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In this work, we report on high-pressure Raman scattering measurements in mercury digallium

sulfide (HgGa2S4) with defect chalcopyrite structure that have been complemented with lattice

dynamics ab initio calculations. Our measurements evidence that this semiconductor exhibits a

pressure-induced phase transition from the completely ordered defect chalcopyrite structure to a

partially disordered defect stannite structure above 18 GPa which is prior to the transition to the

completely disordered rocksalt phase above 23 GPa. Furthermore, a completely disordered

zincblende phase is observed below 5 GPa after decreasing pressure from 25 GPa. The disordered

zincblende phase undergoes a reversible pressure-induced phase transition to the disordered rocksalt

phase above 18 GPa. The sequence of phase transitions here reported for HgGa2S4 evidence the

existence of an intermediate phase with partial cation-vacancy disorder between the ordered defect

chalcopyrite and the disordered rocksalt phases and the irreversibility of the pressure-induced order-

disorder processes occurring in ordered-vacancy compounds. The pressure dependence of the Raman

modes of all phases, except the Raman-inactive disordered rocksalt phase, have been measured and

discussed. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794096]

I. INTRODUCTION

Many compounds of the type AIIB2
IIIX4

VI, with AII and

BIII being divalent and trivalent metals, respectively, crystal-

lize at ambient conditions in tetragonal structures derived

from the diamond or zincblende (space group (S.G.) F-43m,

No. 216, Z¼ 2) structure. These compounds contain both A
and B cations in tetrahedral coordination so there is an unbal-

anced number of cations and anions in the structure which

leads to the appearance of vacancies in these structures. In

most cases, the vacancies are located in fixed Wyckoff posi-

tions of the unit cell and so these compounds are called ada-

mantine ordered-vacancy compounds (OVCs).

Adamantine OVCs constitute a class of semiconductors

that exhibit extraordinary and unusual properties. The differ-

ent number of anions and cations, unlike in the zincblende

structure, implies that A and B cations are usually inequiva-

lent tetrahedrally coordinated cations located in different

Wyckoff sites. Consequently, the doubling of the cubic zinc-

blende unit cell along the c axis in OVCs results in a tetrago-

nal symmetry which provides them with special properties

not present in cubic zincblende-type compounds. In particu-

lar, adamantine OVCs have important applications in optoe-

lectronics, solar cells, and non-linear optics that have

attracted considerable attention in the last thirty years, as evi-

denced in several reviews.1–4

Mercury digallium sulfide (HgGa2S4) crystallizes at am-

bient conditions in the tetragonal defect chalcopyrite (DC)

structure (S.G. I-4, No. 82, Z¼ 2) as shown in Fig. 1(a).5,6

This semiconductor is of considerable interest because of its

nonlinear optical properties in the mid-infrared (IR) spectral

range, high nonlinear susceptibility coefficients, fairly good

birefringence, and a wide transparency range from 0.5 to

13 lm.5–8 High values of laser threshold and conversion effi-

ciency allow using this compound as frequency doubling,

optical parametric oscillator (OPO), and optical parametric

amplifier (OPA) in the wavelength range from 1.0 to 10 lm.9

The development of the technique of growing mercury thio-

gallate crystals helped synthesize high-quality optical crystals,

which offer the possibility of using them in OPOs pumped by

radiation of widespread Nd:YAG lasers. Owing to the combi-

nation of their properties, this compound can occupy a leading

position among the most promising nonlinear materials.

Therefore, the good nonlinear properties and the optical qual-

ity of HgGa2S4 crystal allow this material to compete with

AgGaS2, AgGaSe2, ZnGeP2, and GaSe crystals.10

Despite the strong interest in the characterization of the

properties of HgGa2S4, there is no study, to our knowledge,

of its properties at high pressures probably due to the diffi-

culties found in growing these crystals.11 On the contrary,

there are several measurements of the physical properties of

other sulfide-based OVCs (ZnGa2S4, CdGa2S4, CdAl2S4, and

HgAl2S4) under pressure.12–16 In some of these works it has

been shown that sulfide-based adamantine OVCs undergo a

pressure-induced phase transition from the DC structure to-

ward the disordered rocksalt (DR) structure, where cations
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0021-8979/2013/113(9)/093512/10/$30.00 VC 2013 American Institute of Physics113, 093512-1

JOURNAL OF APPLIED PHYSICS 113, 093512 (2013)

Downloaded 07 Mar 2013 to 158.42.243.129. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.4794096
http://dx.doi.org/10.1063/1.4794096
http://dx.doi.org/10.1063/1.4794096
http://dx.doi.org/10.1063/1.4794096
mailto:rovilap@fis.upv.es
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4794096&domain=pdf&date_stamp=2013-03-07


and vacancies mix at the only available Wyckoff site for cat-

ions. This phase transition is related to the pressure-induced

zincblende-to-rocksalt phase transition in many binary com-

pounds and the pressure-induced phase transition from the

chalcopyrite phase toward the DR phase in ternary chalco-

pyrites. In OVCs, like in chalcopyrites, this pressure-induced

phase transition is an order-disorder transition since the DC

structure is fully ordered and the DR structure is fully disor-

dered. In this context, it was suggested that the adamantine

OVCs should undergo a sequence of pressure-induced order-

disorder transitions from a fully ordered structure towards a

fully disordered structure through intermediate phases with

partial disorder.13–15 Intermediate phases of disorder in

pressure-induced order-disorder transitions were suggested

on the basis of its observation in previous temperature-

induced order-disorder phase transitions in OVCs. Typically,

a defect stannite (DS) structure (S.G. I-42m, No. 121, Z¼ 2)

was found between the fully ordered DC structure and the

fully disordered zincblende (DZ) structure.3,17 However, till

now there is no absolutely convincing report showing evi-

dences of the intermediate phases with partial cation-

vacancy disorder in OVCs under high pressure.

