Document downloaded from:

http://hdl.handle.net/10251/35658

This paper must be cited as:

Quan-Ke Pan; Ruiz Garcia, R. (2012). Local search methods for the flowshop scheduling
problem with flowtime minimization. European Journal of Operational Research. 222(1):31-
43. doi:10.1016/j.ejor.2012.04.034.

The final publication is available at

http://dx.doi.org/10.1016/.ejor.2012.04.034

C ight
opyng Elsevier

L ocal search methods for the flowshop scheduling problem with

flowtime minimization

Quan-Ke Pah Rubén Rui

State Key Laboratory of Synthetical Automation Ryocess Industries (Northeastern University), Saegy
110819, PR China. College of Computer Science, Liaaghniversity, Liaocheng, 252059, PR China
®Grupo de Sistemas de Optimizacién Aplicada, Instifiecnolégico de Informatica, Universitat Politiende

Valéncia, Ciudad Politécnica de la Innovacién, Eifi8G, Acc. B. Camino de Vera S/N, 46021 Valen8jaain

Abstract: Flowshop scheduling is a very active research. areia problem still attracts a considerable
amount of interest despite the sheer amount ofiablai results. Total flowtime minimization of a
flowshop has been actively studied and many effecigorithms have been proposed in the last few
years. New best solutions have been found for combemchmarks at a rapid pace. However, these
improvements many times come at the cost of sdpatetl algorithms. Complex methods hinder
potential applications and are difficult to exteldsmall problem variations. Replicability of retsuis

also a challenge. In this paper, we examine simpteeasy to implement methods that at the same time
result in state-of-the-art performance. The firgb tproposed methods are based on the well known
Iterated Local Search (ILS) and lterated Greedy {t&meworks, which have been applied with great
success to other flowshop problems. Additionallg present extensions of these methods that work
over populations, something that we refer to asufagjpn-based ILS (pILS) and population-based 1G
(pIGA), respectively. We calibrate the presentegbdathms by means of the Design of Experiments
(DOE) approach. Extensive comparative evaluatioascarried out against the most recent techniques
for the considered problem in the literature. Tlesuits of a comprehensive computational and
statistical analysis show that the presented dlgyos are very effective. Furthermore, we show that,
despite their simplicity, the presented methodsade to improve 12 out of 120 best known solutions

of Taillard’s flowshop benchmark with total flowtercriterion.

Keywords: Scheduling; Flowshop; Flowtime; Local search; Metatfistics

1. Introduction

Finite capacity scheduling entails the determimatibthe processing order of a series of jobs that
have to be processed on the available machineprioduction shop. A first classification of schadgl
problems can be derived according to the way mashare distributed in the factory. When several
machines are arranged in series and jobs mustallisiiese machines in the same order we have what
is called a flowshop. These problems have beerestds to detailed studies since the pioneering work

of Johnson (1954). More specifically, a flowshoplgem comprises a séf of n jobs that must be

processed on a sé of m machines. Thesen machines are arranged in series and each job
JON is broken down inton tasks, one per machine. A job models a given pritaiu lot of a
product or client order that must be manufacturdtijobs visit machines in the same order argy
denotes the known, non-negative and deterministiouat of time that joly needs at machiné At

any given time, a job is either waiting for prodagsor being processed by exactly one machine.
Similarly, machines are either idle or occupiedabjpb. Baker (1974, chapter 6, pp. 136-137) further
details all restrictions that apply: All jobs amdépendent and available for processing at time 0.
Machines never break down and are always readye Gtacted at a machine, jobs are processed until
completion with no preemption allowed, etc. A salleds obtained after devising a permutation of the
jobs for every machine, resulting im)™ possible solutions. The setting is usually singdifand
only permutation schedules are examined, resultinthe permutation flowshop scheduling problem
(PFSP) where job passing is not allowed, i.e joll visit the machines in the same order. Thisiced

the number of solutions ta! The objective in the PFSP is to find a permutasach that a given
criterion is optimized. Most studied criteria a@sbd on the completion times of the jobs at mashine
More specifically, letr = {m(1), m(2), ..., m(n)} be a possible permutation or solution to the pobl
The completion time of joly at position 7(;) at machinei is denoted byC; ,;, and it is computed

as follows:

Cin() = Max{Ci_1 (), Ci,n(j—l)} Pingi) (1)
wherej=1,..,n, i =1,..,m, Cire =0,and Cy,; = 0.

The completion time of a job in the shop is thert,,; or C; for short.with completion times,
many different objectives are defined. The mostlist criterion is the minimization of the makespan
OF Cpax, Where Cy,, = max;_;_, C;. This paper studies the total flowtime minimizatiavhich has
also been studied intensively. Total flowtime isirled as:

TFT = Y7, C; (2)

When there are no release dates, total flowtime tmal completion time are equivalent
objectives. Total flowtime minimization reduces twerk in progress or WIP and results in a stable
utilization of resources. Jobs “stay” in the shoduced amount of time (Framinan et al., 2005)s Th
is of particular importance to industries whereuadg inventory or holding costs is of paramount
importance.

The PFSP with total flowtime criterion is denotedrg/m/P/ ¥, C; or asF /prmu/ ¥, C; according
to the well known existing scheduling notationsngio, 2009, and many otherd)/prmu/ ¥, C; has
been proved to be NP-hard in the strong casenfge 2 after the results of Gonzalez and Sahni
(1978). Although some exact methods have been tegpan the literature (Ignall and Schrage, 1965,

Bansal, 1977; Stafford, 1988 and others), theyliamiéed to small problem instances as solving times

quickly become impractical for realistically-sizedses. As a result, research has focused on the
development of heuristics that produce reasonaiigisns with low time and memory requirements.
Some heuristics have been presented by Rajend€®3),1Rajendran and Ziegler (1997) and Li and
Wu (2005), to name just a few. With the advent@iverful desktop computers, and now for more than
two decades, special emphasis has been given giutie of metaheuristics, capable of producing near
optimal solutions, albeit normally at the cost ohder calculations. Some examples are the genetic
algorithm of Tang (2002), ant colony optimizatiohQO) of Rajendran and Ziegler (2004) and the
differential evolution of Pan et al. (2008), amangny others.

Metaheuristics provide excellent results and ctutstithe state-of-the-art methods available for
the PFSP with total flowtime criterion. However, mpametaheuristics are fairly sophisticated and
depend on several parameters and settings that begbroblem and even instance dependent. Most of
the time, the presented methods are so specifitalbred for the problem at hand that slight véwias
of the scheduling setting require extensive chamgése algorithms or even render them inapplicable
In some cases, published algorithms are so ingrittatt an independent coding is unlikely to obta@
same reported effectiveness or efficiency withattacting the authors to obtain detailed infornmatio
and/or source codes. All this severely hinders mt@k practical applications. Therefore, simple,
general and easily adaptable algorithms are hidabirable. However, such simplistic methods might
produce lower quality solutions and a difficult gpromise arises between simplicity and performance.

The Iterated Local Search (ILS) and Iterated Gre@@y frameworks, described by Lourenco et
al. (2010) and Ruiz and Stutzle (2007), respegtivanstitute two simple templates for combinatioria
optimization. They have resulted in state-of-the-ggsults for several problems, including the
permutation flowshop. Following the successful agion of the above two local search based
frameworks, this paper presents four algorithmdGay, an ILS, and two population-based extensions,
dubbed as population-based IGA (pIGA), and poputabased ILS (pILS), respectively. The main
focus is on simplicity, extensibility and ease afdig and replication of results. The presented
methods employ some powerful, yet simple operatorder to improve performance. The results of
the presented algorithms are compared to those eckntly published metaheuristics. The
computational results and statistical analyses shewve will detail, that the presented algorittans
new state-of-the-art methods for the problem udesideration.

The rest of the paper is organized as follows. i8e@ reviews the literature of the PFSP with
total flowtime minimization criterion. Section 3 gsents the four local search based algorithms in
detail. The proposed algorithms are calibrated dntisn 4. A comprehensive comparison of the
presented algorithms is shown, along with staastémalyses, in Section 5. Finally, we conclude the

paper in Section 6.

