

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://dx.doi.org/10.1016/j.ejor.2012.04.034

http://hdl.handle.net/10251/35658

Elsevier

Quan-Ke Pan; Ruiz García, R. (2012). Local search methods for the flowshop scheduling
problem with flowtime minimization. European Journal of Operational Research. 222(1):31-
43. doi:10.1016/j.ejor.2012.04.034.

 1

Local search methods for the flowshop scheduling problem with

flowtime minimization

Quan-Ke Pana, Rubén Ruizb

aState Key Laboratory of Synthetical Automation for Process Industries (Northeastern University), Shenyang,

110819, PR China. College of Computer Science, Liaocheng University, Liaocheng, 252059, PR China

bGrupo de Sistemas de Optimización Aplicada, Instituto Tecnológico de Informática, Universitat Politècnica de

València, Ciudad Politécnica de la Innovación, Edificio 8G, Acc. B. Camino de Vera S/N, 46021 Valencia, Spain

Abstract: Flowshop scheduling is a very active research area. This problem still attracts a considerable

amount of interest despite the sheer amount of available results. Total flowtime minimization of a

flowshop has been actively studied and many effective algorithms have been proposed in the last few

years. New best solutions have been found for common benchmarks at a rapid pace. However, these

improvements many times come at the cost of sophisticated algorithms. Complex methods hinder

potential applications and are difficult to extend to small problem variations. Replicability of results is

also a challenge. In this paper, we examine simple and easy to implement methods that at the same time

result in state-of-the-art performance. The first two proposed methods are based on the well known

Iterated Local Search (ILS) and Iterated Greedy (IG) frameworks, which have been applied with great

success to other flowshop problems. Additionally, we present extensions of these methods that work

over populations, something that we refer to as population-based ILS (pILS) and population-based IG

(pIGA), respectively. We calibrate the presented algorithms by means of the Design of Experiments

(DOE) approach. Extensive comparative evaluations are carried out against the most recent techniques

for the considered problem in the literature. The results of a comprehensive computational and

statistical analysis show that the presented algorithms are very effective. Furthermore, we show that,

despite their simplicity, the presented methods are able to improve 12 out of 120 best known solutions

of Taillard’s flowshop benchmark with total flowtime criterion.

Keywords: Scheduling; Flowshop; Flowtime; Local search; Metaheuristics

1. Introduction

Finite capacity scheduling entails the determination of the processing order of a series of jobs that

have to be processed on the available machines in a production shop. A first classification of scheduling

problems can be derived according to the way machines are distributed in the factory. When several

machines are arranged in series and jobs must visit all these machines in the same order we have what

is called a flowshop. These problems have been subjected to detailed studies since the pioneering work

of Johnson (1954). More specifically, a flowshop problem comprises a set � of � jobs that must be

 2

processed on a set � of � machines. These � machines are arranged in series and each job

Nj ∈ is broken down into � tasks, one per machine. A job models a given production lot of a

product or client order that must be manufactured. All jobs visit machines in the same order and ijp

denotes the known, non-negative and deterministic amount of time that job � needs at machine �. At

any given time, a job is either waiting for processing or being processed by exactly one machine.

Similarly, machines are either idle or occupied by a job. Baker (1974, chapter 6, pp. 136-137) further

details all restrictions that apply: All jobs are independent and available for processing at time 0.

Machines never break down and are always ready. Once started at a machine, jobs are processed until

completion with no preemption allowed, etc. A schedule is obtained after devising a permutation of the

jobs for every machine, resulting in (�!)� possible solutions. The setting is usually simplified and

only permutation schedules are examined, resulting in the permutation flowshop scheduling problem

(PFSP) where job passing is not allowed, i.e., all jobs visit the machines in the same order. This reduces

the number of solutions to �! The objective in the PFSP is to find a permutation such that a given

criterion is optimized. Most studied criteria are based on the completion times of the jobs at machines.

More specifically, let
 = �
(1),
(2), … ,
(�)� be a possible permutation or solution to the problem.

The completion time of job � at position 	
(�) at machine � is denoted by ��,
(�) and it is computed

as follows:

��,
(�) = max���−1,
(�), ��,
(�−1)�+��,
(�) (1)

where � = 1,… , �, � = 1,… ,�, ��,�(�) = 0, and �0,
(�) = 0.

The completion time of a job � in the shop is then ��,� or �� for short. With completion times,

many different objectives are defined. The most studied criterion is the minimization of the makespan

or �max, where �max = max�=1,…,� ��. This paper studies the total flowtime minimization, which has

also been studied intensively. Total flowtime is defined as:

 ! = ∑ �#
$
#%& (2)

When there are no release dates, total flowtime and total completion time are equivalent

objectives. Total flowtime minimization reduces the work in progress or WIP and results in a stable

utilization of resources. Jobs “stay” in the shop a reduced amount of time (Framinan et al., 2005). This

is of particular importance to industries where reducing inventory or holding costs is of paramount

importance.

The PFSP with total flowtime criterion is denoted as �/�/(/∑�# or as !/�)�*/∑�# according

to the well known existing scheduling notations (Pinedo, 2009, and many others). !/�)�*/∑�# has

been proved to be NP-hard in the strong case for � ≥ 2 after the results of Gonzalez and Sahni

(1978). Although some exact methods have been reported in the literature (Ignall and Schrage, 1965,

Bansal, 1977; Stafford, 1988 and others), they are limited to small problem instances as solving times

 3

quickly become impractical for realistically-sized cases. As a result, research has focused on the

development of heuristics that produce reasonable solutions with low time and memory requirements.

Some heuristics have been presented by Rajendran (1993), Rajendran and Ziegler (1997) and Li and

Wu (2005), to name just a few. With the advent of powerful desktop computers, and now for more than

two decades, special emphasis has been given to the study of metaheuristics, capable of producing near

optimal solutions, albeit normally at the cost of longer calculations. Some examples are the genetic

algorithm of Tang (2002), ant colony optimization (ACO) of Rajendran and Ziegler (2004) and the

differential evolution of Pan et al. (2008), among many others.

Metaheuristics provide excellent results and constitute the state-of-the-art methods available for

the PFSP with total flowtime criterion. However, many metaheuristics are fairly sophisticated and

depend on several parameters and settings that might be problem and even instance dependent. Most of

the time, the presented methods are so specifically tailored for the problem at hand that slight variations

of the scheduling setting require extensive changes in the algorithms or even render them inapplicable.

In some cases, published algorithms are so intricate that an independent coding is unlikely to obtain the

same reported effectiveness or efficiency without contacting the authors to obtain detailed information

and/or source codes. All this severely hinders potential practical applications. Therefore, simple,

general and easily adaptable algorithms are highly desirable. However, such simplistic methods might

produce lower quality solutions and a difficult compromise arises between simplicity and performance.

The Iterated Local Search (ILS) and Iterated Greedy (IG) frameworks, described by Lourenço et

al. (2010) and Ruiz and Stützle (2007), respectively, constitute two simple templates for combinatorial

optimization. They have resulted in state-of-the-art results for several problems, including the

permutation flowshop. Following the successful application of the above two local search based

frameworks, this paper presents four algorithms: an IGA, an ILS, and two population-based extensions,

dubbed as population-based IGA (pIGA), and population-based ILS (pILS), respectively. The main

focus is on simplicity, extensibility and ease of coding and replication of results. The presented

methods employ some powerful, yet simple operators in order to improve performance. The results of

the presented algorithms are compared to those of recently published metaheuristics. The

computational results and statistical analyses show, as we will detail, that the presented algorithms are

new state-of-the-art methods for the problem under consideration.

The rest of the paper is organized as follows. Section 2 reviews the literature of the PFSP with

total flowtime minimization criterion. Section 3 presents the four local search based algorithms in

detail. The proposed algorithms are calibrated in section 4. A comprehensive comparison of the

presented algorithms is shown, along with statistical analyses, in Section 5. Finally, we conclude the

paper in Section 6.

 4

2. Literature review

The PFSP with total flowtime criterion was first studied by Ignall and Schrage (1965) and by

Gupta (1972). This is more than a decade later than the pioneering work of Johnson (1954) for

makespan minimization in the PFSP. Due to the difficulty faced by exact methods to solve medium size

or large instances, efforts have been mainly dedicated to finding high quality solutions in a reasonable

computational time by using heuristic or metaheuristic optimization techniques. Framinan et al. (2005)

provide a comprehensive review and evaluation of heuristics for the PFSP with total flowtime criterion.

Here we mention just the most cited heuristics. Rajendran (1993), Rajendran and Ziegler (1997), Liu

and Reeves (2001), Li and Wu (2005) and, more recently, Laha and Sarin (2009) present high

performing simple heuristics. Other more elaborated methods are those of Allahverdi and Aldowaisan

(2002), Framinan et al. (2005), and Li et al. (2009). In any case, in order to attain a better solution

quality for the problem under consideration, modern metaheuristics have been increasingly applied in

recent years. One of the earliest known applications of genetic algorithms (GA) is due to Vempati et al.

