
TRABAJO DE FIN DE MÁSTER

MÁSTER EN COMPUTACIÓN PARALELA Y DISTRIBUIDA

ANÁLISIS DEL RENDIMIENTO Y
OPTIMIZACIÓN DE UN CÓDIGO
NUMÉRICO PARALELO PARA EL

CÁLCULO DE LA EMISIÓN EN PLASMAS
ASTROFÍSICOS

Autor

Carmen Aloy Torás

Directores

Dr. Petar Mimica

Dr. Vicent Vidal Gimeno

Septiembre de 2013





Agradecimientos

Quisiera agradecer agradecer al Profesor Miguel A. Aloy, miembro del Grupo
de Astrof́ısica Relativista (GAR) , la idea inicial del presente trabajo, los
valiosos consejos y sugerencias dadas durante la realización del mismo, aśı
como la posibilidad de utilizar el clúster Lluis Vives a través de la cola del
Grupo para la realización de pruebas.

También, al Dr. Petar Mimica, Co-Director de este trabajo, quisiera
agradecerle todo el trabajo realizado en colaboración con el desarrollo del
mismo. Dar las gracias por las ideas, sugerencias y consejos, por disponer
de sus codigos fuentes sobre los que hacer modificaciones, por los ficheros de
entrada necesarios para pruebas, por las correcciones y validaciones.

Y por último, agradecer al Profesor Vicent Vidal, por permitir el desarrollo
de este trabajo en el Grupo de investigación en el que trabajo y co-tutorizarlo
con el Dr. Petar Mimica.

3



Agradecimientos 4



Resumen

La presente memoria expone el trabajo de análisis del rendimiento y opti-
mización de códigos numéricos paralelos, que realizan el cálculo de la emisión
en plasmas astrof́ısicos, estudiados en el trabajo de investigación desarrollado
por los miembros del Grupo de Astrof́ısica Relativista de la Universidad de
Valencia, en el que actualmente colaboro como técnico de soporte a la in-
vestigación a través del Programa Nacional de Técnicos de Apoyo 2011 del
Ministerio de Economı́a y Competitividad.

El trabajo de optimización se ha llevado a cabo tras un intenso estudio
de las necesidades de mejora en ciertos puntos claves de la ejecución de
estos códigos, sobretodo nos hemos centrado en la velocidad de ejecución, el
consumo de memoria, el espacio de almacenamiento y los requerimientos de
ancho de banda. Para ello hemos realizado un perfilado y un muestreado
estos códigos en diferentes escenarios, todos ellos tomados de casos reales,
y con los resultados obtenidos de este perfil y muestreo, más numerosos
tests de ejecuciones con diferentes combinaciones de parámetros de entrada,
hemos podido tomar decisiones sobre en qué puntos implementar las mejoras
en los códigos y las opciones o configuraciones de entrada que dan lugar a
resultados, optimizando los aspectos de velocidad, consumo, espacio, etc.,
antes mencionados.

Las mejoras implementadas serán explicadas detalladamente a lo largo de
la presente memoria, mejoras tales como la optimización del tiempo total de
ejecución y del tamaño de los ficheros de salida Cap. 2, en la paralelización
de tareas que pueden simultanearse Cap. 3, optimización del uso de memoria
Cap. 4 y optimización de la escritura paralela de los ficheros de salida Cap. 5.

Con todas estas optimizaciones, se pretende conseguir unos códigos numé-
ricos altamente eficientes que puedan correr en supercomputadoras de la Red
Española de Supercomputación consumiendo el mı́nimo de recursos posible
de estas máquinas y que puedan proporcionar resultados a los investigadores
en el menor tiempo posible para que puedan realizar su labor de análisis de
los mismos.

5



Resumen 6



Contents

Introduction 8

1 Preparation of the work environment 21
1.1 Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.1.1 Tasks done . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2 Problems encountered during installations . . . . . . . . . . . 23
1.3 A search for solutions . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Best solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.1 GCC45 installation . . . . . . . . . . . . . . . . . . . . 27
1.4.2 MPICH2-1.3.2P1 installation . . . . . . . . . . . . . . 27
1.4.3 HDF5 1.8.6 installation . . . . . . . . . . . . . . . . . . 27
1.4.4 Modification of MacPorts self-update script . . . . . . 28
1.4.5 Implementation of a script of full installation . . . . . . 28

2 Profiling and analysis of the computational aspect of SPEV 31
2.1 Motivation for code optimization . . . . . . . . . . . . . . . . 31

2.1.1 SPEV algorithm and its profiling . . . . . . . . . . . . 32
2.1.2 MRGENESIS and SPEV parallelization . . . . . . . . 34

2.2 Profiling and testing . . . . . . . . . . . . . . . . . . . . . . . 36
2.2.1 Profiling the preprocessor . . . . . . . . . . . . . . . . 36
2.2.2 Testing the preprocessing . . . . . . . . . . . . . . . . . 40
2.2.3 Testing the postprocessing . . . . . . . . . . . . . . . . 49
2.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Optimization of use of hardware resources 53
3.1 Simultaneous execution of different codes . . . . . . . . . . . . 53
3.2 Code modifications . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2.1 Modification of MRGENESIS . . . . . . . . . . . . . . 56
3.2.2 Modifications of SPEV (preprocessing) . . . . . . . . . 57
3.2.3 Modifications of PARPLOT . . . . . . . . . . . . . . . 61

3.3 Performance test . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 64

7



Contents 8

4 Optimization of memory management 67
4.1 SPEV virtual detector and its memory requirements . . . . . 67

4.1.1 Radiative transfer in SPEV . . . . . . . . . . . . . . . 67
4.1.2 Virtual detector memory management . . . . . . . . . 69

4.2 Implementation of linked lists in SPEV virtual detector . . . . 69
4.2.1 Comparison of old and new algorithms . . . . . . . . . 70
4.2.2 Implementation . . . . . . . . . . . . . . . . . . . . . . 70
4.2.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Optimization of the hierarchical data structure 79
5.1 Structure of the preprocessed file . . . . . . . . . . . . . . . . 79
5.2 Modifications of the file structure . . . . . . . . . . . . . . . . 80

5.2.1 Implementation . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Performance tests . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Conclusions 87

A Source Code 91
1.1 Implementation of Linked Lists . . . . . . . . . . . . . . . . . 91
1.2 Implementation of the hierarchical data structure . . . . . . . 101

B Sampling figures 105

C Publications related to the present work 111

Bibliography 113



Introduction

The work presented in this thesis focuses on the optimization of numeri-
cal tools which are essential for the research conducted by members of the
Relativistic Astrophysics Group (RAG) at the University of Valencia. The
research at RAG deals with the study of the astrophysical plasmas encoun-
tered in a wide variety of scenarios 1 .

Computations performed by the Relativistic
Astrophysics Group

On the one hand the RAG studies the theoretical models of relativistic jets
(in active galactic nuclei, or in progenitors of gamma-ray bursts) and com-
pact stellar objects (neutron stars and black holes). On the other hand the
electromagnetic and gravitational radiation emitted from such sources is an-
alyzed, in order to be able to compare the theoretical models to observations.

In order to achieve these objectives the group strongly relies on the analy-
sis and simulations of the most relevant physical processes, i.e. they shall ac-
curately model the astrophysical scenarios at hand including radiative trans-
fer in multidymensional numerical simulations. The constitutive areas of
research of the group members and their broad objectives are the following:

• Extragalactic jets are among the most fascinating objects in the uni-
verse. They emerge from the centers of active galactic nuclei (AGN)
and propagate with velocities very close to the speed of the light up
to distances of thousands (in some cases even millions) of light years
from their host galaxy. In the RAG their formation, acceleration and
collimation mechanisms are studied, as well as their stability proper-
ties and their structure. This is achieved using one, two- and three-
dimensional magneto-hydrodynamical simulations coupled to radiative
transfer codes. To test the validity of the simulations observational

1www.uv.es/astrorela

9

http://www.uv.es/astrorela


Introduction 10

data from the whole electromagnetic spectrum is used, with a special
emphasis on the radio, optical, X-ray and γ-ray frequencies.

• Gamma-ray bursts are brief flashes of γ-rays which are, for a few sec-
onds, the brightest objects in the sky when observed using γ-ray tele-
scopes. Most probably the emission comes from a relativistic jet formed
either during the collapse of a massive star or during the merger of two
compact objects (two neutron stars or a neutron star and a black hole).
We analyze the mechanism of jet formation and propagation using mul-
tidimensional magneto-hydrodynamical simulations, paying particular
attention to the emission properties.

• Compact stars are of interest both as a sources of highly variable
emission and as possible progenitors of gamma-ray bursts. We study
the physics of neutrino production in dense superfluid matter, as well
as neutrino transport in proto-neutron stars and in the accretion disks
resulting from the merger of compact binaries. Furthermore, we inves-
tigate the thermal emission from magnetized neutron stars and their
thermal and magnetic evolution. The results of our models are com-
pared with observations in order to constrain the free parameters of the
models.

• Gravitational radiation is an additional observational window into
our universe (besides the electromagnetic spectrum). For a successful
detection of gravitational radiation good theoretical predictions are in-
dispensable. Using perturbative and full numerical relativity codes we
compute the emission of gravitational radiation due to accretion pro-
cesses on to compact objects, gravitational stellar core collapse to neu-
tron stars and black holes, and pulsating and rapidly-rotating relativistic
stars with the aim of helping the interpretation of future detections by
Earth- and space-based gravitational wave detectors.

Use of computational resources

Members of the RAG commonly use the Spanish Supercomputing Network
resources for their calculations. Currently, they are granted with a significant
number of computing hours. In general, according to PRACE (Partnership
for Advanced Computing in Europe) statistics, astrophysics occupies a 26 %
of computational resources on some of the most powerful supercomputers in
Europe [17], as is shown in Fig. 1



11 Introduction

Figure 1: Distribution of computational resources per research area. Source: BSC-RES-
PRACE

Optimization of the use of computational re-
sources

Due to the complexity of the physics the demand of computational resources
needed to solve the problems of interest is very high. Therefore, a high
efficiency of astrophysical codes is in high demand. Common ways to achieve
high efficiency are:

• Code optimization: by reviewing the source code we can determine
if it can be improved in terms of clock cycles required to execute, sub-
sequently rewriting parts of all of the source code as needed.

• Parallelization: distribution of the work load among multiple simul-
taneously executing threads.

• Memory usage optimization: analysis of memory access operations
and, if necessary, change of the data structures used in the code.

• Input/output optimization: reduction of the number and volume
of reads and writes to the external storage is achieved by using com-
pression, parallel/distributed file systems and the change of the data
structures used.

From the above it follows that of the RAG requires an intensive use of the
computational resources which must be optimized. Some additional com-



Introduction 12

pelling reasons for the optimization are:

1. Reducing economic costs of using supercomputers.

2. Reducing environmental impact, that is a result of energy consumption
of machines and facilities.

3. Accessing large European supercomputers, with the purpose to carry
out very detailled simulations with a large number of processors and
memory.

Computational efficiency

The result of the optimization is an increase in the computational efficiency.
First, we need to define what efficiency is, so that it can be increased. For
decades the notion of efficiency has been associated mostly with the comput-
ing speed and measured in FLOPS (floating point operations per second).
However the faster our supercomputers, the more energy they consume, dissi-
pating excessive amounts of heat. This in turn means they require additional
cooling infrastructure, which also consumes electricity. For that reason the
proper definition of the efficiency should not only contain the computational
efficiency, but also the energy efficiency. A good approach is to consider the
electrical power consumed while performing a given number of operations per
second. The unit in which this efficiency is measured is Watts per FLOP. We
have devoted a significant effort to optimize the energy consumption to re-
duce not only economic costs, but also the environmental costs, i.e. we want
the usage of these machines to be as respectful as possible to the environment
and contribute to climate change as little as possible.

Evolution of computational efficiency in Astronomy

Astronomy and astrophysics have made huge progresses in the centuries since
the first telescope was assembled but, at least in spirit, the observations made
by the most sensitives satellites today are not very different from the very
rudimentary observations made by Galileo 400 years ago. In both cases
one is asking a question, formulating an hypothesis, testing it against the
observational data and, finally, validating or refuting it. This is, of course,
nothing more than the application of the scientific method in Astronomy,
but it also points out all of the difficulties of its implementation: Astronomy
is an observational science and not an experimental one. Once a hypothesis
is constructed to explain an observed phenomenology, one finds that it is
rarely the only plausible one. In contrast with an experimental science, in



13 Introduction

Astronomy it is not possible to set-up an experiment in order to validate
or refute the hypothesis. Rather, additional observations in the future are
needed to discriminate among many likely explanations.

Obviously, the extreme physical conditions characterizing compact astro-
physical objects are impossible to reproduce in terrestrial laboratories under
controlled conditions. Astronomical observations over many wavelengths re-
veal in fact that in highly curved spaces around black holes (BHs) or neu-
tron stars (NSs), plasmas endowed with ultra-intense magnetic fields move
at speeds close to that of light. In reality, the conditions are so extreme
and the relativistic effects are so dominant that our common experience and
intuitions are of no help and even our imagination goes astray. Yet, these con-
ditions can be reproduced in a computational-astrophysics laboratory. This is
not a laboratory in a standard sense but, rather, it is a virtual one, a labora-
tory where the instruments are complex nonlinear equations and numerical
algorithms, the pieces of equipment are fast and parallel supercomputers, the
experiments are simulations investigating vast spaces of parameters, and the
observations are the results of the visualization of enormous datasets. For
a recent review of the state of the art of the hydrodynamic simulations of
relativistic jets see [4].

Modern Astrophysics is critically dependent on the numerical modeling
of nature. The more sophisticated the modeling the more computational
resources it needs. In practice, almost any field of Astrophysics requieres
a huge number of computing hours on the largest supercomputers. Indeed,
Astrophysics is the scientific area which has employed the largest chunk of
computing hours in PRACE supercomputers (≈ 26% of all the available
resources; Source: presentation of David Vicente in Frontiers on Grid and
Supercomputing. October 2012 [17]). Gaining access to PRACE computing
[15] time means to apply for it and passing rigorous evaluation by the selec-
tion committees, not only assessing the scientific level of the proposal, but
also the technical feasibility of the codes which are going to be used for the
problem which they are attempting to solve. Therefore, the long term goal
of the optimization in this project is to create stable, well tested and well
optimized codes so that the researchers can obtain access to supercomputers
more easily and use the limited computing time as efficiently as possible.

The aim of the present work

There are many astrophysical objects and scenarios whose modeling can be
tackled by suitable fluid dynamics simulations. For instance, stars, the winds
ejected by stars, the interstellar medium, the galaxies, the clusters of galaxies



Introduction 14

and even the Universe as a whole, can be treated as fluids. Thus, hydrody-
namic simulations are very common in Astrophysics. Furthermore, as men-
tioned above, some astrophysical objects and scenarios bring Physics to the
extreme limits properly described by the General or Special theory of Rela-
tivity. To complicate even more the picture, some objects (e.g., relativistic
jets, magnetars, etc.) are magnetized to such a degree that the magnetic
field evolution dictates virtually all of its dynamics. When both dynamically
relevant magnetic fields and a suitable relativistic fluid approximation can be
used to model the object of interest, the governing equations of the system
are those of the Relativistic Magneto-Hydrodynamics (RMHD).

It is quite common in Astrophysics that the observational signature of a
system governed by the RMHD equations is of non-thermal nature. This
means that the particles that emit the electromagnetic radiation, which we
ultimately observe with our telescopes on Earth, are not in equilibrium with
the thermal plasma2 that provides the dynamics and hosts most of the iner-
tia of the system (this is especially the case when we deal with relativistic
sources, e.g., jets flowing at speeds very close to the speed of light). In a
thermally emitting system the local temperature and the fluid density fully
determine its emissivity and, therefore, the fluid dynamics of the (thermal)
plasma fixes what we can observe. In contrast, in the non-thermal sources
we require additional physics modeling and a very specific treatment to esti-
mate its observational signature. Typically, one needs to add to the thermal
plasma, whose dynamics is computed employing the RMHD equations, a sep-
arate population of non-thermal (e.g., electrons) particles which are linked
to the thermal plasma by the action of the magnetic field. 3

MRGENESIS [3, 10] is a numerical code that can model Astrophysical
sources governed by the RMHD equations. In the language of the previous
paragraphs, this code is used to perform numerical simulations of the systems
of interest considering only the evolution of the thermal plasma. As com-
mented above, most relativistic sources are non-thermal emitters and, hence,
in order to compute the observational signature one needs to perform addi-
tional (numerical) modeling on top of the dynamics of the thermal plasma.
With that purpose in mind we built the SPEV code [5]. SPEV is a pioneer
numerical tool, which can compute the spectral evolution of non-thermal
particles as they suffer synchrotron loses and/or adiabatic transformations

2Plasma is one of the four fundamental states of matter (the others being solid, liquid, and gas).
Heating a gas may ionize its molecules or atoms (reducing or increasing the number of electrons in them),
thus turning it into a plasma, which contains charged particles: positive ions and negative electrons or ions.
Some common plasmas are found in stars and neon signs. In the universe, plasma is the most common
state of matter for ordinary matter, most of which is in the rarefied intergalactic plasma (particularly
intracluster medium) and in stars.

3Charged particles such as electrons and protons are restricted to move gyrating around magnetic
field lines. Since all accelerated charges radiate, it is due to this gyration that they emit the observed
electromagnetic radiation.



15 Introduction

because of the change in the underlying plasma properties, and simultane-
ously, it can produce synthetic light curves and/or images of the considered
problem (Fig. 2). In other words, SPEV can produce synthetic observations
out of RMHD numerical models, that can be compared directly with actual
Astrophysical observations.

Figure 2: Top: density distribution (on a logarithmic scale) of an axisymmetric jet (red-
to-blue colors) propagating into a stratified atmosphere (white-to-yellow), as simulated
by MRGENESIS using a numerical grid with a resolution of 1800x80 zones. The jet is
initially overpressured with respect to the atmosphere and develops a series of conical
recollimation shocks (seen as an increase in density) in its channel. The length on both
axes is in the units of the initial jet radius. Bottom: radio emission computed by SPEV

using the data from the top pannel as an input. The image resolution is 270x18. The jet
is assumed to be oriented so that its axis and the line of sight towards the art make a 10◦

angle. In the top image the radiation and adiabatic effects are taken into account, while in
the bottom image only the adiabatic effects are considered. The recollimation shocks are
identified with the bright knots of increased radio emission. The calculations have been
performed in [5], and a special version of the figures produced for this thesis. We note
that, although the resolution of the image is low by the standards of today’s cameras, it is
neverheless much higher than what can be obtained even by our largest radio-telescopes.
The reason is that the radio jets are located at very large distances and are barely resolved
using our most advanced instruments.

