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AbstratIn this paper we study two generalizations of the well known unrelated parallelmahines sheduling problem under makespan (Cmax) minimization. First, a situa-tion in whih not every available parallel mahine should be used and it is desirableto employ only a subset of the parallel mahines. This is referred to as �Not all Ma-hines� or NAM in short. This environment applies frequently in prodution shopswhere apaity exeeds demand or when prodution apaity an be lent to thirdompanies. Also, NAM an be used to inrease prodution apaity and it is notlear how many additional mahines should be aquired. The seond studied gener-alization has been referred to as �Not All Jobs� or NAJ. Here, there is no obligationto proess all available jobs. We propose Mixed Integer Programming mathematialformulations for both NAM and NAJ, and it is shown that the latter an be e�e-tively solved with modern ommerial solvers. We also present three algorithms tosolve the NAM problem. These algorithms are ompared with the proposed MIP for-mulation when solved with IBM ILOG CPLEX 12.1. Comprehensive omputationaland statistial experiments prove that our proposed algorithms signi�antly improvethe results given by the solver.Keywords: unrelated parallel mahines, makespan, optional mahines, not all mahines, jobseletion, not all jobs
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1 IntrodutionThere is a set M of m mahines that are arranged in parallel. Eah job from a set Nof n jobs has to be proessed by exatly one mahine. Eah mahine annot proessmore than one job at the same time. Furthermore, preemption of jobs is not allowed andwhen a job begins its proessing, it annot be stopped until its ompletion. The previousproblem is known as parallel mahine sheduling and is divided into three di�erent ases,whih depend on the nature of the available parallel mahines. The simplest senario iswhen all parallel mahines are idential. In this ase, eah job j, j ∈ N needs a �xed,non-negative, and known in advane proessing time, denoted as pj. One started in theassigned mahine, this mahine will be busy proessing job j during pj time units. Thepartiularity in the idential parallel mahines sheduling ase is that the proessing timefor eah job j is the same for all mahines. A more general ase is the uniform parallel ma-hines sheduling problem. Here, the proessing time of a job j depends on the mahine i,
i ∈ M to whih it is assigned. However, this dependene follows a strit speed-up fator sithat varies from mahine to mahine. Therefore, proessing times follow the relationship
pij = pj/si. Higher si values indiate �faster� mahines and this speed-up fator is �xedfor eah mahine. The most general situation is referred to as unrelated parallel mahinessheduling. In this ase, eah mahine proesses eah job at a di�erent speed and pijdenotes the proessing time of eah job j whih depends on the mahine i to whih it isassigned.This paper deals with this last and most general prodution sheduling senario. The opti-mization riterion onsidered is the minimization of the maximum ompletion time, om-monly referred to as makespan and denoted by Cmax. This sheduling problem is denotedby R//Cmax, following the well known three-�eld notation α/β/γ of ?. While the R//Cmaxis lassi�ed as a sheduling problem, the job sequene followed at eah mahine has noin�uene over the �nal Cmax value. The whole setting redues to an assignment problem.This is easily explained as follows: Ji denotes the subset of jobs (Ji ⊆ N, ∀i ∈ M) that havebeen assigned to mahine i. Therefore, if we assume that mahine i is available from time0, it will be busy during Ci =

∑

∀k∈Ji
pik units of time. Given all Ji, ∀i ∈ M , the makespanis easily de�ned as the time at whih the last mahine is free or Cmax = maxi∈M{Ci}. Itis straightforward to see that the order in whih jobs assigned to mahine i (Ji) are pro-essed has no in�uene over Ci and therefore, the Cmax value depends solely on the jobto mahine assignments. Note that this result applies only to the makespan optimizationriterion. Given all possible assignments, the ardinality of the feasible solution set is noless than mn. In fat, the R//Cmax problem is an NP-Hard problem in the strong sense,2



after ? demonstrated the speial ase with idential mahines (P//Cmax) to be NP-Hard.Additionally, even before, ? demonstrated that the two mahine version, or P2//Cmax,was already NP-Hard.The R//Cmax problem has many potential appliations. Mass prodution lines usuallyontain more than one mahine for eah prodution task. As mass prodution lines areubiquitous, parallel mahines sheduling settings are equally frequent in pratie. Otherexamples are multiproessor omputers, landing lanes at airports or even operating roomsin hospitals, whih an also be seen as parallel mahine shops. Many other examples andappliations an be obtained from general sheduling textbooks suh as ?, ?, or ?.The R//Cmax problem has been omprehensively studied sine the �rst paper of ?.Some general parallel mahines sheduling review papers have been published, like thoseof ? and ?. ? reently presented an updated short review on state-of-the-art methods.Also reently, ? proposed simple but highly e�etive methods providing average devia-tions of just 0.63% with respet to tight lower bounds in as little as 15 seonds of CPUtime. These results were obtained for large benhmark sets of 1400 instanes, spread over7 groups with di�erent intervals of proessing times and with sizes up to 1000 jobs and50 mahines. After suh small deviations from lower bounds in suh small CPU times, itis safe to state that, as regards pratial appliations, the R//Cmax problem is quite wellsolved nowadays. This is not to say that it is a solved problem, of ourse, sine it belongsto the NP-Hard omplexity lass. For even larger problems, good solutions might stillprove hallenging to obtain.Given the previous reent developments, it is quite natural to extend the R//Cmaxproblem into new diretions. In this paper we deal with two generalizations of the un-related parallel mahines problem. In the �rst we have that not all mahines in the set
M an be used and some mahines have to be left out. More spei�ally, among the mavailable mahines, a number Z of them annot be used. This seemingly straightforwardextension, has not been, to the best of our knowledge, and as we will later show, studiedup to date as regards the R//Cmax spei� problem. We have referred to this generaliza-tion as the �Not All Mahines� or NAM problem. It is very ommon to �nd workshopswhere an exessive prodution apaity exists and a tatial deision arises as to whihmahines should be stopped from set M . Unrelated parallel mahines proess eah jobat a di�erent speed and deiding whih mahine or mahines have to be stopped goesway beyond simply stopping the slowest ones. Other potential appliations of the NAMproblem appear if one onsiders the symmetri problem, i.e., there is a lak of prodution3



