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Abstract

Snapshot Isolation (SI) is commonly used in some commercial DBMSs with a multiversion con-
currency control mechanism since it never blocks read-only transactions. Recent database repli-
cation protocols have been designed using SI replicas where transactions are firstly executed in
a delegate replica and their updates (if any) are propagated to the rest of replicas at commit time;
i.e. they follow the Read One Write All (ROWA) approach. This paper provides a formalization
that shows correctness of abstract protocols which cover these replication proposals. These ab-
stract protocols differ in the properties demanded for achieving a global SI level and those needed
for its Generalized SI (GSI) variant –allowing reads from old snapshots–. Additionally, we pro-
pose two more relaxed properties that also ensure a global GSI level. Thus, some applications
can further optimize their performance in a replicated system while obtaining GSI.
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1. Introduction

Snapshot Isolation (SI) is a transaction isolation level introduced in [7] and implemented
(using multiversion concurrency control) in several commercial database systems. A transaction
executed under SI reads data from the committed state of the database (snapshot) as of the time
it began and keeps the results of its own writes in local memory and, thus, sees its own updates.
Read-only transactions executed under SI level are neither delayed, blocked nor aborted, and they
never cause update transactions to block or abort. This behavior is important for workloads with
predominant read-only transactions such as those resulting from dynamic content Web servers.

The use of a replicated database system (RDBS) is the best way to improve performance
and offer availability in the presence of failures to distributed applications. However, this brings
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up the question about how to achieve data consistency; i.e. how to coordinate the execution of
updates at different replicas. Recently, several system designs [20, 41, 27, 34, 12, 18, 5, 29] have
proposed different replication solutions based on SI databases. An important question is what
isolation level is seen by users who imagine their transactions are executed in a single logical
database. From this point of view, several systems offer Generalized SI (GSI) [14]; this means
that a transaction can read from an older snapshot, rather than seeing the latest one before the
transaction’s start, as required by SI.

These previous systems run replication protocols that follow the Read-One-Write-All (ROWA)
approach [16]. This kind of replication protocol initially executes all of the transaction’s opera-
tions at a single delegate replica, collecting its writeset, propagating such updates to all replicas
(update propagation) and taking the same decision in all replicas about such transaction’s fate
(atomicity). These two characteristics will be stated as Property P1 in this paper.

Certain additional conditions shall be imposed over the RDBS with SI replicas, already sat-
isfying Property P1, in order to determine the final isolation level obtained by user transactions
derived as a 1-copy-schedule in the single logical database. The two sufficient conditions to
derive a 1-copy-SI-schedule (from now on, 1SI-schedule) are the following: (P2) total order of
conflicting transactions; and, (P3) transactions read the latest items’ version. The first condi-
tion states that two conflicting transactions must be sequentially executed in the same order at
all replicas; while the second one compels every single transaction to read data items belonging
to the latest system snapshot. This is a severe restriction because it requires either blocking or
delaying the start of transactions [14]; this fact voids one of the main advantages of the SI level.

Note that P1, P2 and P3 are easily satisfied by primary copy protocols [34, 12, 29] as all
transactions are always served directly by a single primary replica. On the other hand, it is
difficult to satisfy condition P3 with update-everywhere replication protocols [14, 27]. In the
latter, each transaction may select a different delegate server that directly executes the transaction
and propagates its updates in total order before such transaction is validated (according to the
certification-based model as specified in [40]).

If the system wants to provide consistent snapshots while preserving the ordering of conflict-
ing transactions then it is needed to define a new condition (P4) Total order of committed update
transactions. P4 along with P1 are sufficient to obtain a 1-copy-GSI-schedule (1GSI-schedule).
P4 is sufficient and imposes no restriction for starting transactions (such as P3 does). These prop-
erties have already been used in order to prove the correctness of some existing snapshot-based
replication protocols. However, in most cases these properties were not all explicitly stated (i.e.,
some of them were implicitly assumed) and those correctness proofs were only applied to the
replication protocol presented in such papers, as expected from any proof of this kind. So, the
first contribution of this paper is the proposal and justification of the general set of properties
that should be used for proving the correctness of database replication protocols that guarantee
either SI or GSI isolation. This does not imply that previous correctness proofs are incorrect or
incomplete, since in some cases the algorithm being followed in such protocols is sufficient for
implicitly proving some of these properties.

However, once it is known that this is the set of required conditions, some of their constraints
could be broken. Thus, it seems reasonable to relax condition P4 to the limit imposed by P2.
As a result, instead of requiring P4, we have found a pair of more relaxed conditions: (P5)
Non-conflicting transactions interleaving; and, (P6) Compatible snapshot read that, combined
together with P1, also ensure 1GSI-schedules. They are inspired in the protocol presented in
[27], although our condition P6 is more relaxed than the one used in such paper. So, as a second
contribution, this allows the design and development of new protocols (particularly for applica-
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tions where the readset of transactions can be forecast, as those based on stored procedures) able
to increase the parallelism of the writeset application actions, further improving the performance
of these replication solutions.

Therefore, this paper offers a formalized treatment of some replication protocols using the
ROWA approach that involve replicas using the SI mechanism. It proves some sufficient condi-
tions based on the previous properties for deriving both 1SI and 1GSI-schedules; this amounts to
proving the correctness of two abstract replication protocols that enclose the concrete realizations
of already existing protocols [41, 27, 34, 12, 5]. These protocols cover all the protocols’ families
classified in [16] according to the replica where update transactions can be executed (primary
copy, update everywhere) and when updates are executed (eager or lazy). Moreover, these con-
ditions can be used to check the correctness of any new replication protocol proposal: it will only
need to show that it satisfies conditions P1, P2 and P3 for 1SI-schedules, whilst 1GSI-schedules
need either P1 and P4, or, P1, P5 and P6, respectively.

The rest of the paper is organized as follows. Section 2 introduces the concept of multiversion
schedules. Section 3 gives the concepts of SI and GSI. In Section 4, the structure of an RDBS is
presented. The details of an abstract ROWA protocol with SI replicas are presented in Section 5.
Conditions for 1SI and 1GSI-schedules are introduced in Sections 6 and 7 respectively. We
discuss how to relax conditions for 1GSI in Section 8. An overview about recent replication
proposals with SI replicas is given in Section 9. Finally, conclusions end the paper.

2. Multiversion Schedules

The concept of multiversion schedule is introduced in this section to model the executions
generated by a multiversion concurrency control providing snapshot-based isolation levels. In
general, a schedule of a set of operations S is a pair (S , t), briefly denoted as S t, where t : S → R+

is an injective function assigning a different time value to each operation of S . In the rest of this
paper, we will use the identifiers S t and Ht in order to refer to schedules.

A database (DB) is a collection of data items, denoted by upper case letters as X. A transac-
tion Ti is a sequence of read and write operations on database items ended by a commit or abort
operation. Each Ti’s write (read) operation on item X is denoted Wi(X) (Ri(X)). The Ti’s commit
and abort operation are denoted Ci and Ai respectively. The operations of a transaction Ti are
totally ordered by the order ≺Ti ; any operation of Ti is denoted opi. The readset and writeset
(denoted by RS i and WS i respectively) express the sets of items read and, respectively, written
by a transaction Ti. Thus, Ti is a read-only transaction if WS i = ∅ and otherwise it is an update
transaction. For the sake of simplicity, we assume: (a) each item is read and written at most
once in each transaction Ti and, (b) a transaction does not read an item X after it has written it.
These assumptions are not a severe restriction of the model, and they were already suggested in
[33]. Thus, regarding multiple read accesses, note that the client program can use local variables
in order to maintain the value that has been read or written, so all the subsequent read accesses
could be made on such local variables. A similar solution could be used for write accesses: if
multiple write operations need to be applied to a given item, all but the last one could be applied
to local variables.

Let L be a set of transactions. In order to process operations from a transaction Ti ∈ L, a
multiversion concurrency control must translate Ti’s operations on data items into operations on
specific versions of those data items [8]. That is, there is a function h() that maps each Wi(X)
into Wi(Xi), each Ri(X) into Ri(X j) where X j was generated by some T j ∈ L, each Ci into Ci, and
each Ai into Ai. In the same way, there exists an injective function t() such that it assigns to each
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operation the time at which it happens to obtain an ordered set of multiversion operations. We
assume that there exists an initial transaction T0 ∈ L that is executed and committed before any
other transaction and initializes all data items X ∈ DB to X0.

