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Abstract

In this paper we describe epiModel, a code developed in Mathematica that
facilitates the building of systems of differential equations corresponding to
type-epidemiological models whose characteristics are defined in text files
following an easy syntax. It includes the possibility to obtain the equations
of models involving age and/or sex groups.
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1. Introduction

From the celebrated paper of Kermack and McKendrick in 1927 [1] epi-
demiologists and mathematicians have been used mathematical models to
understand the transmission dynamics of diseases. The advances in this area
led to more complex models and, therefore, larger systems of differential equa-
tions. For instance, the model developed in [2] for the study of the spread
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of Human Papillomavirus (HPV) consists of more than 7,000 equations, or
the model described in [3] for the dynamics of meningococcal disease with
around nine hundred equations.

The compartmental diagrams have helped the developing of the epidemi-
ological models and their translation into differential equations. However,
when the models include a lot of subpopulations and consider age and/or
sex groups, the building of the system of differential equations turns difficult
when handling a large number of functions and parameters.

It has been developed software to help researchers to model, study, simu-
late and analyse the models, for instance MathModelica [4] mainly addressed
for Engineering purposes. Other as Berkeley Madonna [5], Mathematica [6],
MATLAB [7], MLAB [8] or even Grapher [9] among others, are powerful
tools once the user provides them the system of differential equations to be
studied.

Thus, with the aim to facilitate researchers in the epidemiology area to
build model equations, in this paper we present epiModel, a code developed
in Mathematica capable to generate automatically the system of differential
equations and its parameters from a short and easy description of the model
contained in a text file.

epiModel consists of three files (see scheme in Figure 1):

• ”ModelDefinition”. This file is where the user describes the character-
istics of the model using a simple syntax explained in Section 2.

• ”epiModel”. This file contains the code that enable the transformation
of the data model in ”ModelDefinition” into a system of differential
equations.

• ”ModelBuilder.nb”. This is a Mathematica file that loads the files
”ModelDefinition” and ”epiModel” and execute them in order to gen-
erate two new files:

– ”Model.data” with the system of differential equations and

– ”parameters.data” with a list of all the model parameters.

The paper is organised as follows. In Section 2 we describe how to build
the file ”ModelDefinition”. Once the ”ModelDefinition” has been built, in
Section 3 we explain how to generate the files ”Model.data” and ”param-
eters.data”. In Section 4, three examples are presented: in the first, we
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Figure 1: Proccess of how epiModel works. ”ModelBuilder.nb” loads data from ”Mod-
elDefinition” and ”epiModel” creates ”Model.data” and ”parameters.data”.

generate the system of differential equations corresponding to a typical SIRS
model; in the second, the same is done for a SIR model with two age groups;
finally, the equations for a SIR model with two age and two sex groups are
generated in the last example. In Section 5, conclusions are given.

It is not the objective of this paper to explain the code line by line, but we
must say that it has been developed following a slight improvement of the idea
of Capasso [10, 11] about how to represent an epidemiological model in matrix
form. In fact, when a model is generated, the file ”Model.data” contains the
system of equations and the matrices corresponding to the matrix form of
the model.

Then, if the vector z(t) = (z1(t), . . . , zn(t)) contains as entries the model
subpopulation functions and we denote by

diag(z(t)) =

 z1(t) . . . 0
...

. . .
...

0 . . . zn(t)

 ,

any compartmental model (even including age and/or sex groups) can be
written as

dz(t)

dt
= c+ Lz(t) + A diag(z(t)) Bz(t), (1)
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where c is a vector of size n and L, A and B are matrices of size n × n.
c contains parameters corresponding to the model independent terms, L to
the linear terms and A and B to the model non-linear terms, placed in the
appropriate coordinates.

The difference with the Capasso’s idea is the inclusion of matrix A that
allows us to take several subpopulations (usually the same in different age/sex
groups) as a part of the same transmission (non-linear) term. In Section 4,
in the first and second example, we will provide the obtained matrices c, L,
A and B.

epiModel is available at http://www.imm.upv.es.