apaity and more mahines need to be purhased and/or subontrated. A large set ofpotentially new mahines an be added with the onstraint of just using a given numberof additional mahines. Again the question is whih new mahines are to be used. Prob-lems similar to NAM appear in the literature, for example where mahines are subjet toknown unavailability periods. However, the problem in whih, let us say, a workshop with10 parallel mahines are available and when it has been deided that 4 mahines shouldbe stopped has not been approahed in the literature. The losest referenes that we havebeen able to identify in the literature are the papers of ?, ? or ?. However, these studiesdeal with idential mahines or jobs with unitary/idential proessing times and with dif-ferent objetives or restritions. Other studies, like the one of ? onsider a ost funtion,together with job tardiness in a weighted objetive funtion, and simultaneously seletmahines and optimize tardiness values. More reently, ? studied regular performanemeasures and mahine ost (and seletion) onsiderations but for the more spei� ase ofidential parallel mahines. The reader is referred to this more reent paper for additionalreferenes.The seond generalization studied in this paper is when not all jobs in the set N needto be proessed. We have dubbed this extension as �Not All Jobs� or NAJ. In details,we have a total of n jobs and only H , H < n, jobs have to be proessed, disarding theremaining n −H jobs in the proess. NAJ-like settings have been thoroughly studied ata more prodution planning stage under various names like order aeptane, due datesetting or even Just In Time (JIT) sheduling. Good reviews of due date setting andJIT sheduling are given by ? and ?, respetively. However, and again to the best ofthe knowledge of the authors, it has not been studied together with the parallel mahinesprodution sheduling problem. The NAJ problem appears quite frequently at ompanieswhere there is the possibility of not aepting �or not produing in the urrent produ-tion planning horizon� a given subset of jobs. The possible bene�ts and appliations ofNAJ are manifold. Seleting only pro�table produts or produts that employ a givenunder-utilized mahinery are ommon examples. Note that NAJ is very similar to otherstudied settings just as the already mentioned JIT. Nevertheless, there are basi di�er-enes between these senarios. For example, in JIT problems, jobs are usually assigneda deadline and after the sheduling algorithm is applied, jobs not able to �nish by theirdeadline are usually disarded. In the NAJ setting there are no deadlines and the idea isto selet a subset of jobs not worth doing or likewise, to selet a set of jobs worth produing.? and ? showed that powerful ommerial solvers suh as IBM ILOG CPLEX versions4



11.0 and 11.1 obtain exellent solutions for the unrelated parallel mahines shedulingproblem, muh better than the methods that were onsidered state-of-art at the time.As a result, it is reasonable to start �rst with mathematial programming models forNAM and NAJ, whih are developed in Setion 2. After the formulation we present threealgorithms to solve the NAM setting along with omputational and statistial analyses ofperformane in Setion 3. The performane of existing solvers, in this paper IBM ILOGCPLEX 12.1, is also heked. In setion 4 we study the NAJ setting. Finally, onlusionsand further researh opportunities are presented in Setion 5.2 Mathematial programming formulationWe begin with a straightforward Mixed Integer Linear Programming (MILP) formulationfor the R//Cmax whih is as follows:
min Cmax (1)

n
∑

j=1

pij · xij ≤ Cmax, ∀i ∈ M (2)
m
∑

i=1

xij = 1, ∀j ∈ N (3)where xij is a binary variable whih takes value 1 if job j is assigned to mahine i and0 otherwise. The set of restritions (2) assign the Cmax value whih an not be lower than
Ci for eah mahine. Constraints in the set (3) ensure that all jobs are assigned to exatlyone mahine.The modi�ations for the NAM setting are simply to add the following sets of on-straints:

n
∑

j=1

xij ≤ n · zi, ∀i ∈ M (4)
m
∑

i=1

zi ≤ m− Z (5)where zi is a new binary variable whih takes value 1 if mahine i is used and 0 oth-erwise. Note that in onstraint set (4) the maximum number of assigned jobs to any5



mahine is n but only if the mahine is used (zi = 1). The single onstraint (5) limits themaximum number of mahines to be used to m − Z, where Z denotes the mahines tobe left out unused, as already stated. In total we need m additional binary variables and
m+ 1 additional onstraints for modeling the NAM problem.The NAJ modi�ations involve the following sets of onstraints:

m
∑

i=1

xij = hj, ∀j ∈ N (6)
n

∑

j=1

hj ≥ H (7)where hj is a new binary variable whih takes value 1 if job j is proessed and 0 oth-erwise. The set of restritions (6) replae the previous set (3). Again we have a singleonstraint (7) that sets the minimum number of jobs to be proessed to H .Note that the NAM and NAJ generalizations are not neessarily tied to makespanminimization.3 Methods for solving the �Not All Mahines� (NAM)generalizationTwo parts an be distinguished in the NAM problem. The �rst one is to deide whih ma-hines will not be used and the seond is to solve the resulting parallel mahines shedulingproblem without these mahines. In the ase of unrelated parallel mahines, the deisionof whih mahines should be left out is not an easy task sine the proessing time of eahjob depends on the mahine and there are no mahines that are onsistently slower orfaster for all jobs (this would be the less general ase of uniform parallel mahines). As aresult of this, if one aims to optimally solve this problem, it would be neessary to �nd thebest possible ombination of mahines to be employed. This is a ombinatorial problemwhere all possible ombinations of m − Z mahines that are seleted for use (not using
Z mahines) must be hosen among the total m mahines. For example, in a problemwith 10 mahines, if we only want to use 7 of these mahines, we would have a number ofombinations without repetition with 10 mahines taken 7 at a time to selet the mahinesthat are used or, equivalently, 10 elements taken 3 at a time to selet the mahines not tobe used. The result is (10