Definition 1 (Complete MV-schedule). A complete multiversion schedule (MV-schedule) over
a set of transactions L is a schedule Ht such that:
1) H = h(

⋃
Ti∈L Ti) for some translation function h.

2) if pi, qi ∈ Ti and pi ≺Ti qi then t(h(pi)) < t(h(qi)).
3) if Ri(X j) ∈ H then W j(X j),C j ∈ H and t(C j) < t(Ri(X j)).

In the previous definition, condition (1) indicates that each operation of a transaction is trans-
lated into an appropriate multiversion operation. Condition (2) states that the schedule preserves
the order of operations of a transaction. Condition (3) establishes that if a transaction reads a
concrete version of a data item, it was written by a transaction that committed before the item
was read.

The properties studied in this paper are only required to deal with committed transactions;
thus, L is actually a set of committed transactions. We assume that an underlying recovery
mechanism of the database will rollback any operation of an aborted transaction. Finally, we
assume that an MV-schedule is complete for the sake of simplifying definitions and proofs.

3. Snapshot-Based Isolation Levels

In SI, “reading from a snapshot” means that a transaction Ti sees all the updates done by
transactions that committed before the transaction started its first operation. The results of its
writes are installed when the transaction commits. However, a transaction Ti will successfully
commit if and only if there is not a concurrent transaction Tk that has already committed and
some of the written items by Tk are also written by Ti. This condition is necessary to exclude the
lost-update anomaly [7]. A straightforward generalization of SI, called Generalized SI (GSI),
can be obtained by allowing a transaction to observe an older snapshot than the snapshot at its
start operation. Similarly to the SI case, GSI needs to avoid the lost-update anomaly.

In the following, we formalize the concept of snapshot of the database. Let us define for each
committed transaction Ti in an MV-schedule Ht its associated commit time as ci = t(Ci) and, re-
spectively, its begin time as bi = t(first operation of Ti). Let Ver(X,Ht) be the set of versions of
a data item X in an MV-schedule Ht; i.e., Ver(X,Ht) = {X j : W j(X j) ∈ H}. The latest version of
the data item X in Ht at time τ ∈ R+ is defined as latestVer(X,Ht, τ) = {Xp ∈ Ver(X,Ht) : @ Xk ∈

Ver(X,Ht) : cp < ck ≤ τ}.

Definition 2 (Snapshot). Let Ht be an MV-schedule over L. The snapshot of the database DB
at time τ ∈ R+ for Ht is the set S napshot(DB,Ht, τ) =

⋃
X∈DB latestVer(X,Ht, τ)

In order to formalize the concept of GSI-schedule, we utilize the next shorthand predicate for
an MV-schedule Ht over L, two transactions T j and Ti ∈ L, and time τ ∈ R+:
wcon f lict(T j,Ti,Ht, τ) ≡ WS j

⋂
WS i , ∅ ∧ τ < c j < ci.
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Note that this wcon f lict() predicate uses τ as the starting point of transaction Ti. Such pa-
rameter is needed in order to use different starting points depending on the isolation level being
assumed. Thus, a strict SI level needs τ = bi, but the GSI level may use τ ≤ bi as stated in the
following definitions.

Definition 3 (GSI-schedule). Let Ht be an MV-schedule over L. Ht is a GSI-schedule if and
only if for each Ti ∈ L there exists a value si ∈ R+ such that si ≤ bi and:

1. if Ri(X j) ∈ H then X j ∈ S napshot(DB,Ht, si); and
2. for each T j ∈ L : ¬wcon f lict(T j,Ti,Ht, si)

Condition (1) states that every item read by a transaction belongs to the same (possible past)
snapshot. Condition (2) establishes that the time intervals [si, ci] and [s j, c j] do not overlap for
any pair of conflicting transactions Ti and T j, i.e., if such two transactions have updated a shared
item, their running intervals should not overlap in order to admit them. This is the regular con-
dition being evaluated by the database replication protocols when transactions are certified once
they have requested commit [14, 27]. If for all Ti ∈ L, conditions (1) and (2) hold for si = bi

then Ht is an SI-schedule. Thus, Definition 3 includes as a particular case the next definition of
SI-schedules.

Definition 4 (SI-schedule). Let Ht be an MV-schedule over L. Ht is an SI-schedule if and only
if for each Ti ∈ L:

1. if Ri(X j) ∈ H then X j ∈ S napshot(DB,Ht, bi); and
2. for each T j ∈ L : ¬wcon f lict(T j,Ti,Ht, bi)

4. Replicated Database System

A Replicated Database System (RDBS) is a distributed system such that each site contains
a database and runs an instance of a replication protocol. The distributed system comprises m
sites, where Im is the set of site identifiers. Sites do not share a common clock nor a common
memory and they communicate by reliable message passing. We make no assumptions about
the time it takes for sites to execute and for messages to be transmitted; they are arbitrary but
finite. We consider a system free of failures. The RDBS is fully replicated, that is, there is a
logical database DB such that each site k ∈ Im contains a physical copy of DB, denoted DBk. In
what follows, L is the set of logical transactions (user programmed) committed over DB, while
Lk is the set of physical transactions executed over DBk at each site k ∈ Im. We consider that the
database DBk generates MV-schedules over Lk, denoted as Hk

t , and all operations in the system
are totally ordered; i.e., there is an injective function t :

⋃
k∈Im

(Hk) → R+ assigning a differ-
ent time value to each operation. The replication protocol coordinates the execution of physical
transactions at every replica in the system so that the resulting interleaving execution seems as
though there is a unique set of logical transactions L accessing a single database DB. Hence, the
protocol performs a transformation T such that T (L) =

⋃
k∈Im

Lk. The transformation considered
in this paper is the ROWA Transformation.
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Definition 5 (ROWA Transformation). Let L be a set of logical transactions over DB. The
ROWA Transformation, T (L), defines for each Ti ∈ L a set of physical transactions for all k ∈ Im

such that there is a single transaction satisfying T site(i)
i with RS site(i)

i = RS i and WS site(i)
i = WS i

where site(i) ∈ Im is the delegate replica of Ti. The rest of physical transactions, T k
i with k ,

site(i), have RS k
i = ∅ and WS k

i = WS i. Thus, Lk = {T k
i : Ti ∈ L} is the set of physical

transactions over DBk for each site k ∈ Im and T (L) =
⋃

k∈Im
Lk.

A replication protocol generates, physical, replicated schedules over the ROWA Transforma-
tion T (L).

Definition 6 (R-schedule). Let L be a set of logical transactions and T (L) be the ROWA Trans-
formation. Let Hk

t be the MV-schedule over Lk for each site k ∈ Im where t :
⋃

k∈Im
(Hk)→ R+. A

schedule S t is an R-schedule over T (L) if and only if S =
⋃

k∈Im
Hk.

Since these operations occur at some real time instant, we consider that there is a mapping t
such that it assigns to each operation the real time at which it happens; and it verifies that no two
different operations have the same time value.

From the previous definition, Hk
t can be derived from S t by adequately choosing all opera-

tions performed at replica k ∈ Im. Note also that new data item versions are available as soon
as a transaction T k

i is firstly committed at any replica k ∈ Im. At this point, we consider that the
logical transaction Ti has been globally committed and, as said before, new data item versions
are available in RDBS to be read by other transactions. In the following, we present a notation in
order to consider the “first commit” notion: for each logical transaction Ti ∈ L and an R-schedule
S t over T (L), Cmin(i)

i denotes the commit operation of the transaction T min(i)
i at site min(i) ∈ Im

such that cmin(i)
i = mink∈Im {c

k
i }.

R-schedules are defined over the set of physical transactions T (L) (actually, it is simple to
prove that an R-schedule S t is an MV-schedule over T (L)); however, in the context of this paper
we will focus on a resulting logical schedule over the logical set L with particular properties.
Hence, we will define the correspondence between an R-schedule and a 1-copy-MV-schedule
(1MV-schedule) and its existence.

Definition 7 (1MV-schedule). Given a set of logical transactions L and the ROWA Transfor-
mation T (L), then an R-schedule S t over T (L) is a 1MV-schedule provided that the particular
logical schedule Ht′ is an MV-schedule over L, where Ht′ = F (S t) being F a transformation
defined explicitly as follows:

For each Ti ∈ L and k ∈ Im :
1) Remove from S the operations such that: Wi(Xi)k, with k , site(i), and Ck

i , with k , min(i).
2) H is obtained with the rest of operations in S after step 1 applying the renaming: Wi(Xi) =

Wi(Xi)site(i), Ri(X j) = Ri(X j)site(i), and Ci = Cmin(i)
i .

