

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

http://link.springer.com/chapter/10.1007%2F978-3-642-38718-0_18

http://hdl.handle.net/10251/35846

Springer Verlag (Germany)

Moltó, G.; Calatrava Arroyo, A.; Hernández García, V. (2013). A service-oriented
architecture for scientific computing on cloud infrastructures. En High Performance
Computing for Computational Science - VECPAR 2012. Springer Verlag (Germany). 163-
176. doi:10.1007/978-3-642-38718-0_18.

A Service-Oriented Architecture for Scientific
Computing on Cloud Infrastructures ?

Germán Moltó1, Amanda Calatrava1, and Vicente Hernández1

Instituto de Instrumentación para Imagen Molecular (I3M). Centro mixto CSIC
Universitat Politècnica de València CIEMAT, camino de Vera s/n, 46022 Valencia,

España
{gmolto,vhernand}@dsic.upv.es, amcaar@ei.upv.es

Abstract. This paper describes a service-oriented architecture that eases
the process of scientific application deployment and execution in IaaS
Clouds, with a focus on High Throughput Computing applications. The
system integrates i) a catalogue and repository of Virtual Machine Im-
ages, ii) an application deployment and configuration tool, iii) a meta-
scheduler for job execution management and monitoring. The developed
system significantly reduces the time required to port a scientific appli-
cation to these computational environments. This is exemplified by a
case study with a computationally intensive protein design application
on both a private Cloud and a hybrid three-level infrastructure (Grid,
private and public Cloud).

Topics Parallel and Distributed Computing.

1 Introduction

With the advent of virtualization techniques, Virtual Machines (VM) represent
a key technology to provide the appropriate execution environment for scien-
tific applications. They are able to integrate the precise hardware configuration,
operating system version, libraries, runtime environments, databases and the ap-
plication itself in a Virtual Machine Image (VMI) which can be instantiated into
one or several runnable entities commonly known as Virtual Appliances. With
this approach, the hardware infrastructure is decoupled from the applications,
which are completely encapsulated and self-contained. This has paved the way
for Cloud computing [1, 2], which enables to dynamically provision and release
computational resources on demand.

The efficient and coordinated execution of scientific applications on Cloud
infrastructures requires, at least: (i) the dynamic provision and release of com-
putational resources (ii) the configuration of VMs to offer the appropriate ex-
ecution environment required by the applications and (iii) the allocation and

? The authors wish to thank the financial support received from the Generalitat Va-
lenciana for the project GV/2012/076 and to the Ministerio de Economı́a y Com-
petitividad for the project CodeCloud (TIN2010-17804).

execution of the jobs in the virtualised computational resources. This requires
the coordination of different Cloud-enabling technologies in order to automate
the workflow required to execute scientific application jobs on the Cloud. To that
end, we envision a system where users express their application requirements via
declarative procedures and the burden of its deployment, execution and moni-
toring on an IaaS (Infrastructure as a Service) Cloud is automated. There are
previous studies that aim at using Cloud computing for scientific computing
[3, 4]. However, as far as the authors are aware, there is currently no generic
platform that provides automated deployment of scientific applications on IaaS
Clouds which deals with VMI management, configuration of VMs and the meta-
scheduling of jobs to the virtual computing resources. This represents the whole
life cycle of scientific application execution on the Cloud.

For that, the main contribution of this paper is to present a service-oriented
architecture integrated by the following developed components: i) a generic cat-
alogue and repository system that indexes VMIs together with the appropriate
metadata describing its contents (operating system, capabilities and applica-
tions), ii) a contextualization system that allows to deploy scientific applications
together with its dependences, iii) a meta-scheduler to manage and monitor the
execution of jobs inside VMs and to access the generated output data of the
jobs with support for computational steering. The usage of such a system would
significantly reduce the time required to migrate an application to be executed
on the Cloud. The integration of the different components of the architecture
enables to abstract many of the details that arise when interacting with Cloud
platforms. This would reduce the entry barrier to incorporate the Cloud as a
new source of computational power for scientific applications. This way, scien-
tists would focus on the definition of the jobs and delegate on the proposed
platform the orchestration of the components to execute the jobs on the provi-
sioned virtualised infrastructure on the Cloud.

The remainder of the paper is structured as follows. First, section 2 introduces
the architecture and details the features of the principal components. Later,
section 3 addresses a case study for the execution of a protein design scientific
application using the aforementioned system. Finally, section 5 summarises the
paper and points to future work.