2. Literaturereview

The PFSP with total flowtime criterion was firsudted by Ignall and Schrage (1965) and by
Gupta (1972). This is more than a decade later thanpioneering work of Johnson (1954) for
makespan minimization in the PFSP. Due to theadiffy faced by exact methods to solve medium size
or large instances, efforts have been mainly deeticto finding high quality solutions in a reasoeab
computational time by using heuristic or metaheigrigptimization techniques. Framinan et al. (2005)
provide a comprehensive review and evaluation afikgcs for the PFSP with total flowtime criterion
Here we mention just the most cited heuristicseRdjan (1993), Rajendran and Ziegler (1997), Liu
and Reeves (2001), Li and Wu (2005) and, more thgebaha and Sarin (2009) present high
performing simple heuristics. Other more elaboratedhods are those of Allahverdi and Aldowaisan
(2002), Framinan et al. (2005), and Li et al. (2008 any casein order b attain a better solution
quality for the problem under consideration, modewtaheuristics have been increasingly applied in
recent years. One of the earliest known applicatmfrgenetic algorithms (GA) is due to Vempatilet a
(1993). In this case, a simple GA was presentedblyt applied to small instances of sizex26 (25
jobs and 10 machines) maximum. Later, Yamada are/é¥(1998) presented a genetic local search
algorithm (GAs) providing good quality solutions for five sets Tdillard (1993) instances (20x5
20x10 20%x20 50x5 and 50x%10) but needing large computationadi@upta et al. (2000) designed a
tabu search (TS) based approach that was compaa&dsht the heuristics of Rajendran (1993)
obtaining better results for the tested instanBagendran and Ziegler (2004) proposed two ant golon
optimization (ACO) algorithms, called M-MMAS and E®, respectively, for makespan and total
flowtime minimization. PACO showed better performmanthan M-MMAS and the best heuristic
proposed by Liu and Reeves (2001). Later, RajendnahZiegler (2005) have introduced a new ACO
algorithm based on similar concepts to those of MAS and PACO with slightly better performance
in some scenarios. Tasgetiren et al. (2007) extbadeontinuous particle swarm optimization (PSO)
method to the PFSP with both makespan and totatifiee criteria. With this method, 57 out of 90 best
known solutions reported by Liu and Reeves (2001) Rajendran and Ziegler (2004) for Taillard
(1993) benchmarks were improved. However, the P@® soon surpassed by the combinatorial PSO
(CPSO) of Jarboui et al. (2008) and also by therdie differential evolution (DD&s) and iterated
greedy algorithms (I s) of Pan et al. (2008).

Quite recently, it seems that there has been ansifted interest in this problem as quite a
number of new metaheuristics have been publisheeihg and Lin (2009) proposed a hybrid genetic
local search algorithm (denoted as H@My employing GA to do the global search and twethods,
Insertion Search and Insertion Search with Cutfagair, to do the local search. The authors

demonstrated improved performance of their propé#8éy; over the PSO of Tasgetiren et al. (2007),

GA_ s of Yamada and Reeves (1998), and also M-MMAS a&@@® of Rajendran and Ziegler (2004).
Later, the same authors (Tseng and Lin, 2010) ptedea similar genetic local search algorithm
(denoted as HGA) by using TS to do the local search. Zhang e28109) proposed a hybrid genetic
algorithm (HGA: for short) that employs a local search consistinthe RZ improvement procedure in
Rajendran and Ziegler (1997) and the forward paiwxchange (FPE) method in (Liu and Reeves,
2001). In this study, a new crossover operatorntsoduced by using an artificial chromosome
generated from a weighted simple mining gene siracfThe authors’ experimental results proved that
the proposed HGAIs a new state-of-the-art method for the problemstered. The same year, Dong
et al. (2009) developed a simple ILS algorithm @ed as IL$) that improves over M-MMAS, PACO
(Rajendran and Ziegler, 2004) and the PSO of Tasgett al, (2007) by a considerable margin.
Jarboui et al. (2009) presented an estimation efridution algorithm (ED#4), where a variable
neighborhood search (VYSs used as an improvement procedure. Based oexiherimental results,
the authors claimed that their Ep@utperformed all the existing techniques to miaieniotal flowtime

for the PFSP. More recently, Zhang and Li (2010)ehpresented another estimation of distribution
algorithm (EDA;) with a longest common subsequence operator liedaogporated into the probability
distribution model to mine good “genes”. Differdmdm more common EDAs, EDAproduces each
offspring from a seed, which is selected from tlopiation by the roulette method. The authors’
experiments showed that ERAroduces better results than the EPDBDEg s, HGAT;, and ILS
algorithms for the first nine set benchmarks ofllded (1993). Zheng and Yamashiro (2010) have
developed a quantum differential evolutionary aittpon (QDEA) based on the basic quantum-inspired
evolutionary algorithm to minimize makespan, toflalwtime, and maximum lateness of jobs for
permutation flowshops, respectively. QDEA adoptffecéntial evolution to perform the update of
guantum gate and variable neighborhood search lasah search. The comparison of QDEA with
M-MMAS, PACO, and the best heuristic of Liu and Re (2001) demonstrated its effectiveness.
Tasgetiren et al. (2011) presented a discreteicatifoee colony algorithm (DBAC) and a hybrid
differential evolution algorithm (hDDE) by hybridimy a variable neighborhood search procedure
based on swap and insertion neighborhood structdeording to the experiments conducted by the
authors, both algorithms provided better resulsitBDA and HGA;. Xu et al. (2011) presented an
asynchronous genetic local search algorithm (AGAstwort), where all pairs of individuals perform
asynchronous evolutions with different local seamséthods. The computational results show that
AGA outperforms several state-of-the-art methodduming HGA,, EDA;and VNS. Algorithms
designed for parallel architectures have also lieseloped for total flowtime criterion. For example
Czapiiski (2010) proposed a parallel simulated annealvith genetic enhancement algorithm

providing better results than HGAnd HGAy,. Additionally, Dubois-Lacoste et al. (2011) presehan

Iterated Greedy Algorithm for the bi-objective flshop.

As we can see, there is quite a number of highopmihg methods claiming state-of-the-art
performance that have appeared in years 2009-Foafn the short review, it is also clear that sorhe o
these methods are intricate and are based on comlglerithmic templates. It is worth mentioningttha
there does not exist a comprehensive computatiemaluation and comparison of these recent
techniques. Therefore, from the existing isolatethputational evaluations with different computers,
programming languages, stopping criteria, and mesgases, even benchmarks, it is very difficult to
ascertain which algorithm gives the best overatfqenance for the problem considered. In this paper
we recode twelve recently presented metaheuridbPéR, s and |G s of Pan et al. (2008), HGA of
Tseng and Lin (2009), HGA of Tseng and Lin (2010), HGAof Zhang et al. (2009), ILsSof Dong et
al. (2009), EDA and VNS of Jarboui et al. (2009), AGA of Xu et al. (201DABC and hDDE of
Tasgetiren et al. (2011) and SLS of Dubois-Lacestal. (2011). We also present four simple local
search based algorithms. A comparison among theritdgns is given based on the well known
benchmark suite of Taillard (1993). In our opinidimding such comprehensive and extensive tests
among so many recent methods is not common in ¢hedsiling literature and constitutes a main

contribution of the present paper.

3. Proposed local search based algorithms

Iterated local search (ILS), presented by Louregical. (2010) and iterated greedy (IG, Ruiz and
Stitzle 2007), are two simple local search basemee@ristics that have resulted in top performance
despite of their simplicity. In recent years, bdtts and IG have attracted much attention from
researchers precisely due to their simplicity, @ffeness and efficiency. For example, ILS hasaalye
been successfully applied for solving the permatatilowshop problem with makespan criterion
(Stutzle 1998b), the quadratic assignment probl&tit¢le, 2006) and multiple depot vehicle
scheduling (Laurent and Hao, 2009), among manyrgit@blems. For an updated review on ILS see
Lourenco et al. (2010). IG has shown state-of-tieperformance for the PFSP with makespan
criterion (Ruiz and Stitzle, 2007), sequence depeinsetup times PFSP with makespan and tardiness
objectives (Ruiz and Stitzle, 2008), unrelated Ipdrenachines scheduling (Fanjul-Peyro and Ruiz,
2010), PFSP with blocking constraints (Ribas e8ll1) and even multiobjective PFSP problems in
Minella et al. (2011) or in Dubois-Lacoste et &011). It is possible to find other recent applimas
of IG to other fields and more complex schedulimgbtems. For example, Urlings et al. (2010) have
recently applied IG methods to solve complex hyfigdible flowline scheduling problems with many
additional constraints. In view of all these statdhe-art results, we propose the applicatiorhefiLS

and IG frameworks to the PFSP with total flowtiméerion. ILS and IG always deal with only one

incumbent solution. Given the previous literatumview, where many population-based genetic
algorithms have been proposed, we also extendLtBeahd IG frameworks to work with populations.
Population-based ILS methods have been present&diitgie (1998, 2006) as well as by many others.
IG extensions are less studied (Ballestin et @.720The research question is therefore if ILS BBd
benefit from a pool or population of solutions. Tdetails of the presented algorithms are giverhén t

following sections.

3.1. Iterated Local Search algorithm

ILS is a simple and generally applicable stochdstial search method presented by Lourenco et
al. (2010) for solving optimization problems. Tresential idea of ILS is to perform a randomizedkwal
in the space of local optima. ILS starts from artstigally constructed solution to which a locahszh
is applied. Generally, a local optimum is obtain&d.order to escape from this local optimum, a
perturbation in the solution is carried out andeavihocal optimum is found after applying local sdar
again. Finally, an acceptance criterion is usedriter to decide if the new local optimum should
replace the first. The above process is repeatétlautermination criterion is met. An outline dig
ILS procedure is given in Fig. 1.

procedure ILS
11, — GeneratelitialSolution

7T — LocalSearb(rr,) % Local search
repeat
n' — Perturbation(n) % Perturbation of the local optimum
n" — LocalSeart (') % Local search
71 — Acceptcriterion(7", 1) % Decide if new solution replaces the incumbent
until termination criterion met
end

Fig. 1. Iterated Local Search (ILS) pseudo-code.

