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RESUM 

 

L’impacte dels llevats en la producció, qualitat i seguretat d’aliments 

i begudes està íntimament relacionat amb la seva ecologia així com amb 

les seves activitats biològiques. Durant els últims anys, i com a 

conseqüència de la relació establerta entre dieta i salut, els llevats estan 

adquirint una posició rellevant com a nous probiòtics o amb la finalitat de 

produir determinats compostos bioactius. En els productes lactis, els llevats 

juguen un paper destacat en la proteòlisi, lipòlisi i fermentació de la lactosa 

durant la maduració dels formatges, contribuint així al desenvolupament de 

propietats organolèptiques d’interès, principalment l’aroma. Aquesta tesi 

doctoral aborda l’estudi de la diversitat de la població de llevats en 

formatges artesanals produïts amb llet crua d’ovella i cabra al Parc Natural 

de la Serra d’Espadà (Castelló). S’han emprat diferents tècniques 

moleculars amb l’objectiu de caracteritzar genèticament els aïllats de 

llevats i per tal d’estudiar la successió d’espècies durant el procés de 

maduració dels formatges. També s’ha avaluat la variabilitat intraespecífica 

de les dues espècies majoritàries identificades: Debaryomyces hansenii i 

Kluyveromyces lactis. A més, s’ha estudiat el potencial de les  

β-galactosidases de Kluyveromyces marxianus i K. lactis per produir 

oligosacàrids prebiòtics a partir de lactosa i de lactulosa. Per últim, s’ha 

explorat la capacitat dels aïllats de Kluyveromyces i de Debaryomyces per 

tal de generar compostos aromàtics d’interès en els formatges estudiats.  

  



  



 

RESUMEN 

 

El impacto de las levaduras en la producción, calidad y seguridad 

de alimentos y bebidas está íntimamente relacionado con su ecología y 

sus actividades biológicas. En los últimos años, y como consecuencia de la 

conexión entre dieta y salud, las levaduras están adquiriendo una posición 

relevante como nuevos probióticos o para la producción de determinados 

compuestos bioactivos. En los productos lácteos, las levaduras juegan un 

papel destacado en la proteolisis, lipolisis y fermentación de la lactosa 

durante la maduración de los quesos, contribuyendo al desarrollo de 

propiedades organolépticas de interés, principalmente del aroma. Esta 

tesis doctoral aborda el estudio de la diversidad de la población 

levaduriforme en quesos artesanales producidos a partir de leche cruda de 

oveja y de cabra en el Parque Natural de la Serra d’Espadà (Castellón). 

Para ello se han empleado diferentes técnicas moleculares con el objetivo 

de caracterizar genéticamente los aislados de levaduras y para estudiar la 

sucesión de especies durante el proceso de maduración de los quesos. 

También se ha evaluado la variabilidad intraespecífica de las dos especies 

mayoritarias identificadas: Debaryomyces hansenii y Kluyveromyces lactis. 

Además, se ha estudiado el potencial de las β-galactosidasas de 

Kluyveromyces marxianus y K. lactis para producir oligosacáridos 

prebióticos a partir de lactosa y de lactulosa. Por último se ha explorado la 

capacidad de los aislados de Kluyveromyces y de Debaryomyces para 

producir compuestos aromáticos de interés en los quesos estudiados. 

  



  



 

ABSTRACT 

 

The impact of yeasts on food production, quality and safety is 

closely linked with their ecology and biological activities. Recently, as a 

consequence of the relationship between diet and health, yeasts are 

becoming relevant as new probiotics or for the production of bioactive 

compounds. In dairy products, yeasts play a key role in proteolysis, lipolysis 

and lactose fermentation during cheese ripening, promoting the 

development of sensory properties, particularly aroma. This thesis focuses 

on the yeast diversity in artisanal cheeses produced in the Natural Park 

Serra d’Espadà (Castelló) from ewes’ and goats’ raw milk. Different 

molecular techniques have been employed in order to characterize yeast 

isolates. Moreover, the succession of species along the cheese ripening 

process was studied. The intraspecific variability of the most abundant 

identified species Debaryomyces hansenii and Kluyveromyces lactis was 

also assessed. Additionally, the potential of Kluyveromyces marxianus and 

K. lactis β-galactosidases to synthetize prebiotic oligosaccharides from 

lactose and lactulose was tested. Finally, Kluyveromyces and 

Debaryomyces isolates were investigated for the production of cheese 

aromatic compounds. 
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Cheese can be defined as “a consolidated curd of milk solids in 

which milk fat is entrapped by coagulated caseins” (Adams and Moss, 

2000). This description comprises a heterogeneous group of fermented 

milk-based food products, which are worldwide elaborated and present a 

broad range of flavors and forms. It is commonly believed that cheese 

emerged from a geographical area between the Tigris and Euphrates 

rivers, around 8000 years ago. Moreover, it came together with the 

“Agricultural Revolution” with the domestication of plants and animals, 

specifically goats and sheep (Fox and McSweeney, 2004).  

Initially, the main objective of cheesemaking was to extend the shelf 

life and to conserve the nutritious components of milk (Beresford et al., 

2001). Nowadays, cheese has become a product highly appreciated by 

consumers due to its interesting nutritional value and unique organoleptic 

properties (López-Expósito et al., 2012; O'Brien and O'Connor, 2004).  

 

1. Cheese production 

More than 1000 different cheese varieties have been described 

worldwide (Romero del Castillo and Mesters, 2004). Around 36% of the 

whole milk produced in the European Union countries in 2011 was 

converted into cheese (European Comission-Eurostat, 2013). In particular, 

Spain manufactured 302.000 tones of cheese during 2010 (European 

Comission, 2012).  

Cheeses are classified according to different criteria, which include 

origin, texture or coagulation method among others (McSweeney et al., 

2004). However, there are also common features in cheesemaking, as the 

general combination of four ingredients: milk, rennet, microorganisms and 

salt. Additionally, a common production process comprising several steps 
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such as gel formation, whey expulsion, acid production and salt addition, 

followed by a period of ripening can be found in the majority of cheeses 

(Beresford et al., 2001), as it is summarized in Figure 1.  

 

Figure 1. Flow diagram for general cheese production (adapted from Bonet et al. 

2009). 

 

After selection and pre-treatment of milk with heat or addition of 

starter cultures, cheese is coagulated by acidification or enzyme (rennet) 

addition. Normally, acid-coagulated cheeses are fresh products, where the 

curds are not subjected to maturation periods. In the case of enzymatic-

coagulated cheeses, rennet from different biological origins, such as 
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microbial (Rhizomucor mihei or Rhizomucor pusillius), young animal 

(calves, kids, lamb, buffalo) or plant (cardoon, Cynara cardunculus) 

extracts, is added to the milk (Fox and McSweeney, 2004).  

During milk coagulation, proteins precipitate and whey is separated. 

Several factors determine the stability of the curd. Some of these elements 

are: coagulum size cut, milk composition, concentration of Ca2+ and casein, 

pH or cooking temperature among others (Fox and McSweeney, 2004). 

Once pressed, cheeses may be directly salted or immersed into brine 

(Guinee and Fox, 2004). Afterwards, cheeses are ripened during a variable 

period of time, ranging from 2 weeks in the case of Mozzarella to 2 years in 

the Parmigiano variety, under special conditions of humidity and 

temperature depending on each cheese variety (McSweeney, 2004). 

 

1.1 Traditional Spanish cheeses 

Artisanal elaborated cheeses are part of the cultural heritage of 

many countries. They are historically produced in many parts of Europe, 

particularly in Portugal and in Mediterranean countries. Traditional cheeses 

are normally produced with goats’, ewes’ and cows’ milk, and sometimes, 

raw milk is used (Cogan and Rea, 1996). The elaboration of many artisanal 

cheeses is regulated by a Protected Designation of Origin (POD), in order 

to protect high quality products from imitations (Núñez et al., 1989).  

In particular, ewes’ and goats’ cheeses present special flavors and 

tastes, when compared with cows’ products. Six PDO Spanish ewe 

cheeses are recognized: Manchego, Idiazábal, Zamorano, Roncal, La 

Serena and Torta del Casar. Besides, six goat cheeses are considered 

PDO: Majorero, Ibores, Murcia, Murcia al vino, Palmero and Camerano 

(Medina and Núñez, 2004). Other PDO cheese varieties such as Cabrales 

or Gamoneu may contain mixtures of ewes’, goats’ and cows’ milk 
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(Ministerio de Agricultura, Alimentación y Medio Ambiente, 2013). 

Nevertheless other high quality non-PDO traditional varieties are produced; 

this is the case of Valencian Community cheeses. Artisanal cheeses from 

this area are principally produced with ewes’ and goats’ milk. Mainly fresh 

products are elaborated, such as Cassoleta or Blanquet, however, other 

cheeses including Servilleta and Tronchón can be also commercialized 

after different maturation periods (Badia Gutiérrez and Ibáñez i Fuentes, 

1987; Associació de Formatgers de la Comunitat Valenciana, 2013).  

This thesis focus on cheeses produced in a small factory sited 

within the borders of the Natural Park Serra d’Espadà, in a rural area of 

Castelló province. Tables 1 and 2 show the main technological and physic-

chemical characteristics of these artisanal dairies. The cheeses were made 

with raw ewes’ (EC and EP) or goats’ (GC and GP) milk and with the 

addition of lactic acid bacteria starters. A native ewe’s breed called “Guirra” 

or “Red Levantine” was milked for the production of ewes’ cheeses. 

Coagulation of milk was achieved with the addition of vegetal rennet, 

composed by the crude aqueous extract of dried flowers of cardoon, or with 

animal paste rennet. After precipitation of proteins the curd was cut or 

crumbled manually, and then cheeses were placed in perforated plastic 

moulds, salted and ripened for 6-8 weeks in wooden shelves at 10-12ºC 

and at 85-90% of relative humidity. 
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Table 1. Technological characteristics of the studied cheeses.  