2 Architecture for Scientific Application Execution on
the Cloud

Many scientific applications require the execution of batch jobs, where each job
basically consists of an executable file that processes some input files (or com-
mand line arguments) and produces a set of files (or data to the standard output)
without the user intervention. This is the case of many parameter sweep stud-
ies and Bag of Tasks (BoT) applications commonly found in High Throughput
Computing (HTC) approaches, where the jobs share common requirements. For
these applications, the benefits of the Cloud are two-fold. Firstly, computational
resources can be provisioned on demand according to the number of jobs to be

executed (and the budget of the user in the case of a public Cloud). Secondly, the
provisioned VMs can be configured for the precise hardware and software con-
figuration required by the jobs. This means that VMs can be reused to perform
the execution of multiple jobs.

User

Scientific

Application

Client Side 1. Job submit

8. Return results

Requeriments

+

C
lo

u
d

 E
n

a
c
to

r
C

lie
n

t
L

ib
ra

ry

C
lo

u
d

 E
n

a
c
to

r A
P

I

Cloud Enactor

Find the most

appropiate VMI

3. Create

Contextualizer

Configuration

A
g

g
re

g
a

tio
n

 A
P

I

VMRC

Requeriments

A
P

I

4. Deploy VM

5. Stage

Cntxtlztn Agent

6. Perform

Contextualization

7. Execution

&

 Monitoring

A B C

2. Find the

Appropiate VMI

A

App Req

=

Execute, monitoring and

get results

+

Copy ADD & Agent to

the VM

Contextualize VM with

required applications

Deploy VM in the Cloud

Virtual Machine AA

SCP

SSH

OPAL WS

Tomcat

Java

C++

Req ..

Scientific

Application

Contextualization

Service

Software A

Plug-in A

Software B

Plug-in B

8080

C
o

n
te

x
tu

a
liz

a
tio

n

A
g

e
n

t

App Deployment

Descriptor (ADD)

W
S

R
F

 / S
O

A
P

Amazon

S3

External

Catalog

HTTP(S)

Other

Cloud

Amazon EC2

Cloud

OpenNebula

Cloud

Virtual Machine

Manager

Fig. 1. Scientific applications execution on IaaS Cloud via the Cloud Enactor

Figure 1 summarises the main interactions between a user and the proposed
architecture. The user employs the client-side API to describe each task to be
executed (executable file or source code, and required input files) together with
the hardware (i.e. CPU architecture, RAM, etc.) and software requirements (OS,
applications, system packages, etc.). The jobs might optionally include budget
information, since the underlying Cloud infrastructure could require a pay-per-
use access to resources. These jobs are submitted (step 1) to the Cloud Enactor
(CE) which is the central manager that orchestrates all the components.

The CE checks whether the job could be executed on one of the already
deployed (if any) VMs. For the jobs that cannot be executed on the currently
deployed VMs, the CE queries the Virtual Machine image & Repository Cata-
logue (VMRC) [5] with the job’s requirements to find the most appropriate VMI
to execute the application (step 2). The VMRC, a software that we previously
developed, implements matchmaking capabilities to offer a ranked list of suit-
able VMIs to the Cloud Enactor. The VMRC discards the VMIs that do not
satisfy the mandatory requirements (i.e., different OS or CPU architecture) and
it ranks the resulting VMIs according to the degree of satisfaction with respect

to the optional requirements (mainly, software applications). The CE computes
the deviation from the current state of the most appropriate VMI found and the
desired state for the job execution in order to create the Application Deployment
Descriptor (ADD) for the contextualization software (step 3). The ADD specifies
the deployment process of the application so that the contextualization software
can unattendedly perform the installation of the application and its software
dependences. This will be executed inside the VM at boot time to deploy the
application and its dependences.