3) Finally, t′(Wi(Xi)) = t(Wi(Xi)site(i)), t′(Ri(X j)) = t(Ri(X j)site(i)), and t′(Ci) = t(Cmin(i)
i ).

The previous definition is a constructive one for an R-schedule S t to be a 1MV-schedule.
It states that a logical MV-schedule Ht′ can be built by properly choosing operations of each
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(physical) transaction. More precisely, it selects all operations from transaction T site(i)
i and the

first commit operation of all T k
i with k ∈ Im while changing each data item from physical to

logical and matching up the versions properly. Regarding the commit operation, only two options
seem to make sense: to take the first existing commit action or to take the last one. Whilst the
first one does not cause any problem, the latter prevents valid read accesses (e.g., those made
by other transactions in such Imin(i) replica) from being accepted in these schedules. Due to this,
such first alternative is used. Note that all operations of the deferred update copier transactions
have been removed; and, the t and t′ functions share the same value. In the context of this paper,
an RDBS will be correct if it generates 1SI- or 1GSI-schedules. This is formally stated in the
next definition.

Definition 8. Given a set of logical transactions L and the ROWA Transformation T (L), then an
R-schedule S t over T (L) is a 1SI-schedule, respectively a 1GSI-schedule, if and only if S t is a
1MV-schedule such that the particular MV-schedule F (S t) over L is an SI-schedule, respectively
a GSI-schedule.

Note that this definition does not restrict the kind of MV-schedule at each replica k ∈ Im.
In other words, Definition 8 is intended to be pretty general; an R-schedule S t can be an 1SI-
schedule (respectively 1GSI-schedule) provided that the MV-schedule F (S t) over L is SI (GSI)
even though the MV-schedules at each replica are not SI-schedules and the resulting transforma-
tion F (S t) is also an MV-schedule. Let us see this with an example.

Example 1. Given two transactions {T1,T2}where T1 = W1(X)W1(Y)C1 and T2 = W2(X)W2(Y)C2;
and, two sites {I1, I2}where we assume that T1’s site is I1 and T2’s site is I2. At I1 the MV-schedule
H1

t is as follows W1(X1)W1(Y1)C1W2(X2)W2(Y2) C2 where t() assigns for the first three opera-
tions the time values 1-3 and for the last three operations values 7-9. Respectively, at I2 the
MV-schedule H2

t is as follows W2(X2)W2(Y2)C2W1(X1)W1(Y1)C1 where t() assigns for the first
three operations the time values 4-6 and for the last three operations values 10-12.

Example 1 holds the following properties. Both H1
t and H2

t are SI-schedules (they are actually
serial schedules). The function t() assigns a different value to each operation of both schedules.
The union over both schedules is an R-schedule S t according to Definition 6. We can now build
F (S t) as W1(X1)W1(Y1)C1W2(X2) W2(Y2)C2 with the time values 1-6. It is easy to show that
F (S t) is an SI-schedule. Thus, according to Definition 8, S t is a 1SI-schedule; even though, at
the end of execution, I1 and I2 have different values for X and Y , as I1 has the values written
by T2 and I2 has the values written by T1. As long as no transaction has read X and Y , S t is
a 1SI-schedule and this holds since we have assumed that our MV-schedules are complete. In
this example, this means that no other transaction ever reads X or Y and this sets S t as a valid
1SI-schedule. Obviously, having any subsequent transaction reading X and Y will invalidate
S t. So, our definitions –requiring completeness– correctly manage 1SI- and 1GSI-schedules. In
what follows, we will restrict the whole set of possible valid 1SI- and 1GSI-schedules to the ones
derived by ROWA protocols with SI replicas that satisfy certain properties. These protocols’
properties are sufficient to generate these schedules and their advantage relies on the fact that SI
and GSI benefits are kept while protocols are easy to deploy in a real system. Moreover, it can
be also inferred new protocols that will be also easy to develop.
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In order to summarize the specifications given up to this point, and to help the reader in the
definitions, theorems and proofs of the next sections, Table 1 presents (in alphabetical order) the
symbols used in this paper, with a brief description of each of them.

Symbol Description
Ai Abort operation for transaction Ti.
bi Begin time of transaction Ti.
Ci Commit operation for transaction Ti.
ci Commit time of transaction Ti.

DB Database.
DBk Database copy maintained at site k.
F () ROWA multi-version transformation (see Definition 7).
Ht Multi-version schedule.
h() Multi-version mapping function.
Im Set of the m system sites where a database is replicated.
k Site identifier. It may appear as a superindex, meaning that such element is projected to site k.

Examples: Ck
i , ck

i , DBk , Hk
t , Lk , T k

i , ...
L Set of all system transactions.

min(i) Identifier of the replica that first committed Ti.
RS i Read-set of transaction Ti.
S Set of operations to be used in transactions.
S t Schedule or R-schedule (i.e. replicated schedule).
si Snapshot time of transaction Ti.
T () ROWA transformation (see Definition 5).

site(i) Identifier of the replica where Ti was initially executed.
Ti Transaction with identifier “i”.
t() Time mapping function. It sets a total order on the executed operations.

WS i Write-set of transaction Ti.
X Database item.
Xi Version of database item X generated by transaction Ti.

Table 1: Symbols used in the specification.

5. ROWA protocols with SI replicas

Several replication protocols have been designed and deployed for RDBSs with SI databases [41,
27, 34, 12, 5, 29].

All these protocols share some common characteristics; in particular, they satisfy the ROWA
Transformation stated in Definition 5, and guarantee the property of atomicity in the RDBS for
each transaction. Each transaction Ti has a delegate site (site(i)) where it is initially processed.
Read-only transactions are executed without further interaction with other replicas. On the other
hand, in eager protocols an update transaction Ti is initially executed at a given replica (that is
always the same in primary copy replication protocols or could be any one –e.g., the one local
or closest to the client process– in update-everywhere protocols) and it gets propagated with its
writeset WS i to the rest of replicas (possibly including itself too) by the replication protocol.
Upon this message delivery, it is decided whether Ti is committed or not. To this end some
kind of evaluation should be made, checking for conflicts against the writesets of concurrent
transactions, as it has been stated in condition (2) of Definitions 3 and 4. If no conflict arises,
WS i is applied and committed as a remote transaction at each non delegate site (let us name k
such other replicas), and directly committed in the delegate site. Hence, update operations of a
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remote transaction are always executed after all operations of Ti at site(i) –except its commit,
in these eager protocols– have been executed (update propagation). Finally, lazy propagation
protocols are usually implemented with a primary copy server architecture. This implies that
conflict evaluation needs to be done only at the primary site. So, both the conflict evaluation and
the commit action are executed in such primary replica (site(i)) before the writeset is propagated
to the remaining replicas (k). All these characteristics are summarized in the next property.

Definition 9 (P1 – ROWA protocol). Given a set of logical transactions L, then an R-schedule
S t over a ROWA Transformation T (L) satisfies Property P1 when for every update transaction
Ti ∈ L these two conditions are held:

1. (Atomicity) For every site k ∈ Im: Ck
i ∈ S .

2. (Update Propagation) If opsite(i)
i ∈ S is the last operation (before commit) at site(i) ∈ Im,

then for all k ∈ Im \ {site(i)} : t(opsite(i)
i ) ≤ bk

i . �

It has been said how to build a 1MV-schedule from an R-schedule (see Definition 7); in the
next theorem it is shown that an R-schedule satisfying P1 is indeed a 1MV-schedule.

Theorem 1. Given a set of logical transactions L and an R-schedule S t over the ROWA Trans-
formation T (L). If S t satisfies Property P1, then S t is a 1MV-schedule.

Proof. By using the transformation F (S t) in Definition 7, we build the schedule F (S t)= Ht′ ,
and prove that Ht′ is an MV-schedule over L.
(1). H = h(∪Ti∈LTi), for each Ti ∈ L we have that opi ∈ H if opsite(i)

i ∈ S ; besides, Ci ∈ H if
there exists k ∈ Im such that Ck

i ∈ S . Thus, there exists a function h that maps each operation of
Ti ∈ L.
(2). If pi, qi ∈ Ti and pi ≺Ti qi then t′(h(pi)) < t′(h(qi)). Let us consider if h(qi) = Ci or
not. In the latter, by Property P1.1 (Atomicity), as Hk

t is an MV-schedule over Lk with k ∈ Im;
if k = site(i) then t′(h(pi)) < t′(h(qi)) as it is the same as t(h(psite(i)

i )) < t(h(qsite(i)
i )) in S t.

