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Abstract

The development of the technology to synthesize new genomes and to in-
troduce them into hosts with inactivated wild-type chromosome opens the
door to new horizons in synthetic biology. Here it is of outmost importance
to harness the ability of using computational design to predict and optimize
a synthetic genome before attempting its synthesis. The aim of this thesis
is to help enable the engineering of synthetic genomes of one prokaryotic
and two eukaryotic cells by using quantitative genome-scale models. Here, I
develop a novel methodology to the automatic design of synthetic genomes
which is based on an optimization that computationally mimics genome evo-
lution. First, I address the design of the genomic transcriptional network of
Escherichia coli with adaptation to varying environments. Applying reverse-
engineering methods to the large amount of transcriptomic and signalling
data available for the bacterium, I seek to understand the design principles
determining the regulation of its transcriptome. I find that E. coli genome
could be reengineered in such a way that it has a simpler transcriptional reg-
ulatory structure while still maintaining the global physiological response to
fluctuating environments. These genomes are more sensitive and show a
more robust response to challenging environments. Second, I address how
virus reprogram the cellular chassis of their host assuming that exist mech-
anisms by which virus are able to overcome the defenses exposed by the
host and modify its gene expression on its own benefit. I develop a novel
genome-scale quantitative model of transcriptional regulation of Arabidop-
sis thaliana for exploring the landscape of possible re-engineered genomes.
I find a core set of host genes whose knockout or overexpression resulted
in predicted transcriptional profiles that minimally deviate from the ob-
served in plants infected. I perform this search for a set of eight viruses for
which transcriptomic data are available and compared the results among
them. Third, I extend the computational methodology for genome redesign
to address the fine-tuning of the tomato fruit agronomic properties. I apply
reverse engineering computational methods to transcriptomic, metabolomic
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and phenomic data obtained from a collection of tomato recombinant in-
breed lines to formulate a kinetic and constrain-based model that efficiently
describes the cellular metabolism from the expression of a minimal core of
genes. Based on the predicted metabolic profiles, a close association with
agronomic and organoleptic properties of the ripe fruit could be revealed
with high statistical confidence. The model was used for exploring the land-
scape of all possible local transcriptional changes with the aim of engineering
tomato fruits with fine-tuned biotechnological properties. In sum, our results
demonstrate that automated computational methods can efficiently explore
the fitness landscape of re-engineered genomes with desired specifications.



Resumen

El desarrollo de tecnologias para sintetizar nuevos genomas e introducirlos
dentro de hospedadores con sus respectivos cromosomas naturales inactiva-
dos abre las puertas a nuevos horizontes en biologia sintética. Es de suma
importancia aprovechar la habilidad de usar métodos computacionales para
predecir y optimizar genomas sintéticos antes de llevar a cabo su sintesis.
El objetivo de esta tesis es propulsar la ingenieria de genomas sintéticos de
una célula procariota y otras dos eucariotas usando modelos cuantitativos
a escala genémica. As pues, he desarrollado una nueva metodologia para el
dise no automatizado de genomas sintéticos que se basa en una optimizacion
que computacionalmente imita la evolucin natural de genomas. Primero, he
abordado el diseno de la red gendémica transcripcional de Escherichia coli con
adaptacién a entornos cambiantes. Aplicando métodos de ingenieria reversa
a los datos masivos disponibles de la transcripcion y senalizacion para la
bacteria, tratamos entender los principios de disenio que determinan la regu-
lacién de su transcriptoma. Encontramos que el genoma de E. coli puede ser
redisenado de tal forma que tenga una estructura reguladora transcripcional
mas simple manteniendo ain la respuesta fisiolégica global ante ambientes
fluctuantes. Estos genomas son maés sensibles y muestran una respuesta mas
robusta ante ambientes agresivos. Segundo, he estudiado cémo los virus re-
programan los chasis celulares de sus hospedadores asumiendo que existen
mecanismos por los cuales los virus son capaces de superar con éxito las de-
fensas expuestas por los hospedadores y modificar la expresién de sus genes
en su propio beneficio. He desarrollado un nuevo modelo cuantitativo de
la regulacion transcripcional a nivel genémico de Arabidopsis thaliana para
explorar el paisaje de posibles genomas redisenados. Encontré un conjunto
basico de genes del hospedador cuyos silenciamiento o sobre-expresién dieron
pie a la prediccion de perfiles de transcripcién que se desvian minimamente
de los observados en plantas infectadas. Esta exploracion la he realizado para
un conjunto de ocho virus para los que se disponian datos transcriptéomicos

y consecuentemente, los resultados fueron comparados. Finalmente, he ex-
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tendido la metodologia computacional presentada para rediseno de geno-
mas con el objetivo de abordar la optimizacion de propiedades agronémicas
del fruto del tomate. Apliqué métodos computacionales de ingenieria re-
versa a datos transcriptémicos, metabolémicos y fenotipicos obtenidos de
una coleccién de linajes recombinantes para formular un modelo cinético
basado en restricciones que eficientemente describiese el metabolismo celu-
lar usando la expresiéon de un conjunto minimo de genes. Basdndose en los
perfiles metabdlicos predichos, relaciones entre las propiedades agronémicas
y organolépticas del fruto maduro pudieron ser reveladas con alta confi-
anza estadistica. El modelo fue usado para explorar el paisaje de todos los
posibles cambios transcripcionales locales con el fin de obtener frutos de to-
mate con propiedades biotecnolégicas de especial interés. Resumiendo, los
resultados presentados en esta tesis demuestran que métodos autométicos
computacionales pueden explorar eficientemente las puntos 6ptimos de un
paisaje de genomas redisenados con especificaciones deseadas.



Resum

El desenvolupament de tecnologies per a sintetitzar nous genomes i introduir-
los en cel.lules amb els seus respectius cromosomes naturals inactivats obri
les portes a nous horitzons en biologia sintetica. Es de la mixima im-
portancia aprofitar I’habilitat d’usar metodologies computacionals per a
predir i optimitzar genomes sintetics abans de dur a terme la seua sintesi.
L’objectiu d’esta tesi és propulsar la inginyeria de genomes sintetics d’una
cel.lula procariota i altres dos eucariotes usant models quantitatius a es-
cala genomica. Aixi, he desenvolupat una nova metodologia per al dis-
eny automatitzat de genomes sintetics que es basa en una optimizacié que
computacionalment imita 1’evolucié natural de genomes. Primer, he abor-
dat el diseny de la xarxa gendémica transcripcional d’FEscherichia coli amb
adaptacié a entorns canviants. Aplicant metodes d’inginyeria reversa a les
dades massives disponibles de la transcripcié i senyalitzacié per al bac-
teri, tractem d’entendre els principis de diseny que determinen la regu-
lacié del seu transcriptoma. Trobem que el genoma d’FE. coli pot ser re-
disenyat de tal forma que tinga una estructura reguladora transcripcional
més simple mantenint la resposta fisiologica global davant d’ambients fluc-
tuants. Estos genomes sén més sensibles i mostren una resposta més ro-
busta davant d’ambients agressius. A continuacié, he estudiat com els
virus reprogramen els xassissos cel.lulars dels seus hospedadors assumint
que hi ha mecanismes pels quals son capacos de superar amb exit les de-
fenses exposades pels hospedadors i modificar ’expressio dels seus gens en
el seu propi benefici. He desenrotllat un nou model quantitatiu de la reg-
ulacié transcripcional a nivell genomic d’Arabidopsis thaliana per a explo-
rar el paisatge de possibles genomes redisenyats. Vaig encontrar un con-
junt basic de gens de I'hospedador que variant adequadament la seua ex-
pressié van donar peu a la prediccié de perfils de transcripcié que es desvien
minimament dels observats en plantes infectades. Esta exploracié I'he re-
alitzat en un conjunt de huit virus del quals disponiem dades del seu tran-
scriptoma infectat per a comparar els resultats derivats. Finalment, he estés



la metodologia computacional presentada per a rediseny de genomes amb
I’objectiu d’abordar I'optimizacié de propietats agronomiques del fruit de la
tomaca. Vaig aplicar metodes computacionals d’ingenieria reversa a dades
transcriptomiques, metabolomiques i fenotipiques obtingudes d’una coleccid
de llinatges recombinants per a formular un model cinetic basat en restric-
cions que eficientment descriguera el metabolisme cel.lular usant I’expressié
d’un conjunt minim de gens. Basant-se en els perfils metabolics predits, rela-
cions entre les propietats agronomiques i organoléptiques del fruit madur van
poder ser revelades amb alta confianca estadistica. El model va ser usat per
a explorar el paisatge de tots els possibles canvis transcripcionals locals a fi
d’obtindre fruits de tomaca amb propietats biotecnolégiques d’especial in-
terés. Resumint, els resultats presentats en esta tesi demostren que metodes
automatics computacionals poden explorar eficientment els punts optims
d’un paisatge de genomes redisenyats amb especificacions desitjades.
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Objectives

The objectives of this thesis are:

1.

Development of a computational framework to design genomic tran-
scriptional networks with adaptation to varying environments. Appli-
cation of optimization methods to explore the combinatorial space.

. Characterization of the designability of bacterial re-engineered genomes.

Quantitative study of synthetic transcriptional regulatory networks.
Application of optimization methods to unravel design principles.

Empirical model and in vivo characterization of the bacterial response
to synthetic gene expression. Determination of the type of cellular
resource allocation that limits growth rate in the genome redesign.

. Reverse-engineering of the A. thaliana transcriptional network under

changing environmental conditions. Genomic network-based dissec-
tion of the cell response under viral infection. Reprogramming cell to
mimic the transcriptome of A. thaliana upon viral infection by using
computational genome design.

. Apply reverse-engineering computational methods to transcriptomic,

metabolomic and phenomic data obtained from a collection of tomato
recombinant inbreed lines to formulate a kinetic and constrain-based
model that describes the cellular metabolism from the expression of a
minimal core of genes and the tomato phenotype from a critical set
of metabolites. Explore the landscape of local transcriptional changes
with the aim of engineering tomato fruits with fine-tuned biotechno-
logical properties.






Chapter 1

Introduction

Making biology easier to engineer.
— Drew Endy

The availability of technology to synthesize new genomes and transplant
them in cells urges us to develop methodologies to design such genomes.
Computational design provides a way to overcome the complexity of the
system. In this review we will focus on a few essential aspects that would
have to be solved to obtain a computational genome design methodology.
The forward engineering of a genome requires a good understanding of the
cell at the molecular level. This understanding could be incorporated as
inferred models from functional genomics data.

Over the last ten years, there has been a continued effort in the systems
biology community for developing genome-scale models [1, 2]. They con-
sist of physico-chemical descriptions of intracellular processes implementing
bottom-up strategies using biological databases and the scientific literature
[3, 4]. Although such models are very useful to analyze small systems, they
pose some difficulties at the large-scale level due to the complexity of the
cell, the lack of kinetic parameters and evolutionary and population effects
[5]. Contrarily, reverse-engineering methods are applied to experimental
data to obtain models [6, 7]. In that way, the technological developments
to produce high-throughput-omics data (such as genomics, transcriptomics,
proteomics, metabolomics or phenomics) have been pivotal towards that
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end. Such data are used to train learning algorithms that output math-
ematical models able to predict the molecular behavior of the cell under
different conditions. Some of such algorithms are also able to generalize and
make predictions for alternative cell rewirings.

The goal of this thesis is to show how some of the current methods
for predicting the behavior at a genomic scale could be used in a global
methodology to design computationally new genomes. They could be later
synthesized from chemical components to obtain cells with targeted proper-
ties, such as the bio-production of combustibles or for medical applications.
The large number of components of a cell will probably always require the
use of automated methods able to make predictions with a large number of
equations. The improvement of computational methods will allow creating
experimentally a full synthetic genome implementing the re-engineering of
cells with highly reduced genomic complexity.

A computational genome design methodology requires using a biochem-
ical model of the cell able to predict a phenotypic fitness function such
as cell growth. The usual way to do this is by reconstructing metabolic
networks from sequenced organisms, which allows analyzing their metabolic
capabilities and engineering synthetic strains [8, 9]. This process is based on
generating a stoichiometric model by using genome annotation and specific
data about the enzymatic reactions carrying out in the organism. On the
other hand, the reconstruction of a global regulatory network is facilitated
by using data from microarray experiments. We could highlight several ap-
proaches, such as clustering, information-theory or Bayesian methods [2].
The use of prior knowledge on regulatory targets and biological databases,
such as RegulonDB [10] and EcoCyc [11] for E. coli, can improve the accu-
racy of the models. Particularly, metabolic and transcription networks of
the bacterium E. coli [12, 13] or the yeast S. cerevisiae [14, 15] have been
widely studied.

Now, with the development of DNA technology, the full synthesis of a
genome is conceivable [16, 17, 18]. The computational approach allows us
to integrate large-scale mathematical models in a common platform to fa-
cilitate genome design. There has been some initial work on the automated
design of genomes by rewriting the codons to change gene expression or
to avoid specific restriction sites [19]. Furthermore, the use of molecular
models will allow the design of synthetic genomes based on functional DNA
cassettes working as independent modules. Here, we describe the current
state-of-the-art on computational methods that could be applied to the de-
sign of genomes. One possible starting point to computationally design or
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redesign a genome would be starting by the design of the metabolism. Here
we would also have to make sure we include the essential genes, those to
be required in a minimal cell [20]. Later, we could incorporate transcrip-
tion regulation, coupled to signal transduction, to better optimize the cell
response to alternative environments. Finally, we would have to provide
the nucleotide sequence, for which we would have to deal with the genome
organization of genes. Of course, this is a crude simplification of the real
steps needed to design a genome, but it is a good starting point given the
primitive status of the modeling in this area. Here we apply optimization
methods to design synthetic genomes in one prokaryotic (E. coli) and two
eukaryotic (A. thaliana and tomato fruit) cells with a desired behavior. Al-
though we abstract each problem, it is expected the use of computational
techniques to design cells with highly reduced genomic complexity involving
several regulatory mechanisms, as certainly it occurs in natural systems. We
approach the design of genomes as the inverse problem of finding the right
regulatory biological components at play and their precise position in the
circuit, by taking advantage of libraries of inferred-characterized promoters
and open reading frames of the wild-type genomes.

References

[1] Feist, A. M., Herrgard, M. J., Thiele, 1., Reed, J. L., Palsson, B. O.
(2009). Reconstruction of biochemical networks in microorganisms. Nat.
Rev. Microbiol. 7, 129-143.

[2] Bonneau, R. (2008). Learning biological networks: from modules to
dynamics. Nat. Chem. Biol. 4, 658-664.

[3] de Jong H. (2002). Modeling and simulation of genetic regulatory sys-
tems: a literature review. J. Comput. Biol. 9, 67-103.

[4] Leduc, M., Tikhomiroff, C., Cloutier, M., Perrier M., Jolicoeur, M.
(2006). Development of a kinetic metabolic model: application to
Catharanthus roseus hairy root. Bioprocess Biosyst. Eng. 28 295-313.

[5] Palsson, B.O. (2002) In silico biology through omics. Nat. Biotechnol.
20, 649-650.

[6] Yeung, M. K. S., Tegner J., Collins, J. J. (2002). Reverse engineering
gene networks using singular value decomposition and robust regression.

Proc. Natl. Acad. Sci. U. S. A. 99, 6163-6168.



Introduction

[7]

[10]

[11]

[12]

[13]

[14]

Tegner, J., Yeung, M. K. S., Hasty, J., Collins, J.J. (2003) Reverse
engineering gene networks: Integrating genetic perturbations with dy-
namical modeling. Proc. Natl. Acad. Sci. U. S. A. 100, 5944-5949.

Stephanopoulos, G. (1994). Metabolic engineering. Curr. Opin.
Biotechnol. 5, 196-200.

Covert, M. W., Schilling, C. H., Famili, I., Edwards, J. S., Goryaninc,
I. 1., Selkov E., Palsson, B. O. (2001) Metabolic modeling of microbial
strains in silico. Trends Biochem. Sci. 26, 179-186.

Salgado, H., Gama-Castro, S., Peralta-Gil, M., Diaz-Peredo, E.,
Sanchez-Solano, F., Santos-Zavaleta, A., Martinez-Flores, 1., Jimenez-
Jacinto, V., Bonavides-Martinez, C., Segura-Salazar, J., Martinez-
Antonio A., Collado-Vides, J. (2006). RegulonDB (version 5.0): Es-
cherichia coli K-12 transcriptional regulatory network, operon organi-
zation and growth conditions. Nucleic Acids Res. 34, D394.

Karp, P. D., Keseler, I. M., Shearer, A., Latendresse, M., Krum-
menacker, M., Paley, S. M., Paulsen, I., Collado-Vides, J., Gama-
Castro, S., Peralta-Gil, M., Santos-Zavaleta, A., Penaloza-Spinola, M.
I., Bonavides-Martinez C., Ingraham, J. (2007). Multidimensional an-
notation of the Escherichia coli K-12 genome, Nucleic Acids Res. 35,
7577-7590.

Edwards, J. S., Palsson, B. O. (1999) The Escherichia coli MG1655 in
silico metabolic genotype: Its definition characteristics and capabilities.
Proc. Natl. Acad. Sci. U. S. A. 97, 5528-5533.

Thieffry, D., Huerta, A. M., Perez-Rueda E., Collado-Vides, J. (1998).
From specific gene regulation to genomic networks: a global analysis of
transcriptional regulation in Escherichia coli. BioFEssays 20, 433-440.

Forster, J., Famili, I., Fu, P., Palsson B. O., Nielsen, J. (2003).
Genomescale reconstruction of the Saccharomyces cerevisiae metabolic
network. Genome Res. 13, 244-253.

Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R. J., Church, G. M.
(1999). Systematic determination of genetic network architecture. Nat.
Genet. 22, 281-285.

Gibson, D. G., Benders, G. A., Andrews-Pfannkoch, C., Denisova,
E. A., Baden-Tillson, H., Zaveri, J., Stockwell, T. B., Brownley, A.,



1.0 References 7

18]

[19]

Thomas, D. W., Algire, M. A., Merryman, C., Young, L., Noskov, V.
N., Glass, J. L., Venter, J. C., Hutchison III, C. A., Smith, H. O. (2008).
Complete chemical synthesis, assembly and cloning of a Mycoplasma
genitalium genome. Science 319, 1215-1220.

Dymond, J. S., Richardson, S. M., Coombes, C. E., Babatz, T., Muller,
H., Annaluru, N., Blake, W., J., Schwerzmann, J. W., Dai, J., Lind-
strom, D. L., Boeke, A. C., Gottschling, D. E., Chandrasegaran, S.,
Bader, J., Boeke, J. D. (2011). Synthetic chromosome arms function in
yeast and generate phenotypic diversity by design. Nature, 477, 471-6.

Wang, H. H., Isaacs, F. J., Carr, P. A., Sun, Z. Z., Xu, G., Forest
C. R., Church, G. M. (2009). Programming cells by multiplex genome
engineering and accelerated evolution. Nature 460, 894-898.

Richardson, S. M., Wheelan, S. J., Yarrington R. M., Boeke, J. D.
(2006). GeneDesign: Rapid, automated design of multikilobase syn-
thetic genes. Genome Res. 16, 550-556.

Forster A. C., Church, G. M. (2006) Towards synthesis of a minimal
cell. Mol. Syst. Biol. 2, 45.






Part 1

Design of a Synthetic
Bacterial Genome in
Dynamic Environments






11

Introduction

The doors to new horizons in genome-scale synthetic biology have been
opened by the recent and rapid development of technologies allowing the
synthesis of novel genomes and their introduction into hosts with inacti-
vated or deleted wild-type chromosomes [1, 2, 3]. The de novo design of
cells with synthetic genomes that are viable in a well-defined environment
might require only the constitutive expression of the minimal set of genes
required for life [4]. This engineering approach, however, has several prob-
lems, including the absence of all necessary blocks (e.g., genes, signaling
cascades, etc.), the absence of a good definition of the minimal set of genes
required, and a poor understanding of the pleiotropic negative effects that
these genes may have when put together. In contrast, the re-engineering
of an existing genome to change its regulation network would not require
adding new genes to the genome but only their rearrangement with respect
to promoter sequences. Previous work has considered the rearrangement of
genomic sequences. For example, Chan et al. successfully modified the T7
genome to remove overlapping translational frames [5]. This approach was
inspired by the engineering practice called refactoring, in which the internal
structure of an already existing system is rearranged while its external func-
tion is maintained. Based on the same refactoring principle, and considering
cell behavior as the external function, we have created a system for the de-
sign of a novel genome sequence with a refactored transcriptional regulatory
network (TRN) that maintains its original behavior.

In the context of synthetic biology [6], the design of an organism that
can respond in a directed way to variations in its environment has been a
particularly interesting and challenging problem. This design would require
the reengineering of suitable signal transduction and regulation systems [7, 8,
9, 10]. Because transcriptional regulation is the most well-studied regulatory
system in bacteria, it may be a good starting point for those interested in the
design of such systems. In fact, the recent experimental evolution of E. coli
under changing environments has provided evidence of regulatory network
rearrangements that allow anticipatory behavior [11]. However, the de novo
design of a genome that can adapt to changing environments may be very
challenging. A simpler alternative might be to alter a pre-existing genome
by reshuffling its genes in such a way that its behavior is maintained. In
particular, this problem can be treated computationally if restricted to the
re-design of the global transcriptional network for an organism for which
sufficient transcriptomic information is available.

To evolve new genomes in silico, a necessary first condition is to de-
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fine a biologically meaningful fitness function that allows changes that are
introduced during the evolution process to be evaluated. How can we de-
fine such fitness function? Interestingly, it has recently been shown that
the transcriptomic expression profile is a good predictor of instantaneous
cell growth in S. cerevisiae [12]. Assuming that this relationship is true for
other organisms, it can be hypothesized that the expression profile of a given
system determines cell growth. This can also be rationalized by arguing that
natural selection results in nearly optimal biomass production by favoring
regulation pathways that confer optimal levels of gene expression in a given
environment. In this line, Tagkopoulos et al. used a Pearson correlation
between the abundance of cell resources and the response of gene expression
as a fitness to computationally evolve the biochemical network of F. coli in
variable environments.

We can evaluate the validity of this hypothesis by analyzing the effect
of mutations on the growth of a wild-type strain. Notably, this evaluation
still requires the accurate prediction of a genome-scale expression profile.
More modifications to the genome will lead to less growth and more differ-
ences in the expression profile. Therefore, we have developed an automated
methodology for designing a genome based on an in silico evolution pro-
cess; the methodology uses similarity to a wild-type transcriptional profile
as its fitness function, which provides the variation of cell growth. We have
used experimental short-term evolution results to validate the hypothesis
that the distance between predicted and wild-type expression profiles is cor-
related with the difference between cell growth rates. Furthermore, it is
possible to construct regulatory network models that accurately predict the
global transcriptional profile for some organisms [13, 14]. These regulatory
network models can be used to predict the growth of cells with modified
transcriptional networks, thereby providing the fitness function required to
evaluate their performance under various environmental conditions.

Recent experiments investigating the evolvability of bacterial TRNs have
shown that adding new links to the network does not significantly alter cell
growth. Isalan et al. added transcriptional fusions of F. coli promoters with
different E. coli master transcription regulators [15] and showed that the
bacteria tolerated almost all rewired networks; however, their growth was
perturbed by as much as 5% [3]. This inherent predisposition of bacterial
networks to dampen extreme changes in their circuitry enables the possibility
of conducting genome-wide rewiring [17] in the E. coli TRN.

In this Part I, we describe a methodology for designing genomes that
produce cells with targeted physiological responses to a set of environments.
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This requires the integration of current known phenomic (Chapter 2), tran-
scriptomic and signaling (Chapter 3) data into a global model consisting of
differential equations, allowing the assignment of parameters to promoter
and transcription factor (TF) coding sequences. We validate the TRN using
experimental expression profile data. After a suitable model was generated,
we validated the fitness function to be used in our in silico genome de-
sign procedure. We used experimental results from a laboratory evolution
experiment to show that measured growth rate differences correlate with
variations in fitness. This allowed us to perform an in silico genome evolu-
tion simulation with the aim of refactoring the E. coli genome to simplify
its internal structure by reducing the number of operons and indirectly min-
imizing the interactions necessary for the TRN (Chapter 4). We found that
we could dramatically reduce the number of operons while maintaining the
organisms response to fluctuating environments. We also analyzed other
properties of the synthetic TRN, such as its topology and adaptation to
varying environments. Finally, we examine some design principles that can
be inferred from our results, the tests of our experimental predictions and
future experimental applications of this work.
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Chapter 2

Characterization of Bacterial
Response to Synthetic Gene
Expression

Evolution has optimized organisms at the genetic level to maximize fitness
in their living environment. This entails a proper expression of the tran-
scriptome, proteome and metabolome. In addition, the cell expresses the
required machinery for replication and for maintaining appropriate intra-
cellular metabolic patterns to profit from the available external substrates.
Plasmids use the same machinery to express their encoded genes and to
replicate. Therefore, the expression of heterologous systems encoded by
plasmids would require a fraction of resources [1, 2]. In addition, the ex-
ternal elements could interact with the host ones, resulting in an eventual
disruption of the precise intracellular organization and regulation [3].

Herein, we present a phenomenological model for calculating cell growth
rate when expressing a heterologous system. For simplicity, we focused on
prokaryotic hosts and heterologous devices implemented in plasmids that ap-
parently do not disrupt the interactome of the host. We developed a model
to estimate the consumption by a foreign genetic device of resources from
the host cell, such as DNA polymerases for replication, RNA polymerases
for transcription, or ribosomes for translation. The extent of this resource
usage is rarely quantitatively known or reported. Furthermore, the level of
resources that can be drained from a host cell by a foreign system without
perturbing the behavior of the cell is poorly understood. In addition, per-
turbations in cellular behavior, in turn, affect the heterologous expression of
the device. Together, this hampers the prediction of the device function and
results into many ad hoc redesigns (often based on an inadequate knowledge
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of resource usage) required to avoid malfunctions in such combination.
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Figure 2.1: Scheme of the phenomenological model of a bacterial chassis under
synthetic gene expression and its validation using population and single-cell fluo-
rescence measurements.

Over the last decade, there have been multiple examples of engineer
systems performing useful functions [4]. Generally, such devices have been
expressed in plasmids. The choice of system components is often based on
considering appropriate promoter strength, protein stability, or plasmid copy
number. In principle, focusing on the internal determinants of the device
would ideally be sufficient to predict its behavior within the cellular back-
ground and to allow for the reliable construction of systems that function
as expected. In practice, however, the behavior of the engineered devices is
partially determined by external factors to the devices themselves, such as
unpredictable interactions between the system and the host cell. Still, even
in the theoretical case of absence of interactions (i.e., orthogonal systems),
the dynamics of the system depends on the cell growth rate [5], which is de-
termined by the level of heterologous expression [1, 2]. Therefore, it should
be of extremely utility for an accurate prediction of the behavior of cells ex-
pressing such heterologous devices to provide a simple model of an interface
that couples device dynamics and cell growth rate.

In this chapter, we experimentally construct and characterize a simple
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genetic device to study the cost that the cell pays to express it. A simple
mathematical model based on ordinary differential equations (ODEs) was
used to calculate the amount of foreign mRNAs and proteins and hence to
estimate the resources drawn from the cell by the heterologous device [6].
We took advantage of a detailed description of the chemical composition
of the host cell, comprising of the set of molecular species that directly
interact with the device, as a function of growth rate [7]. Such a host
cell model could be used, in turn, to predict the reduction in growth rate
caused by the consumption of cellular resources. With these very simple
complementary models we could begin to tackle how the host cell fitness
changes in response to a depletion of individual or multiple cellular resources
caused by the heterologous expression and what is the limiting resource that
entails the reduction in the host fitness (Figure 2.1).

