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Abstract

In this paper we study the unrelated parallel machines problem where n inde-

pendent jobs must be assigned to one out of m parallel machines and the processing

time of each job differs from machine to machine. We deal with the objective of

the minimisation of the maximum completion time of the jobs, usually referred to as

makespan or Cmax. This is a type of assignment problem that has been frequently

studied in the scientific literature due to its many potential applications. We propose

a set of metaheuristics based on a size-reduction of the original assignment problem

that produce solutions of very good quality in a short amount of time. The un-

derlying idea is to consider only a few of the best possible machine assignments for

the jobs and not all of them. The results are simple, yet powerful methods. We

test the proposed algorithms with a large benchmark of instances and compare them

with current state-of-the-art methods. In most cases, the proposed size-reduction

algorithms produce results that are statistically proven to be better by a significant

margin.
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1 Introduction

In the unrelated parallel machines scheduling problem the aim is to schedule a set N of n jobs on

a set M of m machines that are disposed in parallel, this is, all machines are capable of processing

all jobs. Each job has to be processed by exactly one machine. Each machine cannot process

more than one job at the same time and when a job begins its processing it cannot be stopped

until its completion, i.e., preemption is not allowed. The processing times of jobs j = 1, . . . , n

in machines i = 1, . . . ,m are denoted by pij. These processing times are non-negative, fixed and

known in advance. There are some variants of this problem, all of them are special cases. For

example, in the identical parallel machines scheduling problem, each job has the same processing

time pj no matter the machine to which it is assigned to. There is also the case of uniform

parallel machines, where the processing time of a job j on machine i follows the relationship

pij = pj/si, where si denotes a different speed for machine i when processing the jobs, i.e.,

according to si, some machines are “faster” or “slower”. As we can see, the unrelated parallel

machines case is the most general as the processing times depend both on the machine and on

the job. This paper deals with this last and most general case. The optimisation criterion is the

minimisation of the maximum completion time or makespan (Cmax). Thus the studied scheduling

problem in this paper is denoted by R//Cmax, according with the α/β/γ classification scheme of

Graham et al. (1979). The R//Cmax problem is, in fact, a type of assignment problem. Let us

denote by Ji the set of jobs that have been assigned to machine i. Machine i will be busy during

Ci =
∑

∀k∈Ji
pik units of time where Ci is the completion time of machine i. As one can easily

see, the order in which these Ji jobs are processed does not influence the value of Ci. Following

these definitions, Cmax = maxi∈M{Ci}. For the problem R//Cmax, the total number of possible

solutions is mn. R//Cmax is an NP-Hard problem in the strong sense, since Garey and Johnson

(1979) demonstrated that, in the special case with identical machines (referred to as P//Cmax),

the problem is already NP-Hard. Furthermore, Lenstra et al. (1977) showed that even the two

machines version (P2//Cmax) belongs to that complexity class. An straightforward Mixed Integer

Linear Programming (MILP) formulation for the R//Cmax is as follows:

min Cmax (1)

m∑

i=1

xij = 1 ∀j ∈ N (2)

n∑

j=1

pij · xij ≤ Cmax ∀i ∈ M (3)

xij ∈ {0, 1} ∀j ∈ N,∀i ∈ M (4)
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Where xij is a binary variable which takes value 1 if job j is assigned to machine i and 0

otherwise.

There are many examples and real problems that can be modeled as a R//Cmax, specially

production systems where one or more production stages have several machines in parallel so

to increase productivity. Modern multi-core processors can also be seen as parallel machines

problems. Examples and general literature is available from Pinedo (2005, 2008) and Sule (2008),

among many others. Some of the earlier works on parallel machines are due to McNaughton

(1959) and since then, many papers about parallel machines have appeared, as was shown in

the reviews of Cheng and Sin (1990) and Mokotoff (2001). A recent short review, more focused

in the unrelated parallel machines case is provided by Fanjul-Peyro and Ruiz (2010). Here, a

brief summary of the most important related work is commented. Note that we try to refer

to the R//Cmax problem only, as the literature on all versions of parallel machines problems is

remarkably extensive. Horowitz and Sahni (1976) proposed a Dynamic Programming approach

and some heuristic methods for the two unrelated parallel machines and makespan criterion.

Ibarra and Kim (1977) presented five heuristic algorithms and a tight error bound result for the

LPT dispatching rule. De and Morton (1980), Davis and Jaffe (1981) and Lenstra et al. (1990)

introduced some heuristic and approximation algorithms. Contrary to other scheduling prob-

lems, where exact approaches are valid only for special cases and/or instances of limited size, the

exact results for the R//Cmax in the literature are impressive. Martello et al. (1997) presented a

Branch and Bound (B&B) method improving the results provided by van de Velde (1993) that

was able to solve to almost optimality instances of up to 80 jobs and 20 machines (80× 20).

