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Abstract

Plasma microinstabilities, which can be described in the framework of the
linear gyrokinetic equations, are routinely computed in the context of sta-
bility analyses and transport predictions for magnetic confinement fusion
experiments. The GENE code, which solves the gyrokinetic equations, has
been coupled to the SLEPc package for an efficient iterative, matrix-free,
and parallel computation of rightmost eigenvalues. This setup is presented,
including the preconditioner which is necessary for the newly implemented
Jacobi-Davidson solver. The fast computation of instabilities at a single pa-
rameter set is exploited to make parameter scans viable, that is to compute
the solution at many points in the parameter space. Several issues related
to parameter scans are discussed, such as an efficient parallelization over
parameter sets and subspace recycling.
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1. Introduction

In magnetically confined high temperature plasmas as they occur in fusion
experiments, temperature and density profiles are determined by turbulent
transport. Given that the relevant time scales are usually clearly above the
particles’ gyration times, this so-called microturbulence can be described in
the framework of gyrokinetic theory [1] which is a reduced kinetic model,
neglecting the fast gyrophase dependence. It describes the plasma as a col-
lection of quasiparticles (charged rings) in a five-dimensional phase space,
coupled via a modified form of Maxwell’s equations. Assuming that the sys-
tem size clearly exceeds the radial correlation length of the turbulence, it is
common to make a (radially) local approximation, reducing the simulation
volume to a thin flux tube [2]. Moreover, if one is only interested in the
microinstabilities which drive the turbulence, the gyrokinetic equations may
be linearized. While greatly reducing the overall computational effort, this
still allows to make valuable predictions concerning the expected properties
of the resulting turbulent transport.

In local gyrokinetics, the time evolution of the modified distribution func-
tion g of the gyrocenters can schematically be written as [3]

∂tg = Lg +N [g] .

Here, the distribution function g is a function of the two spatial coordinates
(kx, ky) perpendicular to the background magnetic field, the parallel coor-
dinate z, the two velocity space coordinates (parallel velocity and magnetic
moment) (v‖, µ), the species index s, and time t. L is the linear gyrokinetic
operator and N [g] is the quadratic E×B nonlinearity; both operators are of
integro-differential form.

The turbulence in the nonlinear system is driven by linear instabilities,
i.e., eigenmodes of L with positive real part of the eigenvalue. Investiga-
tions of the growth rate and frequency (i.e., real and imaginary parts of the
eigenvalue) of these instabilities, which occur owing to temperature and den-
sity gradients of the background, already give some information about the
behaviour of the system. Furthermore, the eigenvalues and -vectors can be
used to construct quasilinear models (see, e.g., Ref. [4]).

The linear operator L is block diagonal in ky and only couples certain
kx values. The problem size of a linear computation is very much reduced
compared to a nonlinear simulation, where the nonlinearity couples all val-
ues in the kx, ky plane. Linear investigations are therefore computationally
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much less demanding than full nonlinear turbulence simulations. This can be
exploited to perform high dimensional parameter scans, which allows, e.g.,
for checks of the robustness of a simulation result with respect to variations
about a nominal set of parameters, predictive simulations of fusion plasmas,
and the optimization of experimental parameters.

For a general set of background gradients, several modes are unstable.
While the most unstable mode is usually the most interesting one for quasi-
linear models, parameter variations lead to variations of the growth rates and
therefore to transitions of the most unstable mode. The most unstable mode
can be computed both as initial and eigenvalue problem, but mode transi-
tions can only be monitored if an eigenvalue solver is used. Furthermore, the
computation time for the initial value approach diverges exactly at a mode
transition. Since the results of Ref. [4] suggest that subdominant modes only
contribute to the nonlinear properties if they are similar in growth rate to
the most unstable mode, only the dominant and the first subdominant mode
are considered.

This paper is organized as follows. In the next section, we introduce
the equations solved in the gyrokinetic GENE code and present the test case
which will be used throughout this paper. In Section 3, the interface between
the GENE code, which implements the gyrokinetic equations, and the SLEPc
library, which is used for the eigenvalue computations, is described, with focus
on the recently implemented Jacobi-Davidson solver and the preconditioner,
which is necessary for good performance. In Section 4, we discuss strategies
to efficiently process large numbers of eigenvalue computations, including
subspace recycling and parallelization. The capability of the resulting setup
is demonstrated for an example in Section 5. Finally, Section 6 closes with a
summary.