  
Coagulation 

   
Cheese Milk Rennet 

Temperature 
(ºC) Time 

Curd 
cutting Salting 

Ripening 
days 

EC Ewe Calf 25 18 h 
Without 
cutting 

By rubbing 
both faces 60 

EP Ewe Plant 30 50 min 1 cm Brining (24 h) >60 

GC Goat Calf 26 16 h 
Without 
cutting 

By rubbing 
both faces 40 

GP Goat Plant 33 40 min 1 cm Brining (24 h) >60 

 

Table 2. Physico-chemical properties of the studied cheeses (data provided by the 

manufacturer). 

Cheese EC EP GC GP 

Dry extract 74.4 56.7 70.6 60.6 

Lipids (%) 43.8 33.3 42.8 34.3 

Proteins (%) 28.2 18.6 25.3 23.1 

Salt (%) 2.8 2 2.8 2.1 

pH 5.8 5.1 5.8 5.2 

Weight (Kg) 2 2 1 1 
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2. Biochemical changes during cheese ripening 

Relevant biochemical changes take place along cheese ripening, 

modifying the principal milk components, which are summarized in Table 3. 

These complex reactions are catalyzed by the following agents: coagulant, 

indigenous milk enzymes, starter bacteria and secondary microbiota 

(McSweeney, 2004).  

 

Table 3. Chemical composition (%) of different milks (Jeness, 1974). 

Component Cow Goat Ewe 

Protein 3.4 2.9 5.5 

Casein 2.8 2.5 4.6 

Fat 3.7 4.5 7.4 

Lactose 4.6 4.1 4.8 

Ash 0.7 0.8 1.0 

 

Biochemical reactions, which have a direct impact on texture and 

aroma of the final product, can be divided into four main categories: citrate, 

lactose, triglycerides and casein derived reactions (Figure 2). Implication of 

microorganisms in the development of biochemical reactions will be deeply 

analyzed in the following section. 
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Figure 2. Biochemical pathways leading to the formation of flavor compounds. The 

grey surface indicates compounds with flavor note (Marilley and Casey, 2004). 

 

2.1 Catabolism of citrate 

Citrate is found in milk in a relatively low concentration (8 mmol/L) 

and can be metabolized by citrate positive strains of Lactococcus producing 

diacetyl, acetate, acetoin and CO2. The gas generated by citrate 

metabolism is responsible for the development of some undesirable 

characteristics such as openness of cheese or floating curd defects. 

However, positive features such as eyes formation and aroma development 

due to diacetyl generation may be also attributed to citrate catabolism 

(McSweeney and Fox, 2004). 
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2.2 Glycolysis of residual lactose and catabolism of lactate  

Fermentation of lactose is highly significant in most cheese 

varieties. The major part of this disaccharide is removed with the whey, 

however, the low amount of residual lactose present in the curd is rapidly 

metabolized to lactate during the first stages of ripening, mainly through the 

activity of bacteria and Kluyveromyces (Fadda et al., 2004). Production of 

lactate from lactose contributes to the acidification of the medium, which 

has an impact on the growth of specific microorganisms and on the 

enzymatic activities involved in cheese ripening. Therefore acidification has 

an indirect effect on cheese quality, as summarized in Figure 3 

(McSweeney, 2004; McSweeney and Sousa, 2000; McSweeney and Fox, 

2004). 

 

2.3 Lipolysis and catabolism of free fatty acids  

Milk fat is represented by a group of key components, mainly 

triglycerides and its derived free fatty acids (FFA), which highly determine 

the quality of cheese (McSweeney and Sousa, 2000). The release of FFA 

plays a key role in texture and flavor development, since its catabolism 

produces methyl ketones, lactones, esters and secondary alcohols (Figure 

2). Liberation of FFA is caused by two kind of lipolytic enzymes, esterases 

and lipases from milk, rennet or microorganisms (Collins et al., 2003; 

Collins et al., 2004).  

 

 

 

 

 



 
 
 
 
 
 
 

Introduction 
 

29 

Figure 3. Metabolism of lactate during cheese ripening (adapted from McSweeney 

and Sousa, 2000). 

 

2.4 Proteolysis and catabolism of amino acids 

Proteolysis may be the most complex and in some cheese varieties, 

the most relevant biochemical process taking place during ripening. It is 

caused by the hydrolysis of casein, affecting texture and producing free 

amino acids which act as precursors of many important volatile compounds 

such as aldehydes, alcohols, organic acids and aromatic compounds 

(Figure 2). Proteases and peptidases from rennet and microorganisms are 

the main agents responsible of casein degradation (Upadhyay et al., 2004). 
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3. Cheese microbiota 

Cheese microbiota composed by bacteria, moulds and yeasts plays 

a major role in the development of the final characteristics of each cheese 

variety (Beresford et al., 2001), as summarized in Figure 4. Microorganisms 

found in cheese may come from the milk, in the case of raw milk cheeses, 

from the added starter cultures or from the cheese factory environment 

(Beresford and Williams, 2004). Recently, the microbiome from two 

cheesemaking plants has been deeply analyzed, standing out its 

importance in the ripening process of the dairy products (Bokulich and 

Mills, 2013).  

Cheese microorganisms may be divided into starter bacteria and 

secondary microbiota, which is formed by non-starter lactic acid bacteria 

(NSLAB), propionic acid bacteria (PAB), moulds and yeasts depending on 

the cheese variety.  

Figure 4. Microbial succession and functions of the different microbial groups 

during cheese making (Irlinger and Mounier, 2009). 
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3.1 Starter bacteria  

This group of microorganisms comprises lactic acid bacteria (LAB), 

such as Lactococcus, Streptococcus thermophilus, Lactobacillus 

delbrueckii or Lactobacillus helveticus. Starter LAB are fundamental 

components of cheese microbiota. Their main property is the production of 

organic acids from lactose during cheese manufacture reducing the pH of 

milk, and thus creating a selective environment. Moreover, LAB enzymes 

are involved in lipolysis, proteolysis and conversion of amino acids to flavor 

compounds. These starter cultures are commonly added to the cheese, 

although in traditional cheesemaking processes they may come from the 

cheese factory environment (Parente and Cogan, 2004). 

 

3.2 Non-starter lactic acid bacteria (NSLAB) and propionic acid bacteria 

(PAB) 

Different bacterial groups are considered NSLAB, such as  

non-starter Lactobacillus, Leuconostoc, Pediococcus and Enterococcus. 

Excepting Leuconostoc, NSLAB are adventitious contaminants, as they are 

not added as part of the starter culture. However they are found in most 

ripened cheese varieties. NSLAB do not decrease milk pH, but they impact 

on cheese aroma improving cheese quality (Settanni and Moschetti, 2010). 

PAB, such as Propionibacterium freudenreichii and 

Propionibacterium acidipropionici, are the main responsible of the 

characteristic flavor and of the eye formation in Swiss-type cheeses due to 

lactate metabolism (Poonam et al., 2012) as indicated in Figure 3. 
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3.3 Moulds  

Fungal diversity in milk is notable (Delavenne et al., 2011). Moulds 

contribute to the ripening of several cheese varieties. Particularly, its 

presence is relevant among blue cheeses such as Cabrales or Gorgonzola, 

and surface-mould ripened cheeses, as Camembert and Brie, where 

Penicillium camemberti and Penicillium roqueforti have been reported. 

Moulds can be supplemented to the cheese intentionally or they can 

originate from the cheese factory environment.  

Besides being important ripening agents, microorganisms present in 

cheese can also produce spoilage or generate toxic compounds, such as 

biogenic amines or mycotoxins (O'Brien et al., 2004). Therefore strains 

used as starter cultures may be evaluated for different safety issues 

previous to their industrial application.  

 

4. Yeast species diversity in cheese 

Yeasts are widespread eukaryotic microorganisms classified in the 

kingdom Fungi and are habitually found in cheeses. Several studies have 

estimated the number of yeasts from 2.7 log10 to 8 log10 (Fleet, 1990; 

Pereira-Dias et al., 2000). Some physico-chemical properties of this dairy 

product, such as low pH, low moisture content, elevated salt concentration 

and refrigerated storage promote yeast occurrence and development 

(Fleet, 1990). Milk, brine, equipment and hands of manufacturers have 

been described as different sources of yeast contamination (Delavenne et 

al., 2011; Seiler and Busse, 1990; Viljoen and Greyling, 1995).  

It is important to remark that yeasts may have a positive or negative 

impact on cheese quality (Fleet and Mian, 1987; Jakobsen and Narvhus, 

1996). Desirable effects of yeasts in cheese ripening are related with their 
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lipolytic and proteolytic activities as well as with volatile compound 

production, which contributes to aroma formation. Besides, texture 

development may be also promoted. On the other hand, typical cheese 

defects associated with yeasts are loss of texture quality, excessive gas 

formation, increased acidity and yeasty off-flavor (Büchl and Seiler, 2011; 

Fleet, 1992). For all these reasons is essential to identify and characterize 

the species and strains involved in cheese ripening. 

 

4.1 Identification and genetic characterization of yeasts 

Different phenotypic and molecular methods have been suggested 

for yeast identification (Vasdinyei and Deák, 2003). Phenotypic techniques 

are based on morphological, biochemical and physiological characteristics 

which imply the performance of a high number of tests. Consequently, 

traditional identification is laborious, complex and time consuming. On the 

other hand, molecular methods for yeast identification and characterization 

have been developed. These techniques are focused on the analysis of 

DNA and RNA molecules and are considered much more sensitive and 

specific than traditional techniques (Deák, 1995). Among them, DNA-DNA 

hybridization is a valid identification technique but it presents the 

inconvenience of being time-consuming (Petersen and Jespersen, 2004). 