In order to improve the knowledge of the high-pressure

behaviour of HgGa2S4 and the pressure-induced order-disor-

der processes involved in this compound at room temperature

(RT), we have performed RT high-pressure Raman scattering

measurements of DC-HgGa2S4 during three pressure cycles

that have been complemented with lattice dynamics ab initio
calculations. A DC-to-DS phase transition above 18 GPa was

observed that evidences the presence of an intermediate phase

with partial disorder between the DC and DR phases. The DS

phase was quenched in a metastable way at low pressures on

downstroke from 22 GPa and it was found to undergo a transi-

tion to the DR phase above 23 GPa. On decreasing pressure

from 25 GPa, a metastable DZ phase was observed at low

pressures. Therefore, our measurements show a compelling

evidence of an intermediate phase between DC and DR phases

and also the irreversibility of the order-disorder phase transi-

tions in HgGa2S4. Furthermore, the pressure dependence of

the Raman modes of the three Raman-active phases (DC, DS,

and DZ) are reported and discussed.

II. EXPERIMENTAL SECTION

Samples used in the present study, were single crystals

of DC-HgGa2S4 grown from its constituents HgS and Ga2S3

by chemical vapor transport method using iodine as a trans-

port agent.18 Samples were loaded with a 16:3:1 methanol-

ethanol-water mixture as a pressure-transmitting medium,

which behaves quasihydrostatically till 25 GPa, in the

150 lm diameter hole of an Inconel gasket inside a

membrane-type diamond anvil cell. Pressure was determined

by the ruby luminescence method.19 The shape and separa-

tion of the R1 and R2 ruby lines were checked at each pres-

sure and neither a significant increase in width nor an

overlapping of both peaks were detected; thus suggesting

that quasihydrostatic conditions are fulfilled up to the highest

measured pressure. In any case, we can estimate the error in

the pressure determination of about 0.1 GPa below 10 GPa,

0.2 GPa between 10 and 20 GPa, and 0.3 GPa above 20 GPa.

These values are smaller than the sizes of symbols plotted in

the figures representing the pressure dependence of the

Raman mode frequencies.

High-pressure unpolarized Raman scattering measure-

ments at RT were performed with a HORIBA-Jobin Yvon

LabRAM HR UV microspectrometer coupled to a Peltier-

cooled CCD camera and using a 632.81 nm (1.96 eV) HeNe

laser excitation line with a power smaller than 10 mW and a

spectral resolution better than 2 cm�1. During Raman experi-

ments samples were checked before and after each measure-

ment in order to be sure that no radiation damage occurs

during the measurements by the incoming laser excitation. In

order to analyze the Raman spectra under pressure, Raman

peaks have been fitted to a Voigt profile (Lorentzian profile

convoluted by a Gaussian profile) where the spectrometer re-

solution is taken as a fixed Gaussian width.

As commented previously, we have pressurized the sam-

ple during three pressure cycles carrying out Raman

FIG. 1. Schematic view of the defect

chalcopyrite structure (a) and defect

stannite structure (b) of HgGa2S4. Big

(orange) atoms are Hg, medium (red)

atoms are Ga, and small (blue) atoms are

S. Medium (magenta) atoms represent

the mixture of Ga and vacancy atoms.
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measurements both during upstroke and downstroke. The

pressure values reached during the three pressure cycles

were 22, 25, and 18 GPa, respectively. The reasons to choose

these maximum pressures will be clarified in Sec. IV.

III. THEORETICAL CALCULATION DETAILS

Total energy and lattice dynamics calculations were per-

formed within the framework of the density functional

theory (DFT) and the pseudopotential method using the

Vienna ab initio simulation package (VASP) of which a

detailed account can be found in Ref. 20 and references

therein. The exchange and correlation energy has been taken

in the generalized gradient approximation (GGA), according

to Perdew-Burke-Ernzerhof (PBE) prescription.21 Details of

total energy calculations in the DC structure can be consulted

in Refs. 22 and 23.

Total energy calculations were only performed for the

DC structure. We have not calculated the DS and DZ phases

of HgGa2S4 despite five possible DS phases for OVCs have

been discussed by Eifler et al. and Gomis et al.23–25 The rea-

son is that calculations with structures with fractional atomic

occupations, like most DS and DZ phases with ab initio
codes are of great difficulty (e.g., one can use a supercell to

simulate disorder but calculations become very time

consuming).