As we can see, ILS is extremely simple and genétbthat is needed is a way of representing the
solution (in our case a permutation of jobs), ariséia to initialize the method, a local search
procedure, a perturbation process and an acceptaibegon. Note that the most complex part is the
local search, which is also needed for most ottt known state-of-the-art methods. We now detalil

all these components.

3.1.1. Initialization method

It is common to initialize metaheuristics with higlkerforming heuristics. According to Liu and
Reeves (2001), Dong et al. (2009), Zhang et al0920and Li et al. (2009), among others, the)R(
heuristic developed by Liu and Reeves (2001) isgy \effective method for the PFSP with total
flowtime. LR(X) constructx different sequences by appending jobs one by simg@an index function
and the sequence with the minimum flowtime is dekk@as the final solution. The index functions
employed are weighted total machine idle time,fiaidl flowtime and a combined index. The

procedure of LRY) is briefly described as follows:

Step 1: Rank the jobs according to ascending oofiéhe index function value and break ties
according to an ascending order of the weighteal toaichine idle time value.
Step 2: Use each of the first ranked jobs as the first job of theesulting sequences. Complete

the sequences by selecting jobs one by one acgotalithhe index function.

Step 3: Select the sequence with the minimum flmad time as the final solution.

LR(x) does not fix the number of sequences to be gexkras it can be adjusted to the
requirements of the problem. So the heuristicasifile in the computational effort required. Follog
Li et al. (2009) and Zhang et al. (2009), we usB(n/m) to generate an initial solution for the

proposed ILS algorithm.

3.1.2. Local Search procedure

The improvement procedure presented by RajendranZasgler (1997) (denoted as RZ) is a
typical local search method based on an insertieightbornood, which is used in the composite
heuristics of Li and Wu (2005) and Li et al. (2008 ILS, algorithm of Dong et al. (2009), and the
HGA; of Zhang (2009). The RZ procedure sequentialleritsseach job in the seed sequence at all
possible positions. The improvement scheme idestifiie best position of the insertion for a given |

and the resulting sequence is used to replaceutrert one if there is an improvement in the total
flowtime value. Let 77° = (77" (2), 77° (2),...,77°(n)) be a seed sequence, aitl be the sequence

returned by RZ. The procedure of RZ is outlinedFiig. 2.

Procedure RZ(n)

T T
for] «1 to n do

nme—n
Remove job 77°(j) from 77'.
Test 77°(j) in all the possible positions of?' except for its original one.
Insert 77°(j) in 71" at the position resulting in the lowest total ftime.
if f(n')<f(n) then 1« 7'

endfor

end
Fig. 2. The RZ local search procedure of RajendrahZiegler (1997).

The above RZ procedure is a single pass local seHrthe starting solution is improved, there is
the possibility of calling RZ again to improve tkelution even further. Obviously, this increases th
computational cost. Therefore, there is a tradebefiveen the algorithm’s effectiveness (in terms of
solution quality) and efficiency (in terms of contgtional time). Our tests indicate that RZ can be
iteratively applied until a local optima is obtaihd.e., we stop the local search when the provided
solution 71 does not change after calling RZ. We denote thisiied RZ procedure as iRZ in short. It
is important to remark that our implemented RZ rodtlimplements Taillard (1990) accelerations,
albeit only half of it, as one does not need tevaluate the part of the solution that has not gbdn

These accelerations basically speed up the proedguabout 45%.

3.1.3. Perturbation procedure and acceptance dter

In order to escape from a local optimum and to @ghew regions in the solution space, ILS
applies a perturbation procedure to generate nastirgg points for the local search by modifying the
current solution. The perturbation procedure ingresented ILS algorithm consists of a numberof
random insertion moves. Each one randomly sele¢td drom the permutation and inserts it into a
different, randomly selected position. The numbgingertions or Perturbation lengtly is a key
parameter, which has an important effect on théopmance of ILS. A small)y value favors local
exploration or intensification but may lead to agstation of the search due to a lower chance of
escaping strong local optima. A larggr value benefits global exploration but ¥ is too high, the
algorithm may behave like a random restart locatce with a very low probability of finding better
solutions. Therefore, a suitablg value should be determined for the presented lg8righm. We
calibrate the) value by means of a Design of Experiments (DOpyagch later in section 4.

After a new local optimum is obtained, we have ¢gide if this new local optimum replaces the

current incumbent solution. Three simple acceptamiteria are presented in Stitzle (2006) including

random walkbetter, andsimulated annealing typ&andom wallaccepts new solutions irrespective of
its objective value resulting in a random walk ovecal optimum solutionsBetter accepts new
solutions only if they are better. This usuallyulesin a premature convergence in the search aue t
insufficient diversification.Simulated annealing typs a compromise between thendom walkand
bettercriteria, and can be achieved by accepting waoggisns with a certain probability. Therefore,
we consider this later criterion. As in Osman amdt$?(1989), Stiitzle (1998b) and Ruiz and Stitzle
(2007, 2008), we adopt a constant temperature, wt@pends on the particular instance and it is
computed as follows:
n m
Temperatue = A D@ 3)
10mr
where A is another parameter that needs to be adjustedets, and as noted in Ruiz and

Stitzle (2007, 2008), this parameter has been shwwa very robust.

3.1.4. The procedure of the presented ILS algorithm
The proposed ILS algorithm for minimizing total iilame in the PFSP is summarized in Fig. 3.
Note thatrand() is a function that returns a random numberarnily distributed in the range [0,1].

procedure the presented ILS algorithm
Set the parametery/ and A

7T, — LR(n/m) % Generate an initial solution
T — IRZ(71,) % Local search until local optimum
T~ 7N % Best solution found so far
repeat
n' — Perturbation(n) % Perturbation of the local optimum
" — IRZ(7") % Local search until local optimum
if ZCJ- (') < ZCj (77) then % Acceptance criterion
/P % Accept if better than incumbent
if C, (") < ZCj (77*) then % check if new best solution
n* - n"
endif
dseif rand() < exp{(Q_C,(m)~> C,(7"))/ Temperatug then
e % Simulated annealing acceptance criterion
endif
until termination criterion is met
end

Fig. 3. Pseudo-code of the presented ILS algorithm.

10

Note that the proposed ILS is not the first onespnted in the literature for the total flowtime
minimization in the PFSP. As reviewed, Dong ef(2009) developed a simple ILS algorithm, denoted
as ILS,. The main differences between the presented IL®iadeand IL$ are the following: On the
one hand, different acceptance criteria are ude®h Lses the Bettef’ version which accepts new
solutions only if they are better, whereas the gmted ILS utilizes the simulated annealing type
acceptance with a certain probability to acceptseosolutions. On the other hand, we adopt the
perturbation procedure consisting of several randosertion moves in the presented ILS, while
several random adjacent pairwise interchanges mpoged in ILS,. Both the simulated annealing
type acceptance and insertion moves help to edeapelocal optima and result in the presented ILS
algorithm with better exploration than the B.8lgorithm. Lastly, IL§ employs a different local search

scheme.

3.2. Population variant: The plLSalgorithm

As shown, ILS works over an incumbent solutidgh and returns the best solutif after the
optimization run. One possible weak spot is thais timposes a single search direction.
Population-based metaheuristics, such as, for ebeamenetic algorithms, have been widely employed
in flowshop scheduling. Therefore, we also propas@opulation ILS, referred to as pILS, that
maintains a population of solutions during the seaHowever, we are concerned about keeping the
proposed methods simple. Our presented pILS usés tdRgenerate a population wfnitial solutions.
Instead of just using the best solution returnedli¥(n/m) , we keep all the constructedsequences
to form the initial population (s is the population size). After initialization, @Lpicks a solution
from the population using a selection operator apglies the perturbation procedure presented in
section 3.1.3. Then pILS performs the iRZ localrskeao the perturbed solution to generate a local
optimum.

Two important issues arise when dealing with a patmn ILS method. First, at each iteration, a
selection operator has to be applied in order tecsgromising solutions. Selecting just the best
solution basically nullifies the population advagea Randomly selecting individuals results in aaslo
converging method. Second, once an ILS iteratiom leen finished, we have to decide if the new
solution is accepted into the population or disedrdDiversification and intensification are two key

issues in the optimization process of populatiosedlamethods. Diversification aims to maintain

11

sufficient diversity within the population so thadividuals are spread out widely within the search
space (Yao et al, 2010). Ideally, a diverse pomrats more likely to evolve. However, as the
population evolves after a number of generatiotssdiversity diminishes and the individuals in the
population become very similar. This results inrseatagnation and the best solution in the pojmrat
ceases to improve. To overcome these issues, wernirevo enhancements. These come in the form of
a bi-selection method and a diversity control meddra.

For selection operators, tournament is widely useevolutionary algorithm applications for
PFSPs due to its simplicity. We consider a tourrm@nselection with size two in the presented pILS.
That is, two solutions are picked randomly from ¢thierent population, and the one with the lowealtot
flowtime value is chosen. However, if only the alaf total flowtime is used as the measure for
selection, some promising individuals with largatat flowtime values will be eliminated soon. These
individuals may lead to much better solutions afterumber of iterations. Therefore, it is important
increase the probability that these individualsehawthe selection. We use thag¥' to represent the
number of iterations an individual survives. Youngedividuals undergo less iterations. The search
areas around them are not well explored. We inerdas chance of selection for these individualg, an
consider another tournament selection using theofgelividuals as a measure. That is, we randomly
pick two individuals from the population, and theupger one is chosen for reproduction. In our pILS,
the presented two selection schemes are applietbmay with equal probability (50%-50%) in the
search.

