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fixed-complexity sphere decoders for MIMO
wireless systems
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Abstract. The use of many-core processors such as general purpose Graphic Processing Units (GPUs) has recently become
attractive for the efficient implementation of signal processing algorithms for communication systems. This is due to the cost-
effectiveness of GPUs together with their potential capability of parallel processing. This paper presents an implementation of
the widely employed fixed-complexity sphere decoder on GPUs, which allows to considerably decrease the computational time
required for the data detection stage in multiple-input multiple-output systems. Both, the hard- and soft-output versions of the
method have been implemented. Speedup results show the proposed GPU implementation boosts the runtime of the parallel
execution of the methods in a high performance multi-core CPU. In addition, the throughput of the algorithm is evaluated and is
shown to outperform other recent implementations and to fulfill the real-time requirements of several LTE configurations.
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1. Introduction

Multiple-input multiple-output (MIMO) wireless
communications have been widely studied during the
last decade [24]. MIMO systems can provide high
spectral efficiency by means of spatially multiplexing
as many data streams as transmitting antennas are used
in the system. Furthermore, MIMO techniques can be
used to enhance the performance of Orthogonal Fre-
quency Division Multiplexing (OFDM) systems by ex-
ploiting the spatial domain, since MIMO-OFDM al-
lows to transmit different streams over different sub-
carriers and spatial beams [17]. This increase in the
spectral efficiency makes MIMO systems promising
to fulfill the high-throughput requirements of current
wireless standards such as WiMAX and LTE [2].

∗Corresponding author: Sandra Roger, Institute of Telecommu-
nications and Multimedia Applications, Universitat Politecnica de
Valencia, Camino de Vera s/n, 8G Building, Access D, Valencia,
46022, Spain. Tel.: +34 963877304; Fax: +34 963877309; E-mail:
sanrova@iteam.upv.es.

On the other hand, the use of MIMO communication
systems complicates the receiver stage, which has the
task of processing the received mixture of signals af-
fected by the channel in order to recover the transmit-
ted data with the accuracy required by the considered
application. If nearly optimal detection is desired, this
stage becomes often the most computationally expen-
sive within a MIMO system and, thus, the search for
high-throughput receiver implementations is impera-
tive. Furthermore, scalability in the number of subcar-
riers per MIMO-symbol and in the system size are key
factors in LTE and 4G wireless standards [2].

The use of many-core processors such as general
purpose Graphic Processing Units (GPUs) has recently
become attractive for the efficient implementation of
signal processing algorithms with high computation re-
quirements, such as the massive convolution imple-
mentation in [8], the GPU-based 3D human interface
addressed in [12], the visualization system in [26] and
many other image-related applications [11,20,22]. Sig-
nal processing for wireless communication systems is
also a field which requires high computation capabil-
ities. Additionally to the traditional use of digital sig-
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Fig. 1. Block diagram of a MIMO-BICM system.

nal processors (DSP) and field programmable gate ar-
rays (FPGA), GPUs are becoming very useful to de-
velop software-defined-radio platforms [3,4,19], high-
throughput schemes such as the trellis-based hard- and
soft-output MIMO detectors proposed in [23,28,29]
or the fast decoding schemes for LDPC codes pre-
sented in [13,21]. This is due to the cost-effectiveness
of GPUs together with their huge capability of parallel
processing. Nevertheless, GPU devices involve a usu-
ally higher power consumption [10], which may be a
shortcoming in practice.

In this paper, we present an implementation on
GPUs of a widely employed fixed-complexity sphere
decoder proposed in [7], which allows to ensure op-
timal detection performance in MIMO systems with
high throughput. Both, the hard- and soft-output [5]
versions of the method have been implemented and
compared to the implementation of the same algo-
rithms on a high-performance multi-core CPU. Focus-
ing on real-time applications, the throughput of the al-
gorithm is also evaluated and compared to that of some
other recent implementations in the literature. In addi-
tion, the runtime is compared with the requirements of
current wireless standards and the transmission config-
urations supported by the proposed GPU implementa-
tion are discussed.