2. How to build the file ”ModelDefinition”

This is a text file and consists of three parts: a general variable; the
definition of subpopulations; and the definition of the parameters. Note that
the syntax of this file should fit the Mathematica syntax.

It is important to preserve the names of the variables defined below
(\[NTilde], SP, TI, LIN, NOLIN, x) because they will be called by ”epi-
Model”.

2.1. General variable

This variable indicates the structural characteristics of the model, i.e.,
the age groups. The variable is

Name Value Description

1. \[NTilde] number Number of age groups.

2.2. Definition of the subpopulations

Data corresponding to subpopulations are stored in a list named SP.
Each row of the list consists of the following fields

Name Value Description

1. Number Number Subpopulation ID number.
2. Description String Name of the subpopulation.

In the following example, three subpopulations of a model are defined.
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SP = {

{1, "Susceptible"},

{2, "Infected" },

{3, "Recovered" }

};

2.3. Defining Parameters

The parameters have two ways to be classified. The first depends on the
part of the model to which they contribute:

• Those that are included in the independent term of the model and they
will be in the list TI.

• Those that are linear terms of the model and they will be in the list
LIN.

• Those that are part of the non-linear term of the model and will be
stored in the list NOLIN.

The second classification depends on the type of parameter. To explain
this, we should note that compartmental models are illustrated by diagrams
where the boxes represent the subpopulations and the arrows represent the
terms involving the model parameters. However, not all the arrows are equal:
some only enter in a box; some of them only exist from a box; others exist
from a box and enter in another; some of the latter are especial because
connect the same box for different age groups (see Figure 2). These four
possibilities lead to the second parameters classification:

• Type 1: also called birth type, because this parameter comes from
arrows that only enters in a subpopulation, as the newborns do.

• Type 2: also called death type, because it is related to an arrow that
only exists from a subpopulation, like dead people leaving the system.

• Type 3: also called input-output type, because this parameter measures
the flow from one box or subpopulation to another, for instance, the
disease transmission or the recovering illness average time.

• Type 4: also called between ages type, because this parameter is related
to the population growth and connects the same box in two consecutive
age groups.
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Figure 2: Parameter types depending on where the arrows enter and exit in compartmental
models.

2.3.1. Parameters of independent term and linear term

Each independent term or linear term parameter is encoded with a list
containing the following fields:

Name Value Description

1. Name Parameter name.
2. Type 1, 2, 3, 4 Parameter type.
3. The arrow

exits from
the sub-
populations

{n1, n2, . . .} Subpopulations from which the
arrow related to the current pa-
rameter, exits. The list {} means
that the arrow does not exit from
any box (e.g., a birth type param-
eter) .

4. The arrow
enters into
the sub-
populations

{n1, n2, . . .} Subpopulations from which the
arrow related to the current pa-
rameter, enters. The list {}
means that the arrow does not
enter into any box (e.g., a death
type parameter).

5. Depending
on the age
group?

True/False True means that this parameter
can be different depending on the
age group.

6. Description String Description of the parameter.
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It should be taken into account the following considerations concerning
with the definition of parameters:

• Any parameter should not be named x because this variable defines
the subpopulations.

• A parameter of Type 3 can not have common elements in the fields 3
and 4 of the above table. These situations can be avoided by defining
various parameters properly.

• If a parameter does not depend on age groups, i.e., the field 5 in the
table is False, it will appear only in the first age group between the
boxes included in the lists of the fields 3 and/or 4.

• Type 4 parameters cannot appear in the variable TI.

• The Type 4 parameters have always to be dependent on the age group.