In many cases of interest, the radiative loses that the modeled system ex-
periences due to the emission of non-thermal particles are negligible. Thus,



Introduction 16

the underlying thermal plasma evolves adiabatically. From the technical
point of view, this means that one can perform the calculation in two stages:
first the simulation of the dynamical models (performed with MRGENE-
SIS ), and then the evaluation of the observational signature of the system
(computed with SPEV in a postprocessing phase). In this thesis, we focus
exclusively on this mode of work, i.e., the computation of numerical mod-
els governed by the RMHD equations is assumed to be independent of the
evaluation of the non-thermal signature of such models. This allows us to
perform independent optimizations of both numerical tools (MRGENESIS
and SPEV ). Indeed, the kind of optimizations needed in each of the two
pieces of the work are quite different, as we will see in Chapters 3 and 4.

A typical problem in any fluid dynamical numerical simulation (and this
includes RMHD simulations) is to discretize the space in a set of numerical
cells or zones where one samples the true (i.e., continuous) solution. For in-
stance, if our domain of interest is one-dimensional with size L, and extends
from x = 0 to x = L, one would take N points, e.g., uniformly distributed,
xi = (i + 1/2) × h (h ≡ L/N ; i = 1, . . . , N − 1) where we desire to know
the approximate evolution of the flow. Obviously, we cannot employ an arbi-
trarily large number of numerical cells, but suitable numerical methods (so
called convergent) can be used in such a way that under mesh refinement
(i.e., decreasing the grid size h or, equivalently, increasing the number of
cells N) they converge to the physically acceptable (i.e, the true) solution
of the system of equations. Naturally, a larger degree of realism is obtained
when we sample the space with a larger number of numerical cells, with
the drawback that the simulations become more computationally demand-
ing. Therefore, we need to find a trade-off between the best resolution we
could use and the available computing time. In systems with more than one
spatial dimension, the problem of using the minimally acceptable numerical
resolution exacerbates, since the number of computational zones grows as
N2 or N3 depending on whether we are modeling two- or three-dimensional
systems. There are several ways to ameliorate the problem of resolution in
multidimensional fluid dynamics. One possibility is using non-uniform grids
(sometimes unstructured) adapted to the dynamics we want to solve for. An-
other possibility is to use Adaptive Mesh Refinement (AMR), where the local
properties of the fluid are examined to determine where higher resolution is
needed. If that is the case the numerical mesh is dynamically (i.e., on run
time) refined in the region that needs higher resolution. Obviously, one can
use a mixture of both approaches, but then the numerical methods tend to
become extremely complicated.

In the present work we will show the first steps towards implementing an
existing AMR algorithm in MRGENESIS. Developing our own AMR-RMHD
code would have taken a lot of time (estimated two to four years). Further-



17 Introduction

more, the parallelization and optimization of AMR codes is extremely com-
plex, since the difficulty is to reduce to the minimum the overhead brought by
the management of the hierarchy of grids typical of AMR algorithms. There-
fore, our choice has been to implement an existing AMR package adapting
our code to the technical requirements of such package. In recent years,
a number of public domain codes have appeared to provide the community
with a basic infrastructure that allows building their own applications, which
can make efficient use of massively parallel supercomputers. CHOMBO4, is
a prototype of such frameworks, maintained by the Applied Numerical Al-
gorithms Group of the Lawrence Berkeley National Laboratory. The Multi-
Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) is an example of the
new codes that have been developed building upon the CHOMBO frame-
work, which ensures efficient parallelization and dynamic load balancing on
petascale supercomputers. The purpose of MS-FLUKSS is to simulate flows
of magnetized, partially ionized plasma experiencing collisions with neutral
atoms [13], [14], [12], [8] , [7].

The suite self-consistently combines a module to solve ideal MHD equa-
tions using high-resolution, shock-capturing numerical schemes and adaptive
mesh refinement among many other physical packages. Our plan is to fol-
low the successful line of development of MS-FLUKSS joining classical ideal
MHD with the AMR CHOMBO package and implement a new module in
it that enables us to deal with RMHD problems. The goal is to replace
the MRGENESIS code as provider of RMHD numerical models in cases in
which an extremely high spatial resolution is needed to adequately describe
the dynamics of the system.

As mentioned above, the simulation of the thermal fluid is technically
independent of the evaluation of its non-thermal emission. Thus, the numer-
ical RMHD models can be computed either with MRGENESIS or with the
extension of MS-FLUKSS to ideal RMHD, while the observational signature
can still be computed with SPEV. In this regard, it is worth to point out
that MRGENESIS, SPEV and MS-FLUKSS store the numerical models or
their respective checkpoint files in HDF5 format5. The reason to adopt this
standard is that HDF5 is a data model, library, and file format for storing
and managing data in parallel supercomputers. It supports an unlimited va-
riety of data types, and is designed for flexible and efficient I/O and for high
volume and complex data. As we shall see in Chap. 4, a number of improve-
ments have been done in MRGENESIS and SPEV to gain extra efficiency
in applications in which intensive I/O is needed.

The task of implementing RMHD modules on MS-FLUKSS is beyond
the scope of this thesis, and has been performed by other members of the

4https://commons.lbl.gov/display/chombo/Chombo+-+Software+for+Adaptive+Solutions+of

+Partial+Differential+Equations
5http://www.hdfgroup.org/HDF5/

https://commons.lbl.gov/display/chombo/Chombo+-+Software+for+Adaptive+Solutions+of+Partial+Differential+Equations


Introduction 18

CAMAP group of the Department of Astronomy and Astrophysics of the
University of Valencia in collaboration with the group of Prof. Pogorelov
at the University of Alabama in Huntsville. My main taks here has been
to provide an automatic installation wizard for the complete set of libraries
involved both in CHOMBO and in MS-FLUKSS, as well as to support the
RAG and of the CAMAP members in any of the technical aspects related to
the optimal coding in C++ and code debugging.

The methodology

The methodology used in present work is based on the scientific method.
The goal of such methodology is obtaining clear and verifiable knowledge of
our object of research. Particularly, our method is of the kind analytical-
experimental. We systematically consider all the parameters and variables
on which our problem depends on. The knowledge acquired after the analysis,
which has to be verifiable, is used to modify these parameters and variables.
This is done in order to improve models that help us understanding the
problem, which in turn allows us to take new measures and refine our insights
on the subject. The measures can be modifications, new implementations,
etc. of our object of study. When the problem is solved, the solution must be
verified with tests in all viable scenarios, changing all input parameters and
variables. With these tests we can formulate a thesis or a conclusion about
the performance of a new model which has been made from modifications
and new implementations.

The phases of the process which achieves this goal are as follows:

1. Projective phase: The first stage in the methodology is to order and
systematize our goals, formulate the questions and establish the current
state-of-the-art as our starting point. Here we separate the pre-existing
knowledge from that we aim to obtain. In this phase a proper formu-
lation of the problem at hand is the most important goal. In Chap. 2,
Sec. 2.1 we formulate the problems solved in this thesis.

2. Methodological phase: In this phase we need to fix the strategy of our
study, formulate and check the models, change their parameters, and
form different points of view. The models must be verifiable and are
the basis for the next phase. This phase corresponds to the Chap. 2,
Sec. 2.2.

3. Technical phase: Now we have to execute the procedures, modifications
or implementations in the object of study, using the appropriate tools
and techniques. After the implementation, we have to check again the



19 Introduction

results and confirm that the improvements have been achieved and that
the new knowledge has been acquired. Chapters 3, 4, 5 are where this
is done.

4. Phase of synthesis : Once we have obtained all information from our
study we can make conclusions about the thesis. Chap. 6 is where we
provide the synthesis of the work performed in this thesis.



Introduction 20



Chapter 1

Preparation of the work en-
vironment

1.1 Quick Start

Our local development machine is an Apple Xserve with two Quad-Core Intel
Xeon Nehalem processors running at 2,93 GHz. On this server all the tools
necessary for application development have been installed.

Most of the codes used by the members of the RAG are developed in
Fortran 90, and a small number of post-processing tools has been written
in C++. We have compiled the codes using GNU GCC. GCC stands for
GNU Compiler Collection and includes the frontends for C, C++, Objective-
C, Fortran, Java, Ada, and Go languages, as well as their corresponding
standard libraries for (libstdc++, libgcj,...). More information about GCC
can be found at its website http://gcc.gnu.org/.

We use the Message Passing Interface (MPI) standard for distributed
memory parallelism. MPI implementation we use is MPICH, a high perfor-
mance and portable implementation of this standard. For more information
see http://www.mpich.org. At the beginning of the work in this thesis, MPI
standard 3.0 was not finalized yet, and for this reason we use the MPICH2
implementation of the MPI-2 standard. The installation is a complex task
since there is a large number of configuration options, and, as we will see
below (Sec. 1.2), we encountered some errors during the procedure of instal-
lation.

HDF5 is a data model, library, and file format for storing and managing
large amounts of information. It supports an unlimited variety of datatypes,
and is designed for a flexible and efficient I/O and, especially, for large vol-
umes and high complexity of data. HDF5 is portable and extensible, al-
lowing applications to evolve in their use of HDF5 without losing access
to data stored by older versions. One of the main reasons why we chose
HDF5 is its ability to read and write data in parallel using the MPI I/O

21

http://gcc.gnu.org/
http://www.mpich.org


Chapter 1. Preparation of the work environment 22

library. The HDF5 Technology suite includes tools and applications for man-
aging, manipulating, viewing, and analyzing data in the HDF5 format (see
http://www.hdfgroup.org/HDF5/ for more information). In the case of the
RAG, these tools were installed to be used as libraries for reading and writ-
ing the output files. The the optimal data structure in these files has been
studied in chapter 5.

In Sec. 1.1.1 we show details of the tasks which needed to be completed for
the computing environment to be prepared and detail some of the problems
encountered in Sec. 1.2. Sec. 1.3 explains how we searched for solutions and
in Sec. 1.4 we give our best solution found to date.

1.1.1 Tasks done

Here we briefly explain the tasks which we needed to perform in order to
install all of the tools. We give the Mac OSX shell commands for each
installation under:

• GCC 4.6 with gfortran (with MacPorts):

$ sudo port install gcc46 +gfortran

$ sudo port list gcc46

gcc46 @4.6.3 lang/gcc46

• Perl 5 (with MacPorts):

$ sudo port list perl5

perl5 @5.12.3 lang/perl5

• MPICH2 v 1.4.1p1

../mpich2-1.4.1p1/configure --prefix=/opt/ghdf5_46 --enable-fortran

--enable-cxx --enable-fast CC=/opt/local/bin/gcc-mp-4.6

CXX=/opt/local/bin/g++-mp-4.6 FC=/opt/local/bin/gfortran-mp-4.6

F77=/opt/local/bin/gfortran-mp-4.6

• HDF5 1.8.6

– Configuration with compatibility flags CPPFLAGS=DH5 USE 16 API
and –enable-production

../hdf5-1.8.6/configure --prefix=/opt/ghdf5_46

FC=/opt/ghdf5_46/bin/mpif90 F77=/opt/ghdf5_46/bin/mpif77

CC=/opt/ghdf5_46/bin/mpicc CXX=/opt/ghdf5_46/bin/mpic++

--enable-fortran --enable-parallel --enable-production

CPPFLAGS="-DH5_USE_16_API"

http://www.hdfgroup.org/HDF5/


23 1.2. Problems encountered during installations

– In order to use the parallel read and write we have to configure
HDF5 with the option –enable-parallel. That flag produces the
compilation of the parallel libraries.

– The compiler and tools installed are located in /opt/ghdf5 46.

• GNU make

GNU Make 3.82

Built for x86_64-apple-darwin10.5.0

Copyright (C) 2010 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later

<http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and

redistribute it.

There is NO WARRANTY, to the extent permitted by law.

1.2 Problems encountered during installa-
tions

Here we give information about some of the problems encountered during the
MacPorts selfupdate. Using a cron task we perform periodic self-updates of
MacPorts library. Initially this worked, but at some point an update affected
the installation of gcc45 and gcc46 compilers. The problems encountered
were:

• The compilation did not work because of a link error for standard li-
brary:

ld: library not found for -lstdc++

• The library is not found in any of the expected paths:

/opt/local/lib/gcc46/lib

/opt/local/lib

/urs/lib

1.3 A search for solutions

Here we list the steps that were taken in order to solve the problem.

1. Attempt : reinstall gcc46 using MacPorts. Result : the problem persists.



Chapter 1. Preparation of the work environment 24

2. Attempt: uninstall gcc46 and install gcc45 using MacPorts. Result : the
problem persists.

3. Attempt: uninstall all compilers and install gcc48 using MacPorts. Re-
sult : the problem persists.

4. Attempt : download the compiler source from GCC website; download
the source code of the dependencies and install them; compile the GCC
using the default compiler installed in OSX (Xcode version 3.2). Result :
the error:

Undefined symbols for architecture x86_64:

"_libiconv_open", referenced from:

identifier_to_locale(char const*) in libcommon.a(pretty-print.o)

"_libiconv", referenced from:

identifier_to_locale(char const*) in libcommon.a(pretty-print.o)

"_libiconv_close", referenced from:

identifier_to_locale(char const*) in libcommon.a(pretty-print.o)

ld: symbol(s) not found for architecture x86_64

However the library was correctly installed and the problem remains,
for this reason we continue searching the solution.

5. Attempt : revise GCC dependencies. In the official web page of GNU,
there are a lot of dependencies between packages that need the compiler
to be installed successfully. These packages were installed with Mac-
Ports.
Installation of ports:

sudo port install libcompat

sudo port install libtool

sudo port install pkg-config

sudo port install pmk

sudo port install libconfig-hr

sudo port install libconfuse

sudo port install perl5.16

sudo port install isl

sudo port install cloog

sudo port install m4

sudo port install gmake

sudo port install gettext

sudo port install gperf



25 1.3. A search for solutions

sudo port install dejagnu

sudo port install expect

sudo port install autogen

sudo port install flex

sudo port install texinfo

sudo port install tex

sudo port install diffutils

Result : The compilation still fails because references were not found
when building GCC.

6. Attempt : Set the LD LIBRARY PATH environment variable to the
path where the dynamic library libstdc++ is located

export LD_LIBRARY_PATH=/usr/local/lib/

Result : The problem persists with the error of bad references in a large
number of files.

7. Attempt : Installing gcc48 with MacPorts version of libstdc++. Result
successful installation using MacPorts:

sudo port install libstdcxx

sudo port -f activate libstdcxx-devel

sudo port install gcc48 +gfortran

sudo port select gcc mp-gcc48

8. MPICH2 was configured and compiled without any problem:

../mpich2-1.3.2p1/configure --prefix=/usr/local

--enable-fortran --enable-cxx --enable-fast

--with-pm=hydra --with-device=ch3:nemesis

CC=/opt/local/bin/gcc-mp-4.8

CXX=/opt/local/bin/g++-mp-4.8

FC=/opt/local/bin/gfortran-mp-4.8

F77=/opt/local/bin/gfortran-mp-4.8

9. HDF5 1.8.9 was configured:

../hdf5-1.8.9/configure --prefix=/opt/ghdf5_46_chombo

FC=/usr/local/bin/mpif90 F77=/usr/local/bin/mpif77

CC=/usr/local/bin/mpicc CXX=/usr/local/bin/mpic++

--enable-fortran --enable-parallel

--enable-production CPPFLAGS=-DH5_USE_16_API



Chapter 1. Preparation of the work environment 26

In compilation, we got an error in file hdf5-1.8.9\test\err compat.c

too many arguments to function H5Eset_auto1.

We fixed it and then HDF5 compiled successfully.

10. We try to compile CHOMBO, but we get several errors:

error: ’makeItSoEnd’ was not declared in this

scope, and no declarations were found by

argument-dependent lookup at the point of

instantiation [-fpermissive]

makeItSoEnd(*this, this->interval());

It can be fixed by adding the flag -fpermisive in make.defs.GNU located
at
\chombo\lib\mk\compiler

_cxxbaseflags := -fpermissive -Wno-long-long

-Wno-sign-compare -Wno-deprecated

-ftemplate-depth-25

11. MS-KFLUSS is compiled with several warnings related to this error.
The compilation finished successfully, but at runtime we get incorrect
variable values (including NaNs).

1.4 Best solution

Due to the magnitude of the problems, we decided to uninstall all compilers
and went back to GCC 4.5 with MPICH2 1.3.2p1 and HDF5 1.8.6 (1.8.7 and
higher produce compatibility problems due to deprecated functions).

Since to the MacPorts uninstall command does not clean all the directo-
ries, we deleted all folders belonging to the installations of gcc46, gcc47 and
gcc8. We also had to delete the libraries libstdc++ and the soft links created
in the folder

/usr/local/lib

.



27 1.4. Best solution

1.4.1 GCC45 installation

cd /opt/local/lib

sudo port uninstall libstdcxx

sudo rm libstdc++.6.dylib*

sudo port uninstall libstdcxx-devel

sudo port uninstall gcc48

sudo port uninstall libstdcxx-devel

sudo port uninstall libstdcxx

sudo port install gcc45 +gfortran

sudo port select gcc gcc45

1.4.2 MPICH2-1.3.2P1 installation

cd /opt/install/mpi_chombo_install

sudo /usr/local/sbin/mpeuninstall

sudo make -j clean

sudo ../mpich2-1.3.2p1/configure --prefix=/usr/local

--enable-fortran --enable-cxx --enable-fast

--with-pm=hydra --with-device=ch3:nemesis

CC=/opt/local/bin/gcc-mp-4.5

CXX=/opt/local/bin/g++-mp-4.5

FC=/opt/local/bin/gfortran-mp-4.5

F77=/opt/local/bin/gfortran-mp-4.5

sudo make -j

sudo make -j install

1.4.3 HDF5 1.8.6 installation

cd /opt/install/hdf_chombo_install

sudo ../hdf5-1.8.6/configure --prefix=/opt/ghdf5_45_chombo

FC=/usr/local/bin/mpif90 F77=/usr/local/bin/mpif77

CC=/usr/local/bin/mpicc CXX=/usr/local/bin/mpic++

--enable-fortran --enable-parallel --enable-production

CPPFLAGS=-DH5_USE_16_API

sudo make -j

sudo make -j install



Chapter 1. Preparation of the work environment 28

1.4.4 Modification of MacPorts self-update script

The MacPorts daily self-update script is executed daily to automatically up-
date the packages installed by MacPorts. The periodic task is implemented
as an OSX Launch Daemon which calls a shell script. The script was modified
to include an exception so that GCC compilers are not updated automati-
cally, but will be updated by hand. The current version of the shell script
which is called by the daemon is:

#!/bin/sh

##

# Update packages of MacPorts

##

datenow=‘date +%m/%d/%Y-%H:%M‘

LOGPATH=/Library/UpdatePortsDaemon

echo "$datenow - MacPorts Update" >> $LOGPATH/out.log

sudo /opt/local/bin/port selfupdate >> $LOGPATH/out.log

sudo rm $LOGPATH/outdated.out

sudo rm $LOGPATH/outdated_mod.out

sudo rm $LOGPATH/outdated.sh

sudo /opt/local/bin/port outdated > $LOGPATH/outdated.out

sudo grep "<" outdated.out > $LOGPATH/outdated_mod.out

gccport="gcc"

while IFS=$’ ’ read portoutdated version

do

if test "${gccport:0:3}" != "${portoutdated:0:3}"

then

sudo echo "sudo /opt/local/bin/port upgrade

$portoutdated" >> $LOGPATH/outdated.sh

sudo /opt/local/bin/port upgrade

$portoutdated >> $LOGPATH/out.log

fi

done < outdated_mod.out

sudo /opt/local/bin/port uninstall

inactive >>$LOGPATH/out.log

echo "$datenow - End" >> $LOGPATH/out.log

1.4.5 Implementation of a script of full installation

After the full installation has been performed, we have implemented a shell
script that executes all tasks necessary for automatic installation of the com-



29 1.4. Best solution

pilers and the CHOMBO library. This installation can be executed on com-
puters of the Group and the University of Valencia, including Lluis Vives
cluster. 1

We have created an archive containing the script and the necessary com-
pilers. The versions of the compilers and wrappers that are installed by the
script correspond to the versions that have been proven to work correctly
(see Sec. 1.4). The contents of the archive are:

• MPICH2 source

• HDF5 source

• CHOMBO source

• Installation script

In the CHOMBO folder there is a template which configures the instal-
lation of this library. We have modified several configuration variables to
enable the correct installation by this template. The modified variables are:
hostname, FC, MPICXX, hdf dir and MAC. We have substituted their val-
ues $1, $2, $3, $4 and $5, in order for the installation script to be able to
pass them as arguments to the template. This way we can always insert the
correct values, depending on the local installation.