Next, the CE must decide the deployment strategy of VMs, which will be
in charge of executing the jobs. For that, it has to consider a mixture of per-
formance, economic and trust models to decide the optimum number of VMs
to be deployed, together with their Cloud allocation strategy. The performance
model should consider the execution time of the jobs (which can be initially es-
timated by the user but computed after each execution), the deployment time of
the VM in the Cloud infrastructure, the time invested in deploying the software
requirements of the job (contextualization) and the application itself, as well
as the time invested in data transfer, that is, staging out the generated output
data of the application inside the VM. The economical model should consider
the budget of the user allocated to the execution of each job (or a set of jobs),
and the billing policies of the Cloud provider (i.e. hourly rates, economic time
zones, etc.). Finally, the trust model plays an important role on scenarios with
multiple Cloud providers (Sky Computing), where reputation and the ability of
a provider to systematically fulfill the Service Level Agreement (SLA) must be
considered. The trust model would be employed to rank a Cloud provider ac-
cording to its adherence to SLA and the Quality of the Service it offered along
the time, among other possible characteristics. For example, a Cloud provider
that systematically violates its own SLA should be ranked lower than a provider
that has always fulfilled the terms of conditions. The user would express the
precise rank function according to the aforementioned categories, as performed
in other meta-scheduling softwares such as GridWay.

Therefore, the CE decides to fire up a new VM (or a group of them). This
is achieved by delegating on a Virtual Infrastructure Manager (VIM), which
deploys the VM on top of a physical infrastructure (step 4). Notice that the
CE could use elasticity rules in order to enlarge or shorten the number of VMs
dynamically assigned for the allocation of jobs, depending on the budget and
the deadline constraints imposed by the user.

When the VM has booted, the CE stages the contextualization agent and
the ADD into the VM using SSH (step 5). The VMRC service stores the login
name and the private key (or the password) of an account in the VM as part of
the metadata stored for a VMI. Then, the contextualization process is started,
where software dependences are retrieved from the Contextualization Service
and then installed. Next, the scientific application is deployed and a Web services
(WS) wrapper is automatically created and deployed into an application server,
which is finally started (step 6). This WS wrapper enables to remotely start

and monitor the application running inside the VM. All this automated process
results in a VA fully configured for the execution of the scientific application.

Once the VA is up and running, the meta-scheduler can perform the execu-
tion of the jobs inside the VAs (step 7). This involves managing and monitoring
the execution of the jobs inside the VM during their lifetime. For efficiency
purposes each VM would be in charge of the execution of several jobs. In the
case of parameter sweep studies and BoT applications commonly found in HTC
approaches, the jobs share common requirements and, therefore, they can be ex-
ecuted in the same contextualized VM. In addition, scientific applications might
require a periodical access of the generated output data during their executions,
mainly for computational steering purposes. Once the application inside the VM
has finished executing, then its output data must be retrieved so that another
job (with the same requirements) can execute inside the VM.

After all the executions have been carried out, the VAs can be gracefully
shutdown which is achieved by the VIM. Notice that it is possible to cata-
logue the resulting VMI (after the contextualization process) together with the
metadata information concerning the new applications installed. Therefore, this
would minimize the contextualization time for subsequent executions of that sci-
entific application, since no additional software should have to be installed. This
streamlined orchestration of components enables the user to simply focus on the
definition of the jobs and thus delegate to the central manager the underlying
details of interacting with the Cloud technologies for computational resource
provisioning and scientific application execution.

This Service-Oriented Architecture relies on several interoperable services
that can be orchestrated by the Cloud Enactor due to the usage of standard pro-
tocols and interfaces (WS, WSRF, XML). Concerning the software employed, we
have relied on the GMarte meta-scheduler [6], which provides execution manage-
ment capabilities of scientific tasks on computational Grid infrastructures. By
incorporating the functionality to access Cloud infrastructures in this software
we can simultaneously schedule jobs on both Grid and Cloud infrastructures. In
fact, once the virtual infrastructure of computational resources has been provi-
sioned, other job dispatchers could be fit within the proposed architecture, such
as Condor or GridWay. The WS Wrapper for the application is created by the
Opal 2 Toolkit [7], which has been integrated in the lightweight contextualization
software that we previously developed. Other tools for software configuration,
such as Puppet or Chef could also be employed within this architecture.

2.1 The Virtual Machine Catalogue and Repository

In a previous work we introduced an early version of the Virtual Machine Cata-
logue and Repository system (VMRC) [5], whose main capabilities are explained
in this section for the sake of completeness. This paper also describes novel fea-
tures recently included in the system, such as multi-user support by means of
Access Control Lists (ACLs) in order to introduce certain levels of security and
prevent malware distribution in the VMs and the development of a web-based

GUI. In addition, the integration with the Cloud Enactor module is unique in
this paper, which can be seen as a practical usage of its functionality.