There is a large number of papers in the literature that exploit the idea of solving a linear re-

laxation of the MILP model in a first phase and using a rounding method, that can be exact or

approximate, in a second phase in order to obtain a feasible solution to the problem. This tech-

nique was first employed by Potts (1985), followed by Lenstra et al. (1990), Shmoys and Tardos

(1993) and Shchepin and Vakhania (2005), among others. Hariri and Potts (1991) were among

the first to integrate local search with heuristics. van de Velde (1993) proposed an exact algorithm

and an iterated local search metaheuristic. Glass et al. (1994) proposed Genetic Algorithm (GA),

Tabu Search (TS) and Simulated Annealing (SA) methods. Piersma and van Dijk (1996) showed

a SA and a TS with initialisations coming from the aforementioned heuristics of Hariri and Potts

(1991) and Davis and Jaffe (1981). Srivastava (1998) presented another TS and Sourd (2001)

published two methods based on large neighbourhood search. A heuristic cutting planes method

was developed by Mokotoff and Chretienne (2002) that was later refined and extended in what

is known as the “Partial” method in Mokotoff and Jimeno (2002). This algorithm is based on

the methodology of Dillenberger et al. (1994) which was later used by Mansini and Speranza

(1999). Woclaw (2006) carried out a comprehensive re-implementation and a computational

evaluation of most existing literature for the R//Cmax, and showed that the Partial method of
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Mokotoff and Jimeno (2002) produced state-of-the-art results, surpassing all other tested meth-

ods. Lately, Ghirardi and Potts (2005) have shown very good results using a Recovering Beam

Search (RBS) approach which was already studied earlier by de la Croce et al. (2004), based on

the Beam Search (BS) method of Ow and Morton (1988). Gairing et al. (2007) also proposed a

two-phase approach that results in a very fast method but with results that are not able to com-

pete in solution quality with those of Mokotoff and Jimeno (2002) or Ghirardi and Potts (2005).

Recently, Fanjul-Peyro and Ruiz (2010) introduced a number of simple local search methods,

based on the Iterated Greedy (IG) method of Ruiz and Stützle (2007) and on fast local search

algorithms on nested neighbourhoods, following the Variable Neighbourhood Descent approach

(VND) of Mladenovic and Hansen (1997) or Hansen and Mladenovic (2001). These methods were

shown to clearly outperform the Partial and RBS methods of Mokotoff and Jimeno (2002) and

Ghirardi and Potts (2005) in comprehensive benchmarks. Furthermore, Fanjul-Peyro and Ruiz

(2010) also demonstrated that modern commercial solvers, and more specifically, IBM-ILOG

CPLEX version 11.0 (simply referred to as CPLEX from now on, although we will make special

mention of different version numbers) are capable of outperforming the Partial of Mokotoff and Jimeno

(2002) and of producing results that are statistically equivalent to the RBS of Ghirardi and Potts

(2005). Note that this good performance of CPLEX was tested with “out-of-the-box” parameters

and with the previous simplistic assignment model. According to this last work of Fanjul-Peyro and Ruiz

(2010), the new state-of-the-art is formed by CPLEX and by their best performing proposed

method, referred to as NVST-IG+ in their original paper.

One of the advantages of NVST-IG+ is that, contrary to the well known two-phase ap-

proaches, including the Partial algorithm of Mokotoff and Jimeno (2002), no commercial solver is

necessary as NVST-IG+ is a stand alone local search method. However, we postulate that given

the extremely good performance of CPLEX, even better solutions can be obtained by combining

NVST-IG+ with a solver. In this work we challenge the simple and high performing methods of

Fanjul-Peyro and Ruiz (2010) and propose new metaheuristics that make extensive use of solvers.

However, our approach is radically different from the well-known two-phase approaches. Instead

of solving a linear relaxation of the MILP model and then rounding the results to reach a feasible

solution, we solve a reduced version of the MILP model where only a few of the best possible

machine assignments for the jobs are considered, i.e., we drastically reduce the number of xij

binary variables. The resulting sub-optimal solution is then improved by local search methods.

As we will show, this approach produces simple and very well performing methods.

This rest of the paper is organised as follows: Section 2 details the algorithms proposed.

Section 3 details the experimental settings to be used in the experimentation. Extensive com-

putational and statistical analyses are presented in Section 4. Finally, some concluding remarks

and future research directions are given in Section 5.
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2 Proposed methods

Fanjul-Peyro and Ruiz (2010) employed a total of 1400 instances divided into 7 groups with

different distributions of the processing times pij with 200 instances each, ranging from the

smallest instances of 100 jobs and 10 machines to instances of up to 1000 jobs and 50 machines.

Fanjul-Peyro and Ruiz (2010) used a modern solver to solve this large benchmark of instances,

something that was not done in the literature before. These 1400 instances were solved with a

CPU time limit of 2 hours with IBM-ILOG CPLEX version 11.0 on a PC/AT computer with a

Pentium IV processor running at 3.0 GHz and 1 GB of RAM memory. About 34% of instances

could be solved to optimality. While this is not a large number, for the unsolved instances, the

average gap was of around just 1%. In any case, we are referring to results after two lengthy hours

of CPU time. However, for some instance groups and sizes, the maximum gaps reached almost

9%. Still, it was surprising to find that, in some cases, CPLEX could solve 100% of instances of

up to 200×50. CPLEX was even able to solve many instances of 1000×50 (this is, 50,000 binary

variables) in under two hours of CPU time. This unexpected excellent behaviour of CPLEX posed

it as a true challenger against the established state-of-the-art. Basically, CPLEX as shown in

Fanjul-Peyro and Ruiz (2010) to be competitive, or even better than the best available proposed

methods from the literature, but not better than their best proposed method. Furthermore,

a close observation indicated that in many occasions, CPLEX was either trying to reduce an

already very small gap or was proving the optimality of a solution. A close analysis of the

resulting solutions yielded an expected result: Most jobs were assigned to their fastest machine.