7

)

=
(

10
3

)

= 120 possible ombinations. Eah ombination results6



in a di�erent R//Cmax problem that should be solved to optimality. Obviously, this isa problem of signi�ant dimensions, sine for a more realisti example with a workshopof 50 parallel mahines where we wish not to use 10 of them we would have a total of10,272,278,170 possible ombinations. Given the impossibility of solving this problem op-timally, we propose a heuristi approah that arises from deomposing the NAM probleminto three phases:1. Analyze the proessing times and rank the most promising mahines.2. Seletion of mahines aording to the ranking.3. Solve the resulting R//Cmax problem.The last two phases an be iteratively applied until a given stopping riterion is reahed,sine di�erent mahine seletions will result in di�erent R//Cmax problems.One we have solved the resulting problem, we must take into aount that perhaps theseleted mahines were not the best ones. Therefore, we must follow a ertain riterion fornot only making a �rst seletion of mahines, but also to make suessive seletions in thehope that better solutions may be found. For example, if we have a problem with 100 jobsand 10 mahines on whih only eight of them must be used, maybe our best �rst optionis not to use mahines 1 and 2. After solving the resulting unrelated parallel mahinesproblem with 100 jobs and 8 mahines, we an selet two di�erent mahines, for example1 and 3 in the ranking. With this new set of mahines we solve the problem again. Eahtime we minimize the makespan of the resulting problem.The three phases of the NAM generalization solution proedure are explained in the fol-lowing setions in more detail.3.1 Mahine ranking proedureAs a �rst step, we devise a proedure to rank mahines to identify whih ones are po-tentially interesting. The obvious �rst ranking hoie is to solve m problems, eah one ofthem with m−1 mahines after removing eah potential mahine. One less mahine foresthe other mahines to have higher work loads and therefore the makespan will inrease.The worst makespan obtained among the m problems gives an indiation of a mahinethat should not have been removed. Conversely, the lowest makespan obtained indiates amahine that is not that muh needed. After this removal, we have only m− 1 remainingmahines. Repeating the proess by removing another mahine and solving m − 1 prob-lems with m − 2 mahines eah results in another mahine andidate. After repeating7



this proess Z times �whih means solving no less than Z ·m− Z·(Z−1)
2

unrelated parallelmahines problems� we might have a good ranking of mahines to be removed. However,this proess, apart from being extremely slow, gives very bad results sine mahines arebeing removed in a greedy way one at a time instead of onsidering them all together.Therefore, a more e�ient and e�etive proedure for ranking mahines is reommended.? observed that good solutions for the R//Cmax problem ontain job-mahine assign-ments where most of the time jobs are assigned to the �rst, seond or third mahine withthe lowest proessing time. Following the same idea we propose a simple ranking. Weextrat the three lowest values of proessing times pij for eah job j, i.e., i1j , i2j and i3j . Toeah one of these three values we subtrat the fourth lowest one (i4j = mini∈M/i1j ,i2j ,i3j pij).The result is a negative value. In general, negative results give us an indiation of howmuh faster it is to proess a job in the �rst three mahines when ompared to the fourth.Note that the fourth mahine is just a referene mahine and similar rankings ould beobtained using the �fth or subsequent mahines. This is alulated for eah job. Finally,for eah mahine, we add the values resulting from eah subtration. Mahines are sortedin asending order of this amount, where ties are broken arbitrarily. The �rst mahine inthe ranking is, in general, the mahine whih has, on average, shorter proessing times forall jobs. Note that this proedure is an impliit weighting sheme. The higher the di�er-enes between the onsidered proessing times, the higher the di�erene and the higherthe mahine will be ranked. Notie that a mahine may not have any of the �rst threeminimum proessing times for any job. In these ases, instead of adding the previoussubtrations, we add all the original proessing times of all jobs.Let us illustrate the mahine ranking proedure by means of an example. Table 1ontains the proessing times of a 10 job, 5 mahine R//Cmax example. For eah job, thethree lowest proessing times have been highlighted in italis whereas the fourth lowestproessing time is marked in bold.
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J1 J2 J3 J4 J5 J6 J7 J8 J9 J10M1 4 5 5 5 5 4 5 5 4 5M2 1 3 4 5 1 1 5 2 3 1M3 3 3 1 1 2 2 4 4 5 4M4 1 3 1 4 3 3 2 3 1 2M5 1 4 1 3 2 2 4 2 1 2Table 1: R//Cmax example problem. Proessing times pij for a problem with 10 jobs(olumns) and 5 mahines (rows). The three lowest proessing times for eah job in italisand the fourth in bold.Now we proeed to subtrat the fourth lowest proessing time from eah one of thethree lowest proessing times. This is shown in Table 2. The Ci olumn ontains sumof the values thus obtained for eah mahine. Co equals Ci in the ase that Ci is not azero. If Ci is zero, then Co is equal to the sum of all original pij values for mahine i fromTable 1. Following the example, the ranking would be {M5,M4,M2,M3,M1}. Thismeans that mahine M5 is the �most needed� mahine as regards makespan minimizationwhereas mahine M1 is the most expendable one.J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 Ci CoM1 0 47M2 -2 -1 -2 -2 -2 -1 -3 -13 -13M3 -1 -3 -4 -1 -1 -1 -11 -11M4 -2 -1 -3 -1 -3 -1 -3 -2 -16 -16M5 -2 -3 -2 -1 -1 -1 -2 -3 -2 -17 -17Table 2: Di�erene between the three lowest proessing times for eah job and the fourthlowest one, total sums and orreted sums.3.2 Mahine seletionOne the ranking for the mahines has been alulated, we proeed to make a seletion ofthe mahines to use. After eah seletion, we solve the resulting problem with the seletedmahines.
9



