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Abstract

The cache hierarchy and the Network-on-Chip (NoC) are two key components of chip

multiprocessors (CMPs). Most of NoC traffic is due to messages exchanged by the

caches according to the coherence protocol. The amount of traffic, the percentage of

short and long messages and the traffic pattern in general depend on the cache geom-

etry and the coherence protocol. NoC architecture and the cache hierarchy are indeed

tightly coupled, and these two components should be designed and evaluated together

to study how varying one’s design affects the other one’s performance. Furthermore,

each component should adjust to match the requirements and exploit the performance

of the other one, and vice versa. Usually, messages belonging to different classes are

sent through different virtual networks or through NoCs with different bandwidth, thus

separating short and long messages. However, other classification of the messages can

be done, depending on the type of information they provide: some messages, like data

requests, need fields to store information (block address, type of request, etc.); other

messages, like acknowledgement messages (ACKs), do not need to specify any informa-

tion except for the destination node. This second class of messages do no require high

NoC bandwidth: latency is far more important, since the destination node is typically

blocked waiting for their reception. In this thesis we propose a dedicated network which

is able to transmit this second class of messages; the dedicated network is lightweight

and fast, and is able to deliver ACKs in a few clock cycles. By reducing ACKs latency

and the NoC traffic, it is possible to:

• speed-up the invalidation phase during write requests in a system which employs

a directory-based coherence protocol

• improve the performance of a broadcast-based coherence protocol, reaching per-

formance which is comparable to that of a directory-based protocol but without

the additional area overhead due to the directory

• implement an efficient and dynamic mapping of cache blocks to the last-level cache

banks, aiming to map blocks as close as possible to the cores which use them

The final goal is to obtain a co-design of the NoC and the cache hierarchy which mini-

mizes the scalability problems due to coherence protocols. In this thesis we explore the

different design alternatives for fast network delivery and coherence protocol opportu-

nities. The best mechanisms, combined on a final system, allow for a truly dynamic
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and customizable architecture in an environment with multiple applications demanding

partitioning of resources.



Resumen

La jerarqúıa de caches y la red en el chip (NoC) son dos componentes clave de los chip

multiprocesadores (CMPs). La mayoŕıa del trafico en la NoC se debe a mensajes que

las caches env́ıan según lo que establece el protocolo de coherencia. La cantidad de

tráfico, el porcentaje de mensajes cortos y largos y el patrón de tráfico en general vaŕıan

dependiendo de la geometŕıa de las caches y del protocolo de coherencia. La arquitectura

de la NoC y la jerarqúıa de caches están de hecho firmemente acopladas, y estos dos

componentes deben ser diseñados y evaluados conjuntamente para estudiar cómo el

variar uno afecta a las prestaciones del otro. Además, cada componente debe ajustarse

a los requisitos y a las oportunidades del otro, y al revés. Normalmente diferentes clases

de mensajes se env́ıan por diferentes redes virtuales o por NoCs con diferente ancho

de banda, separando mensajes largos y cortos. Sin embargo, otra clasificación de los

mensajes se puede hacer dependiendo del tipo de información que proveen: algunos

mensajes, como las peticiones de datos, necesitan campos para almacenar información

(dirección del bloque, tipo de petición, etc.); otros, como los mensajes de reconocimiento

(ACK), no proporcionan ninguna información excepto por el ID del nodo destino. Esta

segunda clase de mensaje no necesita de mucho ancho de banda: la laténcia es mucho

mas importante, dado que el nodo destino está bloqueado esperando su recepción. En

este trabajo de tesis se desarrolla una red dedicada para trasmitir la segunda clase de

mensajes; la red es muy sencilla y rápida, y permite la entrega de los ACKs con una

laténcia de pocos ciclos de reloj. Reduciendo la laténcia y el tráfico en la NoC debido a

los ACKs, es posible:

• acelerar la fase de invalidación en fase de escritura en un sistema que usa un

protocolo de coherencia basado en directorios

• mejorar las prestaciones de un protocolo de coherencia basado en broadcast, hasta

llegar a prestaciones comparables con las de un protocolo de directorios pero sin

el coste de área debido a la necesidad de almacenar el directorio

• implementar un mapeado dinámico de bloques a las caches de último nivel de

forma eficiente, con el objetivo de acercar al máximo los bloques a los cores que

los utilizan

El objetivo final es obtener un co-diseño de NoC y jerarqúıa de caches que minimice

los problemas de escalabilidad de los protocolos de coherencia. En esta tesis se explo-

ran diferentes alternativas para una entrega rapida de los ACKs y las oportunidades
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que ofrece al protocolo de coherencia. Combinando los mecanismos presentados en un

sistema final, se obtiene una arquitectura adaptable dinamicamente a los requisitos de

múltiples aplicaciones en un entorno virtualizado.



Resum

La jerarquia de cache i la xarxa en el xip (NoC) són dos components clau dels xips

multiprocessador (CMPs). La majoria del trànsit en la NoC es deu a missatges que les

caches envien segons el que estableix el protocol de coherència. La quantitat de trànsit,

el percentatge de missatges curts i llargs i el patró de trànsit en general varien depenent

de la geometria de les caches i del protocol de coherència. L’arquitectura de la NoC i la

jerarquia de cache estan de fet fermament acoblades, i aquests dos components han de ser

dissenyats i avaluats conjuntament per a estudiar com al variar un afecta a les prestacions

de l’altre. A més, cada component s’ha d’ajustar als requisits i a les oportunitats de

l’altre, i a l’inrevés. Normalment diferents classes de missatges s’envien per diferents

xarxes virtuals o per NoCs amb diferent ample de banda , separant missatges llargs i

curts. No obstant això, una altra classificació dels missatges es pot fer depenent del tipus

d’informació que proveeixen: alguns missatges, com les peticions de dades, necessiten

camps per aemmagatzemar informació (adreça del bloc, tipus de petició, etc.). Altres,

com els missatges de reconeixement (ACK), no proporcionen cap informació excepte

per l’ID del node dest́ı. Aquesta segona classe de missatge no necessita molt ample

de banda: la latència és molt més important, atès que el node dest́ı està t́ıpicament

bloquejat esperant la recepció d’ells. En aquest treball de tesi es desenvolupa una xarxa

dedicada per a transmetre la segona classe de missatges, la xarxa és molt senzilla i

ràpida, i permet el lliurament dels ACKs amb una latència de pocs cicles de rellotge.

Reduint la latència i el trànsit en la NoC a causa dels ACKs, és possible:

• accelerar la fase d’invalidació en fase d’escriptura en un sistema que utilitza un

protocol de coherència basat en directoris

• millorar les prestacions d’un protocol de coherència basat en broadcast , fins a

aplegar a prestacions comparables amb les d’un protocol de directoris però sense

el cost d’àrea a causa de la necessitat d’emmagatzemar el directori

• implementar un mapejat dinàmic de blocs a les caches d’ùltim nivell de forma

eficient , amb l’objectiu d’apropar quant al màxim possible els blocs als cores que

els utilitzen

L’objectiu final és obtenir un co- disseny de NoC i jerarquia de cache que minimitze els

problemes d’escalabilitat dels protocols de coherència. En aquesta tesi s’exploren difer-

ents alternatives per un lliurament ràpid dels ACKs i les oportunitats que això ofereix
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al protocol de coherència. Combinant els mecanismes presentats en un sistema final,

s’obté una arquitectura adaptable dinàmicament als requisits de múltiples aplicacions

en un entorn virtualitzat.
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Chapter 1

Introduction

Current manufacturing technologies integrate billions of transistors in a single chip, en-

abling the production of Chip Multiprocessors (CMPs) with tens of cores and other

components (e.g. accelerators, memory controllers, etc.) connected through a high-

speed on-chip network (NoC) [1], [2]. Even today, there are several examples of this

kind of systems, including prototypes (such as the 48-core Single-Chip Cloud Computer

developed by Intel [3]) and real products (such as Tilera’s 100-core TILE-Gx100 proces-

sor [4] or Kalray’s 256-core MPPA 256 [5]).

The trend in CMP systems with a very high core count is to employ simple cores, possibly

in-order, since they provide a better performance/power ratio than more complex and

larger out-of-order cores. To further reduce the design complexity and provide higher

scalability, these systems are usually organized in tiles, modular units which include one

or more cores, one or more level of caches and a switch to connect each tile with its

neighbors through the network-on-chip (NoC), typically a 2D mesh. Tile-based design

allows to focus design efforts on a single tile, which is then replicated to build the final

system. These tiled architectures have been claimed to provide a scalable solution for

managing the design complexity, and effectively using the resources available in advanced

VLSI technologies.

While systems with a limited number of communicating components can rely on a shared

interconnect like a bus, as the number of cores and/or other components increases a

shared interconnect is likely to become the system bottleneck, so an on-chip network

must be implemented to satisfy the higher bandwidth demand. Systems with tens or

1
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hundred of cores are typically connected through direct topologies like a 2D mesh or a

concentrated 2D mesh; these topologies are easily scalable and their implementation in

a tiled architecture is straightforward.

Parallel applications for multi-core systems can be developed using two different pro-

gramming models, depending on how the cores communicate between them. On the one

hand a message passing model can be used, where cores communicate by exchanging ex-

plicit messages; on the other hand, with a shared memory model the cores communicate

through shared variables. The shared memory programming model is usually preferred,

being easier for programmers as communication is implicit when accessing variables.

However, with multiple actors operating on the same memory locations, a set of rules

must be defined to determine the order of memory operations that leave the memory in

a consistent state; this set of rules is known as Memory Consistency Model [6].

The implementation of a system based on shared memory is further complicated by the

presence of cache memories. Cache memories play an important role in a CMP system

since they mask and limit the effect of the problem commonly know as the memory

wall: the speed of processors is growing faster than the speed of memories, thus making

memories the bottleneck of the entire system. Caches are able to strongly reduce the

number of off-chip accesses to main memory, resolving the vast majority of data accesses

within the chip. The on-chip cache is organized hierarchically, with smaller and faster

caches at the higher levels close to the processor and larger but slower caches at the

lower levels. The last level is usually banked to overcome the wire delay problem [7].

Since the same data can be replicated in multiple private caches, a cache coherence

protocol must be defined to regulate the read and write accesses to cached data and

avoid data incoherence due to the wrong management of write operations: any write

operation must be indeed eventually visible to all cores and all cores must see the same

order of write operations to the same data. Many different coherence protocols have been

proposed in the last decades, but the rise of CMP systems introduces new challenges:

existing protocols indeed present scalability issues that must be solved to allow their

use in a many-core system, so a lot of current research effort is focused on improving

the scalability of traditional protocols to make them fit to be used in future many-core

systems.
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The implementation of coherence protocols in a many-core CMP is further complicated

when the protocol is mapped on top of a point-to-point network: some properties of a

bus which simplify the implementation of a coherence protocol and limit the number of

possible race conditions, such as the total ordering of coherence messages and the inher-

ent broadcast nature, are lost in more sophisticated networks; a regular 2D mesh, for

instance, only provides point-to-point message ordering and the coherence protocol must

thus be designed keeping in mind this assumption and considering the race conditions

that may arise when multiple components (L1 caches, L2 caches, memory controllers,

etc.) communicate with the same node simultaneously. Unlike a bus, a 2D mesh delivers

broadcast and multicast messages in different times to different nodes, and there is no

way to determine whether a node has already received a message or not, so additional

control messages (acknowledgement messages) must be used to ensure the correct timing

of coherence operations.

Most of the traffic (if not all) on the on-chip network of a CMP system is due to coherence

messages exchanged by the various levels of caches and the memory controller according

to the cache coherence protocol, so on the one hand the coherence protocol determines

the nature of the NoC traffic (percentage of long and short messages, percentage of

unicast and broadcast messages, etc.) and on the other hand the NoC determines

the overall system speedup that the coherence protocol and the cache hierarchy can

achieve. These two components must then be co-designed, tailoring the NoC to meet

the requirements of the coherence protocol messages in terms of bandwidth and latency

and adapting the coherence protocol to efficiently use the resources provided by the

NoC.

Finally, with the core count reaching hundreds of nodes, resource partitioning will be

a key feature of future CMP systems. A partitioning scheme to dynamically and in-

dependently assign resources to multiple applications which are executed concurrently

on the CMP will be essential to efficiently exploit CMP resources and maximize the

performance. Some current virtualized systems (e.g. Tilera CMPs) allow to partition

the system at the tile-level and define regions in the chip which are assigned to differ-

ent applications. However, it should be possible to independently partition the CMP

components, defining different partitions for different types of resources (e.g. the cores

or the last-level cache) to meet the specific needs of each application, which requires

additional engineering of the on-chip network and the last-level cache.
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1.1 Thesis Contributions

This thesis focuses on the co-design of the NoC and the cache coherence protocol to

speedup some control phases of the coherence protocols and improve their scalability.

Starting from the baseline CMP with standard NoC and standard cache hierarchy shown

in Figure 1.1, different optimizations are proposed at NoC- and cache-level. The first one

(Figure 1.2-A) is a dedicated control network to transmit acknowledgement messages;

acknowledgements represent indeed a special class of messages which deliver a very

limited amount of information, and can be successfully transmitted through a lightweight

dedicated network, thus relieving the regular NoC from a percentage of traffic that can

be considerable in some classes of coherence protocols. The dedicated network, called

the Gather Network, is able to deliver many-to-one acknowledgements to the destination

node in a few clock cycles, and it allows to use cache coherence protocols which make

an extensive use of acknowledgements even in CMPs with a high core count limiting the

traffic penalty on the NoC. It is furthermore used as NoC substrate to enable the second

optimization, which is a cache-level technique aiming to reduce the LLC access latency

by dynamically mapping cache blocks to the LLC banks (Figure 1.2-B). This cache-level

technique, called Runtime Home Mapping (RHM), can also be used to implement the

third optimization, a partitioning scheme of CMP resources where cores, cache resources

and NoC resources are independently partitioned, as shown in Figure 1.3. Another

optimization, orthogonal to previous ones, relies on an L2 bank with an heterogenous

entry structure to reduce LLC area and power requirements (Figure 1.2-C).

More in detail, the contributions of this thesis are the following:

• The Gather Network, a dedicated control network to transmit many-to-one ac-

knowledgements. It is proposed in two different ways: the first one is fully com-

binational, has a very low area overhead and a very low latency but may present

scalability issues for systems with hundreds of cores; the second one employs ded-

icated sequential modules at the switches and solves the scalability issues of the

combinational implementation at the expense of an increased latency. An extension

of the Gather Network, called the Network of IDs, is not limited to many-to-one

acknowledgements but can be used to transmit unicast acknowledgements as well.
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Figure 1.1: Baseline CMP system.

Figure 1.2: Contributions of this thesis.

Figure 1.3: Final CMP system.

• Runtime Home Mapping, a dynamic technique where cache blocks are mapped

to the LLC banks at runtime; the aim of RHM is to map each block as close

as possible to the core(s) which access it, thus reducing the average LLC access
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latency, balancing at the same time the utilization of all the LLC banks, thus

exploiting the full on-chip cache capacity.

• The Partitioned NoC-Coherence (pNC), a scheme to independently partition cores,

last-level caches and the NoC in a tiled CMP system; it is based on the combination

of RHM at the cache level and the previously proposed Logic-Based Distributed

Routing (LBDR) [8] at the NoC level.

• A novel cache bank organization with a different entry structure for private and

shared blocks; private entries do not include the data field, and blocks are dy-

namically moved from an entry to another depending on the block state; this

organization allows to reduce the cache bank’s area and power with a minimum

impact on system performance.

• The implementation of the final system’s coherence protocol and cache hierarchy

in an FPGA board. We have ported the baseline CMP system and the different

optimization techniques and coherence protocols into a Virtex 7 evaluation board

FPGA. This allows to demonstrate feasibility of the designs on a pre-competitive

CMP system product.

With these optimizations and strategies, the CMP system is able to achieve truly parti-

tioning at the NoC and coherence level while saving large percentages of power consump-

tion and keeping maximum performance. The proposed solutions allow the coherence

protocol to scale and the on-chip cache hierarchy to be used efficiently and to adapt to

the requirements of the application executed by the system. Figure 1.3 shows the system

that can be implemented using the contributions of this thesis: a virtualized CMP where

the NoC and the LLC layer can be partitioned independently by the core partitioning

to meet the requirements of the applications executed in the different regions.

1.2 Thesis Outline

This thesis structures in 7 chapters and 2 appendices. The first chapter is for the moti-

vation of the thesis. Chapter 2 deals with background and related work. This chapter

focuses both, in coherence protocols, and NoC architecture. Then, it follows 4 technical
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chapters, each presenting a different contribution of the thesis. Then, Chapter 7 con-

cludes the thesis and sets the future directions and describes the scientific contributions

out of this thesis. Finally, two appendices describe the coherence protocols of the thesis

and the FPGA implementation.

Regarding the technical chapters:

• Chapter 3 describes the Gather Network and illustrates its extension to the Net-

work of IDs.

• Chapter 4 describes RHM and its optimizations to allow block migration, block

replication and the particular optimizations that take advantage of a broadcast-

based coherence protocol.

• Chapter 5 describes how RHM and LBDR can be integrated to achieve an inde-

pendent partitioning scheme of the last-level cache and the NoC.

• Chapter 6 describes the heterogeneous structure of the last-level cache bank where

different types of entries are used to store private and shared blocks.





Chapter 2

Background and Related Work

This chapter sets the background required for this thesis. It also provides an overview

on the state of the art of the two components of a CMP system on which this thesis

focuses: the cache hierarchy and the network-on-chip. Both, background and related

work, are mixed in this chapter, providing a single description. First, we focus on cache

memories and coherence protocols, and then on on-chip networks.

9
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2.1 The Cache Hierarchy

Chip multiprocessor systems (CMPs) may employ a shared memory programming model,

thus requiring a cache coherence protocol to keep data coherent along the cache hierar-

chy. To provide high cache capacity and low access time, the on-chip cache is organized

hierarchically, with small, fast caches at the higher levels (closer to the processor) and

bigger, slower caches at lower levels (closer to main memory). This provides high on-

chip storage capacity without the high access latency a single, large cache would have.

To overcome the wire-delay problem [7], the last-level cache (LLC) in CMP systems is

usually banked; this configuration is commonly known as Non-Uniform Cache Access

architecture (NUCA), initially proposed by Kim et al. for a single core system [9] and

then extended to CMPs [10], [11]. While the higher levels of the cache hierarchy are

always private to a core, different policies can be implemented as far as the LLC is

concerned, but the common choices are two. On the one hand, an LLC bank can also

be private to a core, thus extending that core’s private cache capacity. This is the best

option if the working set of the application which is running in the CMP fits in the LLC

bank, since all cached data can be accessed without sending requests over the NoC.

However, if the working set does not fit in the LLC bank, this policy generates many

LLC line replacements, and therefore off-chip requests. Furthermore, if a set of cores

share a cache block, a copy of that block must be present in each private cache, so shared

blocks are replicated at different LLC banks.

On the other hand, each LLC bank can be a slice of the shared distributed LLC; shared

LLCs are usually preferred because, although this organization has higher access laten-

cies than private LLCs, it provides higher cache capacity, thus avoiding expensive off

chip accesses that are more frequent when private LLCs are used. The access latency is

variable, depending on the location of both the core and the LLC bank in the CMP, and

on the strategy used to map memory blocks to the LLC banks, which will be discussed

in Section 2.1.2.

Without any loss in generality, in this dissertation we assume a cache hierarchy organized

in two levels, with inclusive1 L2 caches.

1A level of the cache hierarchy is called inclusive if it stores all the data cached in the higher levels.
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Figure 2.1: Baseline tile-based CMP system.

Figure 2.1 shows the reference system we assume throughout this work, unless stated

otherwise: it includes 16 tiles organized in a 4 × 4 2D mesh, each tile including a core,

a first-level private cache and a bank of shared LLC. This system will be also extended

to a 8 × 8 configuration, with the same tile organization, in some parts of this thesis.

2.1.1 Cache Coherence Protocols

A cache coherence protocol has the task to keep the data coherent among caches private

to different cores and located at the various levels of the cache hierarchy, enforcing

the Single-Writer, Multiple Readers coherence invariant (SWMR; for any block, at any

given time, one single core with write permissions or one or more cores with read only

permissions have a copy of the block) and propagating the new value of a written data

according to the memory consistency model.2

2.1.1.1 Invalidation-based vs Update-based Protocols

By managing write operations and the correct propagation of the new values, an im-

portant design choice is made when determining how the protocol behaves upon a write

request on a shared block. Update-based protocols allow a core to write on a shared

block, but the new value must be propagated to the copies in the L1 caches of the sharers.

This family of protocols has the advantage of immediately providing the new value to

the cores which share the block, but the update operation can be difficult to implement

2In this dissertation we assume Sequential Consistency; Lamport [12] defines a multiprocessor system
sequentially consistent if the result of any execution is the same as if the operations of all processors
were executed in some sequential order, and the operations of each individual processor appear in this
sequence in the order specified by its program.
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and may require a high amount of bandwidth. Furthermore, if the system implements

a strict memory consistency model (e.g. sequential consistency) particular care must

be taken to perform the update phase without violating the consistency model; this is

simpler if the system employs a shared interconnect as a bus but becomes much more

complicated with point-to-point topologies such as the 2D mesh.

Invalidation-based protocols invalidate all the shared copies of a block before a write

operation is performed. This way, if a core wants to read that block it must issue a new

coherence request, thus ensuring that any core will always read the value produced by

the last write operation. The performance penalty of invalidation-based protocols is due

to the fact that the sharers may still need to access the block which is being invalidated

and to the consequent high write miss latency: in case of a write miss, an L1 cache sends

a write request to the L2 cache, which in turn sends an invalidation message to each

L1 cache holding a copy of the block. The requestor cannot write until it receives the

requested data block and all the acknowledgements to the invalidation message.

Hybrid protocols have also been proposed, which behave as invalidation- or update-based

depending on the access pattern to each block [13]. These protocols try to reduce the

high traffic generated by a pure update-based protocol by determining at runtime which

cache blocks should be updated when modified and which ones should be invalidated.

However, due to the drawbacks of update-based protocols, almost all current systems

use pure invalidation-based protocols, which we will also assume in this thesis.

2.1.1.2 Steady States at L1 Cache Controllers

The typical way of defining a cache coherence protocol is through a finite state machine

(FSM) which indicates the evolution of the state of a cache block depending on the

access and coherence actions performed to it. One of the design choices of a coherence

protocol is the number of steady states the blocks can have in L1 caches; typically the

properties of each cache block are encoded using the five states proposed by Sweazey

and Smith [14]; focusing on a private L1, the state of a cache block can be one of the

following:

• M (Modified): only this L1 cache has a copy of the block with read and write

permissions; the copy has been modified and the copy in the L2 cache is thus stale
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Figure 2.2: Simplified FSM for the MSI protocol.

• O (Owned): this L1 cache has a copy of the block with read-only permission and

must provide the block when it is requested by other L1s; other L1 caches may

have a read-only copy of the block in state S; the copy in the L2 cache may be

stale

• E (Exclusive): only this L1 cache has a copy of the block with read and write

permissions; the copy has not been modified

• S (Shared): this L1 cache has a read-only copy of the block; other L1 caches may

also have a read-only copy

• I (Invalid): the block is either not present in this cache or it is present but not

valid

The three states M, S and I are the basic ones and allow to define the simpler MSI

protocol, while states O and E are two optimizations which can be used to extend the

MSI protocol, thus obtaining MOSI, MESI and MOESI protocols. An L1 cache which

has a copy of a block in state M, O or E is referred to as the owner of that block, while

the set of L1 caches holding a copy of a block in state S are referred to as sharers of that

block.

Figure 2.2 shows a simplified FSM of the MSI protocol (transient states are not shown).

A cache block is initially in state I; then, when the core issues a read (Load) or write

(Store) request, the line goes to state S or M, respectively. The block is requested by

sending respectively a GetS or a GetX request through the NoC; the requested data is
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Figure 2.3: Simplified FSM for the MOESI protocol.

provided by the LLC or by the owner L1 depending on the state of the block. If the

cache line is replaced (Repl), the state switches back to I. The block is also invalidated if

the cache receives a write request issued by another core (GetX), to preserve the SWMR

invariant. If a write request from the local core is received while the line is in state S, it

switches to state M; to do so, the L1 cache must issue a coherence request to obtain write

permissions (GetX), and the write operation can be completed only after the copies hold

by eventual sharers have been invalidated. If the cache receives a read request issued

by another core (GetS) while in state M, it switches to state S, losing write permissions

to preserve the SWMR invariant. Since it holds the last recently modified copy of the

requested block, the cache must provide the block to the L1 cache which issued the GetS

and also has to update the stale copy stored in the LLC (which is in charge to answer

to block requests while the block is shared), so two data messages are sent through the

NoC.

Figure 2.3 shows the FSM for the full MOESI protocol. A first difference comparing to

the MSI protocol is that a cache block can go to state S or to state E when the local core

issues a read request: if the block is already present in any other L1 cache of the CMP
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Figure 2.4: Simplified FSM for the MESI protocol.

(LoadS), the state switches to S, while if no L1 cache has a copy of the block (LoadX)

the state switches to E. A block in state E has read and write permissions, so it can be

written without issuing any coherence request (GetX) through the NoC: since only one

L1 cache in the system has a copy of the block, the block can be modified preserving the

SWMR invariant. Once a block in state E is modified, it goes to state M. The second

difference with the MSI protocol is that a block in state M which receives an external

read request (GetS) goes to state O instead of state S. Although the block is now shared,

the L1 cache which holds the copy in state O is still the owner of the block (the copies

in the other L1 caches are in state S) and it is in charge of providing the block when it is

requested by other L1 caches. This optimization allows to avoid updating the LLC when

a GetS is received while in state M, saving a data message; this is particularly useful if

the LLC has high access latencies, as in systems where the LLC is located off-chip.

In CMP systems the LLC latency is relatively low, and the benefits of avoiding updating

the LLC are nullified by the additional indirection step which state O introduces in

directory-based protocols, so the common choice is to use MESI states at the L1 caches.

The simplified FSM of the MESI protocol we assume in this thesis is shown in Figure

2.4.

The actual FSMs of MOESI and MESI protocols also include transient states which are

needed to solve the race conditions due to simultaneous accesses to the same block by
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different cores; the additional states are not shown in Figures 2.3 and 2.4 due to the

complexity they would add to the figures. The protocols are, however, listed in the

Appendix A of this thesis.

2.1.1.3 Snoopy and Directory Protocols

Cache coherence protocols can be classified in two families depending on whether the

request issued after an L1 cache miss is broadcasted to all the caches in the system or

sent to a specific node: in the first case the coherence protocol belongs to the family of

snoopy protocols, while in the second case belongs to directory protocols.

Snoopy protocols usually rely on a shared communication medium (typically a bus) with

a total ordering of messages. In case of an L1 cache miss, a request is broadcasted to

all the caches in the system. Each cache controller’s FSM evolves depending on the

current cache line state and on the request type, and the protocol is designed to let all

the caches independently evolve to a global correct state which guarantees the SWMR

invariant. Messages in the interconnection network must be totally ordered to let all the

caches see the same order of issued requests. The main drawback of snoopy protocols is

due to the shared interconnect which limits their scalability.

In directory protocols the request, in case of an L1 miss, is sent to a single node, referred

to as the home node, which is in charge of managing all the requests issued by L1 caches

to the same block and thus acts as the synchronization point: the requests are managed

following the order of their reception at the home node; the home node is typically

associated to the lower shared level of the memory hierarchy. Directory protocols rely

on a data structure, called the directory, to keep track of the cores which have a copy

of each block in their private cache. This information is used by the LLC to locate the

tiles3 to which it has to communicate to when a coherence action must be triggered.

In its typical implementation, the directory consists of a bit vector associated to each

cache line, with the size of the vector equal to the number of cores in the system.

This limits the scalability of directory protocols since the directory introduces an area

overhead which grows with system size.

3In this thesis we use both terms core and tile interchangeably.
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Figure 2.5: Snoopy protocol example.
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Figure 2.6: Directory protocol example.

Figures 2.5 and 2.6 show an example of how the two protocols manage the same sequence

of requests generated by L1 caches in a system with 4 cores and one bank of L2 cache.

States IS and IM are the transient states used when the block is changing its state from

I to S and from I to M, respectively. At the beginning, the block we consider is shared

by the L1 caches of cores 1 and 3 (L1-1 and L1-3). Then, a read request is issued by

L1-0 and a write request by L1-2.

If a snoopy protocol is used, L1-0 broadcasts its request; when the L2 cache receives

the request, it sends the data block to L1-0; the block is now shared by L1-0, L1-1 and

L1-3. After a write miss in L1-2, a write request is broadcasted; when the request is

received by the nodes which share a copy of the block, they invalidate their copy, while
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the L2 cache sends the requested data to L1-2, which will hold the only valid copy of the

block. If the coherence protocol is directory-based, L1-0 sends a unicast read request to

the home node (the L2 cache bank), which adds L1-0 to the sharers list of that block

and provides the requested data block. L1-2 also sends an unicast write request to the

L2 bank, which in turn sends an invalidation message to each sharer and the requested

data to L1-2; a field of the invalidation message includes the ID of the L1 which issued

the request, while the data message indicates the number of sharers that are being

invalidated. Each sharer, when it receives the invalidation message, invalidates its copy

of the block and sends an acknowledgement message to L1-2; L1-2 can use the block

only after the reception of the data and all the acknowledgments, meaning that all the

sharers have invalidated their copy of the block.

2.1.1.4 Directory Implementation

In tiled CMP systems the directory structure is distributed in the LLC cache banks,

usually included into the LLC tags portion [15]. In this way, each bank keeps the sharing

information of the blocks which are cached on it. This sharing information comprises

two main components: the state bits used to encode one of the basic steady states the

cache controller can assign to a line and the sharing code, that holds the list of current

sharers. Most of the bits of each directory entry are devoted to encode the sharing code,

and therefore the total size of the directory structure is mainly determined by it. This

extra storage adds requirements of area and energy consumption to the final design and

could restrict the scalability of future many-core CMPs [16].

As far as the state bits are concerned, we assume four steady states for blocks at the

LLC:

• P (Private): an L1 cache has a private copy of the block which may be modified

or not (the state at the L1 cache is M or E)

• S (Shared): a set of L1 caches have a shared copy of the block with read-only

permissions (the state of the block at each sharer’s L1 cache is S)

• C (Cached): no L1 has a copy of the block: there is one copy in the LLC

• I (Invalid): the block is either not present in the LLC or it is present but not valid
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Figure 2.7 shows the simplified FSM for L2 blocks (the complete protocol is specified in

the appendix): when a block which is not cached (state I) is requested for the first time,

it is fetched from main memory and sent to the requestor with read and write permission

independently from the actual request type; the block goes to state P in the L2 bank,

while in the requestor L1 will be in state M or E depending on the operation which

triggered the L2 request and on further local accesses. Write requests (GetX) received

in state P do not change the state: the old owner is removed from the directory and

the requestor is added as the new owner. If a read request (GetS) is received in state

P, the requestor is added to the directory and the block switches to state S. When read

requests are received in state S, the requestor is added to the directory, while if a write

request is received an invalidation is sent to all the sharers, which are removed from the

directory; the requestor is added as the new owner and the block switches back to state

P. When a block is replaced by the owner (PutX in state P) or by all sharers (LastPutS

in state S), the L2 bank has the only copy of the block, which is in state C. When any

request is received for a block in state C, the data will be sent to the requestor with

read and write permission independently from the request type, the requestor is added

to the directory as the new owner of the block, and the block state in the L2 switches
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to P.

Many different organizations have been proposed to implement the sharing code, two of

which deserve special attention. On the one hand, the sharing code can be implemented

as a a bit-vector having one bit for each private cache in the system; if a private cache

has a copy of a block, the corresponding bit in the sharing code stored in the directory

entry associated to that block is set. This implementation, called full-map directory,

provides an exact representation of the private caches holding a copy of the block in

each moment, but its scalability is limited to tens of cores: for a system having 256

cores, for instance, the sharing code requires 32 bytes; assuming 64 bytes as the block

size, this means that the directory increases the cache size by 50%. We refer to these

protocols as directory-based protocols.

The area overhead can be reduced compressing the sharing code and mapping more than

one private cache to each bit; this reduces the accuracy of the directory information,

since when a bit of the sharing code is set it is not possible to determine which of the

private caches mapped to that bit actually have a copy of the block, so when the LLC

has to communicate with L1 caches to manage a request (i.e. it has to forward a request

or send invalidation messages), it must send a message to all the caches mapped on that

bit. Thus, the more the sharing code is compressed, the more area overhead is reduced,

but NoC traffic increases, specially not useful traffic (messages sent to nodes which are

not sharers).

By eliminating the sharing code we obtain what is called a Dir0B protocol. This protocol

does not dedicate any bit to the sharing code, so every coherence operation requires

a broadcast to all the private caches in the system; we will refer to these protocols

as broadcast-based protocols. The Hammer protocol employed in systems built using

AMD Opteron processors [17], [18] is the most representative example of this family of

protocols.

Summarizing, full-map directory protocols do not scale since the size of the directory

grows linearly with the number of cores. However, these protocols generate the minimum

amount of network traffic on the NoC. On the other hand, broadcast-based protocols

completely remove the onerous part of the directory structure (the sharing code) result-

ing in a low overhead, completely scalable directory structure (just the state bits are

needed in each entry). The drawback is that the number of messages on coherence events



Chapter 2. Background and Related Work 21

L1-0 L1-1L2

I P M
IS

S

GetS

FwdS

DataS AcceptS

WBAckS

S

(a) read request

L1-0 L1-1L2

I P M
IM

M

GetX

FwdX

DataS

I

(b) write request

Figure 2.8: Requests for a private block in full-map directory protocols.

increases linearly with the number of cores, which limits its applicability to systems with

a small number of cores.

Focusing on full-map directory protocols, the basic four cases of coherence operations

are shown in Figures 2.8 and 2.9. Figure 2.8 shows how an L1 miss is resolved if the

requested block is private (owned by another L1 cache). The L1 nodes are identified by

the tile number (L1-0 is the L1 at tile 0) and the L2 bank in the picture is the home

of the requested memory block. In case of a load miss in L1-0 (Figure 2.8.a), a GetS

message is sent to the home L2 bank, which forwards the request to the owner (L1-1)

and adds the requestor (L1-0) to the list of sharers. The owner sends a copy of the block

to L1-0 (DataS, where S indicates that the block is sent with read only permissions)

and updates the L2 entry with the most recent value of the block (AcceptS). In case of

a write miss (Figure 2.8.b), L1-0 sends a GetX message to the home, which forwards it

to the owner and changes the information in the sharing code by eliminating L1-1 and

adding L1-0, which is now the new owner. L1-1 sends the block with read and write

permissions (DataX) to L1-0 and invalidates its copy.

Figure 2.9 shows how L1 misses are managed when the requested block is shared by

a set of processors. In case of a load miss (Figure 2.9.a), a GetS is sent to the home,

which adds the requestor to the list of sharers and sends the requested block back to

the requestor with read-only permissions. In case of a store miss (Figure 2.9.b), a GetX

is sent to the home bank, which answers by sending the block with read and write

permissions to the requestor and by sending an invalidation message to the sharers. At
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Figure 2.9: Requests for a shared block in full-map directory protocols.

Figure 2.10: Write request management in broadcast-based protocols.

the reception of the invalidation message, each sharer invalidates its copy and sends an

acknowledgement message to L1-0, which can complete the write operation only when

it receives the requested data and all the expected ACKs (a field in the DataX message

indicates the number of acknowledgements L1-0 has to wait for).

The broadcast-based protocol does not use the sharing code, so each time an L2 has to

forward a request or to send invalidations to the sharers, it issues a broadcast message

which is received by all the L1 caches in the system. When this broadcast request is

received by the owner L1 cache, it sends the block to the requestor. If it is received by

a sharer, it invalidates its copy and sends an ACK to the requestor. If it is received

by an L1 cache which does not have a copy of the block, it just sends an ACK to the

requestor. So, the broadcast-based protocol behaves as the directory-based protocol in
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case of read request for a shared block (Figure 2.9.a) while in all other cases a message

is broadcasted to all the L1 caches and the requestor receives a response message from

all other L1 caches. For instance, the case of a write request for a shared block in a

4-core system is shown in Figure 2.10. All nodes reply to the broadcast by sending an

ACK and invalidating the local copy, if any. L1-0 can write once it receives the data

and all the ACKs.

2.1.2 Block Mapping Policies in Shared Banked LLCs

When banked LLCs are shared, the bank that is in charge to host and manage a block

is called the home bank for that block. The easiest and most common way to map

cache blocks to the shared LLC banks is static mapping: the address space is divided

into subsets, and all the blocks of a subset are statically mapped to a single LLC bank.

This policy is very simple to implement (e.g. the home node is chosen depending on the

less significant bits of the block address) and theoretically distributes evenly the cache

blocks on the L2 banks (this is however not true in real applications because memory

accesses are never uniformly spread over the entire memory address space). The main

drawback of this policy is that, since the position of the requesting core in the CMP is

not taken into account by the mapping policy, a block can be mapped to a bank which

is far from the core which is actually accessing it. A banked LLC using stating mapping

is commonly referred to as Static NUCA or S-NUCA [9].

Various alternative policies have been proposed to minimize the access latency of an

S-NUCA approach, software- and hardware-based. Cho and Jin [19] proposed an OS-

based technique in which the address mapping to the LLC banks is still static but the

OS is in charge to load the pages to the main memory depending on the desired policy.

If a First-Touch policy is implemented, for instance, the OS takes into account the

first thread which requests a block within a page, and that memory page is loaded to

addresses which are statically mapped to the L2 bank located in the same tile of the

core in which that thread is running. More sophisticated policies than First-Touch can

be implemented to achieve a better mapping of the cache blocks to the LLC banks (e.g.