This was predictable as a result of the assignment problem. However, it was surprising how

overwhelmingly consistent this result was. In almost all situations, each job was assigned to

either the fastest, second fastest or third fastest machine. In other words, among the n · m

binary variables of the previous MILP model, jobs were assigned to machines i1j , i2j or i3j where

i1j = mini∈M pij, i2j = mini∈M/i1j pij and i3j = mini∈M/i1j ,i2j pij . If jobs are rarely assigned to

other slower machines, then a natural question arises: Is it needed to define all other variables? A

“reduced” MILP model considering only these “three fastest machines” has n · 3 binary variables.

This means that if a 1000 × 50 instance needs 50,000 binary variables, by just using these three

fastest machines for each job all we need is 3000 variables, i.e., 16.67 times less variables. Of

course, this size reduction comes at a high cost. First of all, optimality cannot be guaranteed and

second, this straightforward size reduction is not expected to perform that well in all cases. Let

us study in detail this unexpected behaviour of the CPLEX solver. For each one of the previously

mentioned 1400 instances and for the reference solutions obtained with CPLEX with a 2 hours

termination criterion on each instance, we count how many jobs were not assigned to any of the

three fastest machines i1j , i2j or i3j . Results are given in Table 1. Instances are grouped by 20

different combinations of n and m, with 10 instances at each group. Recall also that there are

7 big groups of instances where the difference is how the processing times pij are distributed.

Further details about this benchmark will be given later in this paper. Each cell in Table 1
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represents the percentage of jobs in the instance that were assigned to a machine not in i1j , i2j

or i3j in the final mentioned reference solution.

n m U(1, 100) U(10, 100) U(100, 200) U(100, 120) U(1000, 1100) jobcorre machcorre

100 10 0.30 0.50 0.80 1.30 1.10 0.70 30.20
20 1.40 1.20 4.60 1.50 2.80 4.40 35.40
30 3.80 4.60 18.00 24.40 31.20 10.90 41.30
40 3.50 7.30 20.40 11.10 24.70 17.90 43.80
50 5.50 10.20 6.60 1.50 4.80 32.40 41.30

200 10 0.20 0.10 0.30 0.30 0.50 0.30 31.90
20 0.40 0.65 1.40 0.55 1.30 2.20 40.30
30 0.80 1.65 6.80 17.75 10.50 4.75 44.05
40 1.20 1.85 1.85 0.60 3.20 9.90 45.75
50 2.15 3.65 4.30 0.25 4.35 12.60 46.15

500 10 0.04 0.00 0.06 0.10 0.08 0.02 32.82
20 0.08 0.12 0.30 0.20 0.24 0.18 43.14
30 0.32 0.12 2.34 13.46 8.80 0.80 44.48
40 0.52 0.28 4.46 11.00 10.12 2.10 44.30
50 0.36 0.74 0.84 0.28 0.84 4.20 45.10

1000 10 0.02 0.01 0.00 0.02 0.02 0.00 29.66
20 0.04 0.02 0.19 0.13 0.12 0.06 37.65
30 0.05 0.09 0.74 1.78 12.57 0.25 39.84
40 0.13 0.09 0.29 0.16 0.17 0.86 46.67
50 0.20 0.11 0.45 0.10 0.22 1.33 45.14

Average(%) 1.05 1.66 3.74 4.32 5.88 5.29 40.45

Table 1: Percentage of jobs at each instance that are not assigned to any of the three
fastest machines i1j , i2j or i3j in the reference solutions given by IBM-ILOG CPLEX 11.0

with a time limit of 2 hours.

From Table 1 we notice that in the interval where the processing times are randomly uniformly

distributed in the interval [1, 100], i.e., U(1, 100), only 1% of jobs are, on average, assigned to

machines other than the three fastest. Excluding the last column, no interval exceeds 6%. Take

for example the largest instances of 1000×50 and the interval U(1, 100). We see that, on average

from the 10 instances, 0.2% jobs are assigned outside the three fastest machines. This means

that a meager 2 jobs are assigned to “slower” machines. The last column shows instances where

processing times are machine correlated. In this case, jobs are not only assigned to fast machines.

In machine correlated instances, there are machines which are faster for all jobs and therefore,

in the reference solution not all jobs are expected to be assigned to the fastest machines as they

quickly become overloaded.

Table 1 only indicates the percentage of jobs assigned outside the three fastest machines. Given

those numbers, it is expected that a size-reduced model considering only the three fastest machines

will perform good and a low Cmax value is to be hoped for. This is true in most situations. For

example, after only 15 seconds of CPU time, the sized-reduced MILP model for one instance in

the interval U(1, 100), with size 500 × 40 gives a 2.5% gap, which happens to be better than

the gap obtained with the full MILP model after 2 hours of CPU time. However, for the same

interval, we find an extreme example of an instance of size 100 × 50 that after 15 seconds, the
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reduced MILP obtains a solution with 12.5% gap, much worse than the one obtained with the full

MILP model and 2 hours of CPU time. To conclude, we have observed this interesting CPLEX

behaviour but special care has to be put in how the size-reduced MILP models are obtained.

2.1 Size-reduction methods

In the previous sections we have explained how apparently not all n ·m xij binary variables in the

MILP model are needed in order to reach high quality solutions in a much shorter amount of time.