(1993). In this case, a simple GA was presented but only applied to small instances of size 25×10 (25

jobs and 10 machines) maximum. Later, Yamada and Reeves (1998) presented a genetic local search

algorithm (GALS) providing good quality solutions for five sets of Taillard (1993) instances (20×5，

20×10，20×20，50×5 and 50×10) but needing large computational times. Gupta et al. (2000) designed a

tabu search (TS) based approach that was compared against the heuristics of Rajendran (1993)

obtaining better results for the tested instances. Rajendran and Ziegler (2004) proposed two ant colony

optimization (ACO) algorithms, called M-MMAS and PACO, respectively, for makespan and total

flowtime minimization. PACO showed better performance than M-MMAS and the best heuristic

proposed by Liu and Reeves (2001). Later, Rajendran and Ziegler (2005) have introduced a new ACO

algorithm based on similar concepts to those of M-MMAS and PACO with slightly better performance

in some scenarios. Tasgetiren et al. (2007) extended a continuous particle swarm optimization (PSO)

method to the PFSP with both makespan and total flowtime criteria. With this method, 57 out of 90 best

known solutions reported by Liu and Reeves (2001) and Rajendran and Ziegler (2004) for Taillard

(1993) benchmarks were improved. However, the PSO was soon surpassed by the combinatorial PSO

(CPSO) of Jarboui et al. (2008) and also by the discrete differential evolution (DDERLS) and iterated

greedy algorithms (IGRLS) of Pan et al. (2008).

Quite recently, it seems that there has been an intensified interest in this problem as quite a

number of new metaheuristics have been published. Tseng and Lin (2009) proposed a hybrid genetic

local search algorithm (denoted as HGAT1) by employing GA to do the global search and two methods,

Insertion Search and Insertion Search with Cut-and-Repair, to do the local search. The authors

demonstrated improved performance of their proposed HGAT1 over the PSO of Tasgetiren et al. (2007),

 5

GALS of Yamada and Reeves (1998), and also M-MMAS and PACO of Rajendran and Ziegler (2004).

Later, the same authors (Tseng and Lin, 2010) presented a similar genetic local search algorithm

(denoted as HGAT2) by using TS to do the local search. Zhang et al. (2009) proposed a hybrid genetic

algorithm (HGAZ for short) that employs a local search consisting of the RZ improvement procedure in

Rajendran and Ziegler (1997) and the forward pairwise exchange (FPE) method in (Liu and Reeves,

2001). In this study, a new crossover operator is introduced by using an artificial chromosome

generated from a weighted simple mining gene structure. The authors’ experimental results proved that

the proposed HGAZ is a new state-of-the-art method for the problem considered. The same year, Dong

et al. (2009) developed a simple ILS algorithm (denoted as ILSD) that improves over M-MMAS, PACO

(Rajendran and Ziegler, 2004) and the PSO of Tasgetiren et al, (2007) by a considerable margin.

Jarboui et al. (2009) presented an estimation of distribution algorithm (EDAJ), where a variable

neighborhood search (VNSJ) is used as an improvement procedure. Based on the experimental results,

the authors claimed that their EDAJ outperformed all the existing techniques to minimize total flowtime

for the PFSP. More recently, Zhang and Li (2010) have presented another estimation of distribution

algorithm (EDAZ) with a longest common subsequence operator being incorporated into the probability

distribution model to mine good “genes”. Different from more common EDAs, EDAZ produces each

offspring from a seed, which is selected from the population by the roulette method. The authors’

experiments showed that EDAZ produces better results than the EDAJ, DDERLS, HGAT1, and ILSD

algorithms for the first nine set benchmarks of Taillard (1993). Zheng and Yamashiro (2010) have

developed a quantum differential evolutionary algorithm (QDEA) based on the basic quantum-inspired

evolutionary algorithm to minimize makespan, total flowtime, and maximum lateness of jobs for

permutation flowshops, respectively. QDEA adopts differential evolution to perform the update of

quantum gate and variable neighborhood search as a local search. The comparison of QDEA with

M-MMAS, PACO, and the best heuristic of Liu and Reeves (2001) demonstrated its effectiveness.

Tasgetiren et al. (2011) presented a discrete artificial bee colony algorithm (DBAC) and a hybrid

differential evolution algorithm (hDDE) by hybridizing a variable neighborhood search procedure

based on swap and insertion neighborhood structures. According to the experiments conducted by the

authors, both algorithms provided better results than EDAJ and HGAT1. Xu et al. (2011) presented an

asynchronous genetic local search algorithm (AGA for short), where all pairs of individuals perform

asynchronous evolutions with different local search methods. The computational results show that

AGA outperforms several state-of-the-art methods including HGAZ, EDAJ and VNSJ. Algorithms

designed for parallel architectures have also been developed for total flowtime criterion. For example,

Czapiński (2010) proposed a parallel simulated annealing with genetic enhancement algorithm

providing better results than HGAZ and HGAT1. Additionally, Dubois-Lacoste et al. (2011) presented an

 6

Iterated Greedy Algorithm for the bi-objective flowshop.

As we can see, there is quite a number of high performing methods claiming state-of-the-art

performance that have appeared in years 2009-2011. From the short review, it is also clear that some of

these methods are intricate and are based on complex algorithmic templates. It is worth mentioning that

there does not exist a comprehensive computational evaluation and comparison of these recent

techniques. Therefore, from the existing isolated computational evaluations with different computers,

programming languages, stopping criteria, and in some cases, even benchmarks, it is very difficult to

ascertain which algorithm gives the best overall performance for the problem considered. In this paper,

we recode twelve recently presented metaheuristics: DDERLS and IGRLS of Pan et al. (2008), HGAT1 of

Tseng and Lin (2009), HGAT2 of Tseng and Lin (2010), HGAZ of Zhang et al. (2009), ILSD of Dong et

al. (2009), EDAJ and VNSJ of Jarboui et al. (2009), AGA of Xu et al. (2011), DABC and hDDE of

Tasgetiren et al. (2011) and SLS of Dubois-Lacoste et al. (2011). We also present four simple local

search based algorithms. A comparison among the algorithms is given based on the well known

benchmark suite of Taillard (1993). In our opinion, finding such comprehensive and extensive tests

among so many recent methods is not common in the scheduling literature and constitutes a main

contribution of the present paper.

3. Proposed local search based algorithms

Iterated local search (ILS), presented by Lourenço et al. (2010) and iterated greedy (IG, Ruiz and

Stützle 2007), are two simple local search based metaheuristics that have resulted in top performance

despite of their simplicity. In recent years, both ILS and IG have attracted much attention from

researchers precisely due to their simplicity, effectiveness and efficiency. For example, ILS has already

been successfully applied for solving the permutation flowshop problem with makespan criterion

(Stützle 1998b), the quadratic assignment problem (Stützle, 2006) and multiple depot vehicle

scheduling (Laurent and Hao, 2009), among many other problems. For an updated review on ILS see

Lourenço et al. (2010). IG has shown state-of-the-art performance for the PFSP with makespan

criterion (Ruiz and Stützle, 2007), sequence dependent setup times PFSP with makespan and tardiness

objectives (Ruiz and Stützle, 2008), unrelated parallel machines scheduling (Fanjul-Peyro and Ruiz,

2010), PFSP with blocking constraints (Ribas et al. 2011) and even multiobjective PFSP problems in

Minella et al. (2011) or in Dubois-Lacoste et al. (2011). It is possible to find other recent applications

of IG to other fields and more complex scheduling problems. For example, Urlings et al. (2010) have

recently applied IG methods to solve complex hybrid flexible flowline scheduling problems with many

additional constraints. In view of all these state-of-the-art results, we propose the application of the ILS

and IG frameworks to the PFSP with total flowtime criterion. ILS and IG always deal with only one

 7

incumbent solution. Given the previous literature review, where many population-based genetic

algorithms have been proposed, we also extend the ILS and IG frameworks to work with populations.

Population-based ILS methods have been presented by Stützle (1998, 2006) as well as by many others.

IG extensions are less studied (Ballestín et al. 2007). The research question is therefore if ILS and IG

benefit from a pool or population of solutions. The details of the presented algorithms are given in the

following sections.

3.1. Iterated Local Search algorithm

ILS is a simple and generally applicable stochastic local search method presented by Lourenço et

al. (2010) for solving optimization problems. The essential idea of ILS is to perform a randomized walk

in the space of local optima. ILS starts from a heuristically constructed solution to which a local search

is applied. Generally, a local optimum is obtained. In order to escape from this local optimum, a

perturbation in the solution is carried out and a new local optimum is found after applying local search

again. Finally, an acceptance criterion is used in order to decide if the new local optimum should

replace the first. The above process is repeated until a termination criterion is met. An outline of the

ILS procedure is given in Fig. 1.

procedure ILS

ionitialSolutGenerateIn←0π

)(0ππ hLocalSearc← % Local search

repeat
)(' ππ onPerturbati← % Perturbation of the local optimum

)'(" ππ hLocalSearc← % Local search

),"(πππ erionAcceptcrit← % Decide if new solution replaces the incumbent

until termination criterion met
end

Fig. 1. Iterated Local Search (ILS) pseudo-code.