2. System model

Let us consider a MIMO system with nT transmit
antennas, nR receive antennas (nR � nT ) and a cer-
tain signal-to-noise ratio (SNR). The input data stream
is split equally into the nT transmit antennas and sent
simultaneously through the channel, thus overlapping
in time and frequency. The baseband equivalent model
for this system is given by

y = Hs+ v, (1)

where s represents the transmitted signal vector com-
posed of the elements resulting of mapping sets of in-
formation bits to symbols belonging to a certain con-
stellation Ω of size M , such as Quadrature Ampli-
tude Modulation (QAM). Vector y in Eq. (1) denotes
the received symbol vector, and v is a complex addi-
tive white Gaussian noise vector. The Rayleigh fading
channel matrix H is assumed to be known at the re-
ceiver and is formed by nR × nT complex-valued ele-
ments, hij , which represent the fading gain from the j-
th transmit antenna to the i-th receive antenna. It is im-
portant to note that, in this work, a block fading chan-
nel is considered, which means that it is possible to
transmit a long data frame without estimating a new
channel matrix. Since MIMO-OFDM transmission is
considered, the system model holds for the transmis-
sion through a single subcarrier out of the Nc subcar-
riers used in the system.

The above system description can be easily ex-
tended to describe a MIMO-BICM [9] system with the
same number of antennas. In this system (shown in
Fig. 1), the sequence of information bits is encoded us-
ing an error-correcting code, passed through a bitwise
interleaver Π previously to being demultiplexed and
mapped into complex symbols.

3. Hard and soft-output FSD detection

Given the received signaly, the detection problem in
MIMO systems consists in determining the transmitted
vector ŝ with the highest a posteriori probability [24].
In practice, this hard-outputmaximum-likelihood (ML)
detection problem is carried out by solving the follow-
ing least squares problem

ŝ = arg min
s∈ΩnT

‖y−Hs‖2. (2)

Equation (2) can be solved by an exhaustive search
over the total nT -dimensional lattice points s. This
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implementation is cumbersome for practical systems;
however, its complexity can be substantially reduced
by means of tree search detection methods such as the
fixed-complexity Sphere Decoder (FSD) [7] or many
other sphere decoding methods [14].

A QR factorization of the channel matrix (H = QR)
allows to transform Eq. (2) into an equivalent expres-
sion that can be solved using a tree structure [14]. Call-
ing y′ = QHy, the problem Eq. (2) becomes

ŝ = arg min
s∈ΩnT

∣∣∣∣∣∣
nT∑
i=1

|y′i −
nT∑
j=i

Rijsj |2
∣∣∣∣∣∣ . (3)

In order to solve Eq. (3) via a tree search, the fol-
lowing recursion is performed for i = nT , . . . , 1:

di(S
(i)) = di+1(S

(i+1)) + |ei(S(i))|2 (4)

ei(S
(i)) = yi −

nT∑
j=i

Ri,jsj , (5)

where i denotes each tree level, S(i) = [si, si+1, . . . ,
snT ], di(S

(i)) is the accumulated Partial Euclidean
Distance (PED) up to level i, with dnT+1(S

(nT+1)) =
0. Note that |ei(S(i))|2 is the distance between levels i
and i + 1 in the decoding tree. Each partial solution is
represented as a node in the tree.

The FSD performs a predetermined tree-search com-
posed of two different stages: a full expansion of the
tree (FE) in the first (highest)T levels and a single-path
expansion (SE) in the remaining tree-levelsnT −T [7].
At the FE stage, for each survivor path, all the possible
values of the constellation are assigned to the symbol
at the current level. The SE stage starts from each re-
tained path and proceeds down in the tree calculating
the solution of the remaining successive-interference-
cancellation (SIC) problem [16] as:

ŝi = Q
{
(y′

i−
∑nT

l=i+1 Ri,lŝl)
Ri,i

}
,

i = nT − T, . . . , 1.
(6)

The function Q(·) assigns the closest constellation
value.

The symbols are detected following a specific or-
dering also proposed by the authors in [7]. As it was
shown in [16], the maximum detection diversity can be
achieved with the FSD if the following value of T is
chosen:

T � √
nT − 1. (7)

Fig. 2. Decoding tree of the hard-output FSD algorithm.