There are m mahines and we want to selet only m − Z, where Z is the numberof mahines that will not be used in the workshop. The previous ranking is alreadyalulated. We propose the following seletions:1. The �rst seletion ontains the m− Z �rst mahines of the ranking.2. In the seond seletion, we hoose the mahine in position m − Z + 1 from theranking, i.e., the �rst unseleted mahine, and exhange it with the last seletedmahine, whih is loated in position m− Z from the ranking.3. For the third seletion, with respet to the �rst seletion, we exhange the �rstunseleted mahine again, in position m − Z + 1, with the mahine in position
m− Z − 1 of the ranking.4. The proess ontinues until the �rst unseleted mahine has been exhanged withall seleted mahines of the �rst seletion.5. The above proess is repeated again but this time exhanging the seond unseletedmahine, i.e., the mahine that oupies the position m−Z +2 of the ranking, withall mahines seleted in the �rst seletion. Afterwards we proeed with the thirdunseleted mahine and so on until all unseleted mahines have been tested.The previous list is very detailed in order to have a lear desription of the seletions.However, the seletion is arried out in two nested loops and, in fat, these steps are easierdesribed as in a yle k, where k = 1, 2, . . . , Z, mahine m − Z + k in the ranking isseleted and swapped in turn with eah one of the �rst m− Z mahines.In total, there are (m − Z) · Z + 1 seletions or di�erent sets of mahines. All thesesets are potentially good sets as a result from the mahine ranking proedure. Note thateah seletion generates a di�erent R//Cmax problem that needs to be solved. As alreadyommented, and as we will later show, the proposed algorithms �rst arry out a seletionaording to the previous list and then solve the problem. The next seletion is arriedout and the problem is solved again. If all previous seletions are alulated and there isstill time left for arrying over, suessive seletions are just made of random mahinesuniformly seleted. Basially, we need this random mahine seletion phase for the onlyreason of not having the algorithm stop before a prede�ned CPU time, but our results(to be disussed later) indiate that there are little to no gains with this last randommahine seletion. Additionally, the limited allotted CPU time results in random mahine10



seletions only for instanes with a small number of mahines.Let us follow the previous example. Reall that the mahine ranking was {M5,M4,M2,M3,M1}.We have that 40% of the mahines in the shop have to be stopped (Z = 2), whih meansthat we have to selet the m−Z = 5−2 = 3 best mahines. The �rst ranking is therefore
{M5,M4,M2}. Notie that these mahines are the three most promising ones aordingto the ranking. One this three mahine problem is solved and a makespan value obtained,a seond seletion is arried out. We take the �rst unseleted mahine aording to theranking, mahine M3, and exhange it with the last seleted mahine, M2. This meansthat the mahines to use in the seond seletion are {M5,M4,M3}. After solving this newproblem we exhange again the �rst unseleted mahine with the seond seleted mahine,i.e., M3 with M4, and the mahines seleted in this ase are {M5,M3,M2}. The follow-ing seletion should be {M3,M4,M2}. At this point, where the �rst unseleted mahinehas been exhanged with all mahines seleted in the �rst seletion, we proeed to take thenext unseleted mahine, M1. So, the next ombination to try would be {M5,M4,M1},then {M5,M1,M2}, and �nally {M1,M4,M2}. If time permits after ompleting theseseletions, we ontinue with a random seletion of mahines.3.3 �Not All Mahines� algorithmsThe �rst method to onsider is the simple solution of the MIP mathematial model formedby the objetive funtion (1) and onstraint sets (2), (3), (4) and (5) with a modern om-merial solver. We use the IBM ILOG CPLEX solver, in its last version 12.1 available atthe time of the writing of this paper. We denote this solver as CPLEX in short.A seond straightforward method is to use CPLEX as a R//Cmax solver, i.e., �rstarrying out the ranking and seletion proedures and just using CPLEX to solve theunrelated parallel mahines sheduling problem where some mahines have been alreadyremoved. This means that eah time we make a seletion, the resulting redued MIPmathematial model is solved with CPLEX. Sine this redued model is muh smaller, itis expeted to be solved muh quiker. We set a maximum CPU time for eah CPLEXrun so that we an re-solve with a new set of mahines provided by the mahine seletionproedure. The rationale behind stopping CPLEX before the urrent integer solution hasbeen proven to be optimal is to avoid a possibly long span of time where CPLEX is justlosing the searh tree without improving results. Thus, a restart of CPLEX with a newseletion of mahines and providing the best result so far as a bound, allows CPLEX tousually �nd better solutions quikly. We refer to this seond method as NAM+CPLEX11