2. The GENE code

Since the nonlinear gyrokinetic equations generally do not allow for an-
alytic solutions, they have to be solved numerically. A state-of-the-art
gyrokinetic solver is provided by the GENE code [5, 6, 7, 8]. GENE is
physically comprehensive and flexible, computationally efficient, and hy-
perscalable. GENE is being further developed by an international team
and is freely available. More details can be found on the GENE website
(http://gene.rzg.mpg.de).

3



In the context of the present work, we will focus on the linearized gy-
rokinetic equations as implemented in GENE. We start by noting that the
linear gyrokinetic operator is a complex, non-Hermitian integro-differential
operator. It can be split in two parts

L = Lg + Lχ ,

where

Lg = −
T0s(2v

2
‖ + µB0)

qsB0

(Kyiky +Kxikx)−
vTs

JB0

v‖
∂

∂z
+

vTs

2JB0

µ∂zB0

∂

∂v‖

is a differential operator acting directly on g, and Lχ is a more complicated
operator that contains the various derivatives of the (gyro-averaged) electro-
magnetic fields. It can be written as

Lχg =−

(

ωn + (v2‖ + µB0 −
3

2
)ωTs

)

F0sikyχs −
2v2‖ + µB0

B0

F0 (Kyiky +Kxikx)χs

−
vTs

JB0

v‖
qs
T0s

F0∂zχs −
2qs

msJB0

v2‖µF0Ā‖s(∂zB0)

−
qs

msJB0

µ(∂zB0)Ā‖s(∂v‖v‖F0s),

where
χs = φ̄s − vTsv‖Ā‖s

is a combination of the electromagnetic fields φ and A‖ (the bars denote
gyro-averaging). Its dependency on the species index s is introduced by
the gyro-averaging operator. The fields are computed from g by the linear
operators

φ =

∑

s n0sπqsB0

∫

J0(λs)gsdv‖ dµ

k2
⊥λ

2
D +

∑

s
q2
s

T0s

n0s(1− Γ0(bs))

A1‖ =

∑

s
β

2
qsns0vTsπB0

∫

v‖J0(λs)gs(~k)dv‖ dµ

k2
⊥ +

∑

s
βq2

s

ms

n0sπB0

∫

v2‖J
2
0 (λs)F0sdv‖ dµ

.

For the definitions of the prefactors, see [7]. The derivatives are discretized
with (centered) finite differences in GENE, leading to a banded structure of
Lg. The field operators contain integrals in the v‖, µ and s coordinates and
therefore leads to a large bandwidth of Lχ, which is inherited by L.
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Table 1: Test case I: GENE configuration for an ITG mode with growth rate of 0.2055
and frequency of 0.2872 and a subdominant TEM (0.1227− 0.4494i).

Dir. Resol. Boxsize Geom. & other params. Param. Ions Electrons

s 2 geom. circular R/Ln 2.5 2.5
x 5 ŝ 0.8 R/LT 3.5 4.0
y 1 ky,min 0.25 q0 1.4 mass 1.0 0.00027
z 16 trpeps 0.18 charge 1.0 -1.0
v 48 lv 3.0 β 0.001 T 1.0 1.5
µ 8 lµ 9.0 (hypz, hypv) (2, 0.5) dens 1.0 1.0

Since a computation based on an explicit representation of a matrix
with this structure would be very inefficient, the operator is implemented
in a matrix-free form in GENE, exploiting the knowledge about the integro-
differential structure of the operator.

The default parameter set that will be used as a test case throughout this
paper is specified in Table 1. It corresponds to the parameter set 4 of the
SLEPc testsuite provided by GENE. For this parameter set, a dominant ion
temperature gradient (ITG) mode and a subdominant collisionless trapped
electron mode (TEM) can be observed. To simplify the notation, we represent
the v‖ coordinate as v in Table 1 and in the rest of the paper.

3. Fast eigenvalue computations

The GENE code was coupled to the SLEPc package [9, 10] several years
ago and since then it has been routinely used to compute the spectral radius
of the linear operator. This allows the exact determination of the maximum
allowed time step for the Runge-Kutta scheme used in initial value compu-
tations. Apart from this rather technical application, the investigation of
a selected subset of eigenvalues and eigenvectors is of great physical inter-
est and can be used, e.g., in the context of quasilinear models (see, e.g.,
Refs. [6, 11, 4]). Of obvious interest are the unstable eigenmodes (i.e., eigen-
modes with positive real part), because they drive the turbulent transport
in fusion plasmas.