We also consider the diversification of the popalatin the generational scheme, the process by
which offspring replace old members from the prasigeneration. If the generated local optimum is
better than the worst solution in the populationd af there is no other identical solution in the
population, the obtained solution replaces the tveddution and becomes a new member of the
population. This population management with cloweidance is known as steady state and was first
used for flowshop scheduling problems by Ruiz e(2006). However, note that two solutions might
slightly differ in their respective permutationstbis steady state generational scheme still suffem
population convergence. We also consider a diyerséasure for the population. With this, the new
solution in only included into the population ifsalthe average diversity measure of the population
does not decrease. An aspiration criterion iszetili If the generated local optimum is strictlytéet
than every individual of the population, the wasstution is replaced by the generated local optimum

12

regardless of the deterioration in the averagerdityemeasure.
We use the diversity measure recently presentdednyand Ruiz (2012). The measure is based on
both the job order and on similar blocks of jobgha sequences of the current population. It is now

briefly explained as follows:

4. B. - 4@,

Step 1. Calculate the job order matrtW'jJnxn as [@] _|P1 %2 0 @n|, where ¢ ; is
'j n><n_ .
B B> o G

the number of times that jolj appears at position gfer considering all individuals of the

population.

Step 2: Calculate the block matrikdj,'jjmn as follows: [/1_] - Ada = A where

/]n,l An,z -
)Ij +j represents the number of times that jpb appears immediately after joly'.
!

Step 3: Count the number of elements that are ldhga zero inl_q -Jnxn, and denote it agr .

Step 4: Count the number of elements that are dahga zero inlAjvj']nxn’ and denote it ass .

Step5. The diversity value of the populatiativ is then computed as follows:

div = a-n N L-(n-1 5
nxmin(n,x-1) (h-)xmin(n-1,x-1))/

wherex is the population size. The above process is tepgamtil a termination condition is reached.

pILS is outlined in Fig. 4.

procedure The presented pILS algorithm
Set the parameterX and)

Generate an initial population of size x usilgR(X)

7* — bestsolutionin the population % Best solution found so far
repeat

Select a solution77 from the population using the presented bi-sebecsicheme

7' — Perturbation(n) % Perform perturbation procedure

"~ iRZ(1") % Perform local search

Accept 71" according to the presented generational scheme

if ZC]- (") < ZCJ- (77%) then % check if new best solution
72* - nll

endif

until termination criterion is met

end

13

Fig. 4. Pseudo-code of the population extensidh$for pILS.

3.3. Iterated Greedy methods: IGA and pl GA

IG was introduced by Ruiz and Stitzle (2007) folvisg the permutation flow shop with
makespan criterion. IG starts from an initial sntgenerated by a heuristic and iterates over ia ma
loop consisting of two phases: destruction and ttaoson. During the destruction phase, some jobs
are randomly removed from the current solution.eAftards, the construction procedure applies a
greedy constructive algorithm to reconstruct a detepsolution by reinserting the previously removed
jobs. Before continuing with the next iteration, aoceptance criterion decides whether the newly
constructed solution replaces the incumbent salutolocal search is optionally applied to theiadit
solution and to the constructed solution. The piloce of the presented IG, referred to as IGA, is

outlined in Fig. 5.

procedure IGA

11, — GeneratelrtialSouluion % Generate an initial solution
7T — LocalSearb(rz,) % Local search
repeat
7' — Destruction_Constructon(7z) % Destruction and construction
" — LocalSeart(77') % Local search
71 — Acceptcrierion(n", n) % Decide if new solution replaces the incumbent
until termination criterion is met
end

Fig. 5. Pseudo-code of the Iterated Greedy Algori{fGA) of Ruiz and Stutzle (2007).

As can be seen, IGA can be considered as a variafiche basic ILS algorithm. The main
difference is that ILS randomly perturbs a solutio in the IGA, this perturbation is carried outeb
destruction of the solution followed by a greedgamstruction. If the greedy method is effectiveAIG
can outperform ILS, as shown in Ruiz and Stutzl@0f) and others. The presented IGA adopts
LR(n/m) to generate an initial solution, and employs i&Zthe local search procedure. Additionally,
the sameDestruction_Constructioprocedure as presented in Ruiz and Stitzle (280@)nployed,
whered jobs are randomly selected and removed and theeyager inserted in all possible positions,
one by one, in the construction procedure. The matard needs careful calibration. Finally, we
employ the samesimulated annealing typecceptance criterion as in the proposed ILS. The
Destruction_Constructiorprocedure is detailed in Fig. 6 (Ruiz and StitZ807). The complete

procedure of the presented IGA is described in Fig.

14

Procedure Destruction_Constructbn(7,d)
Set 7l empty, 71 — 71 %Destruction

for I «1to d do
7' — remove a randomly selected job fro'
7T° < include the removed job intaz"

endfor
for | «1tod do %Construction

7' — best permutation obtained after inserting joﬁ']R in all possible positions of7?'

endfor
end

Fig. 6. The destruction and construction procedfifrRuiz and Stutzle (2007).

procedure the presented IGA
Set the parametergl and A

7T, — LR(n/m) % Generate an initial solution
T — IRZ(71,) % Local search
TT* < 7l % Best solution found so far
repeat
7' — Destruction_Constructon(7z1) % Destruction and construction
" — IRZ(1') % Local search
if ZCJ-(IT') < ZCJ- (77) then % Acceptance criterion
n - nll
if ZCJ- (") < ZCj (77*) then % Check if new best solution
72* - nll
endif
dseif rand() <exp{(>_C,(7m) - > C,(7"))/ Temperatug then
n - nll
endif
until termination criterion is met
end

Fig. 7. Pseudo-algorithm of the presented IGA.

Note that Pan et al. (2008) also proposed an IGAhauk for the PFSP and total flowtime
minimization, denoted in this paper asg|& However, the authors employed a complex refemnce
local search method as well as some other addeghleaities. In comparison, our presented IGA is
simpler and easier to code. As done with the pllgbrithm, the proposed IGA is extended in an

identical way to form what we have denoted as plGAe same bi-tournament selection and

generational scheme operators are employed.

15

4. Calibration of the proposed algorithms

ILS, pILS, IGA and pIGA have relatively few paramet, especially when compared to recently
published metaheuristics. Still, these have to bepgrly calibrated. We employ a Design of
Experiments (DOE, Montgomery, 2009) approach. D®B&n advanced statistical technique that helps
in understanding the effect that some factors haxer a given response variable. In our case, the
factors are the parameters that need calibratightl@ response variable is the performance of the
different algorithm configurations. Factors aretédsat some levels or variants and therefore, some
initial runs are required in order to pick a suiéabet of levels to test. After a series of pretiamy

experiments, we consider the following levels foe parameters. For the ILS algorithm: perturbation
length () is tested at three levels: 2, 3 and 4; tempegdtctor () is tested at four levels: 1.0, 2.0,

3.0 and 4.0. For the pILS algorithm, perturbatiength (y) is tested at three levels: 2, 3 and 4 and
population sizex) is tested at four levels: 3, 5, 7 and 9. For I@Astruction sized] is tested at three
levels: 6, 8 and 10 and the temperature fact) (s tested at four levels: 1.0, 2.0, 3.0 and &,
pIGA, destruction sized] is tested at three levels: 6, 8 and 10; populasize &) is tested at four
levels: 3, 5, 7 and 9. We obtain a total 8k4=12 different combinations, i.e., 12 different
configurations for each of the proposed algorittafter combining all possible values of the tested
factor levels. All the configurations of each algjum are tested independently in a full factorial
experimental design with a termination criteriort 88 a maximum elapsed CPU tinte=10nm
milliseconds. Note that this termination criterioicreases with the size of the instance. This éxlad

in order to decouple the effect of the running tifrem the size of the instances, i.e., worse result
could be wrongly attributed to the size of theamste instead of insufficient CPU time.

Each algorithm is tested with a set of 28 randoggynerated instances. It is of paramount
importance to separate the calibration benchmaokn fthe final testing benchmark. Calibrating
algorithms with the same benchmark results in @adibration and in too optimistic results, where
those excellent results might not be transferrébleal instances or to other benchmarks. The numbe
of jobs and machines for each calibration instaiccgandomly chosen from the following sets
n {5075100,125150175,20¢ and m[{5101520}. The processing times for each instance are
obtained from discrete uniform distribution in timerval [1, 99]. For each instance, five indeperide

replications are carried out in the experiments,(each algorithm is run five times for each ineg.