Figure 2 shows the search tree of the FSD algorithm
for the case with nT = 4 (T = 1) and QPSK sym-
bols. It can be seen that in the first level all branches are
taken into account, meanwhile in the following levels
only one branch per level is explored. Regarding the
achieved bit-error-ratio (BER) performance, the per-
formance of the FSD is very close to that of an optimal
ML decoder [7].

If a MIMO-BICM system [9] is considered, where
channel coding is employed, the demodulation and
channel decoding are not performed jointly at the re-
ceiver but in two differentiated stages (see Fig. 1).
First, the demodulator provides reliability information
about the transmitted coded bits, which is commonly
known as soft information. The delivered soft informa-
tion (usually a real-valued log-likelihood ratio (LLR)
for every coded bit) is used by the channel decoder
to make final decisions about the transmitted sequence
bits. The LLR for each transmitted coded bit equals

Lj,b = log
f(xj,b = 1|y,H)

f(xj,b = 0|y,H)
, (8)

where xj,b denotes the bth bit in the bit label of symbol
sj and f(xj,b|y,H) is the probability mass function of
xj,b conditioned on y and H.

If the max-log approximation is assumed [15], the
LLR of the bth bit in the bit label of symbol sj equals:

Lj,b =
1

σ2

[
min

s∈X (0)
j,b

‖y −Rs‖2

(9)

− min
s∈X (1)

j,b

‖y −Rs‖2
]
,

whereX (c)
j,b denotes the set of symbol vectors for which

the bth bit in layer j equals c.
In [15], a list-based sphere decoding scheme was

proposed to approximate the sets X (0)
j,b and X (1)

j,b by a
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list of candidates with a certain size, smaller than the
whole set of MnT . Two parameters traded the com-
plexity of the method versus performance: the list size
and the sphere radius, both selected in a somewhat ad-
hoc manner.

It is useful to realize that the Euclidean distance of
the solution of the hard-output ML detection problem
Eq. (2) to the received vector directly provides one of
the two minima in expression Eq. (9), denoted in what
follows as dML. Denote by xML

j,b the bth bit associated
with sML

j . For each j and b, the second minimum in
Eq. (9) can be computed as

d̄j,b = min

s∈X (xML
j,b

)

j,b

‖y−Hs‖2, (10)

where x denotes the complement of bit x. Note that

s ∈ X (xML
j,b )

j,b represents the counter-hypothesis to the
ML solution for bit b in layer j. Once Eqs (2) and (10)
are calculated, the LLRs are obtained as:

Lj,b =
1

σ2
(dML − dML

j,b )(1− 2xML
j,b ), (11)

where the term at the end adjusts the sign depending
on whether dML corresponds to the first or the second
minimum in Eq. (9).

Note that tree-search detection methods can be em-
ployed to obtain the max-log-approximated LLRs ef-
ficiently. The straight way to do this is to carry out
an initial hard-output ML detection to obtain dML and
xML and subsequentlynT×log2 M new tree-searches.
Each additional tree-search must force the detector to
keep one of the bits in xML fixed. This strategy, which
is known as Repeated Tree Search (RTS) [27], is very
intuitive but performs several redundant calculations
throughout the tree. A more efficient way to calcu-
late the exact max-log-map LLRs without neither list-
size constraints nor sphere radius was proposed in [25].
This scheme obtains all the necessary distances by per-
forming a single tree-search (STS) and was shown to
achieve meaningful results specially when combined
with LLR clipping. However, its computational cost
varies depending on the channel matrix and it is based
on a purely sequential tree-search, which is clearly a
drawback for parallel implementation.

Focusing on detection methods with a fixed number
of visited nodes, in [5,6] the hard-output FSD in [7]
was extended to provide soft information by obtain-
ing an improved list of candidates with respect to the
one in [15]. Between the two soft-output-FSD propos-
als, the algorithm shown in [5] achieved good demod-

Fig. 3. Decoding tree of the SFSD algorithm.

ulation results in a turbo encoded system expanding a
lower number of candidates than the one in [6]. There-
fore, we selected the method in [5] among the previ-
ously described algorithms for our implementation on
GPU. The high parallel processing capabilities of the
FSD against the high complexity of the RTS and the
variable complexity of the STS motivated this selec-
tion.