We now present some simple approaches that allow to select a reduced subset of machines for

each job prior to using a solver. The first approximation is to select the k best (minor) processing

times pij for each job. Note that we will refer to the selected xij binary variables or pij values

interchangeably. In this case, the k · n smallest pij values are selected. We denote this method

as job-based size reduction or kJB. Table 2 shows an example of 3JB for an instance with 10

jobs and 5 machines, where the three minor values of pij are selected for each job.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

M1 5 9 3 6 4 3 6 5 7 3

M2 8 9 7 6 6 4 5 1 1 4
M3 1 1 4 3 8 3 7 4 8 1

M4 2 8 3 4 2 3 1 7 1 6
M5 3 7 8 5 2 8 4 9 5 3

Table 2: Example of selected values of pij in 3JB size-reduction method. Selected values
in bold.

As it was concluded from Table 1, this method selects appropriate values in most cases but

it is a bad choice for correlated machines. We need a size-reduction method to select pij within

machines instead of within jobs. First we calculate the theoretical average of jobs that should

be assigned to each machine in an ideal solution, a = n/m, and use the value of a to determine

how many values of pij to select at each machine. However, some machines could have more

jobs assigned than the theoretical average. To counter this, we select l · a values of pij at each

machine, and the total number of pij selected values with this method is therefore l · a ·m. We

denote this method as machine-based size reduction or lMB in short. An example of 2MB can

be observed in Table 3. Notice that for this example a = 10/5 = 2 and l = 2 so actually, four

values are selected at each row of the table.
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J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

M1 5 9 3 6 4 3 6 5 7 3

M2 8 9 7 6 6 4 5 1 1 4

M3 1 1 4 3 8 3 7 4 8 1

M4 2 8 3 4 2 3 1 7 1 6
M5 3 7 8 5 2 8 4 9 5 3

Table 3: Example of selected values of pij in 2MB size-reduction method. Selected values
in bold.

There is an important drawback in the lMB size-reduction method. Since we are selecting

only the minor pij values across machines (rows in Table 3) some job might be left without any

possible pij value. This would lead to an infeasible solution in the size-reduced MILP model.

Actually, this is the case for job J4 in Table 3. The solution for this problem is to use the two

previous size-reduction methods together, i.e., kJB and lMB. Obviously, much of the selected

pij values of both methods will be the same, but not all. For example, in Table 3 we can notice

that the selected value p26 = 4 it is not selected in Table 2.

The previous size-reduction methods are simple and, as we will see, allow for good results.

However, the literature is full of very efficient and effective methods for the R//Cmax problem

and it seems plausible to select the minor pij values for the size-reduced MILP after observing

the solutions given by effective heuristics. For this purpose, we select the best known heuristic

for this problem, the already mentioned NVST-IG+ algorithm of Fanjul-Peyro and Ruiz (2010).

In what follows, we will simply refer to this heuristic as DIG in short (variable neighbourhood

Descent approach with Iterated Greedy). Basically, DIG is run for a very short amount of time

(5 seconds) and each time a new best solution is found by DIG during these 5 seconds, the pij

values of such solution are selected without repetition. An example of this method is given in

Table 4 where a solution obtained by DIG in a iteration is shown.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

M1 5 9 3 6 4 3 6 5 7 3
M2 8 9 7 6 6 4 5 1 1 4
M3 1 1 4 3 8 3 7 4 8 1
M4 2 8 3 4 2 3 1 7 1 6
M5 3 7 8 5 2 8 4 9 5 3

Table 4: Example of selected values of pij in DIG size-reduction method. Selected values
in bold.

It is also possible to mix DIG with the other size-reduction methods, like for example kJB

and DIG to obtain a hybrid method with all pij values of kJB method plus all pij different values
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provided by DIG. Following the previous examples, we can notice that the p11 = 5 value of DIG

method from Table 4 is not present in the selected values of the 3JB method from Table 2.

2.2 Size-reduction algorithms

The previous size-reduction methods only simplify the original MILP model but do not constitute

solution methods in themselves. However, pairing these size-reduction methods with CPLEX

already gives us a complete solution. Notice the simplicity of the proposed methods in two

phases 1) Size-reduce the original pij or xij matrix and 2) run CPLEX over this size-reduced

problem until a pre-specified CPU time termination criterion is met. With this approach we

propose three size-reduction algorithms as follows:

1. kJB size-reduction method, with k = 3 and then run CPLEX. We simply refer to this

size-reduction algorithm as 3J.

2. Combined size-reduction methods kJB and lMB with k = 3 and l = 2 and then run

CPLEX. This second size-reduction algorithm is referred to as 3J2M.

3. Combined size-reduction method kJB, with k = 3, together with the size-reduction method

DIG. We name this algorithm 3JD. Note that this last method is more complex, as it

requires the DIG heuristic (NVST-IG+ algorithm from Fanjul-Peyro and Ruiz, 2010).

Note that the optimum CPLEX solution in the second phase is optimum for the size-reduced

problem which generally does not translate into an optimum solution for the original problem.

The three previous algorithms can be significantly improved. As CPLEX is run for a size-

reduced problem it is very likely that an optimum solution is found much before the pre-specified

maximum CPU time termination criterion is reached. The most logical approach is to iterate the

size-reduction algorithm with more selected pij values, i.e., repeat the algorithm with a bigger

xij matrix and keep doing so while there is still time available. Quite differently is the case

when CPLEX spends lots of time closing the search tree, proving optimality but without actually

improving the current solution. In these circumstances, it makes little sense to waste valuable

CPU time. There is a possibility, for example, to stop the solver in the second phase after a

pre-specified elapsed CPU time and repeat the size-reduction algorithm with a bigger xij matrix.