Although in the former (h(qi) = Ci), if min(i) = site(i) then a similar reasoning as before leads
to t′(h(pi)) < t′(Ci). Finally, t(h(psite(i)

i )) < t(h(pmin(i)
i )) by Property P1.2 and Hmin(i)

t is an MV-
schedule by Property P1.1; hence, t(h(pmin(i)

i )) < t(Cmin(i)
i ) and t′(h(pi)) < t′(Ci) is satisfied.

(3). If Ri(X j) ∈ H then W j(X j),C j ∈ H and t′(C j) < t′(Ri(X j)). Furthermore, Ri(X j)site(i) ∈ S
and, as Hsite(i)

t is an MV-schedule and by Definition 1, W j(X j)site(i) ∈ S too; thus, C site(i)
j ∈ S and

t(C site(i)
j ) < t(Ri(X j)site(i)). On the other hand, W j(X j),C j ∈ H is satisfied by construction of H;

by Property P1.1, there exists Cmin( j)
j ∈ S and t′(C j) = t(Cmin( j)

j ) ≤ t(C site(i)
j ) < t(Ri(X j)site(i)) =

t′(Ri(X j)) is ensured by construction of H.

In Theorem 1 and Definition 7 as Ht′ receives the time values from S t, we write Ht instead of
Ht′ . It has not yet been considered the fact that the RDBS can be composed of replicas generating
SI-schedules:

Assumption 1 (SI Replicas). For each site k ∈ Im, every MV-schedule Hk
t over Lk is an SI-

schedule.
9



H1
t

T11 T12 T13 T14
W1(X1)1C11 R2(Z0)1W2(X2)1C12 R3(X2)1W3(Z3)1C13 W4(Y4)1C14

H2
t

T21 T23 T24 T22
R1(Y0)2W1(X1)2C21 W3(Z3)2C23 R4(X1)2R4(Z3)2W4(Y4)2C24 W2(X2)2C22

Ht
T1 T2 T3 T4

R1(Y0) W1(X1) C1 R2(Z0) W2(X2) C2 R3(X2) W3(Z3) C3 R4(X1) R4(Z3) W4(Y4) C4

Time→

Figure 1: An example of a 1MV-schedule that does not provide a 1SI- nor 1GSI-schedule.

One could intuitively infer from the previous assumption that if each replica k ∈ Im of the
RDBS generates an SI-schedule and runs an instance of the ROWA protocol (Property P1) then
the whole system will generate a 1SI-schedule. However, the next example proves that the usage
of individual SI-schedules at each k ∈ Im does not ensure that the global isolation level obtained
in RDBS is a 1SI- or a 1GSI-schedule.

Example 2. In this example two sites {I1, I2} and the next set of transactions {T1,T2,T3,T4}

are considered: T1 = R1(Y) W1(X) C1, T2 = R2(Z) W2(X) C2, T3 = R3(X) W3(Z) C3, T4 =

R4(X) R4(Z) W4(Y) C4.
Figure 1 illustrates the mapping described in Theorem 1 for building a 1MV-schedule from

the SI-schedules seen in the different sites Im. T2 and T3 are locally executed at site I1 (RS 2 , ∅
and RS 3 , ∅, see H1

t in Figure 1) whilst T1 and T4 are executed at site I2 respectively (H2
t in

Figure 1). The writesets are afterwards applied at their respective remote sites.
In the 1MV-schedule Ht of Figure 1, T4 reads X1 and Z3 but the X2 version exists between

both (since X2 was installed at site I1). T1 and T2, satisfying that WS 1
⋂

WS 2 , ∅, are executed
at both sites in the same order. As T1 and T2 are not executed in the same order with regard to
T3, the obtained 1MV-schedule is not a 1GSI-schedule.

This example has indeed shown that the usage of individual SI-schedules at each k ∈ Im does
not ensure that the global isolation level obtained in RDBS is 1SI or 1GSI. Schedules H1

t and H2
t

are valid SI-schedules, but despite building the MV-schedule Ht using our proposed approach,
its transaction T4 reads an X version (X1) that should not belong to its intended snapshot. In what
follows we will see further properties that these ROWA protocols do satisfy to generate one-copy
schedules that are either 1SI-Schedules (Section 6) or 1GSI-Schedules (Section 7).

6. One Copy Snapshot Isolation Schedules

If a ROWA replication protocol wants to generate 1SI-schedules, it seems natural to assume
the requirements set up in Definition 4. Hence, a nice property to be considered is that the com-
mit operations of conflicting transactions must be totally ordered at site k ∈ Im, i.e., it serializes
the execution of conflicting transactions in the 1MV-schedule as the second part of Definition 4
states. This reasoning is formalized in the next property.

Definition 10 (P2 – Total Order of Conflicting Transactions). Given a set of logical transactions
L, then an R-schedule S t over the ROWA Transformation T (L) satisfies Property P2 provided

10



that for every Ti, T j ∈ L such that WS i
⋂

WS j , ∅, and for every k, k′ ∈ Im, if ck
i < ck

j in S t, then
ck′

i < ck′
j in S t.

Property P2 serializes the execution of conflicting transactions in the 1MV-schedule (as Def-
inition 4 about SI-schedules requires). However, the execution of conflicting transactions in the
same order at all sites does not ensure SI nor GSI. This has been previously seen in Example 2
where only T1 and T2 are conflicting transactions and they have been executed in the same order
at every site. It is necessary that a transaction reads the latest installed version in the system of
any data item; this corresponds to the first part of Definition 4. The following property formally
states that.

Definition 11 (P3 – Latest-Version Read). Given a set of logical transactions L, then an R-
schedule S t over the ROWA Transformation T (L) satisfies Property P3 provided that for every
Ti, T j ∈ L such that WS j ∩ RS i , ∅, if Ri(X j)site(i) ∈ S t then no transaction Tr ∈ L with X ∈ WS r

satisfies csite(i)
j < ck

r < bsite(i)
i in S t for every k ∈ Im.

If we define a ROWA protocol that ensures Properties P1, P2 and P3 with SI replicas (As-
sumption 1), it is expected that its associated 1MV-schedule satisfies Definition 8 with regard to
a 1SI-schedule. This is formally shown in the following theorem.

Theorem 2. Given a set of logical transactions L and an R-schedule S t over the ROWA Trans-
formation T (L). If S t satisfies Assumption 1 (SI replicas) and also Properties P1, P2 and P3,
then S t is a 1SI-schedule.

Proof. By the conditions in Theorem 1, S t is a 1MV-schedule. Thus, let Ht be the MV-schedule
over L such that Ht =F (S t) (Definition 7). By Definition 8 of 1SI-schedule, we will prove that
Ht is an SI-schedule (Definition 4). For each Ti ∈ L:
1) if Ri(X j) ∈ H then X j ∈ S napshot(DB,Ht, bi).

Thus, {X j} = latestVer(X,Ht, bi) by Definition 2. Suppose Ri(X j) ∈ H and X j < latestVer(X,Ht, bi).
There is a version Xr installed by some transaction Tr such that c j < cr < bi.
If Ri(X j) ∈ H, by construction of Ht in Definition 7, Ri(X j)site(i) ∈ Hsite(i). From Assumption 1
(SI replicas), it is satisfied that {Xsite(i)

j } = latestVer(Xsite(i),Hsite(i)
t , bsite(i)

i ) and csite(i)
j < bsite(i)

i .

Also, Property P1 (Atomicity) ensures that C site(i)
r ∈ Hsite(i) and Xsite(i)

r ∈ Ver(Xsite(i),Hsite(i)
t ). As

X ∈ WS j ∩WS r, by Property P2, if csite(i)
r < csite(i)

j then cr < c j. Since this contradicts the initial

supposition, we have that csite(i)
j < csite(i)

r . Then by Property P3 as X ∈ WS r, bsite(i)
i < ck

r holds

for every k ∈ Im. Thus, bsite(i)
i < cmin(r)

r holds. By construction of Ht (Definition 7): bi < cr. A
contradiction with the initial supposition.
2) for each T j ∈ L: ¬wcon f lict(T j,Ti,Ht, bi).