On the contrary, techniques based on polymerase chain reaction (PCR) 

and in the restriction of DNA are considered appropriate for rapid yeast 

identification and characterization. The first step to conduct in these 

techniques is DNA extraction. Different approaches may be applied, as 

freezing/defrosting, sonication or enzymatic lysis. The application of 

enzymes is the best approach as it prevents DNA from structural damages. 

The main molecular techniques employed for yeast identification and 

characterization are described below. 
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4.1.1 Identification based on ribosomal DNA analysis 

The most used method for yeast identification is based on the 

heterogeneity in the sequence of the ribosomal DNA. In general, ribosomal 

regions show low intra-specific polymorphism and high inter-specific 

variability (Li, 1997), therefore their sequences and RFLPs (Restriction 

Fragment Length Polymorphism) are a powerful tool for yeast identification 

(Kurtzman and Robnett, 1998). Moreover, in eukaryotic organisms 

ribosomal DNA (rDNA) presents the advantage of being hundreds of times 

copied (White et al., 1990). Figure 5 shows the structure of rDNA, formed 

by three genes: 5.8S, 18S and 26S, the internal and external transcribed 

spacers (ITS, ETS), the non- transcribed spacers (NTS) and the intergenic 

spacers (IGS).  

 

Figure 5. Flow diagram of genes codifying ribosomal RNA in yeast. 

 

Several techniques have been developed based on the study of the 

different regions of rDNA. The sequencing of rDNA regions is the standard 

method used to identify yeasts. Once nucleotide sequences from ribosomal 

regions are obtained and processed, they are compared with those 

available in different electronic databases such as GenBank 

(http://www.ncbi.nlm.nih.gov), EMBL (http://www.embl-heidelberg.de) or 

DDBJ (http://www.ddbj.nig.ac.jp). Three regions are mainly studied: 

domains 1 and 2 (D1/D2) from 26S gene (Fell et al., 2000; Kurtzman and 

Robnett, 1998; Lopandic et al., 2006), the 18S gene (Cappa and 

Cocconcelli, 2001; Roostita et al., 2011) and ITS region (ITS1-5.8S-ITS2) 

(Martorell et al., 2005). 

ETS
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Additionally, the RFLPs of the ribosomal regions are based on the 

digestion of the PCR amplified rDNA by several endonucleases. The 

resulting DNA fragments are separated by electrophoresis and their size 

compared with a ladder or DNA weight marker. The restriction pattern 

obtained is specific for each yeast species (Figure 6). This technique 

provides fast and accurate results for most species and has been used to 

identify yeasts from different food and beverages, such as wine 

(Echeverrigaray et al., 2013; Guillamón et al., 1998), candied fruits 

(Martorell et al., 2005), dairies (El-Sharoud et al., 2009; Giannino et al., 

2011) or meat products (Cano-García et al., 2013; Deák et al., 2000; 

Quirós et al., 2008). Besides, a study conducted by Esteve-Zarzoso et al. 

(1999) generated a database containing different restrictions patterns 

belonging to more than 200 yeast species (www.yeast-id.com). Digestion of 

other rDNA regions has been also proposed for non-Saccharomyces 

yeasts, such as NTS and 18S (Capece et al., 2003), IGS (Quirós et al., 

2006), or 26S (Baleiras-Couto et al., 2005).  

 

Figure 6. Flow diagram of RFLP of the ribosomal regions. 

 

In the last years, beside culture-dependent methods, identification 

of microbiota in cheeses by next-generation sequencing technology has 

been reported (Alegría et al., 2012; Lusk et al., 2012; Quigley et al., 2012). 
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Electrophoresis

Endonucleases Electrophoresis

Cfo IHinf I Hind IIIDNA

http://www.yeast-id.com/�


 
 
 
 
 
 
 
Introduction 
 

36 

These studies are focused on elucidating bacterial communities, but there 

is a lack of information regarding yeast species composition. It would be 

interesting to conduct this approach to study yeast ecology in fermented 

foods, and particularly in cheeses, since it might provide novel information 

about new species present in cheese and useful information regarding 

microorganism interactions while avoiding culturing bias. 

 

4.1.2 Genetic characterization of yeasts  

There are numerous molecular techniques useful for genetic typing 

of yeasts, but among them, Randomly Amplified Polymorphic DNA (RAPD) 

and mitochondrial DNA (mtDNA) restriction analysis have been applied to 

numerous yeast species (Fernández-Espinar et al., 2003). These 

techniques are relevant as genetically different strains belonging to the 

same species may have different physiological and biochemical activities. 

The RAPD-PCR allows detection of DNA polymorphisms through PCR 

amplification. Different primers may be employed, such as (GTG)3  

(5′-GTGGTGGTG-3′) and M13 (5′-GAGGGTGGCGGTTCT-3′) (Senses-

Ergul et al., 2012; Williams et al., 1990). Once PCR is performed the 

different patterns can be visualized using electrophoresis (Figure 7).  

 

Figure 7. Flow diagram of RAPD analysis. 
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RAPDs-PCR have been used for typing of yeasts isolated from 

different food products as wine (Capece et al., 2010; Tofalo et al., 2012), 

cheese (Binetti et al., 2013; Fadda et al., 2004), table olives (Tofalo et al., 

2013) or meat (Andrade et al., 2010; Cocolin et al., 2006). 

The heterogeneity in the sequence of yeast mtDNA (De Zamaroczy 

and Bernardi, 1986) has been used to generate restriction patterns for 

differentiation of strains within numerous yeast genera such as 

Saccharomyces (Querol et al., 1992a), Debaryomyces (Romano et al., 

1996), Zygosaccharomyces or Kluyveromyces (Belloch et al., 1997; Piskur 

et al., 1995). The RFLPs of mtDNA obtained can be visualized by 

electrophoresis in agarose gel (Figure 8). Different patterns are generated 

depending on the endonuclease used for DNA digestion.  

 

Figure 8. Schematic representation of mtDNA restriction analysis. 

 

This technique was initially employed to identify and characterize 

wine isolates of Saccharomyces cerevisiae strains (Querol et al., 1992b). 

However, this method has also been used to characterize yeast isolates 

present in other foods, such as cheese (Mounier et al., 2005), sourdoughs 

(Foschino et al., 2004) or cider (Suárez-Valles et al., 2008). 

Table 4 summarizes the yeast species identified by several 

molecular techniques in different varieties of traditional European cheeses. 

mtDNA
GCGC
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As can be observed, a wide yeast biodiversity is noticed. Different species 

have been found in artisanal cheeses. This thesis focuses on the study of 

Kluyveromyces species and D. hansenii, which general characteristics are 

described below. 
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Table 4. Yeast species isolated from different varieties of artisanal cheeses. 

 
Traditional cheeses 

 
Cabrales Livarot 

Pecorino 
crotonese 

Pecorino  
siciliano Salers Smear-ripened  Taleggio 

MilkA 
R/Cow, ewe, 

goat P-R /Cow P/Ewe R/Ewe R/cow P/Cow P/Cow 

Country Spain France Italy Italy France Ireland Italy 

ReferenceB 1 2 3 4 5 6 7 

Yeast species 
       Candida catenulata x 

      C. etchellsii 
      

x 

C. inconspicua 
  

x 
    C. intermedia x 

 
x 

 
x 

  C. parapsilosis 
    

x 
  C. pararugosa x 

      C. rugosa 
    

x 
  C. sake 

      
x 

C. silvae 
    

x 
  C. tropicalis 

    
x 

  C. zeylanoides 
    

x 
  Debaryomyces hansenii x x x 

 
x x x 
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Table 4 (continued). 
       Geotrichum candidum 
 

x 
     Kluyveromyces lactis x x x 

 
x 

 
x 

K. marxianus 
    

x 
 

x 

Pichia carsonii 
  

x 
    P. dubia x 

      P. fermentans x 
      P. guilliermondii 

    
x 

 
x 

P. membranifaciens x 
  

x 
   Rhodotorula mucilaginosa x 

      Saccharomyces cerevisiae x 
 

x 
 

x 
  S. unisporus x 

   
x 

  Sporobolomyces ruberrimus x 
      Torulaspora delbrueckii 

      
x 

Trichosporon coremiiforme x 
      Yarrowia lipolytica x x x x 

 
x x 

A Treatment of milk: (P) Pasteurized; (R) Raw. 
B Reference numbers are as follows: (1) Álvarez-Martín et al., 2007; (2) Larpin et al., 2006; (3) Gardini et al., 2006; (4) Todaro, 2011; (5) 
Callon et al., 2006; (6) Mounier et al., 2005; (7) Giannino et al., 2011. 
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4.2 Kluyveromyces spp. 

Yeasts belonging to the genus Kluyveromyces present a high 

variability in morphological, physiological and molecular features; which 

explains its ubiquitous nature. This genus is formed by six species,  

K. marxianus, K. lactis, K. dobzhanskii, K. aestuarii, K. nonfermentans, and 

K. wickerhamii (Lachance, 2011). K. lactis and K. marxianus are able to 

ferment and assimilate lactose and are regularly found in different dairies, 

such as butter, cheese, milk, yogurt, kefir and in the general dairy 

environment (Büchl and Seiler, 2011). K. marxianus has been isolated from 

artisanal Italian cheeses during the first 48 hours of cheesemaking whereas 

K. lactis is found until advanced periods of ripening (Fadda et al., 2004; 

Gardini et al., 2006).  

The main metabolic characteristic of dairy K. lactis and  

K. marxianus is their lactose-fermenting ability (Belloch et al., 2011; 

Naumov, 2005). The study of yeast metabolism profiles under different 

physical and chemical conditions such as nutrients availability, salt content, 

temperature or pH has become a useful analytical tool to differentiate 

strains and to predict and describe the behavior of microorganisms during 

fermentative processes. Evaluation of metabolic profiles has been recently 

employed to characterize nitrogen requirements of commercial wine yeasts 

during fermentation of grape must (Gutiérrez et al., 2012), testing of toxic 

resistance (Warringer and Blomberg, 2003), growth of yeasts at different 

temperature conditions (Salvadó et al., 2011) and fermentative behavior of 

different S. cerevisiae strains (Liccioli et al., 2011). 