2.1 Construction of a Predictive Model of the Cell
Growth Rate

We developed a model based on ODEs to quantify the different levels in
steady state of DNA, RNA and protein molecules of a plasmid. It allowed
for computing the number of molecules of consumed resources, which the
plasmid required. Hence, we predicted the cellular fitness as the cell growth
rate in presence of plasmids, which is a function of their genetic load. In the
light of previous experimental results, we investigated the origins that cause
the fitness reduction in the host organism when expressing a heterologous
device. The estimation of the new growth rate comes from solving our model
by using the amount of resources that were consumed by the plasmid (see
Appendix B). Hence, we obtained

1, DNAP — &DNAP,

_ 2.1

H= 0023 ™ 155 (2.1)
1 RNAP — &RNAP,

H= 1529 " 910

1 RIB — &,RIBy,
= n
1.775 3690

I

in which the factors & account for the variation in the demand of re-
sources by the host cell with the growth rate, increasing the expression of
the cell genetic profile. Analogously to equation (2.4C) for the plasmid de-
mand of cellular resources, they scale as & « Du/cq, & o« RD/c, and
& x ARp/cpy. Afterwards, the fraction of heterologous RNA and protein is
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Figure 2.2: Estimation of the growth rate reduction expressing a heterologous
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protein (¢prot) fitted with R? = 0.89 and (b) heterologous RNA (¢nq) fitted with
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given by

RNA,
e — __h 2.2
¢ R/l + RNA,, (22)

total
vt PROTJ
34/l + PROT!*"*)

We observed that the amount of DNA polymerases available is very high
compared to the eventual requirements for plasmid replication, so their effect
on the growth rate can be neglected. Thereby, we could apply our model,
based on physical principles and a modulation of the chemical composition
of the cell with the growth rate, to obtain an empirical formulation for the
dependence between the growth rate reduction and the load imposed by
the heterologous device on the cell (Figure 2.2). For a same conceptual
system with different genetic loads (specifically, we varied the plasmid copy
number), we calculated the corresponding amounts of mRNA and protein
(equations (2.1C), (2.2C) and, (2.3C)). With such, we then calculated the
factors ¢ and ¢P"! (equations (2.2)), and the amount of cell resources
required for heterologous expression (equations (2.4C)), which allows for
the estimation of the new growth rates (equations 2.3). By representing
the growth rate as a function of the factors ¢nq and ¢, (Figure 2.2), we
indentified a quadratic dependence following

rna\ 2 rot \ 2
F — min 1_<¢ > Ao (2 (2.3)
140 0.46 0.33
Our model predicts that the maximal cell capacity that could be al-

located for heterologous expression is 46% of the total RNA and 33% of
the total protein. These levels are derived by imposing p = 0 in equation

2.3. This result indicates that the cell cannot dedicate unlimited amounts
of resources for the expression of synthetic genes, because this affects the
expression of the host transcriptome and proteome. Hence, the cell stops
growing when the metabolism is not capable of meeting the internal demand
for essential components. The latter is a consequence of the reduction in
expression of certain key wild-type genes. Usually, ribosomes are the lim-
iting resources, since the amount of cellular protein is considerably higher
than the one of mRNA. Nevertheless, for heterologous systems that are ex-
pressing solely non-coding RNAs, RNA polymerases will be the resources
to take into account when analyzing the bacterial response. Importantly,
these maximal capacities, together with the quadratic relationship, were es-
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Figure 2.3: Prediction of cell growth rate using our empirical model. Initial
specific growth rates o = 1.38h~%, 0.41h~! and 0.79h~! corresponding to LB,
M9 and M9C media measured experimentally were represented by circles (9.8% of
average relative error), triangles (8.7% of average relative error) and squares (5.8%
of average relative error), respectively. The model predictions were given by the
continuous lines corresponding to ribosomes as limiting resources. Values of the
input model variables are [ = 2500 base pairs, ¥ Py = 1000 RNA-molecules/h, and
Qo = 500 protein-molecules/h.

timated from basic physical principles and a simple phenomenological model,
and remarkably they are in tune with previous experimental work [1].

Consequently, we applied our model (equation 2.3) to predict cellular
growth rates in several experimental conditions including differential phys-
ical loads as the ones published by Bailey [8]. In the cited work, three dis-
tinct media were utilized to grow cultures of . coli: LB, M9, and M9 with
casamino acids (M9C), all of them at 37C. In these media, bacteria grew at
different rates, fip = 1.99, 0.59 and 1.14 doublings/h respectively. Different
copy numbers were studied by using plasmids derivative of RSF1050 [9]. For
that the analysis of the system, we considered the following physical proper-
ties: number of promoters 1y = 2, number of ribosome-binding sites €2 = 2,
L = 8000 and [ = 2500 base pairs, C' = 12, 24, 60 and 120 plasmid copies
per cell, Py = 500 RNA-molecules/h and Q¢ = 250 protein-molecules/h [10].
Figure 2.3 shows the prediction of growth rate for each copy number in the
three different media (LB, M9 and M9C). Not surprisingly, cells grew faster
for richer culture media and we used the growth rate in absence of plasmid
as initial condition to apply our model. Interestingly, the limiting cellular
resources in all cases were ribosomes, being RNA polymerases subsidiary el-
ements in the model. Even though, due to the low genetic load imposed by
the plasmid used in [8], our model predicted small changes in the growth rate
of the bacterium. In addition, our model shows that there should be a larger
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Figure 2.4: Specific growth rate for four different bacterial strains (E. coli
MG1655Z1 without plamid and with a plasmid, pSB2k3 incorporating a insert
which containg two different heterologous devices) growing in five different culture
media (three M9 with different levels of the carbon source, EZ and LB) induced by
seven concentrations of IPTG (0, 1, 10, 100, 1000, 10000, and 20000 pM).

dependence of the growth rate with copy number for richer mediums due to
the fact that such growth rates depends linearly with the medium richness
(defined as the growth rate under a given condition). This dependence was
also observed in the experimental points of Figure 2.3.

2.2 Tuning Synthetic Gene Expression

To study the cost paid for the heterologous expression calculated in loss of
host organism fitness, we used a plasmid as external genetic device and the
bacterium FE. coli as cellular chassis. The plasmid carried a yellow fluores-
cence protein (EYFP) under the control of a constitutive promoter. More-
over, the plasmid replication was under the control of a Lacl repressible
promoter. We used the strain MGZ1, which over-expressed the repressor
Lacl, and thus the plasmid copy number could be tuned according to the
concentration of the external inducer IPTG. We studied two promoters with
medium (J23106) and weak (J23105) strengths, in different culture media
(M9 with three different concentrations of glucose, EZ and LB; see Appendix
A). We would expect that rich media entailed a higher growth rate and then
a higher support to express the heterologous device. Figure 3.6 shows the
quantification of reduction in growth rate for each strain expressing the het-
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Figure 2.5: (A-E) Apparent EYFP expression from fluorescence data in different
culture media for the two devices J23106+EYFP (thick line and filled symbols)
and J23105+EYFP (thin line and open symbols). Data were fitted to the model

By (1 =+ m), in which By was the fitting parameter (a.u. indicates
arbitrary units of protein expression). Error bars show fluorescence measurements
of three replicates. (F) Apparent EYFP expression controlled by J23106 promoter

inserted in pSB2k3 and measured by microfluidics platform in LB medium. Arrows
show average values of EYFP expression for different fluorescence distributions.
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erologous devices under different environmental conditions. Interestingly,
we captured a slight decrease on the cell growth rate with or without het-
erologous expression when we added IPTG for the five culture media tested.

We then studied the tunning of the heterologous expression inducible by
IPTG. In Figure 2.5 (A-E) we show the transfer functions for the apparent
EYFP expression (i.e., the experimental value of PROTY) in steady state).
Fluorescent protein expression was almost duplicated comparing the levels
of both promoters. In the regime of IPTG studied, we inferred that the
protein expression was proportional to 1 + m. To further verify
the increase of protein expression with IPTG, we performed an independent
analysis using microfluidic techniques, testing the system pSB2k3-J23106.
We also detected a significant increase in the EYFP expression (Figure 2.5),
which was indicative of an induction caused by IPTG. Subsequently, we
estimated the plasmid copy number by quantifying the plasmid DNA con-
centration. The number of plasmid copies displayed a similar dependence
on IPTG concentration to the fluorescent protein amount.

At this point, we used the model to estimate the cost of expressing of
the systems pSB2k3-J23106 and pSB2k3-J23105. From Figure 2.5(A-E) we
inferred a ratio of 1.5 in terms of expression for these systems. Hence, we
calculated the growth rate using our empirical model (equation 2.3), being
ribosomes the limiting resources. Then, the genetic load of the system was
quantified as

ot e~ 112500 1
=05 <1 Tir 5000/IPTG> (24)

where Ay was a parameter fitted to Ag = 0.04 for pSB2k3-J23105 and

Ap = 0.06 for pSB2k3-J23105, resulted of increasing 1.5 times the value cor-
responding to the system with the weak promoter. The multiplicative factor
depending on o derived from the transcription rate (equation (2.1C)) and
the dilution term (equations (2.2C) and (2.3C)) to compute the amount of
heterologous protein and the variation of the total amount of amino acids
usage by the cell (equation (2.4B)). Hence, Figure 2.6 shows the predictions
of our model observing a big agreement with the experimental data. How-
ever, we also found some discrepancies, certainly because the complexity
in the accurate measurement of the bacterial growth rate. All in all, this
evidences that the heterologous expression causes a cost for the host cell
and that this effect can be explained by the sequestration of ribosomes by
the mRNA expressed from the plasmid [11]. Very importantly, our model
could be used in further genetic engineering projects of the bacterium F.
coli, or eventually the approach could be reproduced to infer a model for
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Figure 2.6: Specific growth rate predictions (solid line) by the model (equation
2.4) compared with respect to the experimental measurements (squares) for the
strain F. coli MG1655Z1 with pSB2k3 containing an insert with the weak and
strong promoter (left and right columns, respectively) (see appendices) growing in
M9 with 2 (A, F), 10 (B, G) and 100% (C, H) of glucosce, EZ (D, I) and LB media
(E, J). We estimated the initial cellular resources by the growth rate measured with
pSB2k3 without insert. Notice that error bars in the experimental measurements
represented three replicates.
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other organisms.

2.3 Biological Implications for the Design

In this chapter, we have studied the impact that causes a heterologous sys-
tem into a cellular background (here, we restricted ourselves to prokary-
otes). To analyze the cellular growth rate we engineered a vector with a
tunable origin of replication carrying a reporter device. We constructed a
phenomenological model for the heterologous system by considering RNA
and protein expression, which cause genetic load on the cell by requiring the
allocation of certain resources from the host machinery. We relied on pre-
vious characterization of the growth rate dependence on cellular resources
(in this case, DNA and RNA polymerases, and ribosomes), and we inferred
an analytic model. To estimate the genetic load (fitness reduction at the
expense of heterologous system expression), we calculated the amount of
sequestered resources to come back to the model and obtain the new growth
rate. Strikingly, we found that the cell supports at most a 46% more of
heterologous RNA and at most a 33% more of heterologous protein, fol-
lowing a quadratic expression. To validate this model, we studied different
systems constitutively expressing a fluorescent protein (caused by variation
in plasmid copy number and promoter strength), which were grown in dif-
ferent culture media. Our model allowed us to predict the corresponding
genetic loads and, among the considered resources, ribosomes appeared as
the limiting resource that caused the growth reduction. Thereby, since the
quantification of the cell growth rate is essential to better calculate the dy-
namical and stationary concentration levels of the engineered system [5],
having a model able to predict such a growth rate before the implementa-
tion into a given chassis and environment would improve the design process.
Our model will be useful to decide among alternative plasmid replicons or
synthetic constructions on the basis of their effect in cell growth, or applied
to subtract the effects of the chassis while characterizing the transcription
or translation rate of a given regulatory element.

Biotechnological and biomedical applications would entail certain inter-
play between the heterologous system, the wild-type cell and the living envi-
ronment [12]. In particular, expression of transcription factors that regulate
wild-type genes or enzymes that reroute the host metabolism would change
the transcriptome or metabolome and finally the fitness of the cell. In that
way, the particular environment of application should play a decisive role
to counteract the genetic load that would be produced and maximize the
evolutionary stability of the synthetic strain. Thus, the heterologous sys-
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tem should be designed so that all synthetic elements required for function
deployment are beneficial for the cell. Otherwise, mutations affecting those
functional elements would be selected, thus compromising the reliability
of such synthetic strains [13, 14]. Furthermore, genome integration allows
avoiding the addition of a selector (usually an antibiotic resistance gene) to
keep the vector after cell replication. This will indeed reduce the genetic load
and, hence, will increase the evolutionary stability. Further work will de-
velop more complete bacterial cell models including regulatory interactions
[15] and metabolic routes [16] in order to capture and model the majority of
the internal biological processes and to be able to predict the cellular fitness
as a balance between metabolic and genetic loads [17]. In addition, this
type of models could be applied to other bacterial chassis, or even higher
organisms upon viral infection.

Appendix A Estimation of Plasmids Concentration
and Characterization

Single colonies of all strains were inoculated into 5 mL Luria Bertani (LB)
broth medium containing kanamycin (50 pg/mL) and were incubated at
37C with 200 rpm overnight. We diluted overnight cultures in fresh LB
medium with different concentrations of IPTG (0, 1, 10, 100, 1000, 10000,
and 20000 pM) for induction of plasmid copy numbers. The final values
of ODggyy were between 0.3 and 0.4 for all cultures. We extracted plasmids
from all constructs including the plasmid containing the ColE1l origin of
replication (copy number 10-30) as a control. The amounts of plasmid DNA
were quantified in triplicates by using NanoDrop 2000.

A single colony of E. coli MG1655Z1 was grown overnight in 5 mL LB
medium at 37C with orbital shaking at 200 rpm. The overnight grown cul-
tures were diluted 1:100 times in supplemented M9 media (M9 salts, 0.05%
(w/v) casamino acids, 2 mM MgSOy4, 0.1 mM CaCly and 1.5 mM thi-
amine) in a 96 well microplate with final volume of 200 uL per well. Briefly
described, we used flourometer (Tecan Infinite F500) for our experiments
with a run of about 20 hours. The parameters used for these experiments
were as following: temperature 37C, orbiter shaking, wait time 15 minutes,
absorbance measurements at 600 nm, fluorescence measurements (510 nm
excitation filter and 545 nm emission filter) with manual gain 40. Again we
used different levels of IPTG concentrations (see above) with three levels
of glucose concentrations (2, 10, 100 mg/L), LB and EZ media. We have
used EYFP as reporter fluorescent protein. We have performed three days
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independent experiments in triplicates that were averaged.

Appendix B Phenomenological Cellular Chassis Model

We considered an empirical model for the cellular chassis of the bacterium
E. coli based on measurements of the intracellular chemical composition at
different growth rates [7]. We derived from those experimental data the
phenomenological equations describing the dependence of the levels of DNA
polymerases, RNA polymerases, and ribosomes on the specific growth rate

w(h™1), giving
DNAP = 15529234 (2.1B)
RNAP = 910152
RIB = 369077

In addition, we fitted the velocities of DNA (¢4 in bp/h), mRNA (¢, in
nt/h) and protein (¢, in aa/h) elongation as function of the specific growth

rate resulting in

cg = 2.96 x 1000321 (2.2B)
er = 1.75 x 10° 0238
cp = 0.63 x 1050387

In addition, we obtained a measure of the amount of DNA (D in base-
pairs of the equivalent genomes), RNA (R in nucleotides usage), and proteins
(A in amino acids usage), following

D = 5.50 x 1064932 (2.3B)
R =1.75 x 10°,,0-238
A =0.63 x 10°°37

Appendix C Heterologous Gene Expression Model

We considered a model based on ordinary differential equations to describe
the device behavior in the cellular context, accounting for the physical prop-

erties of a particular plasmid, such as copy number (C'), backbone length
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(L) and length of the insert (/). Our device consists in an EYFP under the
control of a constitutive promoter. The promoter strength was a function of
the growth rate (P = @37%/“
[5]), whereas the ribosome binding site affinity was almost constant due to

where Py is the maximum transcription rate

saturation of the ribosomes (Q = where ()g is the maximum transla-

Q
1+0.%/,u
tion rate [5]). The number of molecules of plasmid DNA in steady state was
directly C. In addition, the dynamics for the total amount of heterologous

mRNA (RN Ay) was given by

d
ZRNA;, = PUDNA;, — (5, + )RNA, (2.1C)

where ¢ is the number of promoters per plasmid, DN Ay is directly
the copy number, and delta, is the RNA degradation rate. Moreover, the
dynamics for the total amount of reporter proteins was modeled considering
the non-fluorescent (PROT,ER)) and, fluorescent (PROT,Ef ) ) content

d n n
&PROT,S ) = QORNA,, — (m + 6, + )PROT(" (2.2C)

where () is the average number of ribosome binding sites per molecule
of RNAj, and 6, is the protein degradation rate [18]. By considering the
maturation rate of the protein (m), we can obtain the fraction of fluorescent
protein by solving its equation at steady state, which is ultimately what was

experimentally measured, given by m, obtained from considering
d n
%PROTgf ) — mPROT\" — (5, + u)PROT') (2.3C)

Notice that the explicit term of p (equations 2.1C, 2.2C and 2.3C) mod-
els the dilution of mRNA, and non-fluorescent and fluorescent protein, re-
spectively, because cells are growing at rate p. In that way, we computed
the consumption of cell resources as functions of the DNA and RNA of the
plasmid in steady state (DNAj® = C' and RNA}® = PyYDNA}*/(6, + 1),
respectively). Specifically, consumption for replication (DN AP;,) was com-
puted as a ratio between the production of DNA at growth rate given, p,
and DNA chain elongation. Analogously, consumptions for transcription
(RN AP,) and translation (RIBj) were given by a ratio between the cor-
responding synthesis rates (equations 2.1C and 2.2C) and chain elongation
(equation 2.3B) of RNA and protein, respectively:

L+ [)DNAS®
DNAP, — UL+ UDNA] (2.4C)
Cd
Py LDNA3S
RNAP;, = u

Cr
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Chapter 3

Design-Guided Models of
global Transcription
Regulation

Molecular regulations govern the cell response under environmental (extra-
cellular) or genetic (intracellular) perturbations. The elucidation of these
regulations with computational techniques will allow analyzing the cell be-
havior [1], since modeling in biology has boosted the understanding of the
cell mechanisms by means of systemic approaches [2]. On the other hand,
the design of new transcriptional networks requires a quantitative descrip-
tion of the transcription regulation. Thanks to new developments in the
inference from transcriptomic data, now it is possible to reconstruct the
regulatory network with enough accuracy to predict gene expression pro-
file in presence of heterologous networks. We propose a procedure that, by
extending a recent methodology, could be used to redesign transcriptional
networks.

The continuous developments on genome sequencing and annotation al-
low us to identify the genes and transcription factors (TFs) of an organ-
ism. The development of the microarray technology has provided high-
throughput genomic measurements, where cells are subjected to several
conditions or stresses to measure their gene expression profiles [3]. Large-
scale cell models, such as metabolic, transcription or protein networks, are
distilled from high-throughput genomic data, which poses one of the most
challenging problems in biology. The construction of a deterministic model
would allow the prediction of the cell response under different stimuli [4].

To redesign the transcriptional regulation network, we need a quantita-
tive model able to predict the gene dynamics. We propose to characterise

31
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such model by using microarray data with a known transcriptional network
inference method. We first infer the network topology and we later esti-
mate the corresponding kinetic parameters. For the last decade, there has
been an enormous effort in the improvement of techniques aimed at the infer-
ence of the connectivity of the transcription network. Clustering approaches
[5, 6, 7, 8, 9] have been used to obtain information of regulatory networks
but with low accuracy [10]. Information-theoretic inference provides more
accurate networks [11, 12, 13, 14, 15] even from reduced expression datasets.
A local significance calculation has been very fruitful to capture the network
topology [14]. On the other hand, Bayesian methods [16, 17, 18, 19] give
networks with high precision but low proportion of true recovered inter-
actions (they introduce few regulations with high confidence). Moreover,
such methods have a higher computational cost. Herein, we propose the
construction of predictable genome models in a standard format from a reg-
ulatory scaffold captured by using probabilistic methods. Other approaches,
instead, optimized directly the corresponding kinetic parameters for a lin-
ear regulatory model [20, 21]. In addition, recent algorithms [22, 23] applied
sparse logistic regression [24] for gene selection in order to avoid overfitting.

3.1 Genome-Wide Quantitative Model of Transcrip-
tion Regulation of E. col:

In the present chapter, we have applied inference methodologies recently
used to obtain models suitable for genome redesign. We have considered the
E. coli genome, which contains 4345 non-redundant genes, of which 328 are
putative TFs. The genome is organized into 3333 operons, 2447 containing
single genes and 886 polycistronic units. The reference regulatory set has
been constructed according to RegulonDB [14]. For the inference procedure,
we have used public microarray data [27] from Affymetrix normalized using
RMA [28]. This is a microarray compendium containing 189 experiments.
From this data set, 20 experiments were excluded in order to later predict
expression profiles from unbiased data. The inferred network contains 525
regulatory interactions (z> 6.92) and 566 combinatorial influences (z> 12).
InferGene predicts 3982 genes to be controlled by constitutive promoters.
To analyze those results in a biological context, we have used the EcoCyc
[29] classification to group genes by biological functions and to rank those
groups according to their level of prediction. We have scored each biological
function as Ay = %% > ogebf 2oceset [Uge — Ygel, where n is number of genes
involved in the biological function , m the number of the new conditions
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of the set (m = 20), g4 the predicted expression, and yg. the measured
expression of the gene ¢ in the condition c¢. The best predicted functions are
involved in the metabolism such as biosynthesis of lipoprotein, carnitine,
glycolate and glycoprotein, or functions related with information transfer
such as rTRNA and stable RNA, ATP binding, and DNA degradation. In
addition, we have observed two significant correlations between the number
of constitutively expressed genes and the error in expression (Aps). These
genes are from biological functions involved in the location of gene products
and the cell processes.

3.2 Design of Artificial Genomes and Validation
of their Transcription Profiles

We have constructed several genomes in silico using GAG and we have com-
pared the predefined regulations in our models with the regulations inferred
by InferGene. We have constructed three types of transcription networks
according to the mode of regulation of its constituent operons: i) networks
with promoters regulated by at most one TF, ii) networks with promoters
that can be regulated by more than one TF, and iii) networks with promot-
ers that can be combinatorially regulated including synergistic effects. We
have computed the precision rate and sensitivity (see section Methods) to
quantify the efficiency of InferGene.

In Figure 3.1 we show the evaluation of the inference for different types
of genome networks. InferGene, which at this stage relies on CLR, predicts
the 85.4% (sensitivity) of the possible interactions although only the 15.7%
(precision rate) of them are correct for a genome of 500 genes using 100
conditions (Figure 3.1A). However, if the number of conditions increases to
250, the precision rate reaches values around the 90% (see Figure 3.1B). The
same trend occurs with larger genomes as we can see from Figs. 3.1C-D,
where we have worked with genomes of 5000 genes with 300 and 600 condi-
tions, respectively. Thus, we improve 6-fold the precision rate, maintaining
a given level of sensitivity, when increasing the number of conditions 2.5
fold. Therefore, the efficiency of algorithm has a nonlinear behavior regard-
ing the number of conditions used for training. We have also extended the
inference capabilities of CLR to cooperative interactions. Our results show
that we need a minimum set of microarray experiments to infer a transcrip-
tional regulatory network with high precision rate for a given sensitivity.
Furthermore, genomes with only promoters regulated by at most one TF
reached higher values of precision rate and sensitivity.
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Figure 3.1: InferGene performance. Evaluation of sensitivity (gray) and preci-
sion rate (white) together with a random inference (black) of the transcriptional
regulatory network. We used several types of synthetic genomes with different topo-
logical and parametrical properties generated by GAG. We constructed three types
of genomes: (1) all promoters are regulated by at most one TF, (2) the promoters
that can be regulated by more than one TF, and (3) promoters with combinatorial
regulations including synergistic effects. Genomes for (a,b) had 500 genes and 50
TFs, and for (c,d) 5000 genes and 200 TFs. The number of conditions was in (A)
100, in (B) 250, in (C) 300, and in (D) 600. Deviations in precision rates and sen-
sitivities were calculated using three different genomes for each type. The z-score
threshold used was in (A) 0.5, in (B) 1, in (C) 3, and in (D) 7.
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We have analyzed the predictive power of InferGene by calculating a
score based on the error made on predicting the expression levels (A,,),
and other score based on the error made on the prediction of the model
parameters (I'). We define A,, = 11 > gcop 2oceset [Uge — Ygel, Where Fgc
is the predicted expression profile, y4. is the experimental value, n is the
number of operons that are correctly inferred according to RegulonDB, and
m is the number of conditions that were not used in the training set (m =

20). We also define I' = - —— deo > pep lﬁgp Bap|s

parameters we use to model the kinetics of the operon expression, ﬁgp are

the estimated model parameters, and 3y, are the model parameters from
GAG. To perform such analysis, we have generated a network using the
GAG algorithm with 500 genes across 250 conditions. The median for A,,
was 0.009, and for I' was around 0.01. Moreover, we have validated the
estimated parameters by performing linear regressions with the predefined
kinetic models and obtaining Pearson correlation coefficients above 0.90.
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Figure 3.2: (A) Histogram of the expression error on the transcriptomic profile
for each operon (A,y). In black, model with parameters from linear regression; in
white, model with random parameters (for a fixed inferred topology). (B) We show
the mean of A,, with the corresponding standard deviations for the best predicted
operons. We measured the predictive power under the 20 conditions of the testing
set.
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3.3 Prediction of Wild-Type E. colt Trancriptome

Before proceeding to change the regulation of E. coli, we have calculated
the ability of the inferred model to predict the steady state expression levels
of the E. coli genes. For that, we have used the model together with the
expression levels of all the TF's for each experimental condition to compute
the global expression profile. Afterwards, we have compared the predicted
expression values with the corresponding measurements, obtaining A,,. We
have also determined the predictive power of the inferred model on the 20
experimental conditions excluded from training data set. The distribution of
A,y for the 3333 operons of E. coli is shown in Figure 3.2a (black columns).
The mean of this distribution is 0.048. White columns represent a model
with random parameters for the inferred topology. In Figure 3.2b, we show
the prediction for the best inferred operons. It is interesting to note that the
genes from these operons are involved in functions related with information
transfer (RNA related such as transcription related, tRNA, rRNA or stable
RNA; and protein related such as translation), regulation, location of gene
products (cytoplasm and ompR) and cell processes (adaptation and defense-
survivial).

In Figure 3.3 we plot the predicted profiles with lowest A,, against the
experimental profiles across all conditions (189 experiments, 169 conditions
from the training set and 20 new conditions for prediction). We also perform
a K-fold cross-validation to ensure that our results do not depend on the
selection of the testing set.

3.4 Genome-Wide Model of E. coli Integrating
Signal Transduction Data

To develop a methodology able to automatically design a genome for fast
growing cells in changing environments, we have assumed the hypothesis
that a cells growth is determined by its transcriptional profile. Therefore,
we used the genome-wide model inferred of E. coli gene transcription in
response to selected external signals to predict changes in cell growth after
genome modification. Such a model allows the assignment of mathematical
parameters to promoters and TF sequences, which we have assumed to be
independent of genomic context. We extended our TRN to sense environ-
mental changes at the molecular level. Recent studies have collected data
describing thousands of interactions between environmental factors (EFs)
and TFs that are involved in sensing environmental perturbations. These
interactions were coupled to the TRN model (see Appendix C) such that
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Figure 3.3: Prediction of expression profiles in E. coli. Each plot shows the
experimental profile (gray line), and the profile predicted by our model (black line).
The last 20 experiments, separated by a dashed line, correspond to conditions that
were not included in the training data set with which we inferred the kinetic model.
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A Genome Model Construction
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Figure 3.4: (A) Steps designed to construct the regulatory network of E. coli
required to sense environmental changes. (B) A scheme of the algorithm used to
re-design the F. coli TRN. The wild-type genome was used as the starting point for
an optimization process based on Monte Carlo Simulated Annealing. During the in
silico evolution, we modified gene regulation and computed the resulting genome
fitness as a function combining the genome modularity and the distance between
the gene expression levels of the re-engineered and wild-type genomes.
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uptake factors modify the predicted expression of several TFs. We therefore
quantified how the expression of a given TF changes upon the perturbation
of a specific uptake factor(s) (Figure 3.4A).

Next, we investigated how the model system responds to environmental
changes. We evaluated a distance, Sezp, between the optimal expression
profile (defined as the expression profile measured for E. coli growing at
the maximum rate for a given environmental condition) and the expression
profile of the model in each environment. As it is not clear which genes will
be most relevant to cell growth during genome evolution, we explored six
sets of genes to define S.;, (physiological adaptation genes, defense path-
way genes, a combination of genes related to these two functions, genes that
protect against abiotic stresses, genes encoding central metabolism enzymes
and all genes). Figure 3.5A shows the optimality degree, defined as the rel-
ative growth that E. coli exhibits in environments that are optimal except
in the concentration of a single component, such as oxygen or glucose [16].
Figure 3.5B shows calculations of Sz, based on our model from the expres-
sion profiles predicted under 100 different environmental conditions. Here,
each environment is defined using random values for external oxygen flux
and carbon and nitrogen availability that range from minimal to saturating
values, thereby simulating extreme environments. As expected, the largest
variations of the expression score and optimality degree were obtained when
selecting a gene set related to defense functions, and the smallest variation
was obtained after considering genes related to enzymatic activity. This dif-
ference is expected, because the defense responses are highly inducible and
specific to given environmental stimuli whereas metabolism is able to buffer
external stimulus through a critical set of metabolic pathways.

