example, for the Spain 2 data set, this analysis revealed that 12 out of 20 subjects benefitted from

dynamic models, while 5 subjects did not benefit from them. The remaining subjects obtained almost the same

comprehension level with or without a dynamic model. These results diverge from those which were found in the

original experiment, thus providing support for the hypothesis. One possible reason for this difference might be that

the subjects in these experiments were more experienced with UML than the subjects of the original experiment.

Table 4. Wilcoxon test results for the family of experiments

Data
Set

#obs # of DM
>

NO_DM

of DM
<

NO_DM

of DM
=

NO_DM

Influence of
Method

(p-value)

Effect Size
(Cohen d)

Italy 1 48 11/24 10/24 3/24 No (0.260) Negligible (0.11)
Italy 2 48 20/24 3/24 1/24 Yes (1.2e-4) Large (0.99)
Spain 1 56 16/28 6/28 6/28 Yes (0.027) Small (0.43)
Spain 2 40 12/20 5/20 3/20 Yes (0.017) Medium (0.55)
Spain 3 32 10/16 2/16 4/16 Yes (0.010) Medium (0.64)

4.2	 Influence	 of	 Object,	 Ability,	 and	 Order	 of	 Method	

The results of the Mann-Whitney test when applied to the observations grouped by Method are shown in Table 5.

 16

Table 5. Influence of Ability and Object on the comprehension of software requirements.
The effect size is only shown when a statistical significant difference is present.

Experiment Co-factor Influence on Comprehension (p-value)
DM NO_DM

Italy 1 Object No (0.908) No (0.213)
Ability No (0.203) No (0.610)

Italy 2 Object No (0.455) Yes (0.034)
Large (0.92)

Ability No (0.264) No (0.726)
Spain 1 Object Yes (2.45e-5)

Large (2.71)
No (0.105)

Ability No (0.252) Yes (0.041)
Large (0.84)

Spain 2 Object No (0.321) No (0.263)
Ability No (0.640) No (0.440)

Spain 3 Object No (0.479) No (0.626)
Ability No (1.00) No (0.502)

Italy 1 - The results of the original experiment showed that there was no significant effect of Object on the

comprehension of software requirements. Moreover, Ability did not influence the comprehension of software

requirements. In addition, the plots in Figure 3 show that no interaction exists between Method and Ability or

between Method and Object.

(a) (b)
Figure 3. Interaction between Method and Object and between Method and Ability (Italy 1)

In order to verify the influence of Order of Method, we first verified the normality assumption by using the

Shapiro-Wilk test. For each experiment, the test revealed that the distributions of Diff (NO_DM) and Diff (DM)

were normal. Therefore, in order to test the null hypothesis H0d we applied the t-test, which revealed that this

hypothesis could not be rejected in the original experiment (p-value = 0.730). The same conclusion was proved to

 17

hold in all the replications. This means that the subjects of all the experiments did not have a significantly greater

Comprehension score in the second task.

Italy 2 - Table 5 shows a significant effect of Object on Comprehension when dynamic models were not used (p-

value = 0.034). In particular, the subjects achieved a better comprehension level for ECP, with a large effect size

(i.e., 0.92). The plot in Figure 4.a shows an interaction between Method and Object. This plot also indicates that

ECP and E-Plat dynamic models better support the subjects in their accomplishment of the experimental tasks.

Indeed, a better comprehension level was obtained for E-Plat.

The results of the Mann-Whitney test revealed that there was no significant effect of Ability on the

comprehension of software requirements. However, the interaction plots in Figure 4.b suggest that there was some

interaction between Method and Ability. Although the low ability subjects achieved better comprehension scores

than the high ability subjects when using dynamic models, this difference can be considered as meaningless (the

difference is less than 0.048). This result, and the fact that the high ability subjects achieved a better comprehension

level when they did not use dynamic models, suggest that these models appear to fill the gap between the low and

high ability subjects. It is also possible to note that both high and low ability subjects benefitted from dynamic

models.

(a) (b)
Figure 4. Interaction between Method and Object & Method and Ability (Italy 2)

Spain 1 – The Mann-Whitney test showed a significant effect of Object on Comprehension when using dynamic

models (p-value = 2.45e-5) with a very large effect size (i.e., 2.71) in favor of E-Plat. The effect of Object was not

statistically significant when dynamic models were not used (p-value = 0.105). The plot in Figure 5.a indicates no

interaction between Method and Object. We can also observe that the dynamic models do not improve the

 18

comprehension of ECP. Indeed, the subjects achieved almost the same comprehension level whether using dynamic

models or not (see Table 3 and Figure 5.a). This result, together with the fact that a better comprehension level was

achieved for E-Plat by using dynamic models, could indicate that the subjects were more familiar with ECP, thus

reducing the possible positive effect of models on the comprehension of software requirements.

The statistical test (p-value = 0.041) also showed that Ability affected the requirements comprehension when

dynamic models were not used. In particular, low ability subjects achieved better comprehension levels with a large

effect size (i.e., 0.84). In addition, the interaction plot in Figure 5.b indicates that an interaction between Method and

Ability is present. However, no interaction was shown between Method and Object. Low ability subjects obtained

slightly better results than high ability subjects when performing comprehension tasks without a dynamic model. A

possible explanation for this might be that high ability subjects may make several interpretations of the requirements

specifications that do not include a dynamic model. The comprehension level of low ability subjects is almost the

same whether dynamic models are used or not. However, high ability subjects achieved better results than low

ability subjects when using the dynamic model. It would thus appear that high ability subjects benefit from dynamic

models more than low ability subjects. One possible reason for this might be that the use of dynamic models

constrained possible interpretations of the software requirements.