16

Therefore, the total number of results 12x28x5=1680 for each one of the four presented
algorithms. All the presented algorithms are comedisual C++ 6.0 and all the configurations ara ru
on a cluster of 30 blade servers each one withlhted XEON 5254 processors running at 2.5 GHz
with 16 GB of RAM memory. There is no parallel cantipg. The 30 blade servers are just used in
order to divide the workload and experimentatiohs.a response variable for the experiments, we
calculate the relative percentage deviation (RP&hfa reference solution as follows:

RPD(c) = (c —c"”)/c”x100 (4)

where C, is the total flowtime value generated in thi8 replication by a given algorithm

configuration, and c” is the minimum total flowtime value found by any the algorithm

configurations. All the results are analyzed by nseaf a multi-factor Analysis of Variance (ANOVA)
statistical technique whemeandm are considered as non-controllable factors. Trethod has been
used in Ruiz, et al. (2006), Ruiz and Stutzle (00allada and Ruiz (2010), and many others.
ANOVA is a very powerful statistical approach thalows setting the different parameters at
statistically significant values among the testeéso ANOVA is a parametric test and it is needed to
check its three main hypotheses, i.e., normaliynbgeneity of variance (or homoscedasticity) and
independence of the residuals. Given the large eundb treatments and replicates, the residual
analysis showed no indication of severe violatibary of the hypotheses.

Due to reasons of space, we briefly comment theltseef the ANOVA analysis and calibration.
For the ILS algorithm, the perturbation lengtpr) results in statistically significant differenciesthe
response variable at a 95% confidence level, wisetka temperature factord() does not yield
significant differences (this is consistent witle tlesults of Stiitzle, 2006 and Ruiz and Stiitzl€,720

This suggests that the ILS algorithm is robust wébpect to the temperature factor, at least wi¢h t

tested values A [1{1,2,3,4}). For the pILS algorithm, both factorsy(and x) are statistically

significant. For IGA, the destruction sizd) (is significant while the temperature factod | is not
(again, this is consistent with the calibrationgegi in Ruiz and Stiitzle, 2007). For pIGA, populatio

size §) results in significant differences, while the westion size §) does not. After the calibration

experiments, we set the parameters as followstHeoH S algorithm, y =2 and A = 4.0. For the

pILS algorithm, y =2 and X=3. IGA: d =8 and A =20 and pIGA, d =8 and X=3.

17

All experimental results, tables and plots arelaté& upon request from the authors.

5. Computational and statistical evaluation

We now compare the four proposed methods agairsbéit algorithms from the literature. For
the evaluation we employ the well known benchmdrKaillard (1993). This test bed has been used in
Liu and Reeves (2001), Tasgetiren et al. (2008ndsnd Lin (2009), and almost in every PFSP paper.
There are a total of 120 instances Whe'rE{ 205010020050(} and mD{ 51020}. These instances
are divided into 12 subsets, resulting from the loimations of values fon and m. There are 10
replicates in each subset. Not all combinations paesent and the sets available are 20x5, 20x10,
20%20, 50x5, 50x10, 50%20, 100x5, 100x10, 100xB0x20, 200x20 and 500x20. To maintain the
orthogonality in the experiment, we generate thieahmissing additional subsets of instances: 200x5,
500x5 and 500x10. These are extracted from inssa@08x10 and 500x20. We take the processing
times of the first five machines of instances ibsat 200x10 to create instances of the subset 200x5
and extract the processing times of the first firel0 machines of instances in subset 500x20 to
generate the instances of the subsets 500x5 or1B0@espectively. In total, we use 150 instances fo
each algorithm.

We re-implemented 12 powerful metaheuristics priegeim recent years, and compare them with
the algorithms of this paper. The algorithms impdeted are: DDR s and 1Gy s of Pan et al. (2008),
HGA; of Tseng and Lin (2009), HGA of Tseng and Lin (2010), HGAof Zhang et al. (2009), IS
of Dong et al. (2009), EDAand VNS of Jarboui et al. (2009), AGA of Xu et al. (201DABC and
hDDE of Tasgetiren et al. (2011) and SLS of Dullaiseste et al. (2011). Dubois-Lacoste et al. (2011)
presented an lterated Greedy Algorithm for the Wjective flowshop. However, and although not
tested in the original paper, a simpler methodrigppsed for the total flowtime flowshop. Therefore,
we also test it in this paper.

All algorithms have been coded in Visual C++ 6.@ $ttictly follow all original explanations and
details given in the original papers in order tosely reproduce published results. All methodsrane
on a cluster of 30 blade severs each one with bied KEON 5254 quad core processors running at 2.5
GHz with 16 GB of RAM memory. The experiments a@gried out in virtualized Windows XP
machines, each one with one virtualized processor 22 GB of RAM memory. To make a fair

comparison, all the algorithms adopt the same maxinelapsed CPU time limit of = omr

18

milliseconds as a termination criterion, whee has been tested at three values: 30, 60 and 0. Th
choice of this stopping criterion is motivated the tfact that all algorithms are coded in the same
programming language, share most library functiamd data structures, and are executed on the same
computer environment. Then we can safely say thaigorithms have the same CPU power and time
available and that results are fully comparablés Términation criterion has been increasingly used

the recent literature on scheduling Ruiz et alO@0QRuiz and Stitzle (2007, 2008), Vallada andzRui

(2010), Ribas et al. (2011) and several others.ithuat@lly, with the three termination criteria, wan

test how the different algorithms perform with di#nt CPU times. 0 =30 turns into three seconds for
the smallest instances of 20x5 whereas=90 translates into 900 seconds for the largesarices of
500x%20. Therefore, in the tests we run all mettfoaim small to large CPU times. For each of the 150
instances, five independent runs are carried auedah algorithm. We calculate the average relative
percentage deviation from the best known solutmmefach instance. The computed results, averaged
across the five replications for each instance gnodiped for each subset, are reported in Tabl@s 1,

and 3.

19

Table 1. Computational results of the algorithrs£30). Best and worst values in bold and italicspeetively.

Instances 1Ggs DDEgs EDA; VNS; ILS, HGA;; HGA, HGAr, AGA hDDE DABC SLS IGA pIGA LS pILS
20x5 0.01 0.01 1.32 292 0.01 0.15 0.01 0.02 0.01 0.01 0.00 000 000 0.01 000 0.01
20x10 0.00 0.00 1.73 2.90 0.00 0.24 0.02 0.04 0.03 0.01 0.00 000 000 000 000 0.01
20x20 0.00 0.00 1.06 2.15 0.00 0.13 0.00 0.00 0.01 0.00 0.00 000 000 000 000 0.00
50x5 0.35 0.35 3.06 3.08 0.90 1.42 0.29 0.92 0.85 0.40 0.71 073 034 038 038 042
50x10 0.45 0.48 419 4.38 0.93 2.02 0.58 0.97 1.33 0.68 0.82 0.40 0.40037 042 0.39
50x20 0.52 0.52 411 453 0.77 1.93 0.62 1.00 1.34 0.73 0.81 034 0.50 0.46 0.47 0.44
100x5 0.35 0.33 6.65 3.01 0.62 2.13 0.56 3.69 0.68 0.44 0.93 0.74024 026 031 0.33
100x10 0.50 0.52 7.82 4.54 0.98 2.77 1.49 5.01 1.66 1.04 1.69 0.52 0.460.38 0.50 0.42
100x20 0.69 0.67 7.02 4.72 1.02 2.98 2.05 4.88 2.16 1.10 1.68 049 0.60 0.56 0.52 0.59
200x5 0.28 031 12118 4.01 0.24 2.33 0.48 8.74 0.40 0.48 0.67 0.640.11 0.12 0.16 0.22
200x10 0.46 0.45 12.06 5.79 0.46 3.01 1.29 9.56 1.09 1.12 1.24 0.53027 037 027 050
200x20 0.67 066 1141 6.35 0.67 3.22 2.21 8.44 2.24 1.62 1.89 0.430.37 0.63 0.40 0.53
500x5 0.24 0.26 1596 7.77 0.09 3.32 0.16 13.74 0.16 0.34 0.32 047 013009 013 0.14
500x10 0.55 056 14.15 8.49 0.17 3.92 0.37 12.17 0.31 0.73 0.68 0.510.07 0.16 0.08 0.24
500x20 0.75 0.69 13.14 8.48 0.48 3.84 0.93 10.12 0.77 0.94 0.99 0.370.14 0.42 0.16 0.45
Average 0.39 0.39 772 488 0.49 2.23 0.74 5.29 0.87 0.64 0.83 0.41024 028 025 0.31

20

Table 2. Computational results of the algorithrgs<60). Best and worst values in bold and italicspeetively.