3.5 Model Validation: Predicting Growth Rate of
Perturbed Transcriptional Networks of E. col:

3.5.1 Model Validation 1: Prediction of Expression Profiles
Upon Genetic and Environmental Changes

We sought to determine whether a genome model able to assign parameters
to promoters and TF sequences would be able to predict the transcriptome of
E. coli under different environmental conditions and/or after genetic modi-
fications. We evaluated the performance of our model network in predicting
responses to environmental stresses and genetic changes. For illustrative
purposes, Figure 3.5C shows the predicted versus experimental profiles for
two examples of master regulator knockouts (fnr and soxS) under aero-
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Figure 3.5: (A) Optimality of the wild-type genome under environments per-
turbed in a single direction (oxygen and glucose). Notice that each simulation
considered different sets of genes related to adaptation functions (red line), defense
pathways (blue line), a combination of genes related to adaptation and defense (yel-
low line), protection (green line), central metabolism (cyan), and all genes (black
line). (B) Quantitative simulations of transcriptomic fitness, Seyp, under a variety
of environmental conditions, , simultaneously (colors in panel A were maintained to
indicate the different sets of genes selected to evaluate Scqp in the top of panel B).
At the bottom of panel B, the external fluxes of glucose (red line), NO3 (yellow
line) and oxygen (blue line) represent changes in carbon and nitrogen availability
and the cellular uptake of oxygen, respectively. (C) Prediction of the expression
profiles of E. coli upon genetic perturbation (knockout of fnr and sozS), environ-
mental perturbation (modification of oxygen and carbon availability), or both (fnr
and soxS knockout under anaerobic conditions). The red line represents the exact
prediction.
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bic and anaerobic conditions and for two environmental perturbations in
which glucose, oxygen and glycerol sources were changed. Each dot in the
scatter plots represents a value obtained from a different hybridization ex-
periment plotted against the algorithm prediction. In a more general way,
we compared the predicted expression levels of all the TFs (g4.) for each
experimental condition, ¢, with respect to the corresponding empirical mea-
surement, ygc, using the normalized Euclidean distance (e.) and the Pearson
correlation coefficient (p. ) for all microarray experiments. Specifically, we
used our model to predict expression profiles for TF knockouts by remov-
ing the corresponding transcription regulation in our model. We obtained
values of p. > 0.87 and e, < 3.2%, with the exception of the recA knockout
(pc = 0.74) made by Faith et al. Moreover, we applied this procedure to
the modification of the global TRN by changing the environmental condi-
tions. This was experimentally achieved under several different conditions
included in the M3D compendium [27]. When oxygen and carbon sources
were perturbed, we estimated p. > 0.74 and e, < 7.3%. The model was able
to capture whole transcriptome expression, obtaining values of p, > 0.85
and e, < 5.4%.

3.5.2 Model Validation 2: Predicting the Results of E. coli
Experimental Evolution

rewired construct
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Figure 3.6: (A) Correlation between predicted fitness considering only TFs and
the growth rates of four strains and their intermediaries evolved in the laboratory
under minimal lactate media. (B) Correlation between predicted fitness considering
only TFs and the growth rate of 37 strains with a rewired TRN.

After generating this predictive model for the TRN, we attempted to
automatically design genomes by implementing an in silico evolution al-
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gorithm in which a fitness function is used to select for beneficial genome
modifications during the evolution process. To validate Se.p, we compared
our fitness predictions to data obtained experimentally during E. coli evolu-
tion. Recently, Conrad et al. characterized all acquired adaptive mutations
of E. coli strains from a short-term laboratory evolution in minimal lactate
medium [31]. They measured growth rates and identified adaptive muta-
tions using whole-genome sequencing for all evolved strains at specific time
points. Interestingly, several mutations were identified in highly connected
TFs in the TRN (crp, ydel and hfq) in a gene related to transcription ter-
mination (rho) and in a gene responsible for recycling RNA polymerases
(hepA). We predicted the transcriptome for each of these strains by modify-
ing our E. coli network model to introduce a different gene expression value
for each mutated gene. We then determined the Se;), fitness function of the
predicted expression profile by predicting the transcriptome of a strain with
the mutated genes set at optimal transcription levels and then calculating
the distance between the mutant strain and the optimal strain evolved for
adaptation in lactate culture (see Appendix G). Figure 3.6A demonstrates a
significant linear Pearson correlation (r = 0.82; p < 0.05) between observed
and predicted fitness when considering only the contributions of the TFs
to Segp, validating our fitness function. Similar correlations were observed
when considering the contributions of central metabolism enzymes, genes
related to stress or the full genome. Overall, we showed that growth rates
predicted using genome design reached high correlations (r > 0.72, p <
0.05).

3.5.3 Model Validation 3: Predicting the Growth Rate of
Rewired Transcriptional Networks of E. col:

We attempted to predict the phenotypic response of F. coli after adding
new regulations in its TRN. A recent study of Isalan et al. systematically
explored such problem by expressing endogenous promoters controlling dif-
ferent TFs or o-factor genes and measuring the growth rate of each strain
hosting a rewired TRN [32]. We only selected the subset of the 37 strains
in which the rewired constructs (promoter region-TF fusions) were stably
integrated in the E. coli chromosome. We then determined the Seg), fitness
function of the predicted expression profile (see Appendix H). Figure 3.6B
show a significant linear Pearson correlation (r = 0.65; p < 0.0001) between
observed and predicted fitness when considering only the contributions of
the TFs to Segzp, corroborating that our fitness function is able to capture
large changes in the TRN.
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3.6 Discussion

We have discussed a methodology to create quantitative models for tran-
scription regulation aimed to future genome redesign projects. We have
shown how we could use recent methodologies to infer the global topology
of transcription regulation to produce the kinetic model able for genome
redesign. We have successfully applied the inferred model to predict the
transcriptomic response of F. coli under experimental conditions not in-
cluded in the training set. The prediction has in average an error of 1-5%
relative to the experimental value (average computed across all conditions).
Furthermore, we have predicted the gene expression under knockouts of TFs
and genetic rewirings [32] by solving a perturbed model, showing the pre-
dictive power of the inference procedure. Such perturbations change the
regulatory map of the cell, but more complex redesigns, even a whole tran-
scription refactorization, could be in silico explored by using our model.
Our algorithm provides a global deterministic kinetic model of genetic reg-
ulations using microarray data. We show how to use this kinetic model to
make predictions [23]. Thus, our approach constitutes an important step
towards the large-scale design of cell behaviors by providing models which
are validated using in silico genomes and experimetal transcription data. In
this direction, we have accounted for simple transcription rewirings [32] by
obtaining the gene expressions using computational methods. Such mod-
els can be used in the future to rewire the regulation of organisms without
affecting their physiological behavior.

The algorithm reaches high efficiencies at the topology and kinetic level,
based on the CLR algorithm [14] to infer the network together with an ex-
tension to include cooperations in combinatorial promoters. However, it
could use other approaches such as Bayesian methods [19]. In addition,
the generation of synthetic data from specified genome models has been es-
sential to analyze the performance and limitations of InferGene. Indeed,
we have shown how the precision rate is drastically improved, from 10-
20% to 80-90%, by just doubling the number of perturbations in artificial
genomes. Moreover, the error in the prediction of the expression value for
correctly predicted regulations is of the order of magnitude of the standard
errors on measured expression data, and the estimated parameters highly
correlate with the predefined ones (correlation coefficient higher than 0.9).
The inaccuracies in our prediction could be rationalized by the lack of mod-
elling of many dynamic variables of the cell (e.g., proteins or metabolites) or
non-transcriptional regulations (e.g., protein-protein or RNAI), since these
variables are not experimentally measured using microarrays. Furthermore,
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future works could consider confidence intervals on the model parameters to
analyze the stochasticity in expression data.

Our approach can take advantage from additional sources of informa-
tion. For instance, it can incorporate in the inferred model experimentally-
validated interactions (e.g., from functional genomics measurements or se-
quence analysis) as a regulatory background. In addition, the knowledge on
the genome sequence can help in the inference procedure, by providing infor-
mation about operon structure, identification of TFs and their regulations
[34, 14, 35]. The prior knowledge about regulation provides a topology that
can be added into the model and can be used to predict new interactions
with high fidelity [36].

The identification of regulations is a high time-consuming activity. The
running time scales with the number of genes and the square of the number
of conditions. Nonetheless, the parameter estimation is a quick process (rel-
ative to the previous). For instance, in E. coli there are 4345 genes (strain
K-12) clustered in 3333 operons, and 328 TFs and 53628 pairs of TFs [14].
The whole inference process took 6 hours accomplished on a computer Pen-
tium M 2.00 GHz and 1 GB RAM (time resources for parameter estimation
are neglected as they are around 2 minutes). However, all simulations can
be run in parallel allowing the reduction of the execution time (less than 5
minutes on a simple cluster). In this way, distributed computing provides
the necessary resources to apply our methodology to infer the regulations
of much larger genomes. Our methodology provides a simple and fast way
to obtain a quantitative global model of transcriptional regulation even for
large networks. The incorporation of sparse Bayesian regression methods
[19] provides a promising extension for further works. Such methods would
provide better inference but increasing the computational cost.

The construction of genome-scale models is clearly a valuable step to-
wards the understanding of the cellular behavior [4], but it is also of interest
for the emerging field of synthetic biology, where functional genetic circuits
are engineered into cells dealing to minimize the impact on the host [37].
Hence, InferGene provides an accurate model to predict the changes in the
biological processes when perturbing the cell. In addition, this model can
be applied to discover molecular targets of heterologous compounds [20, 21].
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Appendix A Mathematical Model of Transcription
Regulation

We aim to the development of a methodology able to in silico evolve a
genome for having a predefined transcriptional profile. For this, we require
to construct a predictive genome model of transcription, based on ordinary
differential equations (ODEs), to account for global redesigns of the cellular
regulatory map. Using such models we could study the evolution of gene
regulations as a consequence of the environmental stimuli. To construct this
we have to use as input microarray data properly normalized. In general,
transcription involves protein-DNA interactions, but microarray data gives
the genetic expression by quantifying the amount of mRNA. Thus, infer-
ring just from transcriptomic profiles could introduce some inaccuracies due
to, for instance, protein-protein interactions of TFs [38, 39]. Furthermore,
some environmental stresses (e.g. heat shock) can alter globally protein
expression. However, in this work we neglect these effects for simplicity,
assuming that the mRNA amount is proportional to the protein expression
and that it is function of the TFs only. In addition, as the precise kinetic
model of transcription regulation is not known for any organism, we have
generated in silico genomes having random regulatory maps with scale-free
topology [40]. We have applied our methodology against synthetic tran-
scriptomic profiles. We will only assume a previous knowledge of the list
of all genes and TFs obtained from genome annotation (e.g., RegulonDB
[14] for E. coli). Eventually we can consider the genomic organization in
operons (especially in case of bacteria). Such operons can be known a priori
or inferred from the same microarray data. Our approach consists of two
nested steps. Firstly, we obtain the topology of the network (i.e., which
TF regulates which gene or operon) by using an information-theory-based
approach. We store in a matrix the likelihood of the mutual information
(MI) among all the TFs and operons [41, 42, 43], computed as the z-scores
from the distribution of MI using the transcriptomic expressions for all the
perturbing conditions [14]. Then, using a suitable threshold, we infer the
TFs regulating a given operon. Subsequently, for each operon we perform
a multiple linear regression against the corresponding TFs to recover the
model kinetic parameters [44]. To infer cooperative regulations, we create a
set of artificial TFs whose expression profiles are obtained in a combinatorial
way as the product of two TF profiles (with the aim of conserving linearity
in the formalism). This model is subsequently exported into a SBML file
[33], which could be visualised using Cytoscape [25]. We have measured the
performance of our algorithm by using synthetic transcriptomic data from
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artificially generated networks.

We describe the genetic regulations using a linear model for the mRNA
dynamics. Here, we use as input data mRNA expression profiles in steady
state derived from transcriptional perturbations. As transcriptomic data is
normalized and usually represented in logarithmic scale, we have considered
logs(mRNA) as variables (where s can be 2 or 10). Therefore, the mRNA
dynamics from gene y; is given by

%yi =ai+ Y bigyi+ Y Y bijkyiys — diyi, (3.1A)
JjETF JETF keTF
where a; is the basal synthesis rate, b;; the transcription regulatory co-
efficient of TF j, b;j, the cooperative transcription regulatory coefficient
of TFs j and k acting on the promoter controlling the gene i, and J; the
degradation rate. We set b;; = 0 and b;jx = 0 when j and j, k are not TFs
regulating the gene 7. We assume that all the genes of an operon have the
same expression value. We also consider that two regulators could act in
a cooperative way (i.e., synergistic inductions and cooperative repressions).
We do not consider cooperation between more than two TFs.
Here, we use expression values in steady state. Nevertheless, it could be
also possible to extend our approach to the use of time series to enrich the
experimental input [45]. Hence, in the steady state we can write

yi=ai+ > Biyi+ Y, > BikYivk, (3:2A)
JETF JETF keTF
where we have defined Q; = CLZ‘/(;Z‘, ﬂij = bm/(sz, and ﬁijk = b”k/(sz Notice
that the resulting parameters are referred to the intensity scale of the mi-
croarray technology. We use a time scale such that the mRNA degradation
constant is § = 1. To use a realistic mRNA degradation constant, it would
require translating the Affymetrix [46] data to concentration units.

Appendix B Using Network Inference to Obtain a
Kinetic Model

To obtain a kinetic model suitable for redesign, we take advantage of re-
cent methods aimed to infer the topology of the global regulatory map. In
particular, we have chosen one of the best performing methods, the CLR
[14], although other methodologies providing a transcriptional map, such as
sparse Bayesian methods [19] could also be used. Our approach consists
of using multiple regressions to fit the kinetic parameters of a continuous
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model of the transcription regulation. The approach for large-scale tran-
scription inference is based on measuring the influence between the expres-
sion levels of TF's and operons across a large set of conditions. Here, we use
MI to estimate the correlation between a TF ¢ and an operon p by using
MI(ys,yp) = H(y:)+H (yp) —H(yt,yp), where H is the entropy of a variable.
It is defined as H(y;) = — > .p(yic)log(p(yic)), where y;. is the expression
value of gene i in the condition ¢, and p(y;.) the probability to reach that
value. The MI is always a positive magnitude. Joint normal distributions
are generated with independent variables M1I; and MI; (values for gene i
and TF j, in row 7 and column j). Thus, the MI matrix is converted into Z
matrix where Z;; = ,/Zi2 + Z]2 and Z; and Z; are the z-scores of M I;; from
the marginal distributions. According to this matrix we obtain the genomic
interactions.

For completeness, we have developed an algorithm (InferOpe) to infer
operons from microarray data. Since two genes from one operon share the
same mRNA molecule, we would expect that their transcriptomic profiles
would be similar. Our operon prediction is based on the use of co-expression
patterns [47], assuming that two genes, ¢ and j, belong to the same operon if
they are highly correlated. We evaluate this by using the Pearson correlation
coeflicient (we assume correlation if p;; > po = 0.5). Moreover, we impose
that the angle (6;;) of such correlation should be around 45 ° (i.e., tan(6;;) ~
1), where the relationship with p;; is given by tan(6;;) = Pij%-

For each operon we compute the kinetic parameters for the TFs regu-
lating its promoter. The experimental value of one operon is computed as
the average of the expressions of all genes belonging to that operon (i.e.,
Yop = %EQEOp Yg, Where n is the number of genes of the corresponding
operon). To estimate the model parameters a;, £;; and [3;j; we use multiple
linear regression [44], which is the result of a minimization problem (least
squares) defined by

(@i Bijs Big) = arg min{(yi—ai— Y Byyj— > ¥ Buwyjn)’}. (3.1B)
JETF JETF keTF
We assume that the variability in the experimental conditions and the
complexity of the natural regulation is high enough to prevent linear cor-
relations between TFs, which would produce identifiability problems in the
regression parameters. Even in such a case, our model is a valid solution
although there could be alternative models. We have used the LINPACK
libraries [48] to calculate the solution.
Our procedures are implemented in C++, and they run on any UNIX
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environment. The InferGene software, a tutorial, the corresponding files

and some examples are available upon request. The software consists of

different functional modules to compute firstly the network topology and

then the corresponding kinetic parameters. Below we present the procedure

implemented in InferGene:

10.

. Represent the microarray data organized in matrix form, for instance,

genes in rows and conditions in columns.

. Obtain the list of TFs for the given organism.

. Ensure that the microarray matrix contains the expression profiles for

all TFs.

. Add new rows corresponding to the combinations of two TF's obtained

as the product of them (i.e., yrg,.yrr; are the new TF profiles).

. In case of bacteria, have a file containing the list of operons with the

corresponding genes. Otherwise, run InferOpe, our algorithm to infer
clustered genes based on co-expression patterns. To maintain the same
scheme in all cellular contexts, we can dispose one gene per operon in
case of eukaryotes.

. Compute the MI among all the TFs and operons by using the CLR

algorithm [14].

. Compute the z-score among all the TFs and operons from the MI

distributions by using the CLR algorithm.

. Infer the TFs regulating a given operon, single and cooperative in-

teractions, according to a given threshold depending on the desired
precision. The threshold for cooperative regulations is taken higher
than for single ones (2-fold for the reported calculations, although it
can be modified straightforwardly) to avoid overfitting in the compu-
tation of the combinatorial interactions.

. For each operon, estimate the kinetic parameters for its regulating TF's

by using multiple linear regressions (obtaining single and synergistic
interactions). Eventually, remove regulations with low strength.

Construct a SBML file containing the ODE-based model using the
inferred topology and the estimated kinetic parameters.
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Appendix C Construction of a Transcriptional Reg-
ulatory Network That Integrates Signal Transduc-
tion

We constructed a TRN of the wild-type genome that was able to predict
gene regulation at the transcriptional and environmental levels. For this,
we adopted a linear model based on differential equations describing the
time dynamics of each mRNA in order to infer real kinetic parameters for
promoter and TF sequences. Thus, the mRNA dynamics from the iz, gene,
Yi, is given by CZJ; = a; + >, Bijyj + 2k VikAvk — 0;yi, where «; represents
its constitutive transcription rate, 3;; represents the regulatory effect that

gene j has on gene i, ~y;; represents the effect that environmental factor
(EF), i.e. the metabolic uptake factor k, has on the expression of gene i,
opt)

Avy, = (vp—v,") is the difference between the uptake factor measured under

a given environmental condition, v, and the uptake factor measured in the

pt

optimal environmental condition, v;*", and §; represents the degradation

and dilution rate constant.

Time was conveniently scaled such that J; = 1 and the model was as-
sumed to be in steady-state y; = a; + >_, Bijy;, where &; = a; + € +
>k YikAvg, because fitting the appropriate mRNA degradation constant
would require time series data [45]. To calibrate TF expression, the newly
redefined constitutive transcription rate included a perturbative term (¢;)
that fit only the TF expression profile (yopt) for the defined optimal condition
& =2 (1= Bij) v’ * — ;. Each TF expression is bounded @y < y; <
ey
(Ymaz) value of all experimental measurements for that TF in the microarray

“ by a range interval defined by the minimum (y,i») and maximum

compendium (M3D). ¢ > 1 is a tunable parameter that decreases the gene
expression range to improve the predictive capacity of the presented model
under environmental and genetic perturbations.

To construct the TRN model, we used steady-state mRNA expression
profiles derived from transcriptional perturbations collected in M3D version
4.5 online (M3D). We identified 330 TFs by searching for the keyphrase
transcription factor in the functionally annotated F. coli genome from Reg-
ulonDB (version 5). The dataset contains pre-processed expression data
from 380 hybridization experiments using 4,289 probe sets spotted on an
Affymetrix GeneChip. Data were normalized using the robust multi-array
average method [28] and represented on the logs scale. The inference pro-
cedure consisted of three nested steps. In the first step, global network
connectivity was inferred using the InferGene algorithm [52]. This method
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uses mutual information (MI) with local significance (z-score computation)
to compute the number of transcriptional regulations in the genome [14].
Hence, each potential interaction between a regulator and a gene receives a
z-score, which provides an estimate of MI. This approach eliminates some
false correlations and indirect influences [14]. Subsequently, we selected a
z-score threshold for cut-off. We included transcriptional regulations that
were experimentally compiled in RegulonDB [14], but not those inferred by
our procedure. Then, multiple regressions based on ODEs were performed
to estimate the kinetic parameters of the regulatory model.

The wild-type transcriptional network contains 2,987 inferred regulatory
interactions with z-scores over the selected threshold of 5. The network also
contains 3,388 interactions from the reference regulatory set constructed
based on RegulonDB [14]; 179 of these experimental interactions also be-
longed to the inferred test. The performance of the inferred TRN model
topology was evaluated using a reference network defined by genes with
known transcriptional regulation. Only interactions among genes included in
this reference set were considered. The fraction of interactions that were cor-
rectly predicted by the model (the precision, P) and the fraction of all known
interactions that were discovered by the model (the sensitivity, S) were used
to compute a global performance statistic defined as F' = 2PS/(P +S) [15].
This TRN has a global performance of F = 11.8% (35.1% precision and 7.1%
sensitivity) in predicting the regulations identified in RegulonDB. While this
provides far from complete understanding of the regulation network of F.
coli, the model constructed demonstrates sufficient predictive power to be
used as starting point for our design.

Biological systems optimize their regulation by monitoring changes in
their environment. Gene expression is largely controlled at the level of tran-
scription by TFs. In addition to a DNA-binding domain, TFs often have
structural domains that can bind specific metabolites. Thus, we increased
the TRN complexity by including 299 external metabolic fluxes [53] as envi-
ronmental factors (EFs). These EFs are direct links from the environment
to the genetic network, affecting the expression of several TF's, and are com-
mon signals for endogenous and exogenous changes in cell state.

To link the environment to the regulatory network of the genome, we
used two sets of experimentally obtained EF-TF interaction data published
by Martinez-Antonio et al. [54] and Wall et al. [55]. However, only regu-
lations in which the EF represents one of the 299 external metabolic fluxes
defined in the work of Feist et al. were considered, reducing the set to 65
interactions (EF-TF) involving 50 EF's and 53 TFs [53]. The transcriptional
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sensing system that was added to the TRN incorporated three types of sen-
sors: (i) 14 transported metabolites (E-TM) that are sensed externally, (ii) 4
TFs that sense metabolites that are generated internally (I-SM) and (iii) 37
TFs that sense metabolites that are both transported and generated in the
cytoplasm, i.e., a hybrid system (H) [54]. Hence, we focused our study on
one-component signal transduction pathways, because these are more widely
over-represented in bacteria and display a greater diversity of domains than
do two-component systems [56].

We computed v;; as a perturbation of the expression in the optimal
condition of the gene i due to an environmental change that also perturbs the

opt

optimal state of the metabolic flux &, v; = %, where O is a parameter

that represents the normalized variation of th; optimal expression. This
parameter is optimized to fit the experimental gene expression under genetic
and environmental perturbations. If 7 or £ have no effect on the expression
of 4, then ;5 = 0 and v;; = 0; in fact, only regulatory effects of EFs on
TFs are considered. We have not incorporated the effects of cooperation
in transcription regulation. We have used public microarray hybridization
data (M3D) from an Affymetrix chip normalized using RMA [56]. This
microarray compendium contains data from 380 experiments.

Two parameters were optimized: ¢ = 0.9 defines the model gene ex-
pression range, and © = 0.5 characterizes the variation in the wild-type ex-
pression of a given TF due to the influence of a specified external metabolic
flux. These parameters were optimized to fit several predicted gene ex-
pression profiles from 31 experiments (contained in the M3D compendium)
corresponding to transcriptional and environmental perturbations. Specifi-
cally, we used data from 16 knockouts of transcriptional master regulators
(appY, arcA, fnr, soxR, soxS, recA, fis, yncC, and rpoS), 8 environmental
perturbations of oxygen and carbon sources (glucose, acetate, glycerol, and
proline), and 7 conditions combining both types of perturbations.

Appendix D Structure of the Wild-Type Global
Transcriptional Model

The proposed transcriptional network contains 1,684 genes controlled by
constitutive promoters; thus, more than half of the genes are non-regulated
or are controlled by promoters with only one TF. Also, from a purely topo-
logical perspective, this transcriptional network of F. coli has a high density
(0.154%) in comparison to values reported in similar studies on the same
[51] and other organisms [1]. The characteristic path length (the distance
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between two genes for which a path exists) follows a Gaussian distribution
and ranges from 1 to 9 edges with an average value of 2.897 edges. Moreover,
both the out- and in-coming connectivity distributions of the TRN belong
to the class of scale-free small-world networks. The average clustering co-
efficient of the network was 0.103 and is log-log linearly related with the
number of connections per gene in the range from 1 to 10 with a slope of
-0.98, suggesting that the F. coli wild-type TRN is hierarchically organized
[57, 58].

Appendix E Prediction of Transcriptomic Profiles

To compute the performance of our algorithm, we defined a reference net-
work taking those genes with known transcriptional regulation. In addition,
the TF's that were present in our reference set regulating genes outside the
reference set were also removed when determining the performance of the
algorithm. Then, only the interactions among the genes present in that ref-
erence set were evaluated to compute the algorithm efficiency. All known
interactions catalogued in RegulonDB version 4 [14] were used to construct
the reference network in FE. coli. However, we are still far from a complete
understanding of the transcriptional regulation network of F. coli. There-
fore, we designed in silico genomes with predefined regulations to validate
the performance of our algorithm. For that, we did not consider: i) oper-
ons with self-regulations, i) operons with constitutive promoters, nor iiz)
operons containing only TFs.

We calculated two types of efficiencies (precision rate and sensitivity) to
compare the inferred network with the reference network. We defined preci-
sion rate as the fraction of predicted interactions that are correct (T'P/(T P+
F'P)), and sensitivity as the fraction of all known interactions that are dis-
covered by the algorithm (T'P/(T'P + FN)), where TP is the number of
true positives, F'IN the number of false negatives and F'P the number of
false positives [49, 50].

Appendix F Designing Genomes and Expression Data

In order to evaluate the suitability of our procedure to redesign the transcrip-
tion regulation, we will analyse our ability to infer the kinetic parameters.
Since they are not known for any organism, this lead us to the development
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of a Generator of Artificial Genomes (GAG) to in silico create expression
profiles (Figure 3.7). To construct such genomes, we specify the number of
genes and TFs (this last is usually taken one order of magnitude less than
the number of genes), and eventually the ratio between inducers and re-
pressors (we have used 2/3). We can also specify the degree of connectivity
to obtain scale-free networks (we have considered a probability distribution
P(k) o< k=2 where k is the number of regulators of an operon), and the
law for clustering distribution (we have assumed P(n) o 27" where n is the
number of genes per operon).
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Figure 3.7: Generation of an artificial genome model to get synthetic microar-
ray data. We have developed a computational algorithm (GAG) to construct such
model, where the user inputs the total number of genes and TFs as well as the
percentage of single regulations and cooperations. GAG generates a random net-
work following those specifications with the corresponding model parameters: the
constitutive transcription rate a, the regulatory coefficients brp, and the mRNA
degradation coefficient 6. In the presented network, consisting of 5 operons, 3 TFs
and 9 non-regulatory genes (g;), arrows mean activation and blunt lines repression.
The regulatory function (f) is assumed linear and the expression is calculated in
the steady state (ss), where @ = a/é and Orp = brp/d. Later, GAG gives the
in silico microarray data. We select a TF or a subset of TFs and we perturb the
expression in the steady state (Ay.). Then we recomputed the whole expression
profile using the model. Therefore, GAG outputs the list of operons and TFs, the
regulatory network (adjacency matrix) with the corresponding model parameters.

+  Gene expression

_—

Yoo+, - 1[geTls
Ve = .
£ S Vrgorees YTFZ,;) ,ifgeTFs

genes

—

To generate synthetic microarray data, we firstly obtain the steady state
of the system (y = f(y), since dy/dt = f(y) — y with an arbitrary degrada-
tion rate of 1) without taking into account cooperations between different
regulators (i.e., B;x = 0, Vi, j, k) as an approximate solution of the system
(Eq. 3.2A). In fact, as the gene expressions (y) are only functions of the TFs
(yrr), we can write the system as y = f(yrr). Subsequently, we generate a



54 Design-Guided Models of global Transcription Regulation

new condition by randomly choosing a set of TFs with given size optimized
for the inference and perturbing their steady state values, while maintaining
constant the other TF expressions.

The perturbations over/under-express the TFs to a 50%, relative to their
steady states. Hence, this perturbed value (y7) is used to recalculate the
gene expressions by applying the model y* = f(y} ). Although this could
be extended to more complicated conditions, where different gene categories
are altered, the conditions based on TF perturbations are more revealing.
Furthermore, to generate more realistic data we have added random fluctu-
ations (which would simulate noisy data) in the expression values. We have
studied the efficiency (precision rate and sensitivity) of our algorithm for
different noise levels.