By Assumption 1 (SI replicas), at any site k ∈ Im we have that Hk
t is an SI-schedule. By

Definition 2; for each pair T k
j ,T

k
i ∈ Lk : ¬wcon f lict(T k

j ,T
k
i ,H

k
t , b

k
i ). That is, WS k

j ∩ WS k
i =

∅ ∨ ¬(bk
i < ck

j < ck
i ).

(2.a) If WS k
j ∩WS k

i = ∅ then by Property P1 and Definition 5 (ROWA Transformation) we have
that WS j ∩WS i = ∅, for Ti,T j ∈ L. Thus, ¬wcon f lict(T j,Ti,Ht, bi) holds.

11



(2.b) If WS k
j ∩WS k

i , ∅ for Ti,T j ∈ L, then ¬(bk
i < ck

j < ck
i ) holds. Again (by Property P1 and

Definition 5) for T j and Ti we have that WS j ∩WS i , ∅. Let us suppose (by contradiction) that
wcon f lict(T j,Ti,Ht, bi) holds. Thus, bi < c j < ci holds. By construction of Ht in Definition 7,
bk

i = bi while c j = cmin( j)
j and ci = cmin(i)

i respectively; more precisely, cmin( j)
j ≤ ck

j, cmin(i)
i ≤ ck

i for

all k ∈ Im. By Property P2, either (a) ck
j < ck

i or (b) ck
i < ck

j. In the former, cmin( j)
j < cmin(i)

i while

in (b) cmin(i)
i < cmin( j)

j , i.e. ci < c j that leads to a contradiction. Hence, only (a) is possible. As

¬(bk
i < ck

j < ck
i ), then either cmin( j)

j ≤ ck
j < bk

i or ck
i < ck

j. That is, either c j < bi or ci < c j. A
contradiction with bi < c j < ci is obtained and 2) holds.

Property P3 forces compliant ROWA protocols to ensure that a transaction sees the latest
installed version in the system. As the assumed ROWA protocols only send the writeset of a
transaction to remote sites, it can not be checked whether another site has installed a more recent
version than that currently received by a given replica. As a direct consequence of this, it is not
possible to abort the transaction violating the SI level. In [14, 5], when a database site receives a
transaction, it has to provide that transaction with the latest snapshot or a desired snapshot. This
forces the site either to delay the start of the transaction, or to stop accepting new transactions
during some time intervals. Thus, a transaction would be blocked from starting until Property P3
becomes true; however, this issue goes against the main benefit of SI.

In the next section, we are going to introduce additional properties that relax the need to
block or delay the start of transactions. ROWA protocols verifying these properties will ensure
a GSI level to transactions; as already mentioned, GSI maintains all nice properties of SI but
allows transactions to read from an older snapshot.

7. One Copy Generalized Snapshot Isolation Schedules

Properties P1, P2 and P3 allow a ROWA protocol to obtain 1SI-schedules. However, Prop-
erty P2 is not enough for obtaining such schedule –without Property P3–, and Property P3 is too
restrictive, since it needs to block the start of transactions in order to be held. Most of existing
replication protocols actually guarantee a commit total order in all replicas. Indeed, primary copy
solutions [34, 12, 29] rely on the concurrency control of the primary whilst secondaries apply
update transactions in that order. Update everywhere solutions [14, 27, 5] obtain the commit
ordering thanks to the total order broadcast primitive [9] (more details about this will be given
in Section 9). As a result, since all replicas generate SI-schedules (by Assumption 1) and their
local snapshots have received the same sequence of updates, transactions starting at any site are
able to read a snapshot that perhaps is not the latest one, but it is consistent with those of other
replicas. These two characteristics are equivalent to those expressed in Definition 3. This total
order of update transactions is formally introduced in the next property.

Definition 12 (P4 – Total Order of Update Transactions). Given a set of logical transactions L,
then an R-schedule S t over the ROWA Transformation T (L) satisfies Property P4 provided that
for every pair of update transactions Ti,T j ∈ L and for every k, k′ ∈ Im, if ck

i < ck
j in S t, then

ck′
i < ck′

j in S t.
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The aim of the next theorem is to prove that the 1MV-schedules generated by a ROWA pro-
tocol that satisfies Properties P1 and P4 are actually 1GSI-schedules; i.e., they comply with all
conditions stated in Definition 3.

Theorem 3. Given a set of logical transactions L, and an R-schedule S t over the ROWA Trans-
formation T (L). If S t satisfies Assumption 1 (SI replicas) and also Properties P1 and P4, then
S t is a 1GSI-schedule.

Proof. By conditions of Theorem 1, S t is a 1MV-schedule. Thus, let Ht be the MV-schedule over
L such that Ht =F (S t) (Definition 7). By Definition 8 of a 1GSI-schedule, we will prove that
Ht is a GSI-schedule (Definition 3). Under Assumption 1, Property P1 and Property P4, the SI-
schedules Hk

t have the same total order of committed transactions. Without loss of generalization,
we consider the following total order in the rest of the proof: ck

0 < ck
1 < ck

2 < · · · < ck
n for every

k ∈ Im. Ht also satisfies such an order c0 < c1 < c2 < · · · < cn by construction of Ht (Definition
7). The proof is done by induction over such a total order. Firstly, we define for each Ti ∈ L the
subsets of transactions L(i) = {T0,T1,T2, . . . ,Ti} ⊆ L and Lk(i) = {T k

0 ,T
k
1 ,T

k
2 , . . . ,T

k
i } ⊆ Lk for

each k ∈ Im. Using these subsets we define Hk
t (i) and Ht(i). They are exactly equal to Hk

t and
Ht respectively, except that they only include the operations in Lk(i) or L(i). Thus, it is clear that
Hk

t (n) = Hk
t and Ht(n) = Ht.

Induction Base. Ht(0) is a GSI-schedule. L(0) = {T0} so Ht(0) trivially satisfies Definition 3.
Induction Hypothesis. Ht( j) is a GSI-schedule 1 ≤ j ≤ i − 1.
Induction Step. We will prove that Ht(i) is a GSI-schedule, with Ti ∈ L. Note that L(i) =

L(i − 1) ∪ {Ti}. As Ht(i − 1) is a GSI-schedule, by Hypothesis, for any pair T j,T ′j ∈ L(i − 1) it is
held that ¬wcon f lict(T j,T ′j,Ht(i − 1), s′j). As c j < ci for 0 ≤ j ≤ i − 1, by the considered total
order, ¬wcon f lict(Ti,T j,Ht(i), s j). If R j(Xr) ∈ H(i− 1) and Xr ∈ S napshot(DB,Ht(i− 1), s j) for
0 ≤ j ≤ i − 1 then R j(Xr) ∈ H(i). Xr , Xi because csite( j)

j < csite( j)
i and Hsite( j)

t is an SI-schedule
and, hence, Xr ∈ S napshot(DB,Ht(i), s j).
Therefore, in order to prove that Ht(i) is a GSI-schedule, we only need to prove for Ti ∈ L that
there exists a value si ≤ bi such that:

(1) if Ri(Xr) ∈ H(i), Xr ∈ S napshot(DB,Ht(i), si); and,
(2) for each T j ∈ L(i) : ¬wcon f lict(T j,Ti,Ht(i), si).