With all this in mind, two additional size-reduction algorithms are proposed:

4. 2JDi size-reduction algorithm: It uses the kJB size-reduction method starting with k = 2,

together with the size-reduction method DIG, and then run CPLEX. Each time CPLEX

ends and the stopping criterion is not met, k is increased by 1, the new pij values are added

and CPLEX is run again. Note that the DIG size-reduction method is only run once at

the first iteration.

5. 2JDi(90) size-reduction algorithm. It is similar to 2JDi with the only difference that each

time CPLEX is run, a maximum CPU time limit of 90 seconds is imposed.
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Note that the 90 seconds CPU time limit for 2JDi(90), as well as the values of k and l in the

previous proposed methods were obtained after calibrations and testings which will be further

detailed in later sections.

2.3 Parallel size-reduction algorithms

Nowadays, regular desktop computers have more than one processor integrated in the same chip,

these are the well known multiple cores. At the time of the writing of this paper, there are

commercially available processors with 6 physical cores inside the same chip. This increased

available power is used by modern solvers like CPLEX which runs in parallel mode if several

physical cores or processors are available. We also propose some simplistic parallel versions of

the previous size-reduction algorithms to use all the power provided by multi-core processors.

The simplest possible parallel approach is to run as many instances of our proposed size-reduction

algorithms as cores are available and basically keep the best result at the end, i.e., there are no

communications between the different instances. This “brute-force” approach should be seen

as the simplest possible multi-core method. Fanjul-Peyro and Ruiz (2010), in their proposed

NVST-IG+ algorithm did not propose a parallel version. Here, we test the M-DIG (multicore

DIG) which is basically the full DIG heuristic being run multiple times.

For our proposed size-reduction algorithms we propose similarly simple parallel versions. More

specifically, we propose the multicore 2JDi(90) or M-2JDi(90). The basic functioning of this

parallel version is straightforward. Picture for example a processor with two cores, therefore,

M-2JDi(90) is launched in core 1 and M-3JDi(90) is launched in core 2, i.e., each core is working

on a different xij size-reduced matrix. The first core that finishes is assigned the next bigger

size-reduced matrix: M-4JDi(90). The process continues until the termination criterion is met.

Note that we do not propose parallel versions for 3J, 3J2M, 3JD or 2JDi as M-2JDi(90) easily

dominated the rest, as will be shown next.

3 Experimental settings

When demonstrating the performance of the new proposed methods, special care must be given

to the experimental settings. We first explain in detail the large benchmark of instances employed

and how by just changing the way the processing times are distributed, very different results are

obtained. Since we will be testing different solvers and algorithms, both in serial as well as in

parallel mode, further details of the computers used will be also given.

3.1 Benchmark of instances

Fanjul-Peyro and Ruiz (2010) showed that there was not a publicly available benchmark of in-

stances for the R//Cmax problem and each author used his/her own instances. To remedy that
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situation, they proposed a comprehensive benchmark and made it available, along with the ref-

erence solutions in http://soa.iti.es. For the sake of completeness, this benchmark is now

detailed.

In general, an instance of R//Cmax is defined by the number of jobs n, number of machines m

and the processing times pij matrix of size m · n. It is well known that the distribution of the

pij values have a great influence in the algorithms and on the quality of the solutions obtained.

Fanjul-Peyro and Ruiz (2010) proposed seven distributions for the pij values. Some of them were

of common use in the literature and some others were newly proposed. The most common dis-

tributions in the literature are U(1, 100) and U(10, 100). Some authors also use instances where

the processing times are job or machine correlated. For correlated jobs, the processing times are

determined by pij = bj + dij where bj and dij are uniformly distributed values in the ranges

U(1, 100) and U(1, 20), respectively. In the case correlated machines, the processing times are

derived from the expression pij = ai + cij where ai and cij are uniformly distributed in U(1, 100)

and U(1, 20), respectively. The newly proposed intervals try to model more real instances with

the intervals U(100, 200), U(100, 120) and U(1000, 1100). For each one of these seven intervals

there are the following combinations of m = {10, 20, 30, 40, 50} and n = {100, 200, 500, 1000}.

In total there are 20 combinations, from 100 × 10 to 1000 × 50. 10 random different instances

are defined for each combination which results in 200 instances in each one of the seven intervals

and 1400 instances in total. To the best of our knowledge, no such comprehensive and large

benchmark exists for the R//Cmax problem.

3.2 Set of computers

In this paper, all tests have been carried out in a cluster of 12 PC/AT computers with Intel Core

2 Duo E6600 processors, running at 2.4GHz with 2 GB of RAM memory under Windows XP SP3

operating system. Each processor contains two physical CPUs (cores). Special mention should

be given to IBM-ILOG CPLEX. Fanjul-Peyro and Ruiz (2010) tested the serial version 11.0 on

an older set of computers. In this paper we test the serial and parallel variants of version 11.1. on

a much modern set of computers. Notice that it is a small version change. However, we will show

that these two facts (faster computers and version change) are enough to boost the performance

of CPLEX. As regards the CPU time, all of our proposed methods, the existing DIG algorithm

from Fanjul-Peyro and Ruiz (2010) as well as CPLEX are stopped after a given elapsed CPU

time. We have fixed this time in 15 seconds as a reference because this was the time needed

by CPLEX to solve all instances of 100 jobs in the interval U(1, 100). However, we also test all

algorithms with 30, 60, 120, 240 and 300 seconds. All methods are coded in Delphi 2007 and

compiled with the optimisation flag enabled. All preliminary calibrations of our algorithms were

carried out on the interval U(1, 100) and for a subset of instances. Calibrating for each interval

would surely result in even a better outcome, but no further calibrations are carried out in order

to avoid over-fitting deviations in the results.
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4 Computational analysis