Appendix G In Silico Genome Evolution by Adap-
tive Mutation

With slight alterations, our methodology was able to predict the behavior
of intermediary FE. coli strains generated from laboratory evolution by local
adaptive mutations in minimal lactate media [31]. We chose strains that
were more adapted to the new media as the optimal model, in contrast to
the automatic design by gene refactorization in which the wild-type strain
was the optimal model. Consequently, this altered the expression profile re-
quired to maintain optimal cell behavior. Hence, by introducing all adaptive
mutations to the wild-type genome-scale model, we were able to simulate
the optimal gene expression profile, y‘gld“pted. We replaced the corresponding
ODEs of the mutated genes (g), % = ag + 205 Bajyi + 2k YakAvk — d5y5,
with constant expression values to simulate the new steady state of that
mutated gene, y; € [goy;”i", go_lygw“]. Note that to simulate the appropri-
ated minimal media, we imposed Avg = 0 for all metabolic uptake factors
excepting the lactate (0vigetate = 20) and glucose (Avgrycose = —10) uptakes.
Solving the new system of ODEs that incorporates the adaptive mutations,
Wi = a; + 5, By + Sk viwlok — Sy, v = Y3, Y € [pylin, o7 lymaea],
we simulated different gene expression profiles, y, = y, (Y;), as functions

of the steady state expression of the mutated genes, Yj, for intermediary
adaptive E. coli strains. We computed transcriptomic fitness as the dis-
tance measured by the Pearson correlation coefficient, p, from the gene ex-
pression profile of the strain most adapted to the new environment with

adapted)
g

lactate (y to the predicted profile incorporating adaptive mutations

(g = W (Y))s Seap(V3) = p (w37, yy (V7).



Appendix H Prediction of Rewired Transcriptional Network of E. coli 55

Note that in Figure 3.5D, we selected S¢.,(Yj) to optimize the correlation
between growth rate and Seg, for the different intermediary steps of each
strain evolved. Interestingly, we found that the gene mutations that caused
maximal Seqp(Yj) also guaranteed maximal correlations.

Appendix H Prediction of Rewired Transcriptional
Network of E. coli

Our methodology was able to capture the behavior of E. coli strains with
TRNSs rewired by adding on a wild-type genetic background new links from
different recombinations of promoters with TFs. A recent study by Isalan et
al. systematically explored such problem by expressing endogenous promot-
ers controlling different TFs or o-dependent genes and measuring the growth
rate of each rewired strain [32]. In our study, we did not consider promoter
region-open reading frame fusions that were constructed on high copy num-
ber plasmids because our model is limited to predict gene expression from
the bacterial genome. Therefore, we selected 38 strains from Isalan et al.
collection in which the rewired construct was stably integrated in the F.
coli chromosome. For these strains, we computed their growth rate as the
maximum value of A(InODggo)/At (with At = 1 hour), achieving values be-
tween 0.39h~! and 0.63h~!. The strain with the construct of the TF, rpoFE,
controlled by the promoter appY was not included in the dataset because it
showed the largest lag phase and slowest growth rate compared to the rest
strains, indicating that the levels of gene expression are not necessarily in
steady state. Therefore, this strain violated our assumption of steady state
gene expression as a proxy to fitness, Segp.

Hence, by introducing the modification imposed by the rewired construct
to the wild-type genome-scale model, we were able to simulate the gene
expression profile of the rewired TRN, and consequently, predict fitness.
We modified the corresponding set of ODEs that models the expression of
the TF (T'F.) encoded in the construct, ¢, and controlled by the promoter, p.
Specifically, we added the basal rate and that determines the gene expression
of the genes controlled by p to the ODE models TF.. Solving the new
system of ODEs, dd%i = a; + 325 Bijyj + 2k vikAvg — diyi, 1 /TF Cily; =
i+, Bigyi+ 2k Vi Avk — 8iyi + 0+ 325 Bpiyi + 3k Yok Avk — Opyp, i = TF,
we simulated the gene expression profile of the rewired TRN in order to

compute the fitness Se;,. Note that to simulate the appropriated medium,
we imposed Av, = 0 for all metabolic uptake factors excepting the glucose
uptake (Avglucose = 50) to provide an excess of carbon source.
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Chapter 4

Automatic Design of a
Genome by Gene
Refactorization

4.1 Design by Gene Refactorization in Dynamic
Environments

4.1.1 Refactored Genomes with a Reduced Number of Oper-
ons

In the previous chapter, we have demonstrated that we can predict experi-
mental growth rates by assigning transcriptional parameters to genome regu-
latory sequences. Such assignment allows us to predict the TRN model after
reshuffling genetic elements. Instead of trying to solve the challenging prob-
lem of evolving a genome for better growth, which would require a greater
degree of accuracy for our fitness function, we attempted to reorganize the
genome of E. coli while maintaining its functionality. We rearranged the
nucleotide sequence to simplify the TRN in terms of regulatory complexity
and modularity. We used our automatic design methodology to perform the
genome refactoring, which entailed rearrangement of the operon structure
while maintaining the organisms original behavior.

This problem can be solved because of our current understanding of the
relationship between sequence and transcription regulation. For example,
the operator sites of many promoter sequences are known, and mutations
in such sequences would presumably eliminate the regulation of the pro-
moter. This genetic modification could be implemented in our evolutionary
algorithm in such a way that, once the optimal TRN is found, the genome
engineer would need to further engineer such mutated promoter sequences

63
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Figure 4.1: (A) Evolution during the optimization process, expression and mod-
ularity score, and bi-objective function for genome design. Random optimization
produced significantly lower bi-objective function values than those of the wild-type
genome. (B) Functional similarity, depending on operon size, of refactored genomes
that have evolved in environment 3. (C) Histogram of functional similarity of the
operons of genomes refactored under permissive environments (type 1). (D) Com-
plexity reduction (the number of regulators and operons are represented by blue and
red bars, respectively) of refactored genomes with respect to the wild-type genome
under different levels of environmental extremity with regard to each altered factor
(these range from type 1 (most permissive) to type 5 (most challenging)). Operons
with a size equal to one (null-similarity) were not plotted in panels C and D. (E)
Sizes of operons containing one or more genes controlled by promoters that inter-
act with EFs in genomes refactored under permissive and challenging environments
(blue squares and red triangles, respectively). Green diamonds indicate the gene
distribution in operons for the wild-type genome. The vertical dashed line indicates
the mean operon size. Low operon size (LOS) and high operon size (HOS) classes
were defined using the average operon size as a cutoff. (F) Mean operon size of
genomes refactored under weak and strong environmental conditions (blue and red
bars, respectively) for LOS and HOS classes. The U-test significance is shown (***p
< 0.01; NS: not significant). Error bars represent the standard deviations of scores
obtained from 10 simulations. Selective pressure in the evolution process was only
applied to genes relating to central metabolism.
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(Figure 3.4B) to obtain the final genome sequence. In addition to the fitness
related to growth, Sezp, we needed another objective function that is related
to the expected genome arrangement (see Appendix A). Figure 4.1A illus-
trates the trajectories of the Se;, and S,,,0q functions and their weighted sum,
which defines the fitness function to be used during the refactorization. This
is carried out for different environments by maintaining the optimal gene ex-
pression levels of all enzymes. The fitness function achieved similar values
during the last steps of the evolution process for all simulated replicates of
the refactored genomes.

We then investigated whether genes with high functional similarity were
grouped into the same operons or network modules, i.e., we computed the
functional similarity of all operons containing more than one gene in the
refactored and random operon-organization genomes. Figure 4.1B shows
the highly statistically significant functional similarity of genes refactored
into the same operon with respect to random refactorizations (Kolmogorov-
Smirnov test, p < 0.001; and U-test, p < 0.001; see Appendix D). Analo-
gously, Figure 4.1C illustrates the distribution of functional similarities for
all operons with non-zero values. It is especially interesting that the refac-
tored genomes were characterized by operons containing genes with similar
function, a property that was not imposed during the evolutionary process.
Specifically, the number of refactored operons with degrees of functional sim-
ilarity < 0.8 considerably exceeded the number of those with random organi-
zation. Figure 4.2 (B, C) illustrates the same functional operon-organization
using an expression score based on genes related to adaptive and defensive
processes; Figure 4.2 (H, I) also shows the analogous operon-structure for
the entire genome.

We observed a significant reduction in the complexity of the refactored
TRN with respect to the wild-type genome. Figure 4.1D illustrates the ratio
between the number of regulatory interactions (2 < 0.31; p < 0.001) and
the number of operons (© < 0.27; p < 0.001) for the refactored and wild-
type genomes, which do not appear to depend on the environment. These
genomes were optimized under conditions requiring only central metabolism
enzyme expression to remain close to the optimal level. How does the reduc-
tion of genome complexity depend on the selection of critical genes involved
in the fitness function? To address this question, we also explored the possi-
bility that limiting the expression of only those genes that relate to defense
and adaptation would allow larger reductions in complexity (Figure 4.2D;
2 < 0.25, p < 0.001; © < 0.23; p < 0.001); the smallest reductions in
complexity were obtained when the entire genome was restricted (Figure
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Figure 4.2: Genomes refactored under selective pressure based on the expression of
stress-related genes involved in adaptation and defense (A-F) or the entire genome
(G-L). (A and G) Evolution during the process of optimizing the expression and
modularity score, and the bi-objective function for genome design. (B and H)
Functional similarity, depending on operon size, for the refactored genomes that
evolved in environment 3. (C and I) Histogram showing the functional similarity
scores of the operons in genomes refactored under permissive environments (type
I). (D and J) Complexity reduction (the number of regulators and operons are
represented using blue and red bars, respectively) of the refactored genomes with
respect to wild-type genome under different levels of environmental extremity (these
range from type 1 (most permissive) to type 5 (most constrained)). (E and K) Sizes
of operons containing one or more genes controlled by promoters that interact with
EFs in the refactored genomes under permissive and harsh environments (blue
squares and red triangles, respectively). The vertical dashed line indicates the
mean operon size value. Low operon size (LOS) and high operon size (HOS) classes
were defined using the average operon size as a cutoff. (F and L) Mean operon
size in genomes refactored under weak and strong environments (blue and red bars,
respectively) for LOS and HOS classes. The U-test significance is shown (¥**p <
0.01; NS: not significant). Error bars represent the standard deviations of scores
obtained from 10 simulations.
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4.2); 2 < 0.38, p < 0.001; © < 0.33; p < 0.001). Thus, high reductions in
genome complexity were obtained independently of the set of genes selected
as critical predictors of transcriptomic fitness.

4.1.2 Cellular Environments Selectively Correlate with Genome
Regulatory Complexity in the Refactored Genomes

We compared the internal structures of networks evolved under permissive
and challenging environments to determine whether the environmental con-
ditions imposed in the refactorization confer any specific characteristics to
the TRN of the refactored genomes. The clustering coefficients (CCs) of the
refactored TRN were highly reduced with respect to the wild-type TRN,
illustrating that the refactored genomes are composed of large modules that
induce additional coregulation. Interestingly, genomes refactored in chal-
lenging environments show higher CCs than those evolved in more permis-
sive environments, a difference supported by the positive Pearson correla-
tion observed between the CCs and the gradient of environmental stress (r
= 0.63; p < 0.01) when S¢;, was computed considering stress genes only.
Analyses of other topological properties of the TRNs of the evolved genomes
are presented in the Appendix E.

We then analyzed the relationship between the reduction in genome com-
plexity and the environment in which the genome evolved. We found no sig-
nificant correlation between increased environmental challenge (measured
as the variation in cell fitness) and the complexity of the refactored TRN
(measured either as the number of operons or as the number of regulatory
interactions). Surprisingly, the positive correlation observed between CCs
and environmental stress did not contribute to a significant relationship in
terms of the complexity of the refactored TRN.

Next, we focused only on the refactored operons that were regulated by
promoters whose TFs interacted with EFs. Figure 2.1CE depicts the size of
those 47 operons that were re-organized by forcing only central metabolism
enzymes to achieve the optimal condition expression profile. The average
normalized operon size was 0.0213 or 0.0204, depending on whether the envi-
ronment in which the evolutionary process occurred was permissive or chal-
lenging, respectively. Surprisingly, we found a significant difference (U-test
p < 0.01) between the average size of the refactored operons in permissive
and challenging environments for low operon size (LOS) (Figure 4.1F). Anal-
ogously, we also found significant changes when the selection pressure forced
optimization of all gene expression (Figure 4.2 (K, L), U-test p < 0.001) or
the optimization of stress-related gene expression (Figure 4.2 (E, F), U-test
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p < 0.0001). In fact, for stress-related gene expression, we also observed
significant changes in the average size of the re-engineered operons for high
operon size (HOS). This is direct evidence that environments in which cells
perform poorly (i.e., with very poor fitness) favored the emergence of oper-
ons containing a large number of genes co-expressed under promoters whose
TFs respond to this environment.

4.1.3 Biochemical Adaptation in Refactored Genomes
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Figure 4.3: Adaptative behavior of the refactored E. coli genomes that evolved
under selective pressure relating to genes coding for enzymatic activity (A and
B), genes related to adaptation and defense functions (C and D) or to the entire
genome (E and F). The behavior of the designed genomes was measured by applying
single environmental perturbations (A, C and E) that modified external fluxes of
oxygen or carbon sources (blue and red bars, respectively) or multiple, simultaneous
changes in the oxygen, carbon and nitrogen sources (B, D and F). Adaptation was
predicted for six cellular fitness constraints depending on the critical genes selected:
I, all genes; II, III, IV and V, genes related to adaptation, defense, protection and
enzymatic functions, respectively; and VI, genes associated with adaptation and
defense processes. Genomes that were refactored by applying selection to the same
category that was scored are highlighted in the plot (***). Error bars represent the
standard deviations of scores obtained from 10 simulations.

Many signaling systems can adapt their expression programs in response
to novel stimuli. Figure 3.5A shows that a single, strong environmental per-
turbation induced wild-type TRN to reduce cell fitness to a minimal, but
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stable, value. This motivated us to investigate whether refactored systems
acquired the ability to adapt to environmental changes more quickly than
wild-type systems. To that end, we explored single environmental perturba-
tions by simulating two sets of environments. We then used the optimality
degree to test the adaptation of refactored TRN to the environments, con-
sidering three types of selection pressure in the expression score: selecting
only genes coding for enzymes involved in central metabolism (Figure 4.3A),
stress-related genes (Figure 4.3C) or the entire genome (Figure 4.3E). In-
terestingly, using the first two design criteria, the average of the optimality
degrees <£ > around the set of environmental perturbations was negative (i.e.,

cellular fitness exceeded the optimal value for all re-engineered genomes (<£ >
= -0.018 or -0.023, respectively). On the contrary, genomes refactored based
on the third criterion achieved significantly positive optimality degrees (<§: >
= 0.029). Defining the fragility of a genome as its optimality degree in
different environments, refactored genomes were more fragile; anticipatory
behavior disappeared ( <§ > > 0.467, 0 or 0.025 for the three design criteria
mentioned, respectively) when cell fitness was computed using an expres-
sion score from a set of critical genes different from that used during the
design phase. It should be noted that the optimality degree under single per-
turbations did not significantly depend on alterations in metabolic uptake
factors.

Next, we studied systems that were re-engineered under simultaneous
multiple perturbations (Figure 4.3 (B, D, F)). As above, we tested genome
optimality by altering oxygen and carbon source uptake factors in the same
range defined by single perturbations, and we added a third sensing compo-
nent related to the nitrogen source by adding NO3 to the environment. As
before, refactored genomes achieved negative or zero degrees of normalized
optimality with the two first design criteria (<é > = -3.81%), respectively,

~

but for the third criterion, the average normalized optimality (<§ > =1.25%)
indicated that new systems retained the fitness of the optimal system.

4.2 Prediction of a Refactored E. coli Genome Se-
quence with Wild-type Behavior in Changing
Environments

Thus far, the experimental implementation of refactored genomes has re-
quired significant promoter engineering to obtain the desired synthetic pro-
moters by adding operators that do not exist in wild-type promoters. There-
fore, we implemented a second evolutionary process to design refactored
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genomes containing only genetic building blocks that exist within the wild-
type E. coli genome. The transcriptional regulation landscape that we ex-
plored contained all possible genome reconfigurations that could result from
regrouping a set of genes under the control of a wild-type promoter. Similar
to our previous designs, we observed a large reduction in the complexity of
the refactored TRN with respect to the wild-type genome in terms of the
number of regulations (£ < 0.14; p < 0.001) and operons (© < 0.14; p <
0.001) using a design function based on scoring the expression of stress genes
(Figure 4.4A). Analogously, we found that limiting only the expression of
genes coding for enzymes or genes related to defense and adaptation in the
design produced larger reductions in complexity (£ < 0.18, © < 0.19 and =
< 0.23, © < 0.23, respectively; p < 0.001 in all cases).
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Figure 4.4: (A) Complexity reduction (the number of regulatory interactions and
operons are represented using blue and red bars, respectively) of the refactored
genomes with respect to the wild-type genome under permissive environments us-
ing an evolutionary process including tandem promoters (dark bars) or genetic
re-organization of E. coli transcriptional units only (light bars). (B) Number of
genes or operons regulated by a given wild-type promoter (blue points) or a tan-
dem promoter added to the synthetic transcription unit (red points), as proposed
for the refactored genomes evolved using selective pressure based only on genes
coding for enzymatic activity (squares), genes related to adaptation and defense
functions (triangles) or the entire genome (circles). Error bars represent the stan-
dard deviations of scores obtained from 10 simulations.

To enlarge the genome design landscape, we allowed the addition of a
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maximum of three promoters in tandem to modify the regulation of a given
operon (see the second evolutionary process described in Appendix A). We
determined a set of E. coli promoters that were potential candidates to oper-
ate in tandem (sometimes using a suitable spacer sequence to isolate them).
We selected the entire promoter library (27 promoters) used by Isalan et al.
to exhaustively explore the effect of multiple genome rewirings on growth
rate [1]. We also included all E. coli promoters that are regulated by fewer
than two master regulator TF's, as defined by Isalan et al. Consequently, we
considered 272 promoters susceptible to tandem incorporation. Figure 4.4A
shows that the largest reductions in complexity were achieved using designs
that consider stress genes in the objective function (£ < 0.20, p < 0.001;
© < 0.19, p < 0.001). Surprisingly, as shown in Figure 4.4B, few operons
from the refactored genomes needed a promoter to be added in tandem to
modify the gene expression provided by their wild-type promoter. Only 15
operons within the refactored genomes required the addition of two tandem
promoters to guarantee that gene expression could adapt to changes in the
environment. Such refactored genomes were characterized by operons that
captured genes with similar functionality (Figure S4.5 A-F). We also tested
adaptation in genomes that were refactored by considering each of the three
types of selective pressures previously mentioned in the expression score (see
Appendix F and Figure 4.5 G, H).

4.3 Conclusions

4.3.1 Biological Consequences of Computational Genome Refac-
torization

Genome Organization Can Be Simplified Without Disrupting the
Response of the Genome to Environmental Changes

In this Chapter, we have developed a computational framework for the de-
sign of bacterial genomes that are able to respond to changes in environ-
mental conditions. We used transcriptomic data to infer a continuous model
for the transcription of all E. coli genes [2], which we then used to assign
appropriate parameters to promoter and TF coding sequences. By assum-
ing that these parameters do not depend on genomic context in most cases,
we proposed our first methodology for the automatic design of genome re-
arrangements under changing environments. Our results demonstrate that
it is possible to refactorize the genome of E. coli, achieving a 69% reduc-
tion in the number of regulatory interactions and a 73% reduction in the
number of operons, while maintaining the ability to physiologically adapt
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to environmental changes. We found that the refactored genomes contain
operons that encode several genes with similar functionality. This is an im-
portant result, given that the fitness function imposed to evaluate genome
performance did not consider gene function. This agrees with the experi-
mental observation that genes within an operon have similar functions [3].
Moreover, these genomes acquired the ability to adapt more rapidly to envi-
ronmental changes, probably as a direct consequence of the reduced number
of regulatory elements.
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Figure 4.5: Functional similarity, depending on operon size, and a histogram
showing the functional similarity of genes in the operons of genomes refactored
under selective pressure on the expression of genes coding for enzymes (A and B),
stress genes (C and D) and the whole genome (E and F). A second set of rules was
used for the evolutionary process (see Figure S1) including a limit on the maxi-
mum number of tandem promoters allowed in each operon. (G and H) Adaptive
behavior of the refactored genomes evolved under different selective pressures in
environments with single or multiple perturbations, respectively, with tandem pro-
moters allowed (red bars) or not (blue bars), using the second set of rules for the
evolutionary process. Error bars represent the standard deviations of the scores
obtained from 10 simulations.

The refactored genomes satisfied the main design specification, which
was to maintain the global physiological response under both optimal and
changing environments. In addition, we found that there was an increase
in the complexity of the internal structure related to the signal transduc-
tion for all refactored genomes. More specifically, genomes that evolved

under the most extreme environments required a greater re-organization of
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critical genes under promoters that could sense greater numbers of envi-
ronmental interactions. Interestingly, genomes that were refactored under
stressful environments showed higher clustering coefficients than those that
evolved under more permissive environments. An intuitive explanation for
this observation relies on the differences in the selective pressures imposed
by both types of environments. Survival and replication in a stressful envi-
ronment represents stringent selection, requiring the coordinated expression
of all genes involved in survival. By contrast, replicating in a permissive
environment may be equated to soft selection and therefore does not require
the coordination of expression because the cells remain able to exploit some
components of their environment.

Design Principles of Genomic Adaptation to Environmental Changes

One important application of our results is the ability to infer some principles
of genome design. In particular, we studied the refactored genomes that had
achieved over-optimality or lost optimality. Our refactored genomes were
more susceptible to environmental perturbations when we tested optimal-
ity using transcriptomic fitness based on a different set of genes than that
selected for the refactorization. Recent work has shown that biochemical
networks have evolved to capture the multidimensional structure of diverse
environments and thus form internal representations (through regulatory
networks) that allow the prediction of environmental changes. For example,
Tagkopoulos et al. provided evidence of anticipatory behavior of E. coli
to changes in temperature and oxygen levels that occurred over evolution-
ary time scales [4, 5, 6]. We tested the anticipatory ability of our refactored
genomes by computing their optimality using transcriptomic fitness with the
same set of genes used in the refactorization process. Interestingly, we found
that refactored genomes achieved greater optimality degrees than those of
wild-type genomes for both single and multiple environmental perturbations.
This suggests that natural selection may be shortsighted (i.e., it does not
anticipate large changes over the long-term) and that actual genomes have
thus evolved for optimal responses to regimes of small fluctuations.

Extension of this Methodology to Other Organisms

The methodology presented here could be extended to other organisms for
which quantitative TRN and signal transduction models can be inferred.
The models should be able to predict genomic transcriptional profiles un-
der several external conditions in order to construct a transcriptomic fitness
function. The computational refactorization of the genome of a given organ-
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ism requires the following information: (i) genome annotation, (ii) a microar-
ray compendium capturing genetic and environmental diversity, (iii and iv)
datasets of transcriptional interactions (gene vs. TF) and two-component
signal transduction pathways (TF vs. EF) that have been experimentally
verified. Further extensions would have to consider the influence of other
factors such as 3D localization [7], post-transcriptional regulation [8] and
post-translational regulation in prokaryotes [9], or chromatin regulation [10]
in eukaryotes.

4.3.2 Experimentally Testable Predictions

Strains from Short-Term Laboratory Evolution Show Growth Rates
Similar to Those Predicted by Genome Design

Our methodology takes advantage of our ability to predict variations in cell
growth based on changes in the transcriptome. The linear relationships
found in Figure 3.6 guarantee that optimizing transcriptomic fitness also
optimizes the growth rate of the cell. It should be noted that we have fixed
the mutated genes to steady-state expression levels under the given lactate
environment and that the fixed level is found by optimization. The exper-
imental characterization of such transcription values could change this lin-
ear relationship and therefore the correlation between predicted fitness and
growth rate. However, this would not change our results, as any monotonous
relationship would be sufficient for optimization. Therefore, we have pro-
vided evidence that our fitness function, which is based on transcriptomic
profile distances, is a suitable selection pressure for our in silico evolution
procedure.

Proposition of a Testable Refactored E. coli Genome Sequence

This work also provides a generic procedure to generate a gene sequence for
a synthetic E. coli genome with a targeted transcriptomic response, which
we exemplify by proposing a genome that could be engineered by assembling
known elements. For this quantitative prediction of a designed genome, we
propose combining known promoter regions and transcriptional regulators
such that the transcriptional profile could reasonably be predicted. To create
more complex promoters, we propose taking advantage of their modularity
and fusing some of them in tandem, and choosing a set of promoters for
which transcriptional interference would be minimized [11]. Notice that the
E. coli genome contains 166 non-overlapping tandem promoter pairs [11].
As sequence repetition could create ectopic recombination events, some care
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will have to be taken in experimental testing. In addition, wild-type tran-
scription terminators are not completely efficient and are sometimes even
absent; therefore, some terminators may have to be replaced by stronger
ones (probably synthetic, to avoid repetitive sequences). The neglect of
non-transcriptional regulation may produce unexpected behavior in certain
environments, but this could be remedied by selecting alternative conditions.
Other undesired behaviors could be alleviated by suitable randomization of
the nucleotide sequence with the restriction of maintaining the desired func-
tionality (e.g., the ribosome-binding site or protein coding sequence).

Application to Experimental in vivo Genome Engineering

Our computational procedure could also be adapted to the particular needs
of experimentalists who are willing to create major gene rearrangements
in genomes using in vivo techniques. Several affordable cloning-free tech-
niques allow the generation of large insertions, deletions or inversions in the
genome. Usually, random mutagenesis followed by screening is used, but this
methodology is tedious when a specific locus is to be targeted, and only a
small number of successive modifications (N) would be practical. Therefore,
it would be particularly useful for the genome engineer to know in advance
the most suitable sequence of experiments to introduce genome modifica-
tions. In E. coli, this could be readily done by appropriately adapting the
mutational moves used by our in silico evolution methodology. Such moves
should be restricted to their genome rearrangement technologies available
at the laboratory. Then, one could computationally explore all possible
evolutionary paths of N moves that would give the highest fitness under
specific dynamic environments. The experimentalist could then engineer
the genome by implementing the N consecutive experiments suggested by
the algorithm. This computational procedure could also incorporate the
constraint that each intermediate genome should be viable.

Appendix A Automatic Genome Design

The main variables required for automatic genome design are the same as
those required for any evolutionary algorithm: (i) An initial genome, (ii)
evolutionary steps represented by changes in the genome and (iii) a fitness
function to evaluate the performance of each mutant genome (see Appendix
B). For the first step, we used the genome of the model bacterium E. coli.
The second step was achieved by dissecting the bacterial genome into ele-
mentary modules, to which evolutionary rules were applied [12].
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One design approach that we used involved the in silico refactorization
of the nucleotide sequence of the E. coli genome, a process where we pursued
two goals simultaneously: (i) simplifying the internal structure of E. coli and
(ii) maintaining the external system function. To maximize the modularity
of the system and thus simplify the TRN, we defined a measure based on
the entropy of the genome. We also aimed to maximize the similarity of
the expression profiles of the wild-type and refactored genomes for a set
of extreme environments and for a set of critical genes that guarantee the
functionality of the refactored system. We used the TRN model integrated
with signal transduction to measure that similarity. Considering these two
aims, we developed an optimization algorithm (Figure 3.4B) based on the
mutation rules described in the Appendix B to refactorize the wild-type
E. coli genome. Genes that are controlled by constitutive promoters were
not involved in the design. These genes could always be refactored in a
straightforward way by assuming that they could be collapsed into large
operons regulated by a gradient of different expression levels (produced by
a library of several constitutive promoters or using tuned ribosome-binding
sites).

Appendix B Genome-Wide Optimization Procedure

Our algorithm searches possible reconfigurations of the global transcrip-
tional regulation of E. coli such that the resulting modular genome contains
all genes in a minimal set of operons, thus decreasing the number of tran-
scriptional regulatory elements, and with the constraint that the overall
gene expression of the refactored genome shall be as close to the wild-type
as possible. We used Monte Carlo Simulated Annealing [13] to perform
the optimization in the space of all possible refactored transcriptional net-
works. The size of this combinatorial space is governed by the previously
characterized variability in the E. coli natural promoters, and the diversity
of synthetic promoters was obtained during the optimization process. As
the starting condition, we assumed that the expression of each gene was
controlled only by its natural promoter. Based on the transcriptional regu-
lation landscape size, we defined two sets of optimization processes. In the
first set, we introduced small transcriptional modifications in the genome at
each step of the optimization by either changing the regulation of a gene
(moving it downstream of another promoter) or eliminating regulation by
natural or synthetic promoters according to the following rules:
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1. Move gene g belonging to operon op and regulated by a non-constitutive
promoter P(op) to another operon op regulated by a different non-
constitutive promoter P(op). When g moves to op, we add all regula-
tory operators of its natural promoter to P. However, the fact that g
leaves P implies that if the gene is regulated by a promoter different
from its natural promoter, then P will lose all inserted operators due
to the regulatory effect of P on g. Co-expression of all genes expressed
from a given operon was imposed.

2. Remove an operator from a synthetic promoter. Only operators as-
sociated with TFs are likely to be removed. Unlike transcriptional
regulations, interactions of TFs associated with the binding with EF's
remain linked to their corresponding genes throughout the optimiza-
tion process.

To simplify the genome network structure and improve algorithm conver-
gence, the probability of removing a regulation was made much larger than
the probability of changing a genes promoter (e.g., 10-fold). We also defined
a second set of transcriptional perturbations that were more restrictive from
a refactored genome diversity standpoint:

1. Move gene g belonging to operon op and regulated by non-constitutive
promoter P(op) to another operon op regulated by a different non-
constitutive promoter P(op) without adding regulatory operators to
P.