Cho et al. [19], Ros et al. [20], Das et al. [21]), but it must be taken into account that

complicating the OS mapping policy increases the complexity of the OS paging routine,

which is in the critical path of the cache miss management.
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Compile-time and data-based techniques have also been proposed in [22] and [23]. OS-

and compiler-based techniques, however, rely on static mapping at hardware-level and

cannot support hardware runtime techniques to adjust the initial mapping and further

reduce the access latency, such as block migration [9] or replication [24] [25].

A first hardware-based policy to improve the performance of an S-NUCA was proposed

by Kim [9]; this policy groups the banks in bank sets and maps each subset of addresses

to a bank set, allowing blocks to migrate from a bank to another within a bank set to

get closer to requesting processors. This policy, called Dynamic NUCA or D-NUCA,

achieves lower access latencies than S-NUCA but complicates the process of requesting a

block to the LLC, leading to a tradeoff between access time and NoC traffic since all the

banks of a bank set must be accessed, leading to either high latency (sequential search)

or more traffic (parallel search). Furthermore, it was proposed for a single-core system,

and its extension to CMPs does not show the expected performance improvements due

to various issues that have to be managed when multiple cores are sharing the same

D-NUCA, such as the ping-pong behavior and the race conditions which lead to false

and multiple misses [11], [26].

Based on the NUCA architecture, various proposals have been made to reduce the LLC

access time through block replication (CMP-NuRAPID [27], Reactive-NUCA [24], Re-

NUCA [25]) or using an hybrid policy to exploit the advantages both of private and

shared LLCs (ESP-NUCA [28]). As it happens for OS-based policies, these techniques

too are all based on static or partially static mapping, so the achieved LLC access latency

is reduced but not optimal. Furthermore, some of them require network topologies

more complex than the 2D mesh typically used in tiled CMP; Reactive-NUCA, for

instance, is designed to run on top of a 2D torus, while CMP-NuRAPID requires a

shared interconnect, which does not scale to an high number of cores.

In this thesis we assume static mapping in Chapter 3 and 6, whereas we assume dynamic

mapping in Chapters 4, where we describe Runtime Home Mapping, a dynamic policy

where block mapping is performed by the memory controller at runtime, while the block

is being fetched from main memory, and Chapter 5, where Runtime Home Mapping is

used to create a substrate for the independent partitioning of resources in a virtualized

CMP system.



Chapter 2. Background and Related Work 25

2.1.3 Power Implications

As the size of last-level caches is constantly growing, their power requirements repre-

sent a significant fraction of the overall system power. Dynamic power-off strategies

have been proposed to reduce the leakage by powering entire LLC banks or single LLC

entries. Powell et al. [29] propose the gated-Vdd design, in which a transistor is in-

serted between the ground and each LLC cache line to reduce the leakage current to a

negligible level, thus powering down L2 cache lines used for private blocks; the value

of these blocks indeed may be stale, since the owner L1 cache has the block with read

and write permission and may have modified its value. Similar techniques have been

proposed to reduce the supply voltage enough to reduce leakage without destroying the

content of the cell, as done with drowsy [30] and superdrowsy [31] caches. The latter

techniques have various drawbacks compared to the destructive technique proposed by

Powell, being more difficult to implement and saving less leakage since a certain voltage

has to be provided to the cell to keep the data.

At higher level, alternative cache architectures have been proposed to reduce static

and/or dynamic power. Savings can be achieved by modifying cache parameters like

cache size and cache associativity [32], [33]. Other efforts have been made to reduce the

number of cache accesses, by using snoop filters [34], [35], way predictors [36] or filter

caches [37]. Various proposals turn off L1 or L2 cache ways based on different prediction

techniques. As an example, Kaxiras et al [38] propose to turn off L1 cache entries which

are not expected to be reused. Abella et al [39] propose a different predictor to turn

off unused L2 cache entries. Li et al [40] use different policies to turn off L2 cache

entries when block copies are replicated in an L1, and evaluate both conservative and

destructive voltage gating techniques.

All these works assume a 1:1 relationship between LLC entries and directory entries. In

these thesis we propose a high-level approach where there are more directory entries than

LLC entries: depending on the block being private or shared, it is stored in a directory-

only entry or in an entry including both the directory and the LLC portion. This way

we reduce the L2 cache size (and thus the leakage) by reducing its associativity, while

keeping the directory associativity, which is vital to keep track all the on-chip blocks,

either shared or private. Our proposal is orthogonal to all these works, and in Chapter

6 we provide results of our technique complemented with the one presented in [29].
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Figure 2.11: A general overview of a network architecture.

2.2 The Network-on-Chip

The NoC architecture is the result of several design choices like network topology, switch-

ing and flow control techniques and routing strategies. The network topology defines

the physical interconnection between nodes and other elements. The switching and flow

control techniques define how and when the information is transmitted through the

network resources. Finally, the routing strategies manage the different path choices of

communication between the nodes.

There are some common elements that can be identified in a network architecture. The

first ones are the nodes. Nodes are the elements that communicate through the network

and perform basically two main tasks: computation and storage. Nodes connect to

other nodes through a network interface. Switches (also called routers) connect multiple

devices. Links are the elements that connect all the devices (network interfaces and

switches) present in the network architecture. Figure 2.11 shows the general structure

of a network architecture.

In this section we provide initial background for the NoC components. However, for a

full description, the reader is referred to [41].
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2.2.1 NoCs Topology

Earlier on-chip communication architectures included buses as the communication sub-

system, but the trend nowadays in the industry of high-performance computing is to

include a reasonably large number of processing cores inside the chip, and shared-medium

networks’ poor scalability and bandwidth impacting heavily on the system performance.

NoCs emerged, thus, as a response to effective on-chip communication. As current mul-

ticore systems can be seen as a collection of tiles, there is a major taxonomy where chips

can be differentiated between those having homogeneous (inducing regular topologies)

and those having heterogeneous designs (more suited with irregular topologies). Every

tile is connected to a subset of other tiles through the on-chip network. An example

of homogeneous configurations are the tiled chip multiprocessors (CMPs) where all the

tiles have the same structure as in Figure 2.1. On the other hand, high-end multipro-

cessor systems-on-chip (MPSoCs) are an example of heterogeneous designs where tiles

are different in many aspects: size, functionality, performance, throughput, etc.

A popular choice in NoC designs is the use of orthogonal topologies as most of the direct

network architectures are implemented with this property in mind. Orthogonal topolo-

gies, which are associated with regular patterns, allocate the nodes in a n-dimensional

space, with k nodes along each dimension. Every switch has at least one link crossing

each dimension and is labelled with an identifier depending on the coordinates. All links

that communicate to other switches are bidirectional (formed by two channels, one in

each direction). As the distance between two switches is the sum of the offsets in all

dimensions, the routing strategy is usually implemented as a function of selecting the

links that decrement the absolute value of the coordinate offsets between a source node

and a destination node, a very simple mechanism. The most popular design in NoCs

is the n-dimensional mesh, used in most of the commercial and non-commercial (pro-

totypes) NoC designs. The most suitable topology is the 2-dimensional mesh (Figure

2.12). This kind of topology is vastly used (or at least assumed) because it fits the chip

We assume this topology throughout this thesis.

As every switch is identified within the network by its coordinates on a n-dimensional

space, a switch in a 2-dimensional graph will be numbered by a group of two coordinates,

(x, y), one for each dimension. Crossing a link means decrementing or adding an unitary

value to the offset of the dimension between the two switches that share the associated
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Figure 2.12: A 4 × 4 2-dimensional mesh.

link. Moving from switch 1, with coordinates (1, 0), in Y + direction results in switch

5, coordinates (1, 1). Typically, switches are numbered by a single id, computed as a

function of the coordinates and the number of switches per dimension.

2.2.2 The Switch

The switch, or router, is the tile component in charge of the communication between the

associated tile and the rest of the tiles through the network layer. Typically, a switch

includes the following main modules (Figure 2.13):

• Buffers: The task of a buffer is to store temporarily units of information (typically

called flits, messages or packets). Buffers are associated to the channels that are

connected to the switch. Channels, also called ports, are divided into input ports,

streams that receive messages, and output ports, streams the send the messages

to other switches or end nodes. Note that, to save area and power, buffers at the

output ports are usually not implemented.

• Crossbar: The crossbar is the non-blocking switching element that allows the

connection of all inputs of the switch to all its outputs. Crossbars are classified

by their radix, i.e. the maximum numbers of connections they can make. Since

crossbars do not scale, switches with many ports do not scale either.
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Figure 2.13: General structure of a VC-less switch.

• Routing unit: This unit is the responsible for decoding the unit of information

provided by the incoming message, and based on the routing function and desti-

nation of the message, computing the most suitable output ports to transmit the

message.

• Arbiter unit: This unit feeds from the routing unit and configures the crossbar

accordingly to the requests between input and output ports, taking into account

switching and flow control issues (both will be explained next in this Section).

2.2.3 Data Units

In an interconnection network, the general routing unit of information between nodes is

the message (see Figure 2.14). A message is a collection of bits that the sender wishes

to transmit to a destination (or a set of destination nodes), i.e. it contains the data

that must be transmitted. A message typically includes a header, which contains the

information for routing and control, to be used by the routing devices, a body which

contains the data, and optionally a tail, for flow control or arbitration purposes. This

information unit, however, due to resource restrictions affected by design choices, may

need to be divided into smaller units, called packets, through a packetization process

(usually performed at the network interface). Often, packet and message terms are

interchangeable by the community, when both are equal in size. The term packet is

usually employed even when the message has not been packetized.
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Figure 2.14: Data units.

A packet is divided further into flits (flow control digits), which are the smallest unit

of flow-controlled information. As the width of the link can be lower than the size of a

flit, the flit can be further divided at the physical level, into phits (physical digits). It

is left to the designer and the parameters involved, the size of every unit. However, in

on-chip networks, due to the vast amount of bandwidth available, the phit size usually

equals the flit size.

2.2.4 Switching

Switching techniques control the allocation of network resources to messages/packets

inside the switches. Their basic function is to set the connections between the input

buffers and the output ports. The choice imposes several design constraints in the router

that impact the performance, fabrication cost and power consumption of the elements

in the network. Next we briefly describe the main switching techniques used in NoCs.

If circuit switching is used, the network establishes a reserved path between source

and destination nodes prior to the transmission of the message. This is performed by

injecting in the network a flit header, which contains the destination of the transmission

and acts as some kind of routing probe that progresses towards the destination node

reserving the channels that it gets. As the path has been reserved for this flow, messages

cross the network avoiding buffer needs and collisions with other flows. The circuit is

torn down when the transmission finishes. Circuit switching can be very advantageous

when messages are very frequent and long. Nevertheless, if the circuit set up time is long

compared to transmission time of the data, it will strongly penalize the performance of

the network since links will be poorly used.

Instead of reserving all the path for a certain flow, there are some techniques that operate

at packet granularity. These techniques are referred as packet switching. The most basic



Chapter 2. Background and Related Work 31

technique related to packet switching is store and forward (SAF). When a packet arrives

to a switch, the switch waits to store the whole packet in its input port buffer before

the packet is forwarded. So, input port buffers must be large enough to store a whole

packet. As can be deduced SAF has higher buffer requirements than circuit switching.

In addition, latency of packets is multiplicative with hop count along the path (as the

forward operation waits for the completion of the store operation).

The routing process however can be started once the packet header is received at the

input buffer, without waiting for the rest of the packet. This is what is done in virtual

cut-through (VCT) switching. In this case, as packets can advance through the switch

once the packet header is received, the base latency for this switching technique is mostly

additive to the distance between the nodes (hop count). Despite this, buffer requirements

are the same for VCT and SAF. VCT requires there is enough free buffer space to store

the entire packet. In fact, VCT behaves like SAF when the output link is busy. The

switch needs to completely allocate the entire packet. This is the switching technique

commonly used in off-chip high-performance interconnects [42], [43] since buffer size is

not as critical as in NoCs.

VCT switching is an improvement over SAF, but in some network architectures, the

choice of a buffer size to hold an entire packet could be prohibitive. The requirement

to completely store a packet in the buffer of a router may prevent to design a small,

compact, and fast router [43]. In wormhole switching (WH) buffers at the ports of a

router only have to provide enough space to store only few flits, depending on the round-

trip time delay (RTT) 4, instead of the whole message. In WH switching, the packet is

forwarded immediately before the rest of the packet is entirely received, but as opposed

to VCT, there is no need to have enough space for the rest of the message in case the

message blocks. In that case, the entire message remains stored through the buffers of

several routers. The major advantage of WH switching is the low storage requirements

at routers. However, the most important drawback is that WH switching could lead to

high contention levels at the network, because a message may block several resources

when is traversing the network, causing low utilization of links and buffers.

To overcome the problem of contention induced by wormhole switching, virtual channels

[44] were proposed. When using virtual channels (VCs) the buffer at the input port is

4Round-trip time delay can be defined as the elapsed time between a unit of information is sent and
the acknowledgement of that transmission is received



32 Chapter 2. Background and Related Work

divided into different virtual buffers and the channel is shared by all the virtual buffers.

Of course this virtual multiplexing requires some local arbitration and must be taken

into account by flow control and switching techniques. VCs can be used to improve

message latency and network throughput. Their major drawback is that the available

link bandwidth is distributed over all the VCs sharing a physical link, resulting in lower

speeds. Again, in the on-chip network domain, the designer must evaluate the trade-off

and the impact overhead on the network. VCs are not restricted to wormhole switching,

the concept can be extrapolated to other design choices, depending on the need of

their functionality (examples are deadlock-free routing algorithms and quality-of-service

protocols).

2.2.5 Flow Control

Transmission of a flit between the input and output ports in a switch is a task performed

by the switching technique. Flow control, however, is in charge of administering the

advance of information between switches. Buffers are a temporary resource where to

store flits, but they are finite. Flow control techniques are in charge of determining

when the flits can be forwarded evaluating the capacity of the buffers and the link

bandwidth.

There are three flow control mechanisms that are commonly used: ack/nack, stop & go

and credit-based. The ack/nack flow control mechanism is based on data acknowledge-

ments. When a flit arrives to a buffer, if the buffer has space available, then the flit is

accepted and an acknowledgement signal (ack) is sent back. Instead, if there is no space

available, the flit is dropped and a negative acknowledgement is sent. The flit must be

retained at its origin until it receives a positive acknowledgement.

Stop & go emerged as an alternative to reduce the signalling (control traffic) between

the sender and the receiver. Stop & go flow control is based on every buffer having two

thresholds corresponding to certain sizes computed from the round-trip time. When

the space occupied in the buffer reaches the stop threshold, a signal is sent back to

the sender precisely to stop the transmission, taking into the account that still remains

enough buffer space for the flits that are still being transmitted by the sender. When the

buffer occupancy diminishes under or equal to the second threshold, go, then another

signal is sent to reactivate the flow of flits.
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With credit-based flow control, each sender, at its end of the link, maintains a count of

credits, which is equal to the number of flits that can still be stored at the buffer on the

receiver side. Whenever a flit is forwarded to the receiver buffer, as it occupies a slot,

then the counter is decremented. If the counter reaches zero, it means that there is no

available buffer space at the other end, and no flit can be forwarded. On the other hand,

whenever a flit is forwarded and frees the associated buffer space, a credit is sent back to

increment the counter. The drawback of this flow control mechanism is the significant

amount of credit signaling sent backwards.

2.2.6 Arbitration

A router is composed of multiple input and output ports with their associated buffers

and channels. Multiple inputs, according to routing decisions, may request the same

output port. In this scenario, an arbitration operation is required to decide which one

of the requests is allowed to connect to the output port. The arbitration mechanism

must ensure to assign the output to only one of the inputs that have requested it, and

the others must wait until they are allowed. As the arbitration operation introduces a

latency to determine the assignment of the different output ports, it is critical for a NoC

environment that these operations are performed fast enough to keep low latencies.

The main goal of an arbitration mechanism is to provide fairness between all the ports

while achieving maximal matchings between requests and resources. For a description

of different arbitration mechanisms, refer to [41].

2.2.7 Routing

Network topology defines the physical organization of the network composed by the

nodes, and thus the available paths between all the nodes. The routing algorithm is the

responsible of deciding which path has the message to follow to be effectively routed

from its source to its destination. In the NoC domain, and more generally in any

interconnection network scenario, the desired behavior is that every generated message

from a source node arrives to its destination. However, even in the presence of available

physical paths, there are several situations that prevent message delivery:
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• Deadlock. A deadlock occurs when a message cannot advance toward its destina-

tion because the buffer requested by the message is full, being blocked by another

message that is also waiting. A cyclic set of such events could make the messages

to get permanently blocked. The two common ways to deal with deadlock events

are deadlock avoidance, achieved employing a deadlock-free routing algorithm, and

deadlock detection/recovery.

• Livelock. Livelock scenarios are similar to deadlock, but they happen when a

message is misrouted and never reaches its destination as the links required to do

so are always reserved to other messages. So, there are no permanently blocked

messages, but a dynamic condition of blocking. Livelocks arise when non-minimal

path routing is allowed and can easily be solved by limiting the number of times

a message can be misrouted.

• Starvation. This issue arises when a message is permanently stopped holding a

resource and cannot advance because the network traffic is so intense that the

resources requested are always granted to other messages with higher priorities.

This scenario is the result of an incorrect arbitration. Starvation is easily avoided

by a proper design of arbiter and priority mechanisms.

All these issues occur because the number of resources (buffers) is finite, and specially

in the NoC domain, is reduced. To face these problems, there are two ways of imple-

menting the routing schemes and algorithms. The most suitable for NoCs is to prevent

the formation of such scenarios (acyclic CDGs, no misrouting allowed, fair arbiters).

The second one consists on recovery techniques to solve these kind of situations (cyclic

CDGs). Recovery techniques also need extra circuitry to detect the presence of these

issues. In this thesis we assume a routing algorithm that guarantees acyclic CDGs.

2.2.7.1 Implementation of a Routing Algorithm

Although any implementation is specific to a technology, there are two main trends to

implement the routing strategy.

On the one hand we have table-based routing. Routing tables are basically composed of

row-like structures that match destinations with table entries. So, given the destination
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Figure 2.15: LBDR logic and configuration bits for east output port.

for a certain message, there is some circuitry associated that decodes this information,

and accesses the routing table to find the routing decision associated to that destination.

The most conventional way to implement these tables is to use memory structures. The

advantage of table-based routing is flexibility, as the information of routing decisions

stored on routing tables could be the answer of more complex routing algorithms, that

are not only based on logical or arithmetical assumptions. On the other hand, routing

tables implementation suffers from scalability, area, power consumption, and latency

problems. For example, there is a penalty time (that increases with table size) associated

to accessing memory structures.

On the other hand, logic-based routing can be used. This kind of routing is the result

to translate a logical or arithmetical function of a routing algorithm into the equivalent

in circuitry inside the router. So, when the message header is decoded at the input

buffers, the output port is computed based on the hardware that represents the routing

function. Logic-based routing is a good design choice in terms of delay, area, and power

consumption. The main drawback is the lack of flexibility as these implementations

could become non-functional if the topology scenario changes due to manufacturing

defects, just to name a reason.

In this thesis we use the Logic-Based Distributed Routing (LBDR) approach [8], which

tries to obtain the minimum table implementation of a routing algorithm. LBDR relies

on the definition of a small set of configuration bits at the switches. For a 2-D mesh,

LBDR requires 3 bits per output port at each switch. With these bits, multiple routing
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algorithms can be encoded. A small logic block with seven logic gates per output port is

needed. Figure 2.15 shows the logic and required bits for the east (E) port of a switch.

The Ren (and Res) bit encode the turn prohibition that may exist at the next switch for

packets leaving the E port and taking at the next switch the north N (south S) port.

If the Ren (Res) bit is zero, then packets are not allowed to turn north (south). The N’,

E’ and S’ signals indicate whether the destination node is in the provided direction (N,

E, or S). In this way, routing restrictions (pair of links that can not be used by the same

message in order to avoid network deadlocks) can be encoded in the routing bits.

The Ce bit is used to indicate whether the E port can be used or not. It sets the

boundary of the network to propagate messages. CX bits can thus be used to define

regions within the network, a feature that is particularly useful to partition network

resources, as will be shown in Chapter 6.

Recently the mechanism has been extended to support non-minimal paths in presence

of failures. Also, a basic broadcast mechanism has been proposed in [45]. In such

broadcast, the connectivity bits can be used to limit the broadcast, constraining it into

a partition.

In this thesis we assume that the routing bits are configured to encode the XY routing

algorithm. However, in Chapter 6 we will not restrict to XY. We do not take into

account the non-minimal path support but we use the broadcasting mechanism. For

further descriptions of LBDR and its extensions, see [41].

2.2.7.2 Unicast, Multicast and Broadcast Messages

The nodes of an interconnection network send and receive messages through the switches

present in the network. Assumed there is connectivity between all the end nodes, a node

(or several nodes) may require to send the same information to several nodes, instead

of only one. From the perspective of the sender, and given the amount of nodes that

are meant to receive the data, there is a first distinction. If the message is sent to

only one destination, we are talking about unicast or one-to-one communication (1 : 1).

On the other hand, if the message must be sent to several destinations (that could

include all the nodes on the network) then we are talking about some types of collective

communication, again from the perspective of the source node. If the message must be
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sent from a source node to the rest of the nodes in a chip then the routing operation

is named broadcast communication, or one-to-all (1 : all). On the other hand, multicast

communication or one-to-many, occurs when the sender distributes the message to a

limited group of destination nodes (1 : many). Broadcast communication can be seen

as an specific case of multicast communication. Broadcast communication is easier to

implement because the incoming message is just replicated to the rest of switch ports

but the drawback is flooding the network with unneeded messages. There are three basic

methods to implement broadcast or multicast routing. The first one is the unicast-based

approach or multiple one-to-one communication. This technique implements a collective

communication operation by sending, in a sequential manner, a unicast message to every

destination. While this solution requires minimum routing infrastructure, it tends to

flood the network with many messages, resulting in higher latency communications.

Power consumption is also high as there are many redundant messages in the network.

The second one is the path-based approach. This solution relies on the injection of a

single message with as many headers as destinations. The message uses a long path

visiting all the destinations sequentially. Its downside is the message header overhead as

well as the long path used, which impacts network latency. Also computation of paths

is not trivial (so as to avoid deadlock) usually using a Hamiltonian cycle. The last one

is the tree-based approach. Tree-based multicast or broadcast solutions rely on the use

of a spanning tree mapped on the network (typically on a 2D mesh network) or region,

providing collective communication to a set of destinations with the minimum amount

of time. Routers create replicas when new branches are formed along the tree. This

solution minimizes the number of messages sent through the network (the sender only

injects one message per tree) with the associated reduction in power consumption and

network latency. However, this approach usually requires a costly implementation, and

is the one where avoiding deadlock is more complex.

In this thesis we use the bLBDR approach [45], which builds on top of the LBDR

approach. bLBDR allows broadcast operations at partition level (a partition is defined

with the LBDR bits inside the NoC). For further details, please refer to [41].
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2.2.8 NoC and Cache Coherence

Many research efforts have focused on the co-design of the NoC and the cache hierarchy,

aiming to optimize the NoC to fit the requirements of the traffic pattern generated by

the caches according to the cache coherence protocol.

As a first measure, heterogenous network architectures have been proposed to meet

the different requirements of the different classes of messages exchanged by the caches.

Cheng et al. [46] leveraged the heterogeneous interconnects available in the upper metal

layers of a chip multiprocessor, mapping different coherence protocol messages onto wires

of different widths and thicknesses, trading off their latency-bandwidth requirements.

Subsequently, Flores et al. [47] propose to combine a protocol-level technique (called

Reply Partitioning) with the use of a simpler heterogeneous interconnect. In [48], it is

presented a priority-based NoC, which differentiates between short control signals and

long data messages to achieve a significant reduction in cache access delay. Additionally,

the authors propose to use more efficient multicast and broadcast schemes instead of

multiple unicast messages in order to implement the invalidation procedure and provide

support for synchronization and mutual exclusion. Walter et al. [49] explore the benefits

of adding a low-latency, customized shared bus as an integral part of the NoC architec-

ture. The bus is used for some transactions such as broadcast of queries, fast delivery of

control signals, and quick exchange of small data items. More recently, Vantrease et al.

[50] advocate nanophotonic support for building high-performance simple atomic cache

coherence protocols.

Another interesting research direction aims to raise the level of integration of the NoC

and the cache coherence: Eisley et al. [51] proposed In-Network Cache Coherence, an

implementation of the cache coherence protocol within the network based on embedding

directories in each switch node that manage and steer requests towards nearby data

copies. This approach enables in-transit optimization of memory access delay and shows

good scalability.

Filters have been proposed as a solution to reduce the traffic generated by the caches and

reduce unnecessary cache accesses, thus improving the overall system performance and

limiting the energy consumption. JETTY [34] and Blue Gene/P [35] are two proposals

to filter the broadcast requests that would miss at destination nodes in order to reduce
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energy consumption due to cache look-ups. Filtering has also been proposed at source

nodes [52], [53] to save energy and bandwidth.

Due to the high number of collective communication generated by some classes of coher-

ence protocols, several proposals are targeted to provide an efficient support for multicast

and broadcast operations, as in [54]. Additionally, it has been evaluated the case of us-

ing this kind of support in combination with a cache coherence protocol implementing

imprecise directories (the Hammer protocol could be seen as using an inexact directory),

demonstrating that multicast support alone is not enough to completely remove the per-

formance degradation that the inexact sharing codes introduce [20]: some actions must

be taken indeed to tackle the high percentage of traffic due to the acknowledgements to

those multicast messages. The Gather Network, described in Chapter 3 of this thesis,

aims to solve this problem.

2.3 Evaluation Platform

In this section we briefly describe the tools used throughout this thesis. Not all the tools

are used in all the technical chapters. We select to use them on a chapter, as a function

of its suitability and need for the chapter. However, gMemNoCsim is the main tool used

in all the chapters.

2.3.1 gMemNoCsim

The main tool used to implement and evaluate the techniques proposed in this thesis

is gMemNoCsim, a cycle-accurate NoC and cache hierarchy simulator developed by the

Parallel Architecture Group at the Universitat Politècnica de València.

The simulator core is a detailed network infrastructure that simulates cycle-by-cycle

the advance of flits through the network from source nodes to destination nodes; this

network core has been extended with a memory layer to implement the cache-level

proposals presented in this thesis. The current structure of the simulator includes thus

two modules as shown in Figure 2.16: a top-level module which implements and simulates

the cache hierarchy, and a module containing the original core, which is used by the

components of the memory module to send and receive messages.
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Figure 2.16: Structure of gMemNoCsim.

An input file describes the FSM of the L1 and L2 caches, while another input file defines

network parameters (topology, routing algorithm, switching, flow control, flit size, ...)

and cache parameters (size and associativity of L1 and L2 caches, line size, block mapping

policy, tag and cache access latency). L1 cache accesses, which may be read from a trace

file or generated by the cores of an external simulator into which our tool is embedded,

are sent to the memory model. This module performs a cycle-by-cycle simulation of the

cache hierarchy and the coherence protocol; if caches located at different levels of the

cache hierarchy or located at different tiles have to communicate, a message is injected

into the network model, which simulates the advance of the message through the NoC.

When a message reaches the switch connected to the destination node (an L1 cache,

an L2 cache or the memory controller) it is delivered to the memory module, and the

destination node evolves as established by the coherence protocol. When the simulation

ends, a file containing output statistics is generated, including the execution time, cache

statistics (hit and miss rate of each cache, load and store latencies of each L1 cache,

statistics for each coherence event, etc...) and network statistics (number of injected

messages and flits, average latency, number of unicast and multicast messages, etc...).

If it is used in stand-alone mode, gMemNoCsim is trace-driven: one trace file per core

lists the L1 accesses issued by that core; each trace includes a time offset (in cycles), the

word address and the access type. Four access types are supported: fetch, load, store

and barrier. The latter is a special access type which describes a barrier synchronization;

when a core reaches barrier in its trace file, the next trace entry is not read until all

cores have reached that barrier.
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In this thesis work, the NoC (including the Gather Network presented in Chapter 3

and its extensions), the cache hierarchy and the cache coherence protocol of all the

baseline and novel systems considered in the evaluation phase have been implemented

in gMemNoCsim. In some cases, simulations have been run using trace files, containing

synthetic access traces or memory access traces of real applications. In most cases

anyway gMemNoCsim has been embedded in an external simulator, such as Graphite,

and used for the timing of caches and the NoC.

2.3.2 Graphite

Graphite [55] is a multicore simulator developed by the Carbon Research Group, part of

the Computer Science and Artificial Intelligence Lab at MIT. It was designed with the

aim to provide a tool for the fast exploration of the design space of multicore architectures

containing tens and hundreds of cores. To speedup the simulation, it has a distributed

structure: each simulated tile is mapped to a simulator thread, and the threads of the

simulated system can be executed in different cores of the host machine, or even in

different machines communicating via TCP-IP. The synchronization between threads

can be adjusted to tradeoff speed versus accuracy (the more threads are synchronized,

the more accurate the simulator is, but slower). In this thesis, Graphite is used to capture

the memory accesses of system’s cores while executing applications of the SPLASH-2

benchmark suite.

2.3.3 Sniper

Sniper [56] is a multicore simulator developed at Intel Exascience Lab. It is based

on the Graphite infrastructure and the principles of interval simulation [57]; the aim of

Sniper is to provide a fast and accurate tool to evaluate homogeneous and heterogeneous

multi-core architecture. Through interval simulation, Sniper achieves high simulation

speeds keeping an accuracy which is very close to that of cycle-level simulators. In this

thesis, Sniper is used to capture the memory accesses of system’s cores while executing

applications of the PARSEC benchmark suite.
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2.3.4 CACTI

CACTI [58], developed by HP Labs, models area, latencies, dynamic power and leakage

of cache memories depending on a wide spectrum of input parameters. CACTI is used

in this thesis to calculate the access latencies and the power requirements of L1 and L2

caches; it is also used to evaluate the area reduction due to the technique described in

Chapter 6.

2.3.5 Orion-2

Developed by Peh and Malik at Princeton University, Orion [59] is a suite of dynamic

and leakage power models developed for various architectural components of on-chip

networks. We use Orion to evaluate the power consumption of the basic 4-stage switch

assumed in this thesis.

2.3.6 Xilinx ISE

Xilinx ISE is a design suite produced by Xilinx. It includes tools to develop, simulate,

debug and synthesize HDL designs. This suite is being currently used to implement

a CMP system which includes the main contributions of this thesis, as illustrated in

Appendix B.



Chapter 3

Network-Level Optimizations

In this chapter we describe and analyze the different network-level optimizations for the

efficient support of coherence protocols. In particular, we introduce the Gather Network,

a dedicated control network used to gather and transmit many-to-one acknowledgements

in tiled CMPs; two implementations of the Gather Network are described and evaluated,

the first one completely combinational and the second one using sequential logic. The

Gather Network provides a fast notification infrastructure to the cache coherence pro-

tocol that will be used in the following chapters.

43
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Figure 3.1: Write request for a shared block in a Directory protocol.

3.1 Introduction

Among the message types generated by cache coherence protocols, acknowledgement

messages (ACKs) represent a special case: these messages indeed do not deliver any

information besides the fact that, when the destination node receives an ACK, it is

notified about the completion of all the operations established by the coherence protocol

at the node which originated the ACK. The relevance of an ACK is therefore temporal:

the destination node is typically waiting for its reception to complete further coherence

operations on a block. Thus, ACKs are part of an easy way to provide synchronization

among the cache controllers of different caches. ACKs are widely used by coherence

protocols to manage block requests, writeback operations, block search in D-NUCAs,

etc.

Focusing on block requests, the percentage of ACKs over the total number of messages

depends basically on the coherence protocol: in a full-map directory protocol, ACKs are

used to manage write requests on a shared block, as in Figure 3.1: the home L2 bank

sends an invalidation message to the sharers, which invalidate their copy of the block and

send an ACK to the block requestor, which cannot complete the write operation until

all ACKs are received. Broadcast-based protocols, on the other hand make an extensive

use of ACKs: each time the LLC has to communicate with one o more L1 cache to

manage an incoming request, a broadcast is sent to all the caches, which acknowledge

their reception.

In both cases, ACKs have an impact in overall network traffic and, since they are sent

roughly at the same time, they may serialize at the input buffer of the destination
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Figure 3.2: Format of a short coherence message.

node, thus further increasing the miss latency. The only relevant information in ACK

messages is the ID of the destination node; if we assume in-order cores, even the block

address is redundant since the requestor is blocked waiting for the reception of the

acknowledgments (in case of an out-of-order processor this might change). However,

these messages are typically transmitted through the NoC using the same short message

structure of requests, thus wasting NoC resources and power to transmit a packet in

which most of the fields are not used or redundant. Considering the short message

structure of Figure 3.2, the useful information of an ACK message (the destination node

ID) is 9.52% of a packet, so on the one hand actually ACKs do not need the bandwidth

provided by the regular NoC and on the other hand they require a very low latency

and a particular strategy to avoid the serialization at the destination node. These two

considerations led to the idea of the Gather Network.

This chapter is organized as follows: Section 3.2 describes the Gather Network logical

behavior and its implementation details; Sections 3.3 and 3.4 describe the logic needed

to use the Gather Network with Hammer and Directory protocols, respectively; Section

3.4 also explains how the Directory protocol must be modified to be able to transmit

invalidation ACKs through the Gather Network. Then, Section 3.5 provides evaluation

results of the Gather Network used to speedup the acknowledgement phase in directory-

based and broadcast-based coherence protocols. Conclusions are drawn in Section 3.6.
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Figure 3.3: Gather Network (subnetwork for Tile 0).

3.2 The Gather Network

The Gather Network (GN) is a dedicated control network which is added to the regular

NoC and used to transmit many-to-one acknowledgement messages, thus relieving the

NoC from the ACK traffic; ACKs originated by different nodes are gathered to deliver

a single acknowledgement at the destination node; this eliminates the serialization of

ACKs at the destination node’s input buffer. It is logically composed by a set of one-bit

wide subnetworks, one for each tile in the system: in our 16-tile reference system we

thus define 16 subnetworks, each having 15 sources reaching a single destination. Figure

3.3 shows the subnetwork for Tile 01: it is basically a tree of AND gates with its root

in Tile 0 (the destination node) and the leaves in all the other tiles.

At each tile an AND gate combines the signals received from neighboring tiles and the

one generated by the local node; the subnetwork routes the signals to Tile 0 according

to the YX routing algorithm; this is related to the fact that we assume XY routing in

the regular NoC (justification is provided later in this chapter).

Figure 3.4 shows an example how the GN gathers different ACKs to deliver a single

global ACK at the destination node: L2-2 receives a write request from Tile 0; assuming

Hammer protocol is used, the request is broadcasted to all L1 caches; Figure 3.4.b shows

the state of the NoC when the broadcast has reached tiles three hops away from Tile

1Tiles are numbered 0 to 15 starting from the upper left corner of the CMP and descending row by
row to the bottom-right corner.
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(a) TILE 0 sends a block
request to the LLC home

bank

(b) the request is
broadcasted by the home

LLC to all other L1 caches

(c) all GN signals are set,
TILE 0 receives the global

ACK

Figure 3.4: Gathering ACKs in a broadcast-based protocol. Thick arrows indicate
messages sent through the NoC, thin arrows indicate GN signals.

2: the L1 caches in the tiles which have already received the broadcast perform the

coherence actions, if any, established by the coherence protocol and enable their outputs

for the subnetwork with Tile 0 as destination node. When the AND gate at a tile has all

its inputs set, the signal is propagated to the next hop of the GN: this happens for the

tile in the same column of Tile 2; at Tile 2 the signal is not propagated since the west

input is still not active (it will be active when Tile 15, in the lower right corner, receives

the broadcast message). Once the broadcast message reaches all the tiles and all the

input signals of the GN are set, the output at Tile 0 will also be set, thus notifying Tile

0 of the reception of the global acknowledgement (Figure 3.4.c).

If, instead, a directory protocol is used, the GN must be configured at each acknowl-

edgement phase to enable only the signals of the tiles which have a copy of the block;

this requires an additional logic at the AND gates and some coherence protocol modifi-

cations, as will be explained in Section 3.4.

3.2.1 Description of a Logic Block

The GN logic block at each switch is connected to the logic blocks of its neighbors with

dedicated wires. Each logic block has the same general structure (a wire shuffling stage

at the input side, a set of 16 AND gates and a wire shuffling stage at the output side)

but the actual layout of the signal distribution and the number of inputs at each AND

gate depends on the position of the tile in the 2D mesh. Figure 3.5 shows the logic at

switch 5, assuming YX mapping for each subnetwork.
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Figure 3.5: Logic block at Tile 5.

The logic receives 15 input control signals from the local core, each of which is addressed

to a different destination node. XL indicates a control signal coming from the local port

and addressed to destination X. Thus, we have from 0L up to 15L signals (excluding

the one for the local core, 5L in this case). In addition, if we assume YX routing for

all the subnetworks, there are up to 20 control signals coming from either north (N)

or south (S) input ports and up to 5 control signals from either east (E) or west (W )

input ports. In the case of Tile 5, 12 signals are received at the N port, 8 at the S, 2

at the E and 3 at the W. Switches at the boundaries of the mesh have lower number of

input control signals. These signals are then distributed (based on the location of the

switch in the mesh) and assigned to the corresponding inputs of the AND gate array. To

simplify the picture, Figure 3.5 does not show the local inputs at the AND gates, which

are present at every AND gate except for the one that generates the signal of the local

node’s subnetwork. Notice that each AND gate can have a maximum of 4 inputs, but

in most cases only the local input and one or two more are present. The outputs of the

AND gates are then distributed over the output ports, again depending on the location

of the tile in the CMP and the routing layout; 16 output control signals are generated,

15 of which are distributed at the output ports and one is sent to the local node. Notice

that the logic at each switch simply includes 16 AND gates for this first implementation.

Later we will see some multiplexers and configuration bits will be needed. The signal
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Figure 3.6: Control signals distribution (XY layout).

distribution blocks are simply a rearrangement of the input and output control signals

to the appropriate inputs and outputs of the AND gates.