As we can see, ILS is extremely simple and general. All that is needed is a way of representing the

solution (in our case a permutation of jobs), a heuristic to initialize the method, a local search

procedure, a perturbation process and an acceptance criterion. Note that the most complex part is the

local search, which is also needed for most other well known state-of-the-art methods. We now detail

all these components.

3.1.1. Initialization method

 8

It is common to initialize metaheuristics with high performing heuristics. According to Liu and

Reeves (2001), Dong et al. (2009), Zhang et al. (2009), and Li et al. (2009), among others, the LR(x)

heuristic developed by Liu and Reeves (2001) is a very effective method for the PFSP with total

flowtime. LR(x) constructs x different sequences by appending jobs one by one using an index function

and the sequence with the minimum flowtime is selected as the final solution. The index functions

employed are weighted total machine idle time, artificial flowtime and a combined index. The

procedure of LR(x) is briefly described as follows:

Step 1: Rank the jobs according to ascending order of the index function value and break ties

according to an ascending order of the weighted total machine idle time value.

Step 2: Use each of the first x ranked jobs as the first job of the n resulting sequences. Complete

the sequences by selecting jobs one by one according to the index function.

Step 3: Select the sequence with the minimum total flow time as the final solution.

)(xLR does not fix the number of sequences to be generated, as it can be adjusted to the

requirements of the problem. So the heuristic is flexible in the computational effort required. Following

Li et al. (2009) and Zhang et al. (2009), we use)/(mnLR to generate an initial solution for the

proposed ILS algorithm.

3.1.2. Local Search procedure

The improvement procedure presented by Rajendran and Ziegler (1997) (denoted as RZ) is a

typical local search method based on an insertion neighborhood, which is used in the composite

heuristics of Li and Wu (2005) and Li et al. (2009), the ILSD algorithm of Dong et al. (2009), and the

HGAZ of Zhang (2009). The RZ procedure sequentially inserts each job in the seed sequence at all

possible positions. The improvement scheme identifies the best position of the insertion for a given job

and the resulting sequence is used to replace the current one if there is an improvement in the total

flowtime value. Let))(),...,2(),1((nssss ππππ = be a seed sequence, and π be the sequence

returned by RZ. The procedure of RZ is outlined in Fig. 2.

Procedure)(πRZ

ππ ←s

for 1←j to n do

 9

ππ ←'

Remove job)(jsπ from 'π .

Test)(jsπ in all the possible positions of 'π except for its original one.

Insert)(jsπ in 'π at the position resulting in the lowest total flowtime.

if)()'(ππ ff < then 'ππ ←

endfor
end

Fig. 2. The RZ local search procedure of Rajendran and Ziegler (1997).

The above RZ procedure is a single pass local search. If the starting solution is improved, there is

the possibility of calling RZ again to improve the solution even further. Obviously, this increases the

computational cost. Therefore, there is a trade-off between the algorithm’s effectiveness (in terms of

solution quality) and efficiency (in terms of computational time). Our tests indicate that RZ can be

iteratively applied until a local optima is obtained, i.e., we stop the local search when the provided

solution π does not change after calling RZ. We denote this iterated RZ procedure as iRZ in short. It

is important to remark that our implemented RZ method implements Taillard (1990) accelerations,

albeit only half of it, as one does not need to re-evaluate the part of the solution that has not changed.

These accelerations basically speed up the procedure by about 45%.

3.1.3. Perturbation procedure and acceptance criterion

In order to escape from a local optimum and to explore new regions in the solution space, ILS

applies a perturbation procedure to generate new starting points for the local search by modifying the

current solution. The perturbation procedure in the presented ILS algorithm consists of a number γ of

random insertion moves. Each one randomly selects a job from the permutation and inserts it into a

different, randomly selected position. The number of insertions or Perturbation length γ is a key

parameter, which has an important effect on the performance of ILS. A small γ value favors local

exploration or intensification but may lead to a stagnation of the search due to a lower chance of

escaping strong local optima. A larger γ value benefits global exploration but if γ is too high, the

algorithm may behave like a random restart local search with a very low probability of finding better

solutions. Therefore, a suitable γ value should be determined for the presented ILS algorithm. We

calibrate the γ value by means of a Design of Experiments (DOE) approach later in section 4.

After a new local optimum is obtained, we have to decide if this new local optimum replaces the

current incumbent solution. Three simple acceptance criteria are presented in Stützle (2006) including

 10

random walk, better, and simulated annealing type. Random walk accepts new solutions irrespective of

its objective value resulting in a random walk over local optimum solutions. Better accepts new

solutions only if they are better. This usually results in a premature convergence in the search due to

insufficient diversification. Simulated annealing type is a compromise between the random walk and

better criteria, and can be achieved by accepting worse solutions with a certain probability. Therefore,

we consider this later criterion. As in Osman and Potts (1989), Stützle (1998b) and Ruiz and Stützle

(2007, 2008), we adopt a constant temperature, which depends on the particular instance and it is

computed as follows:

mn

p
eTemperatur

n

j

m

i ij

10
1 1∑ ∑= =⋅= λ (3)

where λ is another parameter that needs to be adjusted. However, and as noted in Ruiz and

Stützle (2007, 2008), this parameter has been shown to be very robust.

3.1.4. The procedure of the presented ILS algorithm

The proposed ILS algorithm for minimizing total flowtime in the PFSP is summarized in Fig. 3.

Note that rand() is a function that returns a random number uniformly distributed in the range [0,1].

procedure the presented ILS algorithm

Set the parameters γ and λ

)/(0 mnLR←π % Generate an initial solution

)(0ππ iRZ← % Local search until local optimum

ππ ←* % Best solution found so far
repeat

)(' ππ onPerturbati← % Perturbation of the local optimum

)'(" ππ iRZ← % Local search until local optimum

if ∑∑ <)()"(ππ jj CC then % Acceptance criterion

"ππ ← % Accept if better than incumbent

if ∑∑ < *)()"(ππ jj CC then % check if new best solution

"* ππ ←
endif

elseif }/))"()(exp{()(eTemperaturCCrand jj ∑∑ −≤ ππ then

"ππ ← % Simulated annealing acceptance criterion
endif

until termination criterion is met
end

Fig. 3. Pseudo-code of the presented ILS algorithm.

 11

Note that the proposed ILS is not the first one presented in the literature for the total flowtime

minimization in the PFSP. As reviewed, Dong et al. (2009) developed a simple ILS algorithm, denoted

as ILSD. The main differences between the presented ILS method and ILSD are the following: On the

one hand, different acceptance criteria are used. ILSD uses the “better” version which accepts new

solutions only if they are better, whereas the presented ILS utilizes the simulated annealing type

acceptance with a certain probability to accept worse solutions. On the other hand, we adopt the

perturbation procedure consisting of several random insertion moves in the presented ILS, while

several random adjacent pairwise interchanges are employed in ILSD. Both the simulated annealing

type acceptance and insertion moves help to escape from local optima and result in the presented ILS

algorithm with better exploration than the ILSD algorithm. Lastly, ILSD employs a different local search

scheme.

3.2. Population variant: The pILS algorithm

As shown, ILS works over an incumbent solution π and returns the best solution*π after the

optimization run. One possible weak spot is that this imposes a single search direction.

Population-based metaheuristics, such as, for example, genetic algorithms, have been widely employed

in flowshop scheduling. Therefore, we also propose a population ILS, referred to as pILS, that

maintains a population of solutions during the search. However, we are concerned about keeping the

proposed methods simple. Our presented pILS uses LR(x) to generate a population of x initial solutions.

Instead of just using the best solution returned by)/(mnLR , we keep all the constructed x sequences

to form the initial population (so x is the population size). After initialization, pILS picks a solution

from the population using a selection operator and applies the perturbation procedure presented in

section 3.1.3. Then pILS performs the iRZ local search to the perturbed solution to generate a local

optimum.

Two important issues arise when dealing with a population ILS method. First, at each iteration, a

selection operator has to be applied in order to select promising solutions. Selecting just the best

solution basically nullifies the population advantage. Randomly selecting individuals results in a slow

converging method. Second, once an ILS iteration has been finished, we have to decide if the new

solution is accepted into the population or discarded. Diversification and intensification are two key

issues in the optimization process of population-based methods. Diversification aims to maintain

 12

sufficient diversity within the population so that individuals are spread out widely within the search

space (Yao et al, 2010). Ideally, a diverse population is more likely to evolve. However, as the

population evolves after a number of generations, its diversity diminishes and the individuals in the

population become very similar. This results in search stagnation and the best solution in the population

ceases to improve. To overcome these issues, we present two enhancements. These come in the form of

a bi-selection method and a diversity control mechanism.

For selection operators, tournament is widely used in evolutionary algorithm applications for

PFSPs due to its simplicity. We consider a tournament selection with size two in the presented pILS.

That is, two solutions are picked randomly from the current population, and the one with the lower total

flowtime value is chosen. However, if only the value of total flowtime is used as the measure for

selection, some promising individuals with larger total flowtime values will be eliminated soon. These

individuals may lead to much better solutions after a number of iterations. Therefore, it is important to

increase the probability that these individuals have in the selection. We use the “age” to represent the

number of iterations an individual survives. Younger individuals undergo less iterations. The search

areas around them are not well explored. We increase the chance of selection for these individuals, and

consider another tournament selection using the age of individuals as a measure. That is, we randomly

pick two individuals from the population, and the younger one is chosen for reproduction. In our pILS,

the presented two selection schemes are applied randomly with equal probability (50%-50%) in the

search.