2. Move gene g belonging to operon op and regulated by non-constitutive
promoter P(op) to another operon op regulated by a different non-
constitutive promoter P(op) and add a wild-type promoter in tandem
position with P. In this case, gene expression is controlled by the addi-
tion of tandem promoters upstream of op. For simplicity and to avoid
looping between promoter sequences, we limited the downstream ad-
dition of promoters in tandem to two.

3. Remove or permute promoters in tandem positions. Promoters added
in tandem to a given transcription unit could be removed or replaced
by other promoters. The probability of removing a promoter in tan-
dem was set to be much larger than the probability of replacing one
promoter in tandem with another promoter (e.g., 10-fold).

Both sets of evolutionary processes share a rule to simulate the expres-
sion behavior of the newly created genome and compute its new objective
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function (Spew), which depends on the full transcriptome predicted under a
set of environments and the new modular organization of the operons. If the
suggested mutation improves S (Spew > S), then it is accepted. Otherwise,

§=8new)/T wwhere T is a Boltzmann temper-

it is accepted with probability el
ature parameter that decreases exponentially with the number of iterations.

Hereafter, we loop back and introduce a new transcriptional modification.

Appendix C Objective Functions for Design

We aimed to rearrange genes (refactorization) within the genome of E. coli
such that the information content of the distribution of genes in operons
could be increased. We hypothesized that this would produce a genome
with fewer operons but retaining the entire original set of genes. Therefore,
we considered a measure based on Shannon entropy [15] as the first objec-
tive function. This measure is computed from the distribution of genes in
the operons as Sy,0q = 1 — Z(J)\;OP koplogNgko_pl, where ko, = Ng"p/Ng. NgP
represents the number of genes in the operon op, N, is the number of non-
constitutive genes in the wild-type genome, and N, is the updated number
of operons contained in the designed genome. Genes initially controlled by
constitutive promoters were not involved in the optimization because we
assumed that unregulated genes with similar basal expression levels could
be grouped into operons controlled by constitutive promoters that provide
similar expression levels regardless of the environment. By defining the loga-
rithm base as Ny, we ensured that S,,,,q ranges from 0 to 1, thereby obtaining
null modularity for the wild-type genome. We assumed in our model that the
sizes of all operons in the wild-type genome are equal to one because genes
that are known to be controlled in the same operon did not share the same
experimental interactions with TFs collected in RegulonDB [14] or inferred
by the InferGene algorithm [2]. Thus, precision and recall in the inference of
the TRN were maximized. The second objective function was defined as the
distance from the wild-type gene expression profile to the predicted profile
under various environmental conditions. This similarity was measured as the
Pearson correlation coefficient (p) obtained when the predicted expression
profiles for a set of extreme environments (Ney,,,) were compared to the wild-

opt , env :|Nenv

type expression, Sezp = {Hem p (yg ' Yg
cluded in a set of critical genes that guarantee the optimal growth of the cell

, where g denotes genes in-

(e.g., genes encoding enzymatic activity). We defined three sets of critical
genes: (i) genes coding for enzymatic activity, (ii) genes related to the stress
response, and (iii) all genes. Ultimately, we defined a bi-objective function
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based on the weighted sum of both objectives, S(A) = ASezp + (1 — X)Spr0a;
thus, selecting a given weighting factor, A € [0, 1], the bi-objective problem
relies on maximizing S by the Monte Carlo Simulated Annealing optimiza-
tion protocol. We used A = 0.5 for the simulations.

Appendix D Genome Optimality Degree in Chang-
ing Environments

We assumed that cell fitness could be estimated in terms of the S,;, objec-
tive function. This allowed the study of genome adaptation under changing
environments in one (Avg—; # 0 and Avg»; = 0) or multiple (Avy, # 0) di-
rections [16]. To do this, we defined the optimality degree, {a,,, in a target
environment characterized by Av; and different from the optimal environ-
ment as the difference between Se,), evaluated in an environment containing
Avg = 0 (i.e., fitness in the optimal condition) and that evaluated in the
target environment containing Av;. Hence, we distinguished between pos-
itive and negative error adaptation corresponding to environmental states

where cell fitness achieved sub- or over-optimal growth, respectively.

Appendix E Functional Analysis of Genomes

Genes contained in the operons of all refactored genomes were functionally
identified using 184 biological functions in GO [17]. We defined the degree
of functional similarity, ®,,, of a given operon, op, as the ratio between the
maximum number of genes with the same functionality and the operon size.
We imposed ®,, = 0 for those operons containing only one gene because
more than one gene was needed to assess functional similarity; all operons
in the wild-type genome therefore received a score of 0.

Appendix F Topological Properties of Refactored
Genomes

The evolved configuration based on interconnected building blocks provided
a significant increase in the diameter and characteristic path length of the
rewired networks. Similarly, refactored networks tend to lose the hierarchical
scale-free system characteristics of the wild-type TRN. Whereas the slope of
the log-log regression for the average clustering coefficient with the number
of genes with k-connections is close to one for the TRN, it was significantly
< 1 for the refactored genomes. Furthermore, the power-law that fits the
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incoming (Vincoming) and outgoing (Youtcoming) connectivity distributions of
the refactored genomes are both smaller than those observed for the wild-
type TRN, corroborating the observation that in re-engineered TRN a large
number of TFs are responsible for activating different biological modules
that emerged spontaneously.

Next, we analyzed the changes in promoter type across the entire genome
after refactorization. The number of genes controlled by promoters that in-
teract with only one TF was significantly smaller for the rewired genomes
than for the wild-type TRN, and the number of genes controlled by two or
more TFs significantly increased. The minimum percentage of operons con-
trolled by a synthetic promoter in the refactored genomes was 17%-20%, de-
pending on the fitness definition (i.e., whether fitness considered only genes
coding for enzymes involved in central metabolism or only genes related to
stress responses, respectively). Consequently, the minimum percentage of
synthetic regulations added was greater than 9.5%.

Appendix G Analysis of Biochemical Adaptation
to Varying Environments of the Refactored Genome
Sequences

Two sets of environments were simulated to explore single environmental
perturbations: (1) a set of 100 random perturbations that varied oxygen
availability from a fully anaerobic environment to an environment with a
rate that was 4-fold greater than the optimal flux value (75 mmol g~'h~!)
and (2) a set of 100 perturbations that changed the availability of glucose
as the carbon source, ranging from the negative value of the optimal uptake
flux to the positive value (i.e., -20 mmol g~ *h~! to 20 mmol g~'1A~1).

We also tested adaptation in refactored genomes by considering the pre-
vious three types of selective pressure in the expression score. Interest-
ingly, genomes that incorporated tandem promoters achieved low adapta-
tion errors under single environmental perturbations ((£) < 0.021) and over-
optimality was even achieved by genomes designed with selection pressure
based on genes with enzymatic activity ((§) < -0.019) or related to de-
fense processes ((§) < -0.010). By contrast, genomes that were refactored
without the design specification of tandem promoter addition had high er-
ror adaptation ((§) > 0.762), except for those refactored considering stress
genes. Furthermore, we tested the adaptation of genomes designed under
multiple perturbations and concluded that evolved genomes that included
tandem promoters exhibited over-optimality independent of the objective
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function imposed in the design. By contrast, genomes refactored by only re-
organizing wild-type genes had adaptation errors as large as <é > = 79.8%.

Appendix H Selecting Challenging Environments
to Generate Different Degrees of Optimality in the
Wild-Type Genome

Five sets of six environments defined by external oxygen flux, carbon source
(external glucose flux) and nitrogen source (external NOj ) were selected
based on the decrease that each caused in the expression score. Specifically,
we included environments in each set based on five levels of decreases in Sz,
that range from 0 to 10%. All sets include the environment associated with
the optimal condition, creating different ranges of environmental variability
for each set.
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Introduction

Genomic tools have allowed assessment of gene expression at a genome-wide
scale, providing unprecedented views of the host-virus interaction. To make
use of all of the information contained in these large data sets, however, it is
necessary to use computational and mathematical tools to disentangle the
interactions between the molecular components of both biological entities
and to identify how these interactions determine the outcome of the infec-
tion [1, 2], which is known as the field of genomic systems biology (GSB).
GSB is a top-down approach that takes advantage of the recent develop-
ment of high-throughput experimental techniques for obtaining omic data,
and constitutes the antithesis of the reductionist paradigm (with a bottom-
up perspective) that has been dominating molecular biology. The GSB ap-
proach consists of cycling between the generation of experimental data and
modeling by means of reverse-engineering techniques to propose testable hy-
potheses about biological systems, experimental validation of these hypothe-
ses and quantification of the relevant model parameters, and then using the
newly acquired quantitative description to refine the computational model
and finally make predictions of the system behavior [3, 4].

To complete its infectious cycle, a few components of a virus, including
its nucleic acids and encoded proteins, must establish multiple and complex
interactions not only among themselves [5, 6, 7, 8] but also with a myriad of
components of the host cell [9, 7, 11]. The outcome of all these interactions
is that the plant controls the spread of viral infection or, alternatively, the
virus overcomes the host defenses and establishes a productive infection
that may or may not be associated with the development of symptoms.
Although the GSB approach is being extensively used in the analysis of
animal virus interactions (e.g. hepatitis C, human immunodeficiency, yellow
fever, influenza A and herpesviruses), plant virology has not yet benefited
to the same extent, and the most relevant studies in the field generally
apply some transcriptomic techniques to produce lists of genes with altered
mRNA abundance in infected plants relative to controls. However, these
types of studies still produce very useful data and serve to highlight some
interesting features. Indeed, recent application of the GSB approach to
the analysis of animal-virus interactions has revealed new and interesting
insights. For example, thoughtful statistical analyses of expression data
have facilitated identification of virusregulated genes (VRGs), some of which
encode cellular factors required for completion of the infection cycle, while
others are direct targets that the virus manipulates to deactivate the cell
defense mechanisms [9, 12, 13, 20]. It has also been observed that VRGs are
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preferentially highly connected elements in the host regulatory network [15,
16, 17]. Furthermore, it has been observed that the topological properties of
the intraviral interaction network change as a consequence of its integration
within the host network [6, 18].

Although some studies have analyzed changes in global profiling result-
ing from virus infection of natural hosts, such as infection of cassava by
African cassava mosaic virus [19] and infection of rice by rice yellow mottle
virus [20], A. thaliana has been the main model host used in combination
with viruses belonging to different taxonomic families. These studies in-
volved cauliflower mosaic caulimovirus (CaMV) [21]; turnip vein clearing
(TVCV) [22], oilseed rape mosaic (OMRV) [22] and tobacco mosaic (TMV)
tobamoviruses [23, 24]; potato X potexvirus (PVX) [22]; cucumber mosaic
cucumovirus (CMV) [22, 25, 26]; turnip mosaic (TuMV) [22, 27], plum pox
(PPV) [28] and tobacco etch (TEV) potyviruses [29]; and mung bean yellow
mosaic (MYMYV) [30] and cabbage leaf curl (CaLCuV) geminiviruses [31].
However, even using the same host species, direct comparisons across ex-
periments are not straightforward because differences in profiling techniques
and platforms, plant ecotypes, sampling schemes, inoculation conditions and
dosages, and growth environmental variables may all exert unpredictable ef-
fects on the expression pattern of multiple genes. Furthermore, differences
in statistical normalization methods and analyses also contribute to making
comparisons difficult. Whitham et al. [22] carried out the most compre-
hensive of such studies for five viruses (CMV, ORMV, PVX, TVCV, and
TuMV) while keeping constant all other experimental variables and tech-
niques. Some generalities can be drawn from this study that can be ex-
tended to most of the other studies cited above, highlighting the fact that
different viruses alter common sets of genes or biological functions. On
the one hand, approximately one-third of overexpressed VRGs are associ-
ated with cell rescue, defense, apoptosis and cell death and aging, including
several defense-associated and stress-associated genes. Responses to biotic
(viruses, bacteria, or fungi) and abiotic (metal ions, osmosis, oxidation, or
temperature) stresses, including systemic acquired resistance and the innate
immune system, are upregulated by the plant to counteract viral infection.
Such a defense response in A. thaliana to viruses is dependent on salicylic
acid [8]. In addition, a variety of heat-shock proteins are also overexpressed
after infection with any viruses. Although this might just be a generic non-
specific response by the plant to stress, we suggest that the virus directly
triggers chaperones to assist in correct folding of its own proteins, since
many of them could misfold (and thus aggregate) as a consequence of muta-
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tions produced during error-prone replication [33]. Rebosamos proteins and
protein turnover genes are also upregulated. Again, this could either reflect
an increased demand on the host cells for protein synthesis or a response
triggered by a virus to enhance its own production (or presumably both).
On the other hand, several developmental functions, biosynthesis of lipids,
alcohols and polysaccharides, and secondary metabolism constitute the prin-
cipal downregulated processes. For example, biosynthesis of lipids is pivotal
for cell membrane construction and modification and carbohydrate biosyn-
thesis is essential for building cell walls; therefore, because this expression
is correlated to plant cell growth and expansion, reduced expression could
well result in the stunting syndrome associated with some infections. Sim-
ilarly, plastid genes and genes involved in chloroplast functioning are also
preferentially underexpressed, resulting in chlorosis.
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Chapter 5

Reverse-Engineering of the
Arabidopsis thaliana
Transcription under
Changing Environments

Living organisms have evolved molecular circuitries with the aim of promot-
ing their own development under dynamically changing environments. In
particular, plants are not able to evade those changes and have had to evolve
robust methods to cope with environmental stress and recovery mechanisms.
Genomic sequences specify the context-dependent gene expression programs
to render cells, tissues, organs and, finally, organisms. Then, at any moment
during cell cycle and at each stage of an organisms development, and in re-
sponse to environmental conditions, each cell is the product of specific and
well defined programs involving the coordinated transcription of thousands
of genes. Thus, the elucidation of such programs by means of the regulatory
interactions is pivotal for the understanding of how organisms have evolved
and what environments may have conditioned evolutionary trajectories the
most. However, understanding how this highly tuned process is achieved is
still beyond our knowledge for most organisms, and the surface of the prob-
lem is only being scratched for a handful of model organisms such as the
bacterium E. coli [1], the yeast S. cerevisiae [2], the nematode Caenorhabdi-
tis elegans [3], the plant A. thaliana [4, 5], or to a lesser extent for humans
[6].

Meta-analyses of microarray data collections may now be used to con-
struct biological networks that systematically categorize all molecules and
describe their functions and interactions. Networks can integrate biologi-
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cal functions of cells, organs, and organisms. During recent years, there has
been a tremendous effort in the development and improvement of techniques
to infer gene connectivity. Clustering approaches [7, 8, 9, 10, 11] and infor-
mation theory methods [12, 13, 14, 15, 16] have been used to infer regulatory
networks. Bayesian methods [17, 18, 19, 20] can give accurate networks with
low coverage but at a high computational cost.

The analysis of the expression of A. thaliana transcriptome offers the
potential to identify prevailing cellular processes, to associate genes with
particular biological functions, and to assign otherwise unknown genes to bi-
ological responses to which they are correlated. Previous attempts to model
A. thaliana gene network used methods such as fuzzy k-means clustering [21],
graphical Gaussian models [4], and Markov chain graph clustering [5, 15].
The inconvenience of the first approach is that clustering describes genes
based on a characteristic property common to all genes but it is difficult
to deduce a pathway structure from this property alone, because pathways
would have to be concerned with co-expression features that transcend such
cluster structure. The second approach assumes that the number of mi-
croarray slides should be much larger than the number of genes analyzed or
approximations must be taken (e.g. empirical Bayes with bootstrap resam-
pling or shrinkage approaches). The last approach is still based on Persons
correlations and therefore, strongly sensitive to outliers and to violations to
the implicit assumption of linear relationships among genes. In this article,
we present a predictable genome model from a regulatory scaffold inferred
by using probabilistic methods [15] and estimate the corresponding kinetic
parameters using linear regression [22, 23, 24, 28]. We analyze the topo-
logical properties and predictive power of the inferred regulatory model.
We evaluate the performance of the network by predicting already known
transcriptional regulations and assess the functional relevance and repro-
ducibility of the co-expression patterns detected. Finally, we discuss the
evolutionary implications of the transcriptional control in plants [26].

5.1 Genome-Wide Transcriptional Control in A.
thaliana

In the present Chapter, we have applied the previous developed inference
methodology presented in the Chapter3, InferGene [28], to obtain a gene
regulatory model, suitable for analyzing optimality and allowing studying
the transcriptional control response under changing environments in A.
thaliana. For that, we have considered the Affymetrixs chip for the A.
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thaliana genome, from which we selected 22,094 non-redundant genes, of
which about 1187 are putative transcription factors (TFs) (see Appendix
A). The data used for the inference procedure were a compendium of 1436
Affymetrixs microarray hybridization experiments publicly available at the
TAIR website and that were normalized using RMA [27]. Here we used the
whole expression set (1436 experiments) to construct the model.
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Figure 5.1: Analyses of the regulatory network of A. thaliana. Distributions
for the transcriptional network of (A) outcoming connectivity showing the master
regulators in a different color, (B) incoming connectivity, (C) clustering coefficient,
and (D) betweenness centrality. Distributions for the non-transcriptional network
of (E) outcoming connectivity and (F) incoming connectivity.

Three types of efficiencies, precision (P), sensitivity (S) and absolute ef-
ficiency (F'), have been computed to assess the ability of the above inferred
network to predict the 448 experimentally validated transcriptional regu-
lations collected in the AtRegNet database. P is the fraction of predicted
interactions that are correct P = T'P/(TP + FP) and S the fraction of all
known interactions that are discovered by the model S = TP/(TP + FN),
where TP is the number of true positives, F'N the number of false nega-
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tives and F'P the number of false positives. F' thus represents the absolute
efficiency and it is computed as F' = 2PS/(P + S) which is the harmonic
mean of precision and sensitivity. Indeed, precision and sensitivity are nec-
essarily negatively correlated performance statistics, and these two values
were set up so they maximize global performance (F) by selecting values >
5 for the z-score used as threshold to predict the transcriptional regulations.
P, S and F were computed as a function of the z threshold. Sensitivity is
maximized S = 100% for z = 0 (i.e., high number of regulations but very
low confidence) while precision is maximized P = 100% for z = 11 (i.e.,
high confidence but very low number of regulations). The optimum value is
reached for z = 5, a value for which F' = 26% (P = 40% and S = 20%). In a
recent study, a smaller network topology has been proposed for A. thaliana
[4]. This network contains 18.625 regulations and an F' = 3.7% (P = 88%
but S = 1.8%), relative to the AtRegNet reference dataset.

InferGene predicts that more than half of the genes are controlled by
constitutive promoters (17.89%) or by promoters regulated by less than three
TFs. Also, from a purely topological perspective, the inferred transcriptional
network of A. thaliana is weakly connected directed, containing 18.169 genes
connected, while the size of the largest strongly connected component only
contains 730 nodes, all of which are TFs. In addition, it has a high density
(0.078%), understanding this parameter as the normalized average connec-
tivity of a gene in the network, in comparison to values reported in similar
studies done for other organisms. For example, Lee et al. [2] suggested a
network density of 0.0027% for S. cerevisiae, while we previously reported
a value of 0.036% for the network inferred for E. coli [28]. The character-
istic path length [28] of the network follows a Gaussian distribution with
an average value of 5.065 edges and, specifically, the distance between two
genes for which a path exists ranges from 1 to 13 edges. In a previous study,
we estimated that the characteristic path length for F. coli network was 1
[28], much smaller than for the case of A. thaliana. Furthermore, the E. coli
inferred network, did not contain any strongly connected components and
its largest weakly directed subnetwork only contained 4 TFs. Other relevant
statistical properties of networks are the stress distribution, i.e., the number
of paths in which a gene is involved, and the betweenness centrality distribu-
tion (Figure 5.1D), i.e., the number of shortest pathways in which a particu-
lar gene is involved. Both distributions are highly asymmetrical, with many
nodes having a low betweenness centrality and a few cases with high values
(Figure 5.1D) and with the number of shortest paths per gene smoothly
increasing until reaching a maximum of approximately 105 short paths per
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gene and then followed by a drastic drop, with very few genes (around
5) having 107 short paths. Ten genes (At1932330, At4g26930, At1924110,
At4924490, At2936590, At1g01030, At1g76900, At2g19050, At2903840, and
At3g19870) are connected among them but remain isolated from the rest
of the main network, the number of shortest paths for these genes ranges
from 1 to 3. All these genes but the last one are involved in several and
apparently loosely related GO functional categories that include regulation
of transcription, transportation and signal transduction, and development
and senescence.

Next, we sought to explore whether the inferred regulatory network has
scale-free properties. It has been suggested that the distribution of outcom-
ing connections should belong to the class of scale-free small-world networks,
representing the potential of transcription factors to regulate multiple tar-
get genes whereas the distribution of incoming connectivities would be more
exponential-like because the regulation by multiple TFs should be less com-
mon that the regulation of several targets by a given TF [28]. Figure 5.1A
shows the distribution of outgoing connectivities per TF, whereas Figure
5.1B shows the same distribution but only for incoming connectivities per
gene. As expected, the outcoming connectivity is best fitted by a truncated
power-law (i.e., the Weibull distribution) with exponent v = 0.902 and cut-
off k. = 99.093 (R? = 0.949; Akaikes weight over a set of 10 competing
models > 99.99%). This distribution indicates that outcoming connectivi-
ties has a scale-free behavior in the range 1k < k. but deviates from this for
connectivities over the cut off. According to Barabasi and Oltvai [31], scale
free properties arise when hub genes are related in a hierarchical way, with
the hub receiving most links being connected to a small fraction of all nodes.
In the case of incoming connectivities, the model that better describes the
data is a restricted exponential, the half-Normal distribution (R? = 0.983;
Akaikes weight > 99.99%). Taken together, these two observations suggest
that A. thaliana transcriptional network contains a few highly connected
regulators that play a central role in mediating interactions among a large
number of less connected genes. Notice that there are 88.4% TF's regulating
more than 10 genes, 36.3% regulating more than 100 genes and just 2.6%
that control over 500 genes. For the sake of comparison, it is worth mention-
ing that in the case of S. cerevisiae the critical exponents estimated for the
outcoming connectivity distribution (v = 0.96 [2, 31]) is quite similar to the
one here reported. However, the estimate obtained for E. coli was smaller
(v = 0.87), a result that suggests that hubs are more important in bacte-
ria than in the two eukaryotes [30]. We have validated the set of predicted



Reverse-Engineering of the Arabidopsis thaliana Transcription under Changing
96 Environments

targets for the 25% most highly connected TFs using AtRegNet, recovering
80% of known interactions for the regulatory model and up to 85% for the
effective model (i.e., the one containing both gene-to-gene and gene-to-TF
interactions). Figure 5.1C shows that the scaling of the average clustering
coefficient with the number of genes with k-connections is approximately
lineal in a log-log scale in the range (1-10000) of neighbors with slope -1.05
(R? = 0.850). Barabsi and Oltvai [30] and Ravasz and Barabsi [32] have sug-
gested that whenever clustering scales with the number of nodes with slope
-1, as it is our case, it has to be taken as a strong indication of hierarchical
modularity, i.e. genes cluster in higher-order units of different modularity,
a finding that has been suggested as general for system-level cellular orga-
nization in plants [33]. Similarly, when the effective model is analyzed, it
shows similar results than for the regulatory model. The outcoming con-
nectivities per gene follows a truncated power law with scale-free behavior
up to k. = 21.341 connections per gene and with an exponent v = 0.765
(R? = 0.998, Akaikes weight > 99.99%) (Figure 5.1E). Figure 5.1F shows
that the incoming connectivity per gene does not present scale-free prop-
erties as it fits to a Normal distribution (R?> = 0.998, Akaikes weight >
99.99%).

The environment significantly influences the dynamic expression and as-
sembly of all components encoded in the A. thaliana genome into functional
biological subnetworks. We have computed the clustering coefficient for all
subnetworks with the largest normalized index of connectivity between genes
involved in the subnetwork. Interestingly, four of these highly connected
subnetworks are involved in response to external influences as, for exam-
ple response to pathogens and other processes related with abiotic stresses
(heat, salinity, light, redox). For the sake of illustration, Figure 5.2 shows
the inferred subnetworks for three abiotic and three biotic responses. Par-
ticularly, we have made a comprehensive analysis for the subnetwork of the
systemic acquired resistance (Figure 5.2D) and found that the fraction of
predicted interactions is P = 33%. Not surprisingly, all genes involved in
that subnetwork appear associated with GO categories related to response
to stress, like defense to pathogens, response to other organisms such as
fungus, bacterium and insects, and response to cold.

5.2 Transcriptomic Profile Prediction

The basic premise of our approach was to use transcriptomic data from
multiple perturbation experiments (either genetic or environmental) and
quantitatively measure steady-state RNA concentrations to assimilate these
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Figure 5.2: Transcriptional subnetworks with high clustering coefficients corre-
sponding to the following GO pathways: (A) auxin metabolic process, (B) response
to other organism, (C) response to heat, (D) systemic acquired resistance (experi-
mentally verified regulations are represented with thick edges), (E) response to salt

stress, and (F) immune response.
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expression profiles into a network model that can recapitulate all observa-
tions. Now, we develop a second model (test model) excluding the 10% of
experiments to quantify the prediction power. The data set was randomly
split into two subsets. The first larger subset contained 1292 experiments
and was used as training set for inferring a transcription network containing
128,422 regulatory interactions. The second, smaller, subset contained 144
array experiments and was used for validation purposes.
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Figure 5.3: Histogram of the relative gene expression error in (A) the transcrip-
tional test model (with an average error of 0.0402) and in (B) the effective model
(with an average error of 0.0280). Errors were obtained from the comparison of the
predicted model obtained from the training dataset and the experimental determi-
nations contained in the random tester dataset.

As a first measure of the performance of our test model network in pre-
dicting responses to stresses, we have used it along with the expression levels
of all the TFs for each experimental condition, ¢, to predict global expres-
sion proles. Then, the predicted expression values for each of the 22,094
individual genes included in the Affymetrix array, were compared with the
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corresponding empirical measurements, y4., using the deviation statistic,
Yge—

Ay, = N%Zév‘: Tf’g“, where N, = 144 is the number of microarray ex-
periments included in the random tester dataset. Figure 5.3A shows the
distribution of A, for all genes included in the predicted A. thaliana tran-
scriptional network. The distribution of errors has a median value of 3.66%
and is significantly asymmetrical (skewness 1.709+0.017, p < 0.0001), with
most genes having a relatively low error but with some genes whose expres-
sion is estimated with errors > 10% and even in a few instances > 16%.
How does this predictive performance compare to that obtained for other
organisms, as for example E. coli? In a previous study, we constructed a
transcriptional network containing 4345 genes and 328 TF's from E. coli [25]
using a dataset containing 189 experimental conditions. For this network,
the average error over the training set was similar (3.68%) to the values re-
ported above but with the error distribution being even more asymmetrical
(skewness 2.31440.017, p < 0.0001). The average error over the E. coli test
set (4.80%) was larger. Figure 5.3B shows the distribution of A, for gene-
to-gene and gene-TFs interactions which is also significantly asymmetrical
(skewness 1.455 4+ 0.017, p < 0.001), although in this case the median error
is reduced to 2.71% and in all cases the error was < 9%. Both distributions
significantly differ in shape (Kolmogorov-Smirnov test p < 0.001) and lo-
cation (Mann-Whitney test p < 0.001), with the latter being narrower and
centered around a lower expression error. One may ask whether the pre-
dictability of our model was driven by TFs and not by non-TF genes. To
test this possibility we proceeded as follows. First, we selected a random
set of 1187 non-TFs genes and used them to construct the corresponding
pseudo-transcriptional network. Then we evaluated its performance as de-
scribed above. The level of precision reached was undistinguishable from the
previous one, with the distribution of relative expression error obtained fully
overlapping with the one shown in Figure 5.3b (data not shown). There-
fore, we conclude from this analysis that TFs do not have stronger predictive
power than the rest of genes. This could be rationalized because, in terms
of mathematical equations, genes that are coexpressed with the TFs have
a priori equal chances to work as regulatory elements. On the other hand,
we have also constructed an effective model excluding the TFs from the
set of predictors and observed that the relative expression error decreased
proportionally to the number of excluded TFs.

For illustrative purposes, Figure 5.4 shows the expression predicted for
five best cases for the transcriptional network, each dot in the scatter plots
representing a value obtained on a different hybridization experiment. The
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Figure 5.4: Predictive power on gene expression of the transcriptional model of
A. thaliana inferred from the whole data set (1436 conditions) and the test model
from 1292 microarray experiments, used as training set. The left column shows
the regression coefficient (R?) between the model and experimental profiles across
the whole data set for the five best predicted genes. The right column shows R?
between the test model and the 144 experimental profiles used as tester set for the
same five genes. In either case, correlation coefficients were highly significant.
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left column shows the prediction obtained using the whole dataset (1436
experiments) both as training and as tester sets, whereas the right column
shows, for the same five genes, the correlation between the prediction ob-
tained from the test model (inferred from the reduced training set of 1292
experiments) and the observations contained in the tester set (144 experi-
ments). It is remarkable that the quality of the prediction does not change
by using a reduced training set, in good agreement with the results reported
for E. coli [28].