Proof of (1) Consider RS i , ∅, if RS i = ∅ then it holds. Let Ti0 be the last transaction in
the schedule from which Ti does not obtain a newer version from transactions committed after
Ti0 when Ti performs a read operation. By Assumption 1, for all Y ∈ WS i0 ∩ RS i, {Y

site(i)
i0
} =

latestVer(Y site(i), Ht(i)site(i), bsite(i)
i ). By construction of Ht (Definition 7), ci0 ≤ csite(i)

i0
< bsite(i)

i
and ci0 < bi in Ht respectively.
Let X ∈ RS i be an item read by Ti such that X < WS i0 ∩ RS i and Xsite(i)

r = latestVer(Xsite(i),

Ht(i)site(i), bsite(i)
i ). We prove that @Tk ∈ L : Xk ∈ Ver(X,Ht) ∧ cr < ck < ci0 . By contradiction,

if there exists Tk and cr < ck < ci0 then by Properties P4 and P1: csite(i)
r < csite(i)

k < csite(i)
i0

. Thus,
Xsite(i)

r is not the latest version in Ht(i)site(i) at bsite(i)
i . Therefore, for all X ∈ RS i, if Ri(Xr) ∈ H(i)

then Xr ∈ S napshot(DB,Ht(i), ci0 ). As ci0 < bi, by construction of Ht (Definition 7), then there
exists si ∈ R+ such that ci0 ≤ si ≤ bi from which (1) holds.
Proof of (2). By previous proof of (1), Ti0 ∈ L(i) and ci0 ≤ si ≤ bi in Ht(i). The begin time bsite(i)

i

and the commit time csite(i)
i0

of transaction Ti0 at site(i) allow us to define the next two sets:
L1(i) = {T j ∈ L : bsite(i)

i < csite(i)
j < csite(i)

i }
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L2(i) = {T j ∈ L : csite(i)
i0

< csite(i)
j < bsite(i)

i }

By Property P1 and Assumption 1: WS j∩WS i = ∅ for any T j ∈ L1(i). By definition of Ti0 ∈ L(i),
Property P1, Assumption 1 and the proof of (1): WS j∩RS i = ∅ for any T j ∈ L2(i). Let Ti2 ∈ L2(i)
be the last transaction such that in the total order it satisfies WS i2 ∩WS i , ∅ and let Ti1 ∈ L1(i)
be the first transaction such that ci1 < bi in Ht and WS i1 ∩ RS i , ∅. Note that in Ht, obtained
from Definition 7, a commit time csite(i)

j for a transaction in L1(i) may change its relation with
respect to bi, but maintains its order relation with respect to the other commit times; in particular
ci2 < ci1 . Thus, ci0 < ci2 < ci1 < bi holds in Ht.
For any value si ∈ (ci2 , ci1 ) (2) holds by the way Ti2 ∈ L has been defined. More precisely, for
each T j such that ci2 < c j < bi, if T j ∈ L2(i) then WS j ∩ WS i = ∅. Otherwise, Ti2 is not the
last transaction satisfying such a condition; and if T j ∈ L1(i) then WS j ∩WS i = ∅. Thus, these
transactions do not conflict with Ti. The rest of transactions do not either conflict with Ti because
their commit times are sooner than si.
To conclude, if there does not exist Ti1 , then si = bi and, therefore (2) holds. In case that Ti2 does
not exist then si ∈ (ci0 , ci1 ) and again (2) holds.

To the best of our knowledge, this proof has not been given before in any ROWA-based SI
replication protocol ensuring total order for the commit operations of all updated transactions in
the system replicas. This theorem formally justifies protocols correctness and establishes that
their resulting isolation level is 1GSI. However, P4 does impose a very restrictive order of update
transactions: all of them have to be serialized. In the following section we are going to relax this
property in order to apply certain update transactions concurrently and even in different order.

8. Relaxing Properties

There is a middle point from what is set up in Property P4, enforcing that every single up-
date transaction is committed in the same order at all replicas, and Property P2, requiring that
only conflicting update transactions must be committed in the same order at all replicas respec-
tively. We need to guarantee that conflicting transactions are executed in the same order while
the rest of non-conflicting transactions can be committed in any other. However, though this can
be easily achieved in a centralized setting, it is not trivial in a replicated setting since, e.g., a
non-conflicting transaction can be applied between two conflicting transactions at one site while
at another one just after the second conflicting transaction has been applied. Hence, snapshots
generated at these two sites may differ. We have to set up a consistent partial order for apply-
ing all transactions, i.e., for every pair of conflicting transactions the same set of non-conflicting
transactions are applied. The next property formalizes the previous reasoning and constitutes a
weakened version of Property P4 while it is still stronger than Property P2.

Definition 13 (P5 – Non-Conflicting Transactions Interleaving). Given a set of logical trans-
actions L, then an R-schedule S t over the ROWA Transformation T (L) satisfies Property P5
provided that for every Ti,T j ∈ L and for every k, k′ ∈ Im such that WS i ∩ WS j , ∅: if there
exists Tp ∈ L with WS p , ∅ such that ck

i < ck
p < ck

j in S t then ck′
i < ck′

p < ck′
j in S t.

Next, we are going to see in an example how it is possible to build an R-schedule where
Property P5 holds.
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Example 3. Let us suppose that there are two replicas {I1, I2} and the set of update transactions:
{T0,T1,T2,T3,T4,T5,T6}, with WS 1 ∩ WS 3 , ∅, WS 2 ∩ WS 6 , ∅ and the rest do not conflict
among each other. At the first site you can find this commit order of the SI-schedule: c1

0 < c1
1 <

c1
2 < c1

3 < c1
4 < c1

5 < c1
6 whilst at the second site it can be: c2

0 < c2
1 < c2

2 < c2
3 < c2

5 < c2
4 < c2

6. In
the latter, the commit ordering of T4 and T5 is different from the scheduling of the former.

Property P5 becomes Property P4 whenever the pattern of transactions does not allow trans-
actions commit reordering. In Example 3, c2

3 < c2
2 cannot happen without violating Property P5.

On the other hand, if all transactions do not conflict, then the derived schedule Hk
t at each replica

will have nothing in common with the one of any other replica. This issue is of great impor-
tance since data items read by these transactions would not belong to any valid global snapshot
(recall Definitions 3 and 4 of an SI- and GSI-schedule, respectively). This can be overcome by
constraining that each transaction reads from the same global snapshot like in Property P3 but
relaxed. Thus, the snapshot gotten by a transaction at its delegate corresponds to a valid point in
the R-schedule S t such that is equivalent to a valid global snapshot; recall Definition 7.

Definition 14 (P6 – Compatible Snapshot Read). Given a set of logical transactions L, then an
R-schedule S t over the ROWA Transformation T (L) satisfies Property P6 provided that for each
Ti ∈ L, ∃ si ∈ R+ with si ≤ bsite(i)

i such that if Rsite(i)
i (X j) ∈ S then Xsite(i)

j ∈ S napshot(∪k∈Im DBk, S t, si).

From the R-schedule S t definition given in Definition 6, it is easy to infer that S t is an MV-
schedule ofT (L). This transformationT (L) refers to∪k∈Im DBk and, hence, S napshot(∪k∈Im DBk, S t, si)
is well defined in this last definition. From Property P6 one can infer that replicas are somehow
imposed to install certain snapshots; i.e. those belonging to a valid global snapshot from the
1MV-schedule derived by the ROWA Protocol (satisfying Property P1). It is easy to see that
these forced snapshots are those imposed by Property P5. In the next theorem we prove that
R-schedules complying with Properties P5 and P6 satisfy Definition 3; i.e., they generate 1GSI
schedules.

Theorem 4. Given a set of logical transactions L, and an R-schedule S t over the ROWA Trans-
formation T (L). If S t satisfies Assumption 1 (SI replicas) and also Properties P1, P5 and P6
then S t is a 1GSI-schedule.

Proof. By conditions of Theorem 1, S t is a 1MV-schedule. Thus, let Ht be the MV-schedule over
L such that Ht =F (S t) (Definition 7). By Definition 8 of a 1GSI-schedule, we will prove that
Ht is a GSI-schedule (Definition 3). Additionally, by Property P6, we have that for each Ti ∈ L
if Rsite(i)

i (X j) ∈ S t then Xsite(i)
j ∈ S napshot(∪k∈Im DBk, S t, si). By Theorem 1 and Definition 7,

it is derived that X j ∈ S napshot(DB,Ht, si). Finally, by Assumption 1 and construction of
Theorem 1, we obtain that Xsite(i)

j ∈ S napshot(DBsite(i),Hsite(i)
t , bsite(i)

i ) with si ≤ bi; this fact
makes true Condition (1) in Definition 3. In particular, if si = bi for every Ti ∈ L then S t is
trivially a 1GSI-schedule. Otherwise (si < bi), there must be a transaction Tp ∈ L such that
si < cp < bi and WS p ∩ RS i , ∅; moreover, WS j ∩WS p = ∅ and csite(i)

j < csite(i)
p . Let Tp be the

first transaction in S t satisfying such condition. On the other hand, by Theorem 1, Definition 7
and Property P5, we have that either c j < cp, this is not possible by Property P6 as in such a
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case si must have been shifted to match cp; or, cp < c j that leads to a contradiction. Therefore,
Condition (1) of Definition 3 is satisfied.