The computational analysis is divided between the serial and parallel methods. More specifically,

we carry out comprehensive computational and statistical analyses to assess the performance of

the different algorithms. We start our study with CPLEX (forced to use only one core), DIG

(the best method originally proposed by Fanjul-Peyro and Ruiz, 2010), 3J, 3J2M, 3JD, 2JDi

and 2JDi(90) as defined in previous sections. All these algorithms are serial and use only one

core in the CPU. Given that all methods are coded in the same programming language (except

CPLEX), run on the same computers with the same settings and under the same CPU time, we

expect all results to be fully comparable. Afterwards we will present the results of the parallel

algorithms represented by M-DIG, M-2JDi(90) and M-CPLEX using all available cores (2). The

response variable that we measure is the relative percentage deviation from the reference solution

as follows:

Relative Percentage Deviation (RPD) =
Cmax(i)− C∗

max(i)

C∗
max(i)

· 100 (5)

Where C∗
max(i) is the aforementioned 2 hour CPLEX run available from http://soa.iti.es

(many times optimal or with a very small gap) and Cmax(i) is the value obtained by a given

algorithm and instance i.

After reporting the results, we carry out statistical analyses in order to soundly test the

significance of the given averages. We use statistical testing in order to guarantee that the

observed differences in the average results are indeed statistically significant. We carry out a

Design of Experiments (DOE, Montgomery, 2009) where we study a single factor, i.e., the type of

algorithm at seven levels in the serial case and at three levels in the parallel case. The response

variable is the relative percentage deviation. We take all previous results where each instance

is considered a treatment. In the serial case there are 1400 instances and seven methods, which

results in 9800 observations. For the parallel case there are only three algorithms so there are

4200 observations. This number of observations is gathered for each stopping time. We carry out

six independent runs of all methods with 15, 30, 60, 120, 240 and 300 seconds stopping times. As

a conclusion, the grand number of observations is of 57,600 results for the serial case and of 25,200

in parallel case. The results of the DOE are analyzed by means of the single factor Analysis of

Variance (ANOVA) technique. We check the three main hypotheses of the parametric ANOVA:

normality, homocedasticity and independence of the residuals. With such a large set of results,

the residuals from the ANOVA easily satisfied all three hypotheses.

4.1 Serial algorithms’ results

Our first test comprises the state-of-the-art algorithm DIG proposed by Fanjul-Peyro and Ruiz

(2010) and the new CPLEX version 11.1. We put along the first simple algorithms 3J and 3J2M.
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Table 5 shows the average results of the relative percentage deviation of all intervals together

except for correlated machines. Recall that each cell contains the average of 1400 results. The

different stopping times are given in the rows. We do not include the correlated machines interval

because as it was shown in Table 1, for this interval the 3J strategy was a poor way of size-reducing

the problem. Therefore, these initial results should be seen as a first approximation.

Time (sec.) CPLEX DIG 3J 3J2M

15 0.59 0.42 0.52 0.48
30 0.41 0.34 0.43 0.37
60 0.26 0.29 0.38 0.32
120 0.15 0.22 0.34 0.28
240 0.09 0.17 0.30 0.24
300 0.07 0.16 0.28 0.22

Table 5: Average Relative Percentage Deviations for all intervals except correlated ma-
chines for existing state-of-the-art and simple size-reduction algorithms 3J and 3J2M.

The first remarkable result is that CPLEX has seen its performance increased in a significant

way since the results Fanjul-Peyro and Ruiz (2010). This is due to the new version 11.1 and

due to the faster computers used. In Fanjul-Peyro and Ruiz (2010) it was stressed that regular

commercial solvers should not be overlooked since they steadily improve performance and this is

a clear demonstration of this fact. A second remarkable result is that DIG is now competitive

with CPLEX for very short CPU times of up to 30 seconds whereas in Fanjul-Peyro and Ruiz

(2010), DIG was shown to outperform CPLEX up to 60 seconds. The conclusion is that the new

version of CPLEX makes a much more effective use of the faster computers.

The first two simple proposed size-reduction algorithms are fairly competitive. For longer CPU

times, CPLEX is expectedly better as CPLEX is solving the full problem, but note how for short

CPU times, i.e., 15 and 30 seconds, 3J2M outperforms CPLEX. Table 6 shows a more detailed

result of the other three size-reduction algorithms: 3JD, 2JDi and 2JDi(90) together also with

DIG and CPLEX.

The results of Table 6 show that, in average (right-most column), all of our proposed size-

reduction algorithms produce better results than the state-of-art methods for all different stopping

criteria. This table even has negative values because the algorithms, in these cases, reach better

results than the reference values (CPLEX 11.0 with 2 hours stopping time). However, we can

notice that, in the interval U(1, 100), CPLEX produces good results for larger stopping times,

improving 3JD and even 2JDi but still not reaching the values obtained by 2JDi(90). In gen-

eral, when the stopping time exceeds the calibration value of 2JDi(90), which is 90 seconds, we

notice how the 2JDi(90) algorithm reaches better results than its simpler counterpart algorithm

2JDi where the solver part is not stopped. The results show that CPLEX has a poor result in
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correlated jobs but a good result in correlated machines, which it is the only case in which it can

improve the results of our best algorithm for large CPU times. We can only say that this cannot

be easily attributed due to the unknown structure of the specific algorithm that CPLEX is using

for this assignment problem. In any case, CPLEX ends up being instance dependent and not

robust as our proposed methods.