5.3 Selection of Optimality in Changing Environ-
ments

Organisms have a high capacity for adjusting their metabolism in response to
environmental changes, food availability, and developmental state [34]. On
the one hand, we have detected that GO pathways related with response
to diverse environmental (e.g., defense against diverse pathogens, response
to radiation, temperature, light intensity, or osmotic stress) and internal
(development, secondary metabolism, porphyrin biosynthesis, etc) stimuli
consists of sets of genes with high incoming connectivity, that is, genes reg-
ulated by many different TFs. Therefore, this high degree of interconnection
among different stimulus-related pathways allows the cell to rapidly adjust
its homeostasis in response to changing environments. On the other hand,
functional GO pathways associated to biological functions with expression
unaffected by external stresses (e.g., glycerophospholipid and glycerophos-
pholipid metabolic process, sulfur amino acid biosynthetic process, indole
and derivative metabolic process, membrane lipid biosynthetic process, sul-
fured compounds biosynthetic, and Golgi vesicle transport), have low incom-
ing connectivities. Notice that some GO pathways indirectly related with
external stresses such as for instance indole derivatives, like camalexin, (in-
volved in response to the bacterium Pseudomonas syringae) or lipid biosyn-
thesis pathways (playing a role in defense) were not scored with high levels
of connectivity and high number of FFLs involved in the GO pathway. Fur-
thermore, the predicted master regulators of A. thaliana belong to biological
functions related to transcription and regulation of cellular metabolic pro-
cesses (containing 812 TFs each) or RNA metabolic processes (536 TFs) that
are stimulated by environmental and developmental stresses. After all, the
regulatory network of A. thaliana governs the intra-cellular processes and
modulates and determines the expression of the different programs encoded
in the genome.
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Networks can be decomposed into subnetworks which can be seen as
their building blocks. These building blocks, generally known as motifs, are
defined in terms of their frequency and are typically constituted by several
promoter regions of genes expressing TFs which regulate each other in a
number of well known patterns (e.g., bifans, forward, feedforward, or neg-
ative feedback loops) [35]. Certain regulatory network motifs have been
described as conferring robustness to perturbations in individual edges, be-
ing the coherent feedforward loop (FFL) the prototypical example of such
a robustness-conferring motif [36, 39]. Therefore, we sought to characterize
our inferred complex network in terms of the presence and abundance of
regulatory networks motifs. Some of the overrepresented motifs are shown
in Figure 5.5. The third most abundant motif found is, precisely, the FFL
(third raw in Figure 5.5A). Indeed, FFL is overrepresented among GO cate-
gories involved in stress response compared to non-stress response categories
(Fishers exact test, p < 0.001).
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Figure 5.5: Network motifs of three (A) and four (B) genes found in the tran-
scriptional network of A. thaliana. Here we plot the most statistically significant
ones. We show a motif significantly overrepresented, feed-forward loop (C), where
an external factor could inhibit the regulation of the gene A to the gene B, but
this structure provides an indirect regulation by means of the gene C. On other
hand, we show in (D) the evolution of the qualitative development of a plant with
motifs (dashed line) and without motifs (solid line) under changing environments.
We note that it exists an evolutionary optimization to include topologic units such
as feed-forward loop providing robustness under external factors despite decreasing
systems fitness (see area I and II) due to an exceed of gene expression of those
genes providing indirect interactions. Panel (E) shows the distribution of normal-
ized robustness coefficients (§*) computed for all interactions between TFs and
genes.
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Next, we sought to test whether the presence of FFL indeed contributed
to increment the robustness of the gene expression of the involved genes.
To do so, we have computed a score, p*, quantifying the robustness of
gene expression for all predicted TF-gene interactions involving three nodes
(Figure 5.5C). Figure 5.5E shows the distribution of the robustness score
computed from the inferred regulatory network. Although it may not re-
sult apparent after the visual inspection of Figure 5.5E, the distribution is
asymmetrical (skewness 1.881 4+ 0.007, p < 0.001) and strongly leptokurtic
(1294.051 £0.014, p < 0.001), suggesting that there are more data points in
the tails than close to the mean. The data points in the upper tail corre-
spond to the more robust interactions and, if coherent FFLs are involved in
such type of interactions, they may be over-represented on this tail. This is,
indeed, the case. If we look at the upper 1% values, 90.7% of them corre-
spond to coherent FFL. By contrast, if we look at the 1% interactions around
the mean value, only 5.7% correspond to FFL. Interestingly, 90.2% of motifs
within the 1% lower tail of the distribution correspond to incoherent FFLs.

5.4 Conclusions

We have discussed a reverse-engineered model of the A. thaliana cell’s gene
regulatory network aimed to future research projects focused on distinguish-
ing, e.g., the molecular targets of a plant virus from the hundreds to thou-
sands of additional gene products that may modify levels of gene expression
as a side-effect. We have used a recent methodology to infer the global
topology of transcription regulation from gene expression data to produce a
kinetic model able to predict the alterations in gene expression in plants sub-
jected to different external stimulus. Moreover, we have concluded that the
A. thaliana inferred transcriptional network presents a hierarchical scale-free
architecture where biological functions cluster in modules. We have iden-
tified biological functions which are highly controlled by predicted master
regulators that could change their operating points in response to dynamic
external factors to produce a consistent and robustness response upon dif-
ferent stresses at the expense of decreasing the cellular replication rate. We
have successfully applied the inferred model to predict the transcriptomic
response of A. thaliana under all experimental conditions included in the
whole dataset, and also applied the test model to predict the response in
the reduced tester set, producing errors of 2 - 10% relative to the experi-
mental value (averaging across all test experiments). Thus, we believe this
modeling-validation approach constitutes an important step towards the un-
derstanding of the large-scale mode of organisms action to cope with a gen-
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erally changing environment. The network model suggests that A. thaliana
promoters are regulated by multiple TFs, a feature which has been shown
to be characteristic of eukaryotes gene regulation [2].

We have discussed a first gene regulatory model based on a transcrip-
tional layer and a second model that embraces the first one by including
gene-to-gene interactions that provides an even more accurate prediction
of gene expression. Future works would consider just interactions between
tissue-specific genes. Next, we have also quantified the presence of network
motifs and found that FFL are overwhelmingly common, thus supporting
the above notion that robustness against perturbation has been a major
driving force during the evolution of plant lineages. Furthermore, we have
confirmed that coherent FFL are overwhelmingly over-represented among
interactions that are robust against the knock-out of the regulatory TF
(Figure 5.5E), while incoherent FFL are so among the most sensitive inter-
actions. Figure 5.5C illustrates a possible mechanism by which FFL would
confer robustness. Imagine that the B product is relevant for cell survival.
At the one side, deriving regulation flow throughout C is costly because it
implies producing a redundant element. However, if perturbations disrupt
the direct edge between A and B, the existence of C still allows the cell to
obtain the precious B without incurring into a major penalty (Figure 5.5D).
Whether a given regulatory network may be selected to contain this sort of
regulatory elements depends on the balance between the fitness costs and
benefits associated with redundancy [40, 41]. The fact that A. thaliana net-
work topology seems to be rich in these transcriptional regulatory elements
suggests that it has been evolutionary optimized to allow rapid responses to
changes in the external conditions while maintaining cellular homeostasis,
and hence maximizing fitness.

The reconstruction of genome-scale regulatory models constitutes a ma-
jor step towards the understanding of the cellular behavior, but it also is
for Synthetic Biology, where predictive models can be applied to engineer
synthetic systems for biotechnological applications. Hence, InferGene [28]
provides a mechanism to predict the changes in the biological processes when
perturbing the cell in order to identify the effects of drugs, virus infection
and herbicides action in plant interactomes. It may facilitate optimization
of cellular processes for biotechnology applications that utilize the complex
regulatory properties of genetic networks.
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Appendix A Microarray Data

Steady-state mRNA expression profiles derived from transcriptional pertur-
bations collected in the TAIR website [42] have been used in this study. We
found 1187 TFs by looking for the motif transcription factor in the func-
tionally annotated A. thaliana genome from TAIR (version 7). The dataset
contains pre-processed expression data from 1436 hybridization experiments
using the 22,810 probe sets spotted on Affymetrixs GeneChip Arabidopsis
ATH1 Genome Array [43]. For this study, we consider 22,094 genes. The
arrays were obtained from NASCArrays [44] and AtGenExpress [45]. Data
were normalized using the robust multi-array average method [27].

Appendix B Inference Procedure

The inference procedure consisted of two nested steps. In the first step,
the global network connectivity was inferred using the InferGene algorithm
[28]. This method uses mutual information (MI) with a local significance
(z computation) to obtain the genome regulations [15]. Hence, its poten-
tial interaction between a regulator and a gene is zscored, constituting an
estimator of the likelihood of MI. This approach allows eliminating some
false correlations and indirect influences [15]. Subsequently, we selected a z
threshold for cut-off. In a second step, multiple regressions were obtained to
estimate the kinetic parameters of an ODE-based regulatory model. Mul-
tilayer model were constructed to account for different types of regulations
between genes and TFs. We have constructed two different models, one for
transcription regulations and another to account for effective (transcription
and non-transcription) regulations. In case of non-transcriptional interac-
tions, LASSO method was used to avoid over-fitting [46] and the effective in-
teractions between genes giving the non-transcriptional layer were unveiled.
For that end, we applied a simple and efficient algorithm based on the Gauss-
Seidel method [47] that reduces the number of regulators that exceeded the
z-score threshold for a given gene. Note that the method enriches in TFs
among the predictors of the target for the 33.21% of non-constitutive genes
of A. thaliana (i.e., the ratio between the number of TFs selected and the
total number of predictors of a given gene above a threshold defined as
1187/22,094 = 0.0537).
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Appendix C Model Validation

The performance of the inferred model topology was evaluated using a ref-
erence network defined by taking those genes with known transcriptional
regulation. For that, the AtRegNet platform [48] linking cis-regulatory ele-
ments and TFs into regulatory networks was used. Only those interactions
among genes included in that reference set were evaluated. The fraction of
interactions that were correctly predicted by the model (precision, P) and
the fraction of all known interactions that were discovered by the model
(sensitivity, S) were used to compute a performance statistic defined as
F = 2PS/(P + S) [16]. We have to notice that the number of transcrip-
tional regulations experimentally confirmed and compiled in AtRegNet is
quite limited, containing only 448 reported interactions between TFs and
genes. Therefore it is difficult to obtain an accurate value for the perfor-
mance of the model.

To validate the predictive power of the methodology, we constructed
two transcription models. The first one was obtained by using the 1436
microarrays for training. For the second model (test model), of all these
microarrays, 1292 were used as training set (90%) whereas 144 randomly
chosen ones (10%) were retained for validation studies.

Appendix D Motif Detection and Analysis

The FANDOM program [49] has been used to detect motifs of 3 and 4 genes
in the predicted A. thaliana regulatory model. Those motifs statistically
significant have z > 2. The robustness of gene expression to perturbations
in the underlying motifs was evaluated for each interaction as follows. In a
scheme as the one illustrated in Figure 5.5C, TF A operates on gene B but
also may act upon a second transcription factor C' which, itself, may also
interact with the promoter region of B activating its expression. For such a
system, we define the robustness score to quantifX the impact that removing
Yp—Yp

TF A has in the expression of gene B, pap = TR where yg represents

the measured expression of gene B when gene A is present and yp after it

has been removed. The difference in gene expression is normalized by the
expression level of the TF A, y4, and the strength of its regulation, G545, on
the expression of B. If A is removed (y4 — 0) and no alternative pathway
exist, then pap — 1. However, if C exists, as it is the case for the FFL,
then pap # 1, with its sign being determined by y% — y5 and the sign of
Bap. This score is unbounded, thus for convenience we further normalized
it as pig = (paB — 1)/maxy; j(pi;), which is now contained in the interval
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-1,

1]. Values of p%p close to 1 would correspond to maximally robust

motifs, whereas values close to zero correspond to motifs not contributing

to the robustness of the network. Values close to -1 correspond to incoherent

motifs, that is, gene circuits implementing antagonistic regulations [33].
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Chapter 6

Reprogramming Plant
Cellular Chassis to Mimic
Viral Infection

For over decades, plant molecular virology has been overly focused on the
pathogen itself, studying their individual genes and products, and their lo-
cal effects on certain regulatory pathways related to antiviral responses or
to symptoms development. Viral infections typically alter host physiology,
notably by diverting almost every cellular resource to the production of
virus-specific components, and by actively suppressing host defenses [1, 2].
The recent arrival of genomic tools have allowed high-throughput genetic
and metabolic screenings, providing unprecedented views of the plant host-
virus interactions from a systemic perspective that would allow us reaching
a deeper understanding on how host and virus genotypes interplay in deter-
mining the pathological outcome of an infection [3, 4, 5, 6, 7].

Microarray-based functional genomics, which provides a global view of
transcriptional changes in host cells, has been the most commonly used
method to study global changes during plant-virus interactions [2, 8, 9, 10,
11, 12, 13, 14, 15, 16]. As a response to infection, hosts compensate by
over- or under-expressing certain cellular pathways, and deploying specific
antiviral measures. Collectively, these alterations determine the type and
strength of symptoms displayed by infected organisms as well as the viru-
lence of the infection. Imposing the measured transcriptional changes in a
biological network context, it was confirmed that host cells undergo a signifi-
cant reprogramming of their transcriptome during infection [17, 18], which is
possibly a central requirement for the mounting of host defenses. Moreover,
Rodrigo et al. [19] uncovered a general mode of plant virus action in which
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Figure 6.1: (A) Reverse-engineering to reveal gene sub-networks differentially al-
tered by viral infection. (B) Reprogramming cells to mimic the plant transcriptomic
responses observed upon viral infection by using computational genome redesign.

perturbations preferentially affect genes that are highly connected, central
and organized in modules, a mechanism of action that has been pervasively
described for animal viruses [20, 21, 22, 23, 24, 25, 26].

Inspired on an integrated computational-experimental approach for dis-
covering genes and pathways that are targets of specific compounds [27],
herein, we aimed to re-design the transcriptional regulatory network (TRN)
of A. thaliana by altering key transcription factors (TFs) in order to mimic
the transcriptional response observed upon infecting the plant with differ-
ent virus. We will accomplish this goal by re-designing optimal genetic net-
work using as starting point a genome-scale TRN model of the plant [28].
Hence, those re-designs will provide new insights about mechanisms related
with virus-target interactions in the plant. Recently, many groups have
proposed and implemented different approaches for genome-wide re-design
by knocking out and over-expressing genes of prokaryotes and eukaryotes
[29, 30, 31, 32] to control global gene expression. Following this synthetic
biology strategy, herein we have re-designed A. thaliana TRN by exhaus-
tively exploring multiple gene perturbations in the form of gene knockouts
or over-expressions. Hence, we have corroborated that several genetic mod-
ifications imposed on a critical set of TFs generates a high diversity in the
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transcriptome of the plant.
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Figure 6.2: Computational methodology to predict optimal redesigns of the A.
thaliana TRN that mimics the alterations induced by viral infections on the plant
transcriptome.

Could a reduced set of perturbed TFs mimic the plants transcriptional
response to viral infections? It is of outmost importance to harness the abil-
ity of using computational design to predict and optimize a la carte synthetic
genomes with desired transcriptional responses (Figure 6.1). To address this
question, we have developed an algorithm that uses as starting point a wild-
type transcription regulation model, inferred from high-throughput microar-
ray data [28]. This TRN is evolved using a heuristic optimization method
that at each stage computes the updated gene expression profile and com-
pares it with the one observed during viral infection. With this approach,
we explored the space of re-engineered TRNs to find the optimal global net-
work whose expected transcriptional profile minimizes the one characteristic
of the viral infection. Consequently, the use of genomic techniques to develop
design-guided models, and the application of reverse-engineering methods,
open the doors for delineating a high-resolution picture of host-pathogen
interactions.

We have developed a methodology to automatically re-design the TRN
of A. thaliana to mimic the transcriptomic changes induced by perturba-
tions (see Appendix A). In particular, we have focused in the perturbations
induced by the infection with a set of eight viruses. For that, we hypoth-
esized that symptoms of viral infections could be recreated in absence of
the pathogenic agent by altering a minimal core set of TFs (6.1B). We
used a genome-wide model of A. thaliana gene transcription based on or-
dinary differential equations (ODEs) to predict changes in gene expression
after modifications such as TF knockout or overexpression [28] (see previ-
ous Chapter). This model contains 21929 non-redundant genes, 1187 of
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which are putative TFs and consequently, are the potential candidates to
be perturbed. Figure 6.2 shows a schematic representation of the evolution-
ary algorithm implemented, in which single gene mutations were made and
then selected according to the fitness functions discussed in the Appendix
B. This algorithm explores the landscape of all possible TRN produced by
over-expressing or knocking out A. thaliana TFs. Operationally, these per-
turbations were introduced by modifying the corresponding ODEs. At each
evolutionary step, a population of such perturbed TRNs was generated and
their corresponding expression profiles computed and compared with the
target transcriptomic profile observed for each viral infection. Those TRNs
showing the better matching with the target were selected for the next round
of optimization, as thoroughly discussed in the Appendix B. Fifty indepen-
dent runs of this evolutionary optimization were generated to evaluate the
convergence of the results.
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Figure 6.3: Histogram of the scores obtained in 50 optimization processes (blue
bars) forced to mimic the plant transcriptome changes observed after infection with
eight different viruses. In the optimization process, only TFs were considered in
the scoring function (S). Random simulations were computed without imposing
any selective pressure (red bars). Black line shows the score obtained using the
transcriptional model inferred of A. thaliana.

6.1 Re-engineered TRNs that Mimic the Tran-
scriptomic Response Characteristic of Differ-
ent Viral Infections

Figure 6.3 illustrates that re-engineered TRNs actually show expression pro-
files that are significantly closer to those observed in infected plants than
the profile inferred for non-infected plants (wild-type). Different panels cor-
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respond to the optimization done for the different viruses using the scoring
method that takes into consideration only perturbations in TFs (Figure
6.2). The ordinates axis shows the computed expression score (Sezp). A
perfect matching between the observed TRN and that computed for the re-
engineered genome would have Sc;, = 0. The larger the departure from zero,
the poorest the matching between observed and predicted expression pro-
files. The black vertical line corresponds to the score computed for the wild-
type TRN (i.e., non infected plants). In blue, we show the observed distribu-
tion of scores after multiple optimization runs. In all cases, the optimization
results in artificial TRNs that are closer to the observed transcriptome than
the wild-type. The best fit was obtained for TRV (Sezp < 1.96%;p < 0.001)
and the worse to PPV (Sezp < 9.51%;p < 0.001). As an additional quality
control, we also run the optimization algorithm but without the selective
constrain imposed by matching the observed transcriptional profiles (red
bars in Figure 6.3). In these cases, the distributions of Sezp did not show
any improvement but, instead, had average values larger than those observed
for the wild-type TRN. As we would expect, considering not only TF's in the
scoring function but all genes, predictability is not significantly improved,
ranging between Sez, < 1.88%(p < 0.001) for CaLCuV and Sezp < 10.36%
(p < 0.001) for PPV. Indeed, the Sc;, obtained only with TFs or with all
genes are highly correlated (r = 0.714, 6 d.f., p = 0.046), thus suggesting
that the conclusion is robust to the choice of genes to be perturbed during
the optimization process. Interestingly, this conclusion does not specifically
holds for infection with TCV. For this virus, using only TFs results in a
poor optimization.

6.2 A Minimal Set of Transcriptional Factors Guar-
antees TRN Re-designs that Mimic Viral In-
fections

Transcriptomic studies have shown that the number of A. thaliana TFs
altered upon viral infection varies among different viruses, with TRV altering
11 and TEV-At17 altering 101 (gray bars in the upper panel of Figure 6.4A)
[4, 19]. What would be the number of TFs whose expression has been altered
in the re-engineered TRNs? To answer this question we simply counted the
number of the transcriptional modification done on each designed TRN.
Figure 6.4A shows this information for each virus, both for TRNs evolved
with the scoring function that only accounts for changes in TFs (blue bars)
and for the scoring function that accounts for alterations in all genes (red
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Figure 6.4: (A) Number of TFs to perturb (knockout/over-expression) proposed
by the optimization process in which only TFs or all genes are considered in the
scoring function (blue and red bars, respectively, in the upper panel). Grey bars
show the number of TFs differentially expressed that were identified by gene ex-
pression upon infection with eight different viruses. We also show the intersection
between the perturbed TFs proposed in the design and those with differentially
altered gene expression (bottom panel). Random selections of TFs for designing
simulating optimization processes without selective pressure were computed to test
statistical significance (*** p < 0.001). (B, C) Percentages of over-expressed and
knockout TF's proposed to be perturbed in each design for the eight viruses. Error
bars show SD from the 50 simulations.

bars). Surprisingly, after optimization, the number of altered TFs necessary
to mimic viral infections was quite reduced for all viruses. For example,
looking only at TRNs designed using the first scoring function, the minimum
number of perturbations necessary was found for CaLCuV infection (6.40)
and the maximum of 34.24 TFs perturbations, on average, for the case of
PPV (Figure 6.4A). Narrower ranges (from 1.92 to 9.50) were obtained for
all viruses when the second scoring function was used instead.

The set of TFs proposed by the design algorithm not necessarily in-
clude all those whose expression has been observed in real infections (Figure
6.4A, lower panel). In general, a bootstrap test shows that the intersec-
tions between the lists of proposed TFs and observed altered TFs were not
significant except in two instances. In the case of TEV-A#17 40.15% of
the proposed TFs were altered in the real infection, being the proposed set
significantly enriched in observed TFs (Figure 6.4A lower panel; bootstrap
test, p < 0.001). This significant enrichment does not exist when all genes
were considered in the scoring function. Analogously, 18.73% of the pro-
posed TFs perturbed in the redesigned TRNs were contained in the list of
observed altered TFs for TRV (Figure 6.4A, lower panel; bootstrap test,
p < 0.001), and this result remains significant independently of the gene set
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weighted by the scoring function. Next, we observed that the lists of genes
proposed by all re-designs were significantly enriched in biological functions
related to response to biotic and abiotic stresses, and in developmental pro-
cesses. This enrichment corroborates that the pathological outcome of viral
infection can be reproduced in absence of the viral agent by altering the
appropriated plant cellular programs. Hence, the plasticity of A. thaliana
transcriptome to generate specific expression pattern as a response to multi-
ple genetic perturbations allows verifying that non-infected cells could easily
mimic transcriptomic responses to diverse viral infections. What kinds of
perturbations contribute the most to this plasticity? Figure 6.4B and Fig-
ure 6.4C show, respectively, the percentages of over-expressed and knocked
out TFs for each redesigned TRNs (as before, blue and red bars correspond
to scoring functions that use only TFs or all genes). Overall, re-engineered
TRNSs included more gene knockouts than over-expressions for all viruses ex-
cept for the re-designs mimicking PPV infection, which are more balanced,
indicating that gene knockouts generate more plasticity in gene expression
than overexpressing genes.
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TFs or all genes in the scoring function, respectively. Random shortest paths
were computed to evaluate the statistical significance of the topological distance
between the TFs for designing with respect TF's selected randomly in the A. thaliana
interactome (*** p < 0.001). Error bars show SD from the 50 simulations.



120 Reprogramming Plant Cellular Chassis to Mimic Viral Infection

We have just shown that the list of TFs altered in the re-engineered
TRNs were not necessarily the same set that have been shown to have al-
tered expression in the real infections. Now, we want to explore whether
this proposed set of TFs are located in the wild-type TRN close to TFs that
are altered during real infections, as described in Figure 6.5A. If this is the
case, then it can be argued that the proposed set of TF's does affect exactly
the same target genes that may be affected by the TF's altered during viral
infection. Otherwise, it can be argued that the proposed set of TFs mimics
infection by completely different mechanisms. To evaluate this question we
proceeded as follows. For each proposed TF we evaluated a topological pa-
rameter, ¢, which takes into account the minimum shortest path between
this TF and all the TF's significantly altered by viral infection (see Appendix
C). The parameter ¢7p takes the value one if the proposed TF is included
in the list of TFs altered in real infections and tends to zero as the distance
to the closest altered TF increases in the network. Figure 6.5B and Figure
6.5C show ¢7p for each virus (panel B corresponds to scoring functions us-
ing only TFs and panel C to all genes). The statistical significance of ¢rp
was evaluated by generating random lists of transcription factors. Only TF's
proposed in all re-designs of TuMV and TRV were significantly closer in the
wild-type TRN to TFs differentially altered by viral infection (Figures 6.5B
and 6.5C), for both scoring functions, than expected by sheer chance. All
together, these results confirm that the re-engineered TRNs proposed by our
methodology mimic the transcriptomic response observed under real viral
infections by altering a smaller and different set of targets than those ob-
served during the transcriptomic characterization of real infections. Indeed,
in general, they are not even neighbors in the wild-type TRN.

6.3 The Number of Proposed TFs to be Perturbed
Correlates with the Magnitude of the Alter-
ations in Gene Expression Observed upon Vi-
ral Infection

The microarray data characterizing the infection of A. thaliana with each of
the eight viruses shows significant variation in the amount of genes whose ex-
pression was altered. Therefore, we hypothesized that in order to match the
transcriptomic consequences of infection, our optimization algorithm shall
propose more TF alterations for viruses that exert a large impact on the
host transcriptome than for viruses that have a mild impact. To test this
hypothesis we proceeded as follows. First, to collapse into a single quan-
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tity the impact of viral infection in the host transcriptome, we computed
two different statistical measures, the Pearsons correlation coefficient and
the mutual information (MI) between the transcriptomic profiles of non-
infected and infected plants. For viruses having minor impact in the plant
transcriptome, the Pearsons coefficient will be close to one and the MI large.
By contrast, a small correlation coefficient and low MI will reflect a strong
perturbation in the plants transcriptome. Second, we sought for an associa-
tion between these indexes and the number of predicted altered TFs for each
virus. If our hypothesis is correct, we must observe a significant negative cor-
relation between these variables. The largest changes in the transcriptome
were found in cells infected by PPV, whereas the action of CaLCuV showed
the smallest variation in the host expression profile. Figure 6.6 shows the ex-
pected negative and significant correlations between the number of proposed
alterations, using the scoring function based only in TFs, and the overall
impact of the viral infection measured as the Pearsons correlation (Figure
6.6A: r = —0.890, 6 d.f., p = 0.003) and as the MI (Figure 6.6B: r = —0.800,
6 d.f., p = 0.017). Hence, we could conclude that the amount of proposed
perturbations needed to mimic a viral infection is directly dependent on the
overall effect that the virus exerts on the host transcriptome: the larger the
effect, the more perturbations are needed and vice versa.
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6.4 A Crucial Set of TFs is Pervasively Proposed
in the Redesigned TRNs

For each virus, we have run 50 independent optimization processes. Do all
of them represent completely different solutions? Or by contrast, do all of
them contain a preferred set of TFs? If the second situation is true, then we
can suggest that the over-represented TFs represent a critical set of highly
relevant TFs that, eventually, may be the focus of future experimental val-
idation. For each virus, we tabulated the 50 lists of proposed TFs and
calculated the probability of finding each TF's in the 50 lists. This proba-
bility can be taken as a measure of the design robustness of the prediction
for each TF. A TF with a very low design robustness (e.g., < 25/50) means
that it may have very low relevance in mimicking the transcriptomic profile
induced by the virus. By contrast, a TF with high design robustness (e.g.,
> 25/50) will be indicative that such TF plays a central role in mimicking
the transcriptomic symptoms. Figure 6.7 (blue bars) shows such degree of
design robustness for perturbations of all TFs for the eight viruses. In this
case the scoring function used in the optimization process only accounted
for TFs. The different simulations did not share most of the TFs proposed.
However, a certain number of TFs were in common in more than half of the
simulation. This number of crucial TFs varies among viruses, ranging from
zero (TRV) to 19 (PPV). As a way to evaluate the statistical significance of
these results, we generated, for each virus, a new set of 50 simulations but
without using the match in expression profile (Sezp) in the scoring function.
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The distribution of design robustness for these TRNs is shown on Figure
6.7 (red bars). In all cases, the distributions of design robustness did not
reach values larger than 0.2, thus confirming that the existence of critical
TFs could not be explained by chance. For each virus, the centrality and
shape of both distributions were compared, and found significantly differ-
ent (Mann-Whitney test, p < 0.001; Kolgomorov-Smirnov test, p < 0.001).
Interestingly, among the 47 TF's proposed, 22 are involved in several develop-
mental processes, nine in responses to biotic and abiotic stresses and the rest
do not have been assigned to any specific function. This enrichment in TFs
involved in development may be justified by the symptoms induced upon vi-
ral infection, which in most cases involve dwarfism, leaf malformations and
curling and delays in the emergence and development of inflorescences.
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Figure 6.8: (A, B) Neighbor-joining dendograms obtained from the similarity
matrix computed from overlapping lists of TFs proposed to be perturbed in the
different designs for the eight viruses. (C) Number of common TFs proposed to
be perturbed by the model for several viruses. Note that only TFs ((A) and blue
bars in (C)) or all genes ((B) and red bars in (C)) were considered in the scoring
function for designing.
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6.5 Proposed TFs Which Are Common for Differ-
ent Viruses

Finally, we explored the overlap between the lists of TFs whose expression
was altered in the designed TRNs for the different viruses. For each virus,
this list includes all the TFs proposed at least in one of the 50 simulations
(i.e., not restricting the analyses to the critical set described in the above
paragraph). As in previous sections, the lists of TFs were build both using
the scoring functions based on TFs and in all genes. Figure 6.8A shows the
number of TFs that are found in the lists of one or more viruses (blue and
red bars corresponding to whether only TFs or all genes were accounted for
in the scoring function). Around 700 TFs were virus-specific, but a large
fraction (over 400) was shared by at least two viruses. Among these, ca.
200 TFs were shared by at least three viruses. In the right side of the dis-
tribution, we found 16 TFs shared by seven viruses. Finally, all viruses
only share three TFs: At1¢950640, At2935940 and At2937650. At1g50640
corresponds to the ethylene-responsive transcription factor 3 (ERF3) that
negatively regulates the ethylene-mediated signaling pathway and gene tran-
scription. At2¢35940 corresponds to the BEL1-like homeodomain 1 protein
(BLH1) that regulates transcription in response to abscisic acid stimulus.
At2g37650 encodes for a TF of the GRAS family involved in root and leaf
development and in the negative regulation of flower development.