Figure 5. Interaction between Method and Object & Method and Ability (Spain 1)

Spain 2 - The results of data analysis revealed that there was no significant effect of Object and Ability on

Comprehension. Furthermore, the interaction plots in Figure 6 indicate that there is no interaction between Method

and Object, while there is an interaction between Method and Ability. In particular, low ability subjects obtained

better results than high ability subjects when performing tasks without a dynamic model, while high ability subjects

 19

achieved better results than low ability subjects when using dynamic models. These results are similar to those

obtained with the final year undergraduate students from the same university (Spain 1), thus suggesting that high

ability subjects benefit from dynamic models more than low ability subjects.

Spain 3 - The results of the Mann–Whitney test revealed that there was no significant effect of Object on

comprehension. The results of this test showed that Ability did not influence the results attained. The interaction

plots in Figure 7 indicate that there is no interaction between Method and Object, while there is an interaction

between Method and Ability. In particular, low ability subjects obtained better results than high ability subjects

when performing comprehension tasks without a dynamic model, while high ability subjects achieved better results

than low ability subjects when using the dynamic model. These results are in line with those obtained in Spain 1 and

Spain 2, since high ability subjects benefit from dynamic models more than low ability subjects.

Figure 6. Interaction between Method and Object & Method and Ability (Spain 2)

Figure 7. Interaction between Method and Object & Method and Ability (Spain 3)

 20

4.3	 Survey	 questionnaire	 results	

The responses provided to the questions ranging from Q1 to Q7 are visually summarized in the boxplots in Figure

8. This figure shows the responses for the first three experiments (i.e., Italy 1, Italy 2, and Spain 1). We do not show

the boxes for questions Q8 and Q9 owing to the different scales adopted. The responses to these questions are,

however, analyzed and discussed. Our rationale for analyzing the responses to the Italy 1, Italy 2, and Spain 1 post

experiment survey questionnaires together is that they are based on the same experimental objects. Accordingly, the

results of the Spain 2 and Spain 3 post experiment survey questionnaires are also presented together (see Figure 9).

The analysis of the collected answers for question Q1 showed that the time needed to carry out the experiments

was considered to be appropriate (see Figure 8). The boxes for the responses to questions Q2 and Q3 revealed that

the objectives and the tasks were considered to be clear in all cases. With regard to questions Q4 and Q5, the Italy 1

and Italy 2 subjects manifested a neutral judgment in relation to the complexity of both tasks. However, for Spain 1,

the box for Q4 shows that the subjects judged the difficulty of the ECP comprehension tasks to be medium/low,

while a neutral judgment (i.e., medium) was indicated for the complexity of the E-Plat comprehension tasks (see the

box for Q5). This indicates a case in which there is a difference between the perceived complexity of a task and its

actual complexity (see, for example, Table 3 and Figure 5).

Figure 8. Subjects’ responses for the experiments conducted using ECP and S2

With regard to Q6, the Italy 1 and Spain 1 subjects asserted that their knowledge of analysis object modeling and

UML class diagrams was sufficient, while the Italy 2 subjects expressed a neutral judgment. With regard to Q7, the

Italy 1 subjects indicated that their knowledge of the dynamic modeling and UML sequence diagrams was sufficient,

while the Italy 2 and Spain 1 subjects expressed high and low knowledge, respectively.

 21

Finally, the responses to questions Q8 and Q9 for the three experiments revealed that the subjects generally

considered dynamic models and the UML sequence diagrams to be more useful in the comprehension of software

requirements. With regard to Italy 1, this is a case in which a controlled experiment provides insight into the

difference between the perceived usefulness of a given method and the effective advantage of using it.

Figure 9 shows that the time needed to carry out the experiments was considered to be appropriate for the Spain 2

and Spain 3 subjects (see boxes for Q1). The boxes for the responses to questions Q2 and Q3 revealed that the

objectives and the tasks were considered to be clear in all the cases.

The box for Q4 in Spain 2 shows that the subjects judged the difficulty of the comprehension tasks for M-Shop to

be low, while a neutral judgment (i.e., medium) was indicated for the complexity of comprehension tasks for

Theater (see the box for Q5). The Q4 and Q5 boxes for Spain 3 show that the difficulty of the comprehension tasks

was considered as medium. Note that the Spain 2 and Spain 3 subjects considered the tasks to be more complex than

the subjects of the other three experiments. This indicates a case in which there is a difference between the perceived

complexity and its actual complexity (see boxes for Q4 and Q5 of Figure 8).

The box for Q6 in Spain 2 shows that the subjects asserted that their knowledge regarding analysis object

modeling and the UML class diagrams was sufficient (i.e., medium), while a worse judgment in their knowledge of

dynamic modeling and sequence diagrams was indicated (see the box for Q7). The boxes for Q6 and Q7 of Spain 3

show that the subjects asserted that their knowledge of analysis object modeling and the UML class diagrams was

sufficient, along with that of dynamic modeling and sequence diagrams.

Finally, the responses to questions Q8 and Q9 revealed that, for both experiments, the subjects generally

considered object modeling and the UML class diagrams to be more useful in the comprehension of software

requirements.

Figure 9. Subjects’ responses for the experiments conducted using M-Shop and Theater

 22

5.	 Family	 Data	 Analysis	

This section provides a summary for the results obtained from all the experiments. We first present an analysis of

the results in the context of the family of experiments, followed by the results of a meta-analysis that aggregates the

empirical findings obtained in the individual experiments.

5.1	 Summary	 of	 Results	

We performed a global analysis of the results in the context of a family of experiments in order to determine

whether the general goal of our study had been achieved. We also studied the results of all the experiments together

to search for possible differences. A general summary of the experiments and the results is provided in Table 6.

Table 6. Summary of the experiments

Exp. ID Context Description Type of
replication

of
subjects

Type of
subjects

Exp.
objects

Hypothesis
Rejected?