The approach presented here can be used to compute any part of the
spectrum (critical gradients, stable eigenmodes that are relevant for the sat-
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uration of the nonlinear system). It is well known that eigensolvers have
much more difficulties, in terms of convergence, when computing interior
eigenvalues, compared to eigenvalues in the periphery of the spectrum. In
the case of unstable modes, the eigenvalues of interest are the rightmost ones,
which in our case are as difficult to compute as interior eigenvalues because
the spectrum is very elongated along the imaginary axis, and the few modes
with positive growth rate are relatively close to the origin.

Because of the integro-differential structure discussed in the previous sec-
tion, the linear operator L has a banded pattern only in two (kx and z) of the
five dimensions, with the velocity space and species dimensions completely
filled. For our test case, this corresponds to a matrix with almost 4000 non-
zero diagonals for a matrix dimension of around 60000 (here, a non-zero
diagonal is a diagonal k consisting of entries aij with |i− j| = k where some
or all of the entries are different from zero).

The iterative solvers in SLEPc only require the matrix-vector product of
a test vector with the linear operator for the computation of the eigenvec-
tors. This means that no explicit matrix representation has to be computed.
SLEPc can directly use the matrix-vector product with L which is also used
for initial value computations in GENE.

Previous efforts to improve the computation of these rightmost eigen-
values in SLEPc resulted in the implementation of the harmonic projection
method for the Krylov-Schur solver [12], which allowed for the discovery of
non-Hermitian degeneracies of gyrokinetic eigenmodes [3].

Recently, a Jacobi-Davidson solver has been implemented in SLEPc [13,
14]. The performance of this solver depends, in contrast to the previously
used solver, on effective preconditioning methods for the correction equation.
We next give details related to this approach.

3.1. Eigenvalue solver

Iterative eigensolvers are usually based on a projection onto a search
subspace of increasing dimension. The expansion of the subspace is done
by computing a new vector at each iteration, until a maximum dimension
is reached (then the method is restarted). At each iteration, eigenvalue ap-
proximations can be obtained from the subspace, either with a Rayleigh-Ritz
procedure or other extraction methods such as the aforementioned harmonic
projection.

In some cases, Krylov methods are limited by the fact that the built sub-
space has to maintain the Krylov structure. As a consequence, convergence

6



can be extremely slow in difficult problems such as the ones discussed in this
paper.

An alternative to Krylov methods are Davidson-type methods, that do
not impose any restriction on the subspace and can thus expand the subspace
with the “best” vector according to some criterion. In particular, these meth-
ods choose one of the eigenvalue-eigenvector approximations (θ, u) contained
in the subspace (e.g., the eigenvalue closest to the target τ specified by the
user), then form the residual vector associated to it, r = Au−θu, and finally
compute the so-called correction vector t that will be added to the subspace.

This new vector can be computed by simply preconditioning the residual,

t = K−1r, (1)

as in the Generalized Davidson (GD) method [15], where the preconditioner
K can be viewed as a rough approximation of A− θI. However, in difficult
problems this simple approach is not effective enough. The more sophis-
ticated Jacobi-Davidson (JD) method [16] computes t by (approximately)
solving the so-called correction equation: a system of linear equations in-
volving the matrix A, the preconditioner K, and a projector P related to K
and the approximate eigenvector u. In particular, in this paper we use

PK−1 (A− θI)Pt = −r̂, P = I −
K−1zu∗

u∗K−1z
, t ⊥ u, (2)

where z ∈ span{Au, u} and r̂ = PK−1r. Furthermore, we employ algorith-
mic techniques similar to the JDQZ variant [17], in order to enable the use
of harmonic extraction in a numerically stable way. Additional details about
the algorithm and its use in the context of the GENE code can be found in
[14], except for the preconditioning which will be treated in this paper.

Another drawback of Krylov methods is that they start building the sub-
space from a single vector. If one has an a priori knowledge of a rough
approximation of the wanted eigenspace, e.g., from a closely related eigen-
problem, then this knowledge cannot be exploited. In contrast, Davidson
methods can indeed benefit from using a rough approximation of the so-
lution as initial guess. The explanation is that Davidson methods can be
viewed from the perspective of inexact Newton schemes [18]. Thus, a good
starting solution can improve convergence considerably, with the correspond-
ing reduction of the overall cost. We will exploit this fact in parameter scans,
see section 4.
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3.2. Overview of SLEPc and PETSc

SLEPc, the Scalable Library for Eigenvalue Problem Computations
[9, 10], is a software package for the solution of large-scale eigenvalue prob-
lems on parallel computers. It can be used to solve a variety of eigenvalue
problems, including standard and generalized problems, both Hermitian and
non-Hermitian, as well as other types of problems such as the quadratic
eigenvalue problem or the singular value decomposition. SLEPc can work
with either real or complex arithmetic, in single or double precision.