K. lactis and K. marxianus play an important role in cheese ripening 

and fermented milk products as they promote maturation and aroma 

formation. This contribution is based on lactose metabolism and lipolytic 

and proteolytic activities produced by K. lactis and K. marxianus yeasts 



 
 
 
 
 
 
 
Introduction 
 

42 

(Roostita and Fleet, 1996). K. lactis and K. marxianus grow at elevated 

concentration of lactose (4%) due to β-galactosidase activity (Borelli et al., 

2006).  

The strong proteolytic character of dairy K. lactis against casein has 

been reported by Fadda et al. (2004). On the contrary, Roostita and Fleet 

(1996) reported a weak proteolytic activity on casein and gelatin of  

K. marxianus isolates, whereas none of the K. marxianus strains from 

Italian ewe’s dairy products presented caseinolytic activity (Cosentino et al., 

2001). Moreover low lipolytic activity of K. lactis and K. marxianus on 

different substrates has been reported (Borelli et al., 2006; Cosentino et al., 

2001; Fadda et al., 2004; Gardini et al., 2006).  

 

4.3 Debaryomyces hansenii 

Debaryomyces spp. is considered an extremophylic yeast (Breuer 

and Harms, 2006), as it is capable to tolerate biocides (Ramírez-Orozco et 

al., 2001), hypersaline habitats (Butinar et al., 2005; Gunde-Cimerman et 

al., 2009) and low water activity environments, such as sea water, soil and 

different foods, including milk and meat fermented products, brine and 

different alcoholic beverages (Lee et al., 2009; Seiler and Busse, 1990; 

Tamang and Fleet, 2009; Zhang et al., 2012).  

Particularly, D. hansenii inhabitance in different cheese varieties has 

been thoroughly documented (Fleet, 1990; Lopandic et al., 2006). This is 

due to its ability to grow on high salt concentrations, low temperature and to 

metabolize lactic and citric acids (Capece and Romano, 2009). In different 

studies, D. hansenii has been isolated from cheeses, such as Pecorino, 

Feta and Cabrales (Álvarez-Martín et al., 2007; Cosentino et al., 2001). 

Moreover, the investigation on evolution of yeast microbiota during 

cheesemaking has pointed out that D. hansenii dominated the later stages 
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of maturation in traditional ewes’ Italian and Portuguese cheeses (Gardini 

et al., 2006; Pereira-Dias et al., 2000). However, in products subjected to 

long ripening periods, such as the Italian ewes’ Fiore Sardo, D. hansenii is 

present after half year ripening but it is not detected after 9 months (Fadda 

et al., 2004; Pisano et al., 2006). 

Besides, D. hansenii presents proteolytic and lipolytic activities that 

contribute to the ripening process and highlight the role of this yeast on 

volatile compound production (Jakobsen and Narvhus, 1996; van den 

Tempel and Jakobsen, 2000; Yalcin and Ucar, 2009). Leclercq-Perlat et al. 

(2000) reported the enzyme profile of six D. hansenii strains, including  

C4-esterases, C8-esterase-lipase, leucine arylamidases, valine 

arylamidases and aminopeptidases.  

Regarding proteolytic activity, differences among D. hansenii strains 

have been reported. Capece and Romano (2009) described that 55% of the 

isolates from an Italian cheese was able to hydrolyze casein. In a study 

conducted by Gardini et al. (2006) only 17% of the Pecorino isolates 

presented this enzymatic activity. On the contrary, some other studies 

reported that none of the dairy D. hansenii isolates were clearly caseinolytic 

(Addis et al., 2001; Borelli et al., 2006; Pereira-Dias et al., 2000; Roostita 

and Fleet, 1996). Regarding lipolytic activity, relevant strain variations of  

D. hansenii isolates against different substrates have been also reported. 

According to Addis et al. (2001) and Pereira-Dias et al. (2000) 

Debaryomyces presents activity on tributyrin agar, whereas none of the 

isolates tested by Borelli et al. (2006), Gardini et al. (2006) and Roostita 

and Fleet (1996) showed any activity against neither tributyrin nor butter fat 

agar.  
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5. Biotechnological applications of non-conventional yeasts 
Yeasts have been traditionally employed in the production process 

of different food and beverages (Deak, 2009). Particularly, S. cerevisiae is 

the main yeast in beer, wine and bread-making. However, in the last 

decades, other species named non-conventional yeasts have appeared as 

relevant biotechnological resources not only for food and beverages 

manufacturing but also for a broad variety of other products made by 

yeasts or from yeast cells as summarized in Figure 9. 

 

 

Figure 9. An overview of different areas of yeast biotechnology (Johnson, 2013).  

 

In Table 5, some food industry applications of the dairy yeasts  

D. hansenii, K. lactis and K. marxianus are presented. As it can be 

observed these Generally Recognized As Safe (GRAS) yeasts can be used 
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as cultures, producers of enzymes, aromas, texture as well as bioactive 

compounds.  

 

Table 5. Biotechnological applications of some dairy yeast species.  

 
Yeast speciesA 

 Application  Km  Kl  Dh  ReferenceB  
Enzymes 

       α- and β-glucosidases  
  

x  1 
   β-Galactosidase  x  x  x  1-4 
   Aminopeptidase  x  

 
x  1, 5 

   Aramylases  
  

x  1 
   Carboxypeptidase  x  

  
6 

   Intrapeptidase  
  

x  7 
   Inulinase  x  

  
8 

   Phosphatases  x  
 

x  1, 9 

     Products 
       Antihypertensive 

hydrolysates  x  x  x  10 
   Cheese aroma  x  x  x  11-13 
   Fructooligosaccharides  x  

  
14 

   Galactooligosaccharides  x  x  
 

15-17 
   Meat aroma  

  
x  18, 19 

     Cultures 
       Cheese starter culture  x  

 
x  20-22 

   Kefir starter culture  x  
  

23 
   Probiotic     x     24 

A Km: Kluyveromyces marxianus; Kl: Kluyveromyces lactis; Dh: Debaryomyces hansenii. 
B Reference numbers are as follows: (1) van den Tempel and Jakobsen, 2000; (2) Zhou et 
al., 2013; (3) Martins et al., 2002; (4) Klein et al., 2013; (5) Ramírez-Zavala et al., 2004a; (6) 
Ramıŕez-Zavala et al., 2004b; (7) Leclercq-Perlat et al., 2000, (8) Dilipkumar et al., 2013; (9) 
Jolivet et al., 2001; (10) García-Tejedor et al., 2013; (11) Leclercq-Perlat et al., 2004; (12) 
Arfi et al., 2002; (13) De Freitas et al., 2008; (14) Silva et al., 2013; (15) Cheng et al., 2006; 
(16) Cardelle-Cobas et al., 2011a; (17) Petrova and Kujumdzieva, 2010; (18) Flores et al., 
2004; (19) Purriños et al., 2013, (20) Seiler and Busse 1990; (21) Kesenkaş and Akbulut, 
2008; (22) Papapostolou et al., 2012; (23) Nambou et al., 2013; (24) Kumura et al., 2004. 
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In this thesis generation of galactooligosaccharides by 

Kluyveromyces species and production of cheese desirable aromas have 

been addressed. 

 

5.1 Bioactive compounds: galactooligosaccharides 

Prebiotic ingredients are defined as a non-digestible food ingredient 

that beneficially affects the host by selectively stimulating the growth and/or 

activity of one or a limited number of bacteria in the colon and thus 

improves host health (Gibson and Roberfroid, 1995). Currently, the criteria 

used for classification of a food component as a prebiotic include:  

a) resistance to digestion, b) selective fermentation by beneficial bacteria in 

the colon, c) alteration in the colonic microbiota towards a healthier 

composition and d) induction of host health benefits (Fooks et al., 1999). 

Non-digestible carbohydrates that fulfill these criteria are considered as 

prebiotics. Among them, galactooligosaccharides (GOS) are relevant 

prebiotics, which promote the growth of different beneficial bacteria, 

particularly Bifidobacterium, Lactobacillus and Streptococcus. GOS contain 

from two to ten molecules of galactose and one molecule of glucose linked 

through glycosidic bonds (Figure 10). Different GOS are represented by 

various chemical structures, which will determine the prebiotic effect. The 

position of the glycosidic linkage determines the general preference of 

bacteria towards β-galactosyl residues with linkages β(1-6) and β(1-1) over 

those with β(1-4) (Cardelle-Cobas et al., 2011b).  

These oligosaccharides are found in natural products such as 

human and animal milk (Kunz and Rudloff, 1993; Oliveira et al., 2013) and 

in processed grains and cereals (Biesiekierski, 2011). It is important to 

remark that human milk is the first source of GOS, which play a key role as 

prebiotic promoting colonization of beneficial bacteria in the intestine of 
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breast-fed infants (Boehm and Moro, 2008). Therefore, enrichment of some 

foods, particularly formula-fed for infants with prebiotic oligosaccharides 

may be an interesting approach to improve its nutritional value and to 

promote an intestinal microbiota more similar to that of breast-fed infants. 

Owing to the scarce availability of human milk, it is necessary to use 

alternative sources of GOS to supplement infant formulae in order to 

provide a beneficial prebiotic effect on the gastrointestinal tract microbiota 

of newborns (Olano and Corzo, 2009). In fact, different commercial 

mixtures of GOS are available, as for example Elix'or and Vivinal®-GOS 

(Friesland Food Domo, The Netherlands), Bimuno (Clasado Ldt., UK), 

Oligomate 55 (Yakult Honsha Co. Ltd., Japan) or Cup Oligo (Nissin Sugar 

Manufacturing Co. Ltd., Japan). 