Lattice dynamics calculations of phonon modes were

performed in the DC phase at the zone centre (C point) of

the Brillouin zone (BZ). For the calculation of the dynamical

matrix at the C point we used the direct method26 which

involves a separate calculation of the forces in which a fixed

displacement from the equilibrium configuration of the

atoms within the primitive unit cell is considered. Details of

the lattice dynamics calculations can be consulted in Ref. 23.

In order to include the transversal-longitudinal optic (TO-

LO) splitting in our study, we need to add the effect of the

electric field that it is not included in the previous direct

force method. To evaluate the phonons at the C point the cal-

culations were carried out in the framework of density func-

tional perturbation theory (DFPT)27 with the Quantum

Espresso package.28 We add the non-analytic term due to the

long-range interaction using the response of the system to

the electric field; it allows us to obtain the TO-LO splitting

near the C point along the directions (100) or (010) and

(001). Therefore, we can calculate the pure B and E modes

with TO and LO splitting. For these calculations, we used

ultrasoft pseudopotentials with a cutoff of 60 Ry, a big sam-

pling of k-special points to obtain well converged results,

and the same exchange correlation prescription used in the

total energy and lattice dynamics calculations.

IV. RESULTS AND DISCUSSION

A. First upstroke

According to group theory,29 the DC structure of

HgGa2S4 should have twenty-one optical vibrational modes

at C with the mechanical representation

C ¼ 3A � 5BðR; IRÞ� 5EðR; IRÞ� B � E; (1)

where A modes are non-polar modes, and B and E modes are

polar modes, being E modes doubly degenerated. This

results in a total of thirteen Raman-active (R) modes (3A �

5B � 5E) and ten IR modes (5B � 5E) since one B and one

E are acoustic modes. It is interesting to note that doubly

degenerate E modes correspond to vibrations of atoms along

the a and b axis; i.e., in the directions perpendicular to the c
axis, while B modes correspond to vibrations of atoms along

the c axis. In addition, two wavenumbers (either R or IR)

should be observed for each B and E modes in the DC struc-

ture due to the TO-LO splitting of the polar modes.

Consequently, taking into account the TO-LO splitting, up to

twenty-three Raman-active modes and twenty IR-active

modes could be observed in DC-HgGa2S4.

Figure 2(a) shows the RT Raman spectra of DC-

HgGa2S4 up to 20.2 GPa. The Raman spectrum can be di-

vided into three regions: (i) the low-frequency region below

200 cm�1, (ii) the medium-frequency region between 200

and 300 cm�1, and (iii) the high-frequency region above 300

cm�1. The modes in the low- and medium-frequency region

are in general more intense than those in the high-frequency

region. The most intense peak of the Raman spectrum of

DC-HgGa2S4, as in other DC compounds, is the A1 mode;

i.e., the “breathing” mode associated to the symmetric oscil-

lation of the anions against the stoichiometric vacancy.

Raman mode symmetries were assigned with the help of our

ab initio calculations. It can be observed that A modes are in

the medium- and high-frequency region, whereas the B and

E modes mainly spread along the low- and high-frequency

regions, with the exception of the E3 mode which is in the

medium-frequency region very close to the A1 mode.

We have followed the pressure dependence of 15

Raman-active modes and we have measured the TO-LO

splittings in DC-HgGa2S4 that correspond to E1, E4, and E5

modes. The only first-order Raman-active mode not followed

is the weak B3 mode.30–32 It can be observed that above

18 GPa there are three extra Raman peaks marked with aster-

isks in Fig. 2(a) that suggest the occurrence of a phase transi-

tion to the DS structure which will be commented later.

Figure 2(b) shows the pressure dependence of the experi-

mental (symbols) and theoretical (lines) Raman mode fre-

quencies of DC-HgGa2S4 up to 20 GPa. It can be observed

that the peaks in the medium- and high-frequency regions

shift to higher frequencies as pressure increases while most

of the peaks of the low-frequency region show a negligible,

very small, or even negative pressure coefficient.
The experimental and theoretical Raman mode symme-

tries, frequencies at zero pressure, and pressure coefficients

at zero pressure, as obtained from fits to the data using

x¼x0þ aP or x¼x0þ aPþ bP2 equations, are summar-

ized in Table I. Our experimental Raman mode frequencies

at zero pressure are compared to those reported in previous

works.30–32 In general, a good agreement between the

different experimental values at zero pressure is observed as

well as the theoretical and experimental frequencies and

pressure coefficients. This agreement supports the symmetry

assignment of the experimental modes on the basis of our

theoretical calculations. In this context, we have assigned the

low-frequency modes below 220 cm�1 in the same way as

093512-3 Vilaplana et al. J. Appl. Phys. 113, 093512 (2013)
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previous works.30–32 However, there are different assign-

ments of symmetry in the Raman modes above this fre-

quency. These discrepancies are common in the literature of

AB2X4 compounds in the high-frequency region because of

the overlapping of relatively broad and weak modes.

However, the strongest discrepancies that we have found

between the experimental Raman works of HgGa2S4 are

related to the A2 and A3 modes, which are characteristic

modes of the DC structure and are usually well established

in the literature of AB2X4 compounds. We have assigned

these two A modes to Raman features at 300 and 358 cm�1,

respectively, on the basis of the comparison of the experi-

mental and theoretical frequencies and pressure coefficients.