The script is as follows:

#!/bin/sh

hostname=‘hostname‘

if [ $hostname = "vives" ]

then

module load cc_intel

module load fc_intel

fi

current=‘pwd‘

# Untar mpich2

tar xvf mpich2.tar.gz

# Untar hdf5

tar xvf hdf5.tar.gz

# Untar chombo

tar xvf chombo.tar chombo

# Make installation folders

mkdir mpi_chombo_install

mkdir hdf_chombo_install

1Cluster located at Servei d’Informatica of the University of Valencia. Altix Ultraviolet 1000
with 30 CPU Xeon 7500 hexacore at 2,67GHz, 18MB L3 cache memory on-die, 960 GB of RAM.
http://www.uv.es/lluisvives

http://www.uv.es/lluisvives


Chapter 1. Preparation of the work environment 30

mkdir ghdf_chombo_install

ghdf=$current/ghdf_chombo_install

### MPICH2 installation

gcc=‘which gcc‘

gxx=‘which g++‘

gfortran=‘which gfortran‘

cd $current/mpi_chombo_install

../mpich2/configure --prefix=$ghdf --enable-fortran

--enable-cxx --enable-fast --with-pm=hydra

--with-device=ch3:nemesis CC=$gcc CXX=$gxx FC=$gfortran F77=$gfortran

make

make install

### HDF5 installation

cd $current/hdf_chombo_install

../hdf5/configure --prefix=$ghdf FC=$ghdf/bin/mpif90

F77=$ghdf/bin/mpif77 CC=$ghdf/bin/mpicc CXX=$ghdf/bin/mpic++

--enable-fortran --enable-parallel --enable-production

CPPFLAGS=-DH5_USE_16_API

make

make install

### Chombo configuration and compilation

cd $current/chombo/lib/mk/local

MakeDefsLocal="$current/chombo/lib/mk/local/Make.defs.$hostname"

TEMPLATE="$current/chombo/lib/mk/local/Make.defs.$hostname.template"

MakeDefsLocal="Make.defs.$hostname"

TEMPLATE="Make.defs.template"

echo $MakeDefsLocal

echo $TEMPLATE

mpif90="$ghdf/bin/mpif90"

mpicxx="$ghdf/bin/mpic++"

system=‘uname -s‘

mac=’false’

if [ $system = "Darwin" ]

then

mac=’true’

fi

sed ’s;$1;’"$hostname"’;

s;$2;’"$mpif90"’;

s;$3;’"$mpicxx"’;

s;$4;’"$ghdf"’;

s;$5;’"$mac"’;’ <$TEMPLATE> $MakeDefsLocal

cp $MakeDefsLocal $current/chombo/lib/mk/Make.defs.local

cd $current/chombo/lib

make lib



Chapter 2

Profiling and analysis of
the computational aspect of
SPEV

In this chapter we discuss the basic algorithm of the SPEV code and perform
profiling of its two main components (preprocessor and postprocessor). In
Sec. 2.1 we describe the SPEV algorithm and give reasons for its optimiza-
tion. Subsequently, in Sec. 2.2 we perform extensive profiling and testing of
various aspects of the SPEV code.

2.1 Motivation for code optimization

The numerical code SPEV [5] is written in Fortran 95, parallelized using
OpenMP and uses HDF5 library for I/O. Fig. 2.1 shows a typical state of
execution of SPEV postprocessor (see Section 2.1.1) on a production ma-
chine. In the example SPEV uses 48 CPUs and more than 512GB of RAM,
which is around 25% of the total memory on the machine. At the moment
the snapshot was taken the code has been running for approximately 8 hours,
and the calculation was half-done. SPEV allocates memory dynamically as
needed and the 512GB in the example might turn out to be much more by
the time the calculation is finished. Furthermore, the total amount of needed
memory cannot be precisely known in advance. This has on occasions caused
the machine to run out of memory and to start paging, which had a disas-
terous consequences for performance. Therefore, it was decided to optimize
the memory usage and to reduce it as much as possible (see Chapter 4).

31



Chapter 2. Profiling and analysis of the computational aspect of SPEV 32

Figure 2.1: Memory and CPU consumption of a typical execution of the SPEV postpro-
cessor (see Section 2.1.1) on the LluisVives cluster at the University of Valencia. The
figure is a screenshot of the output of the htop command. See text for more details.

Apart from the memory usage, SPEV also requires the storage of rather
large files, which are produced by processing the results of the RMHD simu-
lations. A calculation in Fig. 2.1 requires a relatively small input file whose
size is approximately 50 GB. However, there can be cases where the size of
the input file reacher hundreds of GB, or even TB. It is for this reason we
decided improving the usage of disk space as well, since often the input files
need to be copied over the network from the local clusters of the RAG to a
supercomputer where the production runs will be performed.

2.1.1 SPEV algorithm and its profiling

The goal of a SPEV calculation is to compute the time- and frequency-
dependent image from a collection of snapshots produced by MRGENESIS.
In the simplest terms the algorithm can be written as:

1. Define the virtual detector where the simulated radiation from the non-
thermal particles will be observed.

2. For a snapshot of MRGENESIS simulation:

(a) Compute where non-thermal particles are injected into the flow and
calculate their initial energy distribution.

(b) Transport non-thermal particles and calculate their radiation and
adiabatic losses or gains.

(c) Calculate the contribution of the current distribution of non-thermal
particles to the virtual detector.

3. If there are more snapshots left, go to 2.

4. Compute the final image on a virtual detector by solving the radiative
transfer equation for each of its pixels.

This algorithm processes all the snapshots of an RMHD simulation in se-
quence and keeps the contribution from each one of them to the final image
in working memory until the last file has been processed, and only then can



33 2.1. Motivation for code optimization

the final image be computed. This is the reason for the extensive memory
usage.

The step 1 of the algorithm defines the orientation, size, time and fre-
quency of observation of the object simulated by MRGENESIS. However,
steps 2.(a) and 2.(b) of the algorithm are independent of those parameters,
and the repetition of those steps can be avoided if their results are stored in
an intermediate file. The modified algorithm is:

1. Preprocessing:

(a) Open the preprocessed output file.

(b) For a snapshot of MRGENESIS simulation:

i. Compute where non-thermal particles are injected into the flow
and calculate their initial energy distribution.

ii. Transport non-thermal particles and calculate their radiation
and adiabatic losses or gains.

iii. Store the current positions and energy distribution of each non-
thermal particle in the preprocessed file. The output file is struc-
tured into blocks.

(c) If there are more snapshots left, go to ii.

2. Postprocessing:

(a) Define the virtual detector where the simulated radiation from the
non-thermal particles will be observed.

(b) For a block of the preprocessed file calculate the contribution of the
current distribution of non-thermal particles to the virtual detector.

(c) If there are more blocks left, go to (b).

It should be noted that preprocessing only needs to be done once, while the
postprocessing can be repeated many times, for different size and resolution
of the virtual detector, or for different orientation, observation frequencies
and times.

The output of the preprocessing can be a very large file. The postpro-
cessing may require a large amount of RAM. Therefore, we optimize both
of these processes according to the resource which each one of them needs
most.

In general terms, our aim is to study the performance of SPEV, and for
this reason we have performed a profiling of the application. This gave us
information to locate the most expensive routines of the code, and we have
focused in these routines of SPEV. The best configuration will be based on
optimizing according to these parameters:

• Speed of execution (preprocessing and postprocessing)



Chapter 2. Profiling and analysis of the computational aspect of SPEV 34

• Memory consumption (postprocessing)

• Disk usage (preprocessing)

• Bandwidth requirements (preprocessing and postprocessing)

We must remember that the stage at which to execute this application,
the resources are limited and shared by other users: memory, disk space,
number of CPUs, time of CPU usage. Also, the supercomputer and the local
cluster are not in the same physical location, so the time spent copying the
preprocessed files also is a factor to consider with regards the total time of
execution.

2.1.2 MRGENESIS and SPEV parallelization

In this section we give details about the parallelization of MRGENESIS and
SPEV

HYBRID PARALLELIZATION OF MRGENESIS

MRGENESIS is a code implemented in Fortran 90. The first parallel version
of the code [10] was parallelized using Message Passing Interface (MPI), and
intended to be run on distributed memory architectures. MPI implemen-
tation we use is MPICH, a high performance and portable implementation
of this standard1. Due to the ever increasing resolution requirements and
the consequent increase in the number of processors necessary to run simu-
lations, this code was upgraded to a hybrid model of parallelization. This
model combines the distributed and shared memory parallelism models. The
main motivation for this upgrade was the intent to improve the MRGE-
NESIS performance on the MareNostrum Supercomputer. At that time,
MareNostrum2 had a hybrid memory architecture: memory was shared by
all processors inside blades (each Server Blade JS21 had two dual-core pro-
cessors PowerPC 970MP) and the blades were interconnected via Mirynet
network sharing a distributed memory.

We performed the upgrade ofMRGENESIS [11], [2] so that it uses OpenMP
on a blade, and MPI between the blades. The upgrade was successful and the
result was that the hybrid code scales up to 7200 processors (see Fig. 2.2).

1 http://www.mpich.org
2 http://www.bsc.es/marenostrum-support-services/marenostrum-system-architecture

http://www.mpich.org
http://www.bsc.es/marenostrum-support-services/marenostrum-system-architecture


35 2.1. Motivation for code optimization

Figure 2.2: Code scaling for a standard hydrodynamic problem in astrophysics (collision
of stellar winds) using a different numbers of processors and combinations of MPI and
OpenMP threads on MareNostrum II Supercomputer. Numerical grid resolution was
8640 × 8640. The code was compiled using IBM XLF90 compiler with the following
options: -O3 -qstrict -q64 -qtune=ppc970 -qarch=ppc970 -qcache=auto. The number of
iterations was 600. The speed-up was measured relative to a test with 64 CPUs

The code upgrade was completed over several months with the collabo-
ration of the Barcelona Supercomputing Center, who kindly allowed us the
exclusive use of the machine during three days in order to perform all nec-
essary scalability tests. This work has resulted in a poster [1] which was
presented during the Poster Session of 2011 PRACE Summer School3.

PARALLELIZATION OF SPEV USING OPENMP

The current version of SPEV is parallelized using OpenMP. The loops in
which the parallelism is implemented go over the non-thermal particles, which
are the sources of the observed emission. The methodology used to parallelize
the loop is dynamic scheduling: the iterations (particles) are distributed in
chunks to threads as long as these become available to take new work. Each
thread executes a chunk of iterations, then requests another, until no more
work remain to be distributed.

In this way, each thread computes the contribution from its chunk of
particles and updates the global arrays (virtual detector pixels, see Sec. 4.1).
Since it is possible that two or more threads attempt to update the same
location in the global array, we use locks to serialize the memory updates.
However, this does not happen frequently and does not in fact affect the

3http://www.csc.fi/english/csc/courses/archive/prace-summer-school

http://www.csc.fi/english/csc/courses/archive/prace-summer-school


Chapter 2. Profiling and analysis of the computational aspect of SPEV 36

parallel performance, which has been found to scale up to 114 cores of Lluis
Vives cluster 4. The reason for this is that most of the work done on the
particles is in computing their emission properties and determining which
pixels need to be updated, and these operations do not modify the global
variables. In Sec. 4.2.2 we will explain the implementation of the new data
structures which are also used in parallel.

2.2 Profiling and testing

In this section we perform profiling and testing of the SPEV preprocessor
(Sec. 2.2.1 and 2.2.2, respectively). Afterward, and related to the results of
the study of the preprocessor, we perform further tests on the postprocessor
(Sec. 2.2.3).

2.2.1 Profiling the preprocessor

As mentioned in a previous section, the preprocessed file is structured into
blocks. Each block contains the information about the position, velocity
and energy distribution of non-thermal particles. The reason why the file is
divided into blocks is because during the postprocessing phase we can choose
to read only a subset of blocks.5 The block size in the following refers to the
number of particles in each block. Since we use HDF5 as the format for the
preprocessed files, we have an option of compressing each block before writing
it to disk. This is desirable since there are redundancies in the data and we
can typically achieve a saving in disk space up to a factor of 2. Therefore,
in the following sections we separate the execution time of the DEFLATE
algorithm from the rest of the code.

While the performance of the preprocessing code will inevitably vary with
the number, size and the data in the snapshots produced by MRGENESIS,
we have created as representative set of snapshots as possible and performed
a series of tests. In the Appendix B we shown the sampling tests done to
obtain the data for the charts 2.3, 2.4 and 2.5. In the following sections we
discuss the results of these tests.

4Cluster located at Servei d’Informatica of the University of Valencia. Altix Ultraviolet 1000
with 30 CPU Xeon 7500 hexacore at 2,67GHz, 18MB L3 cache memory on-die, 960 GB of RAM.
http://www.uv.es/lluisvives

5Due to the fact that the preprocessing algorithm processes the files produced by MRGENESIS ordered
in time, the first blocks of the preprocessed file contain particles for early evolutionary times, while the
late blocks contain particles at later evolutionary stages. Therefore, when we are sure that not all the
information will be needed to compute the image in a specific virtual detector configuration (e.g., in case
we only need early times), not all the blocks need actually be read. This leads to significant savings of
the computational resources.

http://www.uv.es/lluisvives


37 2.2. Profiling and testing

FIXED BLOCK SIZE 50000

This is the first case studied, and is the block size typically used in real
executions of SPEV. Our goal is to determine the most expensive routine and
the impact of the compression level of the DEFLATE algorithm on the overall
performance. The compression level is set by calling the h5pset deflate f
subroutine of the HDF5 library, and can take integer values from 1 (lowest)
to 9 (highest compression level).

The following table shows the percentage of execution time used in the
routine DEFLATE and in the rest of the routines for the compression level
from 1 to 9. The same is graphically represented in the Fig. 2.3.

COMPRESSION DEFLATE THPRSPEV2
LEVEL % Time % Time

1 75,9 19,2
2 75,5 18,9
3 75,5 18,9
4 75 20
5 74,8 19
6 74,5 19,5
7 75,4 19
8 75,1 19,4
9 74,8 19,5

As we can see from Fig. 2.3, the code spends approximately 75% of the
time in the DEFLATE. Secondly, we see that the level of compression almost
does not affect the percentage. What we can conclude from the results so far
is that the block size of 50000 bytes is too big and is lost too much execution
time trying to compress files with very large blocks. Also, we do not know
if the same applies to other block sizes, so we need to perform an additional
test with a fixed compression level, but with varying block size.



Chapter 2. Profiling and analysis of the computational aspect of SPEV 38

Figure 2.3: Percentage of the execution time spent on compression (blue line) and in the
rest of the code (red line) as a function of the level of compression.

FIXED COMPRESSION LEVEL 6

We performed preprocessing profile analysis for different block sizes for a level
of compression fixed to 6. The objective of this test is to find the optimal
block size with an intermediate level of compression. In Fig. 2.4 we can see
the result.

We observe in Fig. 2.4 that the routine DEFLATE takes between 40 to
80% of execution time compared to other routines (grouped under the name
thprspev2) for different block sizes. From this chart we can conclude that
the optimal case (where there is the minimal ratio between the time taken
to compress and time taken in the execution of other subroutines) happens
with a size block of 5000 bytes. In the figure this is the case in which red
and blue lines are the closest.



39 2.2. Profiling and testing

Figure 2.4: Fixed Compression Level in 6

FIXED BLOCK SIZE 5000

Finally, we check the behavior of the code for a block size fixed to 5000,
which gave the best results in Fig. 2.4. As in Sec. 2.2.1 we run tests for
different levels of compression, and show the results in the following table
and in Fig. 2.5.

COMPRESSION DEFLATE THPRSPEV2
LEVEL % Time % Time

1 33,7 57,2
2 36,7 56,6
3 33,3 59,9
4 33,2 57,1
5 32,7 57,5
6 33,1 57,1
7 33,1 57,1
8 32,9 57,4
9 33 57,1



Chapter 2. Profiling and analysis of the computational aspect of SPEV 40

Figure 2.5: Same as Fig. 2.3, but for the block size fixed to 5000.

As can be seen, we continue obtaining that the level of compression has lit-
tle effect on the percentages of routines runtime. For this reason, we decided
to continue checking what is the best option in terms of levels of compression
and block size, because we suspect that a block size so small could penalize
the performance of the postprocessing phase of SPEV due to the overheads
when decompressing the blocks.

2.2.2 Testing the preprocessing

In this section we perform tests of the code execution times and output file
size as a function of the parameters which were determined to be important
(block size and the level of compression). First we show the results for the
execution time, and then for the output file size. As an input for the tests
we have in total 499 snapshots produced by MRGENESIS.

EXECUTION TIME: VARIABLE COMPRESSION LEVEL AND BLOCK SIZE

In this test we are interested in the execution time as a function of the
compression level and the block size. In order to obtain reliable results we



41 2.2. Profiling and testing

have repeated each test several times and taken an average execution time
of all runs as a result for each test.