Time Algorithms U(1, 100) U(10, 100) Jobcorre Machcorre U(100, 200) U(100, 120) U(1000, 1100) Average

15 CPLEX 0.82 0.70 1.33 0.48 0.55 0.09 0.05 0.58

DIG 1.07 0.62 0.45 0.53 0.29 0.04 0.02 0.43

3JD 0.49 0.17 0.24 0.24 0.13 0.01 0.00 0.18

2JDi 0.44 0.17 0.24 0.22 0.13 0.01 0.00 0.17

2JDi(90) 0.44 0.17 0.24 0.22 0.13 0.01 0.00 0.17

30 CPLEX 0.56 0.47 0.93 0.30 0.37 0.06 0.04 0.39

DIG 0.93 0.49 0.35 0.50 0.25 0.04 0.01 0.36

3JD 0.37 0.08 0.13 0.23 0.11 0.01 0.00 0.13

2JDi 0.27 0.07 0.11 0.19 0.10 0.00 0.00 0.11

2JDi(90) 0.27 0.07 0.11 0.19 0.10 0.00 0.00 0.11

60 CPLEX 0.33 0.25 0.65 0.16 0.25 0.04 0.03 0.25

DIG 0.83 0.39 0.25 0.47 0.21 0.03 0.01 0.31

3JD 0.33 0.03 0.00 0.22 0.09 0.01 0.00 0.10

2JDi 0.19 0.01 -0.01 0.17 0.08 0.00 0.00 0.06

2JDi(90) 0.19 0.01 -0.01 0.17 0.08 0.00 0.00 0.06

120 CPLEX 0.17 0.10 0.45 0.09 0.13 0.03 0.02 0.14

DIG 0.75 0.24 0.14 0.42 0.17 0.02 0.00 0.25

3JD 0.31 0.01 -0.09 0.22 0.08 0.00 0.00 0.08

2JDi 0.15 -0.06 -0.11 0.16 0.06 0.00 0.00 0.03

2JDi(90) 0.06 -0.07 -0.10 0.15 0.05 0.00 0.00 0.01

240 CPLEX 0.08 0.05 0.33 0.04 0.06 0.02 0.01 0.09

DIG 0.63 0.17 0.06 0.37 0.14 0.02 0.00 0.20

3JD 0.26 -0.02 -0.13 0.22 0.07 0.00 0.00 0.06

2JDi 0.10 -0.09 -0.16 0.15 0.06 0.00 0.00 0.01

2JDi(90) -0.02 -0.14 -0.15 0.11 0.02 -0.01 -0.01 -0.03

300 CPLEX 0.06 0.02 0.29 0.03 0.04 0.01 0.01 0.07

DIG 0.63 0.14 0.03 0.36 0.13 0.02 0.00 0.19

3JD 0.24 -0.07 -0.17 0.21 0.03 0.00 0.00 0.03

2JDi 0.08 -0.11 -0.19 0.14 0.02 0.00 0.00 -0.01

2JDi(90) -0.03 -0.14 -0.17 0.10 0.00 -0.01 -0.01 -0.04

Table 6: Average Relative Percentage Deviations for serial algorithms CPLEX, DIG, 3JD,

2JDi and 2JDi(90) with different CPU time stopping criteria. Bold (italics) figures repre-

sent best (worst) results, respectively.

So far we have just shown average results. We need to carry out an ANOVA statistical test

in order to guarantee that the observed differences in the average results are indeed statistically

significant. Figure 1 represents a means plot of all intervals at 120 seconds stopping time. This
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time is enough for CPLEX and for 2JDi(90) to reach good results. The means plot include Tukey

HSD intervals with a 95% confidence level. Recall that overlapping intervals indicates that no

statistically significant difference exists among the overlapped means. It can be seen CPLEX

with this amount of time is significantly better than DIG. Our three proposed size-reduction

algorithms are new state-of-the-art as can be seen, although there are some overlaps. 2JDi(90)

is statistically better than 3JD but 2JDi is equivalent to the other two. However, this plot is

for all intervals and instance sizes. Zoomed-in results (not shown due to reasons of space) show

different performances depending on the cases.
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Figure 1: Means plot and Tukey HSD intervals with a 95% confidence level for the tested

serial algorithms. All instances and intervals with 120 seconds stopping time.

4.2 Parallel algorithms’ results

Now we test our proposed M-2JDi(90) parallel version of the 2JDi(90) size-reduction algorithm,

along with parallel version of DIG and CPLEX (M-DIG and M-CPLEX, respectively). Results are

given in Table 7. All parallel methods clearly outperform their serial counterparts by a significant

margin if we compare these results against those given in Table 6. Recall that only two parallel

cores are being used and probably better results are expected in four, six or even eight core

settings. We see that, on average, our proposed parallel size-reduction algorithm produce better

results than all other algorithms. M-DIG gives better results than M-CPLEX only for short CPU

times and the situation is reversed when times are larger. Similar to the serial case, our algorithm

M-2JDi(90) produces the best results in all cases and times except for correlated machines, where

M-CPLEX has better results only for larger CPU times. M-CPLEX also presents poor results

for correlated jobs as in the serial case.
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Time Algorithms U(1, 100) U(10, 100) Jobcorre Machcorre U(100, 200) U(100, 120) U(1000, 1100) Average