3.2.2 GN Wiring Layout

One important aspect of the GN is the floorplan of the wires over the NoC area. Figure

3.6 shows the number of wires of the GN wiring between the logic block modules at the

switches. Each module handles both input and output control signals through all its

ports. For a N ×N mesh NoC, the number of outgoing control signals through all the

output ports of a module is N2 − 1, in our case 15. Each control signal belongs to a

different one-bit subnetwork addressed to a different destination (N2 − 1 destinations).

Notice that some output ports handle more control signals than others. This is due to

the mapping we assumed so far for the control signals, following the Y-X layout.

To better balance the GN wiring, it is possible to use a different mapping strategy with

a mixed approach, where wires for half the destination nodes are mapped YX and wires

for the other half of destination nodes are mapped XY. The latency of each subnetwork

does not change as the path follows the same manhattan distance. Figure 3.7 shows

the case where the subnetworks for tiles with odd ID number follow the YX mapping

and the rest follow the XY mapping. In this case we achieve a perfect distribution of

wires, where each bidirectional port handles 10 wires for a 4 × 4 mesh network. As will

be shown later, this mapping cannot be used with Directory protocol, since the GN

will need to follow the same path of the multicast invalidation message (but in opposite
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Figure 3.7: Control signals distribution (mixed layout).

direction) for a proper configuration of the GN. However, it can be used with Hammer

protocol, which does not require to configure the GN.

As the system size increases, the number of wires also increases: for a N ×N network,

the mixed mapping strategy requires (N2 + N)/2 wires per direction and dimension.

For a 8 × 8 system, the number of wires per port is 36, well below the size of a typical

NoC port, however.

3.2.3 Implementation Analysis

To evaluate the overhead of the GN we must first define the basic NoC switch; in this

work we assume a basic 4-stage pipelined switch with 5 ports (north, east, west, south

and local) and wormhole switching; the outputs of the switch are registered; each input

port has a 4-flit-wide buffer. Link width and flit size are set to 8 bytes. Flow control is

Stop&Go and routing is dimension-order (XY). A round-robin arbiter according to [60]

is used. No virtual channels are implemented.

A basic switch with these configuration settings has been implemented using the 45nm

technology open source Nangate [61] library with Synopsys DC. Cadence Encounter has

been used to perform the Place&Route. Table 3.1 summarizes the delay and area for

each of the modules of the switch.2 Notice that these values do not take into account

2Area numbers in the table are for a single instance of each module, thus some of them are replicated
in the complete switch.
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module area (mm2) critical path (ns)

Input port 3.08 × 10−3 0.58

Routing 8.91 × 10−5 0.30

Arbiter 1.09 × 10−3 0.74

Crossbar 4.47 × 10−3 0.43

Table 3.1: Area and delay for the switch modules

Critical path (ns) Non Registered Switch Registered Switch

link length (mm) 1.2 2.4 1.2 2.4

conventional 2D mesh 1.86 2.17 1.35 1.75

Table 3.2: Conventional 2D mesh critical path.

the link delay neither the control logic needed to implement the communication between

switches (these latencies are taken into account in Table 3.2).

The basic switch has been used to implement a 4 × 4 and an 8 × 8 2D mesh network,

which is then analyzed with and without the GN.

When analyzing a conventional 2D mesh, although the arbiter stage is the slowest one

in a switch, the critical path of the whole network is fixed by the delay of transmitting a

flit through a link. This delay involves the XB delay of the upstream switch, the delay

of the link, and the delay of the logic to select the input VC at the receiving switch.

This delay is reduced when the output ports are registered. This design option enlarges

the pipeline but reduces the critical path of the whole network. As the buffering and the

operating frequency is increased, the power consumption of the network is also increased.

Table 3.2 shows the critical path of the conventional 2D mesh network. Two link lengths

have been analyzed: 1.2mm and 2.4mm.

Table 3.3 shows the critical path (end to end delay) of the GN analyzed independently of

the rest of the network. To compute the combinational GN critical path, each block must

be properly placed besides the switch it is connected to. Then, on the implementation

process some constraints must be forced to the placement&route tools. First, the highest

metallization layers must be used. By doing this, lower metallization layers get free, and

hence, other logic as SRAMs could be placed under GN wires. Repeaters are inserted

by the own tool in order to fulfill delay constraints imposed by the designer. The critical

path of the GN is fixed by the GN logic that connects the two nodes in the chip with

the higher physical distance. Notice that the latency of the control network depends on
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Critical path (ns) 4x4 Network 8x8 Network

link length (mm) 1.2 2.4 1.2 2.4

Basic switch 1.35 1.75 1.35 1.75

Gather Network 1.23 2.20 2.65 4.32

Table 3.3: GN critical path.

the mesh radix. The table also shows the delay of a single switch. Two link lengths are

analyzed: 1.2 mm and 2.4 mm.

For a 4×4 network with a link length of 1.2 mm, the GN critical path is smaller than the

delay of a single switch, and hence, it is able to work at the same operating frequency

than the switch (in a switch cycle the GN is able to notify all the nodes about possible

ack messages). In contrast, if the link length is increased, the GN has a higher critical

path. However, only two cycles are needed. For the 8 × 8 network, it can be seen that

the GN does not scale as well as the point-to-point communication protocol of the NoC.

However, it can be noticed that the worst case is for a GN with a delay of 4.32 ns (3

clock cycles when compared to the switch). The area of the switch is 20.418×10−3 mm2,

while the area of the GN in each switch is 0.28 ×10−3 mm2, being a 1.3% overhead.

Notice that if virtual channels are to be added the area overhead will be much lower.

3.2.4 Sequential Implementation of the Gather Network

The combinational design described in the previous section is simple, fast and very

efficient in area. However, the wiring requirements of the GN increase with the number

of cores, leading to an unacceptable number of wires between switches as the system

size is increased to hundreds of cores. Furthermore, the combinational design can handle

only one request per core (in-order cores); to handle multiple requests at the same time

it would be necessary to have more than one subnetwork per core, thus increasing the

number of wires even more.

The implementation described in this subsection reduces the wiring requirements to a

logarithmic scale and allows to handle multiple requests to the same tile at the cost of

increased latency: while the combinational implementation is not bound to the clock

frequency of the switches, this implementation uses sequential logic at each switch and

has a latency of 1 cycle per hop. As will be shown in the evaluation section, this is

not an issue, since the latency of the combinational GN can be increased up to tens



Chapter 3. Network-Level Optimizations 53

of cycles without affecting the system performance. On the other hand, the number of

wires between switches is drastically reduced, providing a scalable solution for larger

systems (beyond 64 tiles).

Figure 3.8 shows the sequential implementation of the GN at each switch. Each port has

its own decoder and encoder, through which it can receive and send the IDs of the ACKs

destination node. This reduces the number of wires, since each port will only need, in

an system with N cores, log2N input wires and log2N output wires. The received IDs

are decoded and saved in the input registers. When all expected ACKs are received

for a node, an arbiter for each output port selects one output ID (since at the same

cycle more than one AND gate can be activated for two different destinations which are

reached through the same output port). The selected output ID is then encoded and

transmitted to the next switch (or to the local node) and the reset logic sets to zero

all the bits in the input registers belonging to the subnetwork of the destination node.

Notice that the AND logic block at each switch is the same for both the combinatory

and the sequential implementation. The number of wires in each connection shown in

Figure 3.8 refers to a 4 × 4 system with a mixed XY-YX control signal distribution.

The number of wires connecting the AND logic block with the input and the output

blocks varies from 0 (in case the tile does not have any connection through that specific

direction) to 6 depending on the tile position in the 2D mesh.

To allow multiple requests, new bits can be added to the ID field of the GN: this way

with log2N+R bits per port per direction it is possible to handle 2R requests per core

in a system with N cores. This means, for instance, that a sequential GN can handle 4

requests per core in a 4× 4 system using 6 bits per port per direction, which adds a low

overhead to the typical NoC ports of 128 or 256 bits.

The sequential control logic described above has also been implemented with Synopsys

DC. This implementation has a higher area overhead than the combinatorial one, being

basically the same circuit with decoders at the input ports and encoders at the output

ports. The encoders at each output port also include an arbiter in case more than one

ACK signal is generated at the AND logic block in the same cycle. Since the control

logic area varies depending on the tile position, the worst case was considered, which in

a 4 × 4 system with mixed XY/YX mapping corresponds to the module at one of the

switches located in the central tiles. These switches indeed are connected with another
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Figure 3.8: Structure of a sequential GN module.

Area (mm2) Latency (ns)

Worst case (center tile) 0.472 0.52 ∗ 10−2

Best case (corner tile) 0.153 0.21 ∗ 10−2

Table 3.4: Area and latency results of the sequential GN module.

switch in each direction and are crossed by more signals than the switches located on

the border. The area of the control logic in these tiles is 0.472× 10−3mm2, which is 2.3

% the area of the basic switch. The critical path of the control logic in the worst case is

0.52 ns, which is lower than the critical path of the slower module of a switch (0.74 ns

for the arbiter, as shown in Table 3.1). This means that at each cycle the control logic

can propagate up to 5 ACK signals (one per port). The control logic area is reduced

to 0.153 × 10−3mm2 for the switches located at the corners of the 2D mesh, which are

connected only in two directions.

3.3 GN Applied to Hammer Protocol

Since the directory is completely eliminated in Hammer protocol, the LLC sends a

broadcast to all L1 caches each time it has to communicate to one or more lower-level

caches to manage a request (e.g. sharers must be invalidated due to the reception of a
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Figure 3.9: Logic at the inputs of each AND gate when the system implements
Hammer coherence protocol.

write request, or a request for a private block is forwarded to the owner). The L1 caches,

at the reception of the broadcast message, must send an ACK to the requestor to avoid

race conditions between two subsequent requests. All the nodes located at the leaves of

the requestor’s AND tree participate thus in the acknowledgement phase. Therefore, the

application of the GN to the hammer protocol seems straightforward. Whenever a node

receives a coherence action, it acknowledges the requestor through the GN. However,

between two consecutive GN operations (on the same destination node) a reset needs to

be performed.

3.3.1 Reseting The GN Wires

Indeed, the inputs of the GN need to be reset every time a broadcast request is propa-

gated through the NoC: the inputs indeed may be already set due to a previous request.

Considering first the combinational implementation, Figure 3.9 shows the additional

logic needed at the inputs of each AND gate to reset a subnetwork each time it is used.

A mux is placed at each input of the AND gates; the output of the mux can be forced to

0 or be equal to the actual input of that module, which may be coming from the local

node or from a tile located at lower levels of the AND tree; in the example shown in

Figure 3.9, the input signal is marked as SGe, indicating that it is received from the tile

connected to the east port.

When a broadcast request is received at switch A, the multiplexer output is forced to

0 if SGe is set, thus preventing the output of the AND gate from being set to one too

early; then, as the broadcast message travels down to the next switch B, the input signal

will be also set to zero at that switch; the output of the AND gate at switch B that
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generates the value of SGe will then be zero. As the new value of SGe is received at

switch A, the logic detects the transition of the input signal through the flip-flop and

restores the multiplexer entry to be equal to SGe.

Considering the sequential implementation, the inputs of each AND gate are registered:

when an ID is received, it is decoded and the register at an input of the AND gate

associated to the destination node is set; all the registers at the input of an AND

gate are reset when the output of the AND gate becomes 1 and the destination ID is

propagated at the output port. Therefore, there is no need to temporarily set to zero

any multiplexer output.

3.4 GN Applied to Directory Protocol

When the system implements a directory protocol, the subnetwork of the requestor must

be configured at each invalidation phase to activate only the input signals of the sharers.

This is done by exploiting the NoC’s hardware multicast support: a single invalidation

message is injected in the NoC by the home L2, which replicates at the proper switches to

reach only the sharers. When the invalidation is forwarded through an output port, the

corresponding input of the requestor’s subnetwork is activated by setting a configuration

bit (seen in the next section), while the subnetwork inputs corresponding to the output

ports through which the invalidation is not propagated are disabled. At the end of

the configuration phase (when the multicast invalidation message has reached all the

sharers), the activated inputs of the requestor subnetwork will form a tree which has the

same structure of the path followed by the invalidation message.

Figure 3.10 shows the configuration of the Tile 0’s subnetwork in case the home L2

bank is also located at Tile 0. Figure 3.10.a shows the set of sharers marked in red; the

subnetwork is configured through the multicast invalidation sent by L2-0 (Figure 3.10.b)

and the AND tree resulting by the subnetwork configuration is the one marked in red

in Figure 3.10.c, which follows the same path of the invalidation multicast but in the

opposite direction.
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(a) block sharers (marked
in red)

(b) multicast invalidation
message

(c) active GN inputs after
the configuration

Figure 3.10: Configuration of the Gather Network.
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Figure 3.11: Logic at the inputs of each AND gate when the system implements
Directory coherence protocol.

3.4.1 Reseting the GN Wires

Considering the combinational GN, the logic needed at the inputs of each AND gate

when the system implements a directory protocol is shown in Figure 3.11. In this case

an extra bit is needed to enable/disable that input signal (Ce in the picture). If the

input signal is disabled, the logic forces the output of the mux to 1. In the other case,

the multiplexer’s output is forced to 0 until the reset of SGe, as described for Hammer

protocol.

With the sequential implementation, the registers at the input of the AND gates are

reset when the destination ID is propagated at the output port, as described for Hammer

protocol. However, the configuration bit is still needed.
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Figure 3.12: First alternative to let the GN work with directory-based protocols:
acknowledgements are sent to the home L2.

3.4.2 Protocol Modifications

The directory protocol described in Chapter 2 must be modified to allow the correct

configuration of the GN each time an invalidation multicast message is sent by the L2

cache. The multicast invalidation is used to configure the subnetwork through which the

sharers will send the ACKs: the routing stage of every switch activates the local input

of the GN if the local node is one of the destination nodes of the multicast invalidation,

and the inputs from neighboring tiles if the multicast message is propagated to other

switches.3 Once the subnetwork is configured, the enabled signals will form a tree

structure that reflects the propagation of the multicast invalidation, but in the opposite

direction.

Since the configuration is done through the multicast invalidation, the source node of

the invalidation message must also be the destination node of the ACKs. This is not

true for the basic directory protocol: invalidations are sent by the home L2 bank, while

the acknowledgements are sent to the L1 which originated the request that triggered the

invalidation process.

3We assume hardware multicast and broadcast support at the switches.
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Figure 3.13: Second alternative to let the GN work with directory-based protocols:
the L1 invalidates the sharers.

There are two alternative simple modifications that can be done to adapt the directory

protocol to work with the GN: in the first one, shown in Figure 3.12, the home L2

bank sends a multicast invalidation message to all the sharers, which send the ACKs

back to the L2 node through the GN. Once the home receives all the ACKs (the GN

output is set), it sends a unicast ACK message through the regular NoC to the L1

requestor. In the second alternative protocol, shown in Figure 3.13, the home L2 does

not invalidate the sharers, but it piggybacks the sharers list to the data message sent

to the requestor. The requestor is in charge to send a multicast INV message to the

sharers, which acknowledge the reception of the invalidation message through the GN.

In both cases, invalidating memory copies will take four steps, one more than the basic

protocol. However, due to the fast reception of acknowledgements, both alternative

protocols achieve better performance than the basic protocol, as shown next in the

evaluation..

3.5 GN Performance Evaluation

This section provides evaluation results of the performance improvements obtained when

a system employs the GN to transmit many-to-one acknowledgements. First, the GN
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is evaluated in a system which implements a directory protocol, where many-to-one ac-

knowledgements are used to manage the invalidation phase of shared blocks. Then it

is evaluated with a broadcast-based protocol, which makes an extensive use of acknowl-

edgements to manage coherence requests.

3.5.1 Directory Protocol with GN

Four versions of a system employing the directory protocol have been implemented using

gMemNoCsim:

• basic: a configuration with the regular NoC and the basic Directory protocol

• mc: a configuration with a NoC-level multicast support and the basic Directory

protocol

• mc+gL1: a configuration with the NoC-level multicast support, the GN and the

custom protocol shown in Figure 3.13. The L1 cache is in charge of invalidating

the sharers.

• mc+gL2: a configuration with the NoC-level multicast support, the GN and the

custom protocol shown in Figure 3.12. The L2 bank is in charge of invalidating

the sharers and then to notify the L1 requestor cache.

The last two versions have been evaluated considering a combinatorial GN with 1-cycle

and 2-cycle latency. Other network and cache parameters are shown in Table 3.5. Each

tile has two 64KB L1 banks (instruction and data) and a 512KB L2 bank. Tag access

latency is set to 1 and 2 cycles respectively for L1 and L2 cache, while cache access

latency is set to 2 and 4 cycles respectively for L1 and L2 cache.

To simulate actual applications on our system, gMemNoCsim was embedded in Graphite

simulator, which allowed to run various applications of the SPLASH-2 benchmark suite.

Since all applications generated a very low percentage of write accesses on shared vari-

ables (0.4% of total L2 accesses on average), the effects of the GN were quite limited,

as shown in Figure 3.14.

Four sets of synthetic memory access traces have then been generated and fed into the

simulator. Each set is made of 200,000 random accesses to 500 different addresses. The
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Routing XY Coherence protocol Directory

Flow control credits L1 cache size 64 + 64 kB (I + D)

Flit size 8 byte L1 tag latency 1 cycle

Switch model 4-stage pipelined L1 data latency 2 cycles

Switching virtual cut-through L2 bank size 512 kB

Buffer size: 9 flit deep L2 tag latency 2 cycles

Virtual channels: 4 L2 data latency 4 cycles

GN delay 1 cycle / 2 cycles Cache block size 64 B

Table 3.5: Network and cache parameters (GN with Directory protocol).

Figure 3.14: Normalized execution time (SPLASH-2 applications).

sets differ in the percentage of read and write operations (from 60% read operations to

90% read operations).

Figure 3.15.a shows the execution time for each set, normalized to the case of the basic

configuration. The multicast support alone (mc) slightly reduces the execution time

as INV messages are sent with a single message and less contention is incurred in the

network. With the alternative protocols and the Gather Network, execution time is

further reduced up to 4%, depending on the set of traces.

Figure 3.15.b shows the percentage of invalidation messages over the total number of

messages for each set. The improvement in execution time is tightly coupled with the

percentage of invalidations. The more invalidation messages are sent, the higher the

benefits obtained by the GN. The percentage of invalidations grows with the percentage

of read operations in the traces, since each write operation has to invalidate more sharers,

so the performance improvement due to the GN becomes more evident with traces with

a high percentage of reads.

Figure 3.15.c shows the average store miss latency normalized to the basic configuration.

Again, the multicast support combined with the control network helps in lowering the

store miss latency up to 20%. In particular, when the L1 nodes send the invalidation
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(a) Normalized execution time

(c) Normalized store miss latency

(b) % invalidation messages

(d) Normalized load miss latency

Figure 3.15: Evaluation results with synthetic access traces.

messages (mc+g L1), up to 15% reduction in write miss latency is achieved. When the

L2 nodes take care of invalidations (mc+g L2) an extra reduction is achieved obtaining

up to 20%.

Since the directory-based protocol only uses the GN to collect the ACKs in store misses,

its effect on the load miss latency is negligible. This effect can be seen in Figure 3.15.d.

When using the alternative protocols, the load miss latency is slightly reduced (2%)

with respect to the basic protocol. It should be noted also that the latency of the GN

has a very low impact in the results. Execution time, miss load latency, and miss store

latency, are practically the same when the control network has a delay of one (mc +

gnL1 1c and mc + gnL2 1c) or two cycles (mc + gnL1 2c and mc + gnL2 2c).

Optimizing only one case out of the four exposed in Figures 2.8 and 2.9, the impact

of the GN in systems which implement a directory-based protocol is quite application-

dependent: if the application generates a high percentage of write accesses on widely

shared variables, the GN will be effective, otherwise it is not used.

3.5.2 Hammer Protocol with GN

As expected, the GN is more effective if it is used in a system which implements a

broadcast-based protocol like Hammer. As explained in Chapter 2, the LLC in a
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Figure 3.16: Breakdown of network messages in Hammer protocol.

broadcast-based protocol injects a broadcast in the NoC every time a request is re-

ceived (except for the case of a read miss on a shared block) and each node except for

the owner of the block must send an acknowledgement to the requestor, so acknowledge-

ments are much more common in broadcast-based protocols than in directory protocols.

Indeed, the results obtained running various SPLASH-2 applications on Graphite +

gMemNoCsim with a Hammer-like protocol show that the percentage of ACKs over

the total number of messages is 30% on average (reaching 43% for some application

like Barnes, FFT and Water-nsquared), as shown in Figure 3.16, where broadcasts are

labeled as Coherence Reqs and acknowledgements as Coherence Res.

A broadcast-based protocol like Hammer has been implemented in gMemNoCsim and

evaluated with three different network configurations:

• Hammer: a basic configuration with no hardware broadcast support and no GN

• Hammer BC: a configuration with NoC-level broadcast support and no GN

• Hammer BC GN: a configuration with broadcast support and the GN

The results obtained with these configurations have been compared also to those of

a full-map directory protocol with a regular NoC. Network and cache parameters are

shown in Table 3.6; we assume a combinational GN with latency of 2 cycles.
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Routing XY Coherence protocol Hammer / Directory

Flow control credits L1 cache size 64 + 64 kB (I + D)

Flit size 8 byte L1 tag latency 1 cycle

Switch model 4-stage pipelined L1 data latency 2 cycles

Switching virtual cut-through L2 bank size 512 kB

Buffer size: 9 flit deep L2 tag latency 2 cycles

Virtual channels: 4 L2 data latency 4 cycles

GN delay 2 cycles Cache block size 64 B

Table 3.6: Network and cache parameters (GN with Hammer protocol).

Figure 3.17: Normalized execution time (Hammer).

Figure 3.18: Normalized number of injected messages (GN signals are not included).

Figure 3.17 shows the normalized execution time of various SPLASH-2 applications

with the four configurations listed above. Without further support at network level,

Hammer performs worse than Directory due to the amount of traffic generated each

time a request is sent to the home L2 bank and due to the serialization of ACKs at the

requestor node’s input port. Hardware broadcast support reduces the execution time,

but still the performance of Directory is better than those of Hammer BC. The GN

further reduces the execution time, reaching an average execution time for Hammer BC

GN which is 8% lower than Hammer and 3% lower than Directory.
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Figure 3.19: Normalized store miss latency (Hammer).

Figure 3.20: Normalized load miss latency (Hammer).

Network traffic is also drastically reduced. As shown in Figure 3.18, combining NoC

broadcast support and the GN the number of injected messages in Hammer BC GN

is reduced up to 60% on average and 80% for some applications. This means that

Hammer BC GN reaches better performance than Directory, clearing the area/traffic

tradeoff: typically, directory-based protocols have a high area overhead (due to the

sharing code) but generate low traffic, while broadcast-based protocols have a very low

area overhead and generate much more traffic. The GN allows Hammer BC GN to

overcome the performance of Directory with a lower chip area overhead an generating

the same amount of traffic.

The impact of the GN on store and load miss latency when using Hammer protocol is

higher than that shown in Figures 3.15.c and 3.15.d for Directory protocol. As shown

in Figure 3.19, the combined effect of broadcast support and the GN reduces the store

miss latency of Hammer protocol by 40% on average (and up to more than 60% for some

applications). The impact on load miss latency is lower, although still noticeable: as
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Figure 3.21: Normalized NoC dynamic energy.

Figure 3.22: Normalized execution time with different GN delays.

shown in Figure 3.20, the load miss latency is reduced by 20% on average, due to the

fact that a percentage of read requests (those received for a shared block) are managed

by the L2 cache without broadcasting any message to L1 caches.

Figure 3.21 shows the NoC dynamic energy consumed during the entire execution of each

application; Orion 2 has been used to calculate the energy consumption of the regular

NoC, while the power requirements of the GN sequential module were obtained with

Cadence Encounter. The energy consumed by the GN however is a very small fraction

of the total NoC energy. The hardware broadcast support and the GN combined are able

to reduce the dynamic energy by 32 % on average, getting close to the values obtained

with Directory protocol.

Figure 3.22 shows the impact of the GN delay on the system performance. The SPLASH-

2 applications were run on a system with Hammer BC GN, varying the GN delay from

2 to 128 cycles. As shown, the performance is not significantly affected with delays up

to 64 cycles: the average execution time increases by 1% on average. For this evaluation
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Figure 3.23: Normalized execution time compared to a NoC with an high priority
VC for the ACKs.

we assumed a combinational implementation of the GN with a delay of 2 cycles; as

exposed in Subection 3.2.4, the latency of a sequential implementation would be higher

(1 cycle per hop). As shown in Figure 3.22, this latency increment would not affect

the performance; Subsection 3.5.3 provides a more detailed evaluation of ACK latencies

when a sequential implementation of the GN is used.

To conclude this subsection we compare the performance of a system using the GN with

those of a system where a dedicated high-priority virtual channel is used to transmit the

ACKs (VC). Figure 3.23 shows the normalized execution time when the two configura-

tions are used; GN has better performance than VC since it completely relieves the NoC

from the large amount of traffic due to the ACKs. Notice that the VC configuration

needs more switch resources contrary to the Gather Network solution as implementing

buffering for the extra VC is costlier than implementing the control logic and additional

wiring of the GN.

3.5.3 Sequential Gather Network

In the previous section we assumed a combinational implementation of the GN. Now,

its performance is compared to that of a sequential implementation. As explained in

Subsection 3.2.4, in the sequential implementation the ACKs are transmitted through

the GN hop by hop and cycle by cycle, and the wiring is no more dedicated (in the

combinational implementation each wire is dedicated to a subnetwork) so there could

be contention if two different ACKs must be transmitted through the same output port

of a GN module at the same cycle.
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Figure 3.24: Normalized execution time with the two implementations of the Gather
Network.

Figure 3.25: Number of conflicts per gather message received at destination node.

Figure 3.24 shows how the execution time is affected when the sequential implementation

is used. The increased latency in delivering the ACKs has a very low impact on overall

performance: the execution time increases by a 0,15% on average and 0,5% in the worst

case (Barnes an Water-nsq). For some applications no performance degradation can be

noticed.

The increased execution time is due to conflicts in the GN modules and to the increased

latency of ACKs. Figure 3.25 shows how many conflicts occur at the output ports of all

GN modules for each ACK received at the destination node. The percentage of conflicts

is quite low: on average, 25 conflicts occur during the transmission of 1,000 ACKs.

Notice that we are considering the mixed XY-YX mapping of Figure 3.7 to achieve a

balanced distribution of ID transmissions through the different output ports of each

module.

Figure 3.26 shows the average latency of ACKs with the sequential implementation,

measured in three different ways: Figure 3.26.a shows the elapsed time between the

triggering of the first ACK and the reception of all the ACKs; Figure 3.26.b shows the
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(a) between the first ACK and the
reception of the global ACK

(b) between the last ACK and the
reception of the global ACK

(c) between the ACK of the furthest node and the reception of the global ACK

Figure 3.26: Average GN latency (sequential implementation).

elapsed time between the triggering of the last ACK and the reception of all the ACKs,

and Figure 3.26.c shows the elapsed time between the triggering of the ACK by the node

located farther from the requestor and the reception of all the ACKs. Notice that the

last node to trigger the ACK is not always the one that is located more distant to the

requestor. The latter case therefore is the fittest to be compared to the latencies of the

combinational version shown in Subsection 3.2.3, since it represents the latency of the

sequential GN in transmitting the ACK when the last signal is triggered. On average,

the GN latency is thus increased to 3.2 clock cycles when the sequential implementation

is used in a 4 × 4 system.

The moderate latency increment, which is well below the 128 cycles slack shown in Figure

3.22, and the low number of conflicts at each module lead to a negligible performance

degration when using the sequential version instead of the combinational one.

At the expense of a slightly increased latency, the sequential module has a better scala-

bility and enables more sophisticated uses of the GN, which will be exposed in the rest

of this dissertation. From now on, we’ll thus assume the sequential implementation.
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3.6 Conclusions

In this chapter we presented the Gather Network, a lightweight dedicated network which

can be used to transmit many-to-one acknowledgements in tiled CMP systems. Two

versions of the GN have been implemented and evaluated:

• a combinational one, which has a very low area overhead and can deliver ACKs

in 1 to 4 clock cycles in systems with tens of cores. The drawback of this imple-

mentation is the high wiring requirements as the number of nodes increases, since

a one-bit subnetwork must be dedicated to each destination. Wiring requirements

also increase if the system employs out-of-order cores: in this case, indeed, each

core needs a number of subnetworks equal to the maximum number of pending

cache accesses it can issue.

• a sequential one, which employs sequential modules at each switch; modules com-

municate by exchange the ID of the destination tile, thus lowering the wiring

requirements to a logarithmic dependency from the number of nodes. This im-

plementation has higher area overhead and latency than the combinational one,

but still low compared to the regular NoC: each module indeed increases the area

of the basic switch by 2.3% and is able to propagate ACKs to the neighbors in 1

clock cycle.

The GN has been used to transmit invalidation ACKs in Directory protocol and co-

herence ACKs in Hammer protocol. Directory protocol requires some modification to

employ the GN for invalidation ACKs, since a subnetwork must be configured before it

is used to enable exclusively the inputs of the sharers. These modifications, which add

indirection stages, and the low number of invalidations generated by SPLASH-2 applica-

tions, result in low performance improvements for the set of applications we simulated.

Results with synthetic traces with an high percentage of invalidations, however, show a

higher performance improvement.

Hammer protocol on the other hand does not require the configuration phase, and,

due to its the broadcast nature, ACKs represent 30% on average of the total messages

when SPLASH-2 applications are executed. Combining the LBDR broadcast support

and the GN we achieved to lower the miss latencies (and then the execution time),
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the NoC traffic and the NoC energy, reaching values which are close to those obtained

with Directory protocol. With the GN, Hammer protocol is thus able to overcome the

area-traffic overhead tradeoff, reaching performance comparable to those of Directory

protocol without having the area overhead of the directory structure.

The GN sequential module can be extended to transmit also unicast (one-to-one) ACKs

after a few simple modifications. This allow to use the GN also to transmit, for instance,

writeback acknowledgements sent by the LLC to a private cache which is replacing its

line, or directory unblock messages; this also allow to use the GN and Directory protocol

without any modification: the ACKs sent by the sharers are sent as unicast messages

rather than be gathered as we assumed in this chapter. A study about this extension of

the GN module has been published recently [62].

In the rest of this thesis the GN is used as a substrate to speedup the delivery of all-to-

one ACKs generated by the LLC-level technique described in Chapter 4. This technique

indeed requires to broadcast requests and acknowledge those broadcasts; since all nodes

participate in the acknowledge phase, the logic to configure the GN is not needed. The

sequential modules, however, need some modification to transmit flags associated to the

gathered ACK.





Chapter 4

Runtime Home Mapping

In this chapter we present an optimized strategy to allocate memory blocks on LLC

banks. The idea is to put memory blocks close to the L1 caches that consume those

blocks. This is done at runtime with an algorithm implemented on the memory controller

of the chip. In this chapter we also adapt the Gather Network and propose further

optimizations to make the whole system more efficient and scalable.

73
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4.1 Introduction

The reference system considered throughout this thesis uses shared LLC banks, since

this is the most common configuration for the LLC in CMP systems. As explained in

Chapter 2, the LLC bank that hosts a block is called the home bank, and the common

policy to decide which LLC bank is the home for a block is static mapping. A banked

cache which uses static mapping is called S-NUCA: the address space is divided in

subsets and all the blocks of a subset are statically mapped to a bank. This policy is

very simple to implement but can be inefficient as blocks may be mapped to banks which

are far away from L1 requestors.

Another option is to perform the mapping dynamically (D-NUCA): each subset of blocks

is mapped to a group of banks, or bank set, and blocks can migrate within a bank set

to move as close as possible to the requestor’s tile. This policy has lower miss latencies

but is more complex to implement. Furthermore, the process of finding a block within

a bank set leads to a tradeoff between access time and NoC traffic since all the banks of

a bank set must be accessed, leading to either high latency (sequential search) or more

traffic (parallel search).

Figure 4.1 shows the average distance of accessed L2 banks by their L1 requestors in a

4× 4 tiled configuration. The figure shows results when using private L2 caches, shared

L2 caches with S-NUCA approach and shared L2 caches with D-NUCA approach, where

each bank-set is a column of four banks. As expected, private caches achieve the lowest

hop count, thus having a reduced access latency. However, this is achieved by highly

restricting the L2 cache capacity to a single bank per core. In contrast, neither S-NUCA

(due to its static nature) nor D-NUCA (due to its static bank set configuration) are able

to achieve reduced hop counts. The goal of the technique described in this chapter is

to achieve similar results in hop distance to the private configuration, keeping the high

capacity of the shared configuration of L2 banks.

The technique is called Runtime Home Mapping (RHM), and is a new dynamic ap-

proach where the LLC home bank is determined at runtime in hardware by the memory

controller (MC). While in D-NUCA the mapping is partially static, in RHM a block can

be mapped to any L2 cache bank, aiming to reduce the distance from L1 requestors to

the L2 home bank. Figure 4.2 shows the basic steps of the RHM mechanism comprising
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Figure 4.1: Average distance of L2 banks to their L1 requestors for different mapping
policies.
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Figure 4.2: RHM example (block is mapped on requestor’s tile).

the request of a block to the MC, the selection of the home L2 bank while fetching the

block from memory, and the forwarding of the block to the home L2 bank and to the

requestor. In this example, the selected home is the local L2 bank of the requestor’s tile.

RHM can be viewed as a D-NUCA configuration with a single bank set which includes

all the L2 banks. However, RHM differs from D-NUCA in the sense that it enables

further optimization opportunities such as partitioning/virtualization, thread migration,

and fault-tolerance. As an example, in Figure 4.3.(a) three applications are mapped

on different resources of the chip. The MC, by using RHM, is able to map memory

blocks belonging to an application to the L2 banks mapped to that application, thus

guaranteeing network-level and memory-level partitioning. In this example, the selected

L2 home bank is not located at the requestor’s tile. Also, Figure 4.3.(b) shows the case

where one L2 bank has been disabled possibly due to some manufacturing defects. In
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Figure 4.3: Runtime Home Mapping. Different scenarios.

that situation, the MC, by using RHM, is able to filter out the failed bank and thus

to map blocks only to functioning L2 banks. In Figure 4.3.(c) we can see the case of a

block migration in RHM. In this case, one requestor solicits a copy of a private block,

triggering the block migration process, at the end of which the L2 bank in the requestor’s

tile is the new home bank. To further reduce hop distance from L1 requestors to L2

home banks, RHM allows the replication of shared blocks. Figure 4.3.d shows the case

where a home decides to replicate a block in another L2 bank.

All the previous examples hide two potential problems that need to be solved. The first

one is the potential incoherence of blocks involved in migration or replication processes.

Multiple race conditions can arise when several processors trigger load and store requests

to the same memory block, so the coherence protocol must be carefully designed. This

is more difficult to achieve when memory blocks can migrate within LLC banks or when

multiple LLC banks can have replicas of the same block. The second problem is the
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Figure 4.4: Home search phase.

efficiency of the coherence protocol, in particular of the home search phase and of the

migration and replication processes. Indeed, the principal source of inefficiency is that

L1 caches do not know which L2 bank is the home for a particular block. Since the home

bank is not known a priori, a search must be performed each time an L1 miss occurs.

This is shown in Figure 4.4, where a local miss triggers a broadcast action to search

the home bank for the requested block. This problem affects the network infrastructure

providing connectivity support to RHM (the underlying on-chip network) and requires

NoC-level measures to prevent the search phase to become a bottleneck.

More in detail, three different NoC mechanisms can be used to optimize the RHM search

phase:

• bLBDR tree-based broadcast mechanism to broadcast the search message, used

in conjunction with the Gather Network to collect the acknowledgements of L2

banks; the GN must be extended to support basic signaling between tiles.

• Parallel access of L2 tags: the tag array of L2 banks is tightly coupled to the NoC

router design. At the same time the broadcast message enters the router, the tag

array is accessed.

• A router mechanism aimed to reduce the broadcast messaging. On an L2 tag hit,

the broadcast message is cancelled, thus reducing traffic by chopping broadcast

branches.
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These optimizations at NoC level provide an efficient support to implement the cache-

level optimizations of RHM:

• Dynamic mapping of blocks to the L2 banks performed by the memory controller

during an off-chip memory request.

• Migration and replication of cache blocks to correct the initial placement.

• Tight coupling of the block search phase and the coherence actions in broadcast-

based protocols.

The rest of this chapter is organized as follows: Section 4.2 describes the basic RHM

mechanism and the modifications needed to adapt the Gather Network to transmit basic

signaling together with the global ACK; Section 4.3 describes the block migration and

replication mechanisms, how RHM can be further optimized when the system imple-

ments a broadcast-based coherence protocol and the parallel access to L2 tags and to

the router pipeline to speedup the search phase and allow the cropping of useless broad-

cast branches; Section 4.4 provides the evaluation results of RHM and its optimizations

with both directory-based and broadcast-based coherence protocols. Conclusions are

drawn in Section 4.5.

4.2 Runtime Home Mapping

Runtime Home Mapping (RHM) aims to map blocks to L2 banks at runtime, in order

to allocate them as close as possible to the requesting cores, preferably at the L2 bank

of the requestor’s tile. The mapping is performed by the MC each time it receives a

request.

Figure 4.5 shows the global overview of the RHM protocol. In case of an L1 miss, a

request is sent to the local L2 bank in the same tile. If the block is found on the local

L2 bank (the local bank is the home for that particular block), coherence actions are

triggered according to the coherence protocol and the block is sent to the L1 cache. The

specific coherence actions are detailed later in this section.

On a miss on the local L2 bank, a broadcast is sent to all other L2 banks. When an L2

bank receives this broadcast request, it checks its tag array. In case of a hit, it completes
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Figure 4.5: RHM global overview. From processor access to MC access.

the coherence actions specified by the coherence protocol, sends the data back to the L1

requestor and a hit signal to the L2 bank that originated the broadcast. Furthermore,

all the L2 banks must acknowledge the reception of the broadcast message to the L2

bank which issued the broadcast. When the local L2 bank has received all the ACKs

it checks the hit signal. If the hit signal has not been received it means the block is

not cached on chip, so a request is sent to the memory controller (MC), which in turn

fetches the block from main memory. If the hit signal has been received it means the

block is on its way to the L1 requestor. Thus, an internal ACK signal is sent to notify

the local L1 that the search phase is complete and a new request can be sent to the local

L2 as soon as it receives the requested data to complete the current request.