In the following we group the tests according to the number of snapshots
used as an input for the preprocessor (as we expect and can see from the
figures, the execution time strongly depends on the number of input files).
We note here that the execution time does not depend linearly on the number
of files. Instead, it depends almost quadratically on it. The reason is that, for
each new snapshot, the SPEV preprocessor has to process all the non-thermal
particles injected in the previous iterations before injecting new particles.
This means that the amount of work grows disproportionally with the number
of input files.

The charts show the execution times for three different block sizes, and for
three different compression levels (plus a run with no compression, indicated
as “Level 0” in the figures) for each block size.

1. Test with 198 input files:
The Fig. 2.6 shows how the execution time increases the larger the block
size is (as long as we use compression). If we do not use compression
we obtain lower execution times regardless of the block size.

Figure 2.6: Times as a function of block size and compression level for 198 input files.

2. Test with 298 input files:
As discussed above, using more files means that SPEV has to process
more non-thermal particles than is the case when we use 198 input files.
This means that the percentage of time spent compressing and writing
the blocks into the output file decreases. We can see this in Fig. 2.7,
where the execution times is independent of the compression level and
the block size, except for the block size 50000, where the runs without



Chapter 2. Profiling and analysis of the computational aspect of SPEV 42

compression still run significantly faster.

Figure 2.7: Times as a function of block size and compression level for 298 input files.

3. Test with 398 input files:
The results of this test are very similar to the previous case with 298
files. Fig. 2.8 shows that now the results for the block size 5000 and
10000 are even closer than in Fig. 2.7.

Figure 2.8: Times as a function of block size and compression level for 398 input files.

4. Test with 498 input files:
This case, while similar to the previous two, shows in Fig. 2.9 that it is
best to use the block size 10000 for any level of compression.

What we can conclude is that the number of input files is the predominant



43 2.2. Profiling and testing

Figure 2.9: Times as a function of block size and compression level for 498 input files.

factor in determining the execution time. The next one in importance is the
question whether the compression is used or not. In the next section we will
study in more details the dependence on the compression level.

EXECUTION TIME: VARIABLE NUMBER OF INPUT FILES AND BLOCK SIZE

In the previous section we determined that the number of input files has the
biggest influence on the execution time. In this section we present the results
of our tests as a function of the number of input files and the block size, while
grouping the results according to the compression level.

1. Compression level 3:
The Fig. 2.10 shows that the time increases approximately quadratically
with the number of files, regardless of the compression level. The fastest
execution is obtained for the block size 10000.

2. Compression level 6:
The results for this compression level, seen in Fig. 2.11 are very similar
to those for the compression level 3.

3. Compression level 9:
This case, shown in Fig. 2.12 is similar to the previous two, but the most
significan improvement is seen with 498 input files and a block size of
10000 bytes.

From this section we conclude that the best results are obtained with the
block size 10000. In the next sections we study the size of the output files.



Chapter 2. Profiling and analysis of the computational aspect of SPEV 44

Figure 2.10: Times as a function of block size and number of files for compression level 3.

Figure 2.11: Times as a function of block size and number of files for compression level 6.

OUTPUT FILE SIZE: VARIABLE COMPRESSION LEVEL AND BLOCK SIZE

The motivation to minimize the output file size is, on the one hand, to reduce
the use of the disk space. On the other hand, it is to reduce the bandwidth
needed to transfer the files to and from the production and local machines.
In this section we show the output file size as a function of the compression
level and the block size. The results are grouped by the number of input files
processed.

1. Test with 198 input files:
In Fig. 2.13 we see that the total file size decreases by more than a factor
of two once the compression is used. Analyzing in more detail we also



45 2.2. Profiling and testing

Figure 2.12: Times as a function of block size and number of files for compression level 9.

see that the file size decreases by approximately 15% when increasing
the compression level from 5000 to 50000. These results are independent
of the block size.

Figure 2.13: Size as a function of block size and compression level for 198 input files

2. Test 298 input files:
The results of this test, shown in Fig. 2.14, are very similar to the case
with 198 input files, but here we also see that larger block sizes decrease
the compressed file size more than the smaller block sizes, a 15% less.

3. Test with 398 input files:



Chapter 2. Profiling and analysis of the computational aspect of SPEV 46

Figure 2.14: Size as a function of block size and compression level for 298 input files

In Fig. 2.15 we see a similar behaviour to the previous test.

Figure 2.15: Size as a function of block size and compression level for 398 input files

4. Test with 498 input files:
The final test, whose results are shown in Fig. 2.16, show the same
behaviour as the others.

The conclusion of this section is that using any compression level sig-
nificantly reduces the file size. The exact value compression level plays a
moderate role in reducing the file size.



47 2.2. Profiling and testing

Figure 2.16: Size as a function of block size and compression level for 498 input files

OUTPUT FILE SIZE: VARIABLE NUMBER OF INPUT FILES AND BLOCK

SIZE

In analogy to the first two sections, in this section we present the results
grouped by the compression level and showing the explicit dependence of the
output file size on the number of input files.

1. Compression level 3:
The most important result we observe in Fig. 2.17 is that, just as the
execution time grows disproportionally with the number of input files,
so does the output file size. Furthermore, it can be seen that there is
a small influence of the block size on the output file size: the larger
the block size, the smaller the output size. The reason is that the
compression algorithm works on the block level and is expected to be
able better to compress one block of e.g., 50000 elements than 10 blocks
of 5000 elements.

2. Compression level 6:
The results for this compression level, shown in Fig. 2.18 are very similar
to the previous case.

3. Compression level 9:
The Fig. 2.19 shows that in this case the results are very similar to the
previous two cases.



Chapter 2. Profiling and analysis of the computational aspect of SPEV 48

Figure 2.17: Size as a function of block size and number of files for compression level 3.

Figure 2.18: Size as a function of block size and number of files for compression level 6.

SUMMARY OF THE PREPROCESSOR TESTS

In summary, we can conclude that the best value of block size is the one that
has the smallest execution time and the block size equal to 10000. Regarding
the level of compression, tests with level 9 have an execution time which is on
average the same as for the lower compression levels. However, they produce
a file size which is noticeably smaller than the lower compression levels.

The Fig. 2.20 shows the dependence of the execution time on the block size
for all tests. The four groups of lines correspond to the different numbers of
input files. For the 498 files we see that the best results are obtained for the
block size 10000. However, one has to keep in mind that the in the realistic
applications the number of blocks can be rather large for small block sizes



49 2.2. Profiling and testing

Figure 2.19: Size as a function of block size and number of files for compression level 6.

(for this reason we discard the block size 5000 as not practical).

In Chap. 5 we discuss the structure and the internal organization of the
output file.

2.2.3 Testing the postprocessing

As discussed in Sec. 2.1.1, the SPEV postprocessor reads the blocks from
the preprocessed file and calculates the contributions to the virtual detector.
The postprocessor reads the blocks in sequence. Each block has to be read
from the HDF5 into memory and uncompressed (if necessary). If the block
size is very small the number of blocks is going to be very large, and the time
spent reading and uncompressing blocks is going to be prohibitively large
compared to the time spent performing actual computations. Therefore, in
this section we limit ourselves to block sizes 10000 and 50000. In Fig. 2.21 we
show the execution time as a function of the block size for different compres-
sion levels. We see that there is a non monotonic decrease in performance
as the compression level grow, but the difference in the execution time be-
tween the runs with uncompressed and compressed preprocessed files is below
5%. There is no significant difference between different levels of compression
within the accuracy level of the time measurement.



Chapter 2. Profiling and analysis of the computational aspect of SPEV 50

Figure 2.20: Summary of preprocessing tests: execution times as a function of the block
size for all tests. In the legend the compression level and the number of input files are
indicated. The values of the execution time obtained for different block sizes but a fixed
number of input files are joined by solid lines. Since larger number of input files produce
larger execution times, the different sets having the same number of input files naturally
stack above each other in growing amount of execution time.

2.2.4 Conclusion

The results of the tests of both preprocessor and postprocessor point towards
the fact that it makes sense to use the compression when writing preprocessed



51 2.2. Profiling and testing

Figure 2.21: Execution time of the postprocessor as a function of the block size and
the compression level. The preprocessed files containing blocks were generated by the
preprocessor using 498 input files (see Sec. 2.2.2). The times given are average of several
repetitions of the same test, measured with the command line time. The accuracy is
approximately 2% due to the shared usage of the CPU between the program and the
processes of the operative system.

files. However, the preprocessor in general has to be executed only once,
while the postprocessor will be executed multiple times. Furthermore, the
execution time of the postprocessor is, in general, longer than that of the
preprocessor. Therefore, we find that the best option for SPEV is the block
size of 50000 and the compression level 9.



Chapter 2. Profiling and analysis of the computational aspect of SPEV 52



Chapter 3

Optimization of use of hard-
ware resources

In this chapter we discuss the work done in optimizing the use of hardware
resources by modifying the codes MRGENESIS and SPEV to run side-by-
side on a multiprocessor machine. Furthermore, the code which produces
images from the RMHD simulations was also modified to run in parallel with
the other two codes.

3.1 Simultaneous execution of different co-
des

As was discussed in the previous chapter, SPEV needs to preprocess the
output files produced by MRGENESIS in order to generate an intermediate
preprocessed file from which the final images can be computed. Since there
is no feedback from SPEV to MRGENESIS, there is no need for SPEV
to wait until MRGENESIS has finished the whole simulation, and it can
start preprocessing the output files as soon as they are produced. The same
is true for the PARPLOT code, which is a combination of a shell script,
C++ code and an Asymptote 1 script which produces high-resolution 2D
images of the relativistic fluid. Since MRGENESIS is CPU and memory
intensive, while SPEV preprocessor and PARPLOT are I/O intensive, they
can run in parallel without causing congestions. The reason is that SPEV
and PARPLOT would only be active for a short time after a new HDF5 file
is written by MRGENESIS, and would be inactive while waiting for the next
one to arrive.

The Fig. 3.1 shows the flow-chart of the algorithm that is executed every
time a HDF5 file is written by MRGENESIS. After initialization MRGE-
NESIS executes a loop which periodically produces an output HDF5 file
(see Fig. 3.2 for an schematic flow chart of MRGENESIS ). The output files

1http://asymptote.sourceforge.net

53

http://asymptote.sourceforge.net


Chapter 3. Optimization of use of hardware resources 54

are written in parallel by all MPI threads using HDF5 parallel interface.
PARPLOT and SPEV are initially inactive and wait until such output file
appears. Once that happens, they read the file and process it. Meanwhile
MRGENESIS, which does not need any feedback from the other two codes,
keeps on calculating and eventually produces the next output file. If SPEV
and PARPLOT have finished processing the previous file early, they are in-
active until the new file appears, otherwise they will process all new files in
order of appearance. This procedure uses both CPU and I/O resources of
the machine very efficiently, since, as mentioned above, MRGENESIS uses
CPUs at the same time as PARPLOT and SPEV use the I/O system.

Figure 3.1: Data flow diagram of the simultaneous execution of MRGENESIS, PARPLOT

and SPEV. MRGENESIS periodically writes an output file which PARPLOT and SPEV

process. MRGENESIS does not need to wait for any feedback from PARPLOT and SPEV.

The figures 3.3 and 3.4 shows the tasks flow before and after the modifi-
cation of the codes, respectively. We note that the modifications of the code
will still leave the possibility of running in the old configuration (Fig. 3.3),
for example in case one needs to repeat SPEV preprocessing using a different
set of parameters after the MRGENESIS simulation has already finished.



55 3.1. Simultaneous execution of different codes

Initialize Hydro time step

write result.txt

finished?
no

yes

write snapshot 
(if necessary)

Figure 3.2: Zoom of the data flow diagram of MRGENESIS. These steps are implemented
inside the main loop. The code is parallelized using MPI and OpenMP.

Figure 3.3: Tasks flow before modification: both PARPLOT and SPEV must wait until
MRGENESIS has finished creating all output files before they start processing them.



Chapter 3. Optimization of use of hardware resources 56

Figure 3.4: Tasks flow after modification: PARPLOT and SPEV can process output files
while MRGENESIS is still running.

3.2 Code modifications

In this section we describe how all three codes (MRGENESIS, SPEV and
PARPLOT ) have been modified to achieve the tasks flow as shown in Fig. 3.4.

3.2.1 Modification of MRGENESIS

MRGENESIS is written in Fortran 95 and its algorithm in simplest form can
be seen in Fig. 3.2. Although there is no direct impact of what SPEV and
PARPLOT do to the functioning of MRGENESIS, it nevertheless had to be
slightly modified. The reason is that MRGENESIS has to communicate to
SPEV and PARPLOT that it has finished the computation and that the
last file has been written to disk. Otherwise, SPEV and PARPLOT will be
stuck in an infinite loop, waiting for an output file which will never appear.

To this end we have modified the source filemain.f. The flow chart shown
in Fig. 3.5 shows the relevant part of the code. Once the computation has
been finished the file result.txt is written to disk. In case of an execution
in parallel environment it is ensured that only the master (rank 0) MPI task
will write the file. The source code which is inserted intomain.f is as follows:

call rrhdf5_record(.true.)

if (myrank .eq. 0) then

open(1, FILE=TRIM(outRoot)//"-result.txt", form=’formatted’)

write(1, *) R_file

close(1)

end if



57 3.2. Code modifications

computation
writing HDF5 

output files

write result.txt

rank =0?

finish?
no

yes

no

yes

Figure 3.5: Flow chart of the modifications to MRGENESIS.

3.2.2 Modifications of SPEV (preprocessing)

The preprocessing part of the SPEV code reads the MRGENESIS output
files and injects and evolves the non-thermal particles based on the informa-
tion in those files. For technical reasons SPEV preprocessor always needs
to have at disposal the current and the next file. Therefore, for SPEV to
preprocess the first file it needs to wait at least until the second file has been
output as well. For the same reason, the last file that SPEV will prepro-
cess is the penultimate MRGENESIS output file, though it will use some
information from the last MRGENESIS output file as well.

Taking this into account the modifications need to be applied in two dif-
ferent source code files.

MODIFICATIONS OF HYDROREADER.F

The file hydroreader.F contains the subroutines which read the HDF5 files
output by MRGENESIS. What had to be included was a code which will
check that the current and the next file exist before they can be read and



Chapter 3. Optimization of use of hardware resources 58

passed to the main preprocessor code (see next subsection). Fig. 3.6 shows
the flow chart of the modified version of hydroreader.F.

inquire(file1)
inquire(file2)

not_found=false

sleep(time)

not_found=true?

exists file1
and 

exists file2?

yes

no

yes

no

Figure 3.6: Flow chart of the modified algorithm in the hydroreader.F. The existence of
the current and the next file (file1 and file2, respectively) is probed. As long as neither or
only one exist, the routine sleeps for a short interval of time and checks again.

The following is a source code of the modification. MRGENESIS output
files are numbered and the code inquires whether two consequent files exist
and only proceeds once both are found on the disk.

WRITE(file_ext, "(i5.5)") number

file_name1 = TRIM(root)//’-’//TRIM(file_ext)//’.h5’

WRITE(file_ext, "(i5.5)") number + 1

file_name2 = TRIM(root)//’-’//TRIM(file_ext)//’.h5’

! Check if the files exist, if not then wait for a while and check again

DO WHILE (notfound)

INQUIRE(FILE=file_name1, EXIST=exist1)

INQUIRE(FILE=file_name2, EXIST=exist2)

IF (exist1 .AND. exist2) THEN

notfound = .false.

ELSE

CALL sleep(time)

ENDIF

ENDDO



59 3.2. Code modifications

MODIFICATIONS OF SHPRSPEV2.F

The file shprspev2.F contains the main loop of the SPEV preprocessor.
Considering the modifications of MRGENESIS (Sec. 3.2.1) the modified ver-
sion of shprspev2.F has to able to handle the following two cases:

• case 1: the simulation has finished before SPEV preprocessing starts;
or

• case 2: the simulation finishes when SPEV preprocessor is already
running.

Obviously, if the simulation has finished before the SPEV preprocessor starts
there is no need to verify the existence of files since they should already all
be in place. To handle both possibilities, we use the result.txt control
file written by MRGENESIS (Sec. 3.2.1). As long as that file does not
exist SPEV assumes that MRGENESIS is still running. Once result.txt

appears, it is assumed to contain the number of the last file written by
MRGENESIS.

The user of SPEV preprocessor supplies the first and last file (integer
variables start file and end file) she/he wants to preprocess. If end file ≥
start file it is assumed that MRGENESIS has already produced all files
(case 1). If end file == −1 then it is assumed that MRGENESIS is still
running (case 2). Fig. 3.7 shows the flow chart of the algorithm which im-
plements this functionality.

The source code in Fortran is as follows:

cur_file = start_file

notend = .true.

file_name = TRIM(input_root)//"-result.txt"

if (end_file .eq. -1) then

INQUIRE(FILE=file_name, EXIST=exist)

if (exist) then

open(1, FILE=file_name, form=’formatted’)

read (1, *) end_file

end_file = end_file - 1

close(1)

if (cur_file .eq. end_file) then

notend = .false.

endif

else

end_file = cur_file + 1

endif

endif

! loop over all hydro files



Chapter 3. Optimization of use of hardware resources 60

end_file = -1? result.txt exists?

end_file = <result.file>

not_end = false

end_file++

cur_file++

cur_file = end_file?

cur_file < end_file
and

not_end = true?

yes

no

no

no

no

yes

yes

yes

Figure 3.7: Flow chart of the modifications of shprspev2.F. If end file is not −1, then case
1 is assumed and SPEV preprocesses all files from start file to end file. Otherwise, case
2 is assumed and end file is incremented every time a new output file appears until such
time when result.txt appears, which signifies that MRGENESIS has produced its last
file. After that point the procedure is identical to case 1 for the remaining unprocessed
files.

DO WHILE (cur_file .lt. end_file .and. notend)

(...)

cur_file = cur_file + 1

INQUIRE(FILE=file_name, EXIST=exist)

if (exist) then

open(1, FILE=file_name, form=’formatted’)

read (1, *) end_file

end_file = end_file - 1



61 3.2. Code modifications

close(1)

if (cur_file .eq. end_file) then

notend = .false.

endif

else

end_file = end_file + 1

endif

ENDDO

3.2.3 Modifications of PARPLOT

The script PARPLOT processes MRGENESIS output files and generates
images in JPEG format which are used to visualize the state of the simulation
or to generate movies. The algorithm is analogous to the SPEV preprocessor
and the flow charts shown in Figures 3.6 and 3.7 are valid for PARPLOT as
well. We have to point that this process is done in parallel by shell threads
and we have modified the script in order to allow one thread to continue the
computation when new files are written by MRGENESIS while the rest of
the threads are waiting their turn sleeping.