The overlap between pairs of lists was further quantified using the sim-
ilarity index 2ngy,/(n, + ny), where ngy is the number of common entries
in the two lists and n, and n, the length of each list. A similarity ma-
trix containing all pairwise comparisons was constructed and used to build
neighbor-joining dendograms that cluster together viruses according to the
similarity of their proposed lists of TFs (Figure 6.8B and Figure 6.8C, us-
ing the scoring function based only on TFs or considering all genes, re-
spectively). Three groups result when the first scoring function was used
(Figure 6.8B). The first group is formed by PPV, TEV and TCV, the sec-
ond group by TRV, TuMV, CaL.CuV, and TEV-At17, while TMV appears
as the most dissimilar virus. Given the nature of the data used to build
up this dendogram (i.e., similarities among lists of TFs whose alteration
mimic the symptoms of infection), not surprisingly, the clustering does not
reflect phylogenetic relationships between viruses (PPV, TEV, TEV-At17,
and TuMV are all classified within the same taxonomic genus, the Potyvirus)
nor whether they share common hosts in nature (TCV, TuMV, CaLCuV,
and TEV-At17 infect plants taxonomically related to the experimental host
A. thaliana, the Brassicaceae). By contrast, when the scoring function used
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in the optimization process takes into account all genes, the dendogram ob-
tained clusters together all the brassica-infecting viruses (Figure 6.8C). Thus
suggesting that host-driven selection may have determined the set of genes
that viruses infecting the same host manipulate to optimize their replication.

6.6 Discussion

Plants have evolved defense mechanisms to recognize pathogens and defeat
them, but viruses have developed elements that interfere and suppress these
mechanisms. In this article, we have developed a computational methodol-
ogy to explore the plasticity of the transcriptome of A. thaliana in response
to the alteration of certain key TFs. Specifically, we have addressed the
problem of re-design a plant TRN to mimic the transcriptomic response ob-
served upon viral infection but in absence of any intracellular pathogen. In
the case of eight different viruses, our methodology rendered re-engineered
TRNs that captured the transcriptional responses of the infected host A.
thaliana. Surprisingly, this mimicking was obtained by manipulating a
reduced number of TFs associated to developmental processes and to re-
sponses to biotic and abiotic stresses. As we expected, the complexity of
the redesigned TRNS, in terms of number of necessary TF to be perturbed,
correlated with the amount of change induced by each viral infection to
the transcriptome of infected plants. In addition, we found certain degree
of overlap between the TFs selected in each run of the optimization algo-
rithm, providing evidence that a set of essential TF's is able to generate high
plasticity in gene expression of the plant.

Our computational work, identifying reduced sets of TF's that result in
mimicking the symptoms of infection, opens the doors to future experiments
that may use the A. thaliana gene knock out collections not only to validate
our prediction but also as a way of reach a better understanding of the
molecular mechanisms of viral pathology. Even perhaps as potential targets
for future therapeutic interventions.

Appendix A Plant Viruses and Transcriptomic Data

Seven positive-sense single-stranded RNA viruses and one virus whose genome
is composed by a single-stranded circular ambisense DNA molecule on a com-
mon plant host, A. thaliana, were selected. The set of RNA viruses comprises
three members of the Potyviridae family, tobacco etch potyvirus (TEV),
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turnip mosaic potyvirus (TuMV) and plum pox potyvirus (PPV), two mem-
bers of the family Virgaviridae, tobacco mosaica tobamovirus (TMV) and
tobacco rattle tobravirus (TRV), and one member of the tombusviridae
family, turnip crinkle carmovirus (TCV). We also considered a laboratory-
strain of TEV (TEV-At17) evolved in and adapted to A. thaliana [10].
The ssDNA virus included in the study was the member of the Gemi-
niviridae family cabbage leaf curl begomovirus (CaLCuV). TEV and TEV-
At17 expression data (two-color raw data, NCBI GEO accession GSE11088)
were obtained from ecotype Ler-0 plants 21 days post-inoculation (dpi)
9], [10]. TuMV data (Affymetrix raw data, ArrayExpress accession e-
mexp-509) were obtained 21 dpi from ecotype Col-0 plants [16]. PPV data
(Affymetrix preprocessed data, NCBI GEO accession GSE11217) were ob-
tained 17 dpi from Col-0 plants [12]. TMV data (two-color raw data, de-
posited in www.bio.puc.cl/labs/arce/index.html) were obtained from eco-
type Uk-4 plants 10 dpi [14]. TRV data (two-color raw data), NCBI GEO
accession GSE15557, GSE155562 and GSE15558) were measured 21 dpi
from Col-0 leafs. TCV data (two-color raw data, NCBI GEO accession
GSE29387) were quantified 10 dpi in Col-0 plants. Finally, CaLCuV data
(Affymetrix raw data, ArrayExpress accession E-ATMX-34) were collected
from Col-0 plants 12 dpi [11]. The list of differentially expressed genes was
obtained by performing a fold-change criterion of z > 1.96 over all genes
(averaging replicates).

Appendix B Genome-Wide Multiple-Optimization

Our algorithm searches possible reconfigurations of the global transcription
regulatory network such as that the expression profile of the re-engineered
genome mimics the transcriptional response of the host infected by different
viruses. We address this problem by using a high efficient heuristic opti-
mization. We suggest genome reconfigurations that include multiple TF
knockouts or over-expression by imposing in the model (see previous Chap-
ter), yrp = Yo or yrp = YT, respectively, or both types of perturbations
in order to enlarge the combinatorial space of perturbed genomes targeting
the transcriptional response given under viral infection. We started from the
inferred model and at each step in the optimization process, we randomly
selected a new TF to evaluate its three states (knockout, over-expression or
wild-type) and update the model with the best-scored scenario until all TFs
have been manipulated. Hereafter, we looped back and introduced new tran-
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scriptional modifications restricted to a maximum number of perturbations
in order to be able to implemented experimentally re-designs.

We use a bi-objective scoring function, ¢, to force a minimum aver-
age quadratic deviation to the viral infection expression profile in steady

state (Sezp) with the minimum number of genetic perturbations (Spert),
pert

6 = 0Seap + (1= 0)Spere, With Seap = g A0 and Spery = JE-, where
0 is the weighting factor of each objective functlon Yy is the expression pro-
file under viral infection of all genes (Ny) of A. thaliana and A\, € (0,1) is

a parameter defined for each gene that differences those genes differentially
expressed in the microarray data measured under viral conditions. In fact,
we can divide the objective function representing the expression score into
two terms: a first that quantifies expression deviations from genes that have
been identified as altered in the transcription and a second to compute the
rest of genes. Npp is the total number of TFs annotated in A. thaliana and
N:’F’ift is the number of TFs that the model suggests to be perturbed.

To measure the degree of contribution that a TF has to mimic a target
gene expression of the TRN of A. thaliana, we defined a parameter ¢rp =
1/(1 + min(d7p—4)) that evaluates the minimal number of links, drp_g,
between a TF (gene perturbations proposed in the a given design) and a set
of TFs potentially affected by global changes in gene expression, g (genes
differentially altered by viral infection).

References

[1] Dodds, P.N., Rathjen, J.P. (2010). Plant immunity: towards an inte-
grated view of plant-pathogen interactions. Nat. Rev. Genet. 11, 539-
548.

[2] Jenner, R.G., Young, R.A. (2005). Insights into host responses against
pathoghens from transcriptional profiling. Nat. Rev. Microbiol. 3, 281-
294.

[3] Andeweg AC, Haagmans BL, Osterhaus ADME (2008). Virogenomics:
the virus-host interaction revisited. Curr. Op. Microbiol. 11, 461-466.

[4] Elena, S.F., Carrera, J., Rodrigo, G. (2011). A systems biology ap-
proach to the evolution of plant-virus interactions. Curr. Op. Plant.
Biol. 14, 372-377.

[5] Friedel, C.C., Haas, J. (2011). Virus-host interactomes and global mod-
els of virus-infected cells. Trends Microbiol. 19, 501-508.



128

Reprogramming Plant Cellular Chassis to Mimic Viral Infection

[6]

[10]

[11]

Peng, X., Chan, E.Y., Li, Y., Diamond, D.L., Korth, M.J., Katze, M.G.
(2009). Virus-host interactions: from systems biology to translational
research. Curr. Opin. Microbiol. 12, 432-438.

Tan, S.L., Ganji, G., Paeper, B., Proll, S., Katze, M.G. (2007). Systems
biology and the host response to viral infection. Nat. Biotech. 25, 1383-
1389.

Wise, R.P., Moscou, M.J., Bogdanove, A.J., Whitham, S.A. (2007).
Transcript profiling in host-pathogen interactions. Annu. Rev. Phy-
topathol. 43, 329-369.

Agudelo-Romero, P., Carbonell, P., De la Iglesia, F., Carrera, J.,
Rodrigo, G., Jaramillo, A., Prez-Amador, M.A., Elena, S.F. (2008).
Changes in the gene expression profile of Arabidopsis thaliana after
infection with Tobacco etch virus. Virol. J. 5, 92.

Agudelo-Romero, P., Carbonell, P., Perez-Amador, M.A., Elena, S.F.
(2008). Virus adaptation by manipulation of host’s gene expression.

PLoS ONE 3, e2397.

Ascencio-Ibez, J., Sozzani, R., Lee, T.J., Chu, T.M., Wolfinger, R.D.,
Cella, R., Hanley-Bowdoin, L. (2008). Global analysis of Arabidop-
sis gene expression uncovers a complex array of changes impacting
pathogen response and cell cycle during geminivirus infection. Plant
Physiol. 148, 436-454.

Babu, M., Griffiths, J.S., Huang, T.S., Wang, A. (2008). Altered gene
expression changes in Arabidopsis leaf tissues and protoplasts in re-
sponse to Plum pox virus infection. BMC Genomics 9, 325.

Espinoza, C., Medina, C., Somerville, S., Arce-Jonhson, P. (2007).
Senescence-associated genes induced during compatible viral interac-
tions with grapevine and Arabidopsis. J. Fxp. Bot. 58, 3197-3212.

Golem, S., Culver, J.N. (2003) Tobacco mosaic virus induced alter-
ations in the gene expression profile of Arabidopsis thaliana. Mol. Plant
Microb. Interact. 16, 681-688.

Ishihara, T., Sakurai, N., Sekine, K.T., Hase, S., Ikegami, M., Shibata,
D., Takahashi, H. (2004). Comparative analysis of expressed sequence
tags in resistant and susceptible ecotypes of Arabidopsis thaliana in-
fected with Cucumber mosaic virus. Plant Cell Physiol. 45, 470-480.



6.2 References 129

[16]

[20]

[21]

22]

Yang, C., Guo, R., Jie, F., Nettleton, D., Peng, J., Carr, T., Yeakley,
J.M., Fan, J.B., Whitham, S.A. (2007). Spatial analysis of Arabidopsis

thaliana gene expression in response to Turnip mosaic virus infection.
Mol. Plant Microb. Interact. 20, 358-370.

Whitham, S.A., Yang, C., Goodin, M.M. (2006). Global impact: eluci-
dating plant responses to viral infection. Mol. Plant Microb. Interact.
11, 1207-1215.

Whitham, S.A., Wang, Y. (2004). Roles for host factors in plant viral
pathogenicity. Curr. Op. Plant Biol. 7, 365-371.

Rodrigo, G., Carrera, J., Ruiz-Ferrer, V., del Toro, F.J., Llave, C.,
Voinnet, O., Elena, S.F. (2011). Characterization of the Arabidopsis
thaliana interactome targeted by viruses. SFI Working Papers 11-10-
049 (www.santafe.edu/media/workingpapers/11-10-049.pdf).

Bushman, F.D., Malani, N., Fernades, J., DOrso, 1., Cagney, G., Dia-
mond, T.L., Zhou, H., Hazuda, D.J., Espeseth, A.S., Knig, R., Bandy-
opadhyay, S., Ideker, T., Goff, S.P., Krogan, N.J., Frankel, A.D., Young,
J.A.T., Chanda, S.K. (2009). Host cell factors in HIV replication: meta-
analysis of genome-wide studies. PLoS Pathog. 5, €¢1000437.

Calderwood, M.A., Venkatesan, K., Xing, L., Chase, M.R., Vazquez,
A., Holthaus, A.M., Ewence, A.E., Li, N., Hirozane-Kishikawa, T., Hill,
D.E., Vidal, M., Kieff, E., Johannsen, E. (2007). Epstein-Barr virus and
virus human protein interaction maps. Proc. Natl. Acad. Sci. U.S.A.
104, 7606-7611.

De Chassey, B., Navratil, V., Tafforeau, L., Hiet, M.S., Aublin-Gex, A.,
Agaugu, S., Meiffren, G., Pradezynski, F., Faria, B.F., Chantier, T., Le
Breton, M., Pellet, J., Davoust, N., Mangeot, P.E., Chaboud, A., Penin,
F., Jacob, Y., Vidalain, P.O., Vidal, M., Andr, P., Rabourdin-Combe,
C., Lotteau, V. (2008). Hepatitis C virus infection protein network.
Mol. Syst. Biol. 4, 230.

MacPherson, J.I., Dickerson, J.E., Pinney, J.W., Robertson, D.L.
(2010). Patterns of HIV-1 protein interaction identify perturbed host-
cellular subsystems. PLoS Comp. Biol. 6, e1000863.

Uetz, P., Dong, Y.A., Zertzke, C., Atzler, C., Baiker, A., Berger, B.,
Rajagopala, S.V., Roupelieva, M., Rose, D., Fossum, E., Haas, J (2006)
Herpesviral protein networks and their interaction with the human pro-
teome. Science 311, 239-242.



130

Reprogramming Plant Cellular Chassis to Mimic Viral Infection

[25]

[26]

[27]

[29]

[30]

[31]

Watanabe, T., Watanabe, S., Kawaoka, Y. (2010). Cellular networks
involved in the influenza virus life cycle. Cell Host Microbe 7, 427-439.

Wuchty, S., Siwo, G., Ferdig, M.T. (2010). Viral organization of human
proteins. PLoS ONE 5, e11796.

Di Bernardo, D., Thompson, M.J., Gardner, T.S., Chobot, S.E., East-
wood, E.L., Wojtovich, A.P., Elliott, S.J., Schaus, S.E., Collins, J.J.
(2005). Chemogenomic profiling on a genome-wide scale using reverse-
engineered gene networks. Nat. Biotech. 23, 377-383.

Carrera, J., Rodrigo, G., Jaramillo, A., Elena, S.F. (2009). Reverse-
engineering the Arabidopsis thaliana transcriptional network under
changing environmental conditions. Genome Biol. 10, R96.

Carrera, J., Rodrigo, G., Jaramillo, A. (2009). Model-based redesign of
global transcription regulation. Nucleic Acids Res. 37, e38.

Segre, D., Vitkup, D., Church, G.M. (2002). Analysis of optimality
in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci.
U.S.A. 99, 15112-15117.

Burgard, A.P., Pharkya, P., Maranas, C.D. (2003). OptKnock: A
bilevel programming framework for identifying gene knockout strate-
gies for microbial strain optimization. Biotechnol. Bioeng. 84, 647-57.

Isalan, M., Lemerle, C., Michalodimitrakis, K., Horn, C., Beltrao, P.,
Raineri, E., Garriga-Canut, M., Serrano, L. (2008). Evolvability and
hierarchy in rewired bacterial gene networks. Nature 452, 840-845.



Part 111

Fine-Tuning of the Tomato
Fruit Agronomic Properties
by Computationa Design

131






Chapter 7

Computational Optimization
of the Tomato Fruit
Agronomic Traits

Introduction

Considering a cell as a DNA-based molecular factory [1] and applying the
principles drawn from industrial engineering provides new approaches to
optimize cellular performance. This approach adopts the new philosophy
implemented nowadays by large industries that is known as Lean Manu-
facturing (LM). LM consists in the implementation of standards based on
elimination of bottlenecks and processes without mark-up and minimiza-
tion of pathways and excessive costs. This approach can be applied to the
emerging fields of systems and synthetic biology, and allows translating en-
gineering concepts into biotechnology [2, 3, 4].

Our main goal is to optimize the phenotypic response of a natural plant
biofactory, exemplified here by the edible tomato fruit, by using a combined
experimental and computational synthetic biology approach. The approach
involves re-designing the fruit factory from within; i.e., by modeling and
identifying the important genes and intermediates for a given trait of agro-
nomical interest (see Figure 7.1).

Previous works have considered modeling the global metabolism [5],
transcription [6, 7, 8, 9, 10, 11] or the integration of both in microbial organ-
isms [12, 13, 14] from the point of view of systems biology. Many groups, us-
ing a re-designing strategy which is characteristic of synthetic biology, have
implemented genome-scale re-designs and explorations of the gene knock-
out landscape both in prokaryotes [15, 16, 17] and eukaryotes [19]. More
recent reports have tackled the prediction of phenotypes from metabolic

133
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Figure 7.1: Synthetic biology of tomato fruit vs computer science.

data based on statistical models for microbes [12], plants [19, 20, 21]. The
next logical and desirable development should consist in modeling pheno-
types of interest in a complex organism from metabolic and gene expres-
sion data. For that purpose we have chosen tomato: a model plant for
fleshy fruit -this being a natural biofactory of nutrients and healthy com-
pounds, and a plant of agronomic interest with well-developed genetics and
genomics (http://solgenomics.net) and with extensive work on metadata
analysis [38, 23, 24]. We have assumed that at least in part the genetic
program of the fruit at the ripe stage should have an impact on the metabo-
lite content and also in other high order fruit traits. In this study, we
have used omic data that have been experimentally obtained by means of
transcriptomics, metabolomics and phenomics for a large number of recom-
binant inbred lines (RILs) derived from a cross of Solanum lycopersicum x
S. pimpinellifolium. Following the LM approach, we have developed here a
novel in silico optimization method that extensively explores single and mul-
tiple genetic perturbations to render a series of desired tomato phenotypes;
i.e., show agronomical properties of biotechnological interest. Techniques
of reverse engineering were applied to this large set of experimental omics
data to obtain a kinetic model based on ODEs. This model describes the
fruit metabolic profile from gene expression data for an autonomous subset
of genes with potential effect on transcription regulation [25]. By captur-
ing relationships between metabolic profiles and high-throughput phenomic
data, our model was extended to predict changes in agronomic properties
that would be produced by specific changes in genetic expression.
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Finally, in order to close the design cycle imposed by LM, the genetic
modifications suggested by our computational approach were experimentally
verified. This was done by demonstrating the predicted ability of the in sil-
ico modified fruit genomes to reconstruct the correlations found between the
metabolites actually measured in the fruit. We propose that the principles
and practices learned from these engineering success cases can help to for-
mulate a model to guide the design of new organisms with biotechnological
applications.

7.1 Dissecting Tomato Genome: Kinectics-Based
Models of Transcription, Metabolism and Phe-
notype

7.1.1 A Genome-Wide Transcriptional Model Allows the In-
tegration of Tomato Fruit Metabolism
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Figure 7.2: Lean Manufacturing as a model applied in systems and synthetic
biology. From omic data (transcriptomics, metabolomics and phenomics), a quan-
titative global model was constructed using reverse engineering methods. The
predictive model was used to propose genome perturbations, to improve desired
phenotypes with relevant biotechnological applications. The genome perturbations
were guided by an in silico optimization that imposed the desired selective pressure.

We have extended our developed inference methodology, InferGene [7],
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to obtain a gene regulatory model coupled to metabolism that allows us ana-
lyzing optimality in terms of specified agronomic and organoleptic properties
of the tomato fruit (Figure 7.2). For this, we have taken advantage of an
experimentally characterized subset of the metabolome of 169 tomato RILs,
which includes the accumulation levels in 67 metabolites of the fruit that
contribute to the flavor (sugars, acids and some volatiles), aroma (volatiles)
as well as other quality traits (such as color and healthy carotenoids and
vitamins). Moreover, we have also used the information on transcript levels
from fruits for a subset of the 50 RILs analyzed at the metabolic level, to
select 5592 non-redundant genes that were consistently expressed in those
fruit samples (see Appendix A).
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Figure 7.3: Lean Manufacturing as a model applied in systems and synthetic
biology. From omic data (transcriptomics, metabolomics and phenomics), a quan-
titative global model was constructed using reverse engineering methods. The
predictive model was used to propose genome perturbations, to improve desired
phenotypes with relevant biotechnological applications. The genome perturbations
were guided by an in silico optimization that imposed the desired selective pressure.

Transcriptomic and metabolomic data from these 50 RILs were normal-
ized by the LOWESS method [26] and used to construct a model that pre-
dicts components of the fruit quality metabolome from transcriptome data;
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i.e., level of a given metabolite is effectively determined by the expression
of a minimal set of genes. The size of the space of possible gene-predictors
was reduced in one order of magnitude by using a CLR method. After that,
LASSO method was used to find a minimal set of potential predictor genes
for each metabolite; subsequently, multiple regressions were obtained to es-
timate the effective kinetic parameters of a linear model based on ODEs that
integrates transcription and metabolism processes (Figure 7.3) [7]. Values
z > 3 were used as optimal threshold in order to limit the number of pos-
sible gene-metabolite interactions and minimize the distance between the
predicted and measured metabolic profiles over the training set in terms of
average Pearson correlations (blue bars in Figure 7.3C; r = 0.85, p < 0.001).
Hence, on average, each metabolite required 18 genes for explaining its be-
havior, thus a total of 959 genes was required to describe our tomato fruit
metabolome. This subset of genes constitutes the effective transcription net-
work. We performed a 5-fold cross-validation test to rule out dependence
of the testing set, this reducing the metabolite average prediction (red bars
in Figure 7.3C; r = 0.42, p < 0.1) with a mean false positive rate (FPR) of
14% and a 56%mean positive predictive value (PPV) of predictors.

The next step was to construct an effective gene regulatory model able
to predict autonomously the transcriptional processes that, by means of
the model previously described, would generate a quantitative metabolic
response. In this way changes at the transcriptional level resulting from
the proposed genetic perturbations could be translated and predicted ef-
fectively into metabolic changes. For doing that, we used the microarray
data obtained from fruits of 50 of the RILs to infer a network of gene-gene
interactions. The CLR method provided the first sets (z > 2) of predictor
genes for each gene considered. Afterwards, LASSO method reduced the
number of regulations per gene to a scale-free space following a power-law
with exponent v = 5.47 (R? = 0.91) and an average of 26 interactions per
gene. High values of similarity between the predicted and measured gene
expression (blue bars in Figure 2D) were computed for the whole training
set ((r) = 0.793, p < 0.001) while for a 5-fold cross validation the average
similarity (red bars in Figure 7.3D) was r = 0.59 (p < 0.1) with a mean
FPR of the 25% and a 63%mean PPV of predictors.

7.1.2 Global Transcriptional Model Integrating Metabolism

We wonder whether the agronomic/phenotypic properties of the tomato fruit
could be controlled by/or be the consequence of their metabolite composi-
tion. To provide some insight into this question, we studied the relationship
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between agronomic properties and metabolic composition across 169 tomato
RILs. We applied LASSOs method to select a set of metabolites that may
act as predictors for each agronomic property (Supplementary Data 1). Our
model included 47 metabolites observing considerably high Pearson corre-
lations between the measured and predicted phenotypic responses over the
169 RILs for number of fruits per plant and fruit harvested across two dif-
ferent seasons, (Figure 7.3A; r = 0.62 and r = 0.73 respectively, p < 0.001
in both cases). A reduction to r = 0.46 (p < 0.1) and r = 0.62 (p < 0.05)
in the median correlation was computed in a 10-fold cross validation, with
84%mean PPV and mean FPR of 33% and 35%, respectively. Average fruit
weight and pH required as many as 44 metabolites as potential predictors
with high reliability levels. Reliability was assessed by comparing the cor-
responding predicted and measured values for the 169 RILs (Figure 7.3A;
r = 0.85 and r = 0.80, respectively, p < 0.001 in both cases). A 10-fold
validation only reduced those similarities to r = 0.73 and r = 0.63 (p < 0.05
in both cases), with mean FPRs of 37% and 22% and mean PPVs of 81%
and 88%, respectively. To test the specificity of the inferred model pa-
rameters, we perturbed the target phenotypic profile for each RIL adding
different levels of noise. Figure 7.3B shows the distance between predicted
and measured values (green points) and mean correlations for different noise
levels. A similar approach was performed by using the metabolic and gene
expression profiles (red and blue points, respectively). Correlations with
significance levels higher than the indicated above were not considered in
the cross-validations. In addition, we estimated a very low mean error in
predicting the agronomic properties across the training set (0.45 <0’AV>

)

. RIL
see Appendix).

7.2 Computational Optimization of the Agronomic
Properties

7.2.1 Genome Redesign by Using Single and Multiple Ge-
netic Perturbations

Here, our main goal is to redesign the genome of tomato to generate an
engineered surrogate that, if viable, would be easier to study and of greater
potential biotechnological interest. Our design approach was inspired by
the practice of in silico optimization over a predictive global model. Our
next step was to test the possibility of improving agronomical properties of
interest. We tested several scoring functions that fall into two global types:
on the one hand, agronomical variables measured experimentally such as
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the number of fruits harvested per plant, the average fruit weight or its
pH; and on the other hand, more complex fruit attributes that could be
defined according to some of the components of the metabolic profile and
are related to organoleptic properties of the fruit. In this later case, we
first evaluated as proof of concept: fruit acceptability according to criteria
based on acidity and sugars [27], quality as defined by the contribution of
specific volatiles to aroma and by a reported [28] panel assessments of the
tomato fruit and consequently on organoleptic acceptance. For this latter
case we assumed a strong influence of a set of metabolites to be either
maximized ((-ionone, f-damascenone, 2-phenylethanol and benzaldehyde)
or minimized (methyl salicylate, guaiacol, hexanal, 1-penten-3-one and (E)-
2-hexenal) using balanced weighting factors to account for their positive
or negative contribution to quality. Moreover, all single metabolites were
also optimized in single target analyses. Finally, a bi-objective function
that included a high trade-off was proposed to optimize fruit quality and
its production. As a first approach, we re-engineered tomato genome by
perturbing independently the 959 genes included in the model, then we re-
computed the scoring functions for all RILs enumerating all single knockouts
and finally, all gene over-expression models were obtained.