in short.The third proposed algorithm also uses the mahine ranking and seletion proedures,but instead of using CPLEX as a solver for the resulting R//Cmax problems, we use twoheuristis. First we employ fast simple loal searh algorithm as a seed solution, whihis later fed into a state-of-the-art method. The �rst heuristi is an insertion loal searhfollowed by an interhange loal searh, both iteratively applied in a loop until a loaloptimum is reahed. This �rst heuristi is denoted as ST and interested readers an �ndomplete explanations in the reent paper of ?. Sine this proess is very fast, we anrepeat ST a number of times (ontrolled by a maximum elapsed CPU time), eah timewith a di�erent mahine seletion. This permits a fast heuristially found seletion of goodmahines, along with a reasonable job-to-mahine assignment.The seond heuristi is a more elaborate iterated greedy searh method, alled NVST-IG+and proposed in ?, whih was later denoted in brief as DIG in ?. Contrary to ST, DIGdoes not work over di�erent mahine seletions. It is merely used the same way as CPLEXis used in NAM+CPLEX, i.e., only to work over the R//Cmax problem.This third method is denoted as NAM+ST+DIG. Notie that this method does not needany ommerial solver for its appliation.The fourth and last proposed method is NAM+ST+CPLEX. In this ase, instead oflaunhing CPLEX after the ranking and mahine seletion proedures, we �rst apply afast loal searh in order to initialize CPLEX with a good seed solution. As we an see,all proposed methods are simple and easily reproduible.3.4 Computational and statistial performane analysis? proposed a omprehensive benhmark of no less than 1400 instanes for the R//Cmaxproblem. Instanes are grouped into seven proessing time distributions used to gen-erate the proessing times pij and, as the authors have shown, the di�erent intervalshave a profound e�et on the results. All intervals employ disrete uniform distribu-tions like intervals U(1, 100), U(10, 100), orrelated jobs, orrelated mahines, U(100, 200),
U(100, 120) and U(1000, 1100). At eah interval there are 10 instanes for eah ombi-nation of n = {100, 200, 500, 1000} and m = {10, 20, 30, 40, 50}. Note the sheer size ofthe largest instanes at 1000 jobs and 50 mahines. In instanes with orrelated jobs,proessing times are determined by the following expression: pij = bj + dij where bj and
dij are uniformly distributed values (also disrete) in the ranges U(1, 100) and U(1, 20),respetively. In the ase of orrelated mahines, proessing times obtained in a similar12



way: pij = ai + cij where ai and cij are uniformly distributed in U(1, 100) and U(1, 20),respetively.We use a set of 12 PC/AT omputers with Intel Core 2 Duo E6600 proessors runningat 2.4 GHz and 2 GB of RAM memory under the Windows XP SP3 operating system.No parallel proessing is arried out with the 12 omputers, we just simply divide theomputational work over the 12 omputers. Tests are onduted for di�erent perentagesof unused mahines, i.e., for 20%, 50% and 80%. The stopping riteria for all methods isa maximum elapsed CPU time, whih is aurately measured and has been set to 60 and300 seonds. We have profusely used the Design of Experiments (DOE, ?) methodologyand the Analysis of Variane (ANOVA) statistial tool for drawing meaningful and soundonlusions. We hek the three main hypotheses of the parametri ANOVA: normal-ity, homosedastiity and independene of the residuals. The tabulated results for eahmethod will be presented as the relative perentage deviation from the best solution foundas follows: Relative Perentage Deviation (RPD) =
Cmax(i)− C∗

max(i)

C∗
max(i)

· 100 (8)where C∗
max(i) is the aforementioned best solution found and Cmax(i) is the value ob-tained by a given algorithm and instane i. All instanes, together with the best solutionsknown are available at http://soa.iti.es. Note that omparing against the optimum so-lution is not viable sine optimum solutions for the instanes proposed ould not be foundin all ases. We will disuss later about omparisons against some optimum solutions orstrong lower bounds.Some of the proposed methods have some simple parameters that were alibrated.Basially, these are the times at whih the di�erent parts of the methods start and/orthe maximum time allowed for eah part. Table 3 shows this information and alibratedvalues aording to the two elapsed CPU time stopping points.
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Stopping timeAlgorithm Fator 60 300NAM+CPLEX Restart time for CPLEX 10 60NAM+ST+DIG Time given to ST 10 60Time given to DIG 50 240NAM+ST+CPLEX Time given to ST 20 100Time given to CPLEX 40 200Restart time for CPLEX 10 60Table 3: Calibrated values for the di�erent tested methods. Values in seonds.We show the average results for eah of the methods tested in the 1400 instaneswith the two stopping riteria and the three perentages of unused mahines. Later, weshow some statistial analyses of variane whih represent the statistial signi�ane of theobserved di�erenes between the various algorithms, their interations and Tukey HonestlySigni�ant Di�erene (HSD) on�dene intervals with a 95% on�dene level.The results for 20% of unused mahines, for elapsed CPU times stopping riteria of 60and 300 seonds are reported in Tables 4 and 5, respetively. Similar tables, but for 50%and 80% of unused mahines are reported in Tables 6 to 9.Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(1, 100) 2.41 1.24 1.95 5.24
U(10, 100) 2.10 0.75 0.58 2.89Job Corre 1.76 0.66 0.21 1.29Mah Corre 0.73 0.25 0.55 1.66
U(100, 200) 0.84 0.30 0.17 0.69
U(100, 120) 1.63 0.07 0.04 0.16
U(1000, 1100) 0.10 0.04 0.02 0.08Average 1.37 0.47 0.50 1.72Table 4: Average relative perentage deviations for the �Not All Mahines� algorithmswith 20% of unused mahines and 60 seonds elapsed CPU time stopping riterion.
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Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(1, 100) 0.54 0.69 1.51 5.00
U(10, 100) 0.68 0.18 0.39 2.78Job Corre 0.69 0.31 0.06 1.02Mah Corre 0.13 0.03 0.48 1.63
U(100, 200) 0.27 0.08 0.11 0.66
U(100, 120) 0.06 0.02 0.03 0.15
U(1000, 1100) 0.02 0.01 0.02 0.08Average 0.34 0.19 0.37 1.62Table 5: Average relative perentage deviations for the �Not All Mahines� algorithmswith 20% of unused mahines and 300 seonds elapsed CPU time stopping riterion.
Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(1, 100) 12.87 2.64 1.68 1.04
U(10, 100) 10.29 0.98 0.57 0.52Job Corre 11.90 0.34 0.14 0.32Mah Corre 3.73 0.29 0.74 0.20
U(100, 200) 12.88 0.33 0.27 0.26
U(100, 120) 14.20 0.07 0.06 0.07
U(1000, 1100) 1.94 0.04 0.02 0.03Average 9.69 0.67 0.50 0.35Table 6: Average relative perentage deviations for the �Not All Mahines� algorithmswith 50% of unused mahines and 60 seonds elapsed CPU time stopping riterion.
Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(1, 100) 5.11 1.05 1.68 0.34
U(10, 100) 2.94 0.49 0.41 0.10Job Corre 3.65 0.16 0.05 0.32Mah Corre 1.25 0.01 0.64 0.06
U(100, 200) 3.32 0.10 0.21 0.08
U(100, 120) 4.40 0.03 0.05 0.02
U(1000, 1100) 0.18 0.02 0.01 0.01Average 2.98 0.27 0.44 0.13Table 7: Average relative perentage deviations for the �Not All Mahines� algorithmswith 50% of unused mahines and 300 seonds elapsed CPU time stopping riterion.15



Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(1, 100) 23.17 2.04 1.47 1.94
U(10, 100) 13.97 1.19 0.55 0.99Job Corre 5.65 0.12 0.11 0.24Mah Corre 56.64 0.04 0.44 1.33
U(100, 200) 7.72 0.24 0.15 0.38
U(100, 120) 7.23 0.07 0.07 0.14
U(1000, 1100) 5.47 0.04 0.03 0.06Average 17.12 0.53 0.40 0.73Table 8: Average relative perentage deviations for the �Not All Mahines� algorithmswith 80% of unused mahines and 60 seonds elapsed CPU time stopping riterion.
Interval CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEX
U(1, 100) 12.95 0.67 0.63 1.19
U(10, 100) 7.90 0.47 0.29 0.70Job Corre 2.45 0.07 0.06 0.19Mah Corre 30.33 0.00 0.39 1.03
U(100, 200) 3.95 0.13 0.08 0.32
U(100, 120) 4.19 0.02 0.05 0.13
U(1000, 1100) 2.76 0.02 0.02 0.05Average 9.22 0.20 0.22 0.52Table 9: Average relative perentage deviations for the �Not All Mahines� algorithmswith 80% of unused mahines and 300 seonds elapsed CPU time stopping riterion.As we an see, the results of the proposed methods that employ our presented mahineranking and seletion methods provide, for almost all ases of elapsed CPU time stoppingriteria, perentage of unused mahines and proessing times intervals, signi�antly loweraverage relative perentage deviations from best known solutions. Some di�erenes arestriking, for example, we an see in Table 8 that solving the MIP mathematial modelwith CPLEX and stopping after 60 seonds of elapsed CPU time, and with 80% of unusedmahines, the last available version of CPLEX yields no less than a 23.17% average relativedeviation, alulated for the 200 instanes in the interval U(1, 100). Comparatively, theproposed method NAM+ST+DIG, whih does not use CPLEX at all, provides a meager1.47% deviation from the best known solutions. Di�erenes between CPLEX and thethree proposed methods are muh less marked when 300 seonds of elapsed CPU time areallowed. This is an expeted result and, furthermore, with even more allowed CPU time,16



eventually most methods would onverge to the optimum solution.It is interesting to observe that CPLEX behaves very well for just 20% of unused mahines,beating two of the proposed methods for 300 seonds (Table 5). However, the resultsare muh worse for 50% unused mahines and speially, as ommented, for 80% unusedmahines.Table 10 presents the overall averages of all tested methods. Note that eah ell ontainsthe average results of 1400 instanes. Among the presented methods, NAM+ST+CPLEXdoes not improve the results of NAM+CPLEX. Yet, under the situation where only 50% ofthe mahines are onsidered � under both 60 and 300 seonds CPU time stopping riterion� NAM+ST+CPLEX is marginally better than NAM+CPLEX. However, NAM+CPLEXand NAM+ST+CPLEX improve the results of CPLEX in a signi�ant way. This alonedemonstrates that our presented mahine ranking and seletion proedures atually helpwhen solving this interesting R//Cmax problem generalization. Lastly, NAM+ST+DIGis the best method for 60 seonds and the seond best for 300 seonds. In our humbleopinion, this is a noteworthy result sine NAM+ST+DIG does not make use of CPLEX.CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEXM.20% and 60 se. 1.37 0.47 0.50 1.72M.20% and 300 se. 0.34 0.19 0.37 1.62M.50% and 60 se. 9.69 0.67 0.50 0.35M.50% and 300 se. 2.98 0.27 0.44 0.13M.80% and 60 se. 17.12 0.53 0.40 0.73M.80% and 300 se. 9.22 0.20 0.22 0.52Average 60 se. 9.39 0.56 0.47 0.93Average 300 se. 4.18 0.22 0.34 0.76Table 10: Summary of relative perentage deviations from the best solutions know for thefour �Not All Mahines� methods tested in all intervals and stopping riteria.As previously stated, all results are fed into a multifator ANOVA where the di�erentalgorithms, intervals, perentage of unused mahines, stopping time, number of mahinesand number of jobs are ontrolled fators. The response variable is the relative perentagedeviation. Note that the total number of treatments is 1400 · 6 · 4 = 33, 600 (3,360if the instane repliate is not studied as a witness fator) so the statistial power ofthe experiment is very high. Most signi�ant fators have p-values that approah zero.Therefore, instead of omparing p-values, means plots with on�dene intervals resultingfrom the ANOVA onstitute a more pratial approah. Some means plots are given inFigures 1 and 2. 17
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CPLEX NAM+CPLEX NAM+ST+DIG NAM+ST+CPLEXFigure 1: Relative perentage deviation means plot with Tukey HSD intervals at a 95%on�dene level for the interation between all four �Not All Mahines� methods testedand all perentages of unused mahines. 60 seonds elapsed CPU time stopping riterion.
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Figure 2: Relative perentage deviation means plot with Tukey HSD intervals at a 95%on�dene level for the interation between all four �Not All Mahines� methods testedand all perentages of unused mahines. 300 seonds elapsed CPU time stopping riterion.As we an see, CPLEX produes average perentage deviations with di�erenes thatare statistially signi�ant. Note that overlapping Tukey HSD intervals between twoplotted means imply that the di�erenes between the overlapped means are not statis-tially signi�ant. In both ases, with 60 and 300 seonds elapsed CPU time stoppingriterion both the perentage of unused mahines and the algorithms fators, as wellas the interation between the two, resulted in p-values very lose to zero. However,there are many non-statistially signi�ant di�erenes among the other tested methods.Statistial testing is, as we an see, neessary. From the overall averages given in Ta-ble 10, we onlude that muh of the observed di�erenes in average performane betweenNAM+CPLEX, NAM+ST+DIG and NAM+ST+CPLEX are not statistially signi�ant.18