This is the source code of the shell script modification: parplot.sh:

(...)

curfile=$startfile

notend=false

notadpt=true

filename=$iprefix"-result.txt"

finished=false

#Check if file with number of input files exist

if [[ $endfile -eq -1 ]];

then

notadapt=false

if [ -s $filename ];

then

endfile=‘cat $filename‘

endfile=‘expr $endfile \- 1‘

echo "Found endfile=", $endfile

notend=false

else

endfile=‘expr $curfile \+ 1‘

notend=true

fi

fi

# process all files but last in parallel

while [[ "$curfile" -lt "$endfile" ]] || [ "$notend" == "true" ];

do

fname=$iprefix-‘printf "%05d" $curfile‘.h5

while ! [ -s $fname ] && [ "$finished" == "false" ];



Chapter 3. Optimization of use of hardware resources 62

do

if [ "$notadapt" == "false" ] && [ "$notend" == "true" ];

then

if [ -s $filename ];

then

endfile=‘cat $filename‘

endfile=‘expr $endfile \- 1‘

notend=false

if [[ "$curfile" -ge "$endfile" ]];

then

finished=true

fi

fi

fi

sleep 1;

done

if [ "$notadapt" == "false" ] && [ "$notend" == "true" ];

then

sleep 1;

fi

if [ "$finished" == "false" ];

then

proc1file $paramsf $iprefix $oprefix $curfile $minrad $trtr

$totpix $numbins $var1 $var2 $var3 $var4 &

curfile=‘expr $curfile \+ 1‘

# Avoid execution of more than nproc processes at the same time

nrwait $nproc

fi

if [ "$notadapt" == "false" ] && [ "$notend" == "true" ];

then

if [ -s $filename ];

then

endfile=‘cat $filename‘

endfile=‘expr $endfile \- 1‘

notend=false

else

endfile=‘expr $endfile \+ 1‘

fi

fi

done

(...)



63 3.3. Performance test

3.3 Performance test

We have performed several tests to demonstrate the reduction of the total
time execution of the three parts of the process. The images obtained as
result of the tests performed are illustrated in Fig. 3.8, where on the left
panel we can see the test with low resolution (1500 radial by 250 angular
numerical zones) and on the right pannel the same test with high resolution
results (6000 radial by 500 angular zones). We have compared both modes
of execution: the serialized execution2 (using unmodified codes) and the
concurrent execution with the modifications implemented.

The first test is a low-resolution (1500×250 numerical cells) hydrodynamic
simulation of a relativistic jet propagating into the external medium. This
is a relatively short execution with 48 processors in total and the results are
as follows:

• Serialized execution:

MRGENESIS SPEV PARPLOT
30 CPUs 12 CPUs 6 CPUs TOTAL
MPI OPENMP SHELL TIME

MULTITHREADING
339 s 692 s 948 s 1979 s

• Concurrent execution:

MRGENESIS SPEV PARPLOT
30 CPUs 12 CPUs 6 CPUs MAX
MPI OPENMP SHELL TIME

MULTITHREADING
336 s 701 s 954 s 954 s

The serialized run needs a total time of 1979 seconds, since in this mode
we need to sum the execution time of the three stages. In the concurrent
mode we have launched the three parts at the same time. The execution of
the three codes overlaps, and PARPLOT SPEV waits until the output files
of MRGENESIS are produced. When the output is written, both processes
start their computations. Since this is a low-resolution run, MRGENESIS
produces files much faster than either SPEV or PARPLOT can process them.
The last process to finish is PARPLOT, for this reason the total time of the
concurrent process is the same of total time of the execution. With these
results we obtain a speedup of 2.97: SPEEDUP : 1979 seconds /954 seconds
= 2.07

2“Serialized” refers to the fact that we execute one code after another. The codes themselves are still
executed in parallel.



Chapter 3. Optimization of use of hardware resources 64

The second test is a high-resolution version of the same run (6000× 500
numerical cells).

• Serialized execution:

MRGENESIS SPEV PARPLOT
30 CPUs 12 CPUs 6 CPUs TOTAL
MPI OPENMP SHELL TIME

MULTITHREADING
16554 s 1008 s 1094 s 18656 s

• Concurrent execution:

MRGENESIS SPEV PARPLOT
30 CPUs 12 CPUs 6 CPUs MAX
MPI OPENMP SHELL TIME

MULTITHREADING
start 09:44:59 start 09:44:59 start 09:44:59 start 09:44:59
finish 14:15:34 finish 14:15:39 finish 14:15:46 finish 14:15:46

16235 s 16238 s 16247 s 16247 s

In the this test, the serialized execution needs a total time of 18656
seconds. The concurrent execution, that overlaps the three processes,
starts at 09:44:59. The last process to finish is PARPLOT at 14:15:46,
with total time execution of 16247 seconds. With these results we obtain
a speedup of 1.15: SPEEDUP : 18656 seconds /16247 seconds = 1.15.
The time saved with the concurrent execution are 40 minutes.

3.3.1 Conclusions

The speedup obtained for the more accurate (higher resolution) run is poorer
than that of the less accurate one. The main reason is that the total execu-
tion time is dominated by the calculations carried by MRGENESIS, being
both SPEV and PARPLOT a small correction to the overall execution time.
Obviously, in this case, then number of processors allocated for the MR-
GENESIS execution is too small. Employing a larger number of CPUs for
the most time consuming code shall be a rather obvious way to improve the
speedup of the concurrent execution. However, during this thesis, we did
not have time to find the optimal number of processors that one must use to
execute each code concurrently.



65 3.3. Performance test

0.00

10.00

20.00

30.00

40.00

50.00

60.00

y

−60.00 −40.00 −20.00 0.00 20.00 40.00 60.00
x

10
0

10
1

10
2

10
3

10
4

ρ

10
0

10
1

10
2

10
3

10
4

ρ

T= 12.75

0.00

10.00

20.00

30.00

40.00

50.00

60.00

y

−60.00 −40.00 −20.00 0.00 20.00 40.00 60.00
x

10
0

10
1

10
2

10
3

10
4

ρ

10
0

10
1

10
2

10
3

10
4

ρ

T= 38.25

0.00

10.00

20.00

30.00

40.00

50.00

60.00

y

−60.00 −40.00 −20.00 0.00 20.00 40.00 60.00
x

10
0

10
1

10
2

10
3

10
4

ρ

10
0

10
1

10
2

10
3

10
4

ρ

T= 58.65

Figure 3.8: Images produced by PARPLOT for the tests performed in Sec. 3.3. We plot
ρ, the number of the fluid particles (in units of particles per cm3) at three different times.
The simulations have been run in spherical coordinates assuming axial symmetry. The
left panel shows the results of the low resolution (1500 radial by 250 angular numerical
zones) simulation, while on the right we display the high resolution results (6000 radial by
500 angular zones). We see a relativistic jet (initially green) expanding into a stratified
external medium. It slows down and gradually becomes less dense. The observed emission
is produced at the shock wave (discontinuity at the head of the jet). It can be seen that
the higher resolution run exhibits sharper features than the low resolution one.



Chapter 3. Optimization of use of hardware resources 66



Chapter 4

Optimization of memory
management

As was discussed in Sec. 2.1, and as can be seen in Fig. 2.1, SPEV postpro-
cessor uses significant amounts of RAM during its execution. Furthermore,
memory space is allocated dynamically, grows during the execution and the
total required memory capacity cannot be calculated in advance. This makes
the SPEV memory management rather challenging. In Sec. 4.1 the SPEV
virtual detector is explained and its demanding memory requirements are
explained. Sec. 4.2 details the improvement of the memory management via
linked lists. Finally, in Sec. 4.2.3 we verify that the results produced by the
improved code are identical to those produced by the old and demonstrate
the improvement of efficiency of memory management.

4.1 SPEV virtual detector and its memory re-
quirements

In this section we give a brief description of the SPEV virtual images/cap02-
postproces.epsdetector and why it is important to improve its memory man-
agement.

4.1.1 Radiative transfer in SPEV

As discussed in Sec. 2.1.1, in the SPEV postprocessor there is a virtual
detector, which simulates a telescope on the Earth or a detector on board of
a satellite. The purpose of SPEV is to correctly compute the photon flux
through each of the detector pixels.

67



Chapter 4. Optimization of memory management 68

Figure 4.1: Illustration of the SPEV virtual detector (VD in the image): a collection of
brown cubes represent non-thermal particles in a jet. Each particle is observed by one or
more pixels in the virtual detector. The observability of particles depend on the orientation
between the normal to the virtual detector and the jet axis (Z), as well as the time and
position of the particles.

The Fig. 4.1 shows the typical configuration during the execution of the
SPEV postprocessor. A collection of particles (brown cubes) is emitting
radiation which can be observed in the pixels of the virtual detector. De-
pending on the size and orientation, each particle can be observed in one or
more pixels (which pixels observe one particle are indicated by the dark rect-
angle). The purpose of the postprocessor is to collect all the contributions
from different particles to each pixel of the virtual detector by reading and
processing the data stored in the blocks of the preprocessed file (see Sec. 2.2
for an analysis of the preprocessor). Once all blocks in the preprocessed file
have been read, there can be no new contributions to the pixels, and the
value of the radiative flux in each pixel is determined. The flux is computed
by solving the radiative transfer equation for each pixel separately. This
involves sorting all contributions (on the line of sight) according to the dis-
tance from the pixel, and then accumulating the flux starting from the most



69 4.2. Implementation of linked lists in SPEV virtual detector

distant contribution and moving towards the detector, taking into account
the emission of new radiation and the absorption of the existing radiation
by each element of the line of sight. The number of contributions (elements)
strongly depends on the type of the problem which is being solved, as well
as the orientation of the jet and the properties of the emitting particles. If
there are no contributions to a pixel at all, the number of elements to a line
of sight is zero. Where there is a lot of emission, the number of elements can
be quite high (see Sec. 4.2.3).

4.1.2 Virtual detector memory management

As discussed in the previous section, the key task of the postprocessor is
the storage of all contributions (lines of sight) to each virtual detector pixel
while the preprocessed file is being read and the radiation from non-thermal
particles computed. Since all lines of sight start empty, this means that
the memory which SPEV uses grows during its execution. In the current
implementation this was accomplished by allocating for each pixel an initial
line of sight with lres elements, where lres is a parameter supplied by the user.
For each pixel there are two counters: alloc los, which keeps track of the total
memory available, and num los, which counts the actual number of elements
in a line of sight. As new elements are added to a given line of sight, num los
grows until it becomes equal to alloc los. At this point, a copy of the line of
sight is made, the old line of sight is deallocated and allocated such that the
new size is fac times of the old size, where the constant fac > 1. Afterward
the data is copied back into the newly allocated line of sight. Typical values
of fac are between 1.2 and 1.5.

Obviously, this is a very inefficient process, both from the execution time
and the memory usage point of view. Because the allocated memory grows
exponentially every time a line of sight needs to be extended, and because
there is no guarantee that by the end of the execution all available ele-
ments are actually going to be used, the inefficiency can be substantial (see
Sec. 4.2.3). Therefore, we have decided to implement the lines of sight as
linked lists, in order to reduce this particular inefficiency.

4.2 Implementation of linked lists in SPEV

virtual detector

In this section we give details about the implementation of the linked lists in
the virtual detector. In Sec. 4.2.1 we compare the old and the new algorithm,



Chapter 4. Optimization of memory management 70

while in Sec. 4.2.2 we give the details of the implementation of the new code.
Finally, in Sec. 4.2.3 we test the new code and compare its performance with
that of the old implementation.

4.2.1 Comparison of old and new algorithms

As discussed in Sec. 4.1.2, the previous implementation needed to allocate
more memory than it finally used. The data flow shown in Fig. 4.2 illustrates
the parallel process of checking whether the line of sight (array los data) is
full, and the subsequent reallocation of more memory. As can be seen, there
is a number of memory copying operations and temporary arrays, and the
allocated space grows exponential during the code execution. In the boxes
grey color denotes the space occupied by line of sight elements, while the
white portion shows the unused portion. There is a lot of waste, both of
memory and of CPU time.

The improvement was in the implementation of linked lists (Fig. 4.3).
The nodes of the lists are created dynamically in parallel when the last is
full for the current thread. All of them have the same size (lres). Now the
reserved memory does not grow exponentially, but linearly. The only waste
of memory occurs is in the very last node, whose size is small compared to
the total number of elements in the list. In Sec. 4.2.3 we study which is the
best value for the node size.

The Fig. 4.4 shows the data structure of the new memory management
model. Each pixel of the virtual detector (a three-dimensional structure) has
a linked list representing its line of sight associated to it (los data). Techni-
cally this is achieved by associating three separate linked lists to each pixel:
list dist, containing the distance of the line of sight element, list emiss con-
taining the emission and list absor containing the absorption in the element.

4.2.2 Implementation

The implementation of the linked lists is written in a Fortran module. The
module contains all the routines needed to implement a fully functional linked
list in the postprocessing part of the SPEV code. We have implemented
auxiliary routines which determine list sizes, initialize pointers, get and set
elements, append nodes and destroy lists.

In addition to these general routines we have added routines which are
specific to the SPEV postprocessor algorithm, such as a routine which copies
all the data from the linked list into a vector. This is useful before performing
the radiative transfer (Sec. 4.1), since the elements are only going to be read
once and in order. Using a more general routine for getting each element of



71 4.2. Implementation of linked lists in SPEV virtual detector

los_data is full?

main loop

move_alloc (los_data, los_tmp)

allocate (los_data, size * fac)

los_tmp => los_data

deallocat (los_tmp)

yes

no

los_data los_tmp

los_data

los_tmp los_data

los_tmp

los_tmp

los_data

Figure 4.2: Data flow of the old memory management. Shown are the steps of the main
SPEV loop, which is parallelized using OpenMP. In this main loop the line of sight
elements are added to the los data array. There is a conditional jump which determines
when los data has been filled. If that is the case, the current los data is moved to a
temporary array, then it is reallocated with a larger capacity, and then the data are copied
from the temporary array los tmp to los data. Afterward the temporary array is destroyed.
As can be seen, each reallocation involves two memory copies and two allocations of arrays,
creating a performance overhead.

the list separately would result in unnecessary overheads, since each access
has to point to the head of the list and move node by node.

The source code of the list losdata module can be found in Appendix 1.1.

4.2.3 Tests

In order to validate the performance of the new code, we need to verify that
the results are identical to that of the new code, and also that the memory
consumption has indeed decreased with respect to that of the old code.



Chapter 4. Optimization of memory management 72

current node of list 
los_data is full?

main loop

append new node of lres size

yes

no

Figure 4.3: Data flow of the new memory management. In the main loop (OpenMP
parallelized) the line of sight elements are added to the most recently created node of the
linked list. There is a conditional jump to determine whether the node is full. If that
is the case, a new node is added. As a difference to the old implementation (Fig. 4.2),
there is no need to use temporary arrays, resulting in savings both in performance and in
memory usage.

VERIFICATION OF RESULTS

To verify the results we use an output file proceed by the SPEV preprocessor
on the results of a simulation of a relativistic jet expanding into an external
medium. We use the same preprocessed file for both old and the new code,
and compute the radio light curve at five different frequencies (Fig. 4.5).

We run both codes without optimization and without parallelism. Every
code produces two output files, one with a suffix “-thick” and another with a
suffix “-thin”. We verify that both output files produced by both codes are
identical:

$ h5diff oldout-thick.h5 newout-thick.h5

$ h5diff oldout-thin.h5 newout-thin.h5

Furthermore in Fig. 4.5 we verify graphically that the results are identical.
We plot the flux (in milli-Jansky) that would be observed by a radio telescope
on Earth at different epochs (days since the start of the emission). We use
the “-thick” output files. The symbols show the results produced by the old
code, while the lines show the results of the new code. We can see that the
agreement is perfect, since the lines (new code) go through the center of the



73 4.2. Implementation of linked lists in SPEV virtual detector

Figure 4.4: Data structure of the new memory management implementation using linked
lists. los data is a three dimensional matrix. Each element is a data structure that contains
three linked lists: list dist, list emiss and list absor, and other important information such
as lists size, number of blocks and the block size. The three lists store the distance,
emission and absorption in a line of sight element.

symbols (old code).

Figure 4.5: Multifrequency radio light curves produced by the old code (symbols) and the
new code (lines). Shown is the flux from an evolving jet that would be observed by a radio
telescope at different frequencies (given in the legend). As we can see, lines go through
the centers of the symbols, which means that the results computed by the old and the new
code are identical.



Chapter 4. Optimization of memory management 74

TEST OF THE MEMORY MANAGEMENT EFFICIENCY

As discussed above, the most important parameter of the memory manage-
ment is lres. In the old implementation it determines the initial memory
allocated to each pixel. In the new implementation it is the size of the mem-
ory allocated to each node of the list.

First, we run a series of tests varying lres from 10 to 500. The source
code has been compiled using GNU Fortran Compiler using optimization
and OpenMP parallelism. The input parameters for SPEV postprocessor
are:

xres = 3001

xmin = 0.0000000000000000

xmax = 300.00000000000000

yres = 1

ymin = 0.0000000000000000

ymax = 1.00000000000000005E-004

tres = 30

tmin = 500000.00000000000

tmax = 100000000.00000000

fres = 1

fmin = 100000000000.00000

fmax = 100000000000.00000

empty_frac = 0.10000000000000001

dens_norm = 1.67262158000000014E-024

length_norm = 10000000000000000.

labToffset = 5.0251890760000002

epsilon_e = 0.10000000000000001

epsilon_B = 5.00000000000000010E-003

pind = 2.2999999999999998

num_bins = 32

trtr = 1.0000000000000000

prtr = 0.50000000000000000

theta_obs = 0.0000000000000000

degrade = 1

redshift = 0.35399999999999998

d_L = 5.56700000000000055E+027

The comparison between the memory usage efficiency (ratio of the used
to the allocated memory) of the old and new code are given in the following
table:

LRES OLD code NEW code
param Efficiency Efficiency
10 90.301% 99.829%
20 89.363% 99.683%
30 88.386% 99.454%
50 86.667% 99.072%
100 82.565% 98.150%
500 59.779% 91.240%



75 4.2. Implementation of linked lists in SPEV virtual detector

With these results we conclude that, for tests with low lres the efficiency
of the new memory management of is more than a 10% higher compared to
old code, and is always above 99%. For larger values of lres the efficiency
of both codes decreases, though it is still above 90% for the new code. The
reason for the decrease is that there is now more unused memory in the most
recent node compared to the total allocated memory than is the case for
small lres.

The next parameter which determines the memory usage is the resolution
of the virtual detector (xres, yres and tres) and the number of observing
frequencies (fres). In the test problem we use a one-dimensional virtual
detector (yres=1) and fix tres and fres, leaving xres free. While the test with
xres=3001 fit into a memory of a typical iMac, for a test with xres=10001
we had to run at a machine with more memory 1. The input parameters are
the same except for that xres = 10001.