Instances IGg s DDEgs EDA; VNS, ILSp, HGAr; HGA; HGA,, AGA hDDE DABC SLS IGA pIGA ILS pILS
20x%5 0.01 0.01 123 292 0.01 0.12 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01

20x10 0.00 0.00 1.59 2.90 0.00 0.21 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20x20 0.00 0.00 1.03 2.15 0.00 0.10 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50x%5 0.35 0.34 267 3.14 0.85 1.19 0.18 0.78 0.61 0.39 0.58 0.72 0.35 0.36 0.36 0.39
50x10 0.44 0.47 3.90 4.47 0.90 1.85 0.38 0.80 1.06 0.61 0.66 0.36 0.43 0.41 0.42 0.39
50x20 0.48 0.51 3.93 457 0.67 1.76 0.40 0.72 1.05 0.63 0.64 0.24 0.47 0.41 0.45 0.42
100x5 0.33 0.29 5.02 2.70 0.68 2.01 0.42 2.25 0.63 0.41 0.90 0.800.25 0.26 0.33 0.33
100x10 0.48 0.49 6.23 4.20 0.94 2.75 1.14 2.78 1.46 0.88 1.57 0.57 0.410.37 0.50 0.40
100x20 0.65 0.71 5.93 4.43 1.00 3.02 1.58 2.60 1.86 0.99 1.52 0.49 0.62 0.51 0.51 0.53
200x5 0.24 0.26 10.87 3.19 0.32 2.35 0.44 6.69 0.43 0.38 0.45 0.690.15 0.15 0.19 0.25
200x10 0.42 0.38 10.97 5.02 0.51 2.97 1.19 8.10 1.10 1.02 1.22 0.510.23 0.35 0.27 0.45
200x20 0.59 0.57 10.42 5.57 0.63 3.26 2.02 7.51 2.15 1.52 1.94 0.45 0.37.500 034 0.47
500x5 0.22 0.22 15.16 5.95 0.11 3.10 0.19 13.39 0.16 0.36 0.32 0.490.07 0.09 0.08 0.14
500x10 0.51 0.49 13.67 7.16 0.20 3.64 0.41 11.86 0.34 0.74 0.65 0.480.08 0.16 0.10 0.23
500x20 0.70 0.64 12.71 7.41 0.49 3.57 1.05 9.96 0.87 1.02 1.00 0.290.19 0.47 0.22 0.48

Average 0.36 0.36 7.02 4.39 0.49 2.13 0.63 4.50 0.78 0.60 0.76 0.410.24 0.27 0.25 0.30

21

Table 3. Computational results of the algorithrgs<90). Best and worst values in bold and italicspeetively.

Instances IGgr s DDEgs EDA; VNS ILSp, HGAr; HGA; HGA,, AGA hDDE DABC SLS IGA pIGA ILS pILS
20x%5 0.01 0.01 120 292 0.01 0.09 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01
20x10 0.00 0.00 1.56 2.90 0.00 0.15 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20x20 0.00 0.00 0.97 2.15 0.00 0.06 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
50x%5 0.34 0.32 258 3.16 0.85 1.07 0.17 0.68 0.49 0.37 0.49 0.70 0.31 0.33 0.31 0.34
50x10 0.47 0.47 3.87 453 0.86 1.76 0.39 0.73 0.90 0.60 0.62 0.36 0.44 0.41 0.42 0.40
50x20 0.51 0.53 391 4.64 0.69 1.68 0.42 0.69 0.92 0.63 0.64 0.24 0.50 0.43 0.46 0.44
100x5 0.29 0.26 4.18 2.63 0.71 1.93 0.31 1.66 0.52 0.37 0.83 0.800.23 0.24 0.33 0.31
100x10 0.54 0.52 5.57 4.20 1.01 2.79 0.96 2.23 1.34 0.87 1.50 0.63 0.450.41 0.53 0.44
100x20 0.63 0.68 5.46 4.42 1.01 2.98 1.35 1.99 1.70 0.94 1.37 047 0.59 0.52 0.48 0.48
200x5 0.20 0.23 10.12 2.75 0.36 2.31 0.40 5.72 0.41 0.33 0.44 0.720.14 0.15 0.20 0.26
200x10 0.39 0.37 10.16 4.63 0.57 2.99 1.13 7.24 1.10 0.98 1.22 0.510.24 0.31 0.29 0.44
200x20 0.53 0.53 9.63 5.13 0.63 3.30 1.91 6.52 1.97 1.46 1.94 0.41 0.35.450 0.33 0.40
500x5 0.21 0.21 14.69 5.17 0.12 3.08 0.20 12.71 0.17 0.36 0.31 0.500.08 0.10 0.09 0.14
500x10 0.43 0.43 13.26 6.47 0.21 3.59 0.42 11.44 0.34 0.72 0.70 0.450.08 0.16 0.11 0.23
500x20 0.65 0.61 12.45 6.83 0.49 3.58 1.12 9.77 0.93 1.05 1.08 0.270.22 0.48 0.25 0.47

Average 0.35 0.34 6.64 4.17 0.50 2.09 0.59 4.09 0.72 0.58 0.74 0.400.24 0.27 0.25 0.29

22

From the computational results all of the presemigdrithms yield solutions that are most of the
time better than those of the other methods. Frablell where p =30, we can see that the largest
overall average RPD (AVRPD) value generated bypttesented algorithms is 0.31%, which is much
smaller than those of the competing methods, bEBgs and DDE, s the closest competitors with
average deviations of 0.39%. IGA is the best peréorwith an AVRPD value equal to 0.24%, followed
by ILS (0.25%), pIGA (0.28%) and pILS (0.31%). (desial interest is comparing IESwith the
proposed ILS, as both methods are based on thdréinfgework. We can see that our proposed ILS
gives results that are lower on average than Il&8so, when comparing I§s with our proposed IGA
we see that the results of IGA are, on averagegidhan those of Iggs. Other methods, such as SLS,
provide the best solutions for some specific instasizes (5820 and 10820). As we can see, pIGA
does not manage to outperform the simpler IGA. dm@e can be said about pILS when compared to
ILS. However, for some specific instance groupsOKI®), it seems that the population methods
achieve a slightly better performance. This betierformance is later shown to be statistically
significant. In any case, the added complexity tfSpand plGA does not seem worth given the
marginally worse results. It has to be noted thadier versions of pILS and pIGA without the
bi-selection scheme and diversity control mechanigre clearly worse than ILS and IGA. Therefore,
it seems clear that simple methods like ILS and tf3s iterate over a single solution, work best.

For p=60 and p =90, we again find from tables 2 and 3 that the resaoft the proposed
algorithms are much lower than those of the otlaaid IGA is again the best performing method in
terms of AVRPD. We also see how the four proposethods barely improve from one table to the
other, meaning that all four converge rapidly additonal CPU time does not translate into much
better solutions. The same can be said about thepgasforming competing methods such ag k>
DDEg.s, SLS and ILS, i.e., results improve only slightly with doubladatriple allowed CPU time.
However, for the other methods, larger improvemeamnésseen with additional CPU time but these are
not enough to compete with the best methods. Heihagn be concluded that the proposed local
search based algorithms perform better than thedt2pared competing methods for the problem
considered and under our experimental settings.

It is worth insisting that there are many simili@stin the eight best performing algorithms with
AVRPD values of less than 0.5%. Namely, the LR Istigris used most of the times to generate initial
solutions, and the RZ improvement procedure is @sed local search phase also in most of these high

23

performing algorithms. This evidences the effeatass of taking advantage of the LR heuristic ard th
RZ-improvement procedure for solving the PFSP wittal flowtime criterion. In other words, the
relatively worse performance of EQAHGA;, HGAT, and others might be mainly due to their
relatively worse initialization and due to the lesffective local search methods. In any case, our
proposed methods are arguably simpler than mosr®othnd still attain the best performance. The
superiority of the presented algorithms and theplld Dong et al. (2009) demonstrates the
effectiveness of simple local search frameworkg€etioer with the fact that local search also plays a
significant role in most high performing method® wonclude that a well designed local search based
algorithm is all that is needed in order to obtaiate-of-the-art results for the problem considered
without turning into more complex methods suchesegic or estimation of distribution algorithms.

To check whether the observed differences fromaheve tables 1-3 are indeed statistically
significant, we carry out a multifactor statisticANOVA test wheren, m, replication, CPU time
parameter o and the type of algorithm are considered as factéve compare the twelve best
performing algorithms only: IGA, pIGA, ILS, pILS,DEgs, IGr.s, SLS, ILS,, hDDE, HGA, DABC
and AGA. The remaining four algorithms (HGAHGAy,, EDA; and VNS) were ruled out since it
was not needed to test for significance, since tiesults were clearly worse than the rest. The ANO
results (not shown in detail due to reasons of epaxlicate thah, m, o and the type of algorithm
result in statistically significant differences tine response variable RPD at a 95% confidence,level
whereas the replication does not show significéffergnces (replicate is not expected to be sigaitt,
so this outcome validates the statistical testséHactors are often referred toveitness factors Fig.

8 reports the means plot together with 95% Tukeyebob significant differences (HSD) confidence
intervals of the interaction between the type afodthms and CPU time parametg?. Note that
overlapping intervals denote statistically insigraht differences between the plotted overlapped
means. Each plotted average corresponds to thagever 150 instances run five times (750 results).
HSD confidence intervals are conservative and @uhe bias in the type | statistical error of riplét
pairwise comparisons. The figure depicts the oVeraan, without separating each instance size,
“zoomed-in” figures for each instance size shogtgly different results and in some occasions,soot
wide intervals. From the figure it is clear thaé tresults of IGA and ILS are statistically bettean
those of competing methods. pIGA and pILS are, werage, statistically equivalent to DRE and
IGrLs. They are, however, statistically better thannbgt best competing method (SLS). In the figure

24

we can see that the better the method, the snibbedifference in the means as CPU time increases.
For p =60 and p =90, i.e., double or triple the CPU time, IGA shaaveomplete overlap of the three
intervals. However, pILS shows a slight improvemasitCPU time increases but this improvement is
far from being statistically significant. Only thast three methods, HGADABC and AGA, show
statistically better results ap increases. This means that the algorithms havearoterged and that
they might need a substantial additional CPU timestich the results of the other methods. As 4 fina
conclusion, we can safely state that the propokptithms are the best performers for the permonati
flowshop scheduling problem with the objective ahimizing total flowtime. Arguably, we can also

state that IGA and ILS are markedly simple andezdsiimplement than some of the other methods.