Different health beneficial effects have been attributed to GOS 

consumption. GOS administration to healthy elderly subjects improves the 

immune response and increases the number of beneficial bacteria, 

especially bifidobacteria (Vulevic et al., 2008). Additionally, GOS reduce 

adherence of pathogens as Escherichia coli or Cronobacter sakazakii to 

tissue culture cells and to the intestinal epithelium respectively, acting as a 

protective agents against infections (Quintero, 2011; Shoaf, 2006). 

Moreover, in combination with fructooligosaccharides (FOS), GOS reduce 

the incidence of allergic manifestations and infections during the first two 

years of life (Arslanoglu et al., 2008). 

Synthesis of GOS can be achieved chemically although enzymatic 

synthesis present advantages such as stereospecificity and higher final 

yields (Schwab et al., 2011). Enzymatic synthesis is catalyzed by the 

hydrolase β-galactosidase (EC 3.2.1.23), which attacks the terminal  

non-reducing β-D-galactosyl residues of oligosaccharides and transfers the 

galactosyl moiety to suitable acceptors, performing a reaction called 

transgalactosylation (Figure 10). This enzyme has different applications in 
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the food fermentation and dairy industries and, based on its ability to 

hydrolyze lactose it has attracted the attention of dairy product 

manufacturers and researchers (Adam et al., 2004). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Enzymatic synthesis of different GOS from lactose (Otieno, 2010). 
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Beside, this enzyme has different microbial origin such as bacterial 

(Bacillus circulans), fungal (Aspergillus oryzae, Aspergillus niger) or yeast 

(Kluyveromyces, Sterygmatomyces elviae). It has been demonstrated that 

the effectiveness of oligosaccharide synthesis varies depending on the  

β-galactosidase origin. Moreover, variations in the level and composition of 

synthesized GOS are observed (Otieno, 2010). Special attention has been 

paid to the genera Kluyveromyces, and particularly to the species K. lactis 

and K. marxianus, since both present a good growth yield and a higher  

β-galactosidase activity compared with other yeasts (Kaur et al., 2009). 

Thus, both species are relevant industrial sources of β-galactosidase 

activity, and they have been traditionally used to produce low-lactose 

products and for the biological treatment of cheese whey waste.  

Historically, GOS have been produced from lactose, but recently, 

other studies have reported the synthesis of prebiotic oligosaccharides 

using the synthetic disaccharide lactulose, which is produced from lactose 

during heat treatment of milk and is composed by one molecule of 

galactose and other of fructose. Lactulose presents by itself prebiotic 

character; however its consumption may bring some undesirable effects 

such as excessive gas production. The synthesis of oligosaccharides 

derived from lactulose may represent an alternative to lactulose 

consumption and reveals the possibility of developing a new group of 

compounds with potential new applications (Olano and Corzo, 2009; Tuohy 

et al., 2002). 

Several studies have evaluated the feasibility of K. lactis commercial 

enzymatic preparations regarding oligosaccharide synthesis using lactose 

and lactulose as substrate (Cardelle-Cobas et al., 2011a; Martínez-

Villaluenga et al., 2008; Rodríguez-Fernández et al., 2011; Rodríguez-

Colinas et al., 2011). K. marxianus β-galactosidases have been only 
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recently tested for lactose transgalactosylation (Manera et al., 2010; 

Petrova and Kujumdzieva, 2010). In addition, there is little information 

about the possibility of food-isolated Kluyveromyces strains with potentially 

different metabolic characteristics to transgalactosylate lactose or lactulose.  

 

5.2 Food production: aroma development 

Cheese aroma is one of the most important attributes determining 

consumer acceptance and preference. Aromatic profile is composed by the 

interaction of different groups of chemical compounds. Some of them have 

been described as “cheesy”, but marked differences among the key 

aromatic compounds of the different cheese varieties have been reported 

(Urbach, 1993). For instance, acetic and propanoic acid are considered 

relevant for Cheddar, Gruyere or Emmental (Curioni and Bosset, 2002), 

sulphur compounds have been reported as an important component from 

Camembert (Molimard and Spinnler, 1996) while methyl ketones are 

characteristic of Gorgonzola (Moio et al., 2000).  

A relevant number of studies have described many volatile 

compounds present in cheese and its corresponding aromatic notes, as it is 

reviewed by Curioni and Bosset (2002). This odorants may be divided in: a) 

neutral compounds: alcohols, aldehydes, ketones, esters, lactones and 

furans; b) alkaline components: nitrogen-containing compounds, pyrazines, 

sulphur compounds and terpenes; c) acidic compounds: phenolic 

compounds and free fatty acids.  

Different combinations of techniques have been employed for 

isolation, identification and quantification of these components. Gas 

chromatography coupled with mass spectrometry (GC-MS) is commonly 

used as the analytical method for cheese flavor, with a prior step involving 

the extraction and pre-concentration of the volatile fraction, such as purge 
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and trap or solid phase microextraction (SPME). SPME is a relatively new 

analytical technique which requires only a small amount of sample, 

matrices can be both in solid and liquid states and it is fast and easy to 

perform (Condurso et al., 2008; Delgado et al., 2010).  

It is important to highlight that unique aromatic properties have been 

attributed to traditional ewes’ and goats’ raw milk cheeses produced in the 

Iberian Peninsula and Mediterranean countries (Freitas et al., 2000). The 

aromatic profile of different artisanal ewe’s and goats’ cheeses such as 

Torta del Casar and La Serena or Ibores have been analyzed (Carbonell et 

al., 2002; Delgado et al., 2010; Delgado et al., 2011).  

It is well known that yeast contribute to the formation of aromatic 

compounds in a wide variety of food and beverages, including dairy 

products (Birch et al., 2013; Chen et al., 2012; Sorrentino et al., 2013). 

Several studies suggest the use of different yeast species as starter 

cultures for cheese production (Binetti et al., 2013; Gardini et al., 2006). 

The application of D. hansenii and Yarrowia lipolytica during Gouda and 

Danablu production has been proposed (Ferreira and Viljoen, 2003; van 

den Tempel and Jakobsen, 2000). Nevertheless it is difficult to evaluate the 

behavior of the inoculated yeast in the whole cheese ecosystem, since 

microbial interactions may occur. Moreover, strain selection is necessary to 

avoid cheese defects due to yeast inoculation. Since this is a complex 

process, the addition of yeast starter cultures during cheesemaking is still 

poorly employed in the dairy sector. 
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Table 6 summarizes the studies focused on elucidating the effect of 

dairy isolates of K. lactis, K. marxianus and D. hansenii on cheese aroma. 

These yeast species are able to generate cheese odorants; however, little 

knowledge is available concerning intra-species variability. Additionally, the 

impact of native yeasts on final cheese aroma is not well established. This 

suggests that further investigations concerning the role of different strains 

of dairy yeast isolates on the key odorants of a specific cheese variety 

should be evaluated. 
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Table 6. Production of cheese aromatic compounds by non-conventional yeasts. 

  
YeastA 

 Compound MediumB Km Kl Dh Odour descriptorsC 

Acids Cantalet cheese1, 2 
 

x 
 

Vinegar11, rancid12, cheese13 

      Alcohol Cantalet cheese1, 2 
 

x 
 

Floral11, mushroom, green14 

 
Cheese curd3 

 
x 

  

 
Cheese surface model4, 5 

  
x 

 

 
Feta cheese6 

  
x 

 

 
Muenster cheese medium7 

  
x 

 

      Aldehydes Cantalet cheese1, 2 
 

x 
 

Malty14, green, nutty15 

 
Cheese curd3 

 
x 

  

 
Cheese surface model4, 5 

  
x 

 

 
Feta cheese6 

  
x 

 

      Esters Cantalet cheese1, 2 
 

x 
 

Sweet13, floral14, fruity15 

 
Cheese curd3 

 
x 

  

 
Cheese like medium8 

 
x 

  

 
Feta cheese6 

  
x 

 

 
Muenster cheese medium7 x 

   

      Methyl ketones Muenster cheese medium7 
  

x Musty12, fruity, blue cheese14 

      Terpenes Cheese curd3 
 

x 
 

Flower, sweet11, green13  

      Sulphur compounds Cheese based medium9 x x 
 

Potatoe11, onion13, cheese16 

 

Potato dextrose broth + 
sulphur aminoacids10 

 
x x 

 A Km: Kluyveromyces marxianus; Kl: Kluyveromyces lactis; Dh: Debaryomyces hansenii. 
B, C Reference numbers are as follows: (1) Freitas and Malcata, 2000; (2) De Freitas et al., 
2009; (3) Martin et al., 2001; (4) Gori et al., 2012; (5) Sørensen et al., 2011; (6) Bintsis and 
Robinson, 2004; (7) Leclercq-Perlat et al., 2004; (8) Arfi et al., 2002; (9) Kagkli et al., 2006; 
(10) López del Castillo-Lozano et al., 2007; (11) Suriyaphan et al., 2001; (12) Moio and 
Addeo, 1998; (13) Christensen and Reineccius, 1995; (14) Moio et al., 2000; (15) Arora et 
al., 1995; (16) Molimard and Spinnler, 1996. 
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Nowadays there is increasing interest in the relationship between diet 

and health. Additionally, consumers are demanding high quality traditional 

food products, due to its unique organoleptic properties. In this sense, 

yeasts play a clear role on the production and quality of cheeses, which is 

closely linked to their ecology and biological activities. Therefore, academic 

and industrial interest in yeast biodiversity is growing. This doctoral thesis 

explores the wide yeast composition of Mediterranean ewes’ and goats’ 

raw milk artisanal cheeses as well as their potential for prebiotic synthesis 

and cheese aroma production. Partial objectives are detailed below.  

 

Objective 1. Identification and enzymatic characterization of yeasts isolated 
during the ripening process of different artisanal ewes’ and goats’ cheeses 
made with raw milk. Study of the succession of Debaryomyces hansenii 
strains.  