Curiously, these two Raman-active modes were not reported

by Haeuseler30 and were reported by Razzetti and Lottici at

318 and 365 cm�1, respectively.32 The mode at 318 cm�1 is

close to the modes, we have measured at 315 and 316 cm�1

(that Haeuseler et al. report at 323 and 324 cm�1) and that

can be attributed to E4 and B4 modes on the basis of their fre-

quencies and pressure coefficients that agree with polariza-

tion measurements of Haeuseler et al.30,31 On the other hand,

the mode at 365 cm�1 is close to our modes of 360 and

364 cm�1 (that Haeuseler et al. report at 363 cm�1) and that

can be attributed to the E5 mode.

Finally, another discrepancy between the experimental

works is the symmetry assignment of the high-frequency

modes. Razzetti and Lottici attributed the two Raman modes

of highest frequency to mixed Raman modes of B and E
symmetry of TO and LO character, respectively. Instead, we

have attributed the Raman mode of highest frequency only

to the B5 mode on the basis of its frequency and pressure

coefficient. In this respect, we have to note that for the

assignment of the symmetries of the Raman-active modes it

must be taken into account that DC and DS compounds are

optically uniaxial crystals. This means that, except for inci-

dence along the optical axis or at 90� from it, symmetry or

character coupling is to be expected for Raman modes.33,34

Thus, one may observe E, B, LO, and TO quasimodes, result-

ing from the coupling of ETOþELO, BTOþBLO, ETOþBTO,

or ELOþBLO modes. These couplings depend on the relative

magnitude of polar (LO-TO) versus anisotropy (B-E) split-

ting for each B-E pair of modes. In particular, when Raman

scattering is measured with laser incidence along the (111)

plane, which is the direction perpendicular to the typical

cleavage plane of OVCs one does not expect to observe pure

E or B modes but quasimodes. Therefore, the comparison of

experimental and theoretical data, which provide pure E and

B modes and pure TO and LO modes, must be done with

caution. In our particular case for DC-HgGa2S4, it seems that

the highest-frequency mode shows a frequency and pressure

coefficient very close to that of the theoretical B5
LO mode;

thus, we have attributed this mode only to B5
TO þ LO symme-

try. Furthermore, the observation of three modes above

358 cm�1 seems to exclude ETOþBTO or ELOþBLO modes;

FIG. 2. (a) RT Raman spectra of DC-HgGa2S4 up to 20.2 GPa during the 1st upstroke. (b) Pressure dependence of the experimental (symbols) and calculated

(lines) vibrational modes in DC-HgGa2S4 during the 1st upstroke. Experimental values of A, BTO/BLO and ETO/ELO Raman modes are represented by solid

triangles (black), solid/open circles (blue), and solid/open squares (red), respectively. Theoretical calculations for the TO (LO) phonons of pure B and E
symmetry are represented by solid (dotted) lines with blue and red colors, respectively, while modes of A symmetry are represented by solid black lines.

Pressure uncertainty is smaller than the symbols’ size.
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otherwise, only two modes should have been observed in

this frequency region.

In order to obtain more information on the pressure-

induced order-disorder processes, we have analyzed (not

shown) the pressure dependences of the Raman mode inten-

sities and linewidths as previously done in other high-

pressure studies of OVCs.13,14,23 No clear information on the

order-disorder processes can be obtained from the pressure

dependence of these data; however, it is interesting to note

that there is a small increase of the intensity of the A3 mode

normalized to that of the A1 mode with pressure. This fact is

similar to that previously observed in CdAl2S4
13 and in

CdGa2Se4,23 where this behaviour related to the transforma-

tion from the DC to the DS phase since it is coincident with

the simultaneous decrease of the intensity of the A2 mode

(the mode that disappears at the DC-to-DS transition).

Unfortunately, the pressure-dependence of the intensity of

the A2 mode is difficult to follow in the Raman spectrum of

DC-HgGa2S4 since this mode has a decreasing intensity

along the series ZnGa2S4, CdGa2S4, HgGa2S4 (Ref. 14) and

overlaps with the B4 and E4 modes above 10 GPa.

As already mentioned, three new modes appear in the

Raman spectrum above 18 GPa [see asterisks in Fig. 2(a)].

These new peaks can correspond either to a new phase coex-

isting with the original DC phase or to a new phase showing

similar but more Raman peaks than the original DC phase.

In order to resolve whether there is only one or two phases

above 18 GPa, we followed the evolution of the spectrum up

to 22 GPa. Along this pressure range we observed no further

changes occurred in the spectrum which indicated the disap-

pearance of the Raman modes of the original DC phase nor

the appearance of new modes of the high-pressure phase,

and we decreased pressure to almost ambient pressure to

check the reversibility of the changes observed in the Raman

spectrum. Figure 3 shows the comparison of the Raman

spectra around 3 GPa during the first upstroke and second

upstrokes. It can be observed that the new peaks appearing

during the first upstroke above 18 GPa are still observed after

decreasing pressure to almost ambient pressure.