If we focus on Condition (2) of Definition 3 we have to verify if for each T j ∈ L : ¬wcon f lict(T j,Ti,Ht, si).
Again, two intervals must be considered (si, bi) and (bi, ci). In the first case, let T j be the last
transaction that satisfies ¬wcon f lict(T j,Ti, Ht, si) (c j < si) and WS j ∩ WS i , ∅. Assume that
there exists a transaction Tp such that WS p ∩WS i , ∅ and WS j ∩WS p , ∅ and si < cp < bi;
it is also worth noting that, csite(i)

j < csite(i)
i . Hence, we have that csite(i)

j < csite(i)
p < csite(i)

i which is
not possible since, by Property P1.1 the rest of replicas k ∈ Im \ {site(i)} will have ck

j < ck
i that

go against Property P5, conflicting transactions must be applied in the same order at all replicas.
Whilst in the second range, (bi, ci), we use the same transaction T j and assume there is a trans-
action Tp such that WS p ∩WS i , ∅ and WS j ∩WS p , ∅ that leads to the same conclusion, it
violates Property P5. Hence, the derived 1MV-schedule is a 1GSI-schedule.

As pointed out before, the ideal global snapshot candidate could be the snapshot obtained
after executing a consecutive pair of conflicting transactions, as Property P5 indicates. However,
special care has to be taken to set up the start of local transactions at their respective delegate
replicas: either immediately started up provided that they will access data items that belong to a
global valid snapshot (e.g. by means of stored procedures); or, delayed until the last conflicting
writeset has been applied. These ideas have been implemented in [27] and will be discussed in
the next section.

9. Related Work

Let us start with a brief presentation of previous works that have provided correctness proofs
for database replication protocols using SI replicas, to be followed by another subsection where
such protocols are described according to how they comply with the conditions identified in our
paper.

9.1. Previous Correctness Justifications

SI is a relatively recent isolation level, since it was first identified in [7]. At that time, all
database replication protocols were focused in guaranteeing 1-copy-serializability (1CS) and
their correctness proofs were inspired in those given in [8]. As SI was based on multi-versioned
concurrency control and such latter work also described that mechanism in one of its chapters and
replication strategies in another, it still provided a good guide for proving the correctness of SI
protocols. In such work, two complementary aspects were considered. Firstly, one-copy equiva-
lence should be proved. To this end, execution histories are used and one needs to prove that the
Replicated Data History (RD history [8]) is equivalent to a logical one-copy serial history. We
have followed a similar approach in our work, and some of our first definitions are inspired in
[8]. Secondly, such resulting history should comply with the intended isolation level. In [8] such
level was the serializable one, and on that purpose a replicated data serialization graph (RDSG)
was used. This second aspect has not been followed in our paper. Thus, instead of a graphical
representation of transactions dependencies –that can only be checked over all possible sched-
ules generated by a protocol– we have preferred to identify a set of conditions that can be easily
checked either against the schedules (as in the previous approach) or against the steps followed
by each particular algorithm/protocol being analyzed. We believe that this second alternative
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is easier to use and that it generates more intuitive correctness proofs than a graph-based one.
Moreover, our correctness conditions are general. Additionally, they can be directly applied to
all types of replication protocols [16]: both primary-copy and update-everywhere (considering
server architecture), and both eager and lazy (regarding update propagation).

Note that RDSG did not provide any support for non-serializable isolation levels. This issue
was solved in [1], where serialization graphs were extended to all currently specified isolation
levels and a set of validation rules were given for all of them. Inspired in such work, Lin et al.
[26] have provided a graph-inspired specification of the correctness conditions of SI replication
protocols, including also support for integrity constraints. So, that work perfectly complements
ours, using a widely accepted approach.

Another important parameter that has conditioned recent works related to database replica-
tion protocol correctness is the mechanism being assumed for update propagation. Until 1997,
database replication protocols were based on the same principles used in distributed databases:
usage of subtransactions for managing their execution and usage of two-phase (2PC) [24, 39]
or three-phase commit (3PC) [38] for managing their termination. But the advances in group
communication systems [9] allowed the elimination of both mechanisms [2], replacing them by
writeset propagation (instead of subtransactions) using reliable total order broadcast (instead of
2PC). Due to this, correctness proofs, although still inspired in the examples given in [8] were
now relying on the sequential application guaranteed by total-order broadcasts and on the valida-
tion rules being used in such new protocols. Valid examples of such new approach can be found
in [21].

Note that update propagation in total order does not guarantee that all replicas will be able
to apply all writesets at a similar pace, but only in the same sequence. This implies that there
can be a quite long interval from the moment a first site applies a given writeset to the instant
that the slowest site also applies it. In the meantime, the transaction associated to such writeset
would have been able to commit at some sites. Due to this, a given client is able to perceive a
transaction inversion (i.e., new read requests are retrieving older values than past read requests)
if some of its read accesses are forwarded to different server replicas [31]. This explains why in
our Definition 7, the commit/write time assigned to the commit or write operations in a 1MV-
schedule is that of the first replica that has executed such operations. Note that if for a given
update action we had selected the slowest replica as that to be mapped into the 1MV-schedule,
some valid read operations from subsequent transactions (executed in the delegate or other fast
replicas, and accepted in common replication protocols) would have been rejected in the resulting
1MV-schedules.

The existence of several variants of SI in replicated environments was first presented in [14],
where GSI was specified and regular SI was named Conventional SI (CSI). Such work was later
refined in [12] where session consistency was introduced, GSI was renamed as weak SI and
regular SI as strong SI, although such variants were only supported in that paper using a lazy
primary copy protocol.

Finally, another general correctness justification for SI protocols has been given in [15]. Such
correctness proof is applicable to any certification-based database replication protocol that uses
SI replicas –so, it is not so general as the one presented in this paper–, and it is inspired in the
traditional distributed algorithm proofs; i.e., besides one-copy equivalence it justifies the safety
and liveness of the protocol assuming also that crash failures may occur. Most of the published
correctness proofs, ours included, do not deal with failures.
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9.2. Discussion of Concrete Protocols

This paper has presented a set of properties that ROWA protocols must satisfy in order to
generate 1SI- or 1GSI-schedules. This obviously implies that already developed replication pro-
tocols do satisfy the proper subset of properties to generate the desired schedule and new proto-
cols can be derived by considering the properties while designing them. In this section we are
going to consider already existing replication protocols [20, 41, 27, 30, 34, 12, 5, 29] that follow
the ROWA approach, assume that the underlying DBMS provides SI (Assumption 1) and ensure,
each one in a different manner, the atomicity of transactions as Property P1.1 (Atomicity) states.
To that purpose, we will consider the classification given in [16] according to who can per-
form update transactions (primary-copy/update-everywhere) and when updates are propagated
(eager/lazy).

Let us start with the latter, eager protocols are those where updates are propagated to the rest
of replicas as part of the transaction being executed at the delegate. On the contrary, lazy ones
are those that propagate updates asynchronously, once the main transaction has been committed,
typically as a separate transaction for each site. In both cases, all protocols do satisfy Prop-
erty P1.2 (Deferred-Updates) as transactions are firstly executed at their delegate replica and at
commit time changes are sent to the rest of replicas (recall that read-only transactions do not
interact with the rest of replicas). Moreover, these replication protocols follow a mix approach
where replicas are not necessarily updated inside transaction boundaries. However, the system
always makes sure that temporary inconsistencies are hidden from the clients and, therefore, it
acts like an eager replication system. For example certification-based [20, 41, 27, 14, 30, 5] or
primary copy [34, 12, 29] protocols will apply updates in the context of a remote transaction.
However, in most of these proposals, clients will not be aware of that, since we can forward the
next transaction of a client to a site where it has been applied by tagging [34, 5] or defining the
context of a session [12]. Recently, it has been shown in [29] that it is possible to obtain the latest
snapshot for any transaction by regulating the snapshot acquisition through mutual exclusion; or,
by delaying the start of transactions [23] until all previous updates have been applied. In any
case, our formalization supports these approaches since all of them satisfy Property P1.