Upon receiving the request from the L2 bank, the MC triggers the access to main

memory to fetch the block. Meanwhile, it computes which L2 bank will be the home for
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the incoming block (the mapping policy and algorithm are described in Section 4.2.3).

Once an L2 bank is chosen as the home for a particular block, the MC notifies the bank

so it can start replacing a cache line, if needed, and allocate a new line while the MC is

still waiting to receive the block from main memory. When the block is received at the

MC, it is sent to the chosen home L2 bank, which in turn will forward the block to the

requestor L1.

Upon a hit, either on the local L2 bank, or on a remote L2 bank, RHM follows the typical

MESI protocol. Figure 4.6 shows the details of the coherence actions at the home L2

bank when a read request is received.1 For read accesses (left hand side of the figure),

different actions are performed depending on the current state of the block in L2. If the

block is in private state, then the request is forwarded to the owner L1 which in turn

sends the block to the requestor. The L2 home updates the sharing list accordingly and

the new state of the block (shared). If the block is in cached state, then it means there is

only one copy of the block and lies in the home L2 bank. Thus, the block is sent to the

requestor and the state is changed to private. If the block is in shared state, then the

requestor is added to the sharing list and the L2 bank sends the block to the requestor.

Similar actions are taken when the access is a write operation (Figure 4.7). In this case,

if the block is in private state, the request is forwarded to the owner which in turn

sends the block to the requestor. The block is invalidated in the owner. Also, the owner

pointer in the L2 bank is updated. If the block is in cached state (only one copy in

the chip), then is simply forwarded to the requestor and the state and owner pointer

are updated. If the state of the block is shared then a multicast message is sent to the

sharers in order to invalidate their copy. Sharers in turn send an acknowledgment to the

requestor. In addition, the L2 bank sends the block to the requestor and changes the

state back to private.

In addition to the previous basic coherence actions, RHM supports migration and repli-

cation of blocks. In particular, blocks in cached or shared state for read requests and

blocks in private state for write requests can migrate. On the other hand, blocks in

shared state for read requests can be replicated over the chip. In those cases, and when

a given threshold is reached (the migration and replication processes are described in

1The figure, for the sake of description, does not show the additional states and messaging needed to
solve the race conditions. They have been carefully analyzed and solved in the protocol implementation
in gMemNoCsim. The complete protocol is shown in the Appendix.
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Figure 4.6: RHM coherence actions (read request).

Section 4.3), the L2 bank triggers a signal (either MIGR or REPL) to the L2 bank that

originated the broadcast request (the one in the same tile of the L1 requestor). When

the block is received by the L1 requestor, and if the signal has been received, the block

is also copied on the L2 bank. Further descriptions are given in Section 4.3.

From Figures 4.5, 4.6 and 4.7 we can deduce the network latency when accessing blocks.

If the block is mapped in the L2 bank in the local tile then no access to the network is

made. This will be the frequent case as the MC will try to map most of the blocks to

the requestor’s tile. However, when the block is mapped in an L2 bank on a different

tile then different accesses to the network will be made. First, a broadcast to find the

L2 bank. Then, all the L2 banks sending an ACK signal to the requestor. Also, the

L2 home probably will send new messages to other nodes to manage the request (as in

Figures 4.6 and 4.7) and will finally send a hit signal to the local L2 bank and the block

to the requestor. In case the block is not mapped on cache then the MC is accessed and

a new L2 home is computed. This again means more messages through the NoC.
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The L2 home search policy described above has high network resources demand: every

time a request misses in the local L2 bank, a broadcast is issued. Also, all other banks

must answer to the broadcast with an ACK or with the data. The network requirements

of the broadcast phase can be attenuated by using the hardware tree-based broadcast

mechanism already used to reduce broadcast traffic in Chapter 3: a broadcast is sent as

a single message, that replicates at the switches to reach every L2 bank. This reduces

NoC traffic and eliminates the serialization of multiple copies of the same request (one

per destination). The GN described in Chapter 3 can be used here to collect the ACKs

generated during the home search phase. In addition, different signals (hit, MIGR, and

REPL) are sent from the home L2 to the L2 bank in the requestor’s tile. These signals

need to reach the requestor at the same time ACK signals do. To reduce the network
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Figure 4.8: Control info required for each version of RHM.

impact of all those signaling commands, the GN can be enhanced to transmit those

signals as flags of the global acknowledgement. Section 4.2.2 describes the modifications

needed at the GN modules to support RHM.

Figure 4.8 shows the control information required at each L2 cache line by the coher-

ence protocol. Different versions of RHM will be described in the following sections:

a version which uses a directory-based coherence protocol (RHM-Dir), a version us-

ing a broadcast-based coherence protocol (RHM-Hammer) and two optimizations where

blocks can migrate from a bank to another and be replicated in different banks; although

these optimizations are implemented on the directory-based version, they are orthogonal

to the coherence protocol. For each cache line, the L2 bank will keep the state of the

block. Four bits are needed to encode all the possible states (the L2 state machine has

less than 16 states) except for the version with block replication and migration support,

which needs five bits (up to 27 states are used to correctly manage the possible race

conditions). All the versions, except RHM-Hammer need the sharing code, to reflect

the list of sharers of a block. Also, migration and replication support need counters to

trigger the migration and replication processes. As can be deduced, the only field that

grows with system size is the sharing code while the size of the counters only depends

on the thresholds which are chosen to trigger the migration and replication of a block.

4.2.1 Avoiding Multiple LLC Misses

When the home bank in a NUCA cache is not statically known, race conditions may lead

to the Multiple Miss problem: two or more different L1 caches issue a request for the

same block simultaneously, those requests miss in the LLC and all the requestors send

a message to the memory controller to retrieve the block; since the block can be cached
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in different LLC banks, this may lead to multiple copies of the same block entering the

on-chip cache and evolving independently and incoherently in each LLC bank. To avoid

this problem, an additional RETRY signal can be sent to the requesting L2 together

with the ACK. A fixed priority is assigned to the LLC banks, depending on their tile ID;

when an L2 bank which has issued a request receives a broadcast request from another

L2 bank with lower priority, the RETRY signal is sent to the requestor; once an L2

bank receives all the ACKs to a request and the HIT signal has not been received, the

block is requested to the memory controller only in case none of the other L2 banks

answered with a RETRY signal. If a RETRY signal is received, then the broadcast is

issued again. In case the HIT signal is received, then RETRY signals are ignored. With

this priority-based method the multiple miss problem is avoided.

4.2.2 Adapting the GN Module to Support RHM

The GN can be used to relieve the NoC from the ACKs generated during the home search

phase and to speed-up their transmission. Some modifications are, however, required

to the sequential module described in Section 3.2.4, since in the home search phase of

RHM an ACK may include additional information such as the HIT signal, the RETRY

or the MIGR/REPL signals. Figure 4.9 shows the basic 5-port switch with the added

logic for the GN module. The additional logic basically manages what is indicated as

the signal table, a set of registers which store the value of the HIT, RETRY, MIGR and

REPL flags associated to the global acknowledgement sent to destination node.

The input logic (Figure 4.10) receives the IDs and four control signals: HIT, RETRY,MIGR,

and REPL. The received IDs are stored in the input register, which has one bit (im-

plemented as a flip-flop) per identifier, building the input ID bitmap. Thus, the bitmap

register is of size n. Whenever an ID is received the associated bit is set. Also, the

incoming ID and the control signals are forwarded to the central logic.

The central logic (Figure 4.11) is in charge of two actions. First, it has to AND the

input identifiers with the same value coming from different input ports. This is done

at the matrix of AND gates. The signals coming from the input ports are reorganized

appropriately at the previous wiring shuffling stage. Second, the central logic has a

signal table (n × 4 matrix) combining all the control signals coming from the input

ports. Whenever an input signal is received with its value set to one, it is stored in the
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Figure 4.9: Switch with a GN module adapted to RHM.

signal table. Notice that input signals coming with a value set to zero do not reset the

value in the signal table. We can view this table as an OR operation of all received

input signals with the same IDs. The flag values at the signal table are reset when an

ID is propagated to the next switch (all the ACKs for that node have been received at

the current module).

Finally, each output port has an output logic (Figure 4.12). The main function of this

logic is to forward IDs that have been combined by the central logic. To do this, IDs

are stored in a bit vector (output ID bitmap) and encoded when forwarded. A priority

encoder is used. The output of the encoder also selects the control signals stored in the

signal table, thus the output port forwards the ID with its combined control signals.
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As we can see, IDs are stored both at the input and at the output ports, while signals

are centralized in the central logic. Those IDs and signals need to be reset every time

the ID is collected and forwarded through the output port. To do this, reset signals are

triggered from the central logic to the input logic (to reset IDs) and from the output

logic to the central logic (to reset the signals). The IDs at the output logic are reset

whenever the ID is forwarded through the port.

Notice that the size of registers at each input port will vary from switch to switch in a

2D mesh. This depends on the mapping strategy used to collect IDs (e.g. they can be

collected following X-Y patterns or Y-X patterns). In particular, we follow the mapping

strategy shown in Figure 4.13. IDs associated with tiles with odd identifiers follow XY

routing whereas IDs associated with tiles with even identifiers follow YX routing. This

creates a balanced distribution and reduces the number of IDs per output port. In

particular, the maximum number of IDs at an output port (and input port) is 9 (e.g.

north output port at tile 13). In contrast, there are output ports forwarding only one

ID (e.g. west output port at tile 1). Therefore, the size of the registers at the input and

output logic will vary between 0 and 9. By collecting all the output IDs in a tile through

all the output ports, we can see that the sum is always 15. Indeed, each tile will send one
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single copy of each ID except for the local one. The figure does not show the local ports.

In this case, the injection port will have as many IDs as possible destinations (N-1) and

one single ID at the ejection port (the one associated with the local node). Also, as the

central logic will be shared by all the input ports, the number of AND gates and entries

in the signal table will not vary and will be set to n. In the evaluation section we will

show overhead costs of the GN implementation with support for RHM.

In the basic version of RHM, the GN is used to collect ACKs exchanged between L2 banks

(and the four control signals). However, this can be extended to get more functionality.

As an example, with one extra bit for IDs (duplicating the number of IDs) we can build

two logical GNs which share the same physical links, one for gathering ACKs destined

to L2 banks and one for gathering ACKs destined to L1 caches. This will be used to
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extend RHM to be used with broadcast-based protocols, as explained in Section 4.3.3.

Also, out-of-order processors may trigger different request to the network, thus requiring

different collecting processes through the GN. This can be supported by extending the

number of IDs. Figure 4.14 shows the GN message fields we assume in this thesis. The

target system is a CMP system with 16 tiles. Thus, four bits are used to address the

target tile. With one extra bit we indicate whether the target component is the L2 bank

or the L1 cache. In-order processors are assumed. With the ID we also send the four

control signals: HIT, RETRY,REPL, and MIGR.

4.2.3 Mapping Algorithm

Each time the MC receives a request, a mapping algorithm chooses the home bank for

the requested block. The home is chosen depending on the requestor’s tile and current

L2 banks utilization. The MC takes statistics about cache utilization, which are stored

in a table (alloc table) with N ×M entries, where N is the number of L2 cache banks

and M the number of L2 sets. Each entry contains the number of allocations performed
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Figure 4.13: GCN Mapping of IDs.

Figure 4.14: GN message format.

in set m of L2 bank n. If the associativity of L2 sets is Z, the table has to store at

minimum N ×M × log2 Z bits. To balance the utilization of LLC banks when they are

full, however, the table will need additional bits at each entry to represent the maximum

displacement between the most loaded and the less loaded banks. For a 16×16 tile system

with 16-way 256KB bank sets, the minimum memory requirements for this single table

is 2KB (m = 16, M = 256, Z = 16). With the increased size, the table will grow to

4KB (to allow 256 allocations per set as the maximum displacement between banks).
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int function allocate(int r, address a) {

banklist n; bank b; set s; bank h;

s = get_set(a);

if(alloc[r,s]<num_ways) {alloc[r, s]++; return r;}

for(int h = 1; h <= MaxHops; h++){

n = BanksReachable(r, h);

for (int i = 0; i < size(n); i++){

b = SelectBankClockWise(n, i);

if (alloc[b,s]<num_ways) {alloc[b,s]++; return b;}

}

}

for(int h = 1; h <= MaxHops; h++){

n = BanksReachable(r, h);

for (int i = 0; i < size(n); i++){

b = SelectBankClockWise(n, i);

if (alloc[r,s] - alloc[b,s] > UtilThr) {alloc[b,s]++; return b;}

}

}

alloc[r, s]++; return r;

}

Figure 4.15: Mapping algorithm performed by the MC.

The pseudocode shown in Figure 4.15 describes the simple algorithm which has been

implemented.

If there is room in the set in the local L2 bank (r tile), then the home is the local tile

of the requestor. Otherwise, the algorithm scans the neighbor banks in distance order

(first for loop). This search is performed until the threshold MaxHops is reached, which

can be equal to the physical threshold forced by the system size (number of hops from

the requestor to the furthest tile) or lower.

If all the L2 banks are full (alloc higher than num ways), the algorithm tries to balance

the number of allocations (thus, replacements) in all banks (second for loop). A threshold

(UtilThr) is used. If the difference between the number of allocations in the local tile’s

bank and a neighbor bank is higher than the threshold, then the neighbor bank is

selected as the home bank. If all the banks are balanced, then the block is mapped to

the requestor’s tile.

Notice that this does not imply that RHM defaults to private L2 caches. With private

caches all the data accessed by a core must be present in the L2 bank of the same tile,

while in RHM this does not apply. For instance, a shared block will be replicated in

all L2 caches if they are private, while in RHM it will be present only in the home tile.
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The proposed policy defaults to private caches only if all L2 banks are full, each core is

requesting private blocks and all banks are uniformly used. In this case, very unlikely

in a parallel application, all blocks are allocated in the requestor tile, which indeed is

the best choice since it minimizes the data access latency.

4.2.4 Replacements in L1 Cache

L1 caches have to communicate with the home L2 when replacing a block, to keep data

coherent (write-back of a modified block) and/or to keep the directory updated. The

coherence messages involved in this process are commonly referred to as PUTS, which is

a short message only used to update the directory, and PUTX, which is a long message

used to both update the directory and the data block. Even though in some cases the

replacement of a block can be completed without sending any message to the home L2

bank,2 once the L1 cache is completely full, every cache miss requires communication

with the home L2 to manage both the cache miss and the replacement of the LRU block.

If RHM is used, sending a PUTS/X to the home bank may require a search phase like

block requests, thus doubling the NoC traffic in case both the requested and the replaced

blocks are not stored in the local L2 bank. The traffic increment due to the additional

search phase can be avoided in two ways: the first one is to include both the requested

and the replaced block addresses in the same message, broadcasting the message to all

nodes in case one block (or both ones) are not found in the local bank. This limits

the traffic in the regular NoC but not in the Gather Network, since acknowledgements

must be sent separately for the two blocks. The second way to optimize replacements

is to extend the L1 tag entries and save the ID of the home L2 bank when the block

is received, to be able to send a unicast PUTS/X in case of replacement. In case the

requested block is provided directly by the L2 bank, its ID is stored in the header of the

data message (Sender field), while in case the requested block is provided by the owner

L1, it must copy to the data message the ID stored in its tags (both indicating the home

L2 bank as the message sender or using a dedicated field in the header).

2A shared block can be replaced without updating the directory; in this case, the L1 which replaced
the block receives an unnecessary invalidation message when the home L2 replaces the block itself or
receives a write request
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4.3 Optimizations to RHM

This section describes additional optimizations to the basic RHM mechanism, two at

protocol-level (block migration and block replication), and two at NoC-level (Parallel

Tag Access and the Broadcast Network). While the protocol-level optimizations are

orthogonal one to each other and to the NoC-level optimizations, each NoC-level opti-

mization can be only implemented if the other one is not. Parallel Tag Access (PTA)

indeed is used to crop broadcast branches, while the Broadcast Network is used to op-

timize RHM when it’s used with Hammer coherence protocol, exploiting the broadcast

nature both of RHM and Hammer; in this case broadcast messages must be received by

all nodes, so PTA cannot be used.

4.3.1 Block Migration

RHM reduces the access latency by mapping blocks closer to requestors. Once the block

is on-chip, however, the core which actually uses it may change at runtime. To reduce

the access latency in these cases, the initial placement of the block can be adjusted at

runtime allowing blocks to migrate to a new L2 bank. Notice that a sort of migration

mechanism is implicit in RHM, since each time a block is replaced from an L2 bank and

then requested again it may be mapped to another L2 bank by the MC. However, this

may not always be effective: if the block is never replaced by the L2, it stays in the bank

where it was mapped to by the MC. Blocks replacement may be forced if many requests

are received from an external tile, but that would be highly inefficient since a hit in the

LLC would be transformed into a miss just to move the block to another bank, and it

would require an expensive off-chip access.

If the initial home allocation performed by the MC results sub-optimal, block migration

can be enabled to further reduce the number of hops between an L1 cache and the L2

bank where the block is mapped to, through a mechanism similar to the one used in

D-NUCA but without the constraint of being limited within a bank set: in RHM a block

is allowed to migrate to any L2 bank. However, since the migration process introduces

an overhead in terms of traffic and energy, it should be performed only if it actually

leads to a benefit in terms of miss latency reduction. Furthermore, if two cores located

at two opposite directions keep requesting the same block, this may cause the continuous
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migration of the block from a bank to another, leading to a performance degradation

due to the overhead of the migration process; this problem is known as ping-pong.

Solutions in D-NUCA reduce unnecessary migrations and avoid the ping-pong effect by

using a saturating counter for each direction to which a block can move. A counter is

updated each time a request comes from a node located in the counter’s direction; when

the counter saturates, the migration process towards that direction is triggered. In RHM

a block may migrate in any direction, so four counters are needed, one per direction.

Each time a request is received, the counters are updated adding the distance in hops

from the requestor. When a counter is incremented, the one in the opposite direction

is decremented. When a counter saturates, it triggers the migration process: the block

migrates to the L2 bank located in the same tile of the L1 which sent the request that

triggered the migration.

Figure 4.16 shows the block migration process in detail. A write request issued by L1-

0 misses in the local tile, and the broadcast request hits in the home L2; the home
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acknowledges the request through the GN, setting the HIT and the MIGR flags, sends

the requested block to L1-0 and switches to state WM, in which it waits the migration

process to finish; L2-0, receiving the global ACK with the MIGR flag set, prepares to

receive the migrating block by allocating a cache line and sets the MIGR flag in the

internal ACK sent to L1-0. The MIGR flag notifies the L1 that it has to forward the

block to the local L2 once DataX is received. When the local L2 receives the data, the

state of the block switches to P and a MigrationEnd message is sent to the former home

L2, notifying the end of the migration process; at the reception of MigrationEnd, the

former home L2 deallocates the cache line.

The MigrationEnd message is needed to avoid race conditions in case other requests for

the same block are received by L2-0 or Home L2 while the migration process is ongoing.

During the migration process, indeed, the reception of other requests for the migrating

block may lead to the false miss problem: the request misses in both the former home

L2 and the new home L2, resulting in an LLC miss which triggers a request to the

memory controller. Previous proposals in D-NUCA caches [26] employ a False Miss

Avoidance protocol, in which the old home L2 forwards the received requests to the

new one, which is in charge to provide the block to L1 requestors; this could lead

however to manage the same request twice, first when it is received directly at the new

home and then when the forwarded request is received, so the protocol must be further

complicated to manage these duplicated requests. To avoid the additional messages and

MSHR structures needed to manage duplicated requests, we chose to delay the requests

received during the migration process: referring to Figure 4.16, the RETRY flag is set

in the ACK sent by L2-0 while the block is in state IR and in the ACK sent by Home

L2 while the block is in state WM, so any request received during the migration process

will be repeated by the sender. More details about the migration process can be seen in

the protocol specification in Appendix A.

4.3.2 Block Replication

Block migration effectively reduces the LLC access latency of private blocks. Each time

the accessing core changes, the block potentially migrates to the L2 bank in its tile. For

shared blocks, however, this may not be the optimal solution. First of all, the block may

be mapped close to one of the sharers but away from the others. Second, the block may
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Figure 4.17: Block replication.

ping-pong between two L2 banks when different sharers continuously request it. Since a

block cannot be modified while it is shared, it is safe to replicate it in more L2 banks to

reduce the access latency of the sharers. To limit the number of replicas, we partition

the chip in a reduced number of replication regions as shown in Figure4.17. Four regions

are defined, each including four tiles, and at most one copy of the block can be present

in the L2 banks of each region.

Figure 4.18 shows the replication process in detail. A read request issued by L1-0 misses

in the local L2 and it is broadcasted to all L2 banks; when the broadcast is received at

the Home L2, the data is sent to L1-0 and the HIT and REPL flags of the ACK sent

to L2-0 are set, so the internal ACK sent by L2-0 to L1-0 will have the REPL flag set

to notify L1-0 that it has to provide the block to the local L2 when it receives the data

message. Once L2-0 receives the block, a ReplicationACK is sent to the Home L2. The

reception of ReplicationACK completes the migration process at Home L2: the ID of

L2-0 is stored and the state of the block switches to Sr, indicating a shared block which

is replicated. A ReplicationEnd message is sent to L2-0, and its reception completes the

replication process: the state of the block in L2-0 switches to Replica, and starting from

this moment it will provide the block when it receives read requests issued by L1 caches

located in its region.

To avoid race conditions, requests received for a block during the replication process are

delayed as described for the migration process: the RETRY flag is set in the ACK sent

by L2-0 while the state of the block is IReplica and ReplicaWE, and in the ACK sent

by Home L2 while the state of the block is WR.
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The minimal access latency is achieved when each sharer has a replica of the block in

its local L2 bank. This case, however, may end up suboptimal as the on-chip cache

capacity will be highly reduced due to the high number of replicated blocks. To avoid

unnecessary replicas, a saturating counter is associated to each region. Since a replicated

block cannot migrate, the bits used to store the migration counters are also used to

manage the replication process. As shown in Figure 4.8, we assumed 4 bits per direction

and dimension for the migration counters; these become 4 bits per region when the block

is shared and can thus be replicated. The first 2 bits are used for the counter: when 4

requests are received consecutively from the same region, the block is replicated.

The remaining 2 bits are used to indicate, when the block is replicated, the ID of the

L2 bank which stores the replica within that region, which is used in two cases: first,

to correctly manage the invalidation process in case a write request is received for the

replicated block. L2 banks containing a replica indeed are only allowed to provide the

block when it receives a read request issued by an L1 cache located in its region; in all
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other cases the access misses in that L2 bank. Write request thus, even if they are issued

in the same region (or in the same tile) of the replica, only hit in the home L2, which

is in charge to invalidate the sharers and all the possible replicas. If the block is not

replicated in a region, then invalidation messages are sent directly to the sharers; if a

replica exists, then a single invalidation message is sent to the replica, which invalidates

its copy and sends another invalidation message to each sharer in its region. This way,

when the requestor receives all the acknowledgements sent by the sharers, only the home

L2 bank holds a valid copy of the block. The ID is also used to allow a replica to become

the new home bank if the current home bank must replace its copy. This way a shared

block which is replicated in different L2 banks is kept on-chip until all the replicas are

replaced.

Figure 4.17 shows how the replication process works. The CMP is divided in four regions,

each one including four tiles, marked with a thicker line. Initially, there is only a private

copy of the block in the L2 of tile 10 (L2-10), which is the tile the MC mapped that

block to (or the destination tile of a previous migration process). In Figure 4.17.(b)

L1-2 requests the block with read permission, so the block is shared by L1-10 and L1-2.

If L1-2 or any other L1 of the same replication region requests the block several times

until the counter for its region saturates, the replication process begins: L2-10 sends the

block both to L1-3, which requested it, and to L2-3, where it is saved as a replica (Figure

4.17.(c)). Notice that L2-10 remains the home bank for the block: it keeps updating the

directory and managing all requests, except for the read requests issued by L1s located

in the same region of L2-3. For those requests, L2-3 is in charge of providing the data

to the requestors.

When the home bank has to replace a replicated block, it is not necessary to invalidate

the sharers. One of the L2 banks with a replica of the block is chosen to become the new

home for the block, so is notified with a message which includes the directory information

for that block. On the other hand, if an L2 bank has to replace a replica, it only has to

notify the home bank. The home bank will remove its ID from the list of replicas and

manage the requests originated in that region.
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4.3.3 RHM and Broadcast-based Coherence Protocols

In previous sections we assumed a directory-based coherence protocol, with a data struc-

ture (the directory) associated to each L2 cache line to store the list of sharers used when

the L2 home bank has to communicate with L1 caches to manage a request; two typical

cases are the invalidation of the sharers of a shared block upon a write request and

the forwarding of read and write requests to the L1 which owns the modified copy of

a private block. The directory introduces an area overhead, since part of the on chip

memory has to be used to store the directory entries.

Broadcast-based protocols completely eliminate the list of sharers from the directory

information, thus eliminating its extra area and power requirements. The drawback of

broadcast-based protocols is the amount of traffic they generate. While in directory-

based protocols the L2 cache always knows exactly to which node it has to communicate,

thus injecting in the NoC the minimum amount of traffic, in broadcast-based protocols

a broadcast must be sent to all L1 caches each time the L2 home bank has to invalidate

the sharers of a block or forward a request to the L1 which has a private copy of

the block. In addition, each node must answer the broadcast message by sending an

acknowledgement message (ACK) to the requestor, and, if the node is also the owner

of a private block, the requested data block. Due to these additional communication,

broadcast-based protocols have usually worse performance than directory-based.

However, the GN used in the search phase of RHM can be extended and also used to

collect the acknowledgments of L1 caches. Notice that RHM uses the GN to transmit

ACKs exchanged between L2 banks. Thus, now, in order to extend GN notifications

between L1s, the ID of the GN must be extended to differentiate between L2 acknowl-

edgements, generated during the RHM home search phase, and L1 acknowledgements,

generated according to Hammer protocol when a request is managed. This allows to

save the area and power overhead of the directory maintaining performance comparable

to that of the directory protocol.

Furthermore, with some modifications of the GN module, it is possible to reuse the

information of the RHM home search phase to save a second broadcast when the home

is found and the request requires a broadcast to all L1 caches to be managed. To achieve

this goal, the GN is extended to implement a Broadcast Network (BN) to send a fast

notification from any node to all other nodes.
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Figure 4.19: BN implementation.

4.3.3.1 Broadcast Network

As described in Chapter 3, the GN can be logically described as a set of AND trees,

one per tile. Each tree has its root in the destination tile and all other tiles are at the

leaves. The sequential implementation we assume in this chapter combines IDs of the

destination node, following the structure of the AND tree. By crossing the tree in the

opposite direction, it is possible to broadcast the ID of a node to all other nodes.

Figure 4.19 shows the implementation details of the BN. It reuses the links of the GN to

transmit to all nodes the ID of the node which initiated the broadcast. An additional bit

is used to differentiate these messages from those of the GN. This bit (GN/BN) drives

a demultiplexer thus the incoming bit at the input port is forwarded either to the GN

input logic or to the BN logic. The BN logic simply disseminates the ID through some

output ports, following the XY pattern. At each output port, a register with as many

bits as IDs is implemented. When an ID is received at an output port, the associated bit

is set. The register is then inputed to a priority encoder and the output link is arbitrated

between the GN output logic and the BN output logic.

4.3.4 Merging Hammer Protocol and RHM

The basic coherence actions when Hammer protocol is combined with RHM (RHM-

Hammer) are shown in Figures 4.20, 4.21 and 4.22. Each time the L2 home bank needs

to communicate with an L1 cache to satisfy a request, it broadcasts the request to all
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Figure 4.20: Read request for a shared block in case of hit (left) or miss (right) in
the local L2 bank.

L1 caches, which answer by sending an ACK back to the L1 requestor. The GN we

considered so far must then be expanded with an additional GN: one GN (GN-1) will

be used to collect the ACKs sent by the L2 banks during the home bank search phase,

and a second GN (GN-2) will be used to collect the ACKs sent by the L1 caches back

to the L1 requestor once the home bank has been found and it is managing the request.

By adding one bit to the ID identifier we easily provide support to the GN-2. Notice

that GN-1, GN-2 and BN logic blocks at each router share the same physical links. In

Section 4.4 we will provide evaluation results of the number of conflicts inside a GN

module.

In case the requested block is not cached on chip, RHM-Hammer behaves like the Di-

rectory case (RHM-Directory): the home search phase will miss in all L2 banks, and

the L2 of the requestor’s tile will send a request to the MC. It fetches the block from

main memory and executes the home mapping algorithm. Once the block is received

from main memory, a data message is sent to the chosen L2 home, which will provide

the block to the requestor.

If the requested block is cached on chip, RHM-Hammer exploits the BN and the GN to

speedup the coherence actions. In the case of a read request for a shared block (Figure

4.20) RHM-Hammer behaves like RHM-Directory: if the request hits in the local tile,

the local L2 directly sends the data to the requestor. If, however, the request misses in

the local tile, a broadcast is sent to all L2 banks and the block is provided by the home

bank.
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Figure 4.21: Request hit in the local L2 bank.

In all other cases RHM-Hammer uses the GN and the BN to manage the request.

Figure 4.21 shows the case when a request hits in the local L2 bank. In case of read or

write request for a private block (Figure 4.21.a), the local L2 bank sends a broadcast

through the NoC to all other L1 caches, which answer acknowledging the broadcast

through the GN. The L1 which owns the private copy is in charge of sending the block

to the requestor. In case of a write request on a shared block (Figure 4.21.b), the

broadcast is used to invalidate the sharers and the data is provided by the local L2

bank. Notice that RHM-Directory can not use the GN to collect the acknowledgements

since the invalidation message is only sent to the sharers, so some nodes at leaves of

the requestor’s AND tree would not send an ACK. The acknowledgement phase is thus

faster in RHM-Hammer.

Figure 4.22 shows how the previous cases are managed when the request misses in the

local bank. In case of read or write request for a private block (Figure 4.22.a), the

local bank starts the home search phase. During this phase, all tiles, upon receiving the

request, save in a private table, at the entry of the requestor, the block address and the

request type. This table will have as many entries as IDs are supported by the BN.

When the request is received by the home bank, a broadcast is sent through the BN to

all the L1 caches: the ID of the requestor is broadcasted through the BN. Once an L1

cache receives the requestor ID, it checks the table to know which address and access

type are associated to that ID and performs the actions established by the coherence

protocol. If the ID is received at the owner L1, it sends the block to the requestor and

invalidates its cache line (in case of write request) or changes the line state from private
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Figure 4.22: Request miss in the local L2 bank.

to shared (in case of read request). In case of a write request on a shared block (Figure

4.22.b), the home bank must invalidate the sharers. Again, this is done by broadcasting

the request through the BN and all ACKs are collected through the GN. Notice that

in RHM-Directory both the invalidation messages and the acknowledgements are sent

through the regular NoC.

Although RHM-Hammer seems to generate much more traffic than RHM-Directory, all

the additional traffic is actually sent through the GN and the BN, which is faster and

has much lower energy requirements than the regular NoC. Furthermore, since in case

of miss in the local L2 bank the communication between the home bank and the L1s is

done through the BN, it is faster than in the case of RHM-Directory, where the regular

NoC is used to forward the request to the owner or to invalidate the sharers of a block.

4.3.5 Parallel Tag Access

Built-in NoC broadcast support and the GN highly reduce the NoC traffic generated

during the home search phase. However, traffic can still be reduced by eliminating

useless broadcast branches. In Figure 4.23.a a request misses in the local L2 bank and

is broadcasted to all other banks. Since the data is found in L2-2, there is no need to

propagate the broadcast through east and south directions. Parallel Tag Access (PTA)

is a mechanism to allow the parallel access to the L2 tags while a broadcast message is

crossing the NoC router pipeline. This way, in case of an L2 hit, the broadcast branch

can be cropped before the message reaches the crossbar stage of the switch. Figure 4.24.a
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Figure 4.23: Parallel Tag Access: motivation and implementation.

shows a basic 4-stage router modified to enable PTA. As the flit exits the input buffer

to enter the routing stage, it is also sent to the L2 tag array to perform the lookup. In

case of a hit, the CHOP signal dismisses the flit (the flit is converted to a bubble). In

case of a miss, MISS signal allows the flit to cross and replicate. Those signals are also

used to generate a global ACK signal in the GN module of the tile where the broadcast

is cropped, as shown in Figure 4.23.b.

Theoretically, the L2 cache must be able to trigger one of the signals within 2 cycles,

while the flit is crossing the routing and the VA/SA stages. To limit power consumption

and allow a fast cache lookup, a sequential access to the L2 bank must be implemented:

the tag array is accessed first and then, in case of a hit, the data array is accessed. If the

tag access latency is still higher than two cycles, the L2 bank can be partitioned into

sub banks until the size of the tag array allows a 2-cycle lookup. Alternatively, the L2

bank may require more cycles than the flit to cross the router (case of a shorter pipeline

design as shown in Figure 4.24.b). In this case, the flit gets blocked at the VA/SA stage

until the L2 tag access is performed, then the flit either advances through the crossbar

(in case of a miss) or it is dismissed (in case of a hit). Notice that only broadcast request

messages, which are single-flit messages, have to wait for the L2 bank to access the tag

array. Also, with the obtained high locality of data in the local L2 bank (seen in the

evaluation), the effect of this delay is negligible.

The basic 4-stage switch using the 45nm technology Nangate [61] library with Synopsys

DC, and the modifications needed to couple the switch and the L2 tags in order to allow
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PTA resulted in a negligible area overhead.

Parallel Tag Access can not be used with RHM-Hammer, since home search broadcasts

must reach all the tiles to reuse the information when requests are broadcasted through

the Broadcast Network. Network. However, it can be used with RHM-Directory.

4.4 Evaluation

In this section RHM is evaluated and compared to other proposed NUCA configurations.

In particular, these configurations have been implemented in gMemNoCsim:

• S-NUCA, a baseline configuration where blocks are statically mapped to L2 banks

using the less significant bits of the block address

• D-NUCA, where blocks are statically mapped to a bank-set depending on their

address; the matrix of L2 banks is divided in bank-sets, one per column of tiles;

blocks are inserted in the L2 bank located in the same row of the requestor and

then can migrate within the bank-set, one hop each time a migration is triggered

• PRIVATE L2, where L2 banks are private to the core in the tile and simply extend

the private L1 cache; a directory is implemented at the memory controller

• FIRST TOUCH, an S-NUCA configuration in which the blocks are mapped to

the L2 banks using a First-Touch policy; the first time a block is requested, the

memory page containing that block is mapped to the L2 bank in the requestor’s

tile; we’ll assume 4KB as the page size
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Routing XY Coherence protocol Directory / Hammer

Flow control credits L1 cache size 16 + 16 kB (I + D)

Flit size 8 byte L1 tag latency 1 cycle

Switch model 4-stage pipelined L1 data latency 2 cycles

Switching virtual cut-through L2 bank size 256 kB

Buffer size: 9 flit deep L2 tag latency 1 cycle

Virtual channels: 4 L2 data latency 4 cycles

GCN/BCN delay 1 cycle/hop Cache block size 64 B

Table 4.1: Network and cache parameters (RHM evaluation).

These configurations assume a directory-based coherence protocol, and are compared to

four configurations of RHM:

• RHM, a basic implementation of RHM with directory protocol

• RHM M, an implementation of RHM with directory protocol where private and

shared blocks can migrate from an L2 bank to another

• RHM M+R, an implementation of RHM with directory protocol where private

blocks can migrate while shared blocks can be replicated in different L2 banks

• RHM HAMMER, an implementation of the basic RHM with Hammer protocol

The cache coherence protocol for each configuration, the NoC with broadcast support

and the GN/BN networks have been implemented and simulated using gMemNoCsim.

Each protocol has been tested for deadlocks and race conditions with all the applications

used in the simulation phase. Graphite and Sniper’s were used to capture the memory

access traces of simulated cores executing different applications of the SPLASH-2 and

PARSEC benchmark suites and use that in gMemNoCsim for cache hierarchy and NoC

timing. Network and cache parameters are shown in Table 4.1. Cache latencies have

been obtained using Cacti [58]. The memory controller is placed at the top left corner of

the chip. For the sake of fairness, ACKs in D-NUCA are modeled with 2-cycle latencies

(as if a combinational GN was used).

4.4.1 Performance

Figure 4.25 shows the average hop distance from the requestor to the home tile. For

S-NUCA, the block is found on average at a distance of 2.85 hops. This distance is

roughly the same for most applications as blocks are uniformly distributed among the
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Figure 4.25: Avg hop distance between L1 requestors and the tile where the data is
found.

Figure 4.26: Percentage of hits in the L2 bank located in the tile’s requestor.

L2 banks. With other configurations, however, since blocks are dynamically mapped

and/or moved from a bank to another, the distance is quite variable depending on the

application. For Barnes, dynamic techniques are not so effective, and the average value

is always higher than 2 hops. The exception is for RHM M+R. This is due to the high

sharing of blocks between cores. Thus, RHM M+R adapts to this type of sharing. For

other applications, e.g. Ocean, those techniques achieve a large reduction in the average

number of hops.

On average, RHM locates the data closer to the requestor than the other configurations,

and this distance is further reduced if block migration is enabled. Indeed RHM M and

RHM M+R achieve a locality close to that of PRIVATE L2.

Figure 4.26 shows the percentage of requests which hit in the L2 bank located in the

same tile of the requestor. Again, results when using S-NUCA do not depend on the

application due to the uniform mapping of the blocks, and this percentage is quite low

(6% on average). This percentage increased to 16% for D-NUCA, but is still much lower

when compared to First Touch (33%), RHM (49%), RHM HAMMER (49%), RHM M

(56%), RHM M+R (60%) and Private L2 (72%). Thus, the most effective dynamic

method is RHM.
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Figure 4.27: Execution time normalized to the S-NUCA case.