The main goal of VMRC is to enable users to upload, store and catalogue
their VMIs so that they can be indexed. This way, others can search and retrieve
them, thus leveraging sharing and collaboration. For that, we have used industry
standards such as the Open Virtualization Format (OVF) [8] to describe the
VMIs in an hypervisor-agnostic manner, and Web Services to develop the core
of the VMRC service.

Each VMI can be catalogued together with appropriate metadata including
information about the hardware configuration (memory, architecture, disk size,
etc.), the operating system (type of OS, version and release) and the applications
currently installed (application name and version). Linking metadata to the
VMI enables the development of matchmaking algorithms to retrieve the most
appropriate VMI to execute a job considering its requirements.

The following snippet of code summarises the declarative language employed
to query the catalogue considering the job’s requirements. This example queries
the catalogue for a Linux-based VMI, preferably an Ubuntu 11.10 or greater,
created for the KVM hypervisor which must have MySQL 5.0 and Tomcat 7.0.22
and it would be desirable to have also the Java Development Kit version 1.5 or
greater.

vm.type="kvm"

os.name="linux"

os.name="linux" && os.flavour="ubuntu" &&

os.version>="11.10", soft, 20

app.name="org.mysql" && app.version="5.0"

app.name="org.apache.tomcat" && app.version="7.0.22"

app.name="org.oracle.java-jdk" &&

app.version>="1.5", soft, 40

This language, inspired by the Condor classads language [9], differentiates
between the hard requirements, which should be met by a VMI to be considered
a potential candidate, and the soft ones, which can be ranked by the client.
Certain applications might be considered soft requirements since the client might
rely on proper deployment software to delegate the installation of these software
on the VM. The inclusion of matchmaking capabilities in the catalogue is a key
differential aspect with other catalogues of VMIs.

It is important to point out that the usage of preconfigured VMIs as base
images for other VMIs involves security concerns that should be addressed, such
as the distribution of malware among images. This can be alleviated by enforc-
ing access control to images [10]. Therefore, we have included multi-user support
in the VMRC. The VMRC has an administrator account that has privileges to
create new users. The user that registers a VMI can optionally specify the list
of users (or give public access) that can perform a given operation on its VMI
(search, download, modify). This allows having public images in the catalogue,
downloadable by everyone, and private images which might be shared by a col-
lection of users. This is of importance for a research collaboration that might

require the usage of a set of VMI, with their specific requirements for their
scientific applications.

The VMRC features a web-based GUI which enables authentication via user
and password in order to list and download the VMIs together with its metadata
that the user can access. Therefore, the catalogue can currently be used via its
Web Service API, through the Java bindings for programmatic access, and also
using the web based GUI. This allows seamless access to the VMIs. Notice that
since the VMRC is a generic component, and it has no specific bindings with
a particular Cloud infrastructure, it can be deployed as a central VMI sharing
module in a Cloud deployment in order to foster sharing and collaboration. This
software is open source and it is available online1.

2.2 Contextualization of Scientific Virtual Appliances

As stated earlier, the process of configuring a VM to obtain a VA can be referred
to as contextualization, a term initially employed in [11] for the configuration
of virtual machines to create virtual clusters. This term is employed in this
paper for application contextualization, i.e., providing the application with the
appropriate execution environment (mainly software dependences) to guarantee
its execution. An application with a reduced number of external dependencies
can be perfectly contextualized at the time the VM is deployed by the VIM.
This way, it is possible to start from a base VM, that only includes the operating
system and common use libraries, and to perform the application deployment
and contextualization when the VM boots, before executing the application.

However, applications with a large number of dependencies on third-party
software are not candidate to perform the contextualization at the time of de-
ployment. In some cases, the time required for contextualization might represent
an important overhead, depending on the total execution time of the applica-
tions running on the VA. As an example, the compilation and installation of
the Globus Toolkit 4 [12], a toolkit for deploying Grid services can take several
hours. Additionally, in most cases, performing automatic contextualization re-
quires a considerable complexity from a technical point of view. For these cases,
a practical approach consists in performing the installation of the most com-
plex software components by the user, in order to produce a pool of partially
contextualized VMIs which are stored on the VMRC. These VMs would then
be completely contextualized at boot time in order to create the appropriate
environment required for the execution of the scientific application.

Automatic Deployment of Scientific Applications In order to avoid man-
ual installation procedures when the VMs are allocated by the VIM, we de-
veloped a tool (called cntxtlzr) that enables to automate the flow of deploying
scientific applications. The main goal is to perform the main steps required when
deploying a scientific application (packaging, configuration, compilation, execu-
tion) without the user intervention. This way, instead of manually configuring

1 http://www.grycap.upv.es/vmrc

the VM via SSH, application inoculation into the VM with minimal user inter-
vention is achieved.