We also consider the diversification of the population in the generational scheme, the process by

which offspring replace old members from the previous generation. If the generated local optimum is

better than the worst solution in the population, and if there is no other identical solution in the

population, the obtained solution replaces the worst solution and becomes a new member of the

population. This population management with clone avoidance is known as steady state and was first

used for flowshop scheduling problems by Ruiz et al. (2006). However, note that two solutions might

slightly differ in their respective permutations so this steady state generational scheme still suffers from

population convergence. We also consider a diversity measure for the population. With this, the new

solution in only included into the population if also the average diversity measure of the population

does not decrease. An aspiration criterion is utilized. If the generated local optimum is strictly better

than every individual of the population, the worst solution is replaced by the generated local optimum,

 13

regardless of the deterioration in the average diversity measure.

We use the diversity measure recently presented by Pan and Ruiz (2012). The measure is based on

both the job order and on similar blocks of jobs in the sequences of the current population. It is now

briefly explained as follows:

Step 1. Calculate the job order matrix []
nnji ×,φ as []



















=
×

nnnn

n

n

nnji

,2,1,

,22,21,2

,12,11,1

,

φφφ

φφφ
φφφ

φ

L

LOLL

L

L

, where ji ,φ is

the number of times that job j appears at position i after considering all individuals of the

population.

Step 2: Calculate the block matrix []
nnjj ×,'λ as follows: []



















−

−
−

=
×

L

LOLL

L

L

2,1,

,21,2

,12,1

,'

nn

n

n

nnjj

λλ

λλ
λλ

λ , where

jj ,'λ represents the number of times that job j appears immediately after job 'j .

Step 3: Count the number of elements that are larger than zero in []
nnji ×,φ , and denote it as α .

Step 4: Count the number of elements that are larger than zero in []
nnjj ×',λ , and denote it as β .

Step5. The diversity value of the population div is then computed as follows:

,2
)1,1min()1(

)1(

)1,min(








−−×−
−−+

−×
−=

xnn

n

xnn

n
div

βα

where x is the population size. The above process is repeated until a termination condition is reached.

pILS is outlined in Fig. 4.

procedure The presented pILS algorithm

Set the parameters x and γ

Generate an initial population of size x using)(xLR

populationtheinsolutionbest←*π % Best solution found so far

repeat
Select a solution π from the population using the presented bi-selection scheme

)(' ππ onPerturbati← % Perform perturbation procedure

)'(" ππ iRZ← % Perform local search

Accept "π according to the presented generational scheme

if ∑∑ < *)()"(ππ jj CC then % check if new best solution

"* ππ ←
endif

until termination criterion is met
end

 14

Fig. 4. Pseudo-code of the population extension of ILS or pILS.

3.3. Iterated Greedy methods: IGA and pIGA

IG was introduced by Ruiz and Stützle (2007) for solving the permutation flow shop with

makespan criterion. IG starts from an initial solution generated by a heuristic and iterates over a main

loop consisting of two phases: destruction and construction. During the destruction phase, some jobs

are randomly removed from the current solution. Afterwards, the construction procedure applies a

greedy constructive algorithm to reconstruct a complete solution by reinserting the previously removed

jobs. Before continuing with the next iteration, an acceptance criterion decides whether the newly

constructed solution replaces the incumbent solution. A local search is optionally applied to the initial

solution and to the constructed solution. The procedure of the presented IG, referred to as IGA, is

outlined in Fig. 5.

procedure IGA

tionitialSouluGenerateIn←0π % Generate an initial solution

)(0ππ hLocalSearc← % Local search

repeat
)(_' ππ onConstructinDestructio← % Destruction and construction

)'(" ππ hLocalSearc← % Local search

),"(πππ erionAcceptcrit← % Decide if new solution replaces the incumbent

until termination criterion is met
end

Fig. 5. Pseudo-code of the Iterated Greedy Algorithm (IGA) of Ruiz and Stützle (2007).

As can be seen, IGA can be considered as a variation of the basic ILS algorithm. The main

difference is that ILS randomly perturbs a solution and in the IGA, this perturbation is carried out by a

destruction of the solution followed by a greedy reconstruction. If the greedy method is effective, IGA

can outperform ILS, as shown in Ruiz and Stützle (2007) and others. The presented IGA adopts

LR(n/m) to generate an initial solution, and employs iRZ as the local search procedure. Additionally,

the same Destruction_Construction procedure as presented in Ruiz and Stützle (2007) is employed,

where d jobs are randomly selected and removed and they are later inserted in all possible positions,

one by one, in the construction procedure. The parameter d needs careful calibration. Finally, we

employ the same simulated annealing type acceptance criterion as in the proposed ILS. The

Destruction_Construction procedure is detailed in Fig. 6 (Ruiz and Stützle, 2007). The complete

procedure of the presented IGA is described in Fig. 7.

 15

Procedure),(_ donConstructinDestructio π

Set Rπ empty, ππ ←' %Destruction

for 1←i to d do

←'π remove a randomly selected job from 'π

←Rπ include the removed job into
Rπ

endfor
for 1←j to d do %Construction

←'π best permutation obtained after inserting job
R
jπ in all possible positions of 'π

endfor
end

Fig. 6. The destruction and construction procedure of Ruiz and Stützle (2007).

procedure the presented IGA

Set the parameters d and λ

)/(0 mnLR←π % Generate an initial solution

)(0ππ iRZ← % Local search

ππ ←* % Best solution found so far
repeat

)(_' ππ onConstructinDestructio← % Destruction and construction

)'(" ππ iRZ← % Local search

if ∑∑ <)()"(ππ jj CC then % Acceptance criterion

"ππ ←

if ∑∑ < *)()"(ππ jj CC then % Check if new best solution

"* ππ ←
endif

elseif }/))"()(exp{()(eTemperaturCCrand jj ∑∑ −≤ ππ then

"ππ ←
endif

until termination criterion is met
end

Fig. 7. Pseudo-algorithm of the presented IGA.

Note that Pan et al. (2008) also proposed an IGA method for the PFSP and total flowtime

minimization, denoted in this paper as IGRLS. However, the authors employed a complex referenced

local search method as well as some other added complexities. In comparison, our presented IGA is

simpler and easier to code. As done with the pILS algorithm, the proposed IGA is extended in an

identical way to form what we have denoted as pIGA. The same bi-tournament selection and

generational scheme operators are employed.

 16

4. Calibration of the proposed algorithms

ILS, pILS, IGA and pIGA have relatively few parameters, especially when compared to recently

published metaheuristics. Still, these have to be properly calibrated. We employ a Design of

Experiments (DOE, Montgomery, 2009) approach. DOE is an advanced statistical technique that helps

in understanding the effect that some factors have over a given response variable. In our case, the

factors are the parameters that need calibration and the response variable is the performance of the

different algorithm configurations. Factors are tested at some levels or variants and therefore, some

initial runs are required in order to pick a suitable set of levels to test. After a series of preliminary

experiments, we consider the following levels for the parameters. For the ILS algorithm: perturbation

length (γ) is tested at three levels: 2, 3 and 4; temperature factor (λ) is tested at four levels: 1.0, 2.0,

3.0 and 4.0. For the pILS algorithm, perturbation length (γ) is tested at three levels: 2, 3 and 4 and

population size (x) is tested at four levels: 3, 5, 7 and 9. For IGA, destruction size (d) is tested at three

levels: 6, 8 and 10 and the temperature factor (λ) is tested at four levels: 1.0, 2.0, 3.0 and 4.0. For

pIGA, destruction size (d) is tested at three levels: 6, 8 and 10; population size (x) is tested at four

levels: 3, 5, 7 and 9. We obtain a total of 1243 =× different combinations, i.e., 12 different

configurations for each of the proposed algorithms after combining all possible values of the tested

factor levels. All the configurations of each algorithm are tested independently in a full factorial

experimental design with a termination criterion set to a maximum elapsed CPU time nmt 10=

milliseconds. Note that this termination criterion increases with the size of the instance. This is needed

in order to decouple the effect of the running time from the size of the instances, i.e., worse results

could be wrongly attributed to the size of the instance instead of insufficient CPU time.

Each algorithm is tested with a set of 28 randomly generated instances. It is of paramount

importance to separate the calibration benchmark from the final testing benchmark. Calibrating

algorithms with the same benchmark results in over calibration and in too optimistic results, where

those excellent results might not be transferrable to real instances or to other benchmarks. The number

of jobs and machines for each calibration instance is randomly chosen from the following sets

}200,175,150,125,100,75,50{∈n and }20,15,10,5{∈m . The processing times for each instance are

obtained from discrete uniform distribution in the interval [1, 99]. For each instance, five independent

replications are carried out in the experiments (i.e., each algorithm is run five times for each instance).