Influence of
co-factors

Italy 1 University of
 Basilicata

Original experiment – 24 Bachelor
Students

ECP
E-Plat

No No

Italy 2 University of
Salerno

Different environment
and subjects with
respect to Italy1

Internal 24 Master’s
Students

ECP
E-Plat

Yes Influence of
Object on
NO_DM

Spain 1 Universidad
Politécnica
de Valencia

Different environment
and subjects with
respect to Italy1.

External 28 Master’s
students

ECP
E-Plat

Yes Influence of
Object on DM
and Ability on

NO_DM
Spain 2 Universidad

Politécnica
de Valencia

Replication that varies
the manner in which

Italy 1 is run

External 20 PhD
students

M-Shop
Theater

Yes No

Spain 3 Spanish
Professionals

Replication that varies
the manner in which

Italy 1 is run

External 16 Professionals M-Shop
Theater

Yes No

The general result of the family of experiments indicates that support was found for hypothesis Ha0 in all the

experiments, with the exception of the original experiment. This indicates that dynamic models significantly

improved the comprehension of software requirements. However, the experimentation opens up a number of issues

which are summarized and discussed below:

• Comprehension. The comprehension mean scores of the Spain 1 subjects were low when compared to

the subjects in the other data sets (see Table 3). This might be owing to the students’ low familiarity with

ECP. Although the complexity of ECP and E-Plat can be considered as comparable, it would appear that

the subjects were more familiar with E-Plat. Moreover, the comprehension mean scores obtained by the

Spanish PhD students and professionals are comparable to those of the Italian students.

• Subjects’ Experience. The Spanish students and professionals, and the Italian students from Italy 2, had

more experience than those in Italy 1, particularly with regard to the use of dynamic models and

 23

sequence diagrams. This finding, together with the results of each experiment, therefore indicates that

more experienced subjects obtain a greater benefit from dynamic models.

• Influence of Object. The data analysis showed that, with the exception of Italy 2, there was no

interaction between Method and Object. Moreover, the results of the family of experiments indicated that

dynamic models significantly improved the comprehension of software requirements, independently of

task complexity. This means that, in spite of increasing the task complexity, the subjects obtained a

better comprehension level when using a dynamic model.

• Influence of Ability. The interaction plots provided further information that might be useful in

improving our understanding of what type of subjects (high or low ability) will benefit from the use of

dynamic models. In particular, all the experiments indicated that there is an interaction between Method

and Ability with the exception of Italy 1. Furthermore, the experimental results indicated that the high

ability subjects obtained better results than the low ability subjects when using dynamic models, with the

exception of Italy 2 in which a slight difference in favor of low ability subjects was observed. This may

indicate the presence of a possible experience threshold that the subjects should have, signifying that

high ability subjects benefit from the use of dynamic models.

The five experiments allowed us to gather knowledge concerning those conditions in which the use of dynamic

models is more effective. According to the previously discussed results, we can conclude that subjects with a high

ability and more experience benefit from dynamic models more than low ability and less experienced subjects. The

results also showed that requirements complexity did not influence the subjects’ comprehension when using

dynamic models. However, our results are only applicable to requirements specifications that use sequence

diagrams. The generalization of these results to other types of the UML diagrams will be the subject of future work.

In summary, the results support the hypothesis stated. Running a family of experiments (including replications)

rather than a single experiment provided us with more evidence of the external validity, and thus the

generalizability, of the study results. The same hypothesis was tested and confirmed (with very few exceptions) in

five different environments using different experimental objects and four types of participants. Each replication

provided further evidence of the confirmation of the hypothesis. We can thus conclude that the general goal of the

empirical validation has been achieved.

 24

5.2	 Meta-‐Analysis	

We also employed a meta-analysis with which to integrate the results of the individual experiments in order to

obtain stronger results with regard to the contribution of dynamic models to requirements comprehension. Although

several statistical methods exist with which to aggregate and interpret a set of results obtained through different

experiments that are inter-related [34], [38], [57], [62], we used meta-analysis because it allowed us to extract more

general conclusions, since the experimental conditions were the same.

Meta-analysis is a set of statistical techniques for combining the different effect sizes of the experiments to obtain

a global effect of a factor. In particular, the estimation of effect sizes can be used after comparing studies to evaluate

the average impact across studies of an independent variable on the dependent variable. As measures may come

from different settings and may not be homogeneous, a standardized measure for each experiment needs to be

obtained, and these measures must then be combined to estimate the global effect size of a factor. In our study, we

considered that Method was the main factor in the family of the experiments.

The meta-analysis was conducted by using the Meta-Analysis v2 tool [10]. As suggested by a previous study [26],

we employed the mean value obtained using dynamic models minus the mean value achieved when not using them

to calculate the effect sizes for Comprehension for each of the individual experiments, and from these values, we

obtained the Hedges’ g metric [38], [43], which was used as a standardized measure. This value expresses the

magnitude of the effect of Method which, in our case is the use of dynamic models that are relative to the within-

group standard deviations.

The Hedges’ g metric is a weighted mean whose weights depend on sample size:

∑

∑
=

i
i

i
ii

w

zw
Z (4)

where wi = 1/(ni-3) and ni is the sample size of the i-th experiment.

Table 7 summarizes the results obtained with the meta-analysis. For each experiment, we report both the values of

the Hedges’ g metric and the effect size. Specifically, the cells related to the effect size contain two pieces of

information:

• An indication of the magnitude of effect size, classified as small, medium, or large. The magnitude of effect size

is computed based on the standardized difference between two means. For studies conducted in Software

 25

Engineering, we can classify the magnitude of effect sizes according to their numerical value: small (0 to 0.37),

medium (0.38 to 1.00) and large (above 1.00) [43]. For example, an effect size of 0.5 indicates that the mean

value obtained when using dynamic models is half a standard deviation larger than the mean obtained when not

using them; in other words, a positive value signifies that dynamic models improve the comprehension of

requirements measured by the dependent variable defined.