This tool supports a small declarative language based on XML employed to
create an Application Deployment Descriptor (ADD) which specifies the com-
mon actions employed to deploy a scientific application, together with its soft-
ware requirements.

These are the typical steps involved in the deployment of a scientific appli-
cation which are addressed by the developed tool:

1. Package Installation. Installs the software packages that the application de-
pends on. It resolves dependencies with other software components and in-
stalls those dependencies first. The software packages can be made accessible
to the contextualization software via an URL, an installable system pack-
age via yum or apt-get or simply staged into the VM together with the
contextualization tool.

2. Configuration. Enables the user to detail the configuration process of the
software package. This is achieved by specifying common actions such as
copying files, changing properties in configuration files, declaring environ-
ment variables, etc.

3. Build. Compiles the software package using the appropriate build system
(Configure + Make, Apache Ant, SCons, etc.)

4. Opal-ize. Creates the configuration required by the Opal toolkit, the Web
services wrapper for the application. It then installs Opal and its require-
ments (Tomcat + Java), deploys the scientific application and, finally, starts
Tomcat. This causes the scientific application to be deployed and the jobs
ready to be started by the Cloud Enactor.

The following snippet of code shows a simplified version of an ADD. It de-
scribes an application called gBiObj that requires the MPICH Message-Passing
Interface (MPI) library, the GNU C compiler and the make utility. Its source
code is available in a compressed TAR file called gBiObj.tgz. We want the ap-
plication to be accessible via the Opal WS Wrapper so we specify the Opalize
XML element. In addition, we want to modify the Makefile of the scientific ap-
plication to point to where the MPICH library has been installed. Notice that
dependencies are installed before the application.

<DeployableApp name="gBiObj" requires="mpich gcc make">

<Package name="gBiObj" file="gBiObj.tgz"/>

<Opalize exec_file="gBiObj"

default_args="--gra1 @gBiObj#INSTALL_PATH@/energy.gra"

<Configuration>

<ReplaceInFile file="@gBiObj#INSTALL_PATH@/Makefile"

from="mpicc" to="@mpich#INSTALL_PATH@/bin/mpicc"/>

</Configuration>

<Build type="make"/>

</DeployableApp>

The contextualization tool relies on plugins, in the shape of other ADDs, to
deploy specific software. This way application developers can specify the instal-
lation procedure required by their applications. Thus, it is possible to integrate
different software installation descriptions in order to perform complex installa-
tions. There currently exists plugins for commonly used software such as Java,
Globus Toolkit 4 WS-Core, etc.

The cntxtlzr tool currently consists of a highly portable Python script that
processes the XML ADD and performs the required actions. This script is staged
into the VM and started so that the contextualization process starts. The plu-
gins (or ADDs) and the packages for the software dependencies can be stored
in a separate web server. Therefore, the tool can download all the required in-
formation at runtime inside the VM in order to perform the contextualization.
This lightweight approach to application contextualization only requires Python
support in the VM, which is commonly found in the pristine installations of
many GNU/Linux distribution.

We plan to combine our tool with other software configuration tools such
as Puppet or Chef in order to take advantage of their software deployment
approaches. Our approach would complement these software since we use a high
level XML-based declarative description of the deployment process which targets
at the specific workflow required for the deployment of scientific applications.

2.3 Application Management and Monitoring inside the VM

Starting and monitoring the execution of the jobs inside the VMs is far from
being a trivial task because it requires the deployment of a special agent inside
the VM in charge of starting and cancelling the application, and which provides
information about the appropriate states of the job (running, finished, etc.).
For that, we have relied on the Opal 2 Toolkit [7], which is a tool that wraps
scientific applications as Web services so that they can be managed via remote
invocations.

Opal requires the user to write an Application Configuration File (ACF)
which provides metadata information about the application, such as the loca-
tion of the executable file and the command-line arguments together with its
description. It also accepts advanced features such as the execution method (ei-
ther locally, inside the VM or delegating the execution to another component
such as Globus or Condor).