Figure 3 shows the search-tree of the soft-output
FSD (SFSD) in [5] again for the case with nT = 4

and QPSK symbols. The method starts from the list of
candidates that the hard-output FSD in [7] obtains (in
Fig. 2) and adds new candidates to provide more in-
formation about the counter bits. Note that, since the
first level of the hard-output FSD tree is already to-
tally expanded, all the necessary values to compute the
LLRs of the symbol bits in the first levels are available.
Therefore, the list extension must start from the second
level of such path.

To begin the list extension, the best Niter paths are
selected from the initial hard-output FSD list (in this
example, Niter = 2). This is based on the heuristics
that the lowest-distance paths may be candidates dif-
fering from the best paths in only some bits. The sym-
bols belonging to these Niter paths are picked up from
the root up to a certain level l, and, at level l− 1, addi-
tional log2 M branches are explored, each of them hav-
ing one of the bits of the initial path symbol negated.
Afterwards, these new partial paths are completed fol-
lowing the SIC path, as done in the hard-output FSD
scheme. The same operation is repeated until the low-
est level of the tree is reached. Note that Niter de-
pends on the symbol constellation. In this work, the
values that achieved almost max-log-map performance
for a 4 × 4 system in [5] were considered, being these
Niter = {2, 4, 6} for QPSK, 16-QAM and 64-QAM,
respectively.
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4. Implementation of the hard and soft-output
FSD in CUDA

4.1. GPU and CUDA

Compute Unified Device Architecture (CUDA) [1]
is a software programming model that exploits the
massive computation potential offered by GPUs. A
GPU can have multiple stream multiprocessors (SM)
with a certain number of pipelined cores each [1]. A
CUDA device has a large amount of off-chip device
memory (global memory) and a fast on-chip mem-
ory called shared memory. In this model, the pro-
grammer defines the kernel function which contains
a set of common operations. At runtime, the kernel
is called from the main central processing unit (CPU)
and spawns a large number of threads blocks, which
is called a grid. Each thread block contains multiple
threads, usually up to 512, and all the blocks within a
grid must have the same size. Each thread can select a
set of data using its own unique ID and execute the ker-
nel function on the selected set of data independently.
Nevertheless, threads within a block can synchronize
through a barrier and write simultaneously to shared
memory to share data between them. In contrast, thread
blocks are completely independent and can only share
data through the global memory once the kernel ends.
Also, each thread has a private local memory.

We employed for the implementations the Nvidia
Tesla C2070 GPU with 14 SM (448 cores), 6 GB of
global memory and 48 kB of shared memory per block.
The architecture of the GPU is Fermi and hence it sup-
ports the maximum parallelism level with several ker-
nel execution overlapping, data copy and kernel execu-
tion overlapping, simultaneous CPU to GPU and GPU
to CPU data copy, etc.

4.2. Configuration parameters and performance
measures

Two different performance measures were consid-
ered to evaluate the proposed implementations:

– Speedup, which is defined as the ratio between the
computational time resulting of executing the al-
gorithms on a high-performance multi-core CPU
and the time to execute the same algorithms on
the GPU. This calculation shows how advanta-
geous the use of GPUs is to process large amounts
of data compared to CPUs. The selected CPU
has two Intel Xeon X5680 hexacore processors at
3.33 GHz with 96 GB of DDR3 main memory and
12 MB of cache memory.

– Throughput, which is defined as the number of
processed information bits per second. Note that
this parameter was previously used to assess other
implementations on GPU such as the ones in [23,
28], thus, it allows a fair comparison among im-
plementations. Moreover, the runtime evaluation
exposes whether a given implementation guaran-
tees the real-time requirements of a certain wire-
less standard.

A unidimensional grid configurationwithNB blocks
is considered for the kernel. Tridimensional blocks are
chosen with size depending on the number of threads
per dimension, denoted by Nthx , Nthy and Nthz . Each
thread block is in charge of processing a group of sub-
carriers, denoted by Ncb. Once Nthx , Nthy and Nthz

are selected, the value of NB is obtained as NB =
�Nc/Ncb�.