NAM+ST+CPLEX is statistially worse than all other proposed methods for 300 seondsand 20% of unused mahines. CPLEX is statistially equivalent to all other methods onlyfor the ase of 20% of unused mahines. Although NAM+CPLEX and NAM+ST+DIGhave similar results, we want fous on the fat than NAM+ST+DIG does not use anyommerial solver. Commerial solvers are very expensive for industries and therefore, weprefer the simpler and �solver-less� NAM+ST+DIG method.Comparing against the best known solution gives us relatively little information aboutthe ultimate e�etiveness of either CPLEX or the other tested methods. Comparingagainst true optimum solutions is a preferable option. However, the proposed MIP for-mulation, when solved with IBM ILOG CPLEX 12.1., is not able to solve all instanesoptimally, as the previous results have shown. In any ase, we have arried out additionaltesting. Among all of our results with 20, 50 and 80% of unused mahines and 300 se-onds elapsed CPU time stopping riterion, we have alulated for how many instanes theoptimum solution ould be obtained with CPLEX. Additionally, we also alulated forhow many instanes a gap of less than 1% between the lower bound and the best integersolution found is known (not inluding the previous optimally solved instanes). Overall,there are 12.07% of instanes with a known optimum and 7.67% of instanes with a gapof less than 1%. We report the average relative deviations from these two sets of instanesof the NAM+ST+DIG algorithm, run during 60 seonds in Table 11.
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20% unused mah 50% unused mah 80% unused mahgap < 1% optimum gap < 1% optimum gap < 1% optimum
U(1, 100) % instanes 8 31.5 1.5 12 0 15.5Average deviation 0.31 2.54 0.04 0.05 0.00 0.19
U(10, 100) % instanes 9.5 10.5 1 9.5 0 15.5Average deviation 0.30 0.83 0.14 0.13 0.00 0.21JobCorre % instanes 13.5 1 5.5 4.5 0.5 14.5Average deviation 0.33 0.05 0.21 0.26 0.27 0.22MahCorre % instanes 37.5 39 16.5 26.5 3.5 19.5Average deviation 0.94 0.42 0.91 0.54 0.39 0.20
U(100, 200) % instanes 14.5 1 8 2 1.5 13.5Average deviation 0.54 0.16 0.28 0.25 0.36 0.08
U(100, 120) % instanes 3.5 12.5 6 4 1.5 10.5Average deviation 0.35 0.03 0.12 0.05 0.09 0.05
U(1000, 1100) % instanes 16 0.5 10 0.5 3 9.5Average deviation 0.25 0.00 0.05 0.00 0.06 0.04Total % instanes 14.64 13.71 6.93 8.43 1.43 14.07Average deviation 0.43 0.58 0.25 0.18 0.17 0.14Table 11: Average relative perentage deviations of the NAM+ST+DIG algorithm run for60 seonds with respet to optimum solutions or lower bounds for instanes with a gapof less than 1% obtained using CPLEX 12.1 during 300 seonds. 20%, 50% and 80% ofunused mahines.As shown, when omparing against the instanes for whih the optimum or very goodlower bound is known, NAM+ST+DIG reports results of less than 0.29% average relativedeviation (aross all instanes). This means that when the method works it works verywell. However, there is a large perentage of instanes for whih no good lower bounds areknown. Most presented methods, inluding CPLEX, provide solutions that are not as farapart as the gap values indiate. Therefore, all points out to a poor lower bound insideCPLEX (whih basially depends on the linear relaxation of the solved MIP model).We already observe from Table 11 that inreasing the perentage of unused mahinesdereases the number of optimal solutions found by CPLEX. The way proessing timesare distributed also a�ets the optimality rate. For example, for orrelated mahines and20% unused mahines, the optimum is known for 39% of the instanes. Comparatively,only a 0.5% of the U(1000, 1100) instanes have a known optimum. Apart from that, alose analysis of all the experimental data did not yield any further interesting onlusionsas regards whih fators a�et the large gaps.
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4 The �Not All Jobs� (NAJ) problemAs with the previous NAM R//Cmax generalization, the �rst step is to test the MIPmathematial model omposed of the objetive funtion (1), followed by onstraint sets (2),(6) and (7). This MIP model is solved as a �rst step with CPLEX with a stopping elapsedCPU time of 300 seonds with the ondition that just 50% of jobs must be proessed. Theresults are shown in Table 12. Eah ell represents the average of the 200 instanes of eahproessing time interval. However, in this ase the relative deviation has been alulatedwith respet to the lower bound given by CPLEX at the time limit of 300 seonds or withrespet to the optimum solution whenever CPLEX was able to solve instanes optimally.We also present the average gap between the reported solution and the mentioned lowerbound. The maximum deviation is also given.Interval Maximum deviation Average deviation Average gap
U(1, 100) 0.00 0.00 0.00
U(10, 100) 2.26 0.17 1.28Job Corre 12.28 1.94 2.36Mah Corre 1.13 0.01 0.48
U(100, 200) 3.28 0.11 0.49
U(100, 120) 0.08 0.00 0.05
U(1000, 1100) 8.34 1.01 1.87Average 3.91 0.46 0.93Table 12: Maximum and average deviations from the lower bound or optimum solution,together with the gap for CPLEX MIP mathematial model solution for the �Not AllJobs� problem. 50% of jobs to be proessed and 300 seonds elapsed CPU time stoppingriterion. All results in perentages.It an be seen that CPLEX alone provides very good values whih are, in average,below 0.5%. Some intervals, like U(1, 100) result in the optimum solution for all 200instanes tested. However, for some other intervals, like orrelated jobs, we observe amaximum deviation of 12.28% but still the average deviations, and above all, average gap,are very small. This last result is not surprising, when jobs are orrelated (some jobs arefaster and some others are slower on all mahines) it is more di�ult to deide whih jobsto eliminate. The slower jobs are easy to rule out but one all slow jobs have been elimi-nated, a hair splitting proess is needed to �nish o� with a 50% proessed jobs beause ofthe inherent relationship between jobs. However, the average deviation in this ase is stillbelow 2%.We also tested the model where 20% and 80% of jobs were not proessed. For 20% of21