Figures 4.27 shows the normalized execution time with all the configurations. We can

observe how execution time is largely reduced with an average factor of 12% when using

FIRST TOUCH and ranging between 20% and 28% when using the various configura-

tions of RHM. RHM achieves lower execution time due to its achieved higher locality

in L2. Also, the migration and replication policy helps in further reducing execution

time. Contrary to this, D-NUCA is not able to achieve large reductions when compared

to S-NUCA. The use of private caches achieves large execution time reductions but its

effectiveness depends on the size of the working set of every application. We can also

see the on-par execution time benefits of the RHM-HAMMER protocol.

Figure 4.28 shows the average load and store latency, respectively, for the evaluated

configurations, normalized to the S-NUCA approach. RHM configurations reduce these

latencies by more than 25% on average and up to 75% (FFT store latency). Again,

the effectiveness of RHM in reducing the miss latency depends on the memory access

pattern of each application. Streamcluster shows a high percentage of blocks which

are first accessed by a tile and then by different tiles during different phases of the

application. In this case, a first touch policy has the negative effect of overloading the

tile where blocks are mapped, and the migration/replication mechanism can effectively

move the blocks to the correct tiles. RHM-HAMMER protocol also exhibits low load

and store latencies, as it benefits from the fast GCN and BCN networks.

4.4.2 Performance Conclusions

When comparing results of different methods we can deduce some interesting observa-

tions. First, The S-NUCA approach has the severe limitation of its static mapping of

L2 banks. This leads to the largest distances between L1 requestors and L2 home banks



108 Chapter 4. Runtime Home Mapping

Figure 4.28: Average load and store latency, normalized to the S-NUCA case.

(near 3 hops on average) and the lowest rate in hits in local L2 banks (6% of hits).

Execution time of applications is the worst when compared to the other policies. The

same occurs for the average load latency and the average store latency.

The D-NUCA approach is a first step towards providing dynamism to the placement

policy of L2 homes. However, its static partitioning in bank sets still forces poor results

in terms of hop distance (2 hops on average) and hit rate in local L2 bank (less than

20%). Execution time is improved, when compared to S-NUCA because of the lower

load and store latencies.

Private caches (PRIVATE L2) obviously achieve low hop distances and the largest hit

rate in local L2 banks. However, RHM M+R is able to improve further the hop distance

but not the hit rate. Because of its cache privacy policy, shared blocks impose an

overhead which translates to larger execution time and latencies when compared to

RHM. Although PRIVATE L2 reduces execution time of S-NUCA by 20%, an extra of

15% is obtained with RHM with migration and replication support.

For FIRST TOUCH, locality is not correctly promoted (average of 2 hop distance and

35% hit rate in local L2 banks). Execution time and average latencies are similar to

the ones achieved by D-NUCA. Although FirstTouch is a simple mechanism not requir-

ing any hardware assistance, it should be noted RHM allows finer-grained assignments

(blocks vs pages) and also more effective thread migration as blocks can be effectively

migrated along with threads.

When analyzing RHM and RHM HAMMER we can see that they achieve very close

results. None of them use migration or partitioning support, thus they only differ on
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Figure 4.29: NoC’s energy consumption

the way of locating sharers and owners of blocks. This impacts execution time. RHM

HAMMER is able to run faster than RHM (3% faster). This is due to the use of the

BN network. Average miss latencies do not get significantly affected. Notice also that

the main benefit of RHM HAMMER is its reduced overhead in control structures.

Finally, we can see how RHM M+R is the best RHM option, getting close of the PRI-

VATE L2 results for hop distances and local hit rate. However, the extra flexibility of

moving blocks between L2s makes the solution the most performant. Execution time of

S-NUCA is reduced by 35% (execution time of PRIVATE L2 is reduced by 15%).

4.4.3 Energy

Figure 4.29 shows the normalized dynamic and total energy consumed by the NoC

with the six configurations. Resource access (input buffer read/write, routing, switch

allocation, crossbar traversal and link traversal) have been accounted and fed into Orion

2.0 [59]. If the request misses in the local L2 bank, RHM consumes more energy than

the other schemes, due to the broadcasts. However, the high percentage of hits in the

local L2 leads to less network activity compared to an S-NUCA. This, combined with the

reduced execution time, leads to average energy reductions of 32%. Energy consumption

is further reduced by 55% on average when migration is enabled (RHM MIGR).

Figure 4.30 shows the normalized energy consumed by the L2 cache. We used CACTI

[58] to obtain the dynamic energy and the leakage per bank. Due to the broadcast access,
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Figure 4.30: LLC’s energy consumption

RHM consumes more dynamic energy than other proposals (50% more energy on aver-

age), but the leakage component, reduced by the lower execution time, dominates over

the dynamic energy for the configuration we choose. On average, energy consumption

with RHM is reduced by 29% without block migration and 31% when block migration

is enabled.

The area overhead and the power consumption of the LLC utilization table at the

memory controller are a minimal fraction of the overall chip area and power requirement,

due to its very small size compared to the on-chip cache and to the limited number of

accesses compared to L1 and L2 accesses (the table is only accessed in case of L2 miss).

4.4.4 Parallel Tag Access

Let’s now enable the PTA and see how it impacts performance. Figure 4.31.a shows the

normalized reduction in number of broadcast messages received with PTA. On average,

PTA helps in reducing the number of received messages by 10%, saving link and router

traversals and L2 tag accesses. The average number of messages saved per broadcast is

3.41 (without chopping, the number of messages per broadcast is 15). PTA improves the

performance of RHM in two ways: first, as broadcast branches are cropped, the block

search phase is faster; second, at the destination tile messages are delivered directly to

the L2 bank without having to cross the 4 pipeline stages of the switch. These two

effects combined lead to a further average reduction of execution time of 5% (12% for

Ocean-nc).
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(a) Broadcast messages (b) Execution time

Figure 4.31: Normalized reduction in broadcasts and execution time when using PTA.

4.5 Conclusions

In this chapter we presented Runtime Home Mapping, a dynamic policy to map cache

blocks to LLC banks in a system which employs a NUCA LLC. Block mapping is per-

formed at runtime by the memory controller, while it’s waiting to receive the data from

main memory. The mapping algorithm we implemented maps blocks to the same tile of

the requestor as long as the local LLC bank is not full. In case it is full, neighboring

banks are also checked, to balance the utilization of all banks.

Since in case of L1 miss the home bank for a block is not known, a home search phase is

needed. First, the local bank is checked; if the request misses in the local bank, a broad-

cast is sent to all banks, which must acknowledge its reception. We used LBDR hardware

broadcast to speedup the broadcast phase and the GN to speedup the acknowledgement

phase.

Thanks to the totally dynamic mapping, blocks can migrate from a bank to another one

or can be replicated in different banks, thus adjusting the initial placement performed

by the MC and further reducing the LLC access latency.

If the system implements a broadcast-based protocol like Hammer, RHM and the coher-

ence protocol can be tightly integrated, exploiting the broadcast nature of both RHM’s

search phase and Hammer’s requests management at LLCs to optimize the coherence

protocol.

One last optimization is the parallel access to the LLC tags and to the switch pipeline,

to speedup the LLC access and crop unnecessary broadcast branches; this optimization

though can only be used with Directory protocol.
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Evaluation results show that RHM is more effective than the other configurations we

considered (S-NUCA, D-NUCA, private LLC, First-Touch) in reducing the LLC access

latency (and thus the execution time) exploiting at the same time all the on-chip cache

capacity, particularly when it is integrated with Hammer protocol and when the migra-

tion/replication of blocks is enabled. Despite the expensive home search phase, NoC

dynamic energy is reduced thanks to the high number of hits in the local cache. The

dynamic energy consumed by LLC banks increases, since every broadcast involves an

access to all banks, but since the leakage component dominates the total LLC energy is

reduced compared to the other configurations, thanks to the reduced execution time.

A central role in RHM is played by the MC; we believe this component to be the

fittest to perform the block mapping efficiently, since it is aware of the traffic between

main memory and the LLC banks. OS-based policies like First-Touch are those which

in this aspect are closer to that of RHM. We identified several advantages of RHM

over OS-based techniques: first, OS-based techniques rely on static mapping at the

hardware level, so they do not allow block migration or replication; being based on the

paging routine, they can only act at page level, while RHM acts at the finer block-level

granularity; last but not least, the paging routine is on the critical path of resolving an

LLC miss, so the mapping algorithm must be kept as simple as possible since it latency

directly influences the LLC miss latency; the mapping algorithm of RHM, on the other

hand, overlaps with the main memory access, so the memory wall can be exploited to

mask the execution time of the mapping algorithm.

Further research work on RHM can focus on several directions: a first, important issue is

to adapt RHM to work in a system with more than one memory controller. Alternative,

more sophisticated policies can be implemented at the MC; the policy we implemented

is indeed general, fit for a general-purpose CMP system, but it can be modified to adapt

RHM to a specific system running a specific kind of applications. At the NoC-level,

alternative broadcast strategies and network topologies can be studied to optimize the

search phase and improve the effectiveness of PTA; the mapping algorithm would be

adapted to take advantage of the new broadcast strategy and NoC topology.

In the next chapter, RHM is combined with LBDR to allow the independent partitioning

of cores, NoC resources and LLC banks in a virtualized CMP system.



Chapter 5

pNC: Partitioned NoC and Cache

Hierarchy

In this chapter we integrate LBDR and RHM to create a hardware substrate for the

independent partitioning of cores, NoC resources and LLC banks in a virtualized CMP.

At the network level, we use LBDR extended with the hardware broadcast support,

as in the previous chapters of this thesis; in this chapter, however, we also exploit the

connectivity bits to partition the NoC into regions. At the LLC level, we use the basic

RHM policy described in the previous chapter, without block migration/replication and

without enabling the PTA mechanism. Directory coherence protocol is assumed.

113
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Figure 5.1: Partitioned CMP system.

5.1 Introduction

Virtualization provides an effective way to maximize the throughput of a CMP system.

An application sees its pool of virtualized resources as an independent dedicated system.

In a virtualized system, resources are assigned to different applications providing to each

application the view of exclusiveness of its resources. For instance, in Figure 5.4 a 16-tile

CMP system is virtualized to execute three applications, each running in a disjoint set

of cores. In such situation, it is mandatory to prevent each application from affecting

the performance of the other ones. Indeed, a perfect and independent partitioning is

needed not only of cores, but also of memory and NoC resources.

Focusing on cache resources, the use of alternative mapping policies of cache blocks to

LLC banks such as RHM is particularly appealing in a virtualized/partitioned environ-

ment: a static home mapping approach would spread the blocks over all the LLC banks,

thus destroying the exclusiveness in the use of cache and NoC resources. A dynamic

home mapping approach, instead, can keep all the blocks in LLC banks located within

the partition of the application. Figure 5.2.a shows the virtualized system when a static

home mapping is used. As can be seen, the LLC layer is not partitioned and every

core can access blocks allocated in any LLC bank. However, with a dynamic approach

(Figure 5.2.b) both the core and the memory layers are partitioned and thus traffic

originated from different applications do not mix.1

This chapter illustrates a co-design of the network and memory hierarchy to achieve

an effective partitioning of chip resources, enabling an efficient implementation of a

1The only exception is when L2 misses require accessing the memory controller, which, can be located
in a corner of the chip thus needing to cross other partitions.



Chapter 5. pNC: Partitioned NoC and Cache Hierarchy 115

a) LLC partitioning following a static LLC

bank mapping.

b) LLC partitioning following a dynamic LLC

bank mapping.

Figure 5.2: Virtualized CMP system to three applications. Resources are assigned to
different applications.

virtualized system. In order to achieve such partitioning, the following contributions are

proposed:

• A management policy where the memory controller is aware of the applications

running in the chip and their partitions. The memory controller will be in charge

of performing the home LLC bank mapping taking into account the resources

assigned to each application.

• A routing framework, combined with the efficient LBDR approach [45]. The frame-

work will allow an efficient partitioned-based search of the home banks when pri-

vate caches accesses result in a miss.

• An infrastructure to collect control messages, embedded in the NoC, that will be

bounded to each partition, improving the latency of private misses. The collecting

system will be integrated into the routing framework.

• A method to allow applications with large memory footprints to get more LLC

banks. In this case chip resources are not assigned at tile level: an application

may use LLC banks which are located in tiles where another application with less

memory requirements is running.
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• A strategy that allows applications to share some LLC banks if they share code

or data.

In addition, our proposal provides support to LLC banks failures. The memory controller

will keep into account LLC banks which have been detected as failed. Those banks will

be avoided when the mapping is performed.

The whole mechanism is termed pNC, meaning it supports partitioning both at NoC

level and at Cache hierarchy level.

This chapter is organized as follows: Section 5.2 describes how to combine LBDR and

RHM to allow the efficient partitioning of NoC and LLC layers. Section 5.3 provides

evaluation results of a system which implements pNC. In Section 5.4 we draw the con-

clusions.

5.2 NoC and Cache Hierarchy Substrate

pNC is based on the combination of two previous methods. At the NoC level, LBDR is

used to define the partitions. At the cache level, RHM is used to map blocks within a

partition. LBDR and RHM are orthogonal techniques, and this chapter describes how

they can be integrated to provide a NoC and cache substrate in which both cooperate

with the OS’s hypervisor to effectively partition chip resources when the CMP system

is virtualized.

5.2.1 pNC: LBDR and RHM Support to Virtualization

The basic idea behind pNC is to allow RHM to work at the partition level, where

partitions are defined by LBDR. With the connectivity bits, different partitions at the

NoC level can be defined, some of them overlapped. This is achieved by using a vector

of connectivity bits per output port. Packets injected by applications incorporate in

their headers an ID field that identifies the partition. With 3 partition bits, up to 8

overlapped partitions can be defined. Note that two disjoint partitions can use the same

ID but routing packets at different regions of the CMP, so the combinations of partitions

is actually much larger.
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Figure 5.3: Baseline system for the pNC approach.

Figure 5.4: GN signals in a virtualized environments.

In this chapter we assume the 64-tile CMP shown in Figure 5.3, where tiles are organized

in an 8 × 8 mesh. For the sake of simplification, we assume the default partitioned

regions outlined with thicker lines. Thus, the chip is logically divided in four partitions,

each including 4 × 4 tiles. Note that other partitions are possible and they can be

reprogrammed on-the-fly in the system by just changing the connectivity bits at the

switches.

LBDR connectivity bits prevent traffic from leaving a partition. This is especially useful

for broadcast messages, which are constrained within a partition avoiding the unneces-

sary flooding of other partitions. However, the GN infrastructure, such as it is presented

in Chapter 3, cannot work properly if broadcasts are limited within a partition and re-

quires some modifications to allow its use in a virtualized CMP.
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Figure 5.5: pNC switch design.

Consider the example where the upper left tile (Tile 0)2 sends a broadcast message due

to an L2 bank miss. Tiles in the same column will collect their ACKs, which in turn

will be collected in the first row. Tile 0 is notified when all the tiles trigger their signals.

However, if broadcasts are limited within a partition due to LBDR connectivity bits,

the tiles located outside the partition will not receive the broadcast and thus will not

trigger the GN signal for Tile 0. The GN modules of the tiles at the partition boundary

will never receive the signals coming from outside the partition.

LBDR connectivity bits can be used to solve this problem, as they define the boundaries

of the partition. We need to link the connectivity bits with the GN infrastructure.

Figure 5.5 shows how the GN module can use the connectivity bits to this purpose.

The complemented value of the connectivity bit is ORed with the input GN signal at

the partition boundary. Thus, that signal will be masked. Figure 5.6 shows a detailed

example, where the partition boundary, represented by the CS and CE bits set to zero,

set all the input signals to one for every GN destination, so no notifications is expected

from outside the partition. Notice that this solution adds a delay of a single logic gate.

2Tiles are numbered from 0 to 63, starting from the upper left corner and descending row by row to
the lower right corner of the CMP.
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Figure 5.6: Example of GCN connected with LBDR bits.

Consider Tile 24, which is located at the lower left corner of the first (upper right)

partition. According to Figure 5.4, the GN module of this tile can transmit its ACK to

the upper tile (Tile 16) once two ACKs are received: the one sent by the local node,

and the one coming from the tile located in the lower row (Tile 32). Since Tile 32

belongs to a different partition, it will never receive the broadcast message, so it will

never send an ACK to Tile 0 through the GN. This issue is solved by combining the

LBDR connectivity bit of the port that crosses the partition (south port at switch 24)

with the GN signals coming from that direction. This way, if the tile connected through

a port belongs to the same partition, its GN signal is enabled, otherwise it is always set

to 1, thus being a neutral input of the AND gate. In the example shown in Figure 5.6,

since Tile 32 belongs to a different partition, the south port connectivity bit of switch

24 is set to 0, so the GN signal coming from Tile 32 is always set to 1 (only the local

input signal will be significative).

Generalizing, if LBDR is used to separate regions, the GN can work properly in a

virtualized environment with a simple modification: in the AND logic block, each input

to the AND gates must be the OR of the signal coming from another tile and the

complemented LBDR connectivity bit correspondent to the port which communicates

with that tile. This must be done for all inputs except for local signals.
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5.2.2 LBDR Regions

Partitions defined by LBDR can be overlapped, thus allowing a tile to belong to different

partitions. This is another useful feature with partitioning/virtualization for various

reasons. First, two or more applications in different partitions can share several LLC

banks (we will not use this possibility in this work). Second, it allows to define a global

partition, including all the tiles, so that all of them can reach the memory controller

(which is a shared resource).

Third, a partition can steal LLC banks from underutilized partitions (Home Stealing,

HS). For instance, an application which is executed in a 16-core partition may have a

working set which does not fit in the LLC capacity offered by the partition. The opposite

may also happen. The LLC banks may be underutilized by the running application in

that partition, which is then using resources that are actually not needed and possibly

could be useful to an application which is executed in a neighboring partition.

In our final design, three connectivity bits per port are used. The first one defines the

partitions to which applications are mapped to. We refer this to as Processor Partition

(PP). We assume four different non-overlapping PPs, each including 16 tiles.3 The

second bit must allow each node to reach a shared memory controller. If a single memory

controller is used, then the second bit must define a region as large as the whole chip.4

A third bit is used to define Home Partitions (HP), thus enabling LLC partitions to

differ from the shapes and sizes of PPs, enabling Home Stealing (HS). HPs may increase

or reduce the default LLC capacity defined by the partition. Also, HS can be used if

two applications share parts of their virtual address space. HPs of the two applications

can be configured so that they partially overlap, and shared blocks can be mapped in

the banks that belong to both partitions, at the boundaries.

Figure 5.7 shows an example with four partitions with different shapes. PP0 uses HS

taking some LLC banks from PP2. In addition, PP2 and PP3 share 4 LLC banks by

overlapping their HPs (HP2 and HP3). In summary, PPs set the cores on which an

application is running, while HPs define the LLC banks which can be used by those

cores. The MC must be aware which tiles belong to the PP and HP of an application

to perform the block mapping to LLC banks.

3If overlapped PPs were used, then more connectivity bits would be required.
4Notice that with several MCs, the partitioning support will need defining disjoint MC partitions.

However, we assume just one MC.
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Figure 5.7: Processor Partitions and Home Partitions example.
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Figure 5.8: PP, HP and faulty tables at the MC.

It is worth to note that the configuration of LBDR bits to create partitions, and the def-

inition of PP and HP partitions has to be taken by a higher entity layer, the hypervisor.

Based on current application demands, the hypervisor, running in the OS, configures

the chip appropriately. These dynamics are not explored in this thesis and are left for

future work.

5.2.3 Memory Controller Design

To perform home mapping, the MC must be aware of the partitioning of the system,

both for processors and home banks. Two small tables containing this information are

initiated by the OS hypervisor, one table defining PPs and another defining HPs (Figure

5.8). Each table has as many entries as the number of tiles in the system, each entry

containing one bit per possible partition ID (four in our case). For our 8×8 system, with

up to 4 partitions, each table has a size of 256 bits to store the partitioning information.

When a request is received at the MC, both tables are checked to compute the home
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bank. Regardless the sizes of PP and HP partitions, the home bank is selected among

those belonging to the HP. Blocks are mapped to the bank in the requestor’s tile until

it is full. Then, neighboring banks are checked within the HP set. Optimizations can

be derived by using different strategies on shared HP partitions.

We consider only one memory controller. However, in CMP configurations with different

MCs, partitions of the chip need to be partitioned between the different MCs. In all

cases, a general global partition needs to be defined in order to allow the full utilization

of the chip by a single application. In case of multiple MCs, the tiles belonging to a

given partition must forward LLC misses to the proper MC. This can be achieved by a

small register associated to each LLC bank.

LBDR provides fault-tolerance at NoC level. Orthogonal to LBDR’s NoC-level fault-

tolerance, pNC provides fault-tolerance at LLC-level, allowing the CMP to still work

even when some LLC banks are faulty. This is achieved by an extra bit used in the MC

for each tile. When this bit is set then the LLC bank is set as faulty and avoided when

mapping blocks. Note that any combination of faults is supported.

Fault-tolerance support can not be achieved if static mapping is used, neither with First-

Touch nor with the S-NUCA approach. Both techniques rely on the static mapping of

block addresses to LLC banks, thus in the presence of a faulty bank, all the blocks that

should be mapped to that bank can not be accessed. The flexibility of pNC allow to

avoid mapping blocks to faulty LLC banks, distributing the blocks in neighboring banks.

5.2.4 Mapping Algorithm

The mapping algorithm we implemented at the MC is a slightly modified version of the

one saw in the previous chapter, and it is described by the pseudocode of Figure 5.9. A

block is mapped to the same tile of the requestor if the local bank is not faulty and if

the HP ID of the local bank matches the PP ID. If the local bank is full, neighboring

banks are checked. An external bank can only be chosen if it is not faulty and if its

HP ID matches the requestor’s PP ID. In case there are not faults and there is only

one partition including all the tiles, the mapping algorithm defaults to the one seen in

Chapter 3.
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int function allocate(int r, address a) {

banklist n; bank b; set s; bank h;

s = get_set(a);

if((HP[r] == PP[r]) && !Faulty[r] && alloc[r,s]<num_ways)

{alloc[r, s]++; return r;}

for(int h = 1; h <= MaxHops; h++){

n = BanksReachable(r, h);

for (int i = 0; i < size(n); i++){

b = SelectBankClockWise(n, i);

if (HP[h] == PP[r]) && !Faulty[h] && alloc[b,s]<num_ways)

{alloc[b,s]++; return b;}

}

}

for(int h = 1; h <= MaxHops; h++){

n = BanksReachable(r, h);

for (int i = 0; i < size(n); i++){

b = SelectBankClockWise(n, i);

if (HP[h] == PP[r]) && !Faulty[h] && alloc[r,s] - alloc[b,s] > UtilThr)

{alloc[b,s]++; return b;}

}

}

alloc[r, s]++; return r;

}

Figure 5.9: Mapping algorithm performed by the MC in pNC.

5.3 Evaluation

To evaluate pNC in a virtualized environment, gMemNoCsim was fed with a set of

memory access traces obtained running applications from SPLASH-2 and PARSEC

benchmark suites in Graphite simulator. Altought gMemNoCsim can be embedded

in Graphite, Graphite can not run multiprogrammed workloads, thus the choice to use

memory access traces. Synchronization events between threads (barriers) have been

included in the traces.

Three mapping policies were implemented:

• S-NUCA, a baseline configuration where blocks are statically mapped to L2 banks

using the less significant bits of the block address.

• FT, an S-NUCA configuration in which the blocks are mapped to the L2 banks

using a First-Touch policy; the first time a block is requested, the memory page

containing that block is mapped to the L2 bank in the requestor’s tile; we assumed

4KB as the page size.
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Routing LBDR L1 cache size 32 kB

Flow control credits L1 tag latency 1 cycle

Flit size 8 bytes L1 data latency 2 cycles

Switch model 4-stage pipelined L2 bank size 256 kB

Switching virtual cut-through L2 tag latency 1 cycle

Buffer size: 9 flit deep L2 data latency 4 cycles

Virtual channels: 4 Cache block size 64 B

GCN hop delay 1 cycle Memory controllers 1

Table 5.1: Network parameters (pNC evaluation).

• pNC, where blocks are mapped using the basic RHM within the HP partition of

the application requesting the block.

We assume an 8×8 CMP system divided in 4×4 regions. Network and cache parameters

are shown in Table 5.1. As we use one MC, one region defined by the connectivity bits

must cover the whole chip, thus allowing all the tiles to reach the memory controller.

5.3.1 pNC Overhead

Compared to the basic CMP design with static mapping, pNC introduces an area over-

head due to the tables at the MC and to the network optimizations. The MC needs

three tables: the first two are PP and HP tables, each with 64 four-bits entries (512 bits

in total); the third table stores the utilization statistics of each LLC bank and is used by

RHM to balance the utilization of LLC banks, as described in Chapter 4. For a 16× 16

tile system with 16-way 256KB LLC banks, the minimum memory requirements for this

table is 2KB. For fault-tolerance, an additional 64-bit register is used (one bit per tile).

At network-level, switches include the sequential GN module. As we saw in the previous

chapters, this logic introduces a 3.1% area overhead at each switch. The GN also requires

8 additional wires per port per direction in our 8 × 8 system: 6 to encode the ID of the

destination node, one to encode the HIT flag and one to encode the RETRY flag.

5.3.2 Performance in Fault-Free Systems

We analyze first how the three mapping policies behave when the same application

is running in the four regions, assuming that the four regions do not share any code

or data. Figure 5.10 shows the execution time when the three mapping policies are
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Figure 5.10: Normalized execution time.

Figure 5.11: Normalized L2 misses.

used, normalized to the pNC case. First-Touch and pNC have similar performance

results, while static mapping performs much worse. When L2 cache banks are not

excessively stressed, the performance of static mapping is just slightly degraded (FFT,

LU, LUNC and CANNEAL) compared to pNC and First-Touch. However, as soon as

many frequently accessed blocks are mapped to a single bank exceeding its capacity,

performance of static mapping quickly degrades and execution time can rise up to 50-

60X (BARNES and WATER-NSQ, not shown as the scale is limited to 8).

Figure 5.11 shows the number of LLC misses for the previous applications, normalized

to the pNC case. Again, pNC and First-Touch have similar behavior while the number

of misses with static mapping is generally higher and can rise up to 700 times (e.g.

BARNES), as some LLC banks are highly demanded by the four applications (many

frequently used blocks are mapped to the same bank, causing the replacement of blocks

which are actually still being used). Also, the average miss latency (not shown) is 81%

higher than in the pNC case. LLC banks are further away from requestors.

Let us see now what happens with an heterogeneous workload. Since different applica-

tions have different needs in terms of resources, we can now enable the Home Stealing
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Figure 5.12: Home stealing configuration.

property of pNC (pNC-steal). With HS enabled, some cache banks of a region can be

used to increase the L2 cache capacity of another partition with higher cache demands.

Figure 5.12 shows the HPs we assume for next evaluation results, where the top-left

region is stealing LLC banks from the other regions.

We use the three application scenarios shown in Table 5.2. Regions are numbered from

0 to 3 starting from the upper left and descending to the lower right. The sets are built

mixing an application which has high cache capacity demand, which we map in P0, and

three applications with lower demands.

Figure 5.13 shows execution time when each set of applications is executed using static

mapping, First-Touch, pNC, and pNC-steal. The figure shows the execution time of the

application with the higher execution time (Ocean for Set 1, Ocean non-cont. for Set

2, Canneal for Set 3). This time S-NUCA shows much lower performance degradation.

The heterogeneity in applications leads to a better balance of L2 bank sets utilization

(indeed, with the third set, it achieves even better performance than the rest). FT and

pNC have similar average performance, one performing slightly better that the other for

different sets. Cache stealing, however, contributes to reduce execution time by 6% in

Set 2 and 7% in Set 3, while it has a negligible impact on Set 1.

To take a deeper look to each set, Figure 5.14 shows the execution time for each ap-

plication of Sets 1, 2 and 3 respectively. Note that the execution time in Figure 5.13

corresponds to the first set of bars in Figure 5.14 (application mapped in partition P0
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P0 P1 P2 P3

Set 1 Ocean FFT LU non-cont. Cholesky

Set 2 Ocean non-cont. LU Barnes Water-nsq

Set 3 Canneal LU Barnes Blackscholes

Table 5.2: Sets of applications executed in the CMP.

Figure 5.13: Normalized execution time and L2 misses (mixed applications).

(a) Set 1 (b) Set 2 (c) Set 3

Figure 5.14: Normalized execution time for each application of the three sets.

takes always more time to execute as it is larger). Looking at each single application,

we can again notice the performance degradation of S-NUCA, while performance of FT

and pNC are similar, with pNC performing slightly better except for CANNEAL, FFT

and LUNC. The aim of cache stealing is to expand the LLC capacity of the application

running in partition 0 without affecting the performance of the applications running on

other partitions, especially on P1 and P2, where LLC capacity is reduced by a quarter.

This is achieved both for Set 2 and Set 3, while in Set 1 the FFT mapped into P1 suffers

the reduced LLC capacity. In this case, the hypervisor chose a wrong partitioning for

the applications and a wrong HS policy.

Figure 5.13 shows also the number of L2 misses for the three sets of applications, nor-

malized to the pNC case. pNC is effective in reducing the number of L2 misses, and

Cache Stealing allows a further reduction: on average, the number of misses with static
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Figure 5.15: Normalized execution time and L2 misses (mixed applications) with
faulty LLC banks.

mapping is 58% higher than those of pNC, and 34% higher with First-Touch, while

pNC-stealing reduces the number of misses by a 17% compared to pNC.

5.3.3 Performance in Faulty Systems

Finally, we evaluate the performance of pNC when some LLC banks are faulty. We

run the sets of applications shown in Table 5.2 on a CMP system with 10% randomly-

selected faulty LLC banks. Figure 5.15 shows the execution time for the three sets of

applications, normalized to the case of a fault-free CMP. The performance degradation

ranges from a maximum of 15% (Set 1) to a minimum of 1.5% (Set 3), with an average of

7%. Figure 5.15 shows also the normalized number of misses. When faults are present,

the number of misses increases from a minimum of 2.2% (Set 3) to a maximum of 7.8%

(Set 1), with an average of 5.8%. pNC performs home mapping even with some faulty

banks, and distributes the load between banks minimizing the impact of faults. Note

that static mapping and First-Touch can not be used in a system with faulty LLC banks.

5.4 Conclusions

In this chapter we presented pNC, an hardware substrate to independently partition

cores, NoC resources and LLC banks in a virtualized CMP system. It is based on

the combination of LBDR, which is used at the network level to define the partitions,

and RHM, which is used at the LLC level to map blocks within a partition. Through

pNC, the partitioning of cores and LLC banks is decoupled: CMP resources can be
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independently partitioned to fit the requirements of an application; two LLC partitions

can overlap, thus allowing two applications to share code or data. The memory controller

is aware of the chip partitioning, and based on it performs the mapping of cache blocks to

the LLC banks. Evaluation results with traces obtained from SPLASH-2 and PARSEC

applications show that pNC performs slightly better than First-Touch in a virtualized

CMP. It must be taken into account that we used the basic RHM mechanism to evaluate

pNC, so performance would noticeably improve with block migration/replication enabled

and with Hammer protocol.

Hammer protocol would be particularly appealing in a virtualized CMP: the directory,

indeed, requires a sharing code with as many bits as tiles in the system. When the

system is partitioned, only a portion of these bits in each partition is used; for the 8x8

system considered in this chapter, each LLC entry includes a 64-bit sharing code, but

due to the chip partitioning only 16 bits are actually used in each entry (75% of the

directory is thus not used). Eliminating the area overhead and performing better than

Directory when combined with RHM, Hammer protocol appears then as a better choice

for this kind of systems.

Future work directions involve mainly the role of the MC. In this chapter, we assumed

an hypervisor to define the PPs and HPs before an application starts. As far as the PP is

concerned, that is a good assumption: the OS indeed can choose the optimal partitioning

of cores and the mapping of applications to those cores. The cache requirements however

are best monitored on-chip by the MC, as we mentioned in Chapter 4. Rather than

relying on a LLC partitioning performed by the hypervisor before the execution begins,

an application may start with an HP equal to its PP. The MC would then be in charge

of resizing the partitions at runtime, depending on the utilization of each HP. Note that

the dynamic resizing of partitions is already supported by LBDR.





Chapter 6

Heterogeneous LLC Design

Last-level caches play an important role in CMP systems since they constitute the last

opportunity to avoid expensive off-chip accesses. Current and future CMPs will be

equipped with increasingly larger LLCs, occupying a significant fraction of the total

chip area and having a large contribution on the global chip leakage energy (as an

example, the size of the LLC of the Intel Core i7 can reach up to 15MB as by today [63]).

Current LLC implementation can be optimized to reduce its area and power requirements

without affecting the overall system performance. In particular, this chapter describes

a reorganization of the LLC structure to allow the dynamic reallocation of entries at

this cache level depending on the specific necessities of every block. This contribution

is orthogonal to the previous ones and can be used with or without the RHM strategy

and the GN. In this chapter we focus only on the LLC reorganization, thus not using

the previous optimizations.

131
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Figure 6.1: Breakdown of actions performed by the LLC when an L1 request is
received.

6.1 Motivation

The LLC reorganization is motivated by the observation that for private blocks (cache

blocks accessed by a single core) the LLC contains stale data (or, more precisely, the

data portion of the cache entry is not needed, since block requests are forwarded to the

owner L1). While all the cached copies of a shared block have the same value, both

in the private and the LLC caches, in the case of a private block (the block is owned

by a single private cache) the values of the LLC and the private copy may differ (the

block could be in modified state in the private cache). Therefore, the LLC copy of a

private block is probably stale, and is not used until the corresponding private cache

performs a writeback operation on the block, when the only valid copy of the block is

moved to the LLC. This way, there are two cases in which the data portion of an LLC

entry is needed: a) the block is shared by several cores, and b) a private block has

been replaced by the owner private cache. In the rest of situations, keeping the data

portion of the LLC entries can be seen as a waste of resources. Figure 6.1 plots the

breakdown of actions performed by the LLC of the 16-core CMP assumed in this thesis

when different SPLASH-2 applications are simulated using gMemNoCsim connected to

Graphite. Almost 50% of requests on average (and more than 80% in some cases) are

forwarded to the owner L1 cache, without using the information stored in the data

portion of the LLC entry. Therefore, we can see that a large percentage of area and

power is wasted in LLC to store private blocks.
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Figure 6.2: Percentage of stale and valid blocks replaced at the LLC.

On the other hand, LLC replacements (due to limited capacity and associativity) lead

to invalidate data in private caches even if they are still accessed. Figure 6.2 shows

the percentage of LLC replacements of private blocks. As derived from the figure, a

large percentage of replacements in the LLC (more than 40% in some applications)

involve private blocks. Private data is only requested the first time a processor wants

to operate on it and then is written and read without sending any request to the LLC,

thus becoming older in the LLC set and thus becoming quickly selected by the LRU

replacement algorithm (even if it is being actively referenced by a core).

Taking those results as a reference, we can conclude that an effective organization for the

LLC should combine two types of entries: entries which include just the tag portion and

the directory information for private blocks, and regular entries for the rest of the blocks,

including the tag, the directory information and the data blocks. This reorganization

of the LLC structure allows the dynamic reallocation of blocks depending on the block

being private or shared. In particular, the tag array and the associated directory can be

redesigned with a different (higher) associativity than the L2 data array. The tag and

directory array contains information about all the cached blocks, while the data array

contains only shared and replaced private blocks. This allows for a smaller LLC with

the same performance as private blocks will be kept only at private caches. With this

approach, large savings in static power can be achieved without hurting performance.

This proposal can be combined with previous works that aim for reducing static power at

L2 caches by dynamically powering down cache lines. This is the case of [40], where LLC

entries for private blocks (once the L1 cache writes on the block) are powered down. This
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means extra power saving through a line-level power gating mechanism (similar to cache

decay for L1 caches [38]). These strategies are orthogonal to the approach described

in this chapter, and section 6.3 will provide results for the two mechanisms combined

together.

This chapter is organized as follows: in Section 6.2 we describe our proposal and its

impact on area and power overhead. In Section 6.3, we perform a detailed analysis of

performance and power savings. Then, conclusions are discussed in Section 6.4.

6.2 Dynamic L2 Cache Line Allocation

Figure 6.3 shows the FSM for an L2 block described in Chapter 2 (transient states are

omitted for the sake of clarity). At first, the block is not cached on chip (state I). Upon

a write (GetX) or a read (GetS) request, the block is fetched from main memory and

sent to the L1 requestor, which is now the owner of the block and holds a private copy

(state P). At this point, a write request from another core will be forwarded to the

owner, which will send the data to the requestor and invalidate its copy (the requestor

will become the new owner). A read request (GetS) will also be forwarded to the owner,

but in this case it will not invalidate its copy. Instead, it will provide the data to the

requestor but also keep a copy of the block with read-only permission. The block state

in the home L2 bank will switch from P to S.

If the block is in P state and the owner replaces the block (PutS or PutX), then the

only on-chip copy of the block is held by the home L2 bank, which switches to state C.

Further requests will be served using the L2 copy of the block.

Usually, there is a 1:1 relationship between the tag/directory and the data portions of

the LLC. A different design can be chosen, with fewer data entries than tag/directory

entries. If the block is private (state P in the directory), then only the tag/directory

entry is allocated, as the only valid copy will be held by the owner L1. If, on the contrary,

the block is shared or only cached in the L2 bank (state S and C in the directory), then

both the tag/directory entry and the cache line are allocated.
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Figure 6.3: LLC finite state machine (MESI protocol).

A LLC bank can be reorganized by reducing the associativity of the data entries and

keeping the number of tag/directory entries or using the saved area for more tag/di-

rectory entries in the directory structure, breaking in both cases the 1:1 relationship.

For instance, we can keep the associativity of the tag/directory array to 16 while reduc-

ing the L2 data array associativity from 16 down to 8. This means that only the first

eight ways of the tag array can store information about a block in state S or C, which

data will be saved in the corresponding way of the data array, and all the 16 ways can

store information about a private block. Note that this will constrain the area devoted

to a shared data in L2 but will not compromise private data, which is tracked by the

directory and stored in the L1 caches.