In order to avoid confusions, it is not convenient to use the same or similar
variable names for different parameters. Now, let us show some examples of
how to encode parameters corresponding to independent and linear model
terms:

• Type 1: Suppose that the newborns enters directly to subpopulation
1 at a rate \[Mu]. The model does not consider age groups. Then, this
term is encoded as

{\[Mu], 1, {}, {1}, False, "Birth rate"}

• Type 2: Now, we consider, an age group model with three subpopu-
lations where the death rate depends on the age group and all people
of any subpopulation is susceptible to die. This is encoded as:

{d, 2, {1,2,3}, {}, True, "Death rate"}

• Type 3: Let us suppose that, after recovering from a disease, the
individuals have an average temporary immunity \[Gamma] in a typical
SIRS model with age groups. This parameter will be encoded as:

{\[Gamma], 3, {3}, {1}, True, "Average immunity time"}
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• Type 4: In an age group model with three subpopulations, the growth
rate c is encoded as follows:

{c, 4, {1,2,3}, {}, True, "Growth rate"}

2.3.2. Parameters of non-linear term

Each non-linear term parameter is encoded using the following fields:

Name Value Description

1. Name Parameter name.
2. Transmission

is affected
by the sub-
populations

{n1, n2, . . .} Those subpopulations related to
any infectious state (infectious,
latent, etc.).

3. The arrow
exits from
the sub-
population

{n1} Subpopulation whose individuals
are susceptible to be infected.

4. The arrow
enters into
the sub-
population

{n2} Subpopulation where an infected
individual enters (latent, infec-
tious, etc.).

5. Depending
on the age
groups?

True/False True means that this parameter
can be different depending on the
age group.

6. Description String Description of the parameter.

The same advices done for independent and linear parameters can be
applied to non-linear ones. In the following example, the list

{\[Beta], {3,4}, {1}, {2}, True, Transmission rate}

indicates that if an individual A in subpopulation 1 of any age group
has a successful contact (the disease is transmitted) with another individual
belonging to subpopulations 3 or 4 of any age group, individual A moves to
subpopulation 2 in the same age group as A was previously.
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3. Steps to build the system of differential equations

As we said before, the code was developed using Mathematica [6]. Then,
in order to build the system of differential equations, we need to have Math-
ematica installed in the computer. Moreover, the files ”ModelDefinition”,
”epiModel” and ”ModelBuilder.nb” have to be in the same directory. Then,
open the notebook ”ModelBuilder.nb” using Mathematica. This notebook
consists of 4 cells.

1st. This cell allows to set the current directory (the directory containing
the files to build the model) as the working directory.

2nd. The second cell loads the text file ”ModelDefinition” where we have
defined the model, following the rules described in Section 2.

3rd. The third cell loads ”epiModel” and executes it. Then, the files ”Model.data”
and ”parameter.data” appear in the working directory.

4th. Once the system of equations is in the ”Model.data” file, this cell loads
this file and displays the resulting system of equations. This is useful
to verify that no errors have occurred and check the correctness of the
equations.

Figure 3: Screenshot of ”ModelBuilder.nb” in Mathematica.

In the case that no errors appeared, two files will be generated: ”Model.data”
and ”parameters.data”.
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3.1. The file ”Model.data”

This file contains the variables ti, mc, mcNoL1, mcNoL2, Fvars, eqns,
vars.

• ti corresponds to the vector independent term of the model, that is,
vector c in expression (1).

• mc corresponds to the coefficient matrix of the linear model, i.e, matrix
L in (1).

• mcNoL1 and mcNoL2 are the coefficient matrices which allow the con-
struction of the non-linear part of the model, that is, matrices A and
B in (1), respectively.

• Fvars is a vector function where each entry corresponds to each sub-
population in the model.

• eqns is a list with the system of differential equations. It is built com-
puting the expression (1) using all the above matrices.

• vars is the same as Fvars but removing t in the functions.