• An indication of whether the result is statically significant.

For the reader’s convenience, we show the meta-analysis results in diagram form, as provided by the tool used.

Figure 10 shows the Hedges’ g metric with a confidence interval of 95% for Comprehension. It is important to note

that not all the experiments contribute equally to the overall conclusion, which is represented by the diamond in the

last row of the figure. Each of them receives a specific weight in the meta-analysis, i.e., the study’s effect size,

represented by the squares in the figure. The estimations for studies with a large sample size are more accurate,

meaning that they make a greater contribution to the overall effect. However, sample size is not the only factor that

contributes to the weight of a study. The weight of a study is proportional to the area of the corresponding square in

the figure.

Table 7. The Hedges’g metric values for the comprehension of requirements specifications

Experiment Hedges’ g Effect Size Significance
Italy 1 0.092 Small No (p=0.518)
Italy 2 0.563 Medium Yes (p=0.000)
Spain 1 0,260 Small No (p=0.053)
Spain 2 0.341 Small Yes (p=0.033)
Spain 3 0.423 Medium Yes (p=0.019)
Global Effect Size 0.319 Small Yes (p=0.000)

Figure 10. Comprehension of requirements specification meta-analysis

 26

The effect size obtained varies between small and medium in all the cases, probably as a result of the number of

experiments used in the data meta-analysis. Despite the fact that the first and third experiments (i.e., Italy 1 and

Spain 1) did not produce significant results (see Table 7), the overall results of the meta-analysis present a

significant positive effect, thus signifying that we can reject the null hypothesis, namely “the use of dynamic models

does not significantly improve the comprehension of software requirements”. The meta-analysis therefore

strengthens the alternative hypothesis, which can be easily derived.

6.	 Threats	 to	 Validity	

This section discusses the threats that could affect the validity of the results attained.

6.1	 Internal	 validity	

The threat to internal validity is relevant in those studies that attempt to establish a causal relationship. The

experiments presented in this paper aimed to assess whether dynamic models improve the comprehension of

software requirements. In our case, the subjects were students and professionals with varying knowledge and

backgrounds. The Italy 1 subjects were less experienced in dynamic modeling and UML than the subjects of the

other experiments. However, all the subjects found the experimental tasks to be clear, as the post-experiment survey

revealed (see Section 4.3).

A key question in the threat to internal validity is whether the differences observed can be attributed to the

learning effect and not to other causes. Indeed, as the subjects subsequently performed two different comprehension

tasks, it may have occurred that they benefitted from the first task when performing the second one. This fact was

mitigated in all the experiments of the family by the design, since each group worked, over two tasks, on different

requirements in which dynamic models were and were not used. We also assessed the effect of the order of the

investigated methods by using statistical tests. The threat to internal validity has been further mitigated since the

subjects in each group within the same controlled experiment had similar experience with UML and software system

modeling.

Another issue concerns the possible information exchange among the subjects. We prevented this in several ways.

The subjects were monitored by supervisors while performing the experiments. Hence, the subjects were not

allowed to communicate with each other while performing the tasks. The supervisors also controlled that no

communication among subjects occurred while passing from the first task to the second. Furthermore, at the end of

 27

each task the subjects were asked to return all the material provided.

With regard to Italy 2 and Spain 1, a different threat to internal validity was present. It was possible that the

subjects of these experiments might have been able to obtain information on the tasks from the Italy 1 subjects.

However, the subjects of the original experiment did not know the Italy 2 and Spain 1 subjects since they resided in

different regions and countries. With regard to Spain 2 and Spain 3, the subjects could not exchange information

because the experiments were conducted in two different contexts and subjects did not know each other.

6.2	 External	 validity	

External validity refers to the approximate truth of conclusions involving generalizations within different

contexts. It may be threatened when experiments are performed with students [18], [37]. Other threats to external

validity could be related to the subjects’ representativeness with regard to software professionals. In our study, the

subjects of the original experiment (Italy 1) had some knowledge of UML and dynamic modeling, as is the case of

the vast majority of young software professionals working in small/medium companies in Italy and Spain. On the

other hand, the Master’s students in Computer Science (i.e., the subjects from Italy 2 and Spain 1) and the PhD

students (i.e., the subjects from Spain 2) were probably better trained in UML and dynamic modeling than most of

professionals from small/medium software companies. However, an increasing number of graduates with UML

modeling skills are being integrated into the software industry market and should therefore become the standard.

Further replications in different contexts are, however, needed to confirm the results attained.

A further threat that might affect the external validity concerns the size and complexity of the tasks used. In our

study, for the first three experiments (i.e., Italy 1, Italy 2, and Spain 1), we used tasks that required about 30 minutes,

thus conditioning their complexity. However, this threat was somewhat alleviated in the last two experiments since

more complex tasks were used. They were chosen to be completed within 45 minutes. Replications using different

and more complex tasks are therefore necessary.

6.3	 Construct	 validity	

Threats to construct validity could greatly affect the results of the family of experiments. In this study, construct

validity may be influenced by the metrics used to obtain a quantitative evaluation of the comprehension of the

software requirements, the comprehension questionnaires, and the post-experiment survey questionnaire. However,

a proper design of the experiments has allowed us to mitigate these threats. Note that the measures used to obtain a

 28

quantitative evaluation of the comprehension have been selected to achieve a balance between the correctness and

completeness of the responses provided by the subjects on a given comprehension questionnaire. Furthermore, this

measure has been employed in several previous controlled experiments [2], [56], [65].