SLEPc offers a number of iterative eigensolvers, as described in the pre-
vious subsection. In particular, it provides a parallel implementation of the
Krylov-Schur method, as well as GD and JD solvers, with various possibilities
for the computation of the correction vector. In the Davidson-type methods
(GD and JD), the user can easily select which preconditioner to use, via
PETSc as described below.

SLEPc is built on top of PETSc (Portable, Extensible Toolkit for Scien-
tific Computation, [19, 20]), a parallel framework for the numerical solution
of partial differential equations, which is based on defining basic abstract
data objects such as vectors and matrices, and building solver objects on
top of them, including linear, nonlinear and time-stepping solvers. SLEPc
inherits all the good properties of PETSc, including portability to a wide
range of parallel platforms, scalability to a large number of processors, and
run-time flexibility giving full control over the solution process (one can for
instance specify the solver at run time, or change relevant parameters such
as the tolerance or the size of the subspace basis).

For the solution of linear systems, PETSc provides a list of iterative
solvers such as GMRES, together with a variety of preconditioners including
Jacobi (diagonal) preconditioning, and block Jacobi/additive Schwarz (with
a choice of incomplete factorizations for the blocks). See [21] for details
about the algorithms. It is also possible to use preconditioners available in
third-party packages that are seamlessly integrated into PETSc.

Both in SLEPc and PETSc, iterative solvers can be employed in a matrix-
free manner, that is, accessing the matrix only via matrix-vector product
operations. However, this limits part of the functionality, most notably the
construction of preconditioners.

3.3. Approximate explicit matrix representation for the preconditioner

Most preconditioning techniques are based on explicitly building a pre-
conditioner based on information about the individual entries of the matrix,
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e.g., computing an incomplete factorization or a sparse approximate inverse.
Those techniques are not viable to compute a preconditioner for a matrix-free
operator. Only methods that are based solely on the information collected
from matrix-vector products could be used, for instance using a Krylov iter-
ative solver as a preconditioner. However, our experience with these nested
Krylov techniques indicates that they are not competitive, at least for our
application.

Since an explicit representation of the full linear operator L cannot be
used for the reasons given above, we have opted for constructing the pre-
conditioner from the explicit representation of Lg, which can be viewed as a
rough (sparse) approximation of L. The bandwidth of this operator is much
smaller (only 9 diagonals for our test case), but it still contains important
contributions like, e.g., the parallel electron dynamics, which usually is the
dominant advection term of the linear operator and therefore largely deter-
mines its spectral radius. The Lg matrix is stored in parallel sparse matrix
format provided by PETSc, and the time for its computation is negligible.

We next describe the two preconditioning techniques that we have tested,
namely additive Schwarz and parallel ARMS.

3.4. ASM+ILU preconditioner

Having an explicit representation of the matrix Lg, preconditioners can be
built with the standard PETSc packages. The linear system has to be solved
in parallel and thus it has to be distributed to the different MPI processes.
A first step would be to compute a preconditioner from a block diagonal
approximation by Lg ≈

∑

i RiLgRi with Ri being a diagonal matrix having
ones only for the indexes belonging to the ith subdomain. For the additive
Schwarz method (ASM) [22] even points outside the domain are added if they
have a neighbor of δth order being inside the domain. Thus the differential
operator Lg can be approximated by

Lg ≈
∑

i

Lδ
gi =

∑

i

Rδ
iLgR

δ
i (3)

with Rδ
i being the restriction operator involving also the δth order neighbor.

The overlap δ is thus representing the interaction between neighboring
subdomains and is thus a measure of the required communication between
the subdomains. Since the linear operator Lg is just containing a few diag-
onals, the number of δth order neighbors is rather small and requiring few
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computational resources for communication. The main idea of that domain
decomposition is to create a preconditioner K being a sum of preconditioners
Ki, which are themselves constructed from the Lδ

gi. The overall system to
solve is then

∑

i

Ki

(

Lδ
gi

)

Lgx =
∑

i

Ki

(

Lδ
gi

)

b (4)

which can be done in parallel since both the computation of the precondi-
tioner and the evaluation of the linear gyrokinetic operator are distributed
on the respective processes via MPI and PETSc.