Thus, if we want to solve numerically in Mathematica a model (system
of differential equations) we execute

sol = NDSolve[ eqns, vars, {t, t0, tEnd} ]

and in order to evaluate and draw the solutions we can execute

Plot[ Evaluate[ Fvars /. sol ], {t, t0, tEnd} ]

3.2. The file ”parameters.data”

This file has a complete list of the parameters appearing in the model.
This is useful because some of them can be replaced by known values and
the ones that do not can be included in a procedure to be estimated.

4. Examples

In this section let us show three examples with different options to build
type-epidemiological models.
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4.1. SIRS model

The first example is the classical SIRS model, where we have three sub-
populations: Susceptible (S), Infectious (I) and Recovered (R). The trans-
mission is carried out with effective contacts between a susceptible individual
and an infectious individual. Once an individual has been infected he/she
recovers and acquires a temporal immunity. When this finishes, the individ-
ual becomes again susceptible. This description has been depicted in Figure
4.

S I R
µ 

d I

! R

" S I 

d S d R

v I 

Figure 4: Diagram of a Susceptible-Infectious-Recovered-Susceptible model.

To build the ”ModelDefinition” file, it should be taken into account that:

• It is a model without age groups.

• µ is a Type 1 parameter belonging to the independent term model, be-
cause it represents the newborns that enter directly into the susceptible
subpopulation.

• Parameter d is the death rate (Type 2) and exits from all the subpop-
ulations.

• β is the transmission parameter belonging to the non-linear term.

• The Type 3 parameters γ and ν belong to linear terms. They are the
average time of infection and immunity.

Note that the number of age groups indicated is 1 and there are not
parameters depending on the age groups. In this way, the ”ModelDefinition”
file will be as follows:
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(* Number of age groups *)

\[NTilde] = 1;

(* Subpopulations *)

SP = {

{1, "Susceptible"},

{2, "Infected" },

{3, "Recovered" }

};

(* INDEPENDENT TERM *)

TI = {

{\[Mu], 1, {}, {1}, False, "Birth rate"}

};

(* LINEAR TERM *)

LIN = {

{ \[Nu], 3, {2}, {3}, False, "Average time of infection"},

{\[Gamma], 3, {3}, {1}, False, "Average time of immunity"},

{ d, 2, {1,2,3}, {}, False, "Death rate"}

};

(* NON LINEAR TERM *)

NOLIN = {

{\[Beta], {2}, {1}, {2}, False, "Transmision rate"}

};

After running ”epiModel” and building the model from the above data in
the ”ModelDefinition” file, Mathematica returns the following system of dif-
ferential equations (x[1, 1] is the susceptible, x[2, 1] the infectious and x[3, 1]
the recovered subpopulations):

x[1, 1]′[t] == µ− dx[1, 1][t]− βx[1, 1][t]x[2, 1][t] + γx[3, 1][t]
x[2, 1]′[t] == (−d− ν)x[2, 1][t] + β[1, 1]x[1, 1][t]x[2, 1][t]
x[3, 1]′[t] == νx[2, 1][t] + (−d− γ)x[3, 1][t]
x[1, 1][t0] == cIni[1]
x[2, 1][t0] == cIni[2]
x[3, 1][t0] == cIni[3]
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and the matrices that, computing the expression (1), enable the construc-
tion of the above system are:

c =

 µ
0
0

 , L =

 −d 0 γ
0 −d− ν 0
0 ν −d− γ

 ,

A =

 −1 0 0
1 0 0
0 0 0

 , B =

 0 β 0
0 0 0
0 0 0

 .

4.2. SIR model with two age groups

This is a typical SIR (Susceptible-Infectious-Recovered) model with two
age groups. We have two susceptible groups, S1 and S2, one for each age
group, the same for infectious, I1 and I2 and for recovered R1 and R2. An
individual in S1, I1 or R1 grows and can enter in the corresponding box of
the 2nd age group, S2, I2 or R2, respectively. The transmission is carried
out with effective contacts between a susceptible individual and an infectious
individual of any age group. Once an individual has been infected, after some
time, recovers. This description has been depicted in Figure 5.