We considered for our implementation the highest
system size contemplated by the LTE standard [2],
i.e. 4 × 4. Besides, 4-QAM, 16-QAM and 64-QAM
constellations are used. According to the LTE stan-
dard specifications, a 0.5 ms time slot is composed of
7 MIMO-OFDM symbols plus their respective cyclic
prefixes [2]. Furthermore, the performances with the
different Nc values reported in the LTE standard, i.e.
Nc = {150, 300, 600, 900, 1200}, are investigated. In
the proposed implementation all the symbols in the
same time slot are detected by the same thread block.

4.3. Implementation details

The proposed GPU implementation is composed of
two CUDA kernels. Assuming a previous preprocess-
ing stage, the matrices resulting from the QR factor-
izations of the channel matrices of all the subcarriers
are copied into the global memory before starting to
execute the first kernel. Since our GPU allows asyn-
chronous memory copy, we defined two CUDA stream
objects [1] and dedicated one of them to the transfers
from CPU to GPU and the other one to launch the ker-
nel execution. As each stream is processed indepen-
dently, this allows overlapping data transfer and kernel
execution. Then, each thread block copies the R ma-
trices for all the subcarriers within the block and the
y′ values for all symbols in the time slot into shared
memory.

As said above, each thread block is in charge of pro-
cessing a group of subcarriers. To maximize the num-
ber of simultaneous parallel calculations, the M inde-
pendent branches of the hard-output FSD detection of
the 7 symbols of the MIMO-OFDM time slot for the
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Fig. 4. Speedup for the hard-output FSD with different constellations
and number of subcarriers for a 4× 4 MIMO system.

Algorithm 1 Calculation of one of the branches of the hard-
output FSD by the {i, j, k}th thread.

1: Get one of the values of Ω (denoted by Ωk) from constant mem-
ory,

2: Assign s{i,j,k·nT +nT } = Ωk and store it in shared memory,
3: Get R{i,:} and y′

{i,j,:} from shared memory,
4: Compute the PED d{i,j,k·nT +nT } with Eqs (4) and (5) and

store it in shared memory,
5: for m = nT − 1, . . . , 1 do
6: Compute the s{i,j,k·nT+m} symbol using SIC Eq. (6) and

store it in global memory,
7: Update path distance d{i,j,k·nT +m} and store it in global

memory,
8: end for
9: Sync barriers

Ncb subcarriers within the same group are executed by
different threads simultaneously. To this end, the fol-
lowing numbers of threads per dimensions are set for
the first kernel:

Nthx = Ncb; Nthy = 7; Nthz = M. (12)

Here the value ofNcb is selected to maximize the occu-
pancy of the device, which is assessed using the CUDA
Visual Profiler. The resulting values were Ncb = 4 for
QPSK and Ncb = 1 for both 16-QAM and 64-QAM.

Considering this tridimensional block structure, each
thread has a unique identifier related to its position
within a block, which is denoted by {i, j, k}. Algo-
rithm 1 shows the operations carried out by thread
{i, j, k}, where i ranges between 1 and Nthx

, j goes
from 1 to Nthy

and k from 1 to Nthz
. Note that the

variables involved in the process are also tridimen-
sional, except matrix R, which is common for the 7

Algorithm 2 Calculation of new candidates for the SFSD
by the {i, j, k} thread.

1: if k == 0 then
2: Search Niter minimum distances from d{i,j,:} and

store their indices in ind{i,j,:} in shared memory,
3: end if
4: for l = 1, . . . , nT do
5: Calculate bit position as b = k rem (log2 M)
6: Calculate selected path as Nit = k mod (log2 M)
7: Get index of the selected path i′ = ind{i,j,Nit}
8: Copy symbols from level l to nT from shared memory

to ss{l+1:nT } = s{i,j,i′·nT +l+1:i′·nT +nT } in local
memory,

9: Negate bth bit, keep the rest of bits as in the Nit-path
symbol and assign the associated symbol to ss{l},

10: Get partial distance d{i,j,i′·nT +l+1} from shared
memory, compute the PED with Eqs (4) and (5) and
store it in the local variable dd{l},

11: if l > 1 then
12: for m = l − 1, . . . , 1 do
13: Compute the ss{m} using SIC Eq. (6) and store

it in global memory,
14: Update path distance dd{m} and store it in

global memory,
15: end for
16: end if
17: end for

Algorithm 3 Computation of the LLR by the {l, j, k}
thread and block i.
1: dmin = 1e6,
2: for m = 1, . . . , P do
3: if (d{i,j,m} < dmin) and (kth bit of s{i,j,m·nT +i} is equal

to xML
l,j,k) then

4: dmin = d{i,j,m}
5: end if
6: end for
7: L

(i)
{l,j,k} = (dML − dmin)(1 − 2xML

l,j,k)/σ

symbols within the same time slot. The notation {:}
is used to reference all the possible indices within the
selected dimension.