 

Objective 2. Molecular characterization and physiological profiling of 
Kluyveromyces lactis isolates.  

 

Objective 3. Synthesis of relevant prebiotic oligosaccharides from lactose 
and lactulose using Kluyveromyces lactis and Kluyveromyces marxianus  
β-galactosidases. 

 

Objective 4. Contribution of isolated yeasts to the production of key aroma 
compounds in cheese. 
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ABSTRACT 

The yeasts present during the ripening process of ewes’ and goats’ 

cheeses produced in a small traditional dairy in Mediterranean Spain were 

isolated and identified. Five hundred and thirty strains pertaining to eleven 

yeast species representing eight genera were identified using molecular 

methods. Debaryomyces hansenii was the yeast species most frequently 

isolated in all cheeses. Other yeast species commonly found in dairy 

products were present at the first maturing weeks. Two yeast species 

Trichosporon coremiiforme and Trichosporon domesticum have been 

reported in cheeses for the first time, and Meyerozyma guilliermondii has 

been newly isolated from goats’ cheeses. Yeast species composition 

changed greatly along the process; although, D. hansenii dominated at the 

end of ripening in all cheeses. Most yeast isolates were able to hydrolyze 

casein and fatty acid esters. One hundred and eighty seven D. hansenii 

isolates were genotyped by PCR amplification of M13 satellites and an 

UPGMA dendrogram was constructed. The majority of isolates were 

grouped in 5 clusters while 7 profiles were represented by 1-3 isolates. 

These results demonstrate the genetic heterogeneity present in D. hansenii 

strains isolated from raw milk cheeses. 

 

 

Keywords: cheese, yeast identification, enzymatic activities, 

Debaryomyces hansenii, genotyping.  
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1. Introduction 

Mediterranean European countries account for the production of 

most caprine and ovine milk worldwide. The majority of this production is 

converted into cheese in small artisanal dairies, using traditional making 

methods leading to the development of different cheese varieties with 

unique organoleptic characteristics (Freitas and Malcata, 2000).  

The development of flavor and texture distinctive of a cheese variety 

are the result of complex processes involving microbiological and 

biochemical changes to the curd during ripening. Cheese microbiota may 

be divided into lactic acid bacteria and secondary microorganisms 

(Beresford et al., 2001). Yeasts are an important constituent of the 

secondary microbiota, which development is favored by the physic-

chemical properties of the cheese such as low pH, low moisture content, 

elevated salt concentration and refrigerated ripening and storage (Fleet, 

1990; Viljoen et al., 2003). Regarding the biochemical changes, these 

yeasts play an important role in proteolysis, lipolysis, fermentation of 

residual lactose, and assimilation of lactic and citric acid during the ripening 

of cheese, contributing to aroma development and to the rheological 

properties of the final dairy product (McSweeney, 2004). Additionally, some 

cheese yeasts have been recognized by their probiotic character and  

DNA-bioprotective action against model genotoxins (Kumura et al., 2004; 

Trotta et al., 2012). 

Freitas and Malcata (2000) reviewed the most important aspects of 

the microbial characteristics of cheeses manufactured from ovine and 

caprine milk in Spain. These studies focused mainly on the identification 

and characterization of bacteria; however, there is little knowledge about 

the yeast population associated with these cheeses. 
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The impact of yeasts on the production and quality of the cheese is 

related to their ecology and biological activities (Fleet, 2007). Physico-

chemical characteristics of cheese such as low pH, low water activity and 

high salt content and refrigerated storage favor yeast growth (Fleet, 1990). 

The number of yeast species frequently isolated from milk and dairy 

products listed in the Encyclopedia of Dairy Sciences is substantial (Büchl 

and Seiler, 2011). Species identification and characterization are therefore 

essential to understand the occurrence and role of yeast in cheeses. 

In order to understand the differences between cheese varieties, we 

need to increase our knowledge on the yeast microbiota leading the 

ripening process. Several authors have pointed out the main role of 

Debaryomyces hansenii leading during cheese ripening (Fleet, 1990; Fox 

et al., 2000). In most Mediterranean ewes’ and goats’ cheeses, the yeast 

species D. hansenii seems to be predominant in the ripening process 

(Capece and Romano, 2009; Cosentino et al., 2001; Fadda et al., 2004; 

Gardini et al., 2006; Pisano et al., 2006). However, regardless of the 

importance of D. hansenii in the ripening process, very few efforts have 

been done to investigate changes in the succession of D. hansenii 

population (Capece and Romano, 2009; Petersen and Jespersen, 2004). 

Other yeast species such as Trichosporon cutaneum (Corbo et al., 2001), 

Candida zeylanoides (Fadda et al., 2010; Pereira-Dias et al., 2000) and 

Geotrichum candidum (Tornadijo et al., 1998) have also been identified as 

the main yeast in the ripening process of some cheese varieties.  

This paper reports the identification by molecular methods of yeast 

isolated along the ripening process of four ewes’ and goats’ cheeses 

produced with raw milk using traditional methods in a small dairy sited 

within the borders of the Natural Park “Sierra de Espadán” (Castellón, 

Spain). The yeast isolates were also characterized by several technological 

features. In addition, the genetic heterogeneity within D. hansenii strains 
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isolated at different stages of the ripening process was analysed by 

minisatellite M13 PCR. 
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2. Materials and methods 

2.1. Cheese sample processing 

Two goats’ (G1 and G2) and two ewes’ (E1 and E2) commercial 

semi-hard cheeses produced in the spring season with raw milk and 

bacterial starters were sampled during the ripening process. Samples were 

weekly taken from the first day of ripening after salting and along six weeks 

of the process. Cylindrical samples (0.5 cm x 5 cm approximately) 

consisting of rind and cheese interior were taken along the cheese ripening 

process, collected into sterile flasks and transported refrigerated to the 

laboratory.  

Cheese samples of 5 g were aseptically weighted into 10 mL of 

saline solution in a sterile tube and homogenized using a Polytron PT 2100 

(Kinematica AG, Switzerland). Microbiological analyses were performed 

immediately after sample homogenization.  

 

2.2. Yeast content and isolation 

Decimal dilutions from 10-1 to 10-7 of the homogenized samples 

were carried out for microbiological assays. Samples of 0.1 mL from all 

dilutions were spread on GPYA medium plates (glucose 2%, peptone 0.5%, 

yeast extract 0.5% and agar 2%) supplemented with chloramphenicol (100 

mg/L) and incubated at 25ºC for 2 to 3 days. Approximately 20 colonies per 

sample were picked up randomly. Colonies showing differences in shape, 

size or color were additionally selected. Yeast colonies were purified on 

GPYA plates and pure cultures preserved in 15% glycerol at -80ºC. 
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2.3. Yeast identification: RFLPs of 5.8S ITS rDNA region and sequencing of 

D1/D2 of 26S rDNA gene 

PCR reaction and RFLPs of the 5.8S-ITS rDNA region were 

performed following the methodology of Esteve-Zarzoso et al. (1999) using 

primers ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4 

(TCCTCCGCTTATTGATATGC-3’) (White et al., 1990) and restriction 

enzymes CfoI, HaeIII and HinfI. Band sizes of RFLPs of the 5.8S-ITS rRNA 

were compared against the Yeast-id database (http://www.yeast-id.com) 

and the yeast isolate assigned to a known species. Identifications were 

confirmed by sequencing the D1/D2 domains of 26S rRNA gene. PCR 

products using the primers NL1 (5’-GCATATCAATAAGCGGAGGAAAAG-

3’) and NL4 (5’-GGTCCGTGTTTCAAGACGG-3’) (White et al., 1990) were 

purified with High Pure PCR Product Purification Kit (Roche, Germany). 

DNA sequencing was performed using the BigDye Terminator v3.1 Cycle 

Sequencing kit (Applied Biosystems, Calif., USA) in an Applied Biosystems 

(Model 310) automatic DNA sequencer. Sequences were edited using 

MEGA5 (Tamura et al., 2011) and then subjected to GenBank BLASTN 

tool.  

 

2.4. Genetic characterization of D. hansenii strains. 

Minisatellite PCR amplification using the M13 primer  

(5′-GAGGGTGGCGGTTCT-3′) was performed as described in Fadda et al. 

(2004) with minor modifications using a PCR (Mastercycler Pro, Eppendorf, 

Hamburg, Germany). Final volume reaction, 50 μL, contained 0.3 μL rTaq 

(5U) DNApolymerase, 4 μL dNTP mix (2.5 mM), 5 μL buffer (Takara Bio 

Inc., Shiga, Japan), 3 μL MgCl2 (1.5 mM) (Sigma, St. Louis, MO, USA), 1 

μL M13 primer (50 pmol/μL) (Isogen Life Science, PW de Meern, The 

Netherlands) and 80–100 ng of genomic DNA (Querol, 1992). PCR 

http://www.yeast-id.com/�
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amplification conditions were as follow: 95°C for 5 min followed by 40 

cycles at 93°C for 45 s, 44.5°C for 1 min and 72°C for 1 min with a final 

extension step at 72°C for 6 min. The PCR products (10 μL) were resolved 

by electrophoresis on 2% agarose gel in 1x TAE buffer at 90 V for 3 h, 

stained with RedSafe (INtRON Biotech., Spain) and visualized under UV 

light. DNA fragment sizes were determined using a 100-bp DNA ladder 

(Life Technologies, Carlsbad, CA, USA). 