The comprehension questionnaire was designed by one of the authors not involved in the modeling of software

requirements. The questions in this questionnaire were defined to be of a sufficient complexity that they would not

be obvious. This point was also perceived by the subjects of the controlled experiments, as the post-experiment

survey questionnaires revealed. The questions in the comprehension questionnaires were also defined in order to

avoid affecting the results in favor of one of the treatment. The questions were also phrased to be answered as

multiple choice answers. This reduced possible ambiguities in answering the questions and enabled the subjects to

accomplish the tasks within the expected time.

Multiple-choice answers also enabled us to easily obtain the subjects’ comprehension scores in the

comprehension tasks. We should also point out that at the end of each task these questionnaires were collected by

the experiment supervisors. In order to obtain the software requirements comprehension, two researchers in each

experiment worked together to analyze the comprehension questionnaires and compute the precision, recall, and F-

measure values.

The post-experiment survey questionnaire was designed to capture the subjects’ perception of the tasks. Our

objective was principally to support and explain the quantitative results of the experiments by providing qualitative

insight from the questionnaire data. Hence, the post-experiment questionnaire was not intended to statistically

analyze the impact of the considered dependent variable on the factor under study. Furthermore, the post-experiment

questionnaire was designed by using standard methods and scales [53].

To avoid social threats caused by evaluation apprehension, the students were not graded on the results they

obtained. Moreover, the subjects were not aware of the experimental hypothesis. Finally, it is important to point out

that the experimentation discussed here was carried out to evaluate whether dynamic models improve the

comprehension of software requirements. Ease of comprehension/interpretation of the requirements specification

was thus the sole criterion examined, since it represents a key issue for establishing agreement among stakeholders.

6.4	 Conclusion	 validity	

Threats to conclusion validity concern the issues that affect the ability to draw a correct conclusion. In this study,

threats to conclusion validity concern the selection of the subjects, the data collection, the measurement reliability,

 29

and the validity of the statistical tests. With regard to the selection of the populations, we drew fair samples and

conducted our experiments with subjects belonging to these samples. Proper tests were performed in order to

statistically reject the null hypothesis. In these cases, differences were found, but they were not significant, as has

been explicitly mentioned and discussed. Moreover, the aggregate measure used allowed us to objectively assess the

comprehension achieved by the subjects on the software requirements. Further replications on a larger dataset,

preferably using professionals with different levels of experiences, are nevertheless needed to confirm the results of

the family of the experiments presented here.

7.	 Related	 Work	 	

This section discusses the related literature concerning empirical studies aimed at: (i) assessing the use of UML

behavioral diagrams (also considering interaction diagrams) [52] in comprehension and maintenance tasks; (ii)

evaluating the influence of subjects’ ability and experience.

7.1	 UML	 Behavioral	 Diagrams	

Several empirical studies, with different purposes, have recently been proposed to assess both the comprehension

of behavioral diagrams (e.g., statechart and sequence) and the support that they provide in the execution of

maintenance tasks. For example, Cruz-Lemus et al. [26] presented a controlled experiment on UML statechart

comprehension. This study revealed that the use of composite states in a UML statechart improves the

understandability of the diagrams when subjects had previous used them.

Dzidek et al. [30] reported on the results of a controlled experiment conducted with professional developers to

investigate the costs and benefits of using UML documentation (including, for example, use case diagrams and

sequence diagram) in the maintenance and evolution of existing software systems. The main result was that the use

of UML made a significant impact on the functional correctness of the maintenance operations, even if it did not

make a significant impact in terms of the time needed to perform the tasks. In contrast, the impact of UML models

on software maintenance and evolution was investigated in [4]. This study suggested that the availability of design

documentation based on UML may significantly improve the functional correctness of both changes and the design

quality when complex tasks have to be accomplished.

With regard to the works that study the comprehension of dynamic models, from the point of view of the

modeling technique employed, Britton et al. [14] performed an experiment to investigate the relationship between

 30

user preferences in the UML sequence or collaboration diagrams with their accuracy in understanding information

modeled using these diagrams. The context of the study consisted of first year Computer Science students. The study

revealed that the effect of the diagram type was not significant. Moreover, user preference for sequence diagram

before performing the tasks was not related to significantly better performances with sequence diagrams.

The use of stereotypes to improve comprehension in UML class and collaboration diagrams was analyzed by

Kuzniarz et al. [47]. The data analysis revealed that the use of stereotypes significantly helps both students and

industrial developers to improve comprehension. Genero et al. [33] also investigated the use of stereotypes in the

comprehension of sequence diagrams. The goal of this experiment was to provide empirical evidence on the

influence of stereotypes when modelers, developers, and maintainers have to comprehend UML sequence diagrams.

The results of the study showed a slight tendency in favor of the use of stereotypes in facilitating the comprehension

of sequence diagrams. In [66], Xie et al. studied the improvement in comprehension of UML sequence diagrams

with adornments to support understanding of thread interactions in concurrent programming. The results of the

experiment showed that these diagrams, as opposed to purely textual representations, help students to better

understand concurrent executions and concurrency concepts.

In [35], Glezer et al. performed a controlled experiment in which both the comprehensibility and quality of

sequence and collaboration diagrams were investigated in two application domains: Management Information

Systems (MIS) and Real-Time (RT) systems. The results indicated that collaboration diagrams were easier to

comprehend than sequence diagrams in RT systems, but that there was no difference in comprehension of the two

diagram types in MIS. Irrespective of the diagram type, it was easier to comprehend MIS interaction diagrams than

those of RT systems. With regard to diagram quality, in the case of MIS, analysts created collaboration diagrams of

a better quality than sequence diagrams, but there was no significant difference in the quality of the diagrams created

in RT systems.

A comparison of the semantic comprehension of three dynamic UML notations, namely sequence, collaborations,

and statechart diagrams was performed by Otero and Dolado in [54]. The empirical study revealed that the

comprehension of dynamic models generally depended on the diagram type and on the complexity of the

functionality. However, they also found that software design documents were more comprehensible when sequence

diagrams were used to model dynamic behavior. In a subsequent study [55], the same authors observed that the

specification of the dynamic behavior using OML (Open Modeling Language) was faster to comprehend and easier

to interpret than when using UML.