The explicit representation of Lδ
gi allows the construction of an incom-

plete LU (ILU) decomposition [21] L̃iŨi with its inverse being computable
cheaply via forward/backward substitution. This allows the construction of
a preconditioner by

K =
∑

i

Ki =
∑

i

(

L̃iŨi

)−1

≈
∑

i

(

Lδ
gi

)−1
≈ L−1

g (5)

in parallel. Doing only an incomplete LU decomposition has the advantage
of preserving the sparsity of Lδ

gi, since a full decomposition would lead to a
large fill-in which is requiring a lot of additional memory. PETSc allows one
to set a maximum level of fill-in, which is limiting the creation of entries from
other filled in values to preserve the sparsity pattern. Also the ILU decompo-
sition creates less fill-in if the ordering of the matrix is optimized. Different
reorderings exist and the quotient minimum degree [23] reordering seemed
to provide the best results for our purposes. All mentioned algorithms are
provided by PETSc and could thus be easily connected with the eigenvalue
computation in SLEPc.

3.5. pARMS preconditioner

The pARMS preconditioner [24, 25] is a parallel, multi-level precondi-
tioner based on the Schur complement and algebraic recursive multilevel
solver (ARMS) techniques.

Given a system of linear equations Ax = b that is written in block form
[

B F
E C

] [

x1

x2

]

=

[

b1
b2

]

, (6)

the idea is to compute an incomplete block LU decomposition of A as
[

B F
E C

]

≈

[

L 0
EU−1 I

] [

U L−1F
0 S

]

, (7)
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where LU is an incomplete factorization of B and the Schur complement
matrix is S = C − (EU−1)(L−1F ).

As in the case of Schwarz preconditioners, pARMS is also based on the
domain decomposition idea. In this case, all the unknowns interior to the
different subdomains are placed in the x1 part in (6), whereas the x2 part con-
tains unknowns corresponding to the interface between subdomains. There-
fore, a permutation is required for reordering the unknowns. The ARMS
method consists in applying the permutation and incomplete factorization
to the Schur complement S recursively for a given number of levels. In par-
allel, pARMS distributes the available subdomains across processors. For
further details, see [24, 25].

There is an MPI implementation of the pARMS preconditioner1. As part
of this work, we have integrated it as an external package in PETSc 3.2.

3.6. Results for one parameter set

We now present results from some experiments to evaluate different eigen-
solver configurations. The tests are executed on HPC-FF, a Linux cluster
of 1080 nodes composed of two Intel Xeon X5570 (Nehalem-EP) Quad-Core
processors at 2.93 GHz and 24 GB of DDR3 memory at 1066 MHz, and
interconnected by Infiniband QDR with non-blocking Fat Tree topology.

The results correspond to GENE 1.5 linked with versions 3.2 of PETSc
and SLEPc. All code is compiled with Intel C and Fortran Compilers 11.1.

The parameter set used is detailed in Table 1.
The SLEPc JD eigensolver is configured to compute the two eigenvalues

closest to the target τ = 1, with a relative tolerance of 10−5. The search
subspace is bounded to 64 vectors and when it is complete, the method
restarts with 5 vectors. The correction equation is solved in a maximum
of 300 iterations of BiCGstab(2) and with a tolerance of 10−8, accelerated
by a preconditioner K−1 ≈ (Lg − σI)−1 with σ being a constant value (to
avoid recomputing the preconditioner at each iteration). Usually, the shift
σ is taken to be equal to the target τ , but in our experiments we observe a
small improvement by taking slightly larger values of σ than τ (see Figure 1
(right)), so we set σ = 3 as the default value.

1http://www-users.cs.umn.edu/~saad/software/pARMS/
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Figure 1: Influence of the overlap δ (left) and the shift σ of the preconditioner matrix
(right) on the total time. The plots show the mean and the standard deviation (left) and
the minimum time (right) spent by JD with different domain decompositions.

3.6.1. Optimal Settings of the ASM Preconditioner

The Lg matrix exhibits a block diagonal structure in the dimensions s
and µ. When these dimensions prevail in the distribution, the resulting
domains become quite unconnected and the block Jacobi preconditioner is
effective. For other decompositions that have more connected domains, ASM
can provide better preconditioners (in terms of convergence), but with more
time-consuming application, due to the requirement of taking into account
the neighbors of the order determined by the overlap δ.