Then, Opal generates a Web service wrapper and deploys the application
into an application server such as Apache Tomcat. The WS front-end to the
application allows starting, stopping and monitoring the application that runs
in the VM. Different executions of the application can be concurrently carried
out within the same VM, since separate folders are employed to generate output
data files. It also allows to obtain a list of generated output files. An interesting
point is that the output files can easily be accessed from outside the VM via the
HTTP protocol, since they are generated inside the Tomcat deployment folder.
This allows for computational steering capabilities, where scientific applications
performing long simulations periodically generate output data. These data can

be retrieved while the computation takes place, thus being able to steer the
execution depending on the intermediate results. As an example, if a certain job
in a Bag of Tasks submission takes longer than the expected time, it can be
cancelled and resubmitted by the Cloud Enactor.

3 Case Study

In order to test the suitability of the Cloud infrastructure as a computational
source for scientific applications, two case studies were performed. They involve a
scientific application that designs proteins with targeted properties via a compu-
tationally intensive process based on Monte Carlo Simulated Annealing (MCSA)
[13]. The application is developed in the C programming language and it depends
on common build tools available in Linux (configure, make and a C compiler).
It also requires the MPICH 2 library.

For the first case study, we used a fixed number of 8 jobs (an appropriate
number for our test infrastructure) and we analysed the total execution time.
This time includes from the beginning of the task allocation process until the
last job has been executed and its output results have been retrieved. Each job
requires the initial configuration of the protein and the matrix that indicates the
energetic interactions among the different rotamers of the protein. This amounts
to a total of 172 MBytes per job. The job outputs the results of the optimization
process to the standard output. This computationally intensive application is
typically CPU-bound, but we configured the executions to periodically read the
energy matrix from the disk (as part of the optimization process) so that I/O
would also be significant in the total runtime.

The test infrastructure is based on four dual-processor Intel Xeon QuadCore
with 16 GBytes of RAM Blade servers, with a total of 32 cores, managed by
OpenNebula 2.2 and the KVM hypervisor. Two nodes were exclusively used for
this particular case study. In order to focus on the execution time, the case study
was carried out on pre-started VMs where all the contextualization process had
finished and the VMs were ready to receive the execution of the jobs. The allo-
cation of tasks to VMs is achieved by the GMarte meta-scheduler. The current
configuration controls that only one job is executed inside a single VM. There-
fore, using N VMs allows the concurrent execution of up to N tasks. Other jobs
are executed as soon as free VMs are available.

In addition, since the architecture can simultaneously schedule jobs to Grid
and both private and public Cloud infrastructures, the second case study exe-
cutes 30 protein design jobs on a hybrid infrastructure composed by resources
from a Grid, the aforementioned private Cloud and the Amazon EC2 public
Cloud. This demonstrates its ability to scale out computations on demand as
long as resources from different infrastructures become exhausted.

3.1 Results

The solid line in Figure 2.a depicts the global execution time of the first case
study. As expected, the global execution time decreases when the number of

VMs increases, since more computational resources are available to carry out
jobs. The plateau in the execution time seen between 4 and 7 VMs is explained
by the fact that only one job is executed in each VM and the execution time of
each job is expected to be quite similar. Therefore, the executions are actually
carried out in groups. As an example, with 5 VMs there is a first group of 5 jobs
that are concurrently executed. When they finish, the meta-scheduler allocates
the remaining 3 jobs to the free VMs. This would take a similar time as the
allocation of the 8 jobs into 7 VMs, which carries out 7 concurrent jobs and a
final single job when spare computational resources are available.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 2 3 4 5 6 7 8

T
ot

al
 E

xe
cu

tio
n

T
im

e
(S

ec
on

ds
)

Number of Virtual Machines

Influence of the Number of Virtual Machines in the Total Execution Time
2 Blade Nodes
1 Blade Node

(a) Execution time

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200

A
llo

ca
te

d
Jo

bs

Time (seconds)

Distribution of Tasks
Grid

Private Cloud
Public Cloud

(b) Grid, private and public Cloud

Fig. 2. Global execution time (a) of the case study, considering two different distribu-
tions of VMs. Allocated jobs (b) on an infrastructure composed of Grid, private Cloud
and public Cloud resources.

The dotted line in Figure 2.a compares the degree of scalability of the Blade
servers since it shows the global execution time of the case study when all the
VMs are running inside a single node. It can be seen that a similar execution
time is achieved except for the case of using 8 VMs, where a minor difference
is noticed. Since each node features a dual quad-core processor, it appears that
scalability issues are only noticeable starting from the 8-th VM in a single node,
where the usage of shared resources such as memory and disk start affecting
the execution of the applications. These results suggest that VM consolidation
in few physical nodes might still deliver good performances for computationally
intensive applications, depending on resource consumption.