Furthermore, a close comparison of the linewidth of the

Raman peaks during the first and second upstroke reveal that

some peaks get broadened while others do not. In particular,

the broadening of the most intense A mode and of the high-

frequency modes suggests that the recovered sample corre-

sponds to the DS phase rather than to the original DC

phase.35 Note that the broadening of many Raman modes in

the spectrum of the DS phase with respect to the spectrum of

the DC phase was also evidenced in CdGa2Se4,23 and in

ZnGa2Se4.
25 In summary, all these results indicate that above

18 GPa the original DC sample undergoes an irreversible

phase transition toward a DS phase showing more Raman

modes.

A recent paper reporting Raman measurements on

CdGa2Se4 under pressure has suggested that CdGa2Se4

TABLE I. Experimental (exp.) and calculated (th.) Raman-mode frequencies at room pressure and their pressure coefficients in DC-HgGa2S4 as obtained from

fits to the data using (x¼x0þ aP) or (x¼x0þ aPþ bP2) equations during the 1st pressure cycle where b was multiplied by a factor 100.

Mode symmetry

(th.)

x0 (th.)

(cm�1)

a (th.)

(cm�1 GPa�1)

b (th.)� 100

(cm�1 GPa�2)

Mode symmetry

(exp.)

x0 (exp.)

(cm�1)

a (exp.)

(cm�1 GPa�1)

b (exp.)� 100

(cm�1 GPa�2)

x0 (exp.)

(cm�1)

E1(TO) 64(1) �0.14(3) E1(TO) 62(1) 0.16(3) 61c,63a,b

E1(LO) 68(1) �0.3(1) E1(LO) 65(1) 0.10(1) 68b,c

B1(TO) 61(1) 1.4(1) B1(TO) 61(1) 1.3(5) 59b

B1(LO) 62(1) 1.3(1) B1(LO) 63b

E2(TO) 128(1) �0.14(4) E2(TO) 133(1) 0.04(2) 132b,134a,c

E2(LO) 129(1) �0.16(3) E2(LO) 133b

B2(TO) 155(1) �0.3(1) B2(TO) 163(1) �0.2(1) 160c,166b

B2(LO) 162(1) �0.5(1) B2(LO) 167c,170b

A1 216(2) 6.6(3) �8(2) A1 220(1) 7.0(1) �10(2) 223c,224a

E3(TO) 229(2) 6.0(3) �10(3) E3(TO) 230(2) 6.3(1) �12(2) 234b,235c

E3(LO) 236(2) 5.9(3) �8(2) E3(LO) 237b

B3(TO) 237(2) 6.1(3) �9(2) B3(TO) 252b,254a

B3(LO) 253(2) 5.2(3) �7(2) B3(LO) 257b

A2 299(2) 5.0(3) �7(2) A2 300(2) 5.1(1) �7(1) 318c

B4(TO) 305(2) 1.8(1) 1.9(1) B4(TO) 316(3) 3.0(1) �2(1) 323b

B4(LO) 326(2) 3.1(2) �3(1) B4(LO) 342b

E4(TO) 307(2) 4.6(2) �6(2) E4(TO) 315(4) 4.9(3) �7(1) 324b

E4(LO) 336(2) 3.8(2) �6(2) E4(LO) 341(3) 3.9(2) �6(1) 345b, 349c

A3 342(2) 3.3(2) �3(1) A3 358(2) 3.7(1) �6(1) 365c

E5(TO) 349(2) 3.8(2) �4(1) E5(TO) 360(3) 4.3(2) �6(1) 363a,372c

E5(LO) 362(2) 4.0(2) �5(1) E5(LO) 364(3) 3.2(2) �10(2) 383b,386c

B5(TO) 364(2) 6.7(3) �8(2) B5(TO) 387(4) 6.1(3) �9(2) 369b,372c

B5(LO) 378(2) 6.0(3) �7(2) B5(LO) 385b,388a

aReference 29.
bReference 30.
cReference 31.
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undergoes a DC-to-DS pressure-induced phase transition

prior to the transition toward the DR phase.23 In that paper it

was claimed that there are several possible phases, DS

phases and disordered CuAu-like (DCA) layered phases,

with an intermediate degree of cation or cation-vacancy dis-

order between that of the completely ordered DC phase and

that of the completely disordered DZ and DR phases. In that

work, it was suggested that there are two possible DS poly-

types (models 4 and 5) with more Raman peaks than the DC

phase because of the atomic occupation of the 2b Wyckoff

site [occupied by the vacancy in the DC structure, see Fig.

1(a)]. In particular, these two DS phases should exhibit one

B mode and one E mode more than the DC phase, but one A
mode less than the DC phase; i.e., up to three extra Raman

modes could be observed in the DS phase compared to the

DC phase if we take into account the TO-LO splitting. This

fact could be consistent with the observation of some new

Raman modes above 18 GPa in HgGa2S4.

In order to find out which one of the two possible DS

phases (models 4 and 5) could correspond to the high-

pressure phase of HgGa2S4, we have analyzed the different

probabilities of the two models. It is easy to understand that

model 4 has a higher probability to occur than model 5 (Ref.