 17

Therefore, the total number of results is 168052812 =×× for each one of the four presented

algorithms. All the presented algorithms are coded in Visual C++ 6.0 and all the configurations are run

on a cluster of 30 blade servers each one with two Intel XEON 5254 processors running at 2.5 GHz

with 16 GB of RAM memory. There is no parallel computing. The 30 blade servers are just used in

order to divide the workload and experimentations. As a response variable for the experiments, we

calculate the relative percentage deviation (RPD) from a reference solution as follows:

100/)()(×−= ∗∗ ccccRPD ii (4)

where ic is the total flowtime value generated in the thi replication by a given algorithm

configuration, and ∗c is the minimum total flowtime value found by any of the algorithm

configurations. All the results are analyzed by means of a multi-factor Analysis of Variance (ANOVA)

statistical technique where n and m are considered as non-controllable factors. This method has been

used in Ruiz, et al. (2006), Ruiz and Stützle (2007), Vallada and Ruiz (2010), and many others.

ANOVA is a very powerful statistical approach that allows setting the different parameters at

statistically significant values among the tested ones. ANOVA is a parametric test and it is needed to

check its three main hypotheses, i.e., normality, homogeneity of variance (or homoscedasticity) and

independence of the residuals. Given the large number of treatments and replicates, the residual

analysis showed no indication of severe violation of any of the hypotheses.

Due to reasons of space, we briefly comment the results of the ANOVA analysis and calibration.

For the ILS algorithm, the perturbation length (γ) results in statistically significant differences in the

response variable at a 95% confidence level, whereas the temperature factor (λ) does not yield

significant differences (this is consistent with the results of Stützle, 2006 and Ruiz and Stützle, 2007).

This suggests that the ILS algorithm is robust with respect to the temperature factor, at least with the

tested values (}4,3,2,1{∈λ). For the pILS algorithm, both factors (γ and x) are statistically

significant. For IGA, the destruction size (d) is significant while the temperature factor (λ) is not

(again, this is consistent with the calibrations given in Ruiz and Stützle, 2007). For pIGA, population

size (x) results in significant differences, while the destruction size (d) does not. After the calibration

experiments, we set the parameters as follows. For the ILS algorithm, 2=γ and 0.4=λ . For the

pILS algorithm, 2=γ and 3=x . IGA: 8=d and 0.2=λ and pIGA, 8=d and 3=x .

 18

All experimental results, tables and plots are available upon request from the authors.

5. Computational and statistical evaluation

We now compare the four proposed methods against the best algorithms from the literature. For

the evaluation we employ the well known benchmark of Taillard (1993). This test bed has been used in

Liu and Reeves (2001), Tasgetiren et al. (2007), Tseng and Lin (2009), and almost in every PFSP paper.

There are a total of 120 instances where { }500,200,100,50,20∈n and { }20,10,5∈m . These instances

are divided into 12 subsets, resulting from the combinations of values for n and m. There are 10

replicates in each subset. Not all combinations are present and the sets available are 20×5, 20×10,

20×20, 50×5, 50×10, 50×20, 100×5, 100×10, 100×20, 200×10, 200×20 and 500×20. To maintain the

orthogonality in the experiment, we generate the three missing additional subsets of instances: 200×5,

500×5 and 500×10. These are extracted from instances 200×10 and 500×20. We take the processing

times of the first five machines of instances in subset 200×10 to create instances of the subset 200×5,

and extract the processing times of the first five or 10 machines of instances in subset 500×20 to

generate the instances of the subsets 500×5 or 500×10, respectively. In total, we use 150 instances for

each algorithm.

We re-implemented 12 powerful metaheuristics presented in recent years, and compare them with

the algorithms of this paper. The algorithms implemented are: DDERLS and IGRLS of Pan et al. (2008),

HGAT1 of Tseng and Lin (2009), HGAT2 of Tseng and Lin (2010), HGAZ of Zhang et al. (2009), ILSD

of Dong et al. (2009), EDAJ and VNSJ of Jarboui et al. (2009), AGA of Xu et al. (2011), DABC and

hDDE of Tasgetiren et al. (2011) and SLS of Dubois-Lacoste et al. (2011). Dubois-Lacoste et al. (2011),

presented an Iterated Greedy Algorithm for the bi-objective flowshop. However, and although not

tested in the original paper, a simpler method is proposed for the total flowtime flowshop. Therefore,

we also test it in this paper.

All algorithms have been coded in Visual C++ 6.0. We strictly follow all original explanations and

details given in the original papers in order to closely reproduce published results. All methods are run

on a cluster of 30 blade severs each one with two Intel XEON 5254 quad core processors running at 2.5

GHz with 16 GB of RAM memory. The experiments are carried out in virtualized Windows XP

machines, each one with one virtualized processor and 2 GB of RAM memory. To make a fair

comparison, all the algorithms adopt the same maximum elapsed CPU time limit of mnt ρ=

 19

milliseconds as a termination criterion, where ρ has been tested at three values: 30, 60 and 90. The

choice of this stopping criterion is motivated by the fact that all algorithms are coded in the same

programming language, share most library functions and data structures, and are executed on the same

computer environment. Then we can safely say that all algorithms have the same CPU power and time

available and that results are fully comparable. This termination criterion has been increasingly used in

the recent literature on scheduling Ruiz et al. (2006), Ruiz and Stützle (2007, 2008), Vallada and Ruiz

(2010), Ribas et al. (2011) and several others. Additionally, with the three termination criteria, we can

test how the different algorithms perform with different CPU times. ρ =30 turns into three seconds for

the smallest instances of 20×5 whereas ρ =90 translates into 900 seconds for the largest instances of

500×20. Therefore, in the tests we run all methods from small to large CPU times. For each of the 150

instances, five independent runs are carried out for each algorithm. We calculate the average relative

percentage deviation from the best known solution for each instance. The computed results, averaged

across the five replications for each instance and grouped for each subset, are reported in Tables 1, 2

and 3.

 20

Table 1. Computational results of the algorithms (ρ =30). Best and worst values in bold and italics, respectively.

Instances IGRLS DDERLS EDAJ VNSJ ILSD HGAT1 HGAZ HGAT2 AGA hDDE DABC SLS IGA pIGA ILS pILS
20×5 0.01 0.01 1.32 2.92 0.01 0.15 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.01 0.00 0.01

20×10 0.00 0.00 1.73 2.90 0.00 0.24 0.02 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.01

20×20 0.00 0.00 1.06 2.15 0.00 0.13 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50×5 0.35 0.35 3.06 3.08 0.90 1.42 0.29 0.92 0.85 0.40 0.71 0.73 0.34 0.38 0.38 0.42

50×10 0.45 0.48 4.19 4.38 0.93 2.02 0.58 0.97 1.33 0.68 0.82 0.40 0.40 0.37 0.42 0.39

50×20 0.52 0.52 4.11 4.53 0.77 1.93 0.62 1.00 1.34 0.73 0.81 0.34 0.50 0.46 0.47 0.44

100×5 0.35 0.33 6.65 3.01 0.62 2.13 0.56 3.69 0.68 0.44 0.93 0.74 0.24 0.26 0.31 0.33

100×10 0.50 0.52 7.82 4.54 0.98 2.77 1.49 5.01 1.66 1.04 1.69 0.52 0.46 0.38 0.50 0.42

100×20 0.69 0.67 7.02 4.72 1.02 2.98 2.05 4.88 2.16 1.10 1.68 0.49 0.60 0.56 0.52 0.59

200×5 0.28 0.31 12.18 4.01 0.24 2.33 0.48 8.74 0.40 0.48 0.67 0.64 0.11 0.12 0.16 0.22

200×10 0.46 0.45 12.06 5.79 0.46 3.01 1.29 9.56 1.09 1.12 1.24 0.53 0.27 0.37 0.27 0.50

200×20 0.67 0.66 11.41 6.35 0.67 3.22 2.21 8.44 2.24 1.62 1.89 0.43 0.37 0.63 0.40 0.53

500×5 0.24 0.26 15.96 7.77 0.09 3.32 0.16 13.74 0.16 0.34 0.32 0.47 0.13 0.09 0.13 0.14

500×10 0.55 0.56 14.15 8.49 0.17 3.92 0.37 12.17 0.31 0.73 0.68 0.51 0.07 0.16 0.08 0.24

500×20 0.75 0.69 13.14 8.48 0.48 3.84 0.93 10.12 0.77 0.94 0.99 0.37 0.14 0.42 0.16 0.45

Average 0.39 0.39 7.72 4.88 0.49 2.23 0.74 5.29 0.87 0.64 0.83 0.41 0.24 0.28 0.25 0.31

 21

Table 2. Computational results of the algorithms (ρ =60). Best and worst values in bold and italics, respectively.