Concerning the performance improvement gained using the Cloud infrastruc-
ture, the results show that up to an speed up of 7.13 is achieved with 8 VMs
evenly distributed among the two physical nodes. The global execution time of
the case study reduces from a total 6041 seconds in a single VM to just 847
seconds using the aforementioned 8 VMs. Therefore, the usage of virtualised
resources from a Cloud as a provider of computational power can deliver a sig-
nificant improvement for resource-starved scientific applications.

For the second case study we used 10 Grid nodes (from a local resource inte-
grated in the Spanish National Grid Initiative), 4 provisioned VMs for the private
Cloud and 4 for the public Cloud. The provisioned VMs where contextualized
at boot time in order to deploy the application. We used the Free Usage Tier
provided by Amazon EC2 to provision low-performance VMs, thus requiring a
noticeably larger time to execute the jobs

The task allocation of the 30 jobs is shown on Figure 2.b, further detailed in
[14]. The system starts submitting jobs to the Grid infrastructure until all the
execution slots are used (approximately at instant 31 in the figure). Since there
are pending jobs to be executed, a virtual infrastructure composed of 4 virtual
machines is provisioned from the private Cloud provider in order to be able
to submit additional jobs to be executed. When both the Grid infrastructure
and the private Cloud are not able to execute additional jobs (approximately at
instant 258 in the figure) then the computations are scaled out to the Amazon
EC2 public Cloud provider. Therefore, 4 additional virtual machines on a pay-
per-use basis are provisioned in order to enlarge the available computational
infrastructure. Notice that from that moment on, the jobs are being concurrently
executed on a Grid infrastructure and on virtual infrastructures provisioned from
both a private Cloud and a public Cloud. When the provisioned computational
resources of the Cloud are no longer used, they will be shut down. This enables
to dynamically adjust the size of the virtual infrastructure to the computational
requirements of the case study.

Therefore, the developed system allows to simultaneously harvest computa-
tional power from three different infrastructures, in order to reduce the execution
time of HTC-based applications.

4 Related work

This paper aims at abstracting the details of scientific applications execution on
Cloud platforms. The literature reveals research efforts into this area.

In a work related to the Nimbus project [15], the authors offer the Workspace
Service, which enables to publish different VMIs ready to be used for the execu-
tion of certain applications. Therefore, each VMI must be properly configured in
advance with the hardware parameters and software dependencies required for
the execution of the application. A different approach is offered by the Swarm
project [16] which is a task scheduler that acts over three kind of infrastructures
(Grid, Windows Server Cluster and Cloud). However, the task execution on the
Cloud requires the VMs deployed in the Cloud configured by means of a Hadoop
cluster. It uses the MapReduce execution model for the execution of tasks.

SAGA [17] allows to remotely execute applications on top of Grid and Cloud
infrastructures. The SAGA libraries and its dependences need to be deployed
in advance into the VM, but the main advantage over the previous approaches
is that it allows basic VM contextualization once it has been deployed in the
Cloud. This includes package installation and minor application configuration

during VM startup. There also exists the Cloud Scheduler2, which is a cloud-
enabled distributed resource manager. It provides part of the functionality of
a VIM but uses the Condor scheduler [18] to delegate the scheduling decisions
for jobs. The user can reference VMIs stored either in Nimbus (via its URL) or
Amazon EC2 (via the name of the Amazon Machine Image (AMI)), the same
IaaS providers currently available with this tool.

In [19] the authors propose a system to deploy and invoke science applica-
tions in the Cloud with minimal user effort. They address the principal challenges
when porting an application to the Cloud: application deployment, application
execution and data transfer from and into the Cloud. They propose several pre-
defined application runtime environments which can be staged into the VM,
and an execution framework to start the application. However, being imple-
mented in Windows Azure [20], their approach only targets Windows platforms.
In addition, their approach focuses on self-contained applications (binaries and
libraries), which are assumed to seamlessly run on the target VM. Therefore,
they do not consider the intricacies of deploying complex scientific applications.