Interactions and 95.0 Percent Tukey HSD Intervals

0.95 —
0.75F =
Ia) C]
& 0550 =
> T]
< r]
F I I p 1
0.35F by —— — 30
3 ,/}%% S —— 60]

—— 90]
0.15F 3

IGA plGA DDEris SLS hDDE DABC
ILS plLS IGrLs ILSp HGAz AGA

Fig. 8. Means and confidence intervals of the atBon between the best tested algorithms and

the allowed CPU time in the ANOVA experiment.

In order to facilitate follow up research, we repbe best known solutions found so far in Table 4.
This was already done in Jarboui et al. (2009) Xndet al. (2011), among others. We run our
algorithms for a maximum elapsed CPU titasd00mn milliseconds. We compare the best solution
found by our algorithms with the solutions reportgdPan et al. (2008), Tseng and Lin (2009), Zhang
et al. (2009), Dong et al. (2009), Jarboui et 2009) and Tseng and Lin (2010), Czegki (2010),
Zheng and Yamashiro (2010), Zhang and Li (20113g&tren et al. (2011), Xu et al. (2011). The best
solution for each of the 120 Taillard (1993) insta®s is calculated by closely examining all existing
results. For the new 30 instances generated fratartes instances, we show the best solution found
by all the compared algorithms in this paper. We T891; to represent the instance obtained from

25

TA91 by considering the processing times from tingt five machines. It is interesting to see from

Table 4 that the proposed algorithms in this pdyase further improved 12 out of 120 instances. Note

that these new 12 best solutions have been obt&imetie largest and therefore presumably hardest

instances of Taillard.

Table 4. Best known total flowtime values for Tail benchmark instances.

Instance Best solution Instance Best solution InstanceBest solutioninstance Best solution Instance Best solution

No. No. No. No. No.

TAO1 14033 TAll 20911 TA21 33623 TA31 64802 TA41 187
TA02 15151 TA12 22440 TA22 31587 TA32 68051 TA42 822
TAO03 13301 TA13 19833 TA23 33920 TA33 63162 TA43 939
TA04 15447 TAl4 18710 TA24 31661 TA34 68226 TA44 486
TAO5 13529 TA15 18641 TA25 34557 TA35 69351 TA45 86377
TAO06 13123 TAL16 19245 TA26 32564 TA36 66841 TA46 586
TAO7 13548 TA1l7 18363 TA27 32922 TA37 66253 TA47 88750
TAO08 13948 TA18 20241 TA28 32412 TA38 64332 TA48 86727
TA09 14295 TA19 20330 TA29 33600 TA39 62981 TA49 4185
TA10 12943 TA20 21320 TA30 32262 TA40 68770 TA50 9838
TA51 125831 TA61 253266 TA71 298385 TAS81 365463 TA91 1046314
TA52 119247 TAGB2 242281 TA72 274384 TA82 372449 ZA9 1034195
TA53 116459 TA63 237832 TA73 288114 TA83 370027 TA93 1046902
TA54 120261 TA64 227738 TA74 301044 TA84 372393 FA9 1030481
TA55 118184 TAG5 240301 TA75 284681 TAS85 368915 TA95 1034027
TA56 120586 TA66 232342 TA76 269686 TA86 370908 TA96 1006195
TA57 122880 TA67 240366 TA77 279463 TA87 373408 TA97 1053051
TA58 122489 TA6G8 230945 TA78 290908 TA88 384525 TA98 1044875
TA59 121872 TA69 247921 TA79 301970 TA89 374423 TA99 1026137
TA60 123954 TA70 242933 TA80 291283 TA90 379296 TA100 1030299
TA101 1227733 TAll1l1l 6698656 TA91; 937273 TAl1li 5539387 TAl1l1ll 5997531
TA102 1245271 TA112 6770735 TA92 896936 TA1l1l2 5608131 TAllZ 6106675
TA103 1269673 TA113 6739645 TA93s 936905 TAl11l3 5605732 TAllg 6073492
TA104 1238349 TAl14 6785991 TA94; 902818 TAll4 5526960 TAll4 6062847
TA105 1227214 TA115 6729468 TA95; 920723 TAllp 5588103 TAllx 5986526
TA106 1227604 TA116 6724085 TA96s 890028 TAlle 5497811 TAllg 6006542
TA107 1243707 TA11l7 6691468 TA97 930040 TA11¢ 5483350 TAll7. 5966581
TA108 1246123 TA118 6783916 TA98s 914638 TA118 5572833 TA11§ 6080320
TA109 1234936 TA119 6711305 TA99s 910726 TA119 5554145 TA11lg 5994142
TA110 1250596 TA120 6755722 TA100; 903188 TAl129 5509152 TA12¢- 6013461

Bold values represent the new best known solufiomsd by the proposed algorithms in this paper.

6. Conclusions

The permutation flowshop scheduling problem wittatélowtime minimization has been subject

of intense research in the last years. Complexhégid performing metaheuristic algorithms have been

introduced. In this paper, we have proposed founpe methods, including an iterated greedy

algorithm (IGA),

an

iterated

local search (ILS), @opulation-based

IGA (pIGA),

and a

population-based ILS (pILS). These algorithms penfaan extensive search in the space of local

26

optima. They are very simple, easy to implement tanceplicate but at the same time they provide
state-of-the-art results.

The best combination of parameters for each alyoritvas obtained by means of a Design of
Experiments approach that involves the evaluatibifferent alternatives. The evaluation of the
proposed methods was carried out against the 1P fgmyforming methods from the literature.
According to the extensive experimental and statiblinalyses, the proposed IGA and ILS methods
performed better than pIGA and pILS, and they odigpen the existing methods for the problem
considered. The fact that simple methods perforttebéhan complex existing approaches, and also
that for our proposed heuristics using populatidits not improve results, reinforces the idea that
simple local search based methods are enoughve g PFSP with total flowtime criterion.

After comparing the best solutions produced bypiresented algorithms and those reported in the
literature, we found that 12 out of 120 best kna@wtutions for Taillard’s benchmark suite were ferth
improved by the presented algorithms.

Future research directions involve the considenatib more complex scheduling problems and
objectives. It seems worthwhile to apply the présénalgorithms to more realistic scheduling
problems like those with setup times, parallel nirae$, buffer size constraints, no-idle and no-wait
considerations. There have been already many studi¢his regard and it is possible that simple

methods also perform equally well in those settings

Acknowledgements

This research is partially supported by NationaleBce Foundation of China under Grants
60874075, 70871065, 60973086, and Science Foumdatb Shandong Province, China
(BS2010DX005), and Postdoctoral Science Foundaifo@hina under Grants 20100480897. Rubén
Ruiz is partially funded by the Spanish MinistrySdience and Innovation, under the project “SMPA -
Advanced Parallel Multiobjective Sequencing: Piadtiand Theoretical Advances” with reference
DPI2008-03511/DPI, by the Small and Medium Industfyhe Generalitat Valenciana (IMPIVA) and
by the European Union through the European Regibeaklopment Fund (FEDER) inside the R+D
program Programa de I+D para Institutos Tecnoldgicos deRad IMPIVA during the year 2010,
with project number IMDEEA/2011/142.

References

Allahverdi, A and Aldowaisan, T. (2002). New hetids to minimize total completion time in
m-machine flowshopdnternational Journal of Production Economjc&7(1):71-83.
Baker, K. R. (1974)Introduction to Sequencing and Schedulidghn Wiley & Sons, New York.

27

Ballestin, F., Schwindt, C. and Zimmermann, J. {00Resource Leveling in Make-to-Order
Production: Modeling and Heuristic Solution Methdaternational Journal of Operations Research
4(1):50-62.

Bansal, S. P. (1977). Minimizing the sum of conipletimes of n jobs over m machines in a flowshop:
a branch and bound approatk Transactions9(3):306—311.

Czapiiski, M. (2010). Parallel simulated annealing wittngtic enhancement for flowshop problem
with Cgyy Computers & Industrial Engineering9(4):778—785.

Dong, X. Y., Huang, H. K. and Chen, P. (2009). #arated local search algorithm for the permutation
flowshop problem with total flowtime criterio@omputers & Operations Resear@6(5):1664—-1669.
Dubois-Lacoste, J., Lopez-lbafiez, M. and Stiitzle,(2011). A Hybrid TP+PLS Algorithm for
Bi-objective Flow-Shop Scheduling Probler@amputers & Operations Resear@8(8):1219-1236.
Fanjul-Peyro, L. and Ruiz R. (2010). Ilterated gyedmcal search methods for unrelated parallel
machine schedulindgcuropean Journal of Operational Resear@f7(1):55-69.