The following table shows the memory usage efficiency comparison:
LRES OLD code NEW code
param Efficiency Efficiency
10 90.311% 99.829%
20 89.364% 99.640%
50 86.667% 99.072%
100 82.566% 98.147%
500 59.784% 91.229%

These results are very similar to the ones for xres=3000. The memory
usage efficiency is always higher using linked lists. We observe that in the
worst case, for lres=500, the efficiency of the new code is a 91% and the
difference of efficiency between both versions is 31,5%.

We have performed an even larger test on Lluis Vives cluster 2 to check the
efficiency in the more costly and more realistic cases. We have increased again
the value of xres to 50001. We have recompiled the source code using Intel
Fortran Compiler using optimizations and OpenMP. The input parameters
are the same except for that xres = 50001.

The comparison of the memory usage efficiency is:
LRES OLD code NEW code
param Efficiency Efficiency
100 82.572% 98.148%
500 59.239% 91.239%

12 Quad-Core Intel Xeon at 2,93 GHz Processor ”Nehalem” with 48GB of RAM
2Cluster located at Servei d’Informatica of the University of Valencia. Altix Ultraviolet 1000

with 30 CPU Xeon 7500 hexacore at 2,67GHz, 18MB L3 cache memory on-die, 960 GB of RAM.
http://www.uv.es/lluisvives

http://www.uv.es/lluisvives


Chapter 4. Optimization of memory management 76

The results in this cluster confirm that the efficiency is always higher in
the version with linked lists. It is due to the fact that we always append
nodes of the same size, while in the old code the allocated memory grows
exponentially.

To see this, consider that the total number of nodes for list emiss and
list absor is equal lres× fres (for list dist it is equal lres× 2). In the worst
cases the total unused memory in the last node is (lres− 1)× (2× lres+ 2)
for every virtual detector pixel. In almost all cases this is much better than
was the case in the old code.

In the old code, every time los data was filled, its space was multiplied by
a factor of (typically) 1.5. Mathematically the size of each virtual detector
pixel at the end of the main loop is lres × (2 × fres + 2) × (1.5)n where n
is the number of memory reallocations for a given pixel. Thus, the allocated
memory grows exponentially, and in the last reallocation the size of every
element of los data is probably much larger than the original size. In the
worst case, when the main loop ends after reallocating the array, the unused
space is (lres × (1.5)n) − (lres × (1.5)(n−1) + 1) × (2 × fres + 2). This is
typically much larger than the memory lost when using linked lists. We have
illustrated this behavior in Fig. 4.6



77 4.2. Implementation of linked lists in SPEV virtual detector

Figure 4.6: An illustration of the memory usage in the old and the new SPEV implemen-
tation. On the horizontal axis the detector pixel number is plotted (for clarity we only
show first 30). On the vertical axis we show the total number of elements in each pixel’s
line of sight. The red line shows the actual number of elements necessary in each pixel
(num los). The magenta line shows the allocated memory for each pixel using the old
memory management, while the green line shows the total allocated memory using the
new memory management. As can be seen, almost everywhere the green line is closer to
the red line than the magenta line. This is specially true for the large values of num los,
where the waste of memory is largest. In other words, the curve of the allocated memory
using the new code is much closer to the curve of the actually used memory than was the
case in the old code. The memory waste is proportional to the difference in the area below
the magenta/green and the red curve, which is clearly smaller for the green than for the
magenta curve.



Chapter 4. Optimization of memory management 78



Chapter 5

Optimization of the hierar-
chical data structure

As discussed in Sec. 2.2.1, the SPEV preprocessor structures its output (pre-
processed) file into blocks. These blocks contain the information about the
non-thermal particles and are accessed by the postprocessor in order to pro-
duce the virtual image (see Sec. 4.1). SPEV uses the HDF5 library and data
format for its preprocessed files. In Sec. 5.1 more details on the structure are
given, and some possible problems with the current structure are discussed.
Sections 5.2 and 5.3 explain how the structure has been modified and how it
has changed the code performance.

5.1 Structure of the preprocessed file

The original structure of the preprocessed file consists of a large number of
HDF5 groups, each representing a block of particles. In each group particle
data is stored in a number of datasets. The names of the groups are ten-digit
numbers, each number corresponding to a block saved by the preprocessor.
Some of the problems with this approach are:

• Once the output file is written, sometimes a user might want to access a
subset of the data in a particular block using the tool h5dump. In runs
with high resolution, the size of the file can be in tens of gigabytes. The
time it takes to open the file and read the data using h5dump may be
quite long (minutes or longer).

• The way the data is stored and accessed is quite inflexible, and it is very
difficult to access subsets of groups.

With these issues in mind, we have proceeded to modify the file structure
to give it more flexibility and to attempt to improve the efficiency.

79



Chapter 5. Optimization of the hierarchical data structure 80

5.2 Modifications of the file structure

All HDF5 operations which SPEV uses are implemented in a module hdf-
man.F. There, the creation, the opening and the closing of files is imple-
mented, as well as the creation, opening and closing of groups inside files.
Further subroutines include the possibility to write and read scalars, vectors
and matrices of arbitrary dimensions.

We have added new routines to hdfman.F to make the creation and open-
ing of groups more flexible. The idea is to create a hierarchy of groups, and
to make this hierarchy easily configurable. In the original code, the identi-
fier of each group is a ten-digit number, and the possible values range from
0000000000 to 9999999999. In other words, all groups are stored on a single
level. This idea is illustrated in the top-left box in Fig. 5.1.

After the modification, we can choose to store groups in several levels (at
least one, at most ten). This is achieved by splitting the digits of the group
identifier among different levels. In the following list we give some examples.
The total number of digits is 10, and the items in the list show how they are
distributed among different levels for, for example, 612837 blocks of data:

• A single level (original code):
10 digits, identifiers range from 0000000000 to 0000612837

• Two levels (shown are digits for the upper and lower level):

–

Level 2 Level 1
digits 7 3

identifier start 0000000 000
identifier end 0000612 999

–

Level 2 Level 1
digits 6 4

identifier start 000000 0000
identifier end 000061 9999

–

Level 2 Level 1
digits 5 5

identifier start 00000 00000
identifier end 00006 99999

–

Level 2 Level 1
digits 3 7

identifier start 000 0000000
identifier end 000 0612837

• Three levels:



81 5.2. Modifications of the file structure

–

Level 3 Level 2 Level 1
digits 4 3 3

identifier start 0000 000 000
identifier end 0000 612 999

–

Level 3 Level 2 Level 1
digits 5 3 2

identifier start 00000 000 00
identifier end 00006 999 99

–

Level 3 Level 2 Level 1
digits 6 2 2

identifier start 000000 00 00
identifier end 000061 99 99

• Four levels:

–

Level 4 Level 3 Level 2 Level 1
digits 4 2 2 2

identifier start 0000 00 00 00
identifier end 0000 61 99 99

–

Level 4 Level 3 Level 2 Level 1
digits 5 2 2 1

identifier start 00000 00 00 0
identifier end 00006 99 99 9

• Ten levels:

– 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1

Level 10: identifiers from 0 to 9

Level 9: identifiers from 0 to 9

Level 8: identifiers from 0 to 9

Level 7: identifiers from 0 to 9

Level 6: identifiers from 0 to 9

Level 5: identifiers from 0 to 9

Level 4: identifiers from 0 to 9

Level 3: identifiers from 0 to 9

Level 2: identifiers from 0 to 9

Level 1: identifiers from 0 to 9

The Fig. 5.1 shows a diagram with some of the examples of group hierarchy.



Chapter 5. Optimization of the hierarchical data structure 82

0000000000 - 999999999 One level ~ 10

0000000 - 999999

000 - 999

Two levels ~ 7 - 3

0000 - 9999

Three levels ~ 4 - 3 -3
000 - 999

000 - 999

0 - 9

0 - 9

0 - 9

0 - 9

0 - 9

0 - 9

0 - 9

0 - 9

0 - 9

0 - 9

Ten levels ~
1-1-1-1-1-1-1-1-1-1 

Figure 5.1: Illustration of different group hierarchies. The top-left box shows the original
implementation, consisting of just one level which stores all groups. On the right side we
see the opposite extreme, where each digit of the group identifier is stored on a different
level. The second and third boxes on the left side show a hierarchy with two leves, where
first 7 digits are stored on the top, and the last 3 digits on the bottom level. The bottom
three boxes show the same for a case with three levels.

5.2.1 Implementation

We have added two new routines which open and close a hierarchy of groups.

The routine hm gopen h opens or creates a new group hierarchy deter-
mined by a predefined format. If there is no format provided, the routine
falls back to the default setting (one level), and is, thus, compatible with the
files created by the previous version of the code. The format is provided as
an array of 10 integers, denoting the number of digits for each level. The
convention is that levels with zero digits are not used, and that the lowest
level is always at the position 10. This means that zeros in the format array
(if any) are always at the lowest positions. Finally, the total sum of all ele-
ments in the format array must be 10, and no element can have a value less



83 5.3. Performance tests

than 0 or greater than 10.
The routine calculates the names of all groups in the hierarchy once both

the format and the number of the current block has been provided. If some
group in the hierarchy does not exist, it is created; otherwise it is opened. In
the Fig. 5.2 we see the flow chart of this routine.

The routine hm gclose h closes a hierarchy of opened groups.
The source code of the hm gopen h and hm gclose h routines can be found

in Appendix 1.2.

5.3 Performance tests

We have run a set of tests to check if there are improvements in the time it
takes to read the data using the h5dump tool. The tests have been performed
for different levels of hierarchy and the configurations are (showing number
of digits at each level):

• 1 level: 0-0-0-0-0-0-0-0-0-10

• 2 levels: 0-0-0-0-0-0-0-0-7-3

• 4 levels: 0-0-0-0-0-0-1-1-4-4

• 10 levels: 1-1-1-1-1-1-1-1-1-1

We performed a test using h5dump -H :
1 Level 2 Levels 4 Levels 10 Levels

AVG TIME 35,05s 37,15s 38,44s 42,50s
The next test is the reading of the last stored block, 23976. The particular

arguments to h5dump depend on the level hierarchy:

• 1 level:h5dump -d /0000023976/time pre-0-0-0-0-0-0-0-0-0-10.h5

• 2 levels: h5dump -d /0000023/976/time pre-0-0-0-0-0-0-0-0-7-3.h5

• 4 levels: h5dump -d /0/0/0002/3976/time pre-0-0-0-0-0-0-1-1-4-4.h5

• 10 levels: h5dump -d /0/0/0/0/0/2/3/9/7/6/time pre-1-1-1-1-1-1-1-1-
1-1.h5

1 Level 2 Levels 4 Levels 10 Levels
AVG TIME 14,27s 15,39s 16,84s 20,63s

The following is the same test, but now reading the first block:

• 1 level: h5dump -d /0000000001/time pre-0-0-0-0-0-0-0-0-0-10.h5

• 2 levels: h5dump -d /0000000/001/time pre-0-0-0-0-0-0-0-0-7-3.h5



Chapter 5. Optimization of the hierarchical data structure 84

• 4 levels: h5dump -d /0/0/0000/0001/time pre-0-0-0-0-0-0-1-1-4-4.h5

• 10 levels: h5dump -d /0/0/0/0/0/0/0/0/0/1/time pre-1-1-1-1-1-1-1-1-
1-1.h5

1 Level 2 Levels 4 Levels 10 Levels
AVG TIME 14,47s 15,65s 16,96s 20,53s
Finally, a test reading the block 11988, which is an intermediate value:

• 1 level: h5dump -d /0000011988/time pre-0-0-0-0-0-0-0-0-0-10.h5

• 2 levels: h5dump -d /0000011/988/time pre-0-0-0-0-0-0-0-0-7-3.h5

• 4 levels: h5dump -d /0/0/0001/1988/time pre-0-0-0-0-0-0-1-1-4-4.h5

• 10 levels: h5dump -d /0/0/0/0/0/1/1/9/8/8/time pre-1-1-1-1-1-1-1-1-
1-1.h5

1 Level 2 Levels 4 Levels 10 Levels
AVG TIME 14,34s 15,41s 16,81s 20,57s
The results of these tests show that the time needed to access the data

in the original one-level structure is smaller than when using more complex
hierarchies. Therefore, we did not achieved the goal of improving the time,
but we have implemented a more flexible file format which allows the user to
configure the levels at will.

We have tested the execution time in the postprocessing process of SPEV
in order to check if this time is affected by the modified routine of reading
the input file with hierarchical levels. The input files of these tests are the
output files of preprocessing process of SPEV used in tests above

• 1 level: pre-0-0-0-0-0-0-0-0-0-10.h5

• 2 levels: pre-0-0-0-0-0-0-0-0-7-3.h5

• 4 levels: pre-0-0-0-0-0-0-1-1-4-4.h5

• 10 levels: pre-1-1-1-1-1-1-1-1-1-1.h5

1 Level 2 Levels 4 Levels 10 Levels
AVG TIME 280,6s 278s 279,3s 283,6s
These results confirm that the modifications don’t increase the execution

time, and the impact on the overall code performance are smaller than a
5%. Therefore, the modifications will remain in the code because we have
obtained a more flexible configurations of file format.

In a future work, we will continue studying the improvement of this issue
by looking for new routines or parameter values for the routines in HDF5 li-
brary. We also think that the file system could influence in this improvement.



85 5.3. Performance tests

In the future we plan to check if the modifications in hierarchical levels have
better results in a parallel file system like GPFS.

Furthermore, in the current preliminary study, we have not considered the
impact of a more flexible output file structure on the writting time of each
file, which is non-negligible for codes dumping datasets with sized between
hundreds of Gigabytes to few Terabytes.



Chapter 5. Optimization of the hierarchical data structure 86

group fmt exists? write the default fmt

decode the block identifier 
according to the format

i=1

i++

i!=10?

create group name format

read fmt

create group name

exists the current group? open group

create group

fmt(i)!=0? group_id(i) = -1

yes

yes

yes

yes

no

no

no

no

Figure 5.2: Flow chart of the modifications to hdfman.F. The routine hm gopen h opens
or creates a new group depending on the predefined hierarchy. If there is no predefined
hierarchy, it uses a single level by default (as in the previous version). Then it calculates
the names of all levels. If a group does not exist, it is created; otherwise it is opened.



Chapter 6

Conclusions

The aim of this work is the optimization of the numerical tools which are
essential for the research conducted by members of Relativistic Astrophysics
Group (RAG) at the University of Valencia. The motivation for code opti-
mization is fully explained in the Introduction. In summary the main reasons
for optimization are:

1. Reducing the economic costs of using supercomputers;

2. Reducing the environmental impact, reducing energy consumption by
machines and facilities; and

3. to access large European supercomputing facilities, with the purpose
of carrying out world leading numerical simulations in Astrophysics,
which needed of a large number of processors and use large amounts of
memory.

In this work we have focused on SPEV, a numerical code which can com-
pute the spectral evolution of non-thermal particles as they undergo syn-
chrotron loses and/or adiabatic transformations (because of the change in
the underlying plasma properties), and simultaneously, it can produce syn-
thetic light curves and/or images of the considered problem (Fig. 2). In other
words, SPEV can produce synthetic observations (virtual images) based on
RMHD numerical models. These can be compared directly with actual As-
trophysical observations. The motivation for SPEV optimization is discussed
in Sec. 2.1.

We have studied the best configuration of input parameters and imple-
mented several optimizations in order to improve the code efficiency. We
optimized according to these parameters:

• speed of execution;

• memory consumption;

• disk usage; and

87



Chapter 6. Conclusions 88

• network bandwidth.

In this thesis we undertook the following steps to achieve these optimiza-
tions in the key parts of the execution of this parallel code:

1. Preparation of work environment : This is the beginning of the work.
We install the compilers, wrappers and libraries necessary to compile
and execute the codes. It has to be kept in mind that the codes run in
parallel over shared and distributed memory architectures. We found
the best configuration of versions of all these tools so that our codes
run efficiently. At the end of this task, we implement an automatic
installation script, independent of the platform in wich these tools will
be installed. The scientific members of the group will be able to easily
install all these tools, needing only to run the script on their own com-
puters, without a need for deep knowledge of system administration.
With this advance, they will not need to invest time worrying about
technical details.

2. Profiling and analysis of the computational aspect of SPEV: In this
phase we have discussed the basic algorithm of the SPEV code and
performed the profiling of its two main components (preprocessor and
postprocessor). In Sec. 2.1 we have described the SPEV algorithm and
given reasons for its optimization. Finally, in Sec. 2.2 we have performed
extensive profiling and testing of various aspects of the SPEV code. The
conclusions after studying the results of the tests of both preprocessor
and postprocessor point towards the fact that it makes sense to use the
compression when writing preprocessed files. However, the preprocessor
in general has to be executed only once, while the postprocessor will be
executed multiple times. Furthermore, the execution time of the post-
processor is, in general, longer than that of the preprocessor. Therefore,
we find that the best option for SPEV is to choose block size of 50000
and a compression level 9.

3. Optimization of use of hardware resources : We have modified the codes
MRGENESIS and SPEV to run side-by-side on a multiprocessor ma-
chine. In addition, we modified the PARPLOT shell script, which con-
tains the code that produces images from the RMHD simulations. This
script was adapted to simultaneous execution with MRGENESIS too.
With these changes we have achieved a speed up of 2.07 in a low reso-
lution execution and a speed up of 1.15 of a high resolution execution,
compared to the case when the three codes have to be executed in se-
quence. In the high resolution case, for a typical 5-hour run we have
saved at least 40 minutes. We note that with increasing resolution the
savings in time can be significantly smaller.



89

4. Optimization of memory management : As was discussed in Sec. 2.1,
and as can be seen in Fig. 2.1, SPEV postprocessor uses significant
amounts of RAM during its execution. Furthermore, the memory space
is allocated dynamically, it grows during the execution and the total
required memory capacity cannot be calculated in advance. To improve
the memory management, we have implemented linked lists. They allow
us to append new nodes during the execution, thus allocating memory
more efficiently. The results of the tests shows that the results produced
by the old code are identical to ones produced by the new, as is explained
in Sec. 4.2.3. We have demonstrated the improvement of the efficiency of
memory management in Sec. 4.2.3, where it is verified that the efficiency
is approximately 99% in most of cases, and can be up to 31% higher
than the efficiency of the previous version.

5. Optimization of hierarchical data structure: As discussed in Sec. 2.2.1,
the SPEV preprocessor structures its output (preprocessed) file into
blocks. These blocks contain the information about the non-thermal
particles and are accessed by the postprocessor in order to produce
the virtual image (see Sec. 4.1). SPEV uses the HDF5 library and
data format for its preprocessed files. In Sec. 5.1 more details on the
structure are given. A possible problem with the old structure is when a
user wants to access a subset of the data in a particular block using the
tool h5dump. In runs with high resolution, the size of the file can be in
tens of gigabytes. The time it takes to open the file and read the data
using h5dump may be quite long (minutes or longer). In Sec. 5.2 we have
explained how the structure has been modified and how it has changed
the code. After implementing several tests to check the improvement
ins Sec. 5.3, we concluded that the results of these tests show that the
time needed to access the data in the original one-level structure is a bit
better than when using more complex hierarchies. Therefore, we did not
achieve the goal of improving access times, but we have implemented a
more flexible file format which allows the user to configure the levels at
will.