 31

Finally, it is worth mentioning the growing interest of both academia and industry in Domain-Specific Modeling

(DSM) languages. The proponents of these languages claim that a key driver of DSM is easier comprehension of

system structure and behavior, which should make building, evaluating, and maintaining models easier. In this

context, Cao et al. [17] investigated how the use of a DSM language or UML affects model comprehension, the

correctness of changes, and the degree of changes made during a maintenance task. The experimental results showed

that structural and behavioral maintenance can be significantly easier and faster with a DSM language than with

UML.

7.2	 Subjects’	 Ability	 and	 Experience	

Briand et al. [12] established that training is required in order to achieve better results when UML is completed

with the use of OCL (Object Constraint Language) [51]. The authors found that OCL has the potential to improve an

engineer’s ability to understand, inspect, and modify a system modeled with UML. A significant interaction between

ability and treatment in the case of defect detection was also observed.

With regard to the use of stereotypes to enhance comprehension, Ricca et al. [56] presented the results of four

experiments carried out to assess the effectiveness of the UML stereotypes proposed by Conallen [22] to design

Web applications. The experiments involved subjects with different levels of experience and ability. The data

analysis revealed that it was not possible to conclude that the use of stereotypes significantly improves the subjects’

comprehension. However, the analysis highlighted that ability significantly interacts with the treatment considered

(i.e., using or not using Conallen's stereotypes). Indeed, subjects with a low ability achieved significant benefits

from the use of stereotypes, while subjects with a high ability obtained a comparable comprehension level with or

without using stereotypes. The authors thus concluded that the use of stereotypes reduces the gap between novice

and experienced software engineers.

Canfora et al. [16] conducted an empirical investigation with students with different backgrounds, i.e., non

computer science and computer science. The goal was to evaluate how the students’ backgrounds affect the

knowledge built when tasks are performed in pairs. The results indicated that pairs composed of subjects with

different backgrounds performed worse than pairs composed of subjects with similar backgrounds.

 32

8.	 Conclusion	 and	 Final	 Remarks	

We have reported the results of a family of five experiments conducted to assess whether dynamic models

improve stakeholders’ comprehension when dealing with software requirements. The experiments were performed

in different locations and with subjects including students and professionals of different abilities and levels of

experience with UML.

The context of the original experiment was a group of second-year Computer Science undergraduate students

from the University of Basilicata in Italy. The results of this experiment showed that the subjects judged the use of

dynamic models to be useful, although the statistical tests revealed that there was no significant difference in their

comprehension of software requirements when dynamic models were used. Possible reasons for this might be that

the subjects were familiar with the domain of the specifications employed or that the subjects had no adequate

previous experience in modeling with UML. In order to verify these findings, we carried out four replications of this

experiment with more experienced students and professionals from Italy and Spain. The goal of these replications

was to identify potentially important environmental factors that may affect the experimental results.

The results of all the replications revealed that dynamic models significantly improved the comprehension of

software requirements. The data analysis also indicated the presence of a possible experience threshold, signifying

that subjects with a high ability obtain greater benefit from dynamic models. On the other hand, in those cases in

which dynamic models were not used, low ability subjects comprehended software requirements better. One

possible explanation for this might be the fact that high ability subjects may make several interpretations of the

requirements specifications that only include the static structure of the software systems (represented by the

functional and analysis models). This is an interesting issue from the methodological point of view, and further and

more in-depth empirical investigations into the comprehension of software requirements are needed.

Although the results obtained for the family of experiments indicated that dynamic models improved the way in

which subjects comprehend requirements specifications, we performed a meta-analysis to aggregate the results of

the different empirical studies in order to obtain stronger experimental evidence. The overall results of the meta-

analysis showed that dynamic models significantly improved the comprehension of software requirements.

Although the experiments involved trained students and professionals as subjects, if we are to confirm and

generalize our results, it is necessary to replicate the experiments on other subjects, including a large group of

professionals with different levels of experience. Future work will be also devoted to investigating how the system

 33

domain affects the subjects’ comprehension. It would also be worth analyzing whether the additional effort and cost

involved in creating a dynamic model is paid back by the improved comprehension (from 15% for Spain 2 and

Spain 3 to 22% for Italy 2) of the software requirements. In fact, from a managerial point of view, the adoption of

dynamic modeling should take into account the costs it implies.

Acknowledgments	

The authors would like to thank all the subjects who participated in the experiments.

References	

[1] B. Anda, D. I. Sjøberg, and M. Jorgensen, “Quality and understandability of use case models”, Proceedings of

European Conference on Object-Oriented Programming, LNCS 2072, pp .402–428, 2001. Springer-Verlag.

[2] B. Anda, K. Hansen, I. Gullesen, and H.K. Thorsen, “Experiences from Using a UML-Based Development

Method in a Large Safety-Critical Project”, Empirical Software Engineering 11(4), pp. 555-581, 2006.

[3] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo, “Recovering traceability links between code

and documentation”. IEEE Trans Software Engineering, 28(10), pp. 970–983, 2002.

[4] E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche, “The Impact of UML Documentation on Software

Maintenance: An Experimental Evaluation”, IEEE Transactions on Software Engineering, 32(6), pp. 365–381,

2006.

[5] R. Baeza-Yates and B. Ribeiro-Neto, “Modern Information Retrieval”, Addison-Wesley, 1999.

[6] V.R. Basili, “The Experimental Paradigm in Software Engineering”, Proceedings of the International

Workshop, Experimental Software Eng. Issues: Critical Assessment and Future Directions, LNCS 706, 1993.

Springer-Verlag.