Instances IGRLS DDERLS EDAJ VNSJ ILSD HGAT1 HGAZ HGAT2 AGA hDDE DABC SLS IGA pIGA ILS pILS
20×5 0.01 0.01 1.23 2.92 0.01 0.12 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01

20×10 0.00 0.00 1.59 2.90 0.00 0.21 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20×20 0.00 0.00 1.03 2.15 0.00 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50×5 0.35 0.34 2.67 3.14 0.85 1.19 0.18 0.78 0.61 0.39 0.58 0.72 0.35 0.36 0.36 0.39

50×10 0.44 0.47 3.90 4.47 0.90 1.85 0.38 0.80 1.06 0.61 0.66 0.36 0.43 0.41 0.42 0.39

50×20 0.48 0.51 3.93 4.57 0.67 1.76 0.40 0.72 1.05 0.63 0.64 0.24 0.47 0.41 0.45 0.42

100×5 0.33 0.29 5.02 2.70 0.68 2.01 0.42 2.25 0.63 0.41 0.90 0.80 0.25 0.26 0.33 0.33

100×10 0.48 0.49 6.23 4.20 0.94 2.75 1.14 2.78 1.46 0.88 1.57 0.57 0.41 0.37 0.50 0.40

100×20 0.65 0.71 5.93 4.43 1.00 3.02 1.58 2.60 1.86 0.99 1.52 0.49 0.62 0.51 0.51 0.53

200×5 0.24 0.26 10.87 3.19 0.32 2.35 0.44 6.69 0.43 0.38 0.45 0.69 0.15 0.15 0.19 0.25

200×10 0.42 0.38 10.97 5.02 0.51 2.97 1.19 8.10 1.10 1.02 1.22 0.51 0.23 0.35 0.27 0.45

200×20 0.59 0.57 10.42 5.57 0.63 3.26 2.02 7.51 2.15 1.52 1.94 0.45 0.37 0.50 0.34 0.47

500×5 0.22 0.22 15.16 5.95 0.11 3.10 0.19 13.39 0.16 0.36 0.32 0.49 0.07 0.09 0.08 0.14

500×10 0.51 0.49 13.67 7.16 0.20 3.64 0.41 11.86 0.34 0.74 0.65 0.48 0.08 0.16 0.10 0.23

500×20 0.70 0.64 12.71 7.41 0.49 3.57 1.05 9.96 0.87 1.02 1.00 0.29 0.19 0.47 0.22 0.48

Average 0.36 0.36 7.02 4.39 0.49 2.13 0.63 4.50 0.78 0.60 0.76 0.41 0.24 0.27 0.25 0.30

 22

Table 3. Computational results of the algorithms (ρ =90). Best and worst values in bold and italics, respectively.

Instances IGRLS DDERLS EDAJ VNSJ ILSD HGAT1 HGAZ HGAT2 AGA hDDE DABC SLS IGA pIGA ILS pILS
20×5 0.01 0.01 1.20 2.92 0.01 0.09 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01

20×10 0.00 0.00 1.56 2.90 0.00 0.15 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20×20 0.00 0.00 0.97 2.15 0.00 0.06 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50×5 0.34 0.32 2.58 3.16 0.85 1.07 0.17 0.68 0.49 0.37 0.49 0.70 0.31 0.33 0.31 0.34

50×10 0.47 0.47 3.87 4.53 0.86 1.76 0.39 0.73 0.90 0.60 0.62 0.36 0.44 0.41 0.42 0.40

50×20 0.51 0.53 3.91 4.64 0.69 1.68 0.42 0.69 0.92 0.63 0.64 0.24 0.50 0.43 0.46 0.44

100×5 0.29 0.26 4.18 2.63 0.71 1.93 0.31 1.66 0.52 0.37 0.83 0.80 0.23 0.24 0.33 0.31

100×10 0.54 0.52 5.57 4.20 1.01 2.79 0.96 2.23 1.34 0.87 1.50 0.63 0.45 0.41 0.53 0.44

100×20 0.63 0.68 5.46 4.42 1.01 2.98 1.35 1.99 1.70 0.94 1.37 0.47 0.59 0.52 0.48 0.48

200×5 0.20 0.23 10.12 2.75 0.36 2.31 0.40 5.72 0.41 0.33 0.44 0.72 0.14 0.15 0.20 0.26

200×10 0.39 0.37 10.16 4.63 0.57 2.99 1.13 7.24 1.10 0.98 1.22 0.51 0.24 0.31 0.29 0.44

200×20 0.53 0.53 9.63 5.13 0.63 3.30 1.91 6.52 1.97 1.46 1.94 0.41 0.35 0.45 0.33 0.40

500×5 0.21 0.21 14.69 5.17 0.12 3.08 0.20 12.71 0.17 0.36 0.31 0.50 0.08 0.10 0.09 0.14

500×10 0.43 0.43 13.26 6.47 0.21 3.59 0.42 11.44 0.34 0.72 0.70 0.45 0.08 0.16 0.11 0.23

500×20 0.65 0.61 12.45 6.83 0.49 3.58 1.12 9.77 0.93 1.05 1.08 0.27 0.22 0.48 0.25 0.47

Average 0.35 0.34 6.64 4.17 0.50 2.09 0.59 4.09 0.72 0.58 0.74 0.40 0.24 0.27 0.25 0.29

 23

From the computational results all of the presented algorithms yield solutions that are most of the

time better than those of the other methods. From Table 1 where ρ =30, we can see that the largest

overall average RPD (AVRPD) value generated by the presented algorithms is 0.31%, which is much

smaller than those of the competing methods, being IGRLS and DDERLS the closest competitors with

average deviations of 0.39%. IGA is the best performer with an AVRPD value equal to 0.24%, followed

by ILS (0.25%), pIGA (0.28%) and pILS (0.31%). Of special interest is comparing ILSD with the

proposed ILS, as both methods are based on the ILS framework. We can see that our proposed ILS

gives results that are lower on average than ILSD. Also, when comparing IGRLS with our proposed IGA

we see that the results of IGA are, on average, lower than those of IGRLS. Other methods, such as SLS,

provide the best solutions for some specific instance sizes (50×20 and 100×20). As we can see, pIGA

does not manage to outperform the simpler IGA. The same can be said about pILS when compared to

ILS. However, for some specific instance groups (100×10), it seems that the population methods

achieve a slightly better performance. This better performance is later shown to be statistically

significant. In any case, the added complexity of pILS and pIGA does not seem worth given the

marginally worse results. It has to be noted that earlier versions of pILS and pIGA without the

bi-selection scheme and diversity control mechanism were clearly worse than ILS and IGA. Therefore,

it seems clear that simple methods like ILS and IGA that iterate over a single solution, work best.

For 60=ρ and 90=ρ , we again find from tables 2 and 3 that the results of the proposed

algorithms are much lower than those of the others and IGA is again the best performing method in

terms of AVRPD. We also see how the four proposed methods barely improve from one table to the

other, meaning that all four converge rapidly and additional CPU time does not translate into much

better solutions. The same can be said about the best performing competing methods such as IGRLS,

DDERLS, SLS and ILSD, i.e., results improve only slightly with double and triple allowed CPU time.

However, for the other methods, larger improvements are seen with additional CPU time but these are

not enough to compete with the best methods. Hence, it can be concluded that the proposed local

search based algorithms perform better than the 12 compared competing methods for the problem

considered and under our experimental settings.

It is worth insisting that there are many similarities in the eight best performing algorithms with

AVRPD values of less than 0.5%. Namely, the LR heuristic is used most of the times to generate initial

solutions, and the RZ improvement procedure is used as a local search phase also in most of these high

 24

performing algorithms. This evidences the effectiveness of taking advantage of the LR heuristic and the

RZ-improvement procedure for solving the PFSP with total flowtime criterion. In other words, the

relatively worse performance of EDAJ, HGAT1, HGAT2 and others might be mainly due to their

relatively worse initialization and due to the less effective local search methods. In any case, our

proposed methods are arguably simpler than most others and still attain the best performance. The

superiority of the presented algorithms and the ILSD of Dong et al. (2009) demonstrates the

effectiveness of simple local search frameworks. Together with the fact that local search also plays a

significant role in most high performing methods, we conclude that a well designed local search based

algorithm is all that is needed in order to obtain state-of-the-art results for the problem considered

without turning into more complex methods such as genetic or estimation of distribution algorithms.

To check whether the observed differences from the above tables 1-3 are indeed statistically

significant, we carry out a multifactor statistical ANOVA test where n, m, replication, CPU time

parameter ρ and the type of algorithm are considered as factors. We compare the twelve best

performing algorithms only: IGA, pIGA, ILS, pILS, DDERLS, IGRLS, SLS, ILSD, hDDE, HGAZ, DABC

and AGA. The remaining four algorithms (HGAT1, HGAT2, EDAJ and VNSJ) were ruled out since it

was not needed to test for significance, since their results were clearly worse than the rest. The ANOVA

results (not shown in detail due to reasons of space) indicate that n, m, ρ and the type of algorithm

result in statistically significant differences in the response variable RPD at a 95% confidence level,

whereas the replication does not show significant differences (replicate is not expected to be significant,

so this outcome validates the statistical test. These factors are often referred to as witness factors). Fig.

8 reports the means plot together with 95% Tukey honest significant differences (HSD) confidence

intervals of the interaction between the type of algorithms and CPU time parameter ρ . Note that

overlapping intervals denote statistically insignificant differences between the plotted overlapped

means. Each plotted average corresponds to the average of 150 instances run five times (750 results).