After the hard-output part is finished, the first thread
of each subcarrier calculates the Niter minimum dis-
tances. The indices of the Niter best paths are stored in
shared memory. Then, theNiter ·log2 M ·(nT −1) new
candidates to be obtained per subcarrier and MIMO
symbol are equally distributed among all the threads of
the block. Next, each thread calculates a new candidate
as shown in Algorithm 2.

After this, a list with P = M + Niter · log2 M ·
(nT − 1) paths and distances is stored in global mem-
ory. Thus, the final step finds within this list the min-
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Table 1
Throughput and runtime of the FSD proposed implementation in the Nvidia Tesla C2070 GPU for a 4× 4 system for
different configurations compared to trellis-based detector results in [28] and the FSD results in [18].

QPSK 16-QAM 64-QAM

FSD (Nc = 150) 182.61 Mbps/0.046 ms 311.11 Mbps/0.054 ms 115.07 Mbps/0.219 ms
FSD (Nc = 300) 311.11 Mbps/0.054 ms 436.36 Mbps/0.077 ms 123.23 Mbps/0.409 ms
FSD (Nc = 600) 430.77 Mbps/0.078 ms 533.33 Mbps/0.126 ms 130.57 Mbps/0.772 ms
FSD (Nc = 900) 494.12 Mbps/0.102 ms 579.31 Mbps/0.174 ms 131.25 Mbps/1.15 ms
FSD (Nc = 1200) 537.60 Mbps/0.125 ms 610.91 Mbps/0.220 ms 132.81 Mbps/1.52 ms
FSD [18] (Nc = 300) 284.75 Mbps/0.059 ms 112 Mbps/0.300 ms 15.13 Mbps/3.33 ms
FSD (Nc = 300)∗ 73.37 Mbps/0.229 ms 102.92 Mbps/0.326 ms 29.06 Mbps/1.73 ms
Trellis (Nc = 300)∗∗ 46.16 Mbps/0.350 ms 74.30 Mbps/0.427 ms 14.50 Mbps/3.31 ms
∗Results weighted by αh. ∗∗Results using Nvidia 9600 GT GPU.

imum distances of paths having the counter bits and
computes the log2 M · nT LLRs.

These operations are executed in a second kernel.
The occupancy of the device is maximized if only one
subcarrier per block is considered. Thus, the new val-
ues for the numbers of threads per dimensions are set
as:

Nthx = nT ; Nthy = 7; Nthz = log2 M. (13)

The threads within the ith block are now accessed us-
ing the variables {l, j, k}.

4.4. Hard-output FSD: Results

The parallel implementation of the hard-output FSD
on GPU was compared to the implementation in the
above-mentioned multi-core CPU. Figure 4 shows the
speedup for a 4 × 4 system and the three consid-
ered constellations as a function of the number of sub-
carriers. It can be observed that the higher the num-
ber of subcarriers, the higher the achieved speedup.
Therefore, GPUs take advantage over multi-core CPU
as the problem size does, making the use of GPUs
very promising for LTE configurations dealing with a
large amount of subcarriers. Regarding the constella-
tion size, the speedup achieved for the 16-QAM case
is higher than the speedup achieved for the 64-QAM
case.

As said in [1], the number of registers and shared
memory used by a kernel can have a significant impact
on the number of resident warps. Moreover, the occu-
pancy of the device for a certain configuration gives
an idea of how well an algorithm exploits its parallel
processing capabilities. However, a higher occupancy
does not mean higher performance, since it depends
on other factors such as global memory accesses, di-
vergent branches, etc. Nevertheless, we evaluated the
occupancy of the device for each configuration us-

ing the CUDA Visual Profiler, resulting in 67% for
the QPSK and 16-QAM cases and 58% for 64-QAM.
The lower occupancy for the 64-QAM may justify the
lower speedup achieved.