[7] V.R. Basili, R.W. Selby, and D.H. Hutchens, “Experimentation in Software Engineering”, IEEE Transaction on

Software Engineering, 12(7), pp. 733-743, 1986.

[8] V.R. Basili, “The Role of Experimentation in Software Engineering: Past, Current, and Future”, Proceedings of

International Conference on Software Engineering, pp. 442-449, 1996.

[9] V.R. Basili, F. Shull and F. Lanubile, “Building Knowledge through Families of Experiments,” IEEE

Transactions on Software Engineering, 25, pp. 456-473, 1999.

[10] Biostat, Comprehensive Meta-Analysis v2. 2006.

 34

[11] B. W. Boehm, “Software Engineering Economics”, Englewood, Cliffs, NJ: Prentice-Hall, 1981.

[12] L. Briand, Y. Labiche, M. Di Penta, and H. Yan-Bondoc, “An experimental investigation of formality in UML-

based development”, IEEE Transactions on Software Engineering, 31(10), pp. 833–849, 2005.

[13] L. Briand, M. Di Penta, and Y. Labiche, “Assessing and improving state-based class testing: A series of

experiments”, IEEE Transaction on Software Engineering, 30(11), pp. 770–793, 2004.

[14] C. Britton, M. Kutar, S. Anthony, T. Barker, S. Beecham, and V. Wilkinson, “An empirical study of user

preference and performance with UML diagrams”, IEEE Symposia on Human Centric Computing Languages

and Environments, pp. 31–33, 2002. IEEE press.

[15] B. Bruegge and A. Dutoit, “Object-Oriented Software Engineering Using UML, Patterns, and Java”, Prentice

Hall, 2004.

[16] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C.A. Visaggio, “Confirming the Influence of Educational

Background in Pair- Design Knowledge through Experiments,” Proc. of ACM Symposium Applied Computing,

pp. 1478-1484, 2005.

[17] L. Cao, B. Ramesh, and M. Rossi, “Are Domain-Specific Models Easier to Maintain Than UML Models?”,

IEEE Software, 26(4), pp.19–21, 2009.

[18] J. Carver, L. Jaccheri, S. Morasca, and F. Shull, “Issues in using students in empirical studies in software

engineering education”, Proceedings of International Software Metrics Symposium, pp. 239–249, 2003. IEEE

press.

[19] J. Cohen. Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Earlbaum Associates,

Hillsdale, NJ, 1988.

[20] M. Ciolkowski, F. Shull, and S. Biffl, “A family of experiments to investigate the influence of context on the

effect of inspection techniques”. Proceedings of the 6th International Conference on Empirical Assessment in

Software Engineering, Keele, UK, pp. 48–60, 2002.

[21] M. Colosimo, A. De Lucia, G. Scanniello, and G. Tortora “Evaluating Legacy System Migration Technologies

through Empirical Studies” International Journal on Information and Software Technology, Elsevier, 51(12),

pp. 433-447, 2009.

[22] J. Conallen, “BuildingWeb Applications with UML”, Addison-Wesley Object Technology Series, 1999.

[23] W. J. Conover, “Practical Nonparametric Statistics”, Wiley, 3rd edition, 1998.

 35

[24] G. Costagliola, A. De Lucia, F. Ferrucci, C. Gravino, and G. Scanniello “Assessing the Usability of a Visual

Tool for the definition of E-learning Processes”, International Journal of Visual Languages & Computing,

Elsevier, (available at http://dx.doi.org/10.1016/j.jvlc.2008.01.003).

[25] K. Cox, A. Aurum, and R. Jeffery, “An Experiment in Inspecting the Quality of Use Case Descriptions”,

Journal of Research and Practice in Information Technology, 36(4), pp. 211–229, 2004.

[26] J. A. Cruz-Lemus, M. Genero, M. E. Manso, S. Morasca, and M. Piattini, “Assessing the understandability of

UML statechart diagrams with composite states - A family of empirical studies”. Empirical Software

Engineering, 14 (6), pp. 685-719, 2009.

[27] J. L. Devore and N. Farnum, Applied Statistics for Engineers and Scientists, Duxbury, 1999.

[28] G. A. Di Lucca and A. R. Fasolino, “Testing Web-based applications: The state of the art and future trends”,

Information & Software Technology, 48(12), pp. 1172-1186, 2006.

[29] A. Davis, ”Software Requirements: Objects, Functions and States”, Prentice Hall, 1993.

[30] W. J. Dzidek, E. Arisholm, and L. C. Briand, “A Realistic Empirical Evaluation of the Costs and Benefits of

UML in Software Maintenance”, IEEE Transactions on Software Engineering, 34(3), pp. 407-432, 2008.

[31] N. Fenton, “How Effective Are Software Engineering Methods?” Journal of Systems and Software, 22(2), pp.

141-146, 1993.

[32] A. Finkelstein, “Requirements engineering: an overview”, Proceedings of Asia-Pacific Software Engineering

Conference, 1993.

[33] M. Genero, J.A. Cruz-Lemus, D. Caivano, S. Abrahão, E. Insfran, and J.A. Carsí, “Assessing the Influence of

Stereotypes on the Comprehension of UML Sequence Diagrams: A Controlled Experiment”, Proceedings of

International Conference on Model Driven Engineering Languages and Systems, LNCS Volume 5301,

Springer Berlin / Heidelberg, pp. 280-294, 2008.

[34] G.V. Glass, B. McGaw, and M.L. Smith, Meta-Analysis in Social Research: Sage Publications, 1981.

[35] C. Glezer, M. Last, E. Nachmany, and P. Shoval, “Quality and comprehension of UML interaction diagrams: an

experimental comparison”, Information and Software Technology, 47(10), pp. 675–692, 2005.