15 M-CPLEX 0.66 0.63 1.33 0.37 0.40 0.07 0.04 0.50

M-DIG 0.91 0.51 0.35 0.48 0.26 0.03 0.02 0.37

M-2JDi(90) 0.42 0.10 0.18 0.20 0.11 0.00 0.00 0.15

30 M-CPLEX 0.41 0.33 0.99 0.20 0.29 0.05 0.03 0.33

M-DIG 0.86 0.41 0.24 0.45 0.21 0.03 0.01 0.32

M-2JDi(90) 0.18 -0.01 0.03 0.16 0.08 0.00 0.00 0.06

60 M-CPLEX 0.30 0.18 0.74 0.09 0.15 0.03 0.02 0.22

M-DIG 0.70 0.31 0.16 0.42 0.18 0.02 0.01 0.26

M-2JDi(90) 0.10 -0.07 -0.07 0.14 0.06 0.00 0.00 0.02

120 M-CPLEX 0.23 0.11 0.60 0.04 0.08 0.03 0.01 0.16

M-DIG 0.62 0.18 0.07 0.40 0.14 0.02 0.00 0.20

M-2JDi(90) -0.02 -0.14 -0.14 0.12 0.02 -0.01 -0.01 -0.03

240 M-CPLEX 0.16 0.04 0.47 0.02 0.04 0.01 0.00 0.11

M-DIG 0.57 0.11 -0.01 0.34 0.11 0.01 0.00 0.16

M-2JDi(90) -0.03 -0.16 -0.19 0.07 0.00 -0.01 -0.01 -0.05

300 M-CPLEX 0.08 -0.02 0.35 0.01 0.02 0.01 0.00 0.06

M-DIG 0.56 0.08 -0.04 0.34 0.10 0.01 -0.00 0.15

M-2JDi(90) -0.03 -0.17 -0.20 0.05 -0.01 -0.01 -0.01 -0.05

Table 7: Average Relative Percentage Deviations for parallel algorithms M-CPLEX, M-

DIG and M-2JDi(90) with different CPU time stopping criteria. Bold (italics) figures

represent best (worst) results, respectively.

Figure 2 shows, in this case, an interaction plot between CPU time stopping criterion and

the parallel algorithms. Note that a two factor ANOVA was used in this case. This ANOVA plot

allows to see how M-DIG is significantly better than M-CPLEX for just 15 seconds stopping time.

For 30 seconds both methods are statistically equivalent and they remain so until 300 seconds,

where finally M-CPLEX improves the results of M-DIG. In all cases, our proposed size-reduction

algorithm M-2JDi(90) is shown to statistically outperform the other two methods by a large

margin.
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Figure 2: Means plot and Tukey HSD intervals with a 95% confidence level for the inter-

action between the stopping criteria and the tested parallel algorithms. All instances and

intervals.

Finally, we present in Figure 3 a comparison between parallel and serial methods. Intervals

are removed to improve readability of the plot. As we can see, parallel versions are most of the

time better than serial versions. As expected, for large CPU times, most algorithms start to

converge and the advantages of parallel methods diminish.
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Figure 3: Parallel vs. serial algorithms: Means plot for all instances and intervals in all

tested stopping times.

5 Conclusions and future research

In this paper we have proposed several new size-reduction methods and algorithms for the unre-

lated parallel machines scheduling problem with makespan criterion or R//Cmax. The methods

presented are very simple and are based on the idea of reducing the possible assignment of jobs

to machines to just the most promising ones. The reduced problem is then solved with the help

of a commercial solver, which in this paper has been IBM-ILOG CPLEX version 11.1.

A comprehensive benchmark test of 1400 instances has been employed in order to compare all

presented algorithms against state-of-the-art methods, identified as IBM-ILOG CPLEX 11.1, DIG

from Fanjul-Peyro and Ruiz (2010) as well as parallel versions of these two methods. Our pro-

posed methods outperform current state-of-the-art algorithms in comprehensive computational

and statistical campaigns where both serial and parallel algorithms have been tested. More

specifically, the parallel version of our best performing algorithm, M-2JDi(90), produces, in just

15 seconds of CPU time, average relative percentage deviations with respect to the best known

reference lower bounds reported by the solver of only 0.63% across the 1400 instances that reach

sizes of up to 1000 jobs and 50 machines. Note that this result is with respect the the lower
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bounds, not against the best known reference solutions as reported in Table 7 which in this case

are of 0.37%. This means that, in the worst case, 15 seconds suffice to reach an average deviation

well below 1%. With these results we are very close to effectively solving the R//Cmax problem

to practical optimality for large sizes. Note however, that solving the R//Cmax problem does

not directly translate to solving the special cases with identical and uniform parallel machines,

i.e., the P//Cmax and Q//Cmax cases, respectively. There are no guarantees that our proposed

methods would perform equally well in these scenarios.

Future research stems from the consideration of more elaborated ways of obtaining the size-

reduced problem although we hypothesize that given the already good results, such venue of

research might result in diminishing returns. More interesting are the parallel approaches with

more available cores. Real parallel methods with communications between the cores might help

in solving much larger problems that might be of use for some applications. We are also interested

in applying the proposed techniques to other more sophisticated parallel machines problems, like

those resulting from the addition of sequence dependent setup times and/or to other objectives,

like those based on job’s due dates or just in time problems.
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