 

2.5. Technological characterization of yeasts: evaluation of proteolytic and 

lipolytic activities  

Proteolytic activity was evaluated in GPYA medium containing 10% of skim 

milk (Difco, Franklin Lakes, NJ, USA) following the methodology of Gardini 

et al. (2006). Proteolysis was considered positive when a light halo was 

visible (1 to 5 mm) after 15 days. Lipolytic activity was assayed on Tween 

agar medium containing 1% peptone, 0.5% NaCl, 0.01% CaCl2 

supplemented with 1% of Tween 40 (palmitic acid ester), Tween 60 

(estearic acid ester) or Tween 80 (oleic acid ester) (Sigma) following the 

methodology of Sierra (1957). Presence of a precipitation ring around the 

colonies after 15 days of incubation indicated lipolytic activity. 
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2.6. Data analysis 

Graphics were produced using SPSS Statistics v.19.0 (Statistical 

Package for the Social Sciences, IBM, USA). UPGMA (unweighted pair-

group method using arithmetic averages) dendrogram was constructed 

using the Jaccard Similarity Index in the NTSYS package version 2.21p 

(NTSYS Numerical Taxonomy and Multivariate Analysis System, Exeter 

Publishing Ltd., USA). The Similarity Matrix was based on presence (1) and 

absence (0) of homologous bands in the electrophoretic patterns. 
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3. Results  

3.1. Yeast counts and species succession 

Yeast counts increased from day one (24 hours after salting) to the 

sixth week of the ripening process. Initial counts of ewes’ cheeses, E1 and 

E2, started at 104 and 105 CFU/g, respectively. These yeast counts 

increased to 107 CFU/g at the third week of the ripening process and they 

were maintained until the end of the sampling procedure. Goats’ cheeses, 

G1 and G2, initial counts started at 104 and 105 CFU/g raising to 108 and 

107 CFU/g, respectively, at the sixth sampling week. 

A total of 530 yeasts were isolated from the six samples taken from 

each cheese. Table 1 shows the results from the molecular identification 

using the RFLPs of ITS-5.8S rDNA and their correlation with the result of 

the BLASTN sequence comparison for the D1/D2 of 26S rDNA. The 

identification of isolates from the species Pichia kudriavzevii, Trichosporon 

coremiiforme and Trichosporon domesticum was done by BLASTN of the 

D1/D2 26S rDNA gene sequences against GenBank as ITS-5.8S rDNA 

restriction patterns for these species are not included in the Yeast-id 

database. 

The most abundant yeast species in all cheeses was D. hansenii 

(Figure 1) except in cheese G1, which rendered a higher number of 

Kluyveromyces lactis isolates. Other yeast species were isolated in minor 

numbers. In all cheeses, yeast diversity decreased along cheese 

maturation, being D. hansenii the most abundant yeast at the end of the 

process. In cheeses E1 and G1, yeast species D. hansenii appeared at the 

second or third maturation week although concurring with K. lactis and 

other yeast species up to the fifth or sixth week of the process. On the 

contrary, in cheeses E2 and G2, yeast species D. hansenii appeared at the 
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initial stages of cheese ripening and dominated the process since the fourth 

and third ripening weeks, respectively.  
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Table 1. Molecular identification of yeast species by RFLPs of the ITS 5.8S rDNA and sequencing of the D1/D2 of 26S rDNA gene. 

  Band sizes (bp)a   
RFLPs ITS-5.8S 

identification 
PCR  

product  
(bp) 

Cfo I HaeIII HinfI 100% similarity 
GenBank 
ACCNb 

Literaturec 

Candida mesenterica 390 390 390 195 + 195 U45720 1, 4 
C. parapsilosis 550 300 + 240 420 + 110 280 + 260 AF374609 2-5 
Debaryomyces hansenii 650 300 + 300 420 + 150 + 90 325 + 325 JQ689041 1-10 
Kluyveromyces lactis  740 300 + 300 420 + 150 + 90 325 + 325 U76347 1, 3, 4, 6-10 
K. marxianus 740 285 + 185 + 140 + 100 655 + 80 240 + 185 + 120 + 80 CR382124 1, 3, 4, 7-9 
Kazachstania unispora 775 350 + 310 + 115 500 + 110 400 + 375 AY048158 1, 9 
Meyerozyma 
guilliermondii 

625 300 + 265 400 + 115 + 90 320 + 300 JQ689047 - 

Pichia kudriavzevii 550 220 + 190 + 90 400 + 100 230 + 160 + 140 AY048158 3 
Trichosporon 
coremiiforme 

550 275 + 275 500 275 + 275 AF139983 - 

T. domesticum 550 275 + 275 500 250 + 160 + 100 JN939449 - 
Yarrowia lipolytica 380 210 + 170 380 190 + 190 AM268458 1-4, 6-9 
a Band sizes smaller than 80 bp could not be accurately estimated by comparison with a 100 bp ladder. 
b The D1/D2 26S rDNA gene sequences determined in this study showed 100% sequence similarity with the GenBank ACCN numbers listed. 
c Yeast species isolated from ewes’ and goats’ cheese reported in previous publications: (1) Nahabieh and Schmidt, 1990; (2) Fadda et al., 
2010; (3) Cosentino et al., 2001; (4) Corbo et al., 2001; (5) Pereira-Dias et al., 2000; (6) Gardini et al., 2006; (7) Fadda et al., 2004; (8) Pisano 
et al., 2006; (9) Tornadijo et al., 1998; (10) Capece and Romano 2009. 
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Figure 1. Evolution of yeast species along the ripening weeks of the different types 

of cheeses. Ewes’ cheeses are coded as E1 and E2 and goats’ cheeses as G1 

and G2.  

 

3.2. Technological characterization 

Yeast isolates were evaluated for their proteolytic activity towards 

casein and lipolytic activity towards palmitic, stearic and oleic acid esters. 

Table 2 shows the percentage of yeast isolates within each species 

displaying enzymatic activities. Most yeast isolates showed proteolytic 

activity (83%). This enzymatic activity was remarkable in D. hansenii and  

K. lactis, representing more than 90% of the total activity measured as 

number of positive isolates. Isolates pertaining to the species  

C. parapsilosis and Kz. unispora also showed notable proteolytic activity.  
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Regarding lipolytic activity, around 60% of the isolates were able to 

hydrolyze palmitic acid and stearic acid esters whereas this number 

decreased below 40% in case of oleic acid ester hydrolysis. Most isolates 

showing lipolytic activity on palmitic acid ester were also able to hydrolyze 

stearic acid ester; but from these very few isolates could hydrolyze oleic 

acid ester (data not shown). The exception was Y. lipolytica which five 

isolates displayed lipolytic activity on oleic acid while not showing lipolytic 

activity on palmitic acid ester and low activity on stearic acid ester. No 

significant differences were found in the percentage of strains showing 

proteolytic and lipolytic activities within each type of cheese (data not 

shown).  

 

Table 2. Percentage of isolates from each yeast species showing enzymatic 

activities. 

Hydrolysis of: 
Casein Palmitic acid 

ester 

Stearic acid 

ester 

Oleic acid 

ester 

Candida mesenterica 8 -a - - 

C. parapsilosis 100 43 43 7 

Debaryomyces hansenii 92 86 91 58 

Kluyveromyces lactis 97 17 17 8 

K. marxianus 50 - - - 

Kazachstania unispora 89 - - 11 

Meyerozyma guilliermondii 60 100 100 100 

Pichia kudriavzevii 44 - - - 

Trichosporon coremiiforme 100 100 100 100 

T. domesticum 100 100 100 100 

Yarrowia lipolytica 50 - 17 83 

a No enzymatic activity was detected. 
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3.3. Genetic typing of D. hansenii 

Minisatellite M13 PCR amplification of 187 D. hansenii isolates 

generated 12 different electrophoretic patterns (Figure 2) labeled A1 to A5, 

B1 to B5, C1 and D1. The most abundant pattern was A1 (48%) constituted 

by 6 bands, the heaviest band at 1500 bp and the smallest at 400 bp. 

Pattern B1 displayed the largest number of bands, 11, the top band at 1400 

bp and the bottom one around 300 bp. Patterns A2 to A5 and B2 to B5 

displayed minor differences respect to A1 and B1, respectively; these 

pattern differences, which consist of few additional or absent bands are 

indicated with arrows on Figure 2.  

Band presence or absence in the electrophoretic patterns was used 

to construct an UPGMA dendrogram (Figure 3). D. hansenii isolates were 

divided into four groups, A to D, at 70% similarity approximately. Groups A 

and B were subsequently separated into five clusters each.  

D. hansenii A patterns were displayed by isolates from all cheeses, 

whereas patterns B were displayed only by isolates from goats’ cheeses. 

Pattern C1 appeared in one isolate from cheese G2 while D1 was observed 

in isolates from ewes’ cheeses. Within the most populated clusters, A1 and 

A2, D. hansenii isolated from all cheeses could be found while clusters A3, 

A4 and A5 were constituted solely by D. hansenii isolates from cheese G2. 

Moreover clusters A1, A2 and A3 contained only cheese G2 D. hansenii 

isolates from the first three ripening weeks while clusters A4 and A5 

contained only isolates from the last three weeks. Similarly, B patterns were 

found in D. hansenii strains from goats’ cheeses isolated from the three last 

weeks of the ripening process. The overall level of diversity in the M13 

patterns was higher in goats’ cheeses than in ewes’ cheeses. Furthermore, 

M13 pattern heterogeneity increased as the ripening process of goats’ 

cheeses progressed, indicating that the number of different D. hansenii 
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isolates increased from the first weeks to the last weeks of cheese 

maturation.
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patterns of 
minisatellite M13 
PCR amplification. 
Lanes are labeled 
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patterns or with an 
“M” showing the the 
100 pb ladder. 
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Figure 3. UPGMA dendrogram analysis showing 
the relationships among D. hansenii strains. 
Groups A, B, C and D appear separated at 70% 
similarity. Isolates showing each M13 pattern are 
coded by the type of cheese (E1, E2 or G1, G2), 
sampling week (1 to 6), and number of isolates 
(between parenthesis). 
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4. Discussion 

Yeast identification using the RFLPs of the ITS-5.8S rDNA region 

produced the same results as sequence comparison of the D1/D2 26S 

rDNA gene, thus confirming the value of the former technique as already 

mentioned in previous reports (Álvarez-Martín et al., 2007; Dlauchy et al., 

1999; Esteve-Zarzoso et al., 1999; Gardini et al., 2006). Our results show 

that the main yeast species isolated from ewes’ and goats’ cheeses are 

common inhabitants of dairy products. However, few yeast species such as 

T. coremiiforme and T. domesticum have been isolated from cheeses for 

the first time. Early reports on yeast microbiota of dairy products point to  

T. ovoides, T. cutaneum and T. capitatum as the sole species of the genus 

Trichosporon found in dairy products. Similarly, Mz. guilliermondii has been 

isolated from goats’ cheeses for the first time although has been previously 

found in numerous dairy products (Büchl and Seiler, 2011). 