23). In model 4, Ga cations and vacancies initially at 2a and

2b sites of the DC structure [Fig. 1(a)], respectively, get

mixed in the same cation plane perpendicular to the c axis

leading to a 4d site in the DS structure [Fig. 1(b)]. On the

contrary, in model 5, vacancies at 2b sites and Ga cations at

2a and 2c sites of the DC structure get mixed. Since Ga cati-

ons at 2c sites are in a different cation plane perpendicular to

the c axis than vacancies, the probability of occurrence of

model 5 of the DS phase upon disorder of the DC phase is a

little bit smaller than that of model 4 because in model 5

vacancies must mix with cations in the two different cation

planes, while in model 4 vacancies mix only with cations

corresponding to the same cation plane. Therefore, on the

view of the different probabilities of the two models, we

tentatively propose that the DS phase observed in HgGa2S4

above 18 GPa could correspond to model 4 shown in Fig.

1(b).

A possible justification for the observation of polytype 4

of the DS phase instead of model 2, more common in Zn-

based compounds,25,35–37 is that Hg (A cation) is rather

larger compared to Ga (B cation); therefore, the mix of Hg

and Ga cations at the same cation plane can be difficult. This

would avoid the formation of model 2 of the DS phase23 and

would lead to the more favorable mixing of Ga cations and

vacancies at the same cation plane resulting in model 4 of

the DS phase.23 The case of HgGa2S4 is the opposite to the

case of ZnGa2S4 and ZnGa2Se4, where model 2 is the

assumed DS phase occurring at ambient conditions because

it is easy for Zn and Ga atoms with similar sizes to get

mixed.25,35–37

B. Second upstroke

As already commented, the first thing we noted on

decreasing pressure from 22 GPa was the non-reversibility of

the phase transition occurring above 18 GPa (see Fig. 3).

This result allowed us to characterize the Raman spectrum of

the new phase till 23 GPa during a second upstroke.

According to group theory, if we assume model 4 for

the new DS phase, the DS structure of HgGa2S4 should have

twenty-four optical vibrational modes at C with the mechani-

cal representation29

C¼2A1ðRÞ�A2 �2B1ðRÞ�4B2ðR;IRÞ�6EðR;IRÞ�B2 �E;

(2)

where B2 and E are polar modes, being E modes doubly

degenerated. This results in a total of fourteen Raman-active

modes (2A1 � 2B1 � 4B2 � 6E) because the A2 mode is

silent, and ten IR-active modes (4B2 � 6E), since one B2 and

one E are acoustic modes. In addition, two modes (either in

R or IR) should be observed for each B2 and E modes in the

DS structure, due to the transversal-longitudinal optic (TO-

LO) splitting of the polar modes. Consequently, taking into

account the TO-LO splitting, up to twenty-four Raman-

active modes could be observed in the DS phase. Note that

the same number of Raman-active modes is expected for

model 5 of the DS phase so no discrimination between mod-

els 4 and 5 of the DS phase can be done a priori on the basis

of Raman scattering arguments.23

Figure 4(a) shows the Raman spectra of DS-HgGa2S4

from 1 to 25 GPa. Up to seventeen Raman-active modes of

the DS phase were observed till 23 GPa. Above this pressure,

a transition to a Raman-inactive phase occurs, which we

have attributed to the DR phase already observed in high-

pressure studies of other OVCs.15,16,23,36,38 Some of the

Raman-active modes of the DS phase are very similar to

those of the parent DC phase (see Fig. 3). Figure 4(b) shows

the pressure dependence of the Raman-active mode frequen-

cies of DS-HgGa2S4 from 1 to 23 GPa. The frequencies at

zero pressure and the pressure coefficients of the experimen-

tal modes in DS-HgGa2S4 are reported in Table II. It can be

observed that the pressure coefficients of the Raman-active

FIG. 3. Comparison of the Raman spectra of the DC-, DS- and DZ-HgGa2S4

crystals at different pressures during the 1st, 2nd, and 3rd upstrokes at pres-

sures of 3.0, 3.1, and 2.5 GPa, respectively. Arrows indicate the new Raman

modes observed in the DS phase.
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modes of the DS phase are also similar to those of the DC

phase. Unfortunately, we have not been able to perform cal-

culations with model 4 of the DS phase to help us in the sym-

metry assignment of the Raman-active modes of the DS

phase, as already commented. Therefore, we provide in

Table II a tentative assignment of the Raman mode symme-

tries which is made on the basis of the frequencies and

pressure coefficients of the different Raman modes and its

comparison with the Raman-active modes observed in the

DC phase (see Sec. IV A) and with the assignment of

Raman-active modes already performed in DS-ZnGa2Se4.
35

In this respect, the low-frequency modes 1 and 2 of the

DS phase are similar to those of the DC phase and are

assigned to the E1 and B1
1 modes. Similarly, modes 4 and 7

correlate with those of the DC phase and can be attributed to

the E2 and B2
1 modes, respectively. The weak mode 3,

whose pressure coefficient is very small, is the only mode we

have not been able to assign. On the other hand, the modes 5

and 6 are likely to be the TO and LO components of the new

E mode of the DS phase not present in the DC phase; i.e., the

E3 mode. Finally, mode 8 can be attributed to the new B2

mode of the DS phase with respect to the DC phase; i.e., the

B2
2 mode.