Next, the throughput of the hard-output FSD imple-
mentation for a 4 × 4 was evaluated and compared to
the one of the trellis-based detector proposed in [28],
which considered the Nvidia 9600 GT GPU with 64
cores at 1.9 GHz. In addition, the proposed approach
was also compared to the FSD GPU implementation
reported in [18], by executing the CUDA code deliv-
ered by the authors in our GPU for the Nc = 300 ex-
ample case.

Focusing on the comparison with the trellis-based
detector, we defined a factor α which gathers the dif-
ferences between two GPU (a and b) both in number
of cores (Ncore) and their clock frequencies (f ), as fol-
lows:

α =
N

(a)
core · fa

N
(b)
core · fb

. (14)

Note that α compares the total processing capability
of a certain GPU with another. Since our implementa-
tion uses 448 cores against the 64 cores used in [28]
(7 times more) but the cores of our device (Nvidia
Tesla C2070 GPU) are much slower (1.15 GHz against
1.9 GHz), this gives a value of αh � 4.24. Thus, we
included among the results in Table 1 some results
weighted by αh to allow a fairer comparison with the
trellis-based implementation.

It can be seen that our proposed approach outper-
forms the scheme in [28] for all the constellation val-
ues. Moreover, recall that while the hard-output FSD
algorithm achieves the same performance as the opti-
mal ML detector, the trellis-based architecture is not
shown to have this behavior and may not reach the ML
solution in all cases. Thus, our proposed GPU imple-
mentation is more efficient than the trellis-based ap-
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Table 2
Throughput and runtime of the SFSD proposed implementation in the Nvidia Tesla C2070 GPU for a 4× 4 system for
different configurations compared to trellis-based detector results in [29] and the STS results in [18].

QPSK 16-QAM 64-QAM

SFSD (Nc = 150) 73.04 Mbps/0.115 ms 45.04 Mbps/0.373 ms 9.82 Mbps/2.57 ms
SFSD (Nc = 300) 82.35 Mbps/0.204 ms 49.41 Mbps/0.680 ms 9.74 Mbps/5.17 ms
SFSD (Nc = 600) 105.99 Mbps/0.317 ms 52.09 Mbps/1.29 ms 9.68 Mbps/10.40 ms
SFSD (Nc = 900) 118.31 Mbps/0.426 ms 51.88 Mbps/1.94 ms 9.59 Mbps/15.77 ms
SFSD (Nc = 1200) 125.61 Mbps/0.535 ms 52.09 Mbps/2.58 ms 9.60 Mbps/21 ms
STS [18] (Nc = 300) 10.10 Mbps/1.67 ms 0.86 Mbps/39.04 ms 0.46 Mbps/1.10 s
SFSD (8× 8192 sym)∗ 87.36 Mbps/1.56 ms 32.86 Mbps/8.28 ms 6.01 Mbps/67.88 ms
Trellis (8× 8192 sym)∗∗ 74.47 Mbps/1.76 ms 27.94 Mbps/8.31 ms 3.15 Mbps/124.62 ms
∗Results weighted by αs. ∗∗Results using Nvidia Tesla C1060 GPU.

proach both in terms of throughput and BER perfor-
mance.

The comparison between our proposed approach
and the implementation in [18] is, in principle, fair, as
in both cases the same FSD MIMO detector is con-
sidered. Note that our proposed GPU implementation
considers a different channel matrix per slot, while the
code in [18] maintains the same channel matrix for the
whole transmission. This difference puts our proposal
in a disadvantaged position, since it affects both mem-
ory storage and number of accesses. Despite this, it can
be observed in Table 1 that our proposed implemen-
tation is slightly faster for the QPSK case and much
faster for the 16-QAM and 64-QAM cases. These re-
sults confirm that the parallel execution of the FSD
branches considered in our implementation is more
efficient that the sequential computation of the FSD
branches performed by the approach in [18].