With regard to who can perform updates, primary-copy protocols [34, 12, 14, 22, 29] per-
form updates at a single site (the primary or master) and updates are later propagated to the rest
of replicas; on the other hand, read-only transactions can be executed in any replica (primary or
secondaries). This permits us to state that this family of protocols, as noted in the previous para-
graph, satisfies Property P1. Besides, these protocols trivially hold Property P2 (Total Order of
Conflicting Transactions) as update transactions are exclusively executed at the primary. Hence,
these transactions are ordered by the primary’s associated DBMS; and, afterwards, are multicast
in that order (using FIFO primitive [9]) to the rest of sites where they are applied observing the
order of delivery. A similar mechanism sets up a procedure to execute write operations in the
same order following the first updater wins rule in [29] by a leader replica while the followers
simply replicate it. Property P3 (Latest-Version Read) can be satisfied in different ways; the most
straightforward one is to execute all read-only transactions at the primary [34, 12, 14]. Never-
theless, there are other ways to attempt this without causing a bottleneck at the primary or com-
promising scalability by exchanging additional messages. This can be done either by acquiring a
snapshot through a critical region as in [29]; or, by delaying the start of a given transaction until
all previous committed updates have been applied [23]. Hence, in this case primary-copy satis-
fies all requirements to generate lSI-schedules. In order to provide 1GSI-schedules, Property P4
(Total Order of Update Transactions) is held because update transactions are executed at the
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primary and applied in the same order at the rest of secondaries while, in these protocols, read-
only transactions can be executed at any secondary replica where they probably obtain an older
snapshot. Therefore, they generate lGSI-schedules. Finally, to the best of our knowledge, neither
Property P5 (Non-Conflicting Transactions Interleaving) nor Property P6 (Compatible Snapshot
Read) have been studied for primary-copy systems to date. On the contrary, update-everywhere
protocols [20, 41, 27, 14, 30, 5] execute update transactions at their respective delegate sites
(which can be any site) and some coordination is needed to commit update transactions. SI-
based update-everywhere protocols perform a certification test [14] in order to commit an update
transaction. Certification consists in porting the first-committer-wins rule [7] to the replicated
environment. Upon the commit request of a transaction at its delegate replica, the writeset is
collected from the database along with the snapshot version gotten at the database and must pass
a validation test (certification). It checks if the writeset intersects with any other writeset of pre-
viously validated transactions that are concurrent to the transaction (specified by their snapshot
version). Again, this way of committing transactions ensures that Property P1 holds. The most
straightforward way to implement this technique is to choose a central certifier replica [14] that
stores all successfully validated transactions and performs all the validations; thus, all replicas
reach the same decision. This central certifier is in charge of propagating writesets in the order
they are validated to the rest of sites that apply them in this order. Hence, Property P4 is satisfied
and generates a lGSI-schedule; this replication technique has been implemented in Tashkent [13]
or in [23]. It is possible to replicate the role of the master certifier (in order to increase the avail-
ability and avoid the bottleneck of the central certifier) to all replicas if it is ensured that writesets
are delivered in the very same order at all replicas so the validation test is replicated at all sites.
Thus, all of them will reach the same decision solely based on the delivered transaction (i.e.,
the writeset and version tuple) and previously validated update transactions [20, 41, 27, 30, 5].
Again, we have that this kind of protocol applies transactions in the order they have been vali-
dated (Property P4) that generates lGSI-schedules. If this certification protocol wants to satisfy
Property P3, the obtained R-schedule must ensure that a transaction obtains the latest snapshot
at its delegate replica. Nevertheless, this may lead to delaying the start of the transaction or stop
accepting new transactions (preventing transactions from starting at any time and thus losing one
of the advantages of SI: its non-blocking behavior for read accesses). This leads to a blocking
implementation of this kind of schedules as it has been already indicated in [14]: “There is no
non-blocking implementation of SI in an asynchronous system, even if database sites never fail”.
However, data freshness will depend on the needs of applications whilst some applications de-
mand up-to-date data others will prefer a fast response time with outdated data. These ideas have
been ported to database replication in two directions either requiring a certain snapshot [35] or
ensuring that the retrieved snapshot is not older, in a certain amount, than the latest snapshot
version [5]. Note that the ideas presented in [23, 29] can perfectly fit here too for update ev-
erywhere protocols to provide strong consistent replication at the price of blocking. Finally, a
certification based protocol variation is presented in [27] that permits the concurrent execution
of non-conflicting validated transactions so that Property P5 is satisfied. However, this relax-
ation triggers the appearance of holes in the validated sequence of transactions (i.e. those ones
committed before their validation order) which in turn generates inconsistent global snapshots.
Therefore, the start of new transactions must be blocked until no holes are present to satisfy
Property P6 and generate a lGSI-schedule. Nevertheless, this is an interesting approach in terms
of performance as transaction reordering has been shown as a valid approach to increase the
throughput of the system [28, 36].

These properties have been presented for full database replication protocols, but they also
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encompass partial replication. This is an attractive solution to scale databases by horizontal
partitioning [37, 6, 10, 25] or to cope with mobile transactions [19]. To this end, we should
consider that those properties stated for all replicas do not refer to all server nodes but only to
the database nodes that are configured to hold a copy of the item (or items) being accessed in
each transaction. Most of partial replication protocols [37, 6] are certification-based and hold
Properties P1 and P4 at the sites where there exists a copy of the database partition and, thus,
generate 1GSI-schedules. On the other hand, there exists a family of protocols that uses some
heuristics, statistics and graph partitioning algorithms, to minimize the number of transactions to
be executed in different replicas with the analysis of the workloads [10, 25]. Hence, if we obtain
a perfect partitioning (i.e., each transaction only accesses one partition) for a given application, it
is naturally satisfied that Properties P5 and P6 hold. This increases the application performance,
as shown in [10, 37], and generates 1GSI-schedules in each partition, independently from the
rest. Other partitionings (i.e., non-perfect ones) are seldom assumed in partial replication. In
that case, the protocol needs additional steps to guarantee the intended isolation level and its
performance is hardly acceptable.

Finally, considering scalability –specially important in cloud computing environments where
snapshot isolation could be used–, it is worth mentioning that Property P3 could be supported in
structured overlay networks, as suggested in [4]. This could be taken as a basis for developing SI-
related replication protocols in those systems. Recently, a couple of systems have been developed
to support transactions in cloud-based environments. All of them assume a data storage rather
than a DBMS in each replica and data partitioning [11, 3, 32, 17]. They take advantage of the
fact that transactions only access a small portion of data (i.e., a partition); hence, they define
a primary replica for each partition where update transactions are executed, while read-only
transactions can be executed on any replica storing a copy of that partition. This kind of protocol
trivially holds Properties P1 and P4 for replicas that store a copy of a given partition; further,
they also trivially hold Properties P5 and P6. All this reasoning leads us to assure that they
generate 1GSI-schedules. Nevertheless, these systems stem from the same problem of non-
perfect partitioning as in partial database replication. This issue is specially true for a transaction
that updates two different partitions. We have two different approaches to solve this situation: to
implement a variant of the 2 Phase Commit protocol as in [11, 3] or to decouple data contention
from transaction management as in [32, 17]. This multipartition update access in the context
of a single transaction satisfies Properties P1 and P2. In any case, nothing can be said about
transactions reading from different partitions but that they read from different, though valid,
snapshots (each partition might have a different snapshot). Thus, these systems supporting the
access to different partitions will more likely generate 1MV-schedules and they do not regularly
ensure Property P3 nor P4.

10. Conclusions

This paper starts with the introduction of complete MV-schedule and its most outstanding
types, SI- and GSI-schedules, which are well suited for a centralized environment. We have fo-
cused on porting SI- and GSI-schedules to a database replication scenario. First, we have stated
the notion of one-copy-schedules, more precisely 1SI- and 1GSI-schedules, as a transformation
function based on the replicated data schedule that obtains an SI- or GSI-schedule respectively,
considering that the possible set of valid 1SI- and 1GSI-schedules is restricted to the family of
ROWA protocols that use SI replicas. Moreover, we have proposed a set of properties based on
the definitions of SI- and GSI-schedules that have been shown as sufficient conditions to derive
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1SI- and 1GSI-schedules. Furthermore, we have discussed that the set of properties that are for-
mally stated in this work are indeed used by most of the already existing replication protocols
in the literature, regardless of the protocol features (i.e. they are valid for partial or full replica-
tion, eager or lazy protocols and primary-copy or update-everywhere protocols); however, none
of such protocols carefully specified all of these properties. With our contribution, it will be
straightforward to prove which kind of snapshot-related isolation level is being provided by any
new ROWA database replication protocol developed for SI DBMSs.
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