In the medium-frequency region, modes 9 and 10 can be

safely attributed to modes A1
1 and E4 of the DS phase

because they show similar pressure dependence that those of

the DC phase in the medium-frequency region. The B2
3

mode is not observed in this region in the same way that the

B3 mode of the DC phase is not observed in this region. As

regards the high-frequency region, mode 11 is likely to be

the B1
2 mode which shows a similar pressure dependence

than that of the B4 mode in the DC phase. Modes 12 and 13

of the DS phase are likely to be the TO and LO components

of the E5 mode since both components have been observed

in the E4 mode of the DC phase. Mode 14 can be attributed

to the A1
2 mode because it is similar to the A3 mode in the

DC phase; i.e., it has a similar frequency and the smallest

FIG. 4. (a) RT Raman spectra of DS-HgGa2S4 up to 25.1 GPa during the 2nd upstroke. (b) Pressure dependence of the experimental (symbols) vibrational

modes in DS-HgGa2S4 during the 2nd upstroke. Pressure uncertainty is smaller than the symbols’ size.

TABLE II. Experimental (exp.) Raman-mode frequencies and pressure coef-

ficients observed in DS-HgGa2S4 at RT as obtained from fits to the data

using (x¼x0þ aP) or (x¼x0þ aPþ bP2) equations during the 2nd pres-

sure cycle where b was multiplied by a factor 100.

Modes

Mode

symmetry

x0 (exp.)

(cm�1)

a (exp.)

(cm�1 GPa�1)

b (exp.) (�100)

(cm�1 GPa�2)

1 E1 62(1) 0.3(1)

2 B1
1 63(1) 1.0(1)

3 114(3) 0.5(2)

4 E2 133(1) �0.02(1)

5 E3(TO) 144(1) 0.5(2)

6 E3(LO) 148(1) 0.3(2)

7 B2
1 162(1) �0.3(1)

8 B2
2 172(1) 1.2(4)

9 A1
1 221(3) 6.5(1) �6(2)

10 E4 238(2) 4.4(3)

11 B1
2 318(2) 2.6(1)

12 E5(TO) 323(2) 3.4(2)

13 E5(LO) 347(2) 3.1(3)

14 A1
2 361(2) 3.8(2)

15 E6 364(3) 3.4(3)

16 B2
4 394(2) 4.4(2)
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pressure coefficient in this frequency region. Mode 15 is

attributed to the E6 mode since it shows a similar behavior

than the E5 mode of the DC phase. Finally, mode 16 can be

safely attributed to the B2
4 mode because they behave in a

similar way than the B5 mode in the DC phase. The asterisk

before the mode 16 represents a mode that it was not possi-

ble to follow under pressure so we have not been able to ven-

ture its nature.

C. Third upstroke

After undergoing the DS-to-DR phase transition above

23 GPa during the second upstroke we arrived till 25 GPa. At

this pressure, we checked that the transition to DR phase was

completed everywhere in the sample by measuring in differ-

ent sample zones. On decreasing the pressure from 25 GPa

till almost ambient pressure the Raman spectrum of the DS

phase was not recovered, thus indicating that the DS-to-DR

phase transition is not reversible in HgGa2S4. Instead, we

observed a Raman spectrum with broad bands (see top spec-

trum of Fig. 3) which compares with the relatively narrow

Raman modes of the DC and DS phases. Raman spectrum on

downstroke cannot be attributed to the DR phase, which is

Raman inactive, but also it cannot correspond neither to the

DC phase nor to the DS phase. Since the DR phase is a

totally disordered phase, we have tentatively attributed the

Raman spectrum on downstroke to the totally DZ phase, as

we did for CdGa2Se4.23 This result is also in agreement with

results of many authors that have observed the DZ phase on

decreasing pressure in several defect chalcopyrites.15,16,38

Figure 3 shows that the Raman spectrum of the recov-

ered sample is rather continuous and looks like a one-

phonon density of states (1PDOS). The Raman spectrum of

DZ-HgGa2S4 cannot be compared with the experimental

1PDOS of zincblende-type b-HgS but it can be compared to

recent theoretical calculations of its 1PDOS.39 It can be

noted that the lowest-frequency edge of the TO branch at the

1PDOS of b-HgS (220 cm�1) agrees well with the edge of

the TO region for DZ-HgGa2S4; however, while in b-HgS

the highest-frequency edge of the LO branch is near

300 cm�1, the maximum value of phonons is around

415 cm�1 in DZ-HgGa2S4 near room pressure. In this

respect, we have to note that the LO modes associated to

Ga-S vibrations in Ga2S3 are above 430 cm�1 (Ref. 40).

Therefore, the observation of the Raman edge of the LO

branch of DZ-HgGa2S4 above 400 cm�1 is indicative that the

LO modes are dominated by Ga-S bonds rather than by Hg-S

bonds what is consistent with the double number of Ga-S

than Hg-S bonds in this OVC.