Of course, the most efficient overlap value depends on the problem settings
and the distribution. However, we obtained good results with an overlap
δ = 2 if fine-grained local preconditioners are used. Figure 1 (left) compares
the performance of JD solving the test case I with different overlap values,
using ASM with ILU as the local preconditioner.

Whereas previous solvers could rely on GENE’s internal automatic opti-
mization of the domain decomposition for a fast evaluation of L, this choice
might not be optimal for the ASM (and Block-Jacobi) preconditioner. Tests
have shown that any decomposition in the z and v directions leads to a
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Table 2: Time (in seconds) spent by JD with ASM+ILU solving the test case I with
different distribution of processes across the directions s, z, v and µ.

s z v µ Time s z v µ Time s z v µ Time
1 processor 4 processors 32 processors
1 1 1 1 73.29 2 1 1 2 24.69 2 1 2 8 3.88
2 processors 1 1 1 4 24.52 2 2 1 8 5.61
2 1 1 1 33.53 16 processors
1 1 1 2 35.20 2 1 1 8 6.29
1 1 2 1 49.48 1 2 1 8 10.45
1 2 1 1 79.88 1 4 1 4 92.50

significant drop in performance due to increased communication, with the
decomposition in z behaving even worse than the one in v (see some exam-
ples in Table 2 and the standard deviations of the time in Figure 1 (left)).
Care has to be taken that the domain decomposition is chosen in a way that
the s and µ directions are decomposed first, followed by a decomposition in
the v direction.

Besides the optimal configuration of the preconditioner, the maximum
iteration of the Jacobi-Davidson solver has to be changed to achieve optimal
runtimes. If the ASM+ILU preconditioner is applied, five iterations of the
BiCGstab algorithm lead to a sufficient accuracy in solving the correction
equation to achieve convergence of the Jacobi-Davidson algorithm in minimal
time.

3.6.2. Optimal Settings of the pARMS Preconditioner

The performance of the pARMS preconditioner is specially sensitive to
the problem settings, the domain distribution and the number of processes,
making it very difficult to find an optimal configuration. For the test case I,
we found the best performance when using ARMS as local preconditioner,
up to 16 levels of recursion, with a drop tolerance of 10−7 and a maximum
fill-in of 90%. The solution obtained by the Schur complement recursive
factorization of pARMS is enriched with up to 5 iterations of FGMRES.

The resulting preconditioner is slightly more expensive than ASM+ILU,
as Figure 2 (left) shows, but pARMS converges with less preconditioner ap-
plications (3313, against 5229 ASM+ILU applications). However, in this
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case JD with ASM+ILU is faster. Notice that the use of preconditioners
shifts the computational effort from GENE (the matrix-vector product, MV
in Figure 2) to the preconditioner application operation.

On the other hand, the overhead of pARMS does not seem to penalize
its parallel performance, as the comparison of speedups shows in Figure 2
(right).

4. Parameter scans

4.1. Subspace recycling

In an m-dimensional parameter scan, all eigenvalue problems are identi-
fied by a vector ~p in the m-dimensional subspace of the physical parameters
varied, while the remaining (physical and numerical) parameters ~p0 are the
same for all eigenvalue problems in the scan. The structure of the linear
operator and most of the parameter values stay the same throughout the
scan, and this should be reflected by a similarity of the eigenvectors. Since
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Figure 3: Computation time for the eigenvalue problem with R/LTi = 4.0 as a function of
the difference to the R/LTi value of the eigenvectors used as initial condition, normalized
to the computation time with random initial vectors.

the initialization of the test vectors has a big influence on the speed of con-
vergence of iterative solvers, the reuse of already computed eigenvectors as
initial condition for a ‘nearby’ parameter set, so-called subspace recycling,
has therefore the potential to speed up parameter scans significantly. To
illustrate this, we have computed a one-dimensional parameter scan over the
ion temperature gradient R/LT i from 2.5 to 5.5 around the nominal param-
eter set. Then the eigenvalue problem corresponding to the central point of
the scan (R/LT i = 4.0) has been repeatedly solved, using the eigenvectors
from the first scan at the different R/LT i positions as initial condition. The
computation time relative to the computation time with random initializa-
tion is show in Fig. 3 as a function of ∆R/LT i = R/Lin

T i − 4.0. As expected,
the computation time drops to almost zero for ∆R/LT i = 0, with only the
time for initialization remaining. The computation time increases quickly
for |∆R/LT i| > 0, but the speedup compared to the computation time with
random initial condition is significant throughout the parameter interval.