5 Conclusion

This paper has introduced a software architecture that abstracts the details of
application deployment and execution on IaaS Clouds. The system features the
provision of computational virtualised resources, the configuration of these re-
sources to support the execution of the applications, the cataloguing of virtual
machine images and, finally, the job execution management on the virtual infras-
tructure. The benefits of the proposed architecture have been exemplified by the
execution of a protein design case study on both a private Cloud infrastructure
and a hybrid infrastructure (Grid, private and public Cloud). The automated
deployment and execution of scientific applications fosters the widespread adop-
tion of Cloud technologies by the scientific community. This way, Clouds deliver
important benefits for scientific computing in terms of the ability to provision
computational resources and the customizability of the execution environments.

Therefore, the main contribution of this work to the state-of-the-art is the
development of generic components and an architecture to integrate them all
in order to ease the process of executing scientific applications on the Cloud. In
addition, some of the components of the architecture, such as the VMRC system,
have been released to the community as open source.

References

1. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds.
ACM SIGCOMM Computer Communication Review 39(1) (2008) 50

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.: Above the clouds: A berkeley view
of cloud computing. Technical report, UC Berkeley Reliable Adaptive Distributed
Systems Laboratory (2009)

2 http://www.cloudscheduler.org

3. Rehr, J., Vila, F., Gardner, J., Svec, L., Prange, M.: Scientific computing in the
cloud. Computing in Science 99 (2010)

4. Keahey, K., Figueiredo, R., Fortes, J., Freeman, T., Tsugawa, M.: Science Clouds:
Early Experiences in Cloud Computing for Scientific Applications. In: Cloud Com-
puting and its Applications. (2008)

5. Carrión, J.V., Moltó, G., De Alfonso, C., Caballer, M., Hernández, V.: A Generic
Catalog and Repository Service for Virtual Machine Images. In: 2nd International
ICST Conference on Cloud Computing (CloudComp 2010). (2010)

6. Moltó, G., Hernández, V., Alonso, J.: A service-oriented WSRF-based architecture
for metascheduling on computational Grids. Future Generation Computer Systems
24(4) (2008) 317–328

7. Krishnan, S., Clementi, L., Ren, J., Papadopoulos, P., Li, W.: Design and Eval-
uation of Opal2: A Toolkit for Scientific Software as a Service. In: 2009 IEEE
Congress on Services. (2009)

8. Distributed Management Task Force (DMTF): The Open Virtualization Format
Specification. (Technical report)

9. Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed Resource Manage-
ment for High Throughput Computing. In: In Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing. (1998)
28–31

10. Wei, J., Zhang, X., Ammons, G., Bala, V., Ning, P.: Managing security of virtual
machine images in a cloud environment. ACM Press, New York, New York, USA
(2009)

11. Keahey, K., Freeman, T.: Contextualization: Providing One-Click Virtual Clusters.
In: Fourth IEEE International Conference on eScience. (2008) 301–308

12. Foster, I.: Globus toolkit version 4: Software for service-oriented systems. Journal
of Computer Science and Technology 3779 (2006) 2–13

13. Moltó, G., Suárez, M., Tortosa, P., Alonso, J.M., Hernández, V., Jaramillo, A.:
Protein design based on parallel dimensional reduction. Journal of chemical infor-
mation and modeling 49(5) (2009) 1261–71

14. Calatrava, A. In: Use of Grid and Cloud Hybrid Infrastructures for Scientific
Computing (M.Sc. Thesis in Spanish), Universitat Politècnica de València (2012)

15. Keahey, K., Freeman, T., Lauret, J., Olson, D.: Virtual workspaces for scientific
applications. Journal of Physics: Conference Series 78(1) (2007) 012038

16. Pallickara, S., Pierce, M., Dong, Q., Kong, C.: Enabling Large Scale Scientific
Computations for Expressed Sequence Tag Sequencing over Grid and Cloud Com-
puting Clusters. In: Eigth International Conference on Parallel Processing and
Applied Mathematics (PPAM 2009), Citeseer (2009)

17. Merzky, A., Stamou, K., Jha, S.: Application Level Interoperability between Clouds
and Grids. 2009 Workshops at the Grid and Pervasive Computing Conference
(2009) 143–150

18. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the
Condor experience. Concurrency and Computation: Practice and Experience 17(2-
4) (2005) 323–356

19. Simmhan, Y., van Ingen, C., Subramanian, G., Li, J.: Bridging the Gap between
Desktop and the Cloud for eScience Applications. In: 2010 IEEE 3rd International
Conference on Cloud Computing, IEEE (2010) 474–481

20. Chappell, D.: Introducing windows azure. Technical report (2009)