Regarding the LTE real-time requirements, for the
QPSK and 16-QAM cases a whole slot can be pro-
cessed before having received the following one (i.e.
in � 0.5 ms) for all the considered subcarrier config-
urations. For the 64-QAM case, the runtime is � 0.5
ms for the Nc = 150 and Nc = 300 cases. Therefore,
the proposed GPU implementation can manage all the
LTE configurations except the three having the high-
est values of Nc when using 64-QAM symbols. Thus,
further work is needed to decrease the runtime of the
latter configurations, either by further optimizing the
code or by making use of more powerful GPUs.

We used the CUDA Compute Visual Profiler to as-
sess our implementation and observed that the bottle-
neck of our implementation is the size of the shared
memory.

4.5. Soft-output FSD: Results

The throughput achieved by the SFSD GPU imple-
mentation for a 4 × 4 was evaluated and compared to

the one of the trellis-based soft MIMO detector pro-
posed in [29], which considered the detection of 8
streams of 8192 symbols simultaneously in a Nvidia
Tesla C1060 GPU with 240 cores at 1.3 GHz. More-
over, the proposed approach was also compared to
the soft-output single tree-search sphere decoder (STS)
GPU implementation reported in [18], by executing the
CUDA code provided by the authors using our GPU
for the Nc = 300 example case.

We first compare the proposed SFSD implementa-
tion with the trellis-based soft detector, taking into ac-
count that the comparison between our device and the
one used in [29] leads to a value of αs � 1.65. Again
we included among the results in Table 2 some results
weighted by αs to allow a fairer comparison with the
trellis-based implementation. The comparison in Ta-
ble 2 reveals that, considering the weighted results, the
proposed SFSD implementation would achieve higher
throughput than the trellis-based approach for all cases.
Nevertheless, the throughput differences are not very
high and might be compensated in an actual setup over
the same GPU.

The comparison between our proposed SFSD imple-
mentation and the STS GPU implementation in [18]
is fair because both algorithms achieve max-log-map
performance. The throughput results in Table 2 reveal
that our proposed implementation is much faster than
the one in [18] for all constellation sizes, which shows
a clear advantage of the SFSD parallel structure over
the STS sequential nature.

Regarding the LTE real-time requirements, for the
QPSK case, the proposed SFSD GPU implementation
can process a whole slot before having received the fol-
lowing one for all Nc values except for Nc = 1200
case. Nevertheless, real-time is nearly achieved for the
latter case. For the 16-QAM case, however, the run-
time is � 0.5 ms only for the Nc = 150 case. There-
fore, the SFSD GPU implementation requires further
optimizations than the hard-output FSD to meet real-
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time. In fact, the occupancy for the SFSD scored 50%
for QPSK and 16-QAM and only 33% for 64-QAM,
being these values lower than their respective ones in
the FSD implementation.

5. Conclusion

In this paper, a GPU-based implementation of the
fixed-complexity sphere decoder providing either hard
or soft outputs has been presented. The detection stage
is highly accelerated through exploiting two paral-
lelism levels: first, the FSD branches associated to in-
dependent SIC detection problems are processed in
parallel and, second, the detection step is processed si-
multaneously for all the subcarriers through forward-
ing each parallel stream to a different thread.

The efficiency of the proposed approach was first
assessed by comparing its computational time to the
one taken by an equivalent implementation on a high-
performance multi-core CPU. Results showed that the
GPU-based hard-FSD implementation performs up to
7 times faster than its CPU-equivalent for some cases.
Moreover, the speedup increased slightly with the
number of subcarriers, showing the interest of GPU
implementation for configurations managing many
data streams simultaneously.

Finally, the throughput of the method was calcu-
lated for some LTE configurations and compared to
the one of previously proposed GPU MIMO detectors.
For a 4 × 4 MIMO system, the proposed GPU imple-
mentation of the FSD achieved higher throughput than
the other proposals for both the hard-output FSD and
SFSD. The throughput differences among the imple-
mentations are higher in the hard-output case.

Future work is needed to decrease the runtime for
those configurations not attaining real-time. The use of
either more powerful GPU and/or more than one GPU
might be promising solutions for this purpose. Another
interesting topic for future research is to analyze the
amount of energy consumed by the proposed GPU im-
plementation.
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