HSD confidence intervals are conservative and counter the bias in the type I statistical error of multiple

pairwise comparisons. The figure depicts the overall mean, without separating each instance size,

“zoomed-in” figures for each instance size show slightly different results and in some occasions, not so

wide intervals. From the figure it is clear that the results of IGA and ILS are statistically better than

those of competing methods. pIGA and pILS are, on average, statistically equivalent to DDERLS and

IGRLS. They are, however, statistically better than the next best competing method (SLS). In the figure

 25

we can see that the better the method, the smaller the difference in the means as CPU time increases.

For ρ =60 and ρ =90, i.e., double or triple the CPU time, IGA shows a complete overlap of the three

intervals. However, pILS shows a slight improvement as CPU time increases but this improvement is

far from being statistically significant. Only the last three methods, HGAZ, DABC and AGA, show

statistically better results as ρ increases. This means that the algorithms have not converged and that

they might need a substantial additional CPU time to reach the results of the other methods. As a final

conclusion, we can safely state that the proposed algorithms are the best performers for the permutation

flowshop scheduling problem with the objective of minimizing total flowtime. Arguably, we can also

state that IGA and ILS are markedly simple and easier to implement than some of the other methods.

Fig. 8. Means and confidence intervals of the interaction between the best tested algorithms and

the allowed CPU time in the ANOVA experiment.

In order to facilitate follow up research, we report the best known solutions found so far in Table 4.

This was already done in Jarboui et al. (2009) and Xu et al. (2011), among others. We run our

algorithms for a maximum elapsed CPU time t=400mn milliseconds. We compare the best solution

found by our algorithms with the solutions reported by Pan et al. (2008), Tseng and Lin (2009), Zhang

et al. (2009), Dong et al. (2009), Jarboui et al. (2009) and Tseng and Lin (2010), Czapiński (2010),

Zheng and Yamashiro (2010), Zhang and Li (2011), Tasgetiren et al. (2011), Xu et al. (2011). The best

solution for each of the 120 Taillard (1993) instances is calculated by closely examining all existing

results. For the new 30 instances generated from Taillard’s instances, we show the best solution found

by all the compared algorithms in this paper. We use TA915 to represent the instance obtained from

Interactions and 95.0 Percent Tukey HSD Intervals

0.15

0.35

0.55

0.75

0.95

A
V
R
P
D

IGA

ILS

pIGA

pILS

DDERLS

IGRLS

SLS

ILSD

hDDE

HGAZ

DABC

AGA

30

60

90

 26

TA91 by considering the processing times from the first five machines. It is interesting to see from

Table 4 that the proposed algorithms in this paper have further improved 12 out of 120 instances. Note

that these new 12 best solutions have been obtained for the largest and therefore presumably hardest

instances of Taillard.

Table 4. Best known total flowtime values for Taillard benchmark instances.

Instance
No.

Best solution Instance
No.

Best solution Instance
No.

Best solution Instance
No.

Best solution Instance
No.

Best solution

TA01 14033 TA11 20911 TA21 33623 TA31 64802 TA41 87114
TA02 15151 TA12 22440 TA22 31587 TA32 68051 TA42 82820
TA03 13301 TA13 19833 TA23 33920 TA33 63162 TA43 79931
TA04 15447 TA14 18710 TA24 31661 TA34 68226 TA44 86446
TA05 13529 TA15 18641 TA25 34557 TA35 69351 TA45 86377
TA06 13123 TA16 19245 TA26 32564 TA36 66841 TA46 86587
TA07 13548 TA17 18363 TA27 32922 TA37 66253 TA47 88750
TA08 13948 TA18 20241 TA28 32412 TA38 64332 TA48 86727
TA09 14295 TA19 20330 TA29 33600 TA39 62981 TA49 85441
TA10 12943 TA20 21320 TA30 32262 TA40 68770 TA50 87998
TA51 125831 TA61 253266 TA71 298385 TA81 365463 TA91 1046314
TA52 119247 TA62 242281 TA72 274384 TA82 372449 TA92 1034195
TA53 116459 TA63 237832 TA73 288114 TA83 370027 TA93 1046902
TA54 120261 TA64 227738 TA74 301044 TA84 372393 TA94 1030481
TA55 118184 TA65 240301 TA75 284681 TA85 368915 TA95 1034027
TA56 120586 TA66 232342 TA76 269686 TA86 370908 TA96 1006195
TA57 122880 TA67 240366 TA77 279463 TA87 373408 TA97 1053051
TA58 122489 TA68 230945 TA78 290908 TA88 384525 TA98 1044875
TA59 121872 TA69 247921 TA79 301970 TA89 374423 TA99 1026137
TA60 123954 TA70 242933 TA80 291283 TA90 379296 TA100 1030299
TA101 1227733 TA111 6698656 TA915 937273 TA1115 5539387 TA11110 5997531
TA102 1245271 TA112 6770735 TA925 896936 TA1125 5608131 TA11210 6106675
TA103 1269673 TA113 6739645 TA935 936905 TA1135 5605732 TA11310 6073492
TA104 1238349 TA114 6785991 TA945 902818 TA1145 5526960 TA11410 6062847
TA105 1227214 TA115 6729468 TA955 920723 TA1155 5588103 TA11510 5986526
TA106 1227604 TA116 6724085 TA965 890028 TA1165 5497811 TA11610 6006542
TA107 1243707 TA117 6691468 TA975 930040 TA1175 5483350 TA11710 5966581
TA108 1246123 TA118 6783916 TA985 914638 TA1185 5572833 TA11810 6080320
TA109 1234936 TA119 6711305 TA995 910726 TA1195 5554145 TA11910 5994142
TA110 1250596 TA120 6755722 TA1005 903188 TA1205 5509152 TA12010 6013461

Bold values represent the new best known solutions found by the proposed algorithms in this paper.

6. Conclusions

The permutation flowshop scheduling problem with total flowtime minimization has been subject

of intense research in the last years. Complex and high performing metaheuristic algorithms have been

introduced. In this paper, we have proposed four simple methods, including an iterated greedy

algorithm (IGA), an iterated local search (ILS), a population-based IGA (pIGA), and a

population-based ILS (pILS). These algorithms perform an extensive search in the space of local

 27

optima. They are very simple, easy to implement and to replicate but at the same time they provide

state-of-the-art results.

The best combination of parameters for each algorithm was obtained by means of a Design of

Experiments approach that involves the evaluation of different alternatives. The evaluation of the

proposed methods was carried out against the 12 best performing methods from the literature.

According to the extensive experimental and statistical analyses, the proposed IGA and ILS methods

performed better than pIGA and pILS, and they outperform the existing methods for the problem

considered. The fact that simple methods perform better than complex existing approaches, and also

that for our proposed heuristics using populations did not improve results, reinforces the idea that

simple local search based methods are enough to solve the PFSP with total flowtime criterion.

After comparing the best solutions produced by the presented algorithms and those reported in the

literature, we found that 12 out of 120 best known solutions for Taillard’s benchmark suite were further

improved by the presented algorithms.

Future research directions involve the consideration of more complex scheduling problems and

objectives. It seems worthwhile to apply the presented algorithms to more realistic scheduling

problems like those with setup times, parallel machines, buffer size constraints, no-idle and no-wait

considerations. There have been already many studies in this regard and it is possible that simple

methods also perform equally well in those settings.

Acknowledgements

This research is partially supported by National Science Foundation of China under Grants

60874075, 70871065, 60973086, and Science Foundation of Shandong Province, China

(BS2010DX005), and Postdoctoral Science Foundation of China under Grants 20100480897. Rubén

Ruiz is partially funded by the Spanish Ministry of Science and Innovation, under the project “SMPA -

Advanced Parallel Multiobjective Sequencing: Practical and Theoretical Advances” with reference

DPI2008-03511/DPI, by the Small and Medium Industry of the Generalitat Valenciana (IMPIVA) and

by the European Union through the European Regional Development Fund (FEDER) inside the R+D

program “Programa de I+D para Institutos Tecnológicos de la Red IMPIVA” during the year 2010,

with project number IMDEEA/2011/142.

References

Allahverdi, A and Aldowaisan, T. (2002). New heuristics to minimize total completion time in

m-machine flowshops. International Journal of Production Economics, 77(1):71–83.

Baker, K. R. (1974). Introduction to Sequencing and Scheduling. John Wiley & Sons, New York.

 28

Ballestín, F., Schwindt, C. and Zimmermann, J. (2007). Resource Leveling in Make-to-Order

Production: Modeling and Heuristic Solution Method. International Journal of Operations Research,

4(1):50–62.

Bansal, S. P. (1977). Minimizing the sum of completion times of n jobs over m machines in a flowshop:

a branch and bound approach. IIE Transactions, 9(3):306–311.

Czapiński, M. (2010). Parallel simulated annealing with genetic enhancement for flowshop problem

with Csum. Computers & Industrial Engineering, 59(4):778–785.

Dong, X. Y., Huang, H. K. and Chen, P. (2009). An iterated local search algorithm for the permutation

flowshop problem with total flowtime criterion. Computers & Operations Research, 36(5):1664–1669.

Dubois-Lacoste, J., López-Ibáñez, M. and Stützle, T. (2011). A Hybrid TP+PLS Algorithm for

Bi-objective Flow-Shop Scheduling Problems. Computers & Operations Research, 38(8):1219–1236.