Hence, mimicking the optimization patterns typical from LM, the land-
scape of desired agronomic properties of tomato fruit was exhaustively ex-
plored perturbing its effective transcriptional regulatory network (TRN)
with single-gene alterations. Figure 7.4A shows the improvement of two
of the agronomic properties mentioned above (fruit acceptability and qual-
ity vs production) as result of single gene perturbations according to our
model. The success of the approach is shown by the efficiency function ob-
tained for each transcriptional perturbation computed and which is defined
by the normalized ratio between the agronomic property obtained for the
re-engineered TRN and that for the wild-type TRN. Both agronomic prop-
erties and efficiencies in the case of single-perturbations were computed for
each of the 169 RILs, resulting in a high variability between the lineages for
all knockouts and over-expressed gene re-engineered TRN cases. We cor-
roborated that there is a highly significant linear correlation (R? > 0.99;
p < 0.001) between the average value of the improved agronomic proper-
ties and the efficiencies reached across the set of RILs for all transcriptional
perturbations. Both gene knockout and over-expression models resulted in
similar linear regression slopes when considering acceptability and quality
vs. production together (0.05 and 0.24, respectively, Figure 7.4A). In addi-
tion, we also explored the possibility of tuning a given agronomic property
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Figure 7.4: Exploration and statistical significance of the landscape of multiple
agronomic properties of interest for tomato fruit applying local perturbations in
its effective TRN. (A) Agronomic properties improved by perturbing a single gene
as function of efficiency reached by that transcriptional perturbation with respect
to the wild-type scenario; only perturbations causing positive mean efficiencies are
plotted. Both agronomic properties and efficiencies of a single perturbation are
tested on the 169 RILs and error bars represent their minimum and maximum
values in both axis. (B) Relationship between agronomic properties in the wild-
type genome and the average of the agronomic properties resulting of all single
perturbations in the wild-type TRN for each RIL; vertical error bars represent
the best and worst optimized re-engineered TRN for a given RIL. (C) Average
number of single gene perturbations that overcome a given efficiency threshold in
the 169 RILs (light bars; error bars represent standard deviation for the 169 RILs)
and average probability of selecting the same gene-perturbation in a set of RILs
(dark bars; error bars show standard deviation for all genes of the TRN). Left and
right columns represent perturbations of single gene in case of knockout or over-
expression, respectively. (A, B) show fitness as related to the acceptability of tomato
fruit (blue) and production vs. quality (red); (C) and fitness values associated to
maximize only fruit quality (green). Agronomic properties are plotted in arbitrary
units.
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towards a defined value, as it is desired for some biotechnological applica-
tions, achieving also in this case high efficiency values.

After this, we ranked the list of knockout/over-expressed genes of the
TRN according to two criteria directed to maximize: (i) the mean efficiency
across all lineages in the case of goals such as acceptability and quality
vs production; and (ii) the average of the maximum agronomic property
reached by all possible TRN reconfigurations in the case of fruit quality.
Fruit acceptability could be improved to 2.91% or 8.84% using gene knock-
out (i.e., LE24K20) or over-expression (i.e., LE13M10) in all lineages, re-
spectively. By contrast, quality was highly increased achieving improvement
ratios of 43.34% by gene knockout (i.e., LE2/K20) and 227.31% by over-
expression of LE15D07. Finally, taking into account not only the quality
but also fruit production, ratios decreased to 15.32% (i.e., LE13F23) and
35.94% (i.e., LE14B20) using the two types of perturbations, respectively.
Notice that all these rates of improvement were achieved in the lineages that
provided maximum fitness in the wild-type TRN.

Lineages exhibited variability in their resistance to be optimized and this
resistance changed with each target agronomic property. Figure 7.4B shows
a strong linear dependence between the level of the agronomic property in
the wild-type TRN and the average level of the agronomic properties result-
ing from all single perturbations in the TRN for each RIL (linear regression
slope in the range 0.99 - 1.12 and R? > 0.99; p < 0.001). Interestingly, we
observed that the effect of predicting agronomic properties under genetic
perturbations was not dependent on the lineage selected. This provided a
high level of robustness when we selected the lineages to implement experi-
mentally re-designed TRN.

We computed the average number of single-gene perturbations to over-
come an efficiency threshold given in the 169 RILS and the average proba-
bility of selecting the same gene-perturbation commonly for the whole set of
RILs. The right panel in Figure 7.4C shows that only a few gene knockouts
were able to improve fruit acceptability with a high probability in all lin-
eages whereas, on the other hand, tens of gene knockouts could be proposed
for increasing fruit quality and for the quality and production. On the other
hand, the left panel in Figure 7.4C allowed re-asserting that re-engineering
the TRN by gene over-expression could result in higher increments in the
agronomic properties and with a higher density of suggested perturbations
across the RILs.

The next step in our study was to propose new genome re-designs includ-
ing multiple perturbations. To do this, we sampled widely the landscape of
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Figure 7.5: Heuristic exploration (A) and statistical significance (B) of the land-
scape of multiple desired agronomic properties of tomato fruit perturbing its effec-
tive TRN adding multiple genetic changes and, predictive power (C-F) for optimiz-
ing the levels of volatile compounds and identifying compounds in closed metabolic
pathways. (A) Median efficiencies reached by transcriptional perturbation based
in gene knockouts or over-expression to improve agronomic properties. (B) Aver-
age number of single gene perturbations that overcome an efficiency threshold in
the top 5 RILs scored by single perturbation (light bars; error bars represent stan-
dard deviation for the selected RILs) and average probability of selecting the same
multiple-perturbation commonly in a set of RILs (dark bars; error bars show stan-
dard deviation for all genes of the TRN). Precision, recall and F-score (green, red
and blue lines, respectively) compare observed experimentally volatile compound
correlations vs inferred set of potential genetic perturbations (gene knockout (C, D)
or over-expression (E, F)) shared to optimize each compound independently. Note
that experimental metabolite correlations < 0.5 were not considered in (D, F).
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the acceptability, quality and quality vs production of tomato fruits by in-
troducing two-gene perturbations either by knockouts and over-expressions.
Figure 7.5A shows the median efficiencies reached by two-gene transcrip-
tional perturbations based on knockouts and over-expression in order to im-
prove the agronomic properties defined as multiple-objective. As expected,
we corroborated that multiple perturbations, located in different pathways,
could improve the agronomic properties significantly better than single per-
turbations. Figure 7.5B shows the average number of single gene pertur-
bations that are able to overcome a given efficiency threshold for the top 5
RILs when ranked for single perturbations as well as the average probability
of selecting the same multiple-perturbation commonly in a set of RILs.

7.3 Experimental Validation Via Prections of Volatile
Compounds Correlations

After generating our predictive model for the TRN and metabolism of
tomato fruit, we use it to automatically design tomato genomes with ex-
treme alterations for each of the 56 volatile compounds by introducing a
set of genetic perturbations. We compared sets of genetic perturbations for
all pairs of volatile compounds and then inferred their levels of correlations
(see Appendix E). Hence, these predicted correlations were compared to the
levels of correlations obtained from the experimental values for each volatile
pair that often reflects their belonging or not to the same metabolic/ reg-
ulatory pathway or to be or not structurally related. Figure 7.5C-F shows
the predictive power of our model to determine correlations between all the
volatile compounds. Interestingly, selecting a correlation cut-off between
0.5 and 0.8 we obtained high performance F-scores (see Appendix E) rang-
ing between 0.32 and 0.91 (Figure 7.5D) for gene knockouts and between
0.31 and 0.80 when model selected genes by over-expression (Figure 7.5F).
Notice that only pairs of experimental volatile compounds with r > 0.5
were considered. Predictions decreased when we incorporated all pairs of
compounds (Figure 7.5E-F) indicating that our model captured high cor-
relations observed experimentally with more precision. We computed the
dendograms of the volatile compound obtained from the correlation of ex-
perimentally obtained volatiles levels and the dendograms obtained using as
distance between volatile compounds the number of common genetic pertur-
bations proposed by the model. We observed that perturbations proposed
by gene over-expression were pivotal to predict computationally significant
distances between volatile compounds (Mantel test, r = 0.54; p < 107°)
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thus providing high support to our model. By contrast, predicted pertur-
bations based on gene knockout could only identify a small fraction of the
entire dendogram (Mantel test, 7 = 0.38; p < 107°).

To give further support to our model we designed experimentally two in-
bred lines (ILs) derived from another interspecific cross whose transcriptome
and metabolome were also experimentally measured. We corroborated that
a significant set of genetic perturbations suggested by computational design
to optimize the phenotype observed were identified as genes differentially
altered in the target phenotype.

7.4 Conclusions

LM is a methodology that is being implemented by large industries to op-
timize their production. In the process of decision making applied to the
redesign of production systems, firstly, engineers evaluate systematically the
addition or elimination of resources in each of the participating single pro-
cesses; afterwards, multiple changes are considered trying to achieve maxi-
mum quality and production [29]. Translating this engineering approach to
a cellular molecular factory and identifying the basic functional elements has
allowed us to develop a design methodology which optimizes the genome as
it should result in a more desirable phenotype [25]. In addition, by mimick-
ing the methodology from LM we have provided a first robust optimization
to redesign an optimal genetic network based on the systemic exploration
of the effects of a large number of single gene knockout and over-expression
genotypes; then, a second multiple-optimization of random paths allowed
improving substantially the desired agronomical properties. The success of
this approach indicates that despite the existence of molecular interactions,
the model is able to overcome this limitation and results in a good predictor.

We have proposed several re-engineered genomes that improve desired
agronomic properties of the fruit by targeting single or multiple genetic mod-
ifications. It has been previously reported that single under-/over-expressed
of certain genes may affect fruit quality traits, being these key genes in-
volved in the biosynthesis of a product of fruit metabolism or to a general
ripening regulators (i.e., carotenoids [30]). We have explored single pertur-
bations by gene knockout or over-expression and our results indicated that
a significantly better fine-tuning could be obtained by using over-expression
approaches. We observed that improvement ratios could reach even more
than 4-fold the wild-type value of most of phenotypes desired by designing
genomes with only two genetic perturbations (Figure 7.5A). The magnitude
of the predicted change sometimes may appear low but an improvement in a
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quantitative trait, if consistent and predictable, maybe economically impor-
tant. Indeed, a good combination of high yield with even slightly increased
solid solids content is a major breeding goal for processing tomatoes that it
is difficult to be achieved [31] because of polygenic nature and pleiotropic
relationships of both traits [32].

Although it is not the objective of this paper, it does not escape our
attention that some of the perturbations proposed are consistent with the
biological processes associated to the trait and therefore the model could be
used to reveal the molecular underpinnings of quality traits. For instance
the role of YABBY (a gene proposed by our model to affect quality) in con-
trolling fruit size probably through the auxin pathway and the effect of auxin
in altering fruit growth and ripening has been previously reported [33, 34].
Similarly the importance of phytoene desaturase to affect carotenoids and
carotenoid derived volatiles has been reported [35]. Most of the genes pro-
posed by the models however are new, therefore opening new avenues of
research either by targeting in transgenic plants, identification of mutants
in those genes by TILLING [36] or by TAL engineering [37], as well as to be
used as an additional guide during plant breeding. In principle these modi-
fications are to be implemented in red fruit or around red fruit stage either
genetically or by the use of external elicitors (physical or chemical) and our
model provides roadmap for those approaches. Our methodology takes ad-
vantage of our ability to predict variations in fruit cell phenotype based on
changes in the transcriptome. The linear relationships shown in Figure 7.4
(A, C, and D) guarantee that by optimizing our effective transcriptomic,
metabolic or phenotypic fitness we are also optimizing the phenotype mea-
sured experimentally of the tomato fruits. While it is true that complex
multi-organ organism such as tomato rely on the coordination and trans-
port of multiple signals and nutrients from different parts of the plants to
achieve the final phenotype, and this is especially true for the fruit [20, 38],
it not less true that the most important part of the fruit characteristics at
ripening depends basically on the fruit program before around the ripening
stage [39, 40].

The ability to target redesign crops for enhanced content of metabolites
of interest has been experimentally achieved in a number of cases (for in-
stance vitamin C [41]; vitamin E [42]) using transgenic approaches and the
information of bottlenecks or limiting steps for the biochemical pathways of
the compounds of interest. The most dramatic examples of this have been
introducing the new trait in a background with very low value for it (i.e.,
golden rice [43]) using ectopic expression of one or several foreign genes.
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The use of natural genetic variability in combination with our nonbiased
(hypothesis-free) modeling approach allows us to identify new candidate
genes as potential targets to engineer the plant (although the biotechnolog-
ical use of more active orthologs from other organisms is not discarded in
our approach). The existence of regulatory networks connecting primary
and secondary metabolism in plants should also be taken into considera-
tion in future attempts to metabolically engineer the various classes of plant
secondary metabolites [44]. It is interesting that known genes in the biosyn-
thesis path often do not co-localize with quantitative trait locus for the
metabolites in the path [35] indicating that there is ample of opportunities
to be explored for metabolite and quality improvement, and our model fits
nicely in this gap.

Appendix A Plant Material, Transcriptomic, Metabolomic
and Phenomic Data

The construction of the tomato RILs used in this study has been described
elsewhere [45]. Triplicate samples of red ripe fruits (each representing at
least 5 fruit) from each of 169 RILs were harvested and analyzed for volatile
compounds as described in [46]. For method validation, red ripe fruits from
five ILs with a different genetic background [47] were used. Transcript pro-
file datasets (11,876 = 3 2 50 data points) were obtained from triplicate fruit
samples of 50 selected RILs using TOM?2 microarray, as previously reported
[48]. Data sets corresponding to the rest of metabolites and phenomic data
were obtained as in [46] from triplicate samples of the 169 RILs. To decrease
experimental variability, the same fruits representing each RIL were homog-
enized and divided in different aliquot samples for the different metabolite or
transcript profiling techniques. Before use all transcriptomic, metabolomic
and phenomic data were normalized and transformed to log-scale. The ILs
used for model validation have been described previously [38].

Appendix B Mathematical Model

An effective linear model based on ODEs each providing the steady states

of tomato fruit mRNA was used to describe transcriptional gene regulations
dgi _
. —

>jbijg; — 09g; + A;, where 0;; represents the regulatory effect that gene

th . . .
* ) ) 79
[7]. Thus, the mRNA steady state from the i"* gene, g;, is given by

j has on gene i. Each gene expression value is contained (£g™" < g; <
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M) and maximum
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(g"**) value of all its experimental measurements obtained from the subset

of 50 RILs used for transcript profiling. £ < 1 is a tunable parameter that
decreases the gene expression range to improve the predictive capacity of
the presented model under genetic predictions. The dynamics of metabolic

dm,;

profile was computed by “Z* = >>;7i;9; — 0™m; + I'i, where m; is the

steady-state concentration from the 4;, metabolite, v;; is the regulatory
strength that gene j has on metabolite i. Hence, agronomic variables (AV)
were predicted by means of a linear combination of the metabolic profile,
AV; =37, Biym;+€Q;, where ;; is the regulatory effect that metabolite j has
on agronomic variable i. A, I" and 2 are the perturbation terms that allow
to calibrate gene expression, metabolic profiles and predicted agronomic
properties, respectively, for all RILs. Notice that degradation coefficients of
genes and metabolites (69 = §™ = 1, respectively) scaled time conveniently
and that we assumed the model in steady state (¢; = >, 09, + A; and

mi =32 %jgj + L)

Appendix C Construction of an Effective Transcrip-
tional Regulatory Network Connected with Metabolism
to Explain Agronomic Properties

Our global model consists of three blocks of algebraic equations covering re-
spectively from gene expression, through metabolic profile until agronomic
properties, and in all three cases the same methodology was applied. The
inference procedure consisted of two nested steps. Firstly, the network con-
nectivity was inferred by using the InferGene algorithm [7]. This method
uses mutual information with a local significance value (z computation) to
obtain the effective regulations. Hence, the potential interaction between
a predictor and a target is zscored, constituting an estimator of the like-
lihood of mutual information. Subsequently, we selected a z threshold for
a predictor cutoff. In a second step, LASSO method was used to avoid
over-fitting and to estimate the kinetic parameters of each effective model.
Notice that the 8.7% of the selected genes in the TRN were annotated as
TFs and 16.2% as encoding enzymatic activities and, in neither case, they
were over-represented since both the tomato genome and the whole array
contain similar fractions of TFs (8.8%) and enzymes (17.1%).

For the construction of the effective TRN model and its later integra-
tion with the metabolism, we used steady-state mRNA expression profiles
derived from RILs transcriptionally and metabolically characterized. The
dataset contains pre-processed expression data from 50 z 3 hybridization
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experiments using an array with 11,876 probe sets spotted, and data for
levels of 67 metabolites that were quantified over the same sample set. For
this study, we only considered the 5592 genes whose expression values could
be consistently found in more than 80% of the microarrays. We found 1057
TFs and 1962 genes with enzymatic activity after searching for the motifs
transcription regulator and enzyme activity respectively in the functionally
annotated tomato genome (Tom2). Moreover, all 169 RILs (including the
previous 50 ones) for which we had metabolite and phenotype data were
used to train a linear model able to predict agronomic properties of the
fruit from potentially predictor metabolites. In all cases transcriptomic and
metabolomic data were first normalized using the LOWESS procedure [26]
and subsequently converted into z across the RILs. In order to calibrate
gene expression and metabolite concentration, both models included a per-
turbation term (AR/E and (IRIE| respectively) to fit all their i-genes and
j-metabolites for a given RIL. We assumed a constant perturbation in the
gene expression prediction because of its low variation across the training set
(standard deviation of (A/g) for all RILs is 0.072-fold the standard deviation
of gene expression, (09) p;,) with respect to the mean value, 0.22(09) ;.
Similarly, the average error to predict the metabolic profile across the train-
ing set was increased to 0.99 (09) py.-

Appendix D Genome-Wide Multiple-Optimization

Our algorithm searches possible reconfigurations of the global effective tran-
scription regulatory network of tomato such as that the specified agronomic
properties are improved (maximized or minimized) with respect to the prop-
erties of interest obtained in a given RIL. Different properties of interest have
been optimized, ranging from single metabolites defining the sweetness or
sourness of the fruit, to linear combinations of a set of metabolites deter-
mining the quality in terms of flavor and taste and even further to include
objective functions that try to integrate two of those goals with a trade-off
and balanced weighting factors such as fruit quality and yield.

We have addressed this optimization problem using two approaches.
Firstly, we exhaustively enumerated all possible single gene knockouts and
over-expression for each case to be optimized under a given selective pressure
of interest. Second, we ranked all possible perturbations according to the
new agronomic properties they would generate. The third step was to sug-
gest genome reconfigurations that include multiple actions: gene knockouts,
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over-expressed genes, or both, in order to enlarge the combinatorial space of
perturbed genomes. To do that, we have used an exhaustive method aimed
at finding the global optimum in the space of all possible synthetic TRN.
We started from the inferred model (see Appendix A) and applied an opti-
mization scheme. At each step of the optimization process, we selected each
gene among the ones involved in the transcriptomic model to evaluate the
effect of three possible approaches (knockout, over-expression or wild-type
scenario); we updated the model with the genetic perturbation that pro-
vided the best score. Note that to simulate knockout or over-expression in
man

the gene i, we substituted its ODE by the minimum ( g!

M) or maximum

(67 1gma®) values respectively observed in the range of diversity of the 50
RILs.

Appendix E Experimental and Computational Metabo-
lite Correlation

We computed the sets of single-gene perturbations, A, by gene knockout or
over-expression that alter significantly the levels of the 56 volatile metabo-
lites representing the volatile compounds taking into account the global
model. For the sake of the model we considered only those gene perturba-
tions that would cause significant changes in the metabolite concentration
higher than 1% (p < 0.01). A can be divided into genetic modifications
that increase (©) or decrease (Z) the metabolite concentrations, respec-
tively. Hence, correlations between metabolite pairs i and j (Cj;) were

calculated as the difference between Cg and Cj; by using the set of single-

. + 0,N0,; Z=Z,NE;
gene perturbations proposed by the model C’ij = max (@w@jw Equj- ) and
- @iﬂEj Eiﬂ@j
C’U = max (@iUE]” EiU@j)'
where C’;;» and C’Z»; is the maximum normalized intersection predicted

between the set of gene perturbations proposed by altering positively or/and
negatively, respectively. We used these correlations to compute dendograms
of all volatile compounds by using the distance inferred by the model (1—Cj;)
depending on the A selected by gene knockout or over-expression. The
performance of the inferred metabolite correlations was evaluated using as
a reference a set of empirical correlations previously obtained among these
metabolites. We used different cut-offs, k, to identify metabolite correlations
(Cij > k). The fraction of metabolite pairs that were correctly predicted by
the model (precision, P) and the fraction of all known correlations that were
discovered by the model (sensitivity, S) were used to compute a performance
statistic defined as F' = 2PS/(P + 95).
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Chapter 8

General Discussion

A milestone in the computational genome design will be the integration of
the transcriptomic and signaling networks in the metabolic model of the
cell. The coordinated expression of hundreds, even thousands, of genes in
bacteria could be seen as the result of a program encoded in the DNA, at
a given time point of the cell cycle, and in response to external stimuli.
The cellular machinery, especially polymerases and ribosomes, would play
the role of compiling the program into proteins that perform the biological

functions.
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Figure 8.1: Scheme of the cellular chassis involving transcription, metabolism, ma-
chinery and signal transduction. The modules are interconnected and are context-

dependent.
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The first step to construct a global multi-scale model (Figure 8.1) con-
sists of modeling the steady state of the cell. Since transcription is context-
dependent, signaling mechanisms (e.g., two-component or transportation
systems) allow the cell to sense the environment and act accordingly. Ba-
sically, varying compounds (e.g., glucose, oxygen or metals) and external
factors (e.g., temperature, pH or light) regulate genes, especially those with
regulatory functions [1]. For the purposes of this review we could assume
for simplicity that the sensory machinery is only constituted by TFs and
the signal transduction machinery. Bottom-up signaling networks [1, 2, 3]
are combined with optimization-based methods,[4] which can overcome the
lack of knowledge on the structure of signal transduction pathways, to eluci-
date the global sensory machinery. Furthermore, by using -omics data from
environmentally perturbed cells, regulatory models integrating external in-
fluences can be inferred [5]. In steady state, the gene expression profile,
in particular those enzymes catalyzing biochemical reactions, specifies the
cell metabolism in a given environment. In that way, regulatory FBA mod-
els have been developed to predict phenomic data in bacteria [6]. This
data consists on a high-throughput analysis of cell growth using multiple
plate readers with cells in wells with defined conditions. Thus, integrated
metabolic, transcription and signaling networks [6, 7, 8, 9] can better explain
physiological and intracellular changes and constitute the next step towards
the project of modeling a cell. There are software initiatives such as the
E-cell project [10, 11] that could be used to implement in a user-friendly
software package the methodologies presented here, once they become accu-
rate enough.

The continuous developments in the sequencing and synthesis of DNA
[12] have extended our understanding of the workings of living organisms.
Synthetic genomics is focused on the powerful step of synthesizing and pro-
gramming genetic material, DNA or RNA. Several works have been focus
on the synthesis, assembly, and cloning of a viral genome [13, 14, 15, 16, 17].
In that direction, the J. Craig Venter Institute has proposed an approach to
produce reduced genome of a mycoplasma by complete chemical synthesis
[18]. Moreover, they verify the capacity of the cells with the new genome to
provide the essential genetic functions for life.

The main ingredients to obtain a methodology for automatic genome de-
sign are the same that are needed in any evolutionary procedure: (i) A given
genome to be used as starting point, (ii) evolutionary steps and (iii) fitness
function. We could use well-characterized plasmids and minimal genomes
for (i). Step (ii) would require using a modular approach where the genome
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is decomposed in elementary modules (such as the biological part models),
then the evolutionary procedures would add/remove/modify such modules.
In this step is very important that the genomes used in (i) be also com-
pletely understood in terms of such modules. This would be an impossible
task in general, as modularity is not enforced in natural genomes. This
will require the future refactoring of natural genomes making them modular
enough. The bottleneck here is in the appropriate understanding of the dif-
ferent genetic elements in different genomic contexts, which requires a large
community effort. The enforcing of standardization and characterization of
genetic parts worldwide will be key in this endeavor.

The step (iii) is the most complicated of all, as it requires a quantitative
model of the whole cell able to predict cell growth for a given genome. In
this respect, the integration of the transcription with metabolism is poorly
understood. But we also need an appropriate incorporation of signal trans-
duction or cell machinery. Also it is unclear whether we really need a spatial
model to predict cell growth. The state-of-the-art here is in the use of high-
throughput data to infer global models. As we have shown in the previous
section, this has been done with relative success for the metabolism, but
a proper coupling with the transcription regulation is still missing. When
operons are activated or repressed by transcription factors they change the
expression level of enzymes that in turn affect the metabolic fluxes. In ad-
dition, there are the post-transcriptional and post-translational regulations,
which have a prevalent role in signal transduction.

The construction of large-scale models by means of reverse-engineering
methods has allowed to predict quantitatively the cellular response under
global redesign. However, the missing significant elements in the initial
models could lead to inaccurate designs. Experimental noise on the gene
expression and missing/inaccurate reactions in the metabolism are exam-
ples of possible deficiencies in the predictive value of the models. These
inaccuracies lead to some limitations to the feasibility of designing synthetic
genomes. One way to extrapolate on the limitations of the genome design
is by estimating the errors of predicting cell growth. As the predictions are
done using a model trained with experimental data for a given genome, as
soon as we start modifying the genome, the predictions will start to degrade.
This could be seen as the propagation of an error: every time we modify
the genome (by making a knockout or modifying a promoter) the error in
prediction will add up to the previous one. Towards this end, Figure 8.2
shows how the propagation of error between the predicted and experimental
measurement increases as the genetic modifications imposed by a redesign
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Figure 8.2: Normalized deviation with respect to the wild-type of gene expression
for different genome transcriptional perturbations involving knockouts and changing
the regulation of TFs. We have considered single and multiple knockouts (prefixed
with a delta symbol), which are shown in different grades of red and yellow. On
the other hand, we have also considered changing the promoter controlling TFs, to
simplify the notation we have named the promoters after their downstream TF.

at transcriptional level.

The development of a computational platform to design genomes re-
quires large-scale models able to predict the behavior of a set of genes. We
have discussed various genome-scale techniques that will allow the develop-
ment of predictive tools for genome design. The main difficulty resides in
the quantitative prediction of cell growth from a genome in such a way that
our predictions remain valid when we reshuffle and evolve the genome. We
started with the design of metabolic pathways, where current tools are able
to predict the growth rate given a genome-scale metabolic model. For the
design of synthetic genomes, it is important to have tools that are accurate
enough to predict large modifications of a natural metabolism. As a first
step towards the de novo design of genomes, we should be able to redesign
existing genomes by modifying large parts of its metabolic network. The
modification of such metabolic pathways can be performed by using enzymes
from various organisms, which would have to be later codon-optimized for
improved expression in the targeted host. Even after circumventing possi-
ble problems with protein expression (we could get protein aggregates), we
should also face another problem: the matching of enzyme expressions. Most
often the level of expression of each enzyme from a heterologous metabolic
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pathway is different from its original one. It is reasonable to assume that
in the wild-type organism the expression of enzymes is optimized to maxi-
mize cell growth, but after grafting the enzymes from various organisms we
will have to re-optimize their expression. This is more important for the
case where the enzymes are placed polycistronically. Recently, the group
of Keasling proposed a method [24] to optimize the relative expression of
enzymes, which could be in the same operon, by modifying the nucleotide
sequence around the ribosome-binding site. For the time being, this opti-
mization can only be performed experimentally. It will be very useful if this
post-transcriptional optimization of relative enzyme expression within an
operon could be done in such a way that the flux of the operons pathway is
maximized, so the operon could be later introduced in alternative organisms
after an optimization through transcriptional regulation. This modularity is
one of the essential elements in synthetic biology. We should also take care
of including the appropriate essential genes.

After having designed and optimized the metabolic pathways, placed into
suitable synthetic operons, we have to choose the appropriate promoters and
TFs. This could be viewed as a second optimization of the expression of our
enzymes, but this time we could change the regulation dynamically. Here
it is important to have a model of signal transduction in order to know
the effects of external signals on the TFs. Once we have a model for the
concentration of transcription factors in a given environmental condition we
can use recent quantitative models of global transcription to predict the
global expression profile of all operons. As a challenge for the future will be
the integration of this global transcription model with the metabolic model.
This is an important step after which we would be able to use computational
design to evolve new genomes that could better adapt to a given temporal
pattern of variability.

As already happens with the computational design of proteins [25] the
computational genome design could be improved by using directed evolu-
tion. It is also expected that new computational methodologies will arise
that will suggest the appropriate experiments, such as the most appropriate
nucleotide sequences to be randomized.

Finally knowing the operons, promoters, transcription factors and pro-
tein transducers, is not enough to obtain a synthetic genome sequence. We
need to place the operons in the genome in suitable position and orientations.
The genome should also contain the necessary elements for replication. It
has been argued [23] that transcription factors should be placed close to
their regulating operons. There are also new attempt to use physical mod-
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Figure 8.3: Schematic for synthetic genomics and biotechnology. A synthetic
chromosome is designed, synthesized and transplanted into the host. The cell has
a new code but the same compiler. Those cells perform tasks for many biotechno-
logical applications, such as the bio-production of chemical compounds of interest.

els to represent the genome in 3D, [20] where a local DNA model based on
the nucleotide sequence is used to predict the global structure of the chro-
mosome. Once this methodology incorporates longer-range physical models
it will be able to be used to engineer a given 3D genome topology.

New microfluidic techniques are allowing the production of more repro-
ducible measures of cell function [26]. In particular, the availability of mi-
crochemostats is allowing cell growth in controlled environments over long
periods. Further, now that it is also possible to measure gene expression at
spatial resolutions, new quantitative models that incorporate stochasticity
will be required.

In this thesis, we have discussed the methodologies that could be used
for the automatic design of genomes. This will help to stimulate the de-
velopment of an integrated software platform able to design genomes using
unsupervised methods. The engineering of genomes will open new avenues
in science and biotechnology (see Figure 8.3) and will require automatic
methodologies able to design genomes with targeted functions.
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