It must be noted that one could think of reducing L2 size by reducing the number of

sets, instead of the number of ways (see Figure 6.4). However, this could compromise

the cache capacity depending on the data set. Indeed, having less sets would lead to

have less entries for shared data, while by reducing the associativity, cache capacity for

shared data will not be compromised (as long as shared data does not conflict in the

same set). We propose to reduce ways as those are, expectedly, used by private blocks.
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Another direction one could take is to reduce in the same degree both the associativity

in the L2 and in the directory (see Figure 6.4). However, in that case we would incur in

high performance penalty (as will be seen later) as the associativity in the directory must

be proportional and in line with the associativity in L1 caches. Simply, each directory

set will not have enough ways to store information for all the blocks present in L1 caches.

Figure 6.5 shows an example of an L2 cache reorganized according to the scheme pro-

posed in this chapter. Only the first four ways of the tag/directory array may keep

information about shared or cached blocks, which will be saved in the same way of the

data array. The remaining four sets of the tag/directory array are devoted to private

blocks. However, private blocks can also be mapped in the first four ways of the tag/di-

rectory array. In this case, the information included in the corresponding set of the data

array would not be useful.1

Assuming an L2 cache with a 4-way data array and an 8-way tag/directory array, when

a block switches from P to S or C, its entry must be moved if it doesn’t lie in the first

four ways. This may trigger the replacement of another block if all the first four ways

1With orthogonal power saving techniques as [40] these entries can be powered down. Its impact is
later analyzed.
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Figure 6.5: Example of LLC reorganization.

are already in use, which means that the data array set is full. Thus, the automata to

manage the L2 entries needs to be slightly modified.

6.2.1 Replacement Policy

An LRU counter per way is used to implement the replacement policy. The counters

are used in the classical way: each time the L2 receives a request for a block, all the

counters with a lower value are incremented and the block counter is set to zero. When

a new block is requested and all the set entries are already in use, the entry with the

highest LRU counter value is selected. With the organization we propose, replacements

can be triggered also when a block which is already cached must be saved in the L2

cache. As shown in Figure 6.3, this happens when an owner invalidates its private copy

or a read request is received for a private block: the L2 state switches from P to C in

the first case or from P to S in the second case. In both cases, a data entry must be

allocated for the block in the L2 cache. If the first four ways are already allocated to

other blocks, the replacement policy will choose the way with the highest LRU counter

only between the first four entries (even though the entry with the highest LRU value

could be one of the remaining ones). Note that LRU counters are updated for all the

directory entries, so two entries cannot have the same LRU value.

Figure 6.6 shows an example of the policy described above. The rows represent the

evolution of an LLC set when different requests are received, with the LRU value specified
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for each entry; starting from the upper row, the LRU values are updated for all entries

when a read request is received for a block stored in a tag + data entry (GetS C) and

when a write request is received for a block stored in a tag/directory entry (GetX E).

When block G, stored in the tag/directory array, is replaced (PutX G), it must be moved

to a tag + data entry, so one entry must be replaced; the victim is block D, which has

the highest LRU value among the blocks stored in the tag + data array.

6.2.2 Dynamic Power Techniques

With the proposed L2 reorganization, truly shared data is promoted in the L2 data

array, and private data is just tracked in the directory. However, it may happen that for

a given set more than half of the entries are for private blocks, thus not all the entries in

the L2 cache will be used. In such situation, these L2 data entries are wasting energy. To

mitigate this effect, the L2 reorganization can be complemented with dynamic power-off

strategies as [40], in which L2 entries that store private blocks are powered down. This

can be achieved by using ”sleep transistors” at each cache line to eliminate the most

part of the leakage current, as proposed by Kaxiras et al. [38] for L1 caches. As in [38],

we use Powell’s gated Vdd design [29] at cache line level, inserting a transistor between

the ground and each L2 cache line to reduce the leakage current to a negligible level.

When combined, the different transitions of a block A in the L2 cache can be summarized

as follows:

• When an L1 cache requests block A, which is not cached on-chip, the L2 issues

an off-chip request, allocates a tag entry to the block (which can be any of the
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entries) and marks the block as private; if the tag entry is one of the first half, its

corresponding data entry is powered-off.

• Subsequent write requests will cause a change of the owner but the state of the

block in L2 cache will remain P.

• When the owner replaces its copy, it must be saved in the L2 cache. The same

happens if the L2 receives a read request for a private block, which will become

shared. If A is mapped in the first half of the tag ways, the corresponding data

entry must be powered-on. If, on the contrary, A is mapped in the second half, it

will trigger a potential internal swap, selecting one entry from the first half (using

the LRU algorithm). The selected entry can be in one of the following states:

– Private: this block and A are swapped, the data entry is powered on to save

the write back copy of A.

– Shared/Cached: this entry will be replaced and allocated to A.

• If a write request (in case A is in state S) or any request (in case A is in state C)

is received, the block will be again treated as a private block and the data entry

must be powered-off.

Figure 6.7 shows an example of block D evolving as described above.
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6.3 Performance Evaluation

The modifications to the basic directory-based protocol needed to implement the new

block allocation and replacement policy were implemented in gMemNoCsim. Five dif-

ferent L2 designs have been evaluated and compared using gMemNoCsim connected to

Graphite:

• L2-512-16 D-512-16. A 512KB L2 bank with 512 sets and 16 ways. The direc-

tory also has 512 sets and 16 ways (1:1 ratio). This is the baseline for comparison.

• L2-512-8 D-512-16. A 256KB L2 bank with 512 sets and 8 ways. The directory

also has 512 sets but keeps 16 ways (1:2 ratio).

• L2-512-4 D-512-16. A 128KB L2 bank with 512 sets and 4 ways. The directory

keeps the same with 512 sets and 16 ways (1:4 ratio).

• L2-512-2 D-512-16. A 64KB L2 bank with 512 sets and 2 ways. The directory

keeps the same with 512 sets and 16 ways (1:8 ratio).

In addition, we use a smaller L2 cache of 256KB as the baseline. In this case (L2-

256-16 D-256-16), 256 sets and an associativity of 16 is used for both the L2 and

the directory. Our designs on top of this baseline are L2-256-8 D-256-16 (1:2 ratio,

128KB), L2-256-4 D-256-16 (1:4 ratio, 64KB), and L2-256-2 D-256-16 (1:8 ratio,

32KB).

The system is made of 16 tiles with one processor in each tile and with a private 32KB

L1 data cache (with 256 sets and 4 ways). Each tile includes also the L2 bank and the

associated directory. All the tiles are connected through a 2D mesh topology using the

XY routing algorithm. In a first test every configuration does not incorporate any sleep

transistor technology. Later we evaluate the combination of our technique with those.

We ran various SPLASH-2 applications with these cache organizations.

Figure 6.8 shows the execution time for the different applications, normalized to the case

of the first baseline L2-512-16 D-512-16. As can be seen, some applications have no im-

pact on execution time when L2 banks are reduced. Indeed, in BARNES, CHOLESKY,

LU, LUNC, and WATERNSQ, the L2 could be reduced by a factor of 8 (L2-512-2 D-512-

16) with practically no impact on performance. On the other hand, other applications
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Figure 6.8: Normalized execution time. MESI protocol with L2 banks with 512 sets.

Figure 6.9: Normalized execution time. MESI protocol with L2 banks with 256 sets.

can be sensitive to L2 cache capacity to shared blocks. Anyway, by averaging, we can

see that a good tradeoff is reducing L2 cache by half, which on average leads to only

1.7% performance decrease. Further reductions in area will tend to 7.5% performance

degradation for an L2 reduction factor of 4 and to 15% for a reduction factor of 8.

For the case of smaller L2 banks (those with 256 sets), Figure 6.9 shows the execution

time of applications. We can see similar trends with large savings (up to a factor of 8x)

in area with no performance degradation, and others with some impact (up to 35%).

On average, a reduction of 2x in L2 size have no large impact.

We use Cacti 5.3 [58] to compute area and leakage for the different L2-directory config-

urations. In Figure 6.10 we can see how area needs compare to the different evaluated

designs. Each component is normalized to the baseline design (L2-512-16 D-512-16).

Tag array’s area is the same for the first four designs, while in L2-256-16 D-256-16 tags

take roughly half the area as the overall associativity is reduced. As far as data array is

concerned, the area needs decrease with the associativity of each design. Even though

L2-512-8 D-512-16 and L2-256-16 D-256-16 have the same data array size, the area of
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Figure 6.10: Normalized LLC area occupancy.

Figure 6.11: Normalized L2 leakage. MESI protocol.

the former is lower than the area of the later, due to its lower associativity (lower number

of comparators).

Figure 6.11 shows the leakage energy consumed by the L2 banks taking into account

the entire execution of each application, and normalized to the baseline (L2-512-16 D-

512-16). Leakage is reduced up to 80% due to the cache reorganization. This saving is

proportional to the reduction ratio performed.

Figure 6.12 shows leakage savings when our proposal is combined with [29]. We compare

the previous four cases and a baseline 256KB cache (L2-256-16 D-256-16). In both

baselines, caches have all data entries powered on during the whole execution time, while

the proposals power-on the L2 data entries only when needed, as perviously described.

The average leakage energy is reduced on average by 75% (for 1:2 ratio), 83% (for 1:4

ratio) and 89% (for 1:8 ratio). Depending on the application, we achieve up to 98% in

leakage energy savings (BARNES).
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Figure 6.12: Normalized L2 leakage. MESI with sleep transistors.

Summarizing, if we consider L2-512-8 D-512-16, on average our proposal reduces the

LLC size by more than 40% and reduces the leakage by more than 40% if considered

alone, and by 75% if combined with dynamic power saving techniques, keeping almost

unaltered the system performance in terms of execution time. Further reduction of the

data array lead to higher savings in area (up to 80% on average) and leakage (up to 89%

on average) with more noticeable performance degradation (execution time increases by

up to 15% on average).

6.3.1 Benefits when Using MOESI Protocol

Another appealing protocol which can be implemented in L1 caches is MOESI. It behaves

like the MESI protocol but when an owner (which has its block in state M or E) receives

a forwarded GETS its state becomes O (and not S like in MESI protocol). This means it

remains the owner of the block with read permission, and when the L2 receives a request,

it will still be forwarded to this L1. This is inefficient in a typical memory hierarchy

since it takes one more step to provide the data to the requestor, but can largely benefit

from our approach. Indeed, shared blocks in state O do not need to be allocated in

L2 banks, thus, being all the requests forwarded to the owner. The L2 state diagram

when a MOESI protocol is used in L1 caches is shown in Figure 6.13. A block keeps

switching between states P and O until the owner invalidates its copy, and only then an

L2 cache line must be allocated. In Figure 6.14 we compare the execution time for the

different cache configurations with L1s that use a MOESI protocol (the figure shows the

cases for 512 sets). However, for the sake of fairness, we use the MESI protocol for the



144 Chapter 6. Heterogeneous LLC Design

S

P

I

GetX / GetS

GetX

GetS

Repl

GetX

C

LastPutS GetX

ReplRepl

GetS / PutS

O

GetX

PutX

Repl

GetS / PutS

PutX

Figure 6.13: Simplified FSM for the L2 cache (MOESI protocol).

Figure 6.14: Normalized execution time. MOESI (for 1:x ratio proposals) and MESI
(for baseline).

baseline configuration (which works better than when using MOESI, due to the extra

indirection). For our proposals, however, we use the MOESI protocol.

As shown, our organization takes advantage of the O state since less blocks in state S

and C must be invalidated. The average penalty when using a data array with lower

associativity is now 0.7% (with a 1:2 ratio), 5.2% (with a 1:4 ratio) and 11.4 % (with

a 1:8 ratio), while saving 43%, 72% and 81% of area and 75%, 82% and 83% of static

energy, respectively (Figure 6.15).
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Figure 6.15: Normalized L2 leakage. MOESI with sleep transistors (for 1:x ratio
proposals) and MESI (for baseline).

6.4 Conclusions

In this chapter we presented an heterogeneous LLC design with two different types of

entries: the first type is present both in the data and in the tag/directory array, and is

used to store shared blocks and blocks which are present in the LLC but not in private

caches; the second type is only present in the tag/data array and is used to store the

information about private block, while the actual data is only stored in the owner’s

private cache. A cache block is dynamically allocated to one or the other type of entries

depending on its state. The proposed technique, aimed to reduce area and leakage of

the LLC, can be complemented with previously proposed techniques that dynamically

power on and off the cache lines; this lead to further reduce the leakage. Evaluation

results with SPLASH-2 applications show that the area and leakage of the LLC can be

almost halved without hurting the system performance; further reductions in area and

leakage are possible at the expense of reduced performance.
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Conclusions

In this thesis we present several techniques at the NoC- and cache-level to improve the

performance of a tiled CMP system. The cache hierarchy and the NoC are two tightly

coupled components of a CMP: most of NoC traffic is due to coherence messages, so the

NoC must be tailored to efficiently manage the traffic pattern generated by the caches.

Different classes of coherence messages have different requirements in terms of latency

and bandwidth; acknowledgement messages, in particular, have very low bandwidth re-

quirements but should be transmitted with a minimum latency to speed-up coherence

actions. Furthermore, many-to-one acknowledgements should be gathered to deliver a

single global acknowledgement at the destination node, rather than multiple acknowl-

edgements which probably serialize at the destination’s input buffer. Thus, a dedicated

network with low bandwidth and latency capable of gathering many-to-one messages can

improve system performance, especially if the system includes a high number of cores.

Relieving the NoC from the percentage of traffic due to the acknowledgements, with a

dedicated network capable of efficiently handling this traffic, enables the implementation

of broadcast-based techniques in many-core systems.

In systems which employ a NUCA LLC, the NoC is also used to access the LLC in

case of L1 cache miss. The NoC thus has a direct impact on the LLC access latency,

and the mapping of cache blocks to the LLC banks determines the number of hops

between the tile where the requestor L1 cache is located and the LLC bank where the

requested block is mapped to. An ideal mapping policy would map cache blocks as

close as possible to the requestor, possibly in the same tile, to reduce the hops number,

146
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exploiting at the same time the whole on-chip cache capacity to avoid the drawbacks of

private LLCs. This can be achieved by dynamically mapping cache blocks to the LLC

banks at runtime. The on-chip component which is the fittest to perform this mapping

is the memory controller: all traffic between on-chip caches and the main memory is

indeed managed by the MC, which can thus collect statistics to perform the optimal

block mapping.

Extending the role of the MC to give him the task of managing on-chip cache resources

is also important when the chip is virtualized. In a virtualized CMP, resources are

partitioned and each partition is allocated to an application, which has an exclusive

view of its pool of resources. To efficiently exploit the CMP, it should be possible to

independently partition cores, the NoC and the LLC layer.

The contributions of this thesis address the issues listed above. First, a lightweight

dedicated network has been added to the regular NoC; this network, called the Gather

Network (GN), can be used to transmit simple control messages in a few clock cycles. In

Chapter 3, we use the GN to transmit invalidation ACKs in a directory-based protocol

and coherence ACKs in a broadcast-based protocol. Thanks to the GN, the traffic

overhead of a broadcast-based protocol can be highly reduced, thus allowing broadcast-

based protocols to reach performance comparable to those of directory-based protocols,

eliminating the area overhead due to the directory. This work appears in the following

publications:

• Mario Lodde, José Flich, and Manuel E. Acacio. Heterogeneous NoC Design for

Efficient Broadcast-based Coherence Protocol Support. In Proceedings of the 2012

IEEE/ACM Sixth International Symposium on Networks-on-Chip (NOCS ’12).

IEEE Computer Society, Washington, DC, USA, 59-66. 2012.

• Mario Lodde, Toni Roca, and José Flich. Built-in fast gather control network for

efficient support of coherence protocols, Computers & Digital Techniques, IET,

vol.7, no.2. 2013.

• Mario Lodde, Toni Roca, and José Flich. Heterogeneous network design for

effective support of invalidation-based coherency protocols. In Proceedings of

the 2012 Interconnection Network Architecture: On-Chip, Multi-Chip Workshop

(INA-OCMC ’12). ACM, New York, NY, USA, 1-4. 2012.
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• Mario Lodde and José Flich. A lightweight network of ids to quickly deliver simple

control messages. In Proc. of the 2nd Intl, Workshop on On-chip memory hier-

archies and interconnects: organization, management and implementation (OMHI

’13). 2013.

In Chapter 4 Runtime Home Mapping (RHM), a dynamic mapping policy of cache

blocks to LLC banks, is proposed; the GN is used to reduce the additional traffic due

to the home bank search phase, thus providing an NoC substrate to support and speed-

up the novel mapping policy. In RHM the block mapping is performed by the memory

controller, which maps cache blocks as close as possible to the requestor, balancing at the

same time the load of LLC banks; block migration and replication are used to correct the

initial block placement and further reduce the LLC access latency. Evaluation results

show that RHM achieves lower LLC access latencies than other dynamic techniques

such as D-NUCA or First-Touch, and it achieves the same locality of private LLCs with

a better utilization of the on-chip cache capacity; this reflects in a reduced execution

time. Performance can further be improved when RHM is combined with a broadcast-

based coherence protocol, thanks to the broadcast nature of both techniques. This work

appears in the following publication:

• Mario Lodde, José Flich, and Manuel E. Acacio. Towards Efficient Dynamic LLC

Home Bank Mapping with NoC-Level Support. In Proceedings of the 19th interna-

tional conference on Parallel Processing (Euro-Par’12). Springer-Verlag, Berlin,

Heidelberg, 178-190. 2013.

An extended version is under review in:

• Mario Lodde and José Flich. Runtime Home Mapping for Effective Memory Re-

source Usage. Submitted to Microprocessors and Microsystems.

In Chapter 5, we integrate RHM with Logic-Based Distributed Routing (LBDR) to ob-

tain pNC, a hardware substrate which allows the independent and efficient partitioning

of cores, NoC resources and LLC banks in a virtualized CMP system. Existent tech-

niques only allow the partitioning of CMP resources at tile-level, while a finer grain is

actually needed to better exploit the CMP. pNC allows to decouple the cores and the
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LLC partitioning to better fit the requirements of an application. This work appears in

the following publication:

• Mario Lodde and José Flich. An NoC and cache hierarchy substrate to address

effective virtualization and fault-tolerance. In Proceedings of the 2013 IEEE/ACM

Seventh International Symposium on Networks-on-Chip (NOCS ’12). IEEE Com-

puter Society, Washington, DC, USA, 21-24. 2012.

Finally, in Chapter 6 we propose a reorganization of LLC banks to reduce LLC area and

leakage. The proposal is based on keeping the same associativity of the tag array while

reducing the associativity of the data array, thus creating two types of entries: tag-only

entries, which are used to store private blocks, and entries including both tag and data,

which are used to store shared blocks and blocks which are only present in the LLC.

Evaluation results show that with our technique it is possible to halve the LLC area and

leakage with a very low performance degradation. This work appears in the following

publication:

• Mario Lodde, José Flich, and Manuel E. Acacio. Dynamic last-level cache alloca-

tion to reduce area and power overhead in directory coherence protocols. In Pro-

ceedings of the 18th international conference on Parallel Processing (Euro-Par’12).

Springer-Verlag, Berlin, Heidelberg, 206-218. 2012.

Currently these techniques are being integrated and implemented in an FPGA board;

more details are provided in Appendix B.

As a future work, we see the following main directions:

• the GN can be used to transmit other types of simple messages; a promising

direction is to extend the GN to create an hardware infrastructure to thread syn-

chronization primitives such a barriers or locks.

• RHM, as presented in this thesis, assume a system with one memory controller;

it should be adapted to solve the issues and take advantage of the opportunities

offered by a system with more than one memory controller.
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• different, more sophisticated mapping algorithms can be implemented at the MC

in RHM.

• the role of the MC in pNC can be extended to dynamically resize the Home

Partitions at runtime depending on application’s demand.





Appendix A

Coherence Protocols

This appendix contains some of the protocols implemented in gMemNoCsim to evaluate

the proposals of this thesis. We chose to include in this appendix the basic Directory and

Hammer protocols with static mapping of cache blocks to the LLC banks, a Directory

protocol with blocks mapped using RHM (including block migration and replication) and

the Hammer protocol with blocks mapped using RHM, where the coherence broadcast

are tightly coupled with the broadcasts issued by RHM during the home search phase.

The other protocols used in this thesis are extensions or reduced versions of these four

protocols.

Protocols are described using the syntax required by gMemNoCsim. First, a device is

declared (L1/L2), followed by the list of states of its FSM. Then, for each state all the

possible transitions are listed. Each line describing a transition includes the event name,

a list of coherence actions and the final state.

A.1 Directory (MESI)

This section describes the basic Directory protocol; MESI states are assumed at the

L1 caches, and blocks are statically mapped to the L2 banks. This protocol is used as

it is in Chapter 3, Chapter 4, Chapter 5 and Chapter 6. The two modified protocols

described in Section 3.4.2 and the MOESI protocol used in Chapter 6 can be easily

derived from this protocol. D-NUCA and PRIVATE L2 protocols used in Chapter 4

have also been obtained extending this protocol: for D-NUCA, it is necessary to add the
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home bank search within a bank set and the block migration mechanism; for PRIVATE

L2, the directory must be moved to the MC. This protocol can also be used to simulate

First-Touch, just changing the home mapping policy.

DEVICE L1

LIST_STATES I,IS,IM,S,E,MS,M,SI,EI,MI,ISI,IMI

STATE I

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},I

EVENT LOAD,{ALLOCATE_MSHR,ALLOCATE_L1,SEND_GETS_TO_L2},IS

EVENT FETCH,{ALLOCATE_MSHR,ALLOCATE_L1,SEND_GETS_TO_L2},IS

EVENT STORE,{ALLOCATE_MSHR,ALLOCATE_L1,SEND_GETX_TO_L2},IM

STATE IS

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},S

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},E

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},IS

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},IS

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},ISI

EVENT RECEIVED_INV_TO_OWNER,{NONE},IMI

STATE IM

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},IM

EVENT RECEIVED_LAST_ACK_AND_DATA,{DEALLOCATE_MSHR,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},M

EVENT RECEIVED_DATA_EXCLUSIVE_AT_REQUESTOR,{COPY_DATA_TO_CACHE},IM

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},M

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},IM

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},IM

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},IM

EVENT RECEIVED_INV_TO_OWNER,{NONE},IMI

EVENT RECEIVED_WBACK_TO_L1,{NONE},IM

STATE S

EVENT WRONG_BANK,{MOVE_CACHE_BLOCK,REPEAT_REQUEST},S

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},S

EVENT LOAD,{UNBLOCK_PROCESSOR},S

EVENT FETCH,{UNBLOCK_PROCESSOR},S

EVENT STORE,{ALLOCATE_MSHR,SEND_GETX_TO_L2},IM

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT RECEIVED_INV_REPL,{DEALLOCATE_L1},I

EVENT L1_REPLACEMENT,{ALLOCATE_MSHR,SEND_PUTS_TO_L2,DEQUEUE_REQUEST_REPL_MSHR,DEALLOCATE_L1},SI

STATE E

EVENT WRONG_BANK,{MOVE_CACHE_BLOCK,REPEAT_REQUEST},E

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},E

EVENT LOAD,{UNBLOCK_PROCESSOR},E

EVENT FETCH,{UNBLOCK_PROCESSOR},E

EVENT STORE,{UNBLOCK_PROCESSOR},M

EVENT RECEIVED_FWD_GETS,{SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR,SEND_ACCEPTS_TO_L2},MS

EVENT RECEIVED_FWD_GETX,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT L1_REPLACEMENT,{ALLOCATE_MSHR,SEND_PUTX_TO_L2,DEQUEUE_REQUEST_REPL_MSHR,DEALLOCATE_L1},EI

EVENT RECEIVED_INV_TO_OWNER,{ALLOCATE_MSHR,SEND_PUTX_TO_L2,DEALLOCATE_L1},EI

STATE MS

EVENT WRONG_BANK,{MOVE_CACHE_BLOCK,REPEAT_REQUEST},MS

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},MS

EVENT LOAD,{UNBLOCK_PROCESSOR},MS

EVENT FETCH,{UNBLOCK_PROCESSOR},MS

EVENT STORE,{RECYCLE_REQUEST},MS

EVENT RECEIVED_FWD_GETS,{SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR},MS

EVENT RECEIVED_FWD_GETX,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT RECEIVED_INV_REPL,{DEALLOCATE_L1},I

EVENT RECEIVED_WBACK_TO_L1,{NONE},S

EVENT L1_REPLACEMENT,{RECYCLE_REQUEST},MS

STATE M

EVENT WRONG_BANK,{MOVE_CACHE_BLOCK,REPEAT_REQUEST},M

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},M

EVENT LOAD,{UNBLOCK_PROCESSOR},M

EVENT STORE,{UNBLOCK_PROCESSOR},M

EVENT FETCH,{UNBLOCK_PROCESSOR},M

EVENT RECEIVED_FWD_GETS,{SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR,SEND_ACCEPTS_TO_L2},MS

EVENT RECEIVED_FWD_GETX,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT L1_REPLACEMENT,{ALLOCATE_MSHR,SEND_PUTX_TO_L2,DEQUEUE_REQUEST_REPL_MSHR,DEALLOCATE_L1},MI

EVENT RECEIVED_INV_TO_OWNER,{ALLOCATE_MSHR,SEND_PUTX_TO_L2,DEALLOCATE_L1},MI
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STATE SI

EVENT RECEIVED_WBACK_TO_L1,{DEALLOCATE_MSHR},I

EVENT L1_REPLACEMENT,{RECYCLE_REQUEST},SI

EVENT RECEIVED_INV_TO_OWNER,{NONE},SI

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},SI

EVENT LOAD,{RECYCLE_REQUEST},SI

EVENT FETCH,{RECYCLE_REQUEST},SI

EVENT STORE,{RECYCLE_REQUEST},SI

STATE MI

EVENT RECEIVED_WBACK_TO_L1,{DEALLOCATE_MSHR},I

EVENT L1_REPLACEMENT,{RECYCLE_QUEUED_REQUEST},MI

EVENT RECEIVED_INV_TO_OWNER,{NONE},MI

EVENT RECEIVED_FWD_GETS,{SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR},MI

EVENT RECEIVED_FWD_GETX,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR},MI

EVENT LOAD,{RECYCLE_REQUEST},MI

EVENT FETCH,{RECYCLE_REQUEST},MI

EVENT STORE,{RECYCLE_REQUEST},MI

STATE EI

EVENT RECEIVED_WBACK_TO_L1,{DEALLOCATE_MSHR},I

EVENT L1_REPLACEMENT,{RECYCLE_REQUEST},EI

EVENT RECEIVED_INV_TO_OWNER,{NONE},EI

EVENT RECEIVED_FWD_GETS,{SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR},EI

EVENT RECEIVED_FWD_GETX,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR},EI

EVENT LOAD,{RECYCLE_REQUEST},EI

EVENT FETCH,{RECYCLE_REQUEST},EI

EVENT STORE,{RECYCLE_REQUEST},EI

STATE ISI

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,UNBLOCK_PROCESSOR,DEALLOCATE_L1},I

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,UNBLOCK_PROCESSOR,DEALLOCATE_L1},I

STATE IMI

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},IMI

EVENT RECEIVED_LAST_ACK_AND_DATA,{UNBLOCK_PROCESSOR,SEND_PUTX_TO_L2,DEQUEUE_REQUEST,DEALLOCATE_L1},MI

EVENT RECEIVED_DATA_EXCLUSIVE_AT_REQUESTOR,{COPY_DATA_TO_CACHE},IMI

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{UNBLOCK_PROCESSOR,SEND_PUTX_TO_L2,DEQUEUE_REQUEST,DEALLOCATE_L1},MI

DEVICE L2

LIST_STATES I,IP,P,PS,S,C,PI

STATE I

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},I

EVENT CANT_ALLOCATE_AND_CANT_REPLACE,{RECYCLE_REQUEST_TO_L2},I

EVENT RECEIVED_GETS,{ALLOCATE_MSHR,ALLOCATE_L2,SAVE_OWNER,SEND_GET_TO_MC},IP

EVENT RECEIVED_GETX,{ALLOCATE_MSHR,ALLOCATE_L2,SAVE_OWNER,SEND_GET_TO_MC},IP

STATE IP

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},IP

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},IP

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},IP

EVENT RECEIVED_DATA,{DEALLOCATE_MSHR,SEND_DATA_EXCLUSIVE_TO_REQUESTOR,DEQUEUE_REQUEST},P

STATE P

EVENT RECEIVED_GETX,{FWD_REQUEST_TO_OWNER,SAVE_OWNER},P

EVENT RECEIVED_GETS,{FWD_REQUEST_TO_OWNER,ADD_SHARER},PS

EVENT RECEIVED_ACCEPTS_FROM_OLD_OWNER,{NONE},P

EVENT RECEIVED_PUTX_TO_L2,{SEND_WBACK_TO_REQUESTOR},C

EVENT RECEIVED_PUTS_FROM_OWNER,{SEND_WBACK_TO_REQUESTOR},C

EVENT RECEIVED_PUTS_TO_L2,{SEND_WBACK_TO_REQUESTOR},P

EVENT RECEIVED_PUTX_FROM_OLD_OWNER,{SEND_WBACK_TO_REQUESTOR},P

EVENT L2_REPLACEMENT,{ALLOCATE_MSHR,SEND_INV_TO_OWNER,DEQUEUE_REQUEST_REPL_MSHR,DEALLOCATE_L2},PI

STATE S

EVENT RECEIVED_GETS,{ADD_SHARER,SEND_DATA_SHARED_TO_REQUESTOR},S

EVENT RECEIVED_GETX,{REMOVE_REQUESTOR_FROM_SHARERS,SAVE_OWNER,SEND_DATA_EXCLUSIVE_TO_REQUESTOR,SEND_INV_TO_SHARERS,CLEAR_SHARERS},P

EVENT RECEIVED_PUTS_TO_L2,{REMOVE_SHARER_FROM_DIRECTORY,SEND_WBACK_TO_REQUESTOR},S

EVENT RECEIVED_LAST_PUTS_TO_L2,{REMOVE_SHARER_FROM_DIRECTORY,SEND_WBACK_TO_REQUESTOR},C

EVENT L2_REPLACEMENT,{INVALIDATE_SHARERS_REPL,CONDITIONAL_SEND_DATA_TO_MC,DEQUEUE_REQUEST_REPL,DEALLOCATE_L2},I

STATE C

EVENT RECEIVED_GETX,{SAVE_OWNER,SEND_DATA_EXCLUSIVE_TO_REQUESTOR},P

EVENT RECEIVED_GETS,{SAVE_OWNER,SEND_DATA_EXCLUSIVE_TO_REQUESTOR},P

EVENT L2_REPLACEMENT,{CONDITIONAL_SEND_DATA_TO_MC,DEQUEUE_REQUEST_REPL,DEALLOCATE_L2},I

STATE PS

EVENT RECEIVED_ACCEPTS_TO_L2,{SEND_WBACK_TO_ACCEPTS_SENDER,ADD_OWNER_TO_SHARERS,DEQUEUE_REQUEST},S

EVENT RECEIVED_ACCEPTS_FROM_OLD_OWNER,{NONE},PS

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},PS
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EVENT RECEIVED_PUTX_TO_L2,{SEND_WBACK_TO_REQUESTOR,DEQUEUE_REQUEST},S

EVENT RECEIVED_PUTX_FROM_OLD_OWNER,{ENQUEUE_REQUEST},PS

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},PS

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},PS

EVENT RECEIVED_PUTS_TO_L2,{REMOVE_SHARER_FROM_DIRECTORY,SEND_WBACK_TO_REQUESTOR},PS

STATE PI

EVENT RECEIVED_PUTS_TO_L2,{SEND_WBACK_TO_REQUESTOR,DEALLOCATE_MSHR},I

EVENT RECEIVED_PUTX_TO_L2,{SEND_WBACK_TO_REQUESTOR,SEND_DATA_TO_MC,DEALLOCATE_MSHR},I

EVENT RECEIVED_GET_MSHR,{RECYCLE_REQUEST_TO_L2},PI

EVENT RECEIVED_GETS,{RECYCLE_REQUEST_TO_L2},PI

EVENT RECEIVED_GETX,{RECYCLE_REQUEST_TO_L2},PI

EVENT L2_REPLACEMENT,{REPEAT_REQUEST_REPL},PI

A.2 Hammer

This section describes the basic Hammer protocol; MESI states are assumed at L1 caches,

and blocks are statically mapped to the L2 banks. This protocol is used in Chapter 3.

DEVICE L1

LIST_STATES I,IS,IM,S,E,M,SI,EI,MI,IMI

STATE I

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},I

EVENT LOAD,{ALLOCATE_MSHR,ALLOCATE_L1,SEND_GETS_TO_L2},IS

EVENT FETCH,{ALLOCATE_MSHR,ALLOCATE_L1,SEND_GETS_TO_L2},IS

EVENT STORE,{ALLOCATE_MSHR,ALLOCATE_L1,SEND_GETX_TO_L2},IM

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},I

EVENT RECEIVED_INV_REPL,{NONE},I

EVENT RECEIVED_BCAST_REQ,{SEND_ACK_TO_REQUESTOR},I

STATE IS

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},IS

EVENT RECEIVED_LAST_ACK_AND_DATA,{DEALLOCATE_MSHR,SEND_ACK_TO_HOME,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},S

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR_WAIT_ACKS,{COPY_DATA_TO_CACHE},IS

EVENT RECEIVED_DATA_SHARED_AND_ALL_ACKS,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SEND_ACK_TO_HOME,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},S

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SEND_ACK_TO_HOME,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},E

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},IS

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},IS

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},IS

EVENT RECEIVED_INV_TO_OWNER,{NONE},IMI

EVENT RECEIVED_BCAST_REQ,{SEND_ACK_TO_REQUESTOR},IS

STATE IM

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},IM

EVENT RECEIVED_LAST_ACK_AND_DATA,{DEALLOCATE_MSHR,SEND_ACK_TO_HOME,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},M

EVENT RECEIVED_DATA_EXCLUSIVE_AT_REQUESTOR,{COPY_DATA_TO_CACHE},IM

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SEND_ACK_TO_HOME,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},M

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},IM

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},IM

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},IM

EVENT RECEIVED_INV_TO_OWNER,{NONE},IMI

EVENT RECEIVED_WBACK_TO_L1,{NONE},IM

EVENT RECEIVED_BCAST_REQ,{SEND_ACK_TO_REQUESTOR},IM

STATE S

EVENT WRONG_BANK,{MOVE_CACHE_BLOCK,REPEAT_REQUEST},S

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},S

EVENT LOAD,{UNBLOCK_PROCESSOR},S

EVENT FETCH,{UNBLOCK_PROCESSOR},S

EVENT STORE,{ALLOCATE_MSHR,SEND_GETX_TO_L2},IM

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT RECEIVED_INV_REPL,{DEALLOCATE_L1},I

EVENT L1_REPLACEMENT,{DEQUEUE_REQUEST_REPL,DEALLOCATE_L1},I

EVENT RECEIVED_BCAST_REQ,{SEND_ACK_TO_REQUESTOR,DEALLOCATE_L1},I

STATE E

EVENT WRONG_BANK,{MOVE_CACHE_BLOCK,REPEAT_REQUEST},E

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},E



156 Appendix A. Coherence Protocols

EVENT LOAD,{UNBLOCK_PROCESSOR},E

EVENT FETCH,{UNBLOCK_PROCESSOR},E

EVENT STORE,{UNBLOCK_PROCESSOR},M

EVENT RECEIVED_FWD_GETS,{SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR},S

EVENT RECEIVED_FWD_GETX,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT L1_REPLACEMENT,{ALLOCATE_MSHR,SEND_PUTX_TO_L2,DEQUEUE_REQUEST_REPL_MSHR,DEALLOCATE_L1},EI

EVENT RECEIVED_BCAST_REQ,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT RECEIVED_INV_REPL,{ALLOCATE_MSHR,SEND_PUTX_TO_L2,DEALLOCATE_L1},EI

STATE M

EVENT WRONG_BANK,{MOVE_CACHE_BLOCK,REPEAT_REQUEST},M

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},M

EVENT LOAD,{UNBLOCK_PROCESSOR},M

EVENT STORE,{UNBLOCK_PROCESSOR},M

EVENT FETCH,{UNBLOCK_PROCESSOR},M

EVENT RECEIVED_FWD_GETS,{SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR},O

EVENT RECEIVED_FWD_GETX,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT L1_REPLACEMENT,{ALLOCATE_MSHR,SEND_PUTX_TO_L2,DEQUEUE_REQUEST_REPL_MSHR,DEALLOCATE_L1},MI

EVENT RECEIVED_BCAST_REQ,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT RECEIVED_INV_REPL,{ALLOCATE_MSHR,SEND_PUTX_TO_L2,DEALLOCATE_L1},MI

STATE SI

EVENT RECEIVED_WBACK_TO_L1,{DEALLOCATE_MSHR},I

EVENT L1_REPLACEMENT,{RECYCLE_REQUEST},SI

EVENT RECEIVED_INV_TO_OWNER,{NONE},SI

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},SI

EVENT LOAD,{RECYCLE_REQUEST},SI

EVENT FETCH,{RECYCLE_REQUEST},SI

EVENT STORE,{RECYCLE_REQUEST},SI

STATE MI

EVENT RECEIVED_WBACK_TO_L1,{DEALLOCATE_MSHR},I

EVENT L1_REPLACEMENT,{RECYCLE_REQUEST},MI

EVENT RECEIVED_FWD_GETS,{SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR},MI

EVENT RECEIVED_FWD_GETX,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR},MI

EVENT LOAD,{RECYCLE_REQUEST},MI

EVENT FETCH,{RECYCLE_REQUEST},MI

EVENT STORE,{RECYCLE_REQUEST},MI

STATE EI

EVENT RECEIVED_WBACK_TO_L1,{DEALLOCATE_MSHR},I

EVENT L1_REPLACEMENT,{RECYCLE_REQUEST},EI

EVENT RECEIVED_FWD_GETS,{SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR},EI

EVENT RECEIVED_FWD_GETX,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR},EI

EVENT LOAD,{RECYCLE_REQUEST},EI

EVENT FETCH,{RECYCLE_REQUEST},EI

EVENT STORE,{RECYCLE_REQUEST},EI

STATE IMI

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},IMI

EVENT RECEIVED_LAST_ACK_AND_DATA,{UNBLOCK_PROCESSOR,SEND_PUTX_TO_L2,DEQUEUE_REQUEST,DEALLOCATE_L1},MI

EVENT RECEIVED_DATA_EXCLUSIVE_AT_REQUESTOR,{COPY_DATA_TO_CACHE},IMI

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{UNBLOCK_PROCESSOR,SEND_PUTX_TO_L2,DEQUEUE_REQUEST,DEALLOCATE_L1},MI

DEVICE L2

LIST_STATES I,IP,P,S,C,PI,BP,BS

STATE I

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},I

EVENT CANT_ALLOCATE_AND_CANT_REPLACE,{RECYCLE_REQUEST_TO_L2},I

EVENT RECEIVED_GETS,{ALLOCATE_MSHR,ALLOCATE_L2,SAVE_OWNER,SEND_GET_TO_MC},IP

EVENT RECEIVED_GETX,{ALLOCATE_MSHR,ALLOCATE_L2,SAVE_OWNER,SEND_GET_TO_MC},IP

STATE IP

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},IP

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},IP

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},IP

EVENT RECEIVED_DATA,{DEALLOCATE_MSHR,SEND_DATA_EXCLUSIVE_TO_REQUESTOR,DEQUEUE_REQUEST},BP

STATE P

EVENT RECEIVED_GETX,{BROADCAST_REQUEST},BP

EVENT RECEIVED_GETS,{BROADCAST_REQUEST},BS

EVENT RECEIVED_PUTX_TO_L2_H,{SEND_WBACK_TO_REQUESTOR},C

EVENT L2_REPLACEMENT,{ALLOCATE_MSHR,BROADCAST_INV_REPL,DEQUEUE_REQUEST_REPL_MSHR,DEALLOCATE_L2},PI

STATE S

EVENT RECEIVED_GETS,{SEND_DATA_SHARED_TO_REQUESTOR},BS

EVENT RECEIVED_GETX,{SEND_DATA_EXCLUSIVE_TO_REQUESTOR,BROADCAST_INV},BP

EVENT L2_REPLACEMENT,{BROADCAST_INV_REPL,CONDITIONAL_SEND_DATA_TO_MC,DEQUEUE_REQUEST_REPL,DEALLOCATE_L2},I
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STATE C

EVENT RECEIVED_GETX,{SEND_DATA_EXCLUSIVE_TO_REQUESTOR},BP

EVENT RECEIVED_GETS,{SEND_DATA_EXCLUSIVE_TO_REQUESTOR},BP

EVENT L2_REPLACEMENT,{CONDITIONAL_SEND_DATA_TO_MC,DEQUEUE_REQUEST_REPL,DEALLOCATE_L2},I

STATE PI

EVENT RECEIVED_PUTX_TO_L2_H,{SEND_DATA_TO_MC,SEND_WBACK_TO_REQUESTOR,DEALLOCATE_MSHR},I

EVENT RECEIVED_GET_MSHR,{RECYCLE_REQUEST_TO_L2},PI

EVENT RECEIVED_GETS,{RECYCLE_REQUEST_TO_L2},PI

EVENT RECEIVED_GETX,{RECYCLE_REQUEST_TO_L2},PI

EVENT L2_REPLACEMENT,{REPEAT_REQUEST_REPL},PI

STATE BP

EVENT RECEIVED_ACK_TO_L2,{DEQUEUE_REQUEST},P

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},BP

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},BP

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},BP

EVENT RECEIVED_PUTX_TO_L2_H,{SEND_WBACK_TO_REQUESTOR},BP

STATE BS

EVENT RECEIVED_ACK_TO_L2,{DEQUEUE_REQUEST},S

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},BS

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},BS

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},BS

EVENT RECEIVED_PUTX_TO_L2_H,{SEND_WBACK_TO_REQUESTOR},BS

A.3 Directory + RHM with Block Migration and Repli-

cation

This section describes the Directory protocol with RHM and block migration and repli-

cation. MESI states are assumed at L1 caches. This protocol has been used as it is in

Chapter 4. The other versions used in Chapter 4 and Chapter 5, one having the block

replication mechanism disabled and another one with both migration and replication

disabled, are subsets of this protocol.