S1 I1 R1

µ 

d1 I1

!11 S1 I1 + 

!12 S1 I2 

d1 S1 d1 R1

v1 I1 

S2 I2 R2

d2 I2d2 S2 d2 R2

v2 I2 

c1 S1 c1 I1 c1 R1

!21 S2 I1 + 

!22 S2 I2 

c2 S2 c2 I2 c2 R2

Figure 5: Diagram of a Susceptible-Infectious-Recovered model with two age groups.

To build the ”ModelDefinition” file, we take into account that:
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• It is a model with 2 age groups.

• µ is a Type 1 parameter belonging to the independent term model that
enters directly into the susceptible subpopulation of the first age group,
i.e., it does not depend on the age group.

• β is the transmission parameter belonging to the non-linear term. ”epi-
Model” will generate four different parameters (β[1, 1], β[1, 2], β[2, 1]
and β[2, 2]) depending on the crossed products between susceptible and
infectious supopulations.

• The Type 2 death parameter d depends on the age group. ”epiModel”
will generate d[1] parameter for the first age group and d[2] for the
second one.

• The Type 3 parameter ν belongs to linear term. It is the average
recovery time and also depends on the age group.

• Parameter c is Type 4 and is the population growth rate between these
age groups.

Thus, the ”ModelDefinition” file will be as follows:

(* Number of age groups *)

\[NTilde] = 2;

(* Subpopulations *)

SP = {

{1, "Susceptible"},

{2, "Infected" },

{3, "Recovered" }

};

(* INDEPENDENT TERM *)

TI = {

{\[Mu], 1, {}, {1}, False, "Birth rate"}

};

(* LINEAR TERM *)
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LIN = {

{ \[Nu], 3, {2}, {3}, True, "Average time of infection"},

{ d, 2, {1,2,3}, {}, True, "Death rate"},

{ c, 4, {1,2,3}, {}, True, "Growth rate"}

};

(* NON LINEAR TERM *)

NOLIN = {

{\[Beta], {2}, {1}, {2}, False, "Transmision rate"}

};

Then, running ”epiModel” and building the model from the above data
in the ”ModelDefinition” file, Mathematica returns the following system of
differential equations (x[1, 1], x[2, 1] and x[3, 1] are the susceptible, infectious
and recovered subpopulations, respectively, of the first age group, and x[1, 2],
x[2, 2], x[3, 2] for the second one):

x[1, 1]′[t] == µ+ (−c[1]− d[1])x[1, 1][t]
−β[1, 1]x[1, 1][t]x[2, 1][t]− β[1, 2]x[1, 1][t]x[2, 2][t]

x[2, 1]′[t] == (−c[1]− d[1]− ν[1])x[2, 1][t]
+β[1, 1]x[1, 1][t]x[2, 1][t] + β[1, 2]x[1, 1][t]x[2, 2][t]

x[3, 1]′[t] == ν[1]x[2, 1][t] + (−c[1]− d[1])x[3, 1][t]
x[1, 2]′[t] == c[1]x[1, 1][t] + (−c[2]− d[2])x[1, 2][t]
x[2, 2]′[t] == c[1]x[2, 1][t] + (−c[2]− d[2]− ν[2])x[2, 2][t]
x[3, 2]′[t] == ν[2]x[2, 2][t] + c[1]x[3, 1][t] + (−c[2]− d[2])x[3, 2][t]
x[1, 1][t0] == cIni[1]
x[2, 1][t0] == cIni[2]
x[3, 1][t0] == cIni[3]
x[1, 2][t0] == cIni[4]
x[2, 2][t0] == cIni[5]
x[3, 2][t0] == cIni[6]

and the matrices that permit the construction of the above system, com-
puting the expression (1), are:

L =


−c[1]− d[1] 0 0 0 0 0

0 −c[1]− d[1]− ν[1] 0 0 0 0
0 ν[1] −c[1]− d[1] 0 0 0
c[1] 0 0 −c[2]− d[2] 0 0
0 c[1] 0 0 −c[2]− d[2]− ν[2] 0
0 0 c[1] 0 ν[2] −c[2]− d[2]