This illustrates two points. First of all, if eigenvectors ei,a (a = 1..nev)
for the parameter sets ~pi (i = 1..n, where n is the total number of previously
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computed solutions) are available, subspace recycling can reduce the com-
putation time for a new parameter point ~pn+1 dramatically. And secondly,
since the effect decays rapidly, an optimal selection of i is crucial.

4.2. Distances in parameter space

To speed up the computation for ~pn+1, the ~pi ‘closest’ to ~pn+1 has to be
found. For a one-dimensional scan, the difference vector in parameter space,
~∆i = ~pn+1−~pi, has only one entry, which can naturally be used as a measure
for the distance (as in Fig. 3). For an m-dimensional scan however, ~∆i is
m-dimensional, so that a metric has to be defined in parameter space. Then,
the available ei can be ranked according their |~∆i| and the closest can be
selected.

For multi-dimensional scans, the scan ranges for the different parameter
directions can differ by orders of magnitude, as can the effects of the variation

on the solution, so that a simple Euclidean norm |~∆i| =

√

~∆i · ~∆i does not
make sense. It is reasonable to assume that the speedup of the computation of
the ath eigenvector of ~pn+1 due to initial vector ~ei,b is related to the correlation
coefficient between ei,a and en+1,b,

C(ei,a, en+1,b) =
|
∫

dλ e∗i,aen+1,b|
√

∫

dλ e∗i,aei,a

√

∫

dλ e∗n+1,ben+1,b

,

where
∫

dλ denotes integration over the whole phase space, i.e., over all co-
ordinates including the species. In our test problem, two eigenvalues are
computed for each parameter set (a, b = 1, 2), which results in four com-

binations for C(ei,a, en+1,b). For ~∆i → ~0, two of the correlation coefficients
approach unity, while the other two values approach the (smaller) correlation
coefficient between the eigenvectors at ~pn+1. For the speedup, only the two
combinations with the largest correlation coefficients are of interest, they are
averaged to C(ei, en+1), giving one real scalar quantity for each parameter
combination.

To check the relevance of C(ei, en+1), a set of random sample points ~pi
has been created, with a Gaussian distribution in R/LT i and R/LTe (σ =
0.6) around the nominal parameter set. In a second stage, these ei have
then been used as initial condition for the computation of the problem with
the nominal parameter set. Figure 4 shows the number of iterations as a
function of D′ = 1.0− C(ei, en+1). The number of iterations is proportional
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Figure 4: Number of iterations for the eigenvalue problem with the nominal parameters
as function of D′ = 1.0− C(ei, en+1)

to log(D′), approaching the 217 iterations needed for D′ = 1.0 (random
initial condition). Finding the optimal ei is thus equivalent to finding the
smallest D′. The true 1 − C(ei, en+1) can of course only be determined
after en+1 has been computed, but it can be modeled to a good precision by
D(pi, pn+1) = ~∆T

i ·M ·~∆i ≈ D′. For simplicity, the metric tensorM is assumed
to be constant in parameter space. The entries of M can be determined by
a fit (we use least squares fitting) to data, once the number of data points
exceedsm(m+1)/2, which is the number of unknowns ofM inm dimensions.
For scan intervals that are not too big, we found that M converges quickly
with the number of data points (here, we use 33 = 9 equidistant points,
corresponding to the first refinement stage for the hierarchical scans described
in the next section). The data of Fig. 4 plotted against D(pi, pn+1) is shown
in Fig. 5.

4.3. Parallelization

Going from a single eigenvalue computation to a parameter scan intro-
duces new possibilities for parallelization. Without subspace recycling, the
computations for the different parameter sets are completely independent
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Figure 5: Number of iterations for the eigenvalue problem with the nominal parameters
as function of D

and trivial to parallelize. This means that the individual eigenvalue compu-
tations can be run at their most efficient parallelization (which is determined
by a balance of cache effects, communication overhead, and efficiency of the
parallel preconditioner) and the whole scan can still employ a high number
of processors to complete in a reasonable time.