After performing all the optimizations we can conclude that the updates
implemented have achieved most of the goals proposed in the present work:

• Speed of execution: In Chap. 2 we found the best configuration of input
parameters for the SPEV preprocessor that produces faster execution
in realistic use cases. Furthermore, we have reduced the total time of its
execution. This was achieved with the implementation of modifications
to execute concurrent tasks explained in Chap. 3. The results of this
work have been used to improve the efficiency of the overal code in [6]



Chapter 6. Conclusions 90

• Memory consumption: We have achieved over 99% efficiency in memory
management by implemented linked lists, as is demonstrated in Chap. 4.

• Disk usage and Bandwidth requirements: We found the best configura-
tion of block sizes and of the level of compression of the output files in
preprocessing part of SPEV, so that smaller output files are produced.
As a consequence, the bandwidth required to transfer the files from su-
percomputers where the code is executed to the local computers of the
users is significantly reduced and, also, the disk usage is optimized due
to the reduction of the file sizes. The results obtained performing this
task are presented, in part, in [9] and [16]

In a future work, we will continue studying and improving SPEV code
with regards to its memory and disk space requirements. We will also study
further improvements of writing and reading files in HDF5 format by looking
for new routines or parameter values of routines in HDF5 library. We also
think that the file system could influence in this improvement, so we plan
to check if the modifications in hierarchical levels have better results in a
parallel file system like GPFS.



Appendix A

Source Code

1.1 Implementation of Linked Lists

The linked lists are implemented in a separated file list losdata.F into a
module, where are written all needed routines to manage these lists. The
implementation of the full module is:

MODULE list_losdata

use vars

IMPLICIT NONE

PUBLIC

TYPE node_dist

DOUBLEPRECISION, DIMENSION(:, :), ALLOCATABLE :: dist

type(node_dist), pointer :: next

INTEGER :: fres, lres

END TYPE node_dist

TYPE node_emiss

DOUBLEPRECISION, DIMENSION(:, :), ALLOCATABLE :: emiss

type(node_emiss), pointer :: next

INTEGER :: fres, lres

END type node_emiss

TYPE node_absor

DOUBLEPRECISION, DIMENSION(:, :), ALLOCATABLE :: absor

type(node_absor), pointer :: next

INTEGER :: fres, lres

END TYPE node_absor

TYPE los_elem

type (node_dist), pointer :: list_dist

type (node_dist), pointer :: first_dist

type (node_emiss), pointer :: list_emiss

type (node_emiss), pointer :: first_emiss

type (node_absor), pointer :: list_absor

type (node_absor), pointer :: first_absor

INTEGER*8 :: totalsize_dist, totalsize_emiss, totalsize_absor, totalsize

91



Appendix A. Source Code 92

END TYPE los_elem

TYPE (los_elem), DIMENSION(:, :, :), ALLOCATABLE :: los_data

TYPE node_arrays

DOUBLEPRECISION, DIMENSION(:), ALLOCATABLE :: dist, emiss, absor

END TYPE node_arrays

TYPE(node_arrays), DIMENSION(:), ALLOCATABLE :: arrays

PUBLIC arrays

CONTAINS

SUBROUTINE allocate_temporary(num_threads, fres, lres)

IMPLICIT NONE

INTEGER :: num_threads, fres, lres, i

allocate(arrays(num_threads))

DO i = 1, num_threads

allocate(arrays(i)%dist(1:2))

allocate(arrays(i)%emiss(1:fres))

allocate(arrays(i)%absor(1:fres))

ENDDO

END SUBROUTINE allocate_temporary

SUBROUTINE deallocate_temporary(num_threads)

IMPLICIT NONE

INTEGER :: num_threads, i

DO i = 1, num_threads

deallocate(arrays(i)%dist)

deallocate(arrays(i)%emiss)

deallocate(arrays(i)%absor)

ENDDO

deallocate(arrays)

END SUBROUTINE deallocate_temporary

! Initialization of dist list

SUBROUTINE list_init_dist(di, dj, dk)

IMPLICIT NONE

INTEGER:: di, dj, dk

allocate(los_data(di,dj,dk)%list_dist)

nullify(los_data(di,dj,dk)%list_dist%next)

los_data(di,dj,dk)%first_dist => los_data(di,dj,dk)%list_dist

los_data(di,dj,dk)%totalsize_dist = 0

END SUBROUTINE list_init_dist

! Initialization of emiss list

SUBROUTINE list_init_emiss(di, dj, dk)

IMPLICIT NONE

INTEGER:: di, dj, dk

allocate(los_data(di,dj,dk)%list_emiss)

nullify(los_data(di,dj,dk)%list_emiss%next)

los_data(di,dj,dk)%first_emiss => los_data(di,dj,dk)%list_emiss



93 1.1. Implementation of Linked Lists

los_data(di,dj,dk)%totalsize_emiss = 0

END SUBROUTINE list_init_emiss

! Initialization of absor list

SUBROUTINE list_init_absor(di, dj, dk)

IMPLICIT NONE

INTEGER:: di, dj, dk

allocate(los_data(di,dj,dk)%list_absor)

nullify(los_data(di,dj,dk)%list_absor%next)

los_data(di,dj,dk)%first_absor => los_data(di,dj,dk)%list_absor

los_data(di,dj,dk)%totalsize_absor = 0

END SUBROUTINE list_init_absor

! Current node size of dist list

INTEGER FUNCTION nodeSize_dist(current)

IMPLICIT NONE

TYPE(node_dist), pointer :: current

nodeSize_dist = current%lres

END FUNCTION nodeSize_dist

! Current node size of emiss list

INTEGER FUNCTION nodeSize_emiss(current)

IMPLICIT NONE

TYPE(node_emiss), pointer :: current

nodeSize_emiss = current%lres

END FUNCTION nodeSize_emiss

! Current node size of absor list

INTEGER FUNCTION nodeSize_absor(current)

IMPLICIT NONE

TYPE(node_absor), pointer :: current

nodeSize_absor = current%lres

END FUNCTION nodeSize_absor

! Total size of lists

INTEGER FUNCTION list_totalSize(di, dj, dk)

IMPLICIT NONE

INTEGER:: di, dj, dk

list_totalsize = los_data(di,dj,dk)%totalsize

END FUNCTION list_totalSize

! Total size of dist list

INTEGER FUNCTION list_nodeSize_dist(di, dj, dk)

IMPLICIT NONE

INTEGER:: di, dj, dk

list_nodesize_dist = los_data(di,dj,dk)%totalsize_dist

END FUNCTION list_nodeSize_dist

! Total size of emiss list

INTEGER FUNCTION list_nodeSize_emiss(di, dj, dk)

IMPLICIT NONE

INTEGER:: di, dj, dk

list_nodesize_emiss = los_data(di,dj,dk)%totalsize_emiss



Appendix A. Source Code 94

END FUNCTION list_nodeSize_emiss

! Total size of absor list

INTEGER FUNCTION list_nodeSize_absor(di, dj, dk)

IMPLICIT NONE

INTEGER:: di, dj, dk

list_nodesize_absor = los_data(di,dj,dk)%totalsize_absor

END FUNCTION list_nodeSize_absor

! Total size of dist list in bytes

INTEGER FUNCTION list_totalSize_dist(di, dj, dk)

IMPLICIT NONE

INTEGER:: di, dj, dk

! total elements of array = (totalsize_dist * 2)

! space occupied is totalsize_dist * 8 bytes

list_totalsize_dist = los_data(di,dj,dk)%totalsize_dist * 8 * 2

END FUNCTION list_totalSize_dist

! Total size of emiss list in bytes

INTEGER FUNCTION list_totalSize_emiss(di, dj, dk)

IMPLICIT NONE

INTEGER:: di, dj, dk

! total elements of array = (totalsize_dist * fres)

list_totalsize_emiss = los_data(di, dj, dk)%totalsize_emiss * 8 * fres

END FUNCTION list_totalSize_emiss

! Total size of absor list in bytes

INTEGER FUNCTION list_totalSize_absor(di, dj, dk)

IMPLICIT NONE

INTEGER:: di, dj, dk

! total elements of array = (totalsize_dist * fres)

list_totalsize_absor = los_data(di,dj,dk)%totalsize_absor * 8 * fres

END FUNCTION list_totalSize_absor

! Copy all elements of all nodes of dist list into a temporary array

SUBROUTINE lists_readAllElem_dist(di, dj, dk, num_elems, out_dist)

IMPLICIT NONE

INTEGER, INTENT(IN) :: di, dj, dk, num_elems

DOUBLEPRECISION, DIMENSION(1:2, 1:num_elems), INTENT(INOUT) :: out_dist

TYPE(node_dist), pointer :: current

INTEGER :: i, nodesize

current => los_data(di, dj, dk)%first_dist

nodesize = nodeSize_dist(current)

DO i = 1, num_elems

IF(i.gt.1.and.mod(i - 1, nodesize).eq.0) current => current%next

out_dist(1:2, i) = current%dist(1:2, mod(i - 1, nodesize) + 1)

ENDDO

RETURN

END SUBROUTINE lists_readAllElem_dist

! Copy all elements of all nodes of emiss list into a temporary array

SUBROUTINE lists_readAllElem_emiss(di, dj, dk, num_elems, out_emiss)

IMPLICIT NONE



95 1.1. Implementation of Linked Lists

INTEGER, INTENT(IN) :: di, dj, dk, num_elems

DOUBLEPRECISION, DIMENSION(1:fres, 1:num_elems), INTENT(INOUT) :: out_emiss

type(node_emiss), pointer :: current

INTEGER :: i, nodesize

current => los_data(di, dj, dk)%first_emiss

nodesize = nodeSize_emiss(current)

DO i = 1, num_elems

IF(i.gt.1.and.mod(i - 1, nodesize).eq.0) current => current%next

out_emiss(1:fres, i) = current%emiss(1:fres, mod(i - 1, nodesize) + 1)

ENDDO

RETURN

END SUBROUTINE lists_readAllElem_emiss

! Copy all elements of all nodes of absor list into a temporary array

SUBROUTINE lists_readAllElem_absor(di, dj, dk, num_elems, out_absor)

IMPLICIT NONE

INTEGER, INTENT(IN) :: di, dj, dk, num_elems

DOUBLEPRECISION, DIMENSION(1:fres, 1:num_elems), INTENT(INOUT) :: out_absor

TYPE(node_absor), pointer :: current

INTEGER :: i, nodesize

current => los_data(di, dj, dk)%first_absor

nodesize = nodeSize_absor(current)

DO i = 1, num_elems

IF(i.gt.1.and.mod(i - 1, nodesize).eq.0) current => current%next

out_absor(1:fres, i) = current%absor(1:fres, mod(i - 1, nodesize) + 1)

ENDDO

RETURN

END SUBROUTINE lists_readAllElem_absor

! Get value of "i" element of all lists for

! element di,dj,dk of los_data for the current OpenMP thread

SUBROUTINE lists_getElem(di, dj, dk, i, cur_thread)

IMPLICIT NONE

INTEGER:: di, dj, dk, i, cur_thread

call list_getElem_dist (di, dj, dk, i, cur_thread)

call list_getElem_emiss (di, dj, dk, i, cur_thread)

call list_getElem_absor (di, dj, dk, i, cur_thread)

END SUBROUTINE lists_getElem

! Get value of "i" element of dist list for

! element di,dj,dk of los_data for the current OpenMP thread

SUBROUTINE list_getElem_dist(di, dj, dk, i, cur_thread)

IMPLICIT NONE

INTEGER:: di, dj, dk, i, ind, numnode, nodesize, cnt, cur_thread

REAL:: ceil

TYPE(node_dist), pointer :: current

cnt=1

IF( associated(los_data(di,dj,dk)%first_dist) ) THEN

current => los_data(di,dj,dk)%first_dist

nodesize = nodeSize_dist(current)



Appendix A. Source Code 96

numnode = (i - 1 - mod(i - 1, nodesize)) / nodesize + 1

DO WHILE (numnode.gt.cnt)

IF(associated(current%next)) THEN

current => current%next

cnt = cnt + 1

ELSE

print*, ’Error reading list dist (di, dj, dk, i, cnt) = ’, di, dj, dk, i, cnt

STOPINFORM

STOP

ENDIF

ENDIF

ind = mod (i - 1, nodesize) + 1

arrays(cur_thread)%dist(:) = current%dist(:,ind)

ELSE

STOPINFORM

STOP ’Error, list does not exist ’

ENDIF

END SUBROUTINE list_getElem_dist

! Get value of "i" element of emiss list for

! element di,dj,dk of los_data for the current OpenMP thread

SUBROUTINE list_getElem_emiss(di, dj, dk, i, cur_thread)

IMPLICIT NONE

INTEGER:: di, dj, dk, i, ind, numnode, nodesize, cnt, cur_thread

REAL:: ceil

TYPE(node_emiss), pointer :: current

cnt=1

IF( associated(los_data(di,dj,dk)%first_emiss) ) THEN

current => los_data(di,dj,dk)%first_emiss

nodesize = nodeSize_emiss(current)

numnode = (i - 1 - mod(i - 1, nodesize)) / nodesize + 1

DO WHILE (numnode.gt.cnt)

IF(associated(current%next)) THEN

current => current%next

cnt = cnt + 1

ELSE

print*, ’Error reading list emiss (di, dj, dk, i, cnt) = ’, di, dj, dk, i, cnt

STOPINFORM

STOP

ENDIF

ENDIF

ind = mod (i - 1, nodesize) + 1

arrays(cur_thread)%emiss(:) = current%emiss(:,ind)

ELSE

STOPINFORM

STOP ’Error, list does not exist ’

ENDIF

END SUBROUTINE list_getElem_emiss

! Get value of "i" element of absor list for

! element di,dj,dk of los_data for the current OpenMP thread

SUBROUTINE list_getElem_absor(di, dj, dk, i, cur_thread)



97 1.1. Implementation of Linked Lists

IMPLICIT NONE

INTEGER:: di, dj, dk, i, ind, numnode, nodesize, cnt, cur_thread

REAL:: ceil

TYPE(node_absor), pointer :: current

cnt=1

IF( associated(los_data(di,dj,dk)%first_absor) ) THEN

current => los_data(di,dj,dk)%first_absor

nodesize = nodeSize_absor(current)

numnode = (i - 1 - mod(i - 1, nodesize)) / nodesize + 1

DO WHILE (numnode.gt.cnt)

IF(associated(current%next)) THEN

current => current%next

cnt = cnt + 1

ELSE

print*, ’Error reading list absor (di, dj, dk, i, cnt) = ’, di, dj, dk, i, cnt

STOPINFORM

STOP

ENDIF

ENDDO

ind = mod (i - 1, nodesize) + 1

arrays(cur_thread)%absor(:) = current%absor(:,ind)

ELSE

STOPINFORM

STOP ’Error, list does not exist ’

ENDIF

END SUBROUTINE list_getElem_absor

! Set value of "i" element of all lists for

! element di,dj,dk of los_data for the current OpenMP thread

SUBROUTINE lists_setElem(di, dj, dk, i, cur_thread)

IMPLICIT NONE

INTEGER:: di, dj, dk, i, cur_thread

call list_setElem_dist (di, dj, dk, i, cur_thread)

call list_setElem_emiss (di, dj, dk, i, cur_thread)

call list_setElem_absor (di, dj, dk, i, cur_thread)

END SUBROUTINE lists_setElem

! Set value of "i" element of dist list for

! element di,dj,dk of los_data for the current OpenMP thread

SUBROUTINE list_setElem_dist(di, dj, dk, i, cur_thread)

IMPLICIT NONE

INTEGER:: di, dj, dk, i, ind, numnode, nodesize, cnt, cur_thread

REAL:: ceil

TYPE(node_dist), pointer :: current

cnt=1

IF(.not. associated(los_data(di,dj,dk)%first_dist) ) THEN

call list_append_dist(di, dj, dk, fres, lres)

ENDIF

current => los_data(di,dj,dk)%list_dist

nodesize = nodeSize_dist(current)



Appendix A. Source Code 98

IF(i.gt.1.and.mod(i - 1, nodesize).eq.0) THEN

call list_append_dist(di, dj, dk, current%fres, current%lres)

current => current%next

cnt = cnt + 1

ENDIF

ind = mod (i - 1, nodesize) + 1

current%dist(:,ind) = arrays(cur_thread)%dist(:)

END SUBROUTINE list_setElem_dist

! Set value of "i" element of emiss list for

! element di,dj,dk of los_data for the current OpenMP thread

SUBROUTINE list_setElem_emiss(di, dj, dk, i, cur_thread)

IMPLICIT NONE

INTEGER:: di, dj, dk, i, ind, numnode, nodesize, cnt, cur_thread

REAL:: ceil

TYPE(node_emiss), pointer :: current

cnt=1

IF(.not. associated(los_data(di,dj,dk)%first_emiss) ) THEN

call list_append_emiss(di, dj, dk, fres, lres)

ENDIF

current => los_data(di,dj,dk)%list_emiss

nodesize = nodeSize_emiss(current)

IF(i.gt.1.and.mod(i - 1, nodesize).eq.0) THEN

call list_append_emiss(di, dj, dk, current%fres, current%lres)

current => current%next

cnt = cnt + 1

ENDIF

ind = mod (i - 1, nodesize) + 1

current%emiss(:,ind) = arrays(cur_thread)%emiss(:)

END SUBROUTINE list_setElem_emiss

! Set value of "i" element of absor list for

! element di,dj,dk of los_data for the current OpenMP thread

SUBROUTINE list_setElem_absor(di, dj, dk, i, cur_thread)

IMPLICIT NONE

INTEGER:: di, dj, dk, i, ind, numnode, nodesize, cnt, cur_thread

REAL:: ceil

TYPE(node_absor), pointer :: current

cnt=1

IF(.not. associated(los_data(di,dj,dk)%first_absor) ) THEN

call list_append_absor(di, dj, dk, fres, lres)

ENDIF

current => los_data(di,dj,dk)%list_absor

nodesize = nodeSize_absor(current)

IF(i.gt.1.and.mod(i - 1, nodesize).eq.0) THEN

call list_append_absor(di, dj, dk, current%fres, current%lres)

current => current%next

cnt = cnt + 1

ENDIF



99 1.1. Implementation of Linked Lists

ind = mod (i - 1, nodesize) + 1

current%absor(:,ind) = arrays(cur_thread)%absor(:)