 ,
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c =


µ
0
0
0
0
0

 , A =


−1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , B =


0 β[1, 1] 0 0 β[1, 2] 0
0 0 0 0 0 0
0 0 0 0 0 0
0 β[2, 1] 0 0 β[2, 2] 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Note that the model includes parameter c[2]. This parameter has sense
if people in the second age group leave the system in a form different from
death, otherwise, c[2] would be redundant because d[2] plays the same role
and then, c[2] should be zero.

4.3. SIR model with two age groups and two sexes

”epiModel” is not designed to build systems of differential equations from
gender models, however, considering some tricks, we can transform a typical
age group model into an age group and gender model. These tricks are:

• Consider first the age groups for females and then for males. Then, if
there are n age groups for each sex, we should consider a model with
2n age groups (\[NTilde]=2n).

• The growth parameter c[n] connecting the last female age group (group
n) with the first male age group (group n+ 1) is zero.

• Birth rate should be considered age depending in order to take into
account different birth rates for females and males. Then, Birth rate,
say µ[i] is a Type 1 parameter depending on age group. However,
newborns enter in the first age group, group 1 for females (µ[1]) and
group n+ 1 for males (µ[n+ 1]). The remainder µ[i] are zero.

This example consists on a typical SIR (Susceptible-Infectious-Recovered)
model with two age groups and two sexes for each age group. We have two
susceptible female groups, S1 and S2, and two susceptible male groups, S3

and S4, one for each age group. The same for infectious, I1, I2, I3 and I4,
and for recovered, R1, R2, R3 and R4. An individual in S1, I1, R1, S3, I3, R3

grows and can enter into the box S2, I2, R2, S4, I4, R4 of the 2nd age group,
respectively. People leave the system by death.
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For this example, let us suppose that the disease considered is hetero-
sexually transmitted. The transmission is carried out with effective contacts
between a susceptible male or female and an infectious individual of any age
group of the other sex. Once an individual has been infected, after some
time, recovers. To build the ”ModelDefinition” file, we take into account
that:

• It is a model with 4 age groups, two for females and two for males.

• µ is a Type 1 parameter belonging to the independent term model that
enters directly into the susceptible subpopulations of the first age group
for males and females. This requires that µ depends on the age group
and µ[2] = µ[4] = 0.

• β is the transmission parameter belonging to the non-linear term. ”epi-
Model” will generate β[i, j] for i, j = 1, 2, 3, 4, one for each type of
contact. Taking into account that this disease is heterosexually trans-
mitted, parameters β[1, 1], β[1, 2], β[2, 1], β[2, 2], β[3, 3], β[3, 4], β[4, 3]
and β[4, 4] are zero.

• The Type 2 death parameter d depends on the age group. ”epiModel”
will generate d[i] parameters for i = 1, 2, 3, 4, the two first for the female
age groups and the remainder for male age groups.

• The Type 3 parameter ν belongs to linear term. It is the average
recovery time and also depends on the age group and gender.

• Parameter c is of Type 4 and it denotes the population growth rate
between these age groups. As we mentioned before, c[2] = 0. Moreover,
as people leave the system by death, c[4] = 0 because plays the same
role as the death parameter d[4].