Figure 5(a) shows the Raman spectra of DZ-HgGa2S4

on increasing pressure till 18.4 GPa during the third upstroke

since the sample transited again to the DR phase above this

pressure. We have marked up to ten features in the Raman

spectra that can be followed under pressure and whose pres-

sure dependences are plotted in Fig. 5(b). The frequencies at

zero pressure and the pressure coefficients of the experimen-

tal modes in DZ-HgGa2S4 are reported in Table III. High-

frequency modes in DZ-HgGa2S4 present higher linear pres-

sure coefficients than the low-frequency modes. This

FIG. 5. (a) RT Raman spectra of DZ-HgGa2Se4 up to 18.4 GPa during the 3rd upstroke. (b) Pressure dependence of the experimental (symbols) vibrational

modes in DZ-HgGa2S4 during the 3rd upstroke. Pressure uncertainty is smaller than the symbols’ size.
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behavior is similar to that of Raman modes in both DC and

DS phases previously described. In general, we have found

that the maximum values of the pressure coefficients are

smaller in the DZ phase than in the DC and DS phases, so it

can be concluded that pressure coefficients have decreased

as disorder has increased in HgGa2S4. A similar conclusion

was already provided in a recent high-pressure study in

CdGa2Se4.23

As regards the assignment of the different features

observed in Fig. 5(a), features 1 and 2 are close in energy to

the E1 and B1 modes of the DC phase and have almost a neg-

ligible pressure coefficient; therefore, they should corre-

spond to TA modes of the DZ phase. Features 3 and 4

correlate in energy with E2 and B2 modes of the DC phase

and have a slightly positive pressure coefficient that should

correspond to LA modes of the DZ phase. Features 5 and 6

are in the energy range of A1 and E3 modes of the DC phase

and should correspond to the low-frequency edge of the TO

branch of the DZ phase. Features 7–10 correlate in energy

with the high-frequency modes of the DC phase and corre-

spond to the optical branch of the DZ phase. In particular,

feature 10 defines the high-frequency edge of the LO branch

of the DZ phase already commented.

To finish we would like to summarize the sequences of

pressure-induced phase transitions observed in DC-

HgGa2S4.

DC����!18 GPa
DS����!24 GPa

DR ðupstrokeÞ;

DR���!5 GPa
DZ ðdownstrokeÞ;

DZ����!18 GPa
DR ðupstrokeÞ:

The sequence of phase transitions in DC-HgGa2S4 is

similar to that proposed earlier for DC-CdGa2Se4 but for

both OVCs the intermediate DS phase observed on upstroke

does not correspond to the same polytype on the basis of the

different number of Raman modes measured for this inter-

mediate phase. Also in analogy to what was found in DC-

CdGa2Se4,23 we would like to mention that the changes

induced by pressure in the structure of the DC-HgGa2S4 cor-

relate qualitatively with changes induced by pressure in the

color and hence the direct bandgap of the sample (to be pub-

lished elsewhere). While original DC-HgGa2S4 sample

presents a pale yellow color, the sample darkens consider-

ably above 17.8 GPa. A complete darkening occurs upon

transition to the opaque metallic DR phase. Finally, on

decreasing pressure from the metallic DR phase the sample

recovers its transparency below 5 GPa but the sample shows

a reddish color, which can be attributed to the DZ phase evi-

denced by Raman scattering.

V. CONCLUSIONS

We have performed Raman scattering measurements in

DC-HgGa2S4 under high pressure and have compared our

experimental results with ab initio calculations. Our meas-

urements present for the first time the pressure dependence

of the Raman-active modes of DC-HgGa2S4. Above 18 GPa

an increase of the cation-vacancy disorder in the defect chal-

copyrite phase is observed that results in a phase transition to

a structure prior to the phase transition to the disordered

rocksalt phase; i.e., an intermediate phase between the DC

and DR phases. We have tentatively attributed the intermedi-

ate high-pressure phase to the DS phase (model 4) on the ba-

sis of disorder probability and of its Raman spectrum which

shows more Raman peaks than the DC phase. The observa-

tion of polytype 4 of the DS phase contrasts with the inter-

mediate DS phase (model 2) suggested to occur (on the basis

of the disappearance of the A2 Raman mode of the DC phase)

in ZnGa2Se4 and ZnGa2S4 at room conditions and in

CdGa2Se4 and CdGa2S4 at high pressures. In summary, the

presence of an intermediate phase between DC and DR is

clearly evidenced for the first time thanks to Raman scatter-

ing measurements that have provided further arguments that

support the DC to DS phase transition, so difficult to charac-

terize by X-ray diffraction measurements in ternary OVCs.

The pressure dependence of the Raman-active modes of

the intermediate DS phase was characterized during a second

pressure cycle and it was evidenced that the DS phase is sta-

ble till 23 GPa where it undergoes an irreversible phase tran-

sition to the DR phase. On decreasing pressure from 25 GPa,

a DZ phase is recovered below 5 GPa. The pressure depend-

ence of the Raman mode frequencies of the DZ phase were

measured during a third upstroke till 18 GPa, pressure at

which a reversible phase transition to the DR phase takes

place. Therefore, this work evidences the irreversibility of

the pressure-induced order-disorder DC-to-DR and DS-to-

DR phase transitions and the complete reversibility of the

DZ-to-DR phase transition in which no reordering process is

involved.
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