DEVICE L1

LIST_STATES I,IS,IM,S,E,M,EI,MI,ISI,IMI,IMM,ISWA,IMWA,SWA,MWA,EWA,SWAM,EWAM,MWAM,IMMWA,MWAA,SWAI

STATE I

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},I

EVENT LOAD,{ALLOCATE_MSHR,ALLOCATE_L1,SEND_GETS_TO_L2_DHM},ISWA

EVENT FETCH,{ALLOCATE_MSHR,ALLOCATE_L1,SEND_GETS_TO_L2_DHM},ISWA

EVENT STORE,{ALLOCATE_MSHR,ALLOCATE_L1,SEND_GETX_TO_L2_DHM},IMWA

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},I

EVENT RECEIVED_INV_REPL,{NONE},I

STATE ISWA

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR_REPL,{COPY_DATA_TO_CACHE,SEND_DATA_TO_L2_BANK},SWAM

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR_MIGR,{COPY_DATA_TO_CACHE,SEND_DATA_TO_L2_BANK},SWAM

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR,{COPY_DATA_TO_CACHE},SWA

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS_MIGR,{COPY_DATA_TO_CACHE,SEND_DATA_TO_L2_BANK},EWAM

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{COPY_DATA_TO_CACHE},EWA

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},ISWA

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},ISWA

EVENT RECEIVED_DHM_ACK,{SET_DHM_ACK_FLAG},IS

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},ISWA

EVENT RECEIVED_INV_REPL,{NONE},ISWA

STATE IMWA

EVENT RECEIVED_DHM_ACK,{SET_DHM_ACK_FLAG},IM

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},IMWA

EVENT RECEIVED_LAST_ACK_AND_DATA,{NONE},MWA
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EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS_MIGR,{COPY_DATA_TO_CACHE,SEND_DATA_TO_L2_BANK},MWAM

EVENT RECEIVED_DATA_EXCLUSIVE_AT_REQUESTOR_MIGR,{COPY_DATA_TO_CACHE,SEND_DATA_TO_L2_BANK},IMMWA

EVENT RECEIVED_DATA_EXCLUSIVE_AT_REQUESTOR,{COPY_DATA_TO_CACHE},MWAA

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{COPY_DATA_TO_CACHE},MWA

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},IMWA

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},IMWA

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},IMWA

EVENT RECEIVED_INV_REPL,{NONE},IMWA

STATE SWA

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},SWAI

EVENT RECEIVED_DHM_ACK,{DEALLOCATE_MSHR,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},S

STATE EWA

EVENT RECEIVED_DHM_ACK,{DEALLOCATE_MSHR,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},E

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},EWA

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},EWA

STATE MWA

EVENT RECEIVED_DHM_ACK,{DEALLOCATE_MSHR,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},M

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},MWA

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},MWA

STATE SWAM

EVENT RECEIVED_DHM_ACK,{DEALLOCATE_MSHR,UNBLOCK_PROCESSOR_DHM_MIGR,DEQUEUE_REQUEST},S

STATE EWAM

EVENT RECEIVED_DHM_ACK,{DEALLOCATE_MSHR,UNBLOCK_PROCESSOR_DHM_MIGR,DEQUEUE_REQUEST},E

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},EWAM

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},EWAM

STATE MWAM

EVENT RECEIVED_DHM_ACK,{DEALLOCATE_MSHR,UNBLOCK_PROCESSOR_DHM_MIGR,DEQUEUE_REQUEST},M

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},MWAM

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},MWAM

STATE MWAA

EVENT RECEIVED_DHM_ACK,{SET_DHM_ACK_FLAG},IM

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},MWAA

EVENT RECEIVED_LAST_ACK_AND_DATA,{NONE},MWA

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},MWAA

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},MWAA

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},MWAA

EVENT RECEIVED_INV_REPL,{NONE},MWAA

STATE IMWA

EVENT RECEIVED_DHM_ACK,{SET_DHM_ACK_FLAG},IS

STATE SWAI

EVENT RECEIVED_DHM_ACK,{DEALLOCATE_MSHR,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST,DEALLOCATE_L1},I

STATE IS

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR_MIGR,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SEND_DATA_TO_L2_BANK,UNBLOCK_PROCESSOR_DHM_MIGR,DEQUEUE_REQUEST},S

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR_REPL,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SEND_DATA_TO_L2_BANK,UNBLOCK_PROCESSOR_DHM_REPL,DEQUEUE_REQUEST},S

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},S

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS_MIGR,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SEND_DATA_TO_L2_BANK,UNBLOCK_PROCESSOR_DHM_MIGR,DEQUEUE_REQUEST},E

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},E

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},IS

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},IS

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},ISI

EVENT RECEIVED_INV_REPL,{NONE},ISI

EVENT RECEIVED_INV_TO_OWNER,{NONE},IMI

STATE IM

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},IM

EVENT RECEIVED_LAST_ACK_AND_DATA,{DEALLOCATE_MSHR,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},M

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS_MIGR,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SEND_DATA_TO_L2_BANK,UNBLOCK_PROCESSOR_DHM_MIGR,DEQUEUE_REQUEST},M

EVENT RECEIVED_DATA_EXCLUSIVE_AT_REQUESTOR_MIGR,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SEND_DATA_TO_L2_BANK},IMM

EVENT RECEIVED_DATA_EXCLUSIVE_AT_REQUESTOR,{COPY_DATA_TO_CACHE},IM

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},M

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},IM

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},IM

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},IM

EVENT RECEIVED_INV_REPL,{NONE},IM

EVENT RECEIVED_INV_TO_OWNER,{NONE},IMI

EVENT RECEIVED_WBACK_TO_L1,{NONE},IM

STATE IMM

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},IMM
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EVENT RECEIVED_LAST_ACK_AND_DATA,{DEALLOCATE_MSHR,UNBLOCK_PROCESSOR_DHM_MIGR,DEQUEUE_REQUEST},M

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},IMM

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},IMM

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},IMM

EVENT RECEIVED_INV_REPL,{NONE},IMM

EVENT RECEIVED_WBACK_TO_L1,{NONE},IMM

STATE IMMWA

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},IMMWA

EVENT RECEIVED_LAST_ACK_AND_DATA,{NONE},MWAM

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},IMMWA

EVENT_RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},IMMWA

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},IMMWA

EVENT RECEIVED_INV_REPL,{NONE},IMMWA

EVENT RECEIVED_WBACK_TO_L1,{NONE},IMMWA

EVENT RECEIVED_DHM_ACK,{SET_DHM_ACK_FLAG},IMM

STATE S

EVENT WRONG_BANK,{MOVE_CACHE_BLOCK,REPEAT_REQUEST},S

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},S

EVENT LOAD,{UNBLOCK_PROCESSOR},S

EVENT FETCH,{UNBLOCK_PROCESSOR},S

EVENT STORE,{ALLOCATE_MSHR,SEND_GETX_TO_L2_DHM},IMWA

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT RECEIVED_INV_REPL,{DEALLOCATE_L1},I

EVENT L1_REPLACEMENT,{DEQUEUE_REQUEST_REPL,DEALLOCATE_L1},I

STATE E

EVENT WRONG_BANK,{MOVE_CACHE_BLOCK,REPEAT_REQUEST},E

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},E

EVENT LOAD,{UNBLOCK_PROCESSOR},E

EVENT FETCH,{UNBLOCK_PROCESSOR},E

EVENT STORE,{UNBLOCK_PROCESSOR},M

EVENT RECEIVED_FWD_GETS,{SEND_ACCEPTS_TO_L2_DHM,SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR},S

EVENT RECEIVED_FWD_GETX,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT L1_REPLACEMENT,{SEND_PUTX_TO_L2_DHM,ALLOCATE_MSHR,DEQUEUE_REQUEST_REPL_MSHR,DEALLOCATE_L1},EI

EVENT RECEIVED_INV_TO_OWNER,{SEND_PUTS_TO_L2},EI

STATE M

EVENT WRONG_BANK,{MOVE_CACHE_BLOCK,REPEAT_REQUEST},M

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},M

EVENT LOAD,{UNBLOCK_PROCESSOR},M

EVENT STORE,{UNBLOCK_PROCESSOR},M

EVENT FETCH,{UNBLOCK_PROCESSOR},M

EVENT RECEIVED_FWD_GETS,{SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR,SEND_ACCEPTS_TO_L2_DHM},S

EVENT RECEIVED_FWD_GETX,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT L1_REPLACEMENT,{SEND_PUTX_TO_L2_DHM,ALLOCATE_MSHR,DEQUEUE_REQUEST_REPL_MSHR,DEALLOCATE_L1},MI

EVENT RECEIVED_INV_TO_OWNER,{SEND_PUTX_TO_L2},MI

STATE MI

EVENT RECEIVED_WBACK_TO_L1,{DEALLOCATE_MSHR},I

EVENT L1_REPLACEMENT,{RECYCLE_QUEUED_REQUEST},MI

EVENT RECEIVED_INV_TO_OWNER,{NONE},MI

EVENT RECEIVED_FWD_GETS,{SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR},MI

EVENT RECEIVED_FWD_GETX,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR},MI

EVENT LOAD,{RECYCLE_REQUEST},MI

EVENT FETCH,{RECYCLE_REQUEST},MI

EVENT STORE,{RECYCLE_REQUEST},MI

STATE EI

EVENT RECEIVED_WBACK_TO_L1,{DEALLOCATE_MSHR},I

EVENT L1_REPLACEMENT,{RECYCLE_QUEUED_REQUEST},EI

EVENT RECEIVED_INV_TO_OWNER,{NONE},EI

EVENT RECEIVED_FWD_GETS,{SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR},EI

EVENT RECEIVED_FWD_GETX,{SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR},EI

EVENT LOAD,{RECYCLE_REQUEST},EI

EVENT FETCH,{RECYCLE_REQUEST},EI

EVENT STORE,{RECYCLE_REQUEST},EI

STATE ISI

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,UNBLOCK_PROCESSOR,DEALLOCATE_L1},I

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,UNBLOCK_PROCESSOR,DEALLOCATE_L1},I

STATE IMI

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},IMI

EVENT RECEIVED_LAST_ACK_AND_DATA,{UNBLOCK_PROCESSOR,SEND_PUTX_TO_L2_DHM,DEQUEUE_REQUEST},MI

EVENT RECEIVED_DATA_EXCLUSIVE_AT_REQUESTOR,{COPY_DATA_TO_CACHE},IMI

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{UNBLOCK_PROCESSOR,SEND_PUTX_TO_L2_DHM,DEQUEUE_REQUEST},MI

DEVICE L2
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LIST_STATES I,IP,P,PS,S,C,PI,IR,IPW,IPR,PW,IM,WM,PWM,SWM,WR,IReplica,Replica,ReplicaWM,ReplicaWE,ReplicaWME,Sr,SrP,SrP2,ReplicaX,ReplicaI,SrI

STATE I

EVENT CANT_ALLOCATE,{SET_HOME,ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},I

EVENT CANT_ALLOCATE_AND_CANT_REPLACE,{RECYCLE_REQUEST_TO_L2},I

EVENT MULTIPLE_REQUEST,{SEND_RETRY},I

EVENT RECEIVED_GETS,{ALLOCATE_MSHR,SEND_REQUEST_TO_L2_BANKS},IR

EVENT RECEIVED_GETX,{ALLOCATE_MSHR,SEND_REQUEST_TO_L2_BANKS},IR

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_ACK_TO_REQ_TILE},I

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_ACK_TO_REQ_TILE},I

EVENT RECEIVED_REPLICATION_HOME,{NONE},I

EVENT CHANGE_REPLICATION_HOME,{SEND_REPLICATION_HOME_NACK},I

EVENT CHANGE_REPLICATION_HOME_NO_REPLICAS,{SEND_REPLICATION_HOME_NACK},I

STATE IR

EVENT RECEIVED_ACK,{DECREMENT_DHM_ACK_COUNTER},IR

EVENT RECEIVED_LAST_ACK,{SEND_DHM_ACK_TO_L1_COND,SEND_GET_TO_MC_DHM},I

EVENT HOME_BANK,{ALLOCATE_L2,SEND_DHM_ACK_TO_L1,SAVE_OWNER},IPW

EVENT HOME_TILE,{ALLOCATE_L2,SEND_DHM_ACK_TO_L1,SAVE_OWNER},IP

EVENT RETRY,{SEND_REQUEST_TO_L2_BANKS},IR

EVENT RECEIVED_LAST_ACK_MIGR,{DECREMENT_DHM_ACK_COUNTER,SEND_DHM_ACK_TO_L1,ALLOCATE_L2},IM

EVENT RECEIVED_ACK_MIGR,{DECREMENT_DHM_ACK_COUNTER,ALLOCATE_L2},IM

EVENT RECEIVED_LAST_ACK_REPL,{DECREMENT_DHM_ACK_COUNTER,SEND_DHM_ACK_TO_L1,ALLOCATE_L2},IReplica

EVENT RECEIVED_ACK_REPL,{DECREMENT_DHM_ACK_COUNTER,ALLOCATE_L2},IReplica

STATE IPW

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},IP

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},IP

EVENT RECEIVED_ACK,{DECREMENT_DHM_ACK_COUNTER},IPW

EVENT RECEIVED_LAST_ACK,{SEND_DHM_ACK_TO_L1},IPR

EVENT RETRY,{NONE},IPR

EVENT RECEIVED_GETX_TO_L2_BANKS,{ENQUEUE_REQUEST},IPW

EVENT RECEIVED_GETS_TO_L2_BANKS,{ENQUEUE_REQUEST},IPW

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},IPW

EVENT RECEIVED_DATA,{COPY_DATA_TO_CACHE,SEND_DATA_EXCLUSIVE_TO_REQUESTOR},PW

STATE IPR

EVENT RECEIVED_GETX_TO_L2_BANKS,{ENQUEUE_REQUEST},IPR

EVENT RECEIVED_GETS_TO_L2_BANKS,{ENQUEUE_REQUEST},IPR

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},IPR

EVENT RECEIVED_DATA,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SEND_DATA_EXCLUSIVE_TO_REQUESTOR,DEQUEUE_REQUEST},P

STATE IP

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},IP

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},IP

EVENT RECEIVED_GETX_TO_L2_BANKS,{ENQUEUE_REQUEST},IP

EVENT RECEIVED_GETS_TO_L2_BANKS,{ENQUEUE_REQUEST},IP

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},IP

EVENT RECEIVED_DATA,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SEND_DATA_EXCLUSIVE_TO_REQUESTOR,DEQUEUE_REQUEST},P

STATE PW

EVENT RECEIVED_ACK,{DECREMENT_DHM_ACK_COUNTER},PW

EVENT RECEIVED_LAST_ACK,{DEALLOCATE_MSHR,SEND_DHM_ACK_TO_L1,DEQUEUE_REQUEST},P

EVENT RETRY,{REPEAT_TILE_REQUEST,DEQUEUE_REQUEST},P

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},PW

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},PW

EVENT RECEIVED_GETX_TO_L2_BANKS,{ENQUEUE_REQUEST},PW

EVENT RECEIVED_GETS_TO_L2_BANKS,{ENQUEUE_REQUEST},PW

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},PW

STATE P

EVENT DHM_MIGRATION_X,{SEND_ACK_TO_REQ_TILE_MIGR,FWD_REQUEST_TO_OWNER_DHM_MIGR},WM

EVENT RECEIVED_GETX,{SEND_DHM_ACK_TO_L1,UPDATE_DHM_MIGR_COUNTERS,FWD_REQUEST_TO_OWNER,SAVE_OWNER,SET_HOME},P

EVENT RECEIVED_GETS,{SEND_DHM_ACK_TO_L1,RESET_DHM_MIGR_COUNTERS,RESET_DHM_REPL_COUNTERS,FWD_REQUEST_TO_OWNER,ADD_SHARER,SET_HOME},PS

EVENT RECEIVED_GETX_TO_L2_BANKS,{UPDATE_DHM_MIGR_COUNTERS,FWD_REQUEST_TO_OWNER,SAVE_OWNER,SEND_ACK_TO_REQ_TILE_HIT,SET_HOME},P

EVENT RECEIVED_GETS_TO_L2_BANKS,{UPDATE_DHM_MIGR_COUNTERS,FWD_REQUEST_TO_OWNER,ADD_SHARER,SEND_ACK_TO_REQ_TILE_HIT,SET_HOME},PS

EVENT RECEIVED_ACCEPTS_FROM_OLD_OWNER,{NONE},P

EVENT RECEIVED_PUTX_TO_L2,{COPY_DATA_TO_CACHE,SEND_WBACK_TO_REQUESTOR},C

EVENT RECEIVED_PUTS_TO_L2,{SEND_WBACK_TO_REQUESTOR},P

EVENT RECEIVED_PUTX_FROM_OLD_OWNER,{SEND_WBACK_TO_REQUESTOR},P

EVENT L2_REPLACEMENT,{SEND_INV_TO_OWNER,ALLOCATE_MSHR,DEQUEUE_REQUEST_REPL_MSHR,DEALLOCATE_L2},PI

STATE S

EVENT DHM_REPLICATION_S,{SAVE_REPLICA,ADD_SHARER,SEND_DATA_SHARED_TO_REQUESTOR_REPL,SEND_ACK_TO_REQ_TILE_REPL},WR

EVENT RECEIVED_GETS,{SEND_DHM_ACK_TO_L1,UPDATE_DHM_REPL_COUNTERS,ADD_SHARER,SEND_DATA_SHARED_TO_REQUESTOR},S

EVENT RECEIVED_GETX,{SEND_DHM_ACK_TO_L1,RESET_DHM_REPL_COUNTERS,REMOVE_REQUESTOR_FROM_SHARERS,SAVE_OWNER,SEND_DATA_EXCLUSIVE_TO_REQUESTOR,

SEND_INV_TO_SHARERS,CLEAR_SHARERS},P

EVENT RECEIVED_GETX_TO_L2_BANKS,{RESET_DHM_REPL_COUNTERS,REMOVE_REQUESTOR_FROM_SHARERS,SAVE_OWNER,SEND_DATA_EXCLUSIVE_TO_REQUESTOR,

SEND_INV_TO_SHARERS,CLEAR_SHARERS,SEND_ACK_TO_REQ_TILE_HIT},P

EVENT RECEIVED_GETS_TO_L2_BANKS,{UPDATE_DHM_REPL_COUNTERS,ADD_SHARER,SEND_DATA_SHARED_TO_REQUESTOR,SEND_ACK_TO_REQ_TILE_HIT},S
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EVENT RECEIVED_PUTS_TO_L2,{REMOVE_SHARER_FROM_DIRECTORY,SEND_WBACK_TO_REQUESTOR},S

EVENT RECEIVED_LAST_PUTS_TO_L2,{REMOVE_SHARER_FROM_DIRECTORY,SEND_WBACK_TO_REQUESTOR},C

EVENT L2_REPLACEMENT,{INVALIDATE_SHARERS_REPL,CONDITIONAL_SEND_DATA_TO_MC,DEQUEUE_REQUEST_REPL,DEALLOCATE_L2},I

STATE C

EVENT DHM_MIGRATION_S,{SEND_ACK_TO_REQ_TILE_MIGR,SEND_DATA_EXCLUSIVE_TO_REQUESTOR_MIGR},WM

EVENT DHM_MIGRATION_X,{SEND_ACK_TO_REQ_TILE_MIGR,SEND_DATA_EXCLUSIVE_TO_REQUESTOR_MIGR},WM

EVENT RECEIVED_GETX,{SEND_DHM_ACK_TO_L1,UPDATE_DHM_MIGR_COUNTERS,SAVE_OWNER,SEND_DATA_EXCLUSIVE_TO_REQUESTOR},P

EVENT RECEIVED_GETS,{SEND_DHM_ACK_TO_L1,UPDATE_DHM_MIGR_COUNTERS,SAVE_OWNER,SEND_DATA_EXCLUSIVE_TO_REQUESTOR},P

EVENT RECEIVED_GETX_TO_L2_BANKS,{UPDATE_DHM_MIGR_COUNTERS,SAVE_OWNER,SEND_DATA_EXCLUSIVE_TO_REQUESTOR,SEND_ACK_TO_REQ_TILE_HIT},P

EVENT RECEIVED_GETS_TO_L2_BANKS,{UPDATE_DHM_MIGR_COUNTERS,SAVE_OWNER,SEND_DATA_EXCLUSIVE_TO_REQUESTOR,SEND_ACK_TO_REQ_TILE_HIT},P

EVENT L2_REPLACEMENT,{CONDITIONAL_SEND_DATA_TO_MC,DEQUEUE_REQUEST_REPL,DEALLOCATE_L2},I

STATE PS

EVENT RECEIVED_ACCEPTS_TO_L2,{COPY_DATA_TO_CACHE,ADD_OWNER_TO_SHARERS,DEQUEUE_REQUEST},S

EVENT RECEIVED_ACCEPTS_FROM_OLD_OWNER,{NONE},PS

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},PS

EVENT RECEIVED_PUTX_TO_L2,{COPY_DATA_TO_CACHE,SEND_WBACK_TO_REQUESTOR,DEQUEUE_REQUEST},S

EVENT RECEIVED_PUTX_FROM_OLD_OWNER,{SEND_WBACK_TO_REQUESTOR},PS

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},PS

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},PS

EVENT RECEIVED_GETX_TO_L2_BANKS,{ENQUEUE_REQUEST},PS

EVENT RECEIVED_GETS_TO_L2_BANKS,{ENQUEUE_REQUEST},PS

EVENT RECEIVED_PUTS_TO_L2,{REMOVE_SHARER_FROM_DIRECTORY,SEND_WBACK_TO_REQUESTOR},PS

STATE PI

EVENT RECEIVED_PUTS_TO_L2,{SEND_WBACK_TO_REQUESTOR,DEALLOCATE_MSHR},I

EVENT RECEIVED_PUTX_TO_L2,{SEND_WBACK_TO_REQUESTOR,SEND_DATA_TO_MC,DEALLOCATE_MSHR},I

EVENT RECEIVED_PUTX_TO_L2_H,{SEND_WBACK_TO_REQUESTOR,SEND_DATA_TO_MC,DEALLOCATE_MSHR},I

EVENT L2_REPLACEMENT,{REPEAT_REQUEST_REPL},PI

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},PI

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},PI

EVENT RECEIVED_GET_MSHR,{RECYCLE_REQUEST_TO_L2},PI

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_RETRY},PI

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_RETRY},PI

STATE WM

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_RETRY},WM

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_RETRY},WM

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},WM

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},WM

EVENT RECEIVED_DHM_MIGRATION_END,{DEQUEUE_REQUEST,DEALLOCATE_L2},I

EVENT RECEIVED_PUTX_TO_L2,{SEND_WBACK_TO_REQUESTOR},WM

STATE PWM

EVENT RECEIVED_ACK,{DECREMENT_DHM_ACK_COUNTER},PWM

EVENT RECEIVED_LAST_ACK,{DEALLOCATE_MSHR,DECREMENT_DHM_ACK_COUNTER,SEND_DHM_ACK_TO_L1,SEND_DHM_MIGRATION_END,DEQUEUE_REQUEST},P

EVENT RETRY,{SEND_DHM_MIGRATION_END,DEQUEUE_REQUEST},P

EVENT RECEIVED_GETX_TO_L2_BANKS,{ENQUEUE_REQUEST},PWM

EVENT RECEIVED_GETS_TO_L2_BANKS,{ENQUEUE_REQUEST},PWM

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},PWM

EVENT RECEIVED_PUTX_TO_L2,{ENQUEUE_REQUEST},PWM

STATE IM

EVENT RECEIVED_GETX,{RECYCLE_REQUEST_TO_L2},IM

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_RETRY},IM

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_RETRY},IM

EVENT RECEIVED_DATA_TO_L2_BANK_MIGR_P,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SAVE_OWNER,SEND_DHM_MIGRATION_END,DEQUEUE_REQUEST},P

EVENT RECEIVED_DATA_TO_L2_BANK_MIGR_S,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,COPY_SHARERS,SEND_DHM_MIGRATION_END,DEQUEUE_REQUEST},S

EVENT RECEIVED_DATA_MIGR_WAIT_ACKS_P,{COPY_DATA_TO_CACHE,SAVE_OWNER},PWM

EVENT RECEIVED_DATA_MIGR_WAIT_ACKS_S,{COPY_DATA_TO_CACHE,COPY_SHARERS},SWM

EVENT RECEIVED_ACK,{DECREMENT_DHM_ACK_COUNTER},IM

EVENT RECEIVED_LAST_ACK,{SEND_DHM_ACK_TO_L1,DECREMENT_DHM_ACK_COUNTER},IM

STATE IReplica

EVENT RECEIVED_GETX,{RECYCLE_REQUEST_TO_L2},IReplica

EVENT RECEIVED_GETS_AT_REPLICA,{ENQUEUE_REQUEST},IReplica

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_ACK_TO_REQ_TILE},IReplica

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_ACK_TO_REQ_TILE},IReplica

EVENT RECEIVED_DATA_TO_L2_BANK_REPLICA,{COPY_DATA_TO_CACHE,SEND_REPLICATION_ACK,DEQUEUE_REQUEST},ReplicaWE

EVENT RECEIVED_DATA_REPL_WAIT_ACKS,{COPY_DATA_TO_CACHE,SEND_REPLICATION_ACK},ReplicaWME

EVENT RECEIVED_ACK,{DECREMENT_DHM_ACK_COUNTER},IReplica

EVENT RECEIVED_LAST_ACK,{SEND_DHM_ACK_TO_L1,DECREMENT_DHM_ACK_COUNTER},IReplica

STATE ReplicaWE

EVENT RECEIVED_GETS_AT_REPLICA,{ENQUEUE_REQUEST},ReplicaWE

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},ReplicaWE

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_ACK_TO_REQ_TILE},ReplicaWE

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_ACK_TO_REQ_TILE},ReplicaWE

EVENT RECEIVED_REPLICATION_END,{DEALLOCATE_MSHR,DEQUEUE_REQUEST},Replica
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EVENT RECEIVED_INV_TO_REPLICA,{ENQUEUE_REQUEST},ReplicaWE

STATE ReplicaWME

EVENT RECEIVED_GETS_AT_REPLICA,{ENQUEUE_REQUEST},ReplicaWME

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_ACK_TO_REQ_TILE},ReplicaWME

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_ACK_TO_REQ_TILE},ReplicaWME

EVENT RECEIVED_ACK,{DECREMENT_DHM_ACK_COUNTER},ReplicaWME

EVENT RECEIVED_LAST_ACK,{SEND_DHM_ACK_TO_L1,DECREMENT_DHM_ACK_COUNTER},ReplicaWE

EVENT RECEIVED_REPLICATION_END,{DEQUEUE_REQUEST},ReplicaWM

STATE ReplicaWM

EVENT RECEIVED_GETS_AT_REPLICA,{ENQUEUE_REQUEST},ReplicaWM

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_ACK_TO_REQ_TILE},ReplicaWM

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_ACK_TO_REQ_TILE},ReplicaWM

EVENT RECEIVED_ACK,{DECREMENT_DHM_ACK_COUNTER},ReplicaWM

EVENT RECEIVED_LAST_ACK,{DEALLOCATE_MSHR,SEND_DHM_ACK_TO_L1,DECREMENT_DHM_ACK_COUNTER,DEQUEUE_REQUEST},Replica

STATE SWM

EVENT RECEIVED_ACK,{DECREMENT_DHM_ACK_COUNTER},SWM

EVENT RECEIVED_LAST_ACK,{DEALLOCATE_MSHR,SEND_DHM_ACK_TO_L1,SEND_DHM_MIGRATION_END,DEQUEUE_REQUEST},S

EVENT RETRY,{SEND_DHM_MIGRATION_END,DEQUEUE_REQUEST},S

EVENT RECEIVED_GETX_TO_L2_BANKS,{ENQUEUE_REQUEST},SWM

EVENT RECEIVED_GETS_TO_L2_BANKS,{ENQUEUE_REQUEST},SWM

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},SWM

STATE WR

EVENT RECEIVED_GETS_REPLICA,{ADD_SHARER,SEND_RETRY},WR

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_RETRY},WR

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_RETRY},WR

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},WR

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},WR

EVENT RECEIVED_REPLICATION_ACK,{SEND_REPLICATION_END,DEQUEUE_REQUEST},Sr

EVENT RECEIVED_PUTX_TO_L2,{SEND_WBACK_TO_REQUESTOR},WR

EVENT RECEIVED_REPLICA_PUTS,{REMOVE_REPLICA},WR

STATE Sr

EVENT RECEIVED_GETX,{RESET_DHM_REPL_COUNTERS,REMOVE_REQUESTOR_FROM_SHARERS,SAVE_OWNER,SEND_DATA_EXCLUSIVE_TO_REQUESTOR,SEND_INV_TO_SHARERS_REPL,

SEND_INV_TO_REPLICAS,CLEAR_SHARERS,CLEAR_REPLICAS},SrP

EVENT RECEIVED_GETS_REPLICA,{ADD_SHARER,SEND_RETRY},Sr

EVENT DHM_REPLICATION_S,{SAVE_REPLICA,ADD_SHARER,SEND_DATA_SHARED_TO_REQUESTOR_REPL,SEND_ACK_TO_REQ_TILE_REPL},WR

EVENT RECEIVED_GETS,{SEND_DHM_ACK_TO_L1,UPDATE_DHM_REPL_COUNTERS,ADD_SHARER,SEND_DATA_SHARED_TO_REQUESTOR},Sr

EVENT RECEIVED_GETX_TO_L2_BANKS,{RESET_DHM_REPL_COUNTERS,REMOVE_REQUESTOR_FROM_SHARERS,SAVE_OWNER,SEND_ACK_TO_REQ_TILE_HIT,

SEND_DATA_EXCLUSIVE_TO_REQUESTOR,SEND_INV_TO_SHARERS_REPL,SEND_INV_TO_REPLICAS,CLEAR_SHARERS,CLEAR_REPLICAS},SrP2

EVENT RECEIVED_GETS_TO_L2_BANKS,{UPDATE_DHM_REPL_COUNTERS,ADD_SHARER,SEND_DATA_SHARED_TO_REQUESTOR,SEND_ACK_TO_REQ_TILE_HIT},Sr

EVENT RECEIVED_LAST_REPLICA_PUTS,{REMOVE_REPLICA},S

EVENT RECEIVED_REPLICA_PUTS,{REMOVE_REPLICA},Sr

EVENT L2_REPLACEMENT,{CHANGE_REPLICATION_HOME,SEND_REPLICATION_HOME_TO_REPLICAS},SrI

STATE SrI

EVENT RECEIVED_REPLICA_PUTS,{NONE},SrI

EVENT RECEIVED_WBACK_TO_L2,{DEQUEUE_REQUEST_REPL,DEALLOCATE_L2},I

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_RETRY},SrI

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_RETRY},SrI

EVENT RECEIVED_REPL_HOME_NACK_NO_REPLICAS,{INVALIDATE_SHARERS_REPL,CONDITIONAL_SEND_DATA_TO_MC,DEQUEUE_REQUEST_REPL,DEALLOCATE_L2},I

EVENT RECEIVED_REPL_HOME_NACK,{CHANGE_REPLICATION_HOME,SEND_REPLICATION_HOME_TO_REPLICAS},SrI

STATE Replica

EVENT RECEIVED_GETX,{SEND_REQUEST_TO_L2_BANKS},ReplicaX

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_ACK_TO_REQ_TILE},Replica

EVENT RECEIVED_GETS_AT_REPLICA,{SEND_ACK_TO_REQ_TILE_HIT,ADD_HIT_TO_STATS,SEND_DATA_SHARED_TO_REQUESTOR},Replica

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_ACK_TO_REQ_TILE},Replica

EVENT RECEIVED_GETS,{SEND_DHM_ACK_TO_L1,SEND_DATA_SHARED_TO_REQUESTOR},Replica

EVENT RECEIVED_INV_TO_REPLICA,{SEND_INV_FROM_REPLICA_TO_SHARERS,SEND_REPL_ACK_TO_HOME,SEND_ACK_TO_REQUESTOR_NOC,DEALLOCATE_L2},I

EVENT L2_REPLACEMENT,{SEND_REPLICA_PUTS,DEQUEUE_REQUEST_REPL,DEALLOCATE_L2},I

EVENT CHANGE_REPLICATION_HOME_NO_REPLICAS,{COPY_SHARERS,SEND_REPLICATION_HOME_WBACK},S

EVENT CHANGE_REPLICATION_HOME,{COPY_SHARERS,COPY_REPLICAS,SEND_REPLICATION_HOME_WBACK},Sr

EVENT RECEIVED_REPLICATION_HOME,{SAVE_REPLICATION_HOME},Replica

STATE SrP

EVENT RECEIVED_REPL_ACK,{DECREMENT_REPL_ACK_COUNTER},SrP

EVENT RECEIVED_LAST_REPL_ACK,{SEND_DHM_ACK_TO_L1,DEQUEUE_REQUEST},P

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},SrP

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},SrP

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_RETRY},SrP

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_RETRY},SrP

STATE SrP2

EVENT RECEIVED_REPL_ACK,{DECREMENT_REPL_ACK_COUNTER},SrP2

EVENT RECEIVED_LAST_REPL_ACK,{DEQUEUE_REQUEST},P

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},SrP2



Appendix A. Coherence Protocols 163

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},SrP2

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_RETRY},SrP2

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_RETRY},SrP2

STATE ReplicaX

EVENT RECEIVED_INV_TO_REPLICA,{SEND_INV_FROM_REPLICA_TO_SHARERS,SEND_REPL_ACK_TO_HOME,SEND_ACK_TO_REQUESTOR_NOC,DEALLOCATE_L2},I

EVENT RECEIVED_ACK,{DECREMENT_DHM_ACK_COUNTER},ReplicaX

EVENT RECEIVED_LAST_ACK,{SEND_DHM_ACK_TO_L1,DECREMENT_DHM_ACK_COUNTER},ReplicaX

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_RETRY},ReplicaX

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_RETRY},ReplicaX

A.4 Hammer + RHM

This section describes Hammer protocol with RHM. MESI states are assumed at L1

caches. This protocol is used in Chapter 4.