Framinan, J.M., Leisten, R and Ruiz-Usano, R. (20@omparison of heuristics for flowtime
minimisation in permutation flowshop€omputers & Operations Resear@?(5):1237-1254.
Gonzalez, T. and Sahni, S. (1978). Flowshop andhop schedules: Complexity and approximation.
Operations Researct26(1):36-52.

Gupta, J. N. D. (1972). Heuristic algorithms for Itistage flowshop scheduling problemllE
Transactions4(1):11-18.

Gupta, J. N. D., Chen, C. L., Yap, L. Y. and DeskimH. (2000). Designing a tabu search algorithm
to minimize total flow time in a flow shograbian Journal for Science and Engineerirp(1C): 79—
94.

Ignall, E. and Schrage, L. E. (1965). Applicatidnttee Branch and Bound Technique to Some Flow
Shop Scheduling Problen®perations Resear¢ii3(3):400-412.

Jarboui, B., Ibrahim, S., Siarry, P. and Rebai(2008). A combinatorial particle swarm optimization
for solving permutation flowshop problen@omputers & Industrial Engineering4(3):526-538.
Jarboui, B., Eddaly, M. and Siarry, P. (2009). Atiraation of distribution algorithm for minimizing
the total flowtime in permutation flowshop scheddgliproblemsComputers & Operations Research
36(9):2638-2646

Johnson, S. M. (1954). Optimal two- and three-stageluction schedules with setup times included.
Naval Research Logistics Quarterfi(1):61-68.

Laha, D. and Sarin, S. C. (2009). A heuristic tonimize total flow time in permutation flow shop.
OMEGA, The international Journal of Management 8o&e37(3):734—739.

Laurent, B. and Hao, J. -K. (2009). Iterated losadrch for the multiple depot vehicle scheduling
problem.Computers & Industrial Engineering7(1):277-286.

Li, X., Wang, Q. and Wu, C. (2009). Efficient consjite heuristics for total flowtime minimization in
permutation flow shop©MEGA, The International Journal of Management Boée37(1):155-164.

Li, X. and Wu, C. (2005). An efficient constructiteuristic for permutation flow shops to minimize
total flowtime.Chinese Journal of Electronic$4(2):203—-208.

Liu, J. and Reeves, C. R. (2001). Constructive emahposite heuristic solutions to thlé//ZCj

scheduling problenturopean Journal of Operational Researdl32(2):439-452.
Lourenco, H. R., Martin, O. C. and Stitzle, T. (@Q1lterated local search: Framework and
applications, Chapter 12 in Gendreau, M. and Ppt¥inY. (Eds)Handbook of Metaheuristic2nd.

28

Edition, International Series in Operations Redeafc Management Science, Vol. 146, Kluwer
Academic Publishers, Norwell, MA, 363—-397.

Minella, G., Ruiz, R. and Ciavotta, M. (2011). Rettd Iterated Pareto Greedy algorithm for
Multi-Objective Flowshop Scheduling problentS8omputers & Operations ResearcB8(11):1521—
1533.

Montgomery, D. (2009)Design and Analysis of Experimeneventh edition. John Wiley & Sons,
New York.

Osman, |. H. and Potts, C. N. (1989). Simulatedeafing for permutation flow-shop scheduling.
OMEGA, The International Journal of Management Soéel7(6):551-557.

Pan, Q. -K, Tasgetiren, M. F. and Liang, Y. -C.4Q&D A discrete differential evolution algorithmrfo
the permutation flowshop scheduling problé@omputers and Industrial Engineeringb(4):795-816.
Pan, Q. -K and Ruiz, R. (2012). An estimation dftrdbution algorithm for lot-streaming flow shop
problems with setup time®MEGA, The International Journal of Management Soie40(2):166—
180.

Pinedo, M. (2009)Scheduling: Theory, Algorithms and Syste8ginger, New York, third edition.
Rajendran, C. (1993). Heuristic algorithm for sakledy in flowshop to minimize total flowtime.
International Journal of Production Economj@9(1):65-73.

Rajendran, C. and Ziegler, H. (1997). An efficideuristic for scheduling in a flowshop to minimize
total weighted flowtime of job€uropean Journal of Operational Researd®3(1):129-138.
Rajendran, C. and Ziegler, H. (2004). Ant-colongoaithms for permutation flowhsop scheduling to
minimize makespan/total flowtime of jobBuropean Journal of Operational Researdb5(2):426—
438.

Rajendran, C. and Ziegler, H. (2005). Two ant-cglatgorithms for minimizing total flowtime in
permutation flowshopLomputers & Industrial Engineering8(4):789-797.

Ribas, I., Companys, R. and Tort-Martorell, X. (2D1An iterated greedy algorithm for the flowshop
scheduling problem with blockinfDMEGA, The International Journal of Management Soée
39(3):293-301.

Ruiz, R., Maroto, C. and Alcaraz, J. (2006). Twavn®butst genetic algorithms for the flowshop
scheduling problenOMEGA, The International Journal of Management Soée34(5):461-476.

Ruiz, R. and Stitzle, T. (2007). A simple and dffeciterated greedy algorithm for the permutation
flowshop scheduling probleruropean Journal of Operational Researdfi7(3):2033—-2049.

Ruiz, R. and Stitzle, T. (2008). An iterated grebduyristic for the sequence dependent setup times
flowshop problem with makespan and weighted tastirebjectivesEuropean Journal of Operational
Research187(3):1143-1159.

Stafford, Jr. E. F. (1988). On the development afiiged integer linear programming model for the
flowshop sequencing probledournal of the Operational Research Soci@§(12):1163-1174.

Stitzle, T. (1998). Local Search Algorithms for Gonatorial Problems - Analysis, Algorithms, and
New Applications. PhD thesis, TU Darmstadt, Comp@&&ience Department. Darmstadt, Germany.
Stitzle, T. (1998b). Applying iterated local seatohthe permutation flowshop problem. Technical
Report, AIDA-98-04, FG Intellektik, TU Darmstadtabnstadt, Germany.

Stitzle, T. (2006). Iterated local search for thmadratic assignment problefauropean Journal of
Operational Resear¢t74(3):1519-1539.

Taillard, E. (1990). Some efficient heuristic methdor the flow shop sequencing probldfaropean
Journal of Operational Research7(1):65-74.

29

Taillard, E. (1993). Benchmarks for basic schedpulproblems.European Journal of Operational
Research64(2):278-285.

Tang, L. and Liu, J. (2002). A modified geneticaithm for the flow shop sequencing problem to
minimize mean flow timeJournal of Intelligent Manufacturingl3(1):61-67.

Tasgetiren, M. F., Liang, Y. -C, Sevkli, M. and @Ggitmaz, G. (2007). A particle swarm optimization
algorithm for makespan and total flowtime minimieat in the permutation flowshop sequencing
problem.European Journal of Operational Resear@i7(3):1930-1947.

Tasgetiren, M. F., Pan, Q. -K, Suganthan, P. N. @hdn, A. H. -L. (2011). A discrete artificial bee
colony algorithm for the total flowtime minimizatian permutation flow Shop#nformation Sciences
181(16):3459-3475.

Tseng, L. -Y. and Lin, Y. -T. (2009). A hybrid geitelocal search for the permutation flowshop
scheduling problenturopean Journal of Operational Researd®8(1):84-92.

Tseng, L. -Y. and Lin, Y. -T. (2010). A genetic &dsearch algorithm for minimizing total flowtime i
the permutation flowshop scheduling problemternational Journal of Production Economijcs
127(1):121-128.

Urlings, T., Ruiz, R. and Stutzle, T.. (2010). 8hi representation search for hybrid flexible floe
problems European Journal of Operational Resear@07(2):1086—1095.

Vallada, E. and Ruiz, R. (2010). Genetic algorittith path relinking for the minimum tardiness
permutation flowshop problemOMEGA, The International Journal of Management Goie
38(1-2):556-575.

Vempati, V. S., Chen, C. -L. and Bullington, S. #993). An effective heuristic for flow shop
problems with total flow time as criterioBomputers & Industrial Engineerin@5(1-4):219-222.

Xu, X., Xu Z. and Gu, X. (2011). An asynchronousigfic local search algorithm for the permutation
flowshop scheduling problem with total flowtime rimmzation. Expert systems with Applicatigns
38(7):7970-7979.

Yamada, T. and Reeves, C. R. (1998). SolvingQhg permutation flowshop scheduling problem by
genetic local search. In Proceedings of the 199BEIHnternational Conference on Evolutionary
Computation. 230-234.

Yao J, Kharma N, Grogono P (2010). Bi-objective fifdpulation genetic algorithm for multimodal
function optimization|EEE Transactions on evolutionary computati@#(1):80-102.

Zhang, Y., Li, X. and Wang, Q. (2009). Hybrid geaetigorithm for permutation flowshop scheduling
problems with total flowtime minimizatiorEuropean Journal of Operational Researd®6(3):869—
876.

Zhang, Y. and Li, X. (2011). Estimation of distrtlmn algorithm for permutation flow shops with tbta
flowtime minimization.Computers & Industrial Engineerin@0(4):706—718.

Zheng, T. and Yamashiro, M. (2010). Solving flowogtscheduling problems by quantum differential
evolutionary algorithminternational Journal of Advanced Manufacturing fArology 49(5-8):643—
662.

30