END SUBROUTINE list_setElem_absor

! Append a new node in all lists for

! element di,dj,dk of los_data for the current OpenMP thread

SUBROUTINE lists_append(di, dj, dk, fres, lres)

IMPLICIT NONE

INTEGER :: di, dj, dk, fres, lres

call list_append_dist (di, dj, dk, fres, lres)

call list_append_emiss (di, dj, dk, fres, lres)

call list_append_absor (di, dj, dk, fres, lres)

END SUBROUTINE lists_append

! Append a new node in dist list for

! element di,dj,dk of los_data for the current OpenMP thread

! The size of new node is 2*lres

SUBROUTINE list_append_dist(di, dj, dk, fres, lres)

IMPLICIT NONE

INTEGER, intent(in) :: di, dj, dk, fres, lres

IF( associated(los_data(di,dj,dk)%first_dist) ) THEN

allocate(los_data(di,dj,dk)%list_dist%next)

los_data(di,dj,dk)%list_dist => los_data(di,dj,dk)%list_dist%next

nullify(los_data(di,dj,dk)%list_dist%next)

ELSE

! is first

call list_init_dist(di,dj,dk)

ENDIF

los_data(di,dj,dk)%list_dist%lres = lres

los_data(di,dj,dk)%list_dist%fres = fres

los_data(di,dj,dk)%totalsize_dist = los_data(di,dj,dk)%totalsize_dist + lres

los_data(di,dj,dk)%totalsize = los_data(di,dj,dk)%totalsize_dist

allocate(los_data(di,dj,dk)%list_dist%dist(1:2, 1:lres))

END SUBROUTINE list_append_dist

! Append a new node in emiss list for

! element di,dj,dk of los_data for the current OpenMP thread

! The size of new node is fres*lres

SUBROUTINE list_append_emiss(di, dj, dk, fres, lres)

IMPLICIT NONE

INTEGER, intent(in) :: di, dj, dk, fres, lres

IF( associated(los_data(di,dj,dk)%first_emiss) ) THEN

allocate(los_data(di,dj,dk)%list_emiss%next)

los_data(di,dj,dk)%list_emiss => los_data(di,dj,dk)%list_emiss%next

nullify(los_data(di,dj,dk)%list_emiss%next)

ELSE

! is first

call list_init_emiss(di,dj,dk)

ENDIF



Appendix A. Source Code 100

los_data(di,dj,dk)%list_emiss%lres=lres

los_data(di,dj,dk)%list_emiss%fres=fres

los_data(di,dj,dk)%totalsize_emiss = los_data(di,dj,dk)%totalsize_emiss + lres

los_data(di,dj,dk)%totalsize = los_data(di,dj,dk)%totalsize_emiss

allocate(los_data(di,dj,dk)%list_emiss%emiss(1:fres, 1:lres))

END SUBROUTINE list_append_emiss

! Append a new node in absor list for

! element di,dj,dk of los_data for the current OpenMP thread

! The size of new node is fres*lres

SUBROUTINE list_append_absor(di, dj, dk, fres, lres)

IMPLICIT NONE

INTEGER, intent(in) :: di, dj, dk, fres, lres

IF( associated(los_data(di,dj,dk)%first_absor) ) THEN

allocate(los_data(di,dj,dk)%list_absor%next)

los_data(di,dj,dk)%list_absor => los_data(di,dj,dk)%list_absor%next

nullify(los_data(di,dj,dk)%list_absor%next)

ELSE

! is first

call list_init_absor(di,dj,dk)

ENDIF

los_data(di,dj,dk)%list_absor%lres=lres

los_data(di,dj,dk)%list_absor%fres=fres

los_data(di,dj,dk)%totalsize_absor = los_data(di,dj,dk)%totalsize_absor + lres

los_data(di,dj,dk)%totalsize = los_data(di,dj,dk)%totalsize_absor

allocate(los_data(di,dj,dk)%list_absor%absor(1:fres, 1:lres))

END SUBROUTINE list_append_absor

! Destroy all lists for element di,dj,dk of los_data

SUBROUTINE lists_destroy(di, dj, dk)

IMPLICIT NONE

INTEGER :: di, dj, dk

call list_destroy_dist(di, dj, dk)

call list_destroy_emiss(di, dj, dk)

call list_destroy_absor(di, dj, dk)

END SUBROUTINE lists_destroy

! Destroy dist list for element di,dj,dk of los_data

SUBROUTINE list_destroy_dist(di, dj, dk)

IMPLICIT NONE

INTEGER :: di, dj, dk

DO WHILE (associated(los_data(di,dj,dk)%first_dist))

deallocate(los_data(di,dj,dk)%first_dist%dist)

los_data(di,dj,dk)%first_dist => los_data(di,dj,dk)%first_dist%next

ENDDO

END SUBROUTINE list_destroy_dist

! Destroy emiss list for element di,dj,dk of los_data

SUBROUTINE list_destroy_emiss(di, dj, dk)

IMPLICIT NONE

INTEGER :: di, dj, dk



101 1.2. Implementation of the hierarchical data structure

DO WHILE (associated(los_data(di,dj,dk)%first_emiss))

deallocate(los_data(di,dj,dk)%first_emiss%emiss)

los_data(di,dj,dk)%first_emiss => los_data(di,dj,dk)%first_emiss%next

ENDDO

END SUBROUTINE list_destroy_emiss

! Destroy absor list for element di,dj,dk of los_data

SUBROUTINE list_destroy_absor(di, dj, dk)

IMPLICIT NONE

INTEGER :: di, dj, dk

DO WHILE (associated(los_data(di,dj,dk)%first_absor))

deallocate(los_data(di,dj,dk)%first_absor%absor)

los_data(di,dj,dk)%first_absor => los_data(di,dj,dk)%first_absor%next

ENDDO

END SUBROUTINE list_destroy_absor

END MODULE list_losdata

1.2 Implementation of the hierarchical data
structure

The source code of the hm gopen h and hm gclose h routines is the following:

! create HDF5 groups with hierarchical levels

SUBROUTINE hm_gopen_h(file_id, num_id, group_ids)

use hdf5

IMPLICIT NONE

INTEGER(HID_T), INTENT(INOUT) :: file_id

INTEGER(HID_T), INTENT(INOUT), DIMENSION(10) :: group_ids

INTEGER, INTENT(IN) :: num_id

INTEGER, DIMENSION(10) :: fmt, id_fmt

INTEGER :: i, j, current_num, current_base

INTEGER(HID_T) :: last_id

CHARACTER(len=256) :: group_name, group_digits

! read file format

IF (hm_exists(file_id, "fmt")) THEN

CALL hm_read1_int(file_id, 10, fmt, "fmt")

ELSE

fmt = (/0, 0, 0, 0, 0, 0, 0, 0, 0, 10/)

ENDIF

! decode num_id according to the format

current_num = num_id

DO i = 10, 1, -1

IF (fmt(i).ne.0) THEN

! compute current base

current_base = 1



Appendix A. Source Code 102

DO j = 1, fmt(i)

current_base = current_base * 10

ENDDO

! current number is modulo current base

id_fmt(i) = mod(current_num, current_base)

! new number is the integer part of the division

current_num = (current_num - mod(current_num, current_base)) / current_base

ELSE

id_fmt(i) = -1

ENDIF

ENDDO

! create group hierarchy

last_id = file_id

DO i = 1, 10

IF (fmt(i).ne.0) THEN

! create group name format

IF (fmt(i).lt.10) THEN

WRITE(group_digits, "(i1.1)") fmt(i)

ELSE

WRITE(group_digits, "(i2.2)") fmt(i)

ENDIF

! create group name

WRITE(group_name, "(i"//TRIM(group_digits)//"."//TRIM(group_digits)//")") id_fmt(i)

! open or create the current group

IF (hm_exists(last_id, TRIM(group_name))) THEN

call hm_gopen(last_id, TRIM(group_name), group_ids(i))

ELSE

call hm_gcreate(last_id, TRIM(group_name), group_ids(i))

ENDIF

last_id = group_ids(i)

ELSE

group_ids(i) = -1

ENDIF

ENDDO

RETURN

END SUBROUTINE hm_gopen_h

! close HDF5 groups with hierarchical levels

SUBROUTINE hm_gclose_h(group_ids)

use hdf5

IMPLICIT NONE

INTEGER(HID_T), DIMENSION(10), INTENT(INOUT) :: group_ids

INTEGER :: i

DO i = 10, 1, -1

IF (group_ids(i).ne.-1) call hm_gclose(group_ids(i))

ENDDO



103 1.2. Implementation of the hierarchical data structure

RETURN

END SUBROUTINE hm_gclose_h

END MODULE hdfman



Appendix A. Source Code 104



Appendix B

Sampling figures

Figure B.1: Test: Compression level = 1. 4 OpenMP threads.

105



Appendix B. Sampling figures 106

Figure B.2: Test: Compression level = 2. 4 OpenMP threads.

Figure B.3: Test: Compression level = 3. 4 OpenMP threads.



107

Figure B.4: Test: Compression level = 4. 4 OpenMP threads.

Figure B.5: Test: Compression level = 5. 4 OpenMP threads.



Appendix B. Sampling figures 108

Figure B.6: Test: Compression level = 6. 4 OpenMP threads.

Figure B.7: Test: Compression level = 7. 4 OpenMP threads.



109

Figure B.8: Test: Compression level = 8. 4 OpenMP threads.

Figure B.9: Test: Compression level = 9. 4 OpenMP threads.



Appendix B. Sampling figures 110



Appendix C

Publications related to the
present work

We have published several articles, posters, proceedings and presentations
related to the present work. These publications are:

• Article [11]:

Petar Mimica, Miguel A Aloy, Jesus Rueda-Becerril, Siham Tabik, Car-
men Aloy. Numerical simulations of dynamics and emission from rel-
ativistic astrophysical jets. Journal of Physics Conference Series. 454
012001 doi:10.1088/1742-6596/454/1/012001

http://iopscience.iop.org/1742-6596/454/1/012001

• Presentation [2]:

Carmen Aloy. Parallel performance improvement in MRGENESIS and
RATPENAT. Presentation at Mini-WORKSHOP on Supercomputing
and GRID. October 5th, 2012. University of Valencia - IVICFA.

http://ivicfa.uv.es/?page_id=341#SGrid

Slides available at: http://bit.ly/14XMLDI

• Poster [6]:

Miguel A Aloy, Sergio Miranda, Carmen Aloy. Building a non-ideal nu-
merical relativistic magnetohydrodynamics code for astrophysical appli-
cations. Poster at ASTRONUM Conference. July 1st - July 5th, 2013,
Biarritz (France).

Available at http://www.uv.es/macarato/posterASTRONUM.pdf.

Conference: http://irfu.cea.fr/Projets/ASTRONUM2013/index.htm

• Proceedings [9]:

Petar Mimica, Miguel A Aloy, Carlos Cuesta and Carmen Aloy. Chal-
lenges in computing thermal and non-thermal emission from relativistic

111

http://iopscience.iop.org/1742-6596/454/1/012001
http://ivicfa.uv.es/?page_id=341#SGrid
http://bit.ly/14XMLDI
http://www.uv.es/macarato/posterASTRONUM.pdf
http://irfu.cea.fr/Projets/ASTRONUM2013/index.htm


Appendix C. Publications related to the present work 112

outflows Presentation at ASTRONUM Conference. July 1st - July 5th,
2013, Biarritz (France).

http://irfu.cea.fr/Projets/ASTRONUM2013/Presentations/tableau.htm

• Poster and Proceedings [16]:

Jesús Rueda, Petar Mimica, Miguel A Aloy, Carmen Aloy. Numerical
study of broadband spectra caused by internal shocks in magnetized
relativistic jets of blazars. Poster at Conference: The Innermost Regions
of Relativistic Jets and Their Magnetic Fields. June 10th -14th, 2013.
Granada (Spain).

Available at http://www.uv.es/macarato/posterGRANADA.pdf.

Link to the Conference: http://jets2013.iaa.es

The proceedings of this poster has been sent in September 11th, 2013,
to be published. Link to the abstract http://bit.ly/1aN9tTp

http://irfu.cea.fr/Projets/ASTRONUM2013/Presentations/MIMICA%20-%20pr%e9sentation.pdf
http://www.uv.es/macarato/posterGRANADA.pdf
http://jets2013.iaa.es
http://bit.ly/1aN9tTp


Bibliography

[1] C. Aloy, P. Mimica, and M. A. Aloy. Poster presented at PRACE
Summer School, CSC, Helsinki (Finland), 2011. Available online at
http://www.uv.es/macarato/poster.pdf.

[2] C. Aloy, P. Mimica, and M. A. Aloy. Parallel performance improvement
in MRGENESIS and RATPENAT. Presentation at Mini-WORKSHOP
on Supercomputing and GRID. University of Valencia, 2012. Available
online at http://bit.ly/14XMLDI.

[3] M. A. Aloy, J. M. Ibáñez, J. M. Mart́ı, and E. Müller. GENESIS: A
High-Resolution Code for Three-dimensional Relativistic Hydrodynam-
ics. The Astrophysical Journal Supplement Series, 122:151–166, May
1999.

[4] M. A. Aloy and P. Mimica. Simulations of Jets from Active Galactic
Nuclei and Gamma-Ray Bursts; in Relativistic Jets from Active Galactic
Nuclei (eds M. Bttcher, D. E. Harris and H. Krawczynski), chapter 10,
pages 297–339. Wiley-VCH Verlag GmbH & Co. KGaA, 2012.

[5] M. A. Aloy, P. Mimica, I. Agudo, J. M. Marti, J. L. Gómez, and J. A.
Miralles. Spectral Evolution of Superluminal Components in Parsec-
Scale Jets. The Astrophysical Journal, 696(2):1142–1163, May 2009.

[6] M. A. Aloy, S. Miranda, and C. Aloy. Building a non-
ideal numerical relativistic magnetohydrodynamics code for as-
trophysical applications. Poster at ASTRONUM Conference.
July 1st - July 5th, 2013, Biarritz-France. Available online at
http://www.uv.es/macarato/posterASTRONUM.pdf.

[7] S. N. Borovikov, N. V. Pogorelov, G. P. Zank, and I. A. Kryukov. Conse-
quences of the Heliopause Instability Caused by Charge Exchange. The
Astrophysical Journal, 682(2):1404–1415, 2008.

[8] Heerikhuisen J. and Pogorelov, N. V. An Estimate of the Nearby Inter-
estellar Magnetic Field Using Neutral Atoms. The Astrophysical Journal,
738(1):29–38, 2011.

113

http://www.uv.es/macarato/poster.pdf
http://bit.ly/14XMLDI
http://www.uv.es/macarato/posterASTRONUM.pdf


Bibliography 114

[9] P. Mimica, M. A. Aloy, C. Cuesta, and C. Aloy. Challenges
in computing thermal and non-thermal emission from rela-
tivistic outflows. Proceedings at ASTRONUM Conference.
July 1st - July 5th, 2013, Biarritz-France. Available online at
http://irfu.cea.fr/Projets/ASTRONUM2013/Presentations/tableau.htm.

[10] P. Mimica, M. A. Aloy, and E. Müller. Internal shocks in relativistic
outflows: collisions of magnetized shells. Astronomy & Astrophysics,
466:93–106, April 2007.

[11] P. Mimica, M. A. Aloy, J. Rueda, S. Tabik, and C. Aloy. Numerical
simulations of dynamics and emission from relativistic astrophysical jets.
Journal of Physics: Conference Series, 454(1):012001, 2013.

[12] Pogorelov, N. V. and Stone, E. C. and Florinski, V. and Zank, G. P.
Termination Shock Asymmetries as Seen by the Voyager Spacecraft:
The Role of the Interstellar Magnetic Field and Neutral Hydrogen. The
Astrophysical Journal, 688(2):661–624, 2006.

[13] Pogorelov, N. V. and Zank, G. P. and Ogino, T. Three-dimensional Fea-
tures of the Outer Heliosphere Due to Coupling between the Interstellar
and Interplanetary Magnetic Fields. I. Magnetohydrodynamic Model:
Interstellar Perspective. The Astrophysical Journal, 614(2):1007–1021,
2004.

[14] Pogorelov, N. V. and Zank, G. P. and Ogino, T. Three-dimensional
Features of the Outer Heliosphere due to Coupling between the Inter-
stellar and Interplanetary Magnetic Fields. II. The Presence of Neutral
Hydrogen Atoms. The Astrophysical Journal, 644(2):1299–1316, 2006.

[15] PRACE. HPC access. How to apply, 2012. Available online at
http://www.prace-ri.eu/How-to-apply?lang=en.

[16] J. Rueda, P. Mimica, M. A. Aloy, and C. Aloy. Numerical
study of broadband spectra caused by internal shocks in magne-
tized relativistic jets of blazars. Poster at Conference: The In-
nermost Regions of Relativistic Jets and Their Magnetic Fields.
June 10th -14th, 2013. Granada (Spain). Available online at
http://www.uv.es/macarato/posterGRANADA.pdf.

[17] D. Vicente. BSC-RES-PRACE, HPC resources, 2012. Available online
at http://indico.ific.uv.es.

http://irfu.cea.fr/Projets/ASTRONUM2013/Presentations/MIMICA%20-%20pr%e9sentation.pdf
http://www.prace-ri.eu/How-to-apply?lang=en
http://www.uv.es/macarato/posterGRANADA.pdf
http://indico.ific.uv.es/indico/getFile.py/access?contribId=5&resId=0&materialId=slides&confId=704

	Introduction
	Preparation of the work environment
	Quick Start
	Tasks done

	Problems encountered during installations
	A search for solutions
	Best solution
	GCC45 installation
	MPICH2-1.3.2P1 installation
	HDF5 1.8.6 installation
	Modification of MacPorts self-update script
	Implementation of a script of full installation


	Profiling and analysis of the computational aspect of SPEV
	Motivation for code optimization
	SPEV algorithm and its profiling
	MRGENESIS and SPEV parallelization

	Profiling and testing
	Profiling the preprocessor
	Testing the preprocessing
	Testing the postprocessing
	Conclusion


	Optimization of use of hardware resources
	Simultaneous execution of different codes
	Code modifications
	Modification of MRGENESIS
	Modifications of SPEV (preprocessing)
	Modifications of PARPLOT

	Performance test
	Conclusions


	Optimization of memory management
	SPEV virtual detector and its memory requirements
	Radiative transfer in SPEV
	Virtual detector memory management

	Implementation of linked lists in SPEV virtual detector
	Comparison of old and new algorithms
	Implementation
	Tests


	Optimization of the hierarchical data structure
	Structure of the preprocessed file
	Modifications of the file structure
	Implementation

	Performance tests

	Conclusions
	Source Code
	Implementation of Linked Lists
	Implementation of the hierarchical data structure

	Sampling figures
	Publications related to the present work
	Bibliography