DEVICE L1

LIST_STATES I,IS,IM,S,E,M,EI,MI,ISI,IMI,ISWA,IMWA,SWA,MWA,EWA,MWAA,SWAI

STATE I

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},I

EVENT LOAD,{ALLOCATE_MSHR,ALLOCATE_L1,SEND_GETS_TO_L2_DHM},ISWA

EVENT FETCH,{ALLOCATE_MSHR,ALLOCATE_L1,SEND_GETS_TO_L2_DHM},ISWA

EVENT STORE,{ALLOCATE_MSHR,ALLOCATE_L1,SEND_GETX_TO_L2_DHM},IMWA

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},I

EVENT RECEIVED_INV_REPL,{NONE},I

EVENT RECEIVED_BCAST_REQ,{SEND_ACK_TO_REQUESTOR},I

STATE ISWA

EVENT RECEIVED_LAST_ACK_AND_DATA,{DECREMENT_ACK_COUNTER},SWA

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},ISWA

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR_WAIT_ACKS,{COPY_DATA_TO_CACHE},ISWA

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR,{COPY_DATA_TO_CACHE},SWA

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{COPY_DATA_TO_CACHE},EWA

EVENT RECEIVED_DHM_ACK,{SET_DHM_ACK_FLAG},IS

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},ISWA

EVENT RECEIVED_BCAST_REQ,{SEND_ACK_TO_REQUESTOR},ISWA

STATE IMWA

EVENT RECEIVED_DHM_ACK,{SET_DHM_ACK_FLAG},IM

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},IMWA

EVENT RECEIVED_LAST_ACK_AND_DATA,{NONE},MWA

EVENT RECEIVED_DATA_EXCLUSIVE_AT_REQUESTOR,{COPY_DATA_TO_CACHE},MWAA

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{COPY_DATA_TO_CACHE},MWA

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},IMWA

EVENT RECEIVED_INV_REPL,{NONE},IMWA

EVENT RECEIVED_BCAST_REQ,{SEND_ACK_TO_REQUESTOR},IMWA

STATE SWA

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},SWAI

EVENT RECEIVED_DHM_ACK,{DEALLOCATE_MSHR,UNBLOCK_PROCESSOR,SEND_ACK_TO_HOME,DEQUEUE_REQUEST},S

STATE EWA

EVENT RECEIVED_DHM_ACK,{DEALLOCATE_MSHR,UNBLOCK_PROCESSOR,SEND_ACK_TO_HOME,DEQUEUE_REQUEST},E

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},EWA

EVENT RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},EWA

STATE MWA

EVENT RECEIVED_DHM_ACK,{DEALLOCATE_MSHR,UNBLOCK_PROCESSOR,SEND_ACK_TO_HOME,DEQUEUE_REQUEST},M

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},MWA

EVENT RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},MWA

STATE MWAA

EVENT RECEIVED_DHM_ACK,{SET_DHM_ACK_FLAG},IM

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},MWAA

EVENT RECEIVED_LAST_ACK_AND_DATA,{NONE},MWA

EVENT RECEIVED_FWD_GETS,{ENQUEUE_REQUEST},MWAA

EVENT RECEIVED_FWD_GETX,{ENQUEUE_REQUEST},MWAA

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},MWAA

EVENT RECEIVED_INV_REPL,{NONE},MWAA

STATE SWAI
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EVENT RECEIVED_DHM_ACK,{DEALLOCATE_MSHR,UNBLOCK_PROCESSOR,SEND_ACK_TO_HOME,DEQUEUE_REQUEST,DEALLOCATE_L1},I

STATE IS

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},IS

EVENT RECEIVED_LAST_ACK_AND_DATA,{DEALLOCATE_MSHR,SEND_ACK_TO_HOME,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},S

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR_WAIT_ACKS,{COPY_DATA_TO_CACHE},IS

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SEND_ACK_TO_HOME,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},S

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{COPY_DATA_TO_CACHE,SEND_ACK_TO_HOME,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},E

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},IS

EVENT RECEIVED_INV_REPL,{NONE},ISI

EVENT RECEIVED_INV_TO_OWNER,{NONE},IMI

EVENT RECEIVED_BCAST_REQ,{SEND_ACK_TO_REQUESTOR},IS

STATE IM

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},IM

EVENT RECEIVED_LAST_ACK_AND_DATA,{DEALLOCATE_MSHR,SEND_ACK_TO_HOME,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},M

EVENT RECEIVED_DATA_EXCLUSIVE_AT_REQUESTOR,{COPY_DATA_TO_CACHE},IM

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SEND_ACK_TO_HOME,UNBLOCK_PROCESSOR,DEQUEUE_REQUEST},M

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR},IM

EVENT RECEIVED_INV_REPL,{NONE},IM

EVENT RECEIVED_INV_TO_OWNER,{NONE},IMI

EVENT RECEIVED_WBACK_TO_L1,{NONE},IM

EVENT RECEIVED_BCAST_REQ,{SEND_ACK_TO_REQUESTOR},IM

STATE S

EVENT WRONG_BANK,{MOVE_CACHE_BLOCK,REPEAT_REQUEST},S

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},S

EVENT LOAD,{UNBLOCK_PROCESSOR},S

EVENT FETCH,{UNBLOCK_PROCESSOR},S

EVENT STORE,{ALLOCATE_MSHR,SEND_GETX_TO_L2_DHM},IMWA

EVENT RECEIVED_INV_TO_L1,{SEND_ACK_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT RECEIVED_INV_REPL,{DEALLOCATE_L1},I

EVENT L1_REPLACEMENT,{DEQUEUE_REQUEST_REPL,DEALLOCATE_L1},I

EVENT RECEIVED_BCAST_REQ,{SEND_ACK_TO_REQUESTOR,DEALLOCATE_L1},I

STATE E

EVENT WRONG_BANK,{MOVE_CACHE_BLOCK,REPEAT_REQUEST},E

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},E

EVENT LOAD,{UNBLOCK_PROCESSOR},E

EVENT FETCH,{UNBLOCK_PROCESSOR},E

EVENT STORE,{UNBLOCK_PROCESSOR},M

EVENT RECEIVED_FWD_GETS,{SEND_ACK_TO_REQUESTOR,SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR},S

EVENT RECEIVED_FWD_GETX,{SEND_ACK_TO_REQUESTOR,SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT L1_REPLACEMENT,{ALLOCATE_MSHR,SEND_PUTX_TO_L2,DEQUEUE_REQUEST_REPL_MSHR,DEALLOCATE_L1},EI

EVENT RECEIVED_BCAST_REQ,{SEND_ACK_TO_REQUESTOR,SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT RECEIVED_INV_REPL,{ALLOCATE_MSHR,SEND_PUTS_TO_L2,DEALLOCATE_L1},EI

STATE M

EVENT WRONG_BANK,{MOVE_CACHE_BLOCK,REPEAT_REQUEST},M

EVENT CANT_ALLOCATE,{ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},M

EVENT LOAD,{UNBLOCK_PROCESSOR},M

EVENT STORE,{UNBLOCK_PROCESSOR},M

EVENT FETCH,{UNBLOCK_PROCESSOR},M

EVENT RECEIVED_FWD_GETS,{SEND_ACK_TO_REQUESTOR,SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR},S

EVENT RECEIVED_FWD_GETX,{SEND_ACK_TO_REQUESTOR,SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT L1_REPLACEMENT,{SEND_PUTX_TO_L2_DHM,ALLOCATE_MSHR,DEQUEUE_REQUEST_REPL_MSHR,DEALLOCATE_L1},MI

EVENT RECEIVED_BCAST_REQ,{SEND_ACK_TO_REQUESTOR,SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR,DEALLOCATE_L1},I

EVENT RECEIVED_INV_REPL,{SEND_PUTX_TO_L2,ALLOCATE_MSHR,DEALLOCATE_L1},MI

STATE MI

EVENT RECEIVED_WBACK_TO_L1,{DEALLOCATE_MSHR},I

EVENT L1_REPLACEMENT,{RECYCLE_REQUEST},SI

EVENT RECEIVED_FWD_GETS,{SEND_ACK_TO_REQUESTOR,SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR},MI

EVENT RECEIVED_FWD_GETX,{SEND_ACK_TO_REQUESTOR,SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR},MI

EVENT LOAD,{RECYCLE_REQUEST},MI

EVENT FETCH,{RECYCLE_REQUEST},MI

EVENT STORE,{RECYCLE_REQUEST},MI

EVENT RECEIVED_INV_REPL,{NONE},MI

STATE EI

EVENT RECEIVED_WBACK_TO_L1,{DEALLOCATE_MSHR},I

EVENT L1_REPLACEMENT,{RECYCLE_QUEUED_REQUEST},EI

EVENT RECEIVED_FWD_GETS,{SEND_ACK_TO_REQUESTOR,SEND_DATA_SHARED_FROM_OWNER_TO_REQUESTOR},EI

EVENT RECEIVED_FWD_GETX,{SEND_ACK_TO_REQUESTOR,SEND_DATA_EXCLUSIVE_FROM_OWNER_TO_REQUESTOR},EI

EVENT LOAD,{RECYCLE_REQUEST},EI

EVENT FETCH,{RECYCLE_REQUEST},EI

EVENT STORE,{RECYCLE_REQUEST},EI

EVENT RECEIVED_INV_REPL,{NONE},EI

STATE ISI



Appendix A. Coherence Protocols 165

EVENT RECEIVED_DATA_SHARED_AT_REQUESTOR,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,UNBLOCK_PROCESSOR,SEND_ACK_TO_HOME,DEALLOCATE_L1},I

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,UNBLOCK_PROCESSOR,SEND_ACK_TO_HOME,DEALLOCATE_L1},I

STATE IMI

EVENT RECEIVED_ACK,{DECREMENT_ACK_COUNTER},IMI

EVENT RECEIVED_LAST_ACK_AND_DATA,{UNBLOCK_PROCESSOR,SEND_PUTX_TO_L2_DHM,DEQUEUE_REQUEST},MI

EVENT RECEIVED_DATA_EXCLUSIVE_AT_REQUESTOR,{COPY_DATA_TO_CACHE},IMI

EVENT RECEIVED_DATA_EXCLUSIVE_AND_ALL_ACKS,{UNBLOCK_PROCESSOR,SEND_PUTX_TO_L2_DHM,DEQUEUE_REQUEST},MI

DEVICE L2

LIST_STATES I,IP,P,PS,S,C,PI,IR,IPW,IPR,PW,BP,BS

STATE I

EVENT CANT_ALLOCATE,{SET_HOME,ENQUEUE_REQUEST_REPL,TRIGGER_REPLACEMENT},I

EVENT CANT_ALLOCATE_AND_CANT_REPLACE,{RECYCLE_REQUEST_TO_L2},I

EVENT MULTIPLE_REQUEST,{SEND_RETRY},I

EVENT RECEIVED_GETS,{ALLOCATE_MSHR,SEND_REQUEST_TO_L2_BANKS},IR

EVENT RECEIVED_GETX,{ALLOCATE_MSHR,SEND_REQUEST_TO_L2_BANKS},IR

EVENT RECEIVED_GETS_TO_L2_BANKS,{DECREMENT_DHM_ACK_COUNTER,SEND_ACK_TO_REQ_TILE},I

EVENT RECEIVED_GETX_TO_L2_BANKS,{DECREMENT_DHM_ACK_COUNTER,SEND_ACK_TO_REQ_TILE},I

STATE IR

EVENT RECEIVED_ACK,{DECREMENT_DHM_ACK_COUNTER},IR

EVENT RECEIVED_LAST_ACK,{SEND_DHM_ACK_TO_L1_COND,SEND_GET_TO_MC_DHM},I

EVENT HOME_BANK,{ALLOCATE_L2,SEND_DHM_ACK_TO_L1,SAVE_OWNER},IPW

EVENT HOME_TILE,{ALLOCATE_L2,SEND_DHM_ACK_TO_L1,SAVE_OWNER},IP

EVENT RETRY,{SEND_REQUEST_TO_L2_BANKS},IR

STATE IPW

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},IP

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},IP

EVENT RECEIVED_ACK,{DECREMENT_DHM_ACK_COUNTER},IPW

EVENT RECEIVED_LAST_ACK,{SEND_DHM_ACK_TO_L1},IPR

EVENT RETRY,{NONE},IPR

EVENT RECEIVED_GETX_TO_L2_BANKS,{ENQUEUE_REQUEST},IPW

EVENT RECEIVED_GETS_TO_L2_BANKS,{ENQUEUE_REQUEST},IPW

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},IPW

EVENT RECEIVED_DATA,{SET_HOME,UPDATE_L2,SEND_DATA_EXCLUSIVE_TO_REQUESTOR},PW

STATE IPR

EVENT RECEIVED_GETX_TO_L2_BANKS,{ENQUEUE_REQUEST},IPR

EVENT RECEIVED_GETS_TO_L2_BANKS,{ENQUEUE_REQUEST},IPR

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},IPR

EVENT RECEIVED_DATA,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SEND_DATA_EXCLUSIVE_TO_REQUESTOR},BP

STATE IP

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},IP

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},IP

EVENT RECEIVED_GETX_TO_L2_BANKS,{ENQUEUE_REQUEST},IP

EVENT RECEIVED_GETS_TO_L2_BANKS,{ENQUEUE_REQUEST},IP

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},IP

EVENT RECEIVED_DATA,{DEALLOCATE_MSHR,COPY_DATA_TO_CACHE,SEND_DATA_EXCLUSIVE_TO_REQUESTOR,DEQUEUE_REQUEST},BP

STATE PW

EVENT RECEIVED_ACK,{DECREMENT_DHM_ACK_COUNTER},PW

EVENT RECEIVED_LAST_ACK,{DEALLOCATE_MSHR,SEND_DHM_ACK_TO_L1,},BP

EVENT RETRY,{REPEAT_TILE_REQUEST},BP

EVENT RECEIVED_GETX_TO_L2_BANKS,{ENQUEUE_REQUEST},PW

EVENT RECEIVED_GETS_TO_L2_BANKS,{ENQUEUE_REQUEST},PW

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},PW

STATE P

EVENT RECEIVED_GETX,{SEND_DHM_ACK_TO_L1,ADD_MISS_TO_STATS,BROADCAST_REQUEST},BP

EVENT RECEIVED_GETS,{SEND_DHM_ACK_TO_L1,ADD_MISS_TO_STATS,BROADCAST_REQUEST},BS

EVENT RECEIVED_GETX_TO_L2_BANKS,{BROADCAST_REQUEST,DECREMENT_DHM_ACK_COUNTER,SEND_ACK_TO_REQ_TILE_HIT},BP

EVENT RECEIVED_GETS_TO_L2_BANKS,{BROADCAST_REQUEST,DECREMENT_DHM_ACK_COUNTER,SEND_ACK_TO_REQ_TILE_HIT},BS

EVENT RECEIVED_PUTX_TO_L2_H,{COPY_DATA_TO_CACHE,SEND_WBACK_TO_REQUESTOR},C

EVENT L2_REPLACEMENT,{ALLOCATE_MSHR,COPY_DATA_TO_CACHE,BROADCAST_INV_REPL,DEQUEUE_REQUEST_REPL,DEALLOCATE_L2},PI

STATE S

EVENT RECEIVED_GETS,{SEND_DHM_ACK_TO_L1,SEND_DATA_SHARED_TO_REQUESTOR},BS

EVENT RECEIVED_GETX,{SEND_DHM_ACK_TO_L1,SEND_DATA_EXCLUSIVE_TO_REQUESTOR,BROADCAST_INV},BP

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_DATA_EXCLUSIVE_TO_REQUESTOR,BROADCAST_INV,DECREMENT_DHM_ACK_COUNTER,SEND_ACK_TO_REQ_TILE_HIT},BP

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_DATA_SHARED_TO_REQUESTOR,DECREMENT_DHM_ACK_COUNTER,SEND_ACK_TO_REQ_TILE_HIT},BS

EVENT L2_REPLACEMENT,{BROADCAST_INV_REPL,CONDITIONAL_SEND_DATA_TO_MC,DEQUEUE_REQUEST_REPL,DEALLOCATE_L2},I

STATE C
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EVENT RECEIVED_GETX,{SEND_DHM_ACK_TO_L1,SEND_DATA_EXCLUSIVE_TO_REQUESTOR},BP

EVENT RECEIVED_GETS,{SEND_DHM_ACK_TO_L1,SEND_DATA_EXCLUSIVE_TO_REQUESTOR},BP

EVENT RECEIVED_GETX_TO_L2_BANKS,{SEND_DATA_EXCLUSIVE_TO_REQUESTOR,DECREMENT_DHM_ACK_COUNTER,SEND_ACK_TO_REQ_TILE_HIT},BP

EVENT RECEIVED_GETS_TO_L2_BANKS,{SEND_DATA_EXCLUSIVE_TO_REQUESTOR,DECREMENT_DHM_ACK_COUNTER,SEND_ACK_TO_REQ_TILE_HIT},BP

EVENT L2_REPLACEMENT,{CONDITIONAL_SEND_DATA_TO_MC,DEQUEUE_REQUEST_REPL,DEALLOCATE_L2},I

STATE PI

EVENT RECEIVED_PUTX_TO_L2_H,{DEALLOCATE_MSHR,SEND_DATA_TO_MC,SEND_WBACK_TO_REQUESTOR},I

EVENT L2_REPLACEMENT,{REPEAT_REQUEST_REPL},PI

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},PI

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},PI

STATE BP

EVENT RECEIVED_ACK_TO_L2,{DEQUEUE_REQUEST},P

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},BP

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},BP

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},BP

EVENT RECEIVED_PUTX_TO_L2_H,{SEND_WBACK_TO_REQUESTOR},BP

EVENT RECEIVED_GETS_TO_L2_BANKS,{RECYCLE_REQUEST_TO_L2_DHM},BP

EVENT RECEIVED_GETX_TO_L2_BANKS,{RECYCLE_REQUEST_TO_L2_DHM},BP

STATE BS

EVENT RECEIVED_ACK_TO_L2,{DEQUEUE_REQUEST},S

EVENT L2_REPLACEMENT,{RECYCLE_REQUEST},BS

EVENT RECEIVED_GETS,{ENQUEUE_REQUEST},BS

EVENT RECEIVED_GETX,{ENQUEUE_REQUEST},BS

EVENT RECEIVED_PUTX_TO_L2_H,{SEND_WBACK_TO_REQUESTOR},BS

EVENT RECEIVED_GETS_TO_L2_BANKS,{RECYCLE_REQUEST_TO_L2_DHM},BS

EVENT RECEIVED_GETX_TO_L2_BANKS,{RECYCLE_REQUEST_TO_L2_DHM},BS



Appendix B

Implementation of the Target

CMP in an FPGA Board

A CMP system including the proposals presented in this thesis is being implemented in

an FPGA board, to demonstrate the feasibility of the proposals and to evaluate their

overhead and performance using a real system in addition to simulation tools.

Figure B.1: Target system.

Figure B.1 shows the target system: the goal is to implement a 4×4 CMP, with the tiles

organized in a 2D mesh. Each tile has the structure assumed throughout this thesis,

with one core, one level of private cache (partitioned in instruction and data cache), a

bank of shared L2 cache and three switches building three networks (as opposed to one

network with virtual channels used in the simulation tool). A single memory controller

is used, connected to a corner of the CMP.
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Figure B.2: Tiled CMP overview.

A top-down approach was followed during the implementation, defining first the general

modules (Figure B.2 shows the global system as specified in the XilinX ISE) and then

detailing each module.

Figure B.3 takes a closer look to a single tile. The system has several parameters that can

be configured through tile registers located in the TILEREG module; these registers are

used, for instance, to store the LBDR configuration bits, to enable/disable the Gather

Network and Runtime Home Mapping and to define the system partitioning in case

virtualization is used. The MIPSCORE module implements a MIPS-based processor,

its private instruction cache and the logic to access the data cache hierarchy through

four access types: load, store, load linked and store conditional. The latter two are used

to implement synchronization primitives.

The private L1 cache and the shared L2 cache bank have a similar structure (Figure

B.4 shows the structure of an L1 cache module): incoming requests received from the

network interface or, just for L1 caches, from the core, are stored in input buffers; an

additional buffer is used to enqueue replacement requests. One of the buffered requests
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Figure B.3: Structure of a tile.
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QUEUE

Figure B.4: Structure of a cache module.

is selected with a round-robin priority by the SELECTOR logic and propagated to the

CACHE and MSHR modules. The CACHE module includes the tag and data arrays

and, in the L2 bank, the directory. The MSHR module provides a limited number of

entries with the same structure of a cache line, used to store information about the cache

line during transient states. The output of these two modules is filtered by a multiplexer

(if a valid entry is found in the MSHR, that information must be used rather than the

one stored in the CACHE) and sent to the cache controller (CACHE CC). This module

implements the cache coherence protocol: each time the SELECTOR fetches a new

request and the state of the requested block is provided by the CACHE and MSHR

modules, it is in charge to manage the signaling to perform one or more of the following

tasks:

• compose messages to be sent through the NoC. For each message, block address,
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Figure B.5: Caches/NI interface.

message size, sender, destination and type are mandatory; additional control fields

are used to manage the hardware support to broadcast messages and the Gather

Network signaling. To optimize the case of multicast messages (e.g. invalidation

messages), destination nodes are specified using a vector of 16 bits, which are set if

the message is sent to the corresponding tile, and a destination type (L1/L2/MC).

The wiring which connects a cache module and the network interface (Figure

B.5)allows the cache controller to send two messages at a time, which is almost

always sufficient for the cache coherence protocols which have been implemented.

The only exceptions are a few state transitions in RHM, in which three messages

must be sent at a time; in this case, two messages are sent first, and then the cache

controller freezes until the NI buffer is free; then, the third message is sent and a

new request can be fetched by the SELECTOR module.

• allocate or deallocate an entry in the CACHE/MSHR.

• change the block state, set the dirty bit int the CACHE/MSHR tags, update the

sharing code in the L2 CACHE tags, update the ACK counter in the MSHR.

• in case a load/store operation ha been completed, notify the core.

• in case a replacement must be triggered, enqueue a replacement request in the

input buffer.
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Figure B.6: Breakdown of FPGA resources required by a tile.

• notify the SELECTOR that a new request can be fetched from the buffers.

To conclude the description of an L1/L2, the BLOCKOUT/WORDOUT module pro-

vides the data block which has to be sent to the NI or the data word which has to be sent

to the processor, selecting from three sources (incoming message from the NI, cache line,

MSHR line) depending on what’s established by the cache controller. A directory-based

protocol is used to keep coherence, with MESI states at L1 caches. Blocks are mapped

to L2 banks using static mapping or RHM depending on the value of a configuration

register.

The remaining modules of Figure B.2 implement the network interface, the switches and

the Gather Network. The network interface (NI module) is directly connected to the

core, to the tile registers, to the L1 data cache, to the L2 cache bank and, optionally,

to the memory controller. The core and the memory controller can send one message

at a time (the correspondent buffer at the NI module has one slot), while, as described

above, L1 data caches and L2 banks can send two. Buffered messages are transmitted

through different networks or through the Gather Network depending on their type.

Three switches are included at each tile, one for each network. LBDR configuration

bits, stored in the tile registers, encode the routing algorithm (SR [64]).

The Gather Network module uses IDs of four bits and six flags per ID; at the moment,

two of this flags are used to encode the HIT and RETRY signals needed by RHM and

the remaining are left for future use.

Currently, the tile design is almost complete and an extensive test phase of the system

components and the cache coherence protocol is ongoing. Also, each module is being

optimized to reduce its resource occupancy. Figure B.6 shows the resource requirements

of the top modules used to build a tile. As can be seen, more than 50% of the registers

and more than 25% of the LUTs are used to implement the NI. Other two modules

which require many resources are the L1 data cache and the L2 bank, which together

use more than 25% of the registers, more than 33% of the LUTs and 90% of the BRAM;
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Figure B.7: Breakdown of FPGA resources required by L1 data cache.

Figure B.8: Breakdown of FPGA resources required by an L2 bank.

Device regs LUTs BRAM

CORE 0.13% 0.55% 0.87%

L1D 0.71% 2.51% 3.88%

L2 0.44% 1.49% 3.98%

NI 2.18% 2.77% 0%

SWITCH 0.07% 0.70% 0%

RT 0.05% 0.16% 0%

GN 0.00% 0.29% 0%

TILE 4.37% 9.39% 8.64%

Table B.1: FPGA resource occupancy of a single tile.

the remaining 10% of the BRAM is used for the L1 instruction cache within the CORE

module.

Figures B.7 and B.8 shows the breakdown of the resources of an L1 and L2 cache

respectively. In both cases we can notice that a considerable percentage of registers and

LUTs are used to implement the MSHR; this module has not been optimized yet, and

its entries are not mapped to the BRAM currently, so a great number of registers is used

to implement MSHR entries (notice that the percentage is much higher in the L2 bank,

where the MSHR has an higher number of entries).

Implementation results (Table B.1) show that a single tile uses 4.37% of the total FPGA

registers, 8.64% of total BRAM and 9.39% of total LUTs (the resource requirements
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of the whole tile is not equal to the sum of single components due to optimizations

performed by the design tool when synthesizing the design); current design allows thus

to implement a CMP system with 10 tiles at most. Current work aims to reduce each

tile’s requirements and allow 16 tiles to fit in the FPGA board.
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[39] Jaume Abella, Antonio González, Xavier Vera, and Michael F. P. O’Boyle. Iatac:

a smart predictor to turn-off l2 cache lines. ACM Trans. Archit. Code Optim.,

2(1):55–77, March 2005. ISSN 1544-3566. doi: 10.1145/1061267.1061271. URL

http://doi.acm.org/10.1145/1061267.1061271.

[40] L. Li, Ismail Kadayif, Yuh-Fang Tsai, Narayanan Vijaykrishnan, Mahmut T. Kan-

demir, Mary Jane Irwin, and Anand Sivasubramaniam. Leakage energy manage-

ment in cache hierarchies. In Proceedings of the 2002 International Conference

on Parallel Architectures and Compilation Techniques, PACT ’02, pages 131–140,

Washington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1620-3. URL

http://dl.acm.org/citation.cfm?id=645989.674306.

[41] Jose Flich and Davide Bertozzi. Designing Network On-Chip Architectures in the

Nanoscale Era. Chapman & Hall/CRC, 2010. ISBN 1439837104, 9781439837108.

[42] William Dally and Brian Towles. Principles and Practices of Interconnection Net-

works. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003. ISBN

0122007514.

http://dl.acm.org/citation.cfm?id=580550.876432
http://doi.acm.org/10.1145/313817.313948
http://dl.acm.org/citation.cfm?id=266800.266818
http://doi.acm.org/10.1145/384285.379268
http://doi.acm.org/10.1145/1061267.1061271
http://dl.acm.org/citation.cfm?id=645989.674306


180 References

[43] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection Networks: An

Engineering Approach. IEEE Computer Society Press, Los Alamitos, CA, USA, 1st

edition, 1997. ISBN 0818678003.

[44] William J. Dally. Virtual-channel flow control. SIGARCH Comput. Archit. News,

18(2):60–68, May 1990. ISSN 0163-5964. doi: 10.1145/325096.325115. URL http:

//doi.acm.org/10.1145/325096.325115.

[45] S. Rodrigo, J. Duato J. Flich, and M. Hummel. Efficient unicast and multicast sup-

port for cmps. In In Proc. of the 41st IEEE/ACM Intl. Symp. on Microarchitecture,

pages 364 – 375, December 2008.

[46] Liqun Cheng, Naveen Muralimanohar, Karthik Ramani, Rajeev Balasubramo-

nian, and John B. Carter. Interconnect-aware coherence protocols for chip mul-

tiprocessors. SIGARCH Comput. Archit. News, 34(2):339–351, May 2006. ISSN

0163-5964. doi: 10.1145/1150019.1136515. URL http://doi.acm.org/10.1145/

1150019.1136515.

[47] A. Flores, J.L. Aragon, and M.E. Acacio. Heterogeneous interconnects for energy-

efficient message management in cmps. Computers, IEEE Transactions on, 59(1):

16–28, 2010. ISSN 0018-9340. doi: 10.1109/TC.2009.129.

[48] Evgeny Bolotin, Zvika Guz, Israel Cidon, Ran Ginosar, and Avinoam Kolodny.

The power of priority: Noc based distributed cache coherency. In Proceedings of

the First International Symposium on Networks-on-Chip, NOCS ’07, pages 117–

126, Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-2773-6.

doi: 10.1109/NOCS.2007.42. URL http://dx.doi.org/10.1109/NOCS.2007.42.

[49] I. Walter, I. Cidon, and A. Kolodny. Benoc: A bus-enhanced network on-chip

for a power efficient cmp. Computer Architecture Letters, 7(2):61–64, 2008. ISSN

1556-6056. doi: 10.1109/L-CA.2008.11.

[50] Dana Vantrease, Mikko H. Lipasti, and Nathan Binkert. Atomic coherence: Lever-

aging nanophotonics to build race-free cache coherence protocols. In Proceedings

of the 2011 IEEE 17th International Symposium on High Performance Computer

Architecture, HPCA ’11, pages 132–143, Washington, DC, USA, 2011. IEEE Com-

puter Society. ISBN 978-1-4244-9432-3. URL http://dl.acm.org/citation.cfm?

id=2014698.2014902.

[51] Noel Eisley, Li-Shiuan Peh, and Li Shang. In-network cache coherence. In Pro-

ceedings of the 39th Annual IEEE/ACM International Symposium on Microar-

chitecture, MICRO 39, pages 321–332, Washington, DC, USA, 2006. IEEE Com-

puter Society. ISBN 0-7695-2732-9. doi: 10.1109/MICRO.2006.27. URL http:

//dx.doi.org/10.1109/MICRO.2006.27.

http://doi.acm.org/10.1145/325096.325115
http://doi.acm.org/10.1145/325096.325115
http://doi.acm.org/10.1145/1150019.1136515
http://doi.acm.org/10.1145/1150019.1136515
http://dx.doi.org/10.1109/NOCS.2007.42
http://dl.acm.org/citation.cfm?id=2014698.2014902
http://dl.acm.org/citation.cfm?id=2014698.2014902
http://dx.doi.org/10.1109/MICRO.2006.27
http://dx.doi.org/10.1109/MICRO.2006.27


References 181

[52] Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. Improving multiproces-

sor performance with coarse-grain coherence tracking. SIGARCH Comput. Archit.

News, 33(2):246–257, May 2005. ISSN 0163-5964. doi: 10.1145/1080695.1069991.

URL http://doi.acm.org/10.1145/1080695.1069991.

[53] Andreas Moshovos. Regionscout: Exploiting coarse grain sharing in snoop-based

coherence. SIGARCH Comput. Archit. News, 33(2):234–245, May 2005. ISSN

0163-5964. doi: 10.1145/1080695.1069990. URL http://doi.acm.org/10.1145/

1080695.1069990.

[54] Samuel Rodrigo, Jose Flich, Jose Duato, and Mark Hummel. Efficient unicast and

multicast support for cmps. In Proceedings of the 41st annual IEEE/ACM Inter-

national Symposium on Microarchitecture, MICRO 41, pages 364–375, Washington,

DC, USA, 2008. IEEE Computer Society. ISBN 978-1-4244-2836-6. doi: 10.1109/

MICRO.2008.4771805. URL http://dx.doi.org/10.1109/MICRO.2008.4771805.

[55] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald III, N. Beckmann, C. Celio,

J. Eastep, and A. Agarwal. Graphite: A distributed parallel simulator for multi-

cores. In The 16th IEEE Intl. Symp. on High-Performance Computer Architecture,

2010.

[56] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the

level of abstraction for scalable and accurate parallel multi-core simulations. In

International Conference for High Performance Computing, Networking, Storage

and Analysis (SC), November 2011.

[57] D. Genbrugge, S. Eyerman, and L. Eeckhout. Interval simulation: Raising the

level of abstraction in architectural simulation. In High Performance Computer

Architecture (HPCA), 2010 IEEE 16th International Symposium on, pages 1–12,

2010. doi: 10.1109/HPCA.2010.5416636.

[58] Cacti 5 technical report, available at http://www.hpl.hp.com/techreports/2008/hpl-

2008-20.html.

[59] A.B. Kahng, B. Li, l. Peh, and K. Samadi. Orion 2.0: A power-area simulator

for interconnection networks. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 20(1):191–196, 2012.

[60] E. S. Shin, V.J.III Mooney, and G.F. Rileyn. Round-robin arbiter design and

generations. In International Symposium on System Synthesis, pages 243–2485,

2002.

[61] The nangate open cell library,45nm freepdk,available at

https://www.si2.org/openeda.si2.org/projects/nangatelib/.

http://doi.acm.org/10.1145/1080695.1069991
http://doi.acm.org/10.1145/1080695.1069990
http://doi.acm.org/10.1145/1080695.1069990
http://dx.doi.org/10.1109/MICRO.2008.4771805


182 References

[62] M. Lodde and J. Flich. A lightweight network of ids to quickly deliver simple control

messages. In Proc. of the 2nd Intl, Workshop on On-chip memory hierarchies and

interconnects: organization, management and implementation, August 2013.

[63] “intel core i7 technical specifications”, available at

http://www.intel.com/products/processor/corei7ee/specifications.htm.

[64] A. Mejia, J. Flich, J. Duato, Sven-Arne Reinemo, and Tor Skeie. Segment-based

routing: An efficient fault-tolerant routing algorithm for meshes and tori. In Pro-

ceedings of the 20th International Conference on Parallel and Distributed Process-

ing, IPDPS’06, pages 105–105, Washington, DC, USA, 2006. IEEE Computer Soci-

ety. ISBN 1-4244-0054-6. URL http://dl.acm.org/citation.cfm?id=1898953.

1899038.

http://dl.acm.org/citation.cfm?id=1898953.1899038
http://dl.acm.org/citation.cfm?id=1898953.1899038

	List of Figures
	List of Tables
	Abbreviations and Acronyms
	1 Introduction
	1.1 Thesis Contributions
	1.2 Thesis Outline

	2 Background and Related Work
	2.1 The Cache Hierarchy
	2.1.1 Cache Coherence Protocols
	2.1.1.1 Invalidation-based vs Update-based Protocols
	2.1.1.2 Steady States at L1 Cache Controllers
	2.1.1.3 Snoopy and Directory Protocols
	2.1.1.4 Directory Implementation

	2.1.2 Block Mapping Policies in Shared Banked LLCs
	2.1.3 Power Implications

	2.2 The Network-on-Chip
	2.2.1 NoCs Topology
	2.2.2 The Switch
	2.2.3 Data Units
	2.2.4 Switching
	2.2.5 Flow Control
	2.2.6 Arbitration
	2.2.7 Routing
	2.2.7.1 Implementation of a Routing Algorithm
	2.2.7.2 Unicast, Multicast and Broadcast Messages

	2.2.8 NoC and Cache Coherence

	2.3 Evaluation Platform
	2.3.1 gMemNoCsim
	2.3.2 Graphite
	2.3.3 Sniper
	2.3.4 CACTI
	2.3.5 Orion-2
	2.3.6 Xilinx ISE


	3 Network-Level Optimizations
	3.1 Introduction
	3.2 The Gather Network
	3.2.1 Description of a Logic Block
	3.2.2 GN Wiring Layout
	3.2.3 Implementation Analysis
	3.2.4 Sequential Implementation of the Gather Network

	3.3 GN Applied to Hammer Protocol
	3.3.1 Reseting The GN Wires

	3.4 GN Applied to Directory Protocol
	3.4.1 Reseting the GN Wires
	3.4.2 Protocol Modifications

	3.5 GN Performance Evaluation
	3.5.1 Directory Protocol with GN
	3.5.2 Hammer Protocol with GN
	3.5.3 Sequential Gather Network

	3.6 Conclusions

	4 Runtime Home Mapping
	4.1 Introduction
	4.2 Runtime Home Mapping
	4.2.1 Avoiding Multiple LLC Misses
	4.2.2 Adapting the GN Module to Support RHM
	4.2.3 Mapping Algorithm
	4.2.4 Replacements in L1 Cache

	4.3 Optimizations to RHM
	4.3.1 Block Migration
	4.3.2 Block Replication
	4.3.3 RHM and Broadcast-based Coherence Protocols
	4.3.3.1 Broadcast Network

	4.3.4 Merging Hammer Protocol and RHM
	4.3.5 Parallel Tag Access

	4.4 Evaluation
	4.4.1 Performance
	4.4.2 Performance Conclusions
	4.4.3 Energy
	4.4.4 Parallel Tag Access

	4.5 Conclusions

	5 pNC: Partitioned NoC and Cache Hierarchy
	5.1 Introduction
	5.2 NoC and Cache Hierarchy Substrate
	5.2.1 pNC: LBDR and RHM Support to Virtualization
	5.2.2 LBDR Regions
	5.2.3 Memory Controller Design
	5.2.4 Mapping Algorithm

	5.3 Evaluation
	5.3.1 pNC Overhead
	5.3.2 Performance in Fault-Free Systems
	5.3.3 Performance in Faulty Systems

	5.4 Conclusions

	6 Heterogeneous LLC Design
	6.1 Motivation
	6.2 Dynamic L2 Cache Line Allocation
	6.2.1 Replacement Policy
	6.2.2 Dynamic Power Techniques

	6.3 Performance Evaluation
	6.3.1 Benefits when Using MOESI Protocol

	6.4 Conclusions

	7 Conclusions
	A Coherence Protocols
	A.1 Directory (MESI)
	A.2 Hammer
	A.3 Directory + RHM with Block Migration and Replication
	A.4 Hammer + RHM

	B Implementation of the Target CMP in an FPGA Board
	References