Thus, the ”ModelDefinition” file will be as follows:

(* Number of age groups *)

\[NTilde] = 4;

(* Subpopulations *)

SP = {

{1, "Susceptible"},
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{2, "Infected" },

{3, "Recovered" }

};

(* INDEPENDENT TERM *)

TI = {

{\[Mu], 1, {}, {1}, True, "Birth rate"}

};

(* LINEAR TERM *)

LIN = {

{ \[Nu], 3, {2}, {3}, True, "Average time of infection"},

{ d, 2, {1,2,3}, {}, True, "Death rate"},

{ c, 4, {1,2,3}, {}, True, "Growth rate"}

};

(* NON LINEAR TERM *)

NOLIN = {

{\[Beta], {2}, {1}, {2}, False, "Transmision rate"}

};

Then, running ”epiModel”, files ”Model.data” and ”parameters.data” ap-
pear. Now, in order to obtain the desired system of differential equations,
we have to assign the following values to parameters: c[2] = c[4] = 0, µ[2] =
µ[4] = 0, β[1, 1] = β[1, 2] = 0, β[2, 1] = β[2, 2] = 0, β[3, 3] = β[3, 4] = 0 and
β[4, 3] = β[4, 4] = 0. Thus, we obtain the system:
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x[1, 1]′[t] == µ[1] + (−c[1]− d[1])x[1, 1][t]
−β[1, 3]x[1, 1][t]x[2, 3][t]− β[1, 4]x[1, 1][t]x[2, 4][t]

x[2, 1]′[t] == (−c[1]− d[1]− ν[1])x[2, 1][t]
+β[1, 3]x[1, 1][t]x[2, 3][t] + β[1, 4]x[1, 1][t]x[2, 4][t]

x[3, 1]′[t] == ν[1]x[2, 1][t] + (−c[1]− d[1])x[3, 1][t]
x[1, 2]′[t] == c[1]x[1, 1][t]− d[2]x[1, 2][t]
x[2, 2]′[t] == c[1]x[2, 1][t] + (−d[2]− ν[2])x[2, 2][t]
x[3, 2]′[t] == ν[2]x[2, 2][t] + c[1]x[3, 1][t]− d[2]x[3, 2][t]
x[1, 3]′[t] == µ[3] + (−c[3]− d[3])x[1, 3][t]
x[2, 3]′[t] == (−c[3]− d[3]− ν[3])x[2, 3][t]
x[3, 3]′[t] == ν[3]x[2, 3][t] + (−c[3]− d[3])x[3, 3][t]
x[1, 4]′[t] == c[3]x[1, 3][t]− d[4]x[1, 4][t]
x[2, 4]′[t] == c[3]x[2, 3][t] + (−d[4]− ν[4])x[2, 4][t]
x[3, 4]′[t] == ν[4]x[2, 4][t] + c[3]x[3, 3][t]− d[4]x[3, 4][t]
x[1, 1][t0] == cIni[1]
x[2, 1][t0] == cIni[2]
x[3, 1][t0] == cIni[3]
x[1, 2][t0] == cIni[4]
x[2, 2][t0] == cIni[5]
x[3, 2][t0] == cIni[6]
x[1, 3][t0] == cIni[7]
x[2, 3][t0] == cIni[8]
x[3, 3][t0] == cIni[9]
x[1, 4][t0] == cIni[10]
x[2, 4][t0] == cIni[11]
x[3, 4][t0] == cIni[12]

where x[i, j][t] is the subpopulation susceptible for i = 1, infectious for
i = 2 and recovered for i = 3, and age group 1 females for j = 1, age group
2 females for j = 2, age group 1 males for j = 3 and age group 2 males for
j = 4.

5. Conclusion

In this paper, we present a Mathematica code that translates the descrip-
tion of a type-epidemiological compartmental model in a simple syntax into
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a system of differential equations. The obtained system can be used to esti-
mate parameters, simulate different scenarios or predict short and long-term
behaviour.

This code is easy to use, save time building the systems and avoid er-
rors. Moreover, it can be applied to models involving age groups and/or
gender. It is particularly interesting when we have to handle a large number
of groups. You can test it changing in any of the examples in Section 4, the
variable \[NTilde] by 100 (one hundred one-year age groups), appearing
300 equations.

epiModel is available at http://www.imm.upv.es.
Acknowledgement This work has been partially supported by the FIS

PI–10/01433, the Spanish Goverment MICINN and FEDER grant MTM2009–
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