non-proessed jobs, the average deviations from the lower bound or optimum solution wasa bit higher at 0.51%. For 80% of non-proessed jobs the results were even lower at just0.33%. Furthermore, for 80% of non-proessed jobs, 5 out of the 7 tested intervals resultedin optimum solutions aross all instane sizes when run for 300 seonds of CPU time.Given these results it seems unneessary to propose spei� algorithms for this problem,given the exellent performane observed with CPLEX, speially if one onsiders that only�ve minutes of CPU time have been allotted.Despite these good results, we still attempted several adaptations and algorithms. Weemployed job seletion methods, similar to the previous mahine ranking and seletionproedures, with the objetive of ranking and seleting jobs. In a similar way, we apply theST and DIG heuristis to obtain an algorithm that we have referred to as NAJ+ST+DIG.These algorithms solve the unrelated parallel mahines problem just with the jobs seletedafter the rankings. The results were not ompetitive with those obtained by CPLEX. As anexample we show in Figures 3, 4 and 5 the means plot resulting from an ANOVA analysisfor three di�erent intervals between CPLEX and the proposed NAJ+ST+DIG method.It is lear that CPLEX is statistially better than the proposed algorithm adapted tothis problem, exept in the ase of orrelated jobs, where despite not being statistiallydi�erent, CPLEX still has a better average. This outome is expeted as we antiipated,given the very good results obtained with CPLEX.
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Figure 3: Means plot and Tukey HSD intervals at a 95% on�dene level with average rel-ative deviations from lower bounds or optimum solutions of CPLEX and NAJ+ST+DIG.50% of jobs to be proessed and 300 seonds elapsed CPU time stopping riterion forproessing time interval U(10, 100).
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Figure 4: Means plot and Tukey HSD intervals at a 95% on�dene level with average rel-ative deviations from lower bounds or optimum solutions of CPLEX and NAJ+ST+DIG.50% of jobs to be proessed and 300 seonds elapsed CPU time stopping riterion forproessing time interval of orrelated jobs.
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Figure 5: Means plot and Tukey HSD intervals at a 95% on�dene level with average rel-ative deviations from lower bounds or optimum solutions of CPLEX and NAJ+ST+DIG.50% of jobs to be proessed and 300 seonds elapsed CPU time stopping riterion forproessing time interval U(100, 200).5 Conlusions and future researhIn this paper we have studied, for the �rst time, and to the best of our knowledge, twogeneralizations of the problem of sequening jobs on unrelated parallel mahines with theobjetive of minimizing the Cmax. These generalizations are the result of inluding moretatial or strategi deisions in the sheduling proess. More spei�ally, we have studied�rst the problem in whih not all available parallel mahines need to be used and the ad-ditional deision is to determine whih mahines should be ruled out. The seond studied23



generalization a�ets jobs and the supplemental ation is to deide whih jobs must beproessed. Mixed Integer Programming (MIP) mathematial models have been presented,along with some additional methods spei�ally tailored for suh generalizations.For the �Not All Mahines� (NAM) problem we have presented a very simple mahineranking proedure that sorts mahines from most promising to less interesting as regards
Cmax minimization. Together with the ranking, we have also devised an equally sim-ple mahine seletion proedure that selets mahines in a smart way using the previousranking. These two simple proedures have been oupled with either CPLEX or reentstate-of-the-art algorithms that have been proven to be very e�etive when solving theunrelated parallel mahine sheduling problem. Comprehensive omputational and statis-tial analyses, arried out over a wide range of 1400 instanes, with di�erent parametersand stopping time riteria allow us to onlude that the presented mahine ranking andseletion proedures provide solutions that are many times better than those produedwith CPLEX.Conversely, CPLEX provides very good solutions for the seond studied generalizationof �Not all Jobs� or NAJ. The simple MIP mathematial model is solved by CPLEX toalmost optimality with average deviations from lower bounds below 0.5% in under �veminutes of CPU time.In our opinion, many possible further studies stem from the NAM and NAJ generaliza-tions. First of all, these problems an be naturally extended to a multi-objetive settingas wildly di�erent Cmax values are to be expetedly obtained for any number of used ma-hines. Therefore, two objetives, namely, Cmax and number of mahines used, an besimultaneously optimized. Makespan is hardly the only possible sheduling objetive andother even more interesting results ould be obtained by studying due date satisfationtogether with number of mahines. NAJ multi-objetive settings seem equally interestingas well.Additionally, we have presented in this paper markedly simple methods. Still, solutionsould be improved by using more elaborate methods and/or advaned exat methodolo-gies.Finally, parallel mahine problems are not the only sheduling settings where these NAMand NAJ generalizations an be applied. NAJ an be atively applied to interesting singlemahine problem variants as those presented in ? or ?, just to name two reent exam-ples. NAM an be applied to every stage of hybrid �owshops that are now being atively24
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