[36] C. Gravino, G. Scanniello, and G. Tortora, “An Empirical Investigation on Dynamic Modeling in Requirements

Engineering”, Proceedings of International Conference on Model Driven Engineering Languages and Systems,

LNCS Volume 5301, Springer Berlin / Heidelberg, pp. 615-629, 2008.

 36

[37] J. E. Hannay and M. Jørgensen, “The Role of Deliberate Artificial Design Elements in Software Engineering

Experiments”, IEEE Transactions on Software Engineering, 34(2), pp. 242–259, 2008.

[38] L. V. Hedges and I. Olkin, Statistical Methods for Meta-Analysis: Academia Press, 1985.

[39] S.E. Hove, and B.C.D. Anda, “Experiences from Conducting Semi-Structured Interviews in Empirical Software

Engineering Research, Proceedings of International Software Metrics Symposium, pp. 1-10, 2005. IEEE CS

Press.

[40] M .Höst, B. Regnell, and C. Wholin, “Using students as subjects—a comparative study of students and

professionals in lead-time impact assessment”. In Proceedings of the 4th Conference on Empirical Assessment

and Evaluation in Software Engineering, Keele University, UK, pp. 201–214, 2000.

[41] M. Jackson, “Software Requirements and Specifications: A Lexicon of Practice, Principles and Prejudices”,

Addison Wesley, 1995.

[42] N. Juristo, N. and A.M. Moreno, “Basics of Software Engineering Experimentation”, Kluwer Academic

Publishers, 2001.

[43] V. Kampenes, T. Dybå, J.E. Hannay, and D.I.K. Sjøberg, “A Systematic Review of Effect Size in Software

Engineering Experiments”. Information and Software Technology, 49 (11-12), pp. 1073-1086, 2007.

[44] B.A. Kitchenham, “Guidelines for performing Systematic Literature Reviews in Software Engineering”,

Version 2.3, EBSE-2007-01 Technical Report, Keele University & University of Durham, July 2007.

[45] B. A. Kitchenham, S. Pfleeger, D. C. Hoaglin, K. El Emam, and J. Rosenberg, “Preliminary Guidelines for

Empirical Research in Software Engineering”, IEEE Transactions on Software Engineering, 28(8), 721–734,

2002.

[46] R. Koschke, “Survey of Research on Software Clones”, Duplication, Redundancy, and Similarity in Software,

2006, http://drops.dagstuhl.de/opus/volltexte/2007/962.

[47] L. Kuzniarz, M. Staron, and C. Wohlin, “An empirical study on using stereotypes to improve understanding on

UML models”, Proceedings of International Workshop on Program Comprehension, pp. 14–23, 2004. IEEE

Computer Society.

[48] R.M. Lindsay and A.S.C. Ehrenberg, “The Design of Replicated Studies”, The Am. Statistician, 47, pp. 217-

228, 1993.

[49] T. Nakajo and H. Kume, “A case history analysis of software error cause-effect relationships”, IEEE

Transactions on Software Engineering, 17(8), pp. 830–838, 1991.

 37

[50] B. Nuseibeh and S. Easterbrook, “Requirements engineering: a roadmap”, Proceedings of the Conference on the

Future of Software Engineering, pp. 35–46, 2000.

[51] OMG. Object constraint language (OCL) specification, version 2.0, 2005.

[52] OMG. Unified Modeling Language (UML) Specification, version 2.0, 2005

[53] A. N. Oppenheim, “Questionnaire Design, Interviewing and Attitude Measurement”, Pinter Publishers, 1992.

[54] M. C. Otero and J. J. Dolado, “An initial experimental assessment of the dynamic modelling in UML”,

Empirical Software Engineering, 7(1), pp. 27–47, 2002.

[55] M. C. Otero and J. J. Dolado, “An empirical comparison of the dynamic modeling in OML and UML”, Journal

of Systems and Software, 77(2), pp. 91–102, 2005.

[56] F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato, “How Developers' Experience and Ability

Influence Web Application Comprehension Tasks Supported by UML Stereotypes: A Series of Four

Experiments,” IEEE Transactions on Software Engineering, 36(1), pp. 96-118, 2010.

[57] R. Rosenthal, Meta-Analytic Procedures for Social Research: Sage Publications, 1986.

[58] P. Royston, “An extension of Shapiro and Wilk’s test for normality to large samples”, Applied Statistics, 31(2),

pp.115-124, 1982.

[59] C. B. Seaman, “Qualitative Methods in Empirical Studies of Software Engineering”, IEEE Transaction on

Software Engineering, 25(4), pp. 557-572, 1999.

[60] D. I.K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N. Liborg, and A. C. Rekdal, “A

Survey of Controlled Experiments in Software Engineering”, IEEE Transaction on Software Engineering,

31(9), pp. 733-753, 2005.

[61] D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dybå, M. Jørgensen, A. Karahasanovic, and M. Vokác. “Challenges

and recommendations when increasing the realism of controlled software engineering experiments”. ESERNET

2001-2003, LNCS 2765, pages 24-38, 2003.

[62] J. A. Sutton, R. K. Abrams, R.D. Jones, A.T. Sheldon, and F. Song, Methods for Meta-Analysis in Medical

Research: John-Wiley & Sons, 2001.

[63] R. J. Wieringa, “Requirements Engineering: Frameworks for Understanding”, Wiley, 1996.

[64] C.Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A.Wesslen, “Experimentation in Software

Engineering - An Introduction”, Kluwer, 2000.

 38

[65] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller, “Mining version histories to guide software changes”,

IEEE Transactions on Software Engineering, 31(6), pp. 429–445, 2005.

[66] S. Xie, E. Kraemer, and R.E.K. Stirewalt, “Empirical Evaluation of a UML Sequence Diagram with

Adornments to Support Understanding of Thread Interactions”, Proceedings of 15th IEEE International

Conference on Program Comprehension, pp. 123-134, 2007.