To exploit this, the GENE solver has been extended to be able to deal
with (independent) sets of input parameter files. In the initialization, the
global MPI communicator is split into n parallel sims new communicators.
On each of these subcommunicators, one (parallel) eigenvalue computation
is run at a time. When the computation has finished, a new parameter set
is selected from the (common) set of input files. The different instances
keep track of the status of computation for each of the input files via MPI
communication, so that each problem is only solved once; this is repeated
until all parameter sets have been computed and GENE exits. In the present
implementation of the solver, the file containing the initial vectors has to
be specified in the input files, so they have to be known before the code is
started.

As has become obvious in the previous subsections, subspace recycling is
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essential for the speed of parameter scans, the question is therefore how we
can combine the benefits of subspace recycling (which introduces dependen-
cies of the parameter sets) and this additional parallelism.

A good solution are hierarchical parameter scans, where the eigenvectors
from previous refinement stages can easily be used as initial vectors, so that
subspace recycling and parallelization over parameter sets can efficiently be
combined. The necessity for a hierarchical sequence of parameter scans oc-
curs naturally for adaptive grid refinement techniques, but even for dense
grid scans without adaptivity, starting with a low resolution in the scan vol-
ume and hierarchically refining by bisection has the benefit of providing an
interpolation for the full scan volume while the scan is still running.

The scans are managed by a superordinated Python script that is part
of the GENE package since release 1.5. Controlled by a master input file,
the script manages the creation of the parameter sets for a refinement stage.
Taking into account all available eigenvectors from the previous stages, it
computes the optimal ei for each ~pn+1 of this new stage. It then starts the
actual GENE code, which treats all parameter points of this refinement stage
as independent and can therefore efficiently parallelize over the parameter
points. The script then collects the results, and manages the storage of the
eigenvectors and other output files, and continues with the next refinement
stage.

5. Application

We now want to demonstrate the gains due to the various improvements
presented in the previous sections. As a test case, we perform a three-
dimensional scan around the nominal parameter set presented in Table 1,
varying the ion temperature gradient between 3.0 and 4.0, the electron tem-
perature gradient between 3.5 and 4.5, and the magnetic safety factor q0
between 1.2 and 1.4. We compute 53 = 125 equidistant points in this pa-
rameter volume and use 64 processors for all cases. The results are shown in
Table 3.
The solvers that have been compared are SLEPc’s Krylov-Schur solver

with harmonic projection, which needs no preconditioning and the Jacobi-
Davidson solver with ASM+ILU preconditioning as described in Section 3.
The parallelization column shows the number of processors per computation
/ number of parallel computations. As can be seen, the most important gain
(a speedup of a factor 7) is due to the new solver/preconditioner. Both the
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Table 3: Wall clock times to compute the test parameter scan on 64 processors.

Solver Parallelization Subspace Recycling Time [s]

Krylov-Schur 64/1 no 2375
Jacobi-Davidson 64/1 no 342
Jacobi-Davidson 8/8 no 264
Jacobi-Davidson 4/16 no 306
Jacobi-Davidson 8/8 yes 202

optimal parallelization (8 cores per eigenvalue computation in this case) and
the subspace recycling lead to further reductions of around 25% each. All in
all, the computation time for eigenvalue scans with GENE/SLEPc has been
reduced by more than an order of magnitude compared to previous versions.

6. Summary

In this paper, we have presented and analyzed advanced numerical meth-
ods to perform large parameter scans with the GENE/SLEPc linear gyroki-
netic eigenvalue solver. Considerable progress has been made concerning the
robustness and speed of each single eigenvalue computation using the Jacobi-
Davidson eigenvalue solver available from SLEPc 3.1 onwards, in combination
with a preconditioner based on an approximate explicit representation of the
linear gyrokinetic operator. In addition, two methods to speed up parameter
scans have been used, namely the recycling of previously computed eigen-
vectors as initial condition for the computation at a nearby parameter set,
and parallelization over the parameter sets, which removes the need to go
to high processor numbers for the single parameter computations and there-
fore increases the efficiency. The performance gains for multi-dimensional
parameter scans using a three-dimensional test case compared to previous
code versions were substantial, reaching a speedup factor of up to 12.

The overall implication of these improvements is that detailed investiga-
tions of the stable and unstable eigenmodes in the multi-dimensional gyroki-
netic parameter space are now computationally feasible. The application of
the techniques described in this paper will certainly contribute to a better
understanding of the important driving mechanisms of turbulent transport
in fusion plasmas.
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