Fanjul-Peyro, L. and Ruiz R. (2010). Iterated greedy local search methods for unrelated parallel

machine scheduling. European Journal of Operational Research, 207(1):55–69.

Framinan, J.M., Leisten, R and Ruiz-Usano, R. (2005). Comparison of heuristics for flowtime

minimisation in permutation flowshops. Computers & Operations Research, 32(5):1237–1254.

Gonzalez, T. and Sahni, S. (1978). Flowshop and jobshop schedules: Complexity and approximation.

Operations Research, 26(1):36–52.

Gupta, J. N. D. (1972). Heuristic algorithms for multistage flowshop scheduling problem. AIIE

Transactions, 4(1):11–18.

Gupta, J. N. D., Chen, C. L., Yap, L. Y. and Deshmukh, H. (2000). Designing a tabu search algorithm

to minimize total flow time in a flow shop. Arabian Journal for Science and Engineering, 25(1C):79–

94.

Ignall, E. and Schrage, L. E. (1965). Application of the Branch and Bound Technique to Some Flow

Shop Scheduling Problems. Operations Research, 13(3):400–412.

Jarboui, B., Ibrahim, S., Siarry, P. and Rebai, A. (2008). A combinatorial particle swarm optimization

for solving permutation flowshop problems. Computers & Industrial Engineering, 54(3):526–538.

Jarboui, B., Eddaly, M. and Siarry, P. (2009). An estimation of distribution algorithm for minimizing

the total flowtime in permutation flowshop scheduling problems. Computers & Operations Research,

36(9):2638–2646

Johnson, S. M. (1954). Optimal two- and three-stage production schedules with setup times included.

Naval Research Logistics Quarterly, 1(1):61–68.

Laha, D. and Sarin, S. C. (2009). A heuristic to minimize total flow time in permutation flow shop.

OMEGA, The international Journal of Management Science, 37(3):734–739.

Laurent, B. and Hao, J. -K. (2009). Iterated local search for the multiple depot vehicle scheduling

problem. Computers & Industrial Engineering, 57(1):277–286.

Li, X., Wang, Q. and Wu, C. (2009). Efficient composite heuristics for total flowtime minimization in

permutation flow shops. OMEGA, The International Journal of Management Science, 37(1):155–164.

Li, X. and Wu, C. (2005). An efficient constructive heuristic for permutation flow shops to minimize

total flowtime. Chinese Journal of Electronics, 14(2):203–208.

Liu, J. and Reeves, C. R. (2001). Constructive and composite heuristic solutions to the ∑ jCP //

scheduling problem. European Journal of Operational Research, 132(2):439–452.

Lourenço, H. R., Martin, O. C. and Stützle, T. (2010), Iterated local search: Framework and

applications, Chapter 12 in Gendreau, M. and Potvin, J. Y. (Eds) Handbook of Metaheuristics, 2nd.

 29

Edition, International Series in Operations Research & Management Science, Vol. 146, Kluwer

Academic Publishers, Norwell, MA, 363–397.

Minella, G., Ruiz, R. and Ciavotta, M. (2011). Restarted Iterated Pareto Greedy algorithm for

Multi-Objective Flowshop Scheduling problems. Computers & Operations Research, 38(11):1521–

1533.

Montgomery, D. (2009). Design and Analysis of Experiments. Seventh edition. John Wiley & Sons,

New York.

Osman, I. H. and Potts, C. N. (1989). Simulated annealing for permutation flow-shop scheduling.

OMEGA, The International Journal of Management Science, 17(6):551–557.

Pan, Q. -K, Tasgetiren, M. F. and Liang, Y. -C. (2008). A discrete differential evolution algorithm for

the permutation flowshop scheduling problem. Computers and Industrial Engineering, 55(4):795–816.

Pan, Q. -K and Ruiz, R. (2012). An estimation of distribution algorithm for lot-streaming flow shop

problems with setup times OMEGA, The International Journal of Management Science, 40(2):166–

180.

Pinedo, M. (2009). Scheduling: Theory, Algorithms and Systems. Springer, New York, third edition.

Rajendran, C. (1993). Heuristic algorithm for scheduling in flowshop to minimize total flowtime.

International Journal of Production Economics, 29(1):65–73.

Rajendran, C. and Ziegler, H. (1997). An efficient heuristic for scheduling in a flowshop to minimize

total weighted flowtime of jobs. European Journal of Operational Research, 103(1):129–138.

Rajendran, C. and Ziegler, H. (2004). Ant-colony algorithms for permutation flowhsop scheduling to

minimize makespan/total flowtime of jobs. European Journal of Operational Research, 155(2):426–

438.

Rajendran, C. and Ziegler, H. (2005). Two ant-colony algorithms for minimizing total flowtime in

permutation flowshops. Computers & Industrial Engineering, 48(4):789–797.

Ribas, I., Companys, R. and Tort-Martorell, X. (2011). An iterated greedy algorithm for the flowshop

scheduling problem with blocking. OMEGA, The International Journal of Management Science,

39(3):293–301.

Ruiz, R., Maroto, C. and Alcaraz, J. (2006). Two new robutst genetic algorithms for the flowshop

scheduling problem. OMEGA, The International Journal of Management Science, 34(5):461–476.

Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation

flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–2049.

Ruiz, R. and Stützle, T. (2008). An iterated greedy heuristic for the sequence dependent setup times

flowshop problem with makespan and weighted tardiness objectives. European Journal of Operational

Research, 187(3):1143–1159.

Stafford, Jr. E. F. (1988). On the development of a mixed integer linear programming model for the

flowshop sequencing problem. Journal of the Operational Research Society, 39(12):1163–1174.

Stützle, T. (1998). Local Search Algorithms for Combinatorial Problems - Analysis, Algorithms, and

New Applications. PhD thesis, TU Darmstadt, Computer Science Department. Darmstadt, Germany.

Stützle, T. (1998b). Applying iterated local search to the permutation flowshop problem. Technical

Report, AIDA-98-04, FG Intellektik, TU Darmstadt. Darmstadt, Germany.

Stützle, T. (2006). Iterated local search for the quadratic assignment problem. European Journal of

Operational Research, 174(3):1519–1539.

Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem. European

Journal of Operational Research, 47(1):65–74.

 30

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational

Research, 64(2):278–285.

Tang, L. and Liu, J. (2002). A modified genetic algorithm for the flow shop sequencing problem to

minimize mean flow time. Journal of Intelligent Manufacturing, 13(1):61–67.

Tasgetiren, M. F., Liang, Y. -C, Sevkli, M. and Gencyilmaz, G. (2007). A particle swarm optimization

algorithm for makespan and total flowtime minimization in the permutation flowshop sequencing

problem. European Journal of Operational Research, 177(3):1930–1947.

Tasgetiren, M. F., Pan, Q. -K, Suganthan, P. N. and Chen, A. H. -L. (2011). A discrete artificial bee

colony algorithm for the total flowtime minimization in permutation flow Shops. Information Sciences,

181(16):3459–3475.

Tseng, L. -Y. and Lin, Y. -T. (2009). A hybrid genetic local search for the permutation flowshop

scheduling problem. European Journal of Operational Research, 198(1):84–92.

Tseng, L. -Y. and Lin, Y. -T. (2010). A genetic local search algorithm for minimizing total flowtime in

the permutation flowshop scheduling problem. International Journal of Production Economics,

127(1):121–128.

Urlings, T., Ruiz, R. and Stützle, T.. (2010). Shifting representation search for hybrid flexible flowline

problems. European Journal of Operational Research, 207(2):1086–1095.

Vallada, E. and Ruiz, R. (2010). Genetic algorithm with path relinking for the minimum tardiness

permutation flowshop problem. OMEGA, The International Journal of Management Science,

38(1-2):556–575.

Vempati, V. S., Chen, C. -L. and Bullington, S. F. (1993). An effective heuristic for flow shop

problems with total flow time as criterion. Computers & Industrial Engineering, 25(1-4):219–222.

Xu, X., Xu Z. and Gu, X. (2011). An asynchronous genetic local search algorithm for the permutation

flowshop scheduling problem with total flowtime minimization. Expert systems with Applications,

38(7):7970–7979.

Yamada, T. and Reeves, C. R. (1998). Solving the Csum permutation flowshop scheduling problem by

genetic local search. In Proceedings of the 1998 IEEE International Conference on Evolutionary

Computation. 230–234.

Yao J, Kharma N, Grogono P (2010). Bi-objective Multipopulation genetic algorithm for multimodal

function optimization. IEEE Transactions on evolutionary computation, 14(1):80–102.

Zhang, Y., Li, X. and Wang, Q. (2009). Hybrid genetic algorithm for permutation flowshop scheduling

problems with total flowtime minimization. European Journal of Operational Research, 196(3):869–

876.

Zhang, Y. and Li, X. (2011). Estimation of distribution algorithm for permutation flow shops with total

flowtime minimization. Computers & Industrial Engineering, 60(4):706–718.

Zheng, T. and Yamashiro, M. (2010). Solving flow shop scheduling problems by quantum differential

evolutionary algorithm. International Journal of Advanced Manufacturing Technology, 49(5-8):643–

662.