Fox et al. (2000) found that D. hansenii was by far the dominant 

yeast found in most cheeses, followed by K. lactis, Y. lipolytica and 

Trichosporon beigelii. However, the progression in yeast species occurring 

during ripening is not clear, since in most studies the stage of ripening at 

which the yeasts were isolated is not defined (Beresford et al., 2001). 

The results of our study demonstrate that yeast species composition 

changes greatly along the cheese ripening process. The first day of cheese 

maturation several yeast species could be found; however, at the sixth 

week of the process most yeast species had vanished and D. hansenii was 

the yeast species most frequently isolated. Numerous studies point to the 

low water activity, acidic environment and high salt content in cheese as 

the factors favoring the prevalence of D. hansenii (Beresford et al., 2001; 

Büchl and Seiler, 2011; Fleet, 1990). The second yeast species repeatedly 

found in this study was K. lactis. This yeast together with K. marxianus is 
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able to ferment lactose which promotes their growth in the interior of the 

cheeses, where other dominant yeasts are scarce (Fleet, 1990).  

Y. lipolytica described in numerous studies of dairy microbiota was also 

found in the cheeses investigated in this study; although it seems not to be 

a dominant yeast in the ripening process as already reported by other 

authors (Fadda et al., 2004; Fadda et al., 2010; Gardini et al., 2006; 

Pereira-Dias et al., 2000; Pisano et al., 2006; Suzzi et al., 2001; Tornadijo 

et al., 1998). 

Only two species of the genus Candida were found, C. parapsilosis 

and C. mesenterica, both present in appreciable numbers during the first 

weeks of ripening. Similarly, Kz. unispora previously recovered from 

Spanish and French goats’ cheeses (Nahabieh and Schmid, 1990; 

Tornadijo et al., 1998) has now been also found in ewes’ cheeses. Finally, 

P. kudriavzevii has been previously found in Italian ewes’ and goats’ 

cheeses (Cosentino et al., 2001; Fadda et al., 2010). 

Microbial proteolysis and lipolysis promote complex metabolic 

changes in the cheese which are vital for proper development of both flavor 

and texture (Bintsis et al., 2003; Klein et al., 2002; Leclercq-Perlat et al., 

2007; Roostita and Fleet, 1996). The evaluation of enzymatic activities 

conducted in this study shows that most D. hansenii isolates were able to 

hydrolyze casein as well as palmitic and stearic acid esters. Oleic acid 

ester, probably due to the presence of a double bond, was hydrolyzed by 

very few isolates with the exception of Y. lipolytica and Mz. guilliermondii. 

Although the wide array of substrates and conditions used to test these 

enzymatic activities hinders comparison among studies (Capece and 

Romano, 2009; Cosentino et al., 2001; Fadda et al., 2004; Fadda et al., 

2010; Gardini et al., 2006; Pereira-Dias et al., 2000) our results show the 

proteolytic and lipolytic potential of these yeasts. The contribution of these 

dairy yeast enzymatic activities to cheese quality deserves future studies. 
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PCR amplification of M13 minisatellites revealed a remarkable 

diversity within the D. hansenii isolates although the similarity between 

most patterns indicates a notable degree of genetic closeness. Similar 

studies by Capece and Romano (2009) showed a comparable level of 

diversity in D. hansenii isolated from two dairies in Basilicata region, Italy. 

By contrast, other studies have found scarce diversity among different 

dairies using similar techniques (Fadda et al., 2004; Romano et al., 1996). 

The overall genetic diversity within D. hansenii has been analyzed by 

several authors using different methodologies demonstrating the complexity 

of taxon D. hansenii (Groenewald et al., 2008; Nguyen et al., 2009; 

Jacques et al., 2009; Lopandic et al., 2013). The analysis by Sohier et al. 

(2009) revealed that D. hansenii strains isolated from the same origin are 

genetically closely related what would be in agreement with our results. 

Furthermore, our observations regarding goats’ cheeses suggested that 

more than one strain of D. hansenii may be involved in the ripening process 

as suggested by Petersen et al. (2001). Moreover, we could not find any 

dominant D. hansenii strain at the end of the process.  
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6. Conclusions 

This study provides evidence for the remarkable yeast diversity 

associated with goats’ and ewes’ traditional cheeses produced in a small 

dairy in Spain. The succession of yeast species along the cheese ripening 

process evidences the complex physico-chemical changes taking place in 

the cheese eventually restricting yeast growth with the exception of  

D. hansenii. Moreover, the enzymatic characterization revealed the 

possible contribution of these yeasts to liberation of amino acids and fatty 

acids from milk. The minisatellite M13 profiles obtained from most  

D. hansenii strains showed little divergence, indicating a close genetic 

relationship associated with the same origin of isolation. In addition, and 

based on the distribution by weeks, the diversity of D. hansenii isolated 

from goats’ cheeses increased along the ripening weeks. 
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ABSTRACT 

 An automated screening of phenotypic profiles was used to 

characterize genetically different Kluyveromyces lactis strains isolated from 

goats’ and ewes’ cheeses. Genotyping using RAPD M13 showed a rich 

heterogeneity of patterns within K. lactis from both cheese types. Very few 

patterns were common to both cheese types. On the contrary, the 

predominant K. lactis strains seemed to be different in goats’ or ewes’ 

cheeses. Strains representative of the different genotypes were screened 

for their growth on lactose, lactose supplemented with NaCl and lactate 

using an automated screening method on microplates. All K. lactis strains 

were able to grow on lactose and lactose supplemented with 2 and 5% of 

NaCl, whereas an increase of the optical density was not detected after 5 

days incubation on lactose supplemented with 8% NaCl and lactate media. 

All growth parameters were strongly dependent of NaCl content in the 

medium. Very few strains were not influenced by the presence of 2% salt, 

whereas all strains were negatively influenced in their growth parameters 

by the presence of 5% NaCl. Further characterization of K. lactis for 

production of biogenic amines revealed that the slowest strain growing on 

lactose was the only able to decarboxylate ornithine among the five amino 

acids tested. Proteolytic activity was exhibited by most of the strains but 

lipolytic activity was uncommon among the 76 tested strains.  

 

 

Keywords: Kluyveromyces lactis, minisatellite M13, lactose, NaCl, growth 

parameters, biogenic amines, lipolysis and proteolysis. 

  



 
 
 
 
 
 
 
Objective II 
 

114 

1. Introduction 

One of the prominent characteristics of Kluyveromyces lactis is its 

ability to assimilate and ferment lactose, the main sugar present in milk 

fermentations. Although a number of yeasts can aerobically grow on 

lactose, those that can ferment it are very rare. Besides K. lactis only 

Kluyveromyces marxianus is able to ferment lactose (Lachance, 2011). The 

role of these yeasts in cheese has been thus mainly related to lactose and 

lactate metabolism (Cholet et al., 2007; Gardini et al., 2006). Both yeast 

species have been frequently isolated in moderate to significant numbers 

from a large variety of cheeses and dairy products (Büchl and Seiler, 2011). 

Despite the unique physiological properties of K. lactis and K. marxianus 

influencing fermentation and maturation of cheese, very few studies focus 

on these species and frequently only Debaryomyces hansenii and Yarrowia 

lipolytica have been taken into account (Capece and Romano, 2009; 

Romano et al., 1996; Suzzi et al., 2001). Only in few instances the 

prominence of K. lactis respect to other yeasts isolated from cheese has 

caused a second look into strain variability within this species (Fadda et al., 

2004). Additionally, the lipolytic and proteolytic activities of K. lactis have 

been considered weak as compared with those of D. hansenii and  

Y. lipolytica (Bankar et al., 2009; Breuer and Harms, 2006) and therefore 

their relevance in cheese maturation has been unnoticed. 

Taxonomic studies involving molecular differentiation of K. lactis 

strains have revealed rich population diversity (Belloch et al., 1998; Belloch 

et al., 1997; Naumova et al., 2004). Moreover, the system of lactose genes 

enabling K. lactis lactose fermentation has been thoroughly studied (Dong 

and Dickson, 1997; Wiedemuth and Breunig, 2005) and even the origin of 

the lactose regulon in K. lactis has been hinted (Naumov, 2005). 
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The ability of K. lactis to generate desirable aromas in cheese has 

been also studied. This yeast is known to produce a wide variety and high 

amounts of volatile sulphur compounds in cheese ecosystems (Kagkli et 

al., 2006). Moreover, combined systems constituted by K. lactis together 

with Y. lipolytica and Pichia fermentans revealed the prevalence of K. lactis 

when compared with the other yeasts (De Freitas et al., 2009). 

The potential of K. lactis to produce metabolites of interest for the 

food industry has also been explored. Recent studies have surveyed the 

ability of K. lactis β-galactosidase to transglycosylate lactose and lactulose 

generating prebiotic oligosaccharides relevant as food ingredients (Padilla 

et al., 2012). Moreover, the ability of this dairy yeast to produce milk 

protein-derived antihypertensive hydrolysates has also been confirmed 

(García-Tejedor et al., 2013). 

 Despite the interest and attention that K. lactis has received as both 

a genetic model and industrial yeast as a source of different metabolites 

and enzymes (Pariza and Johnson, 2001) very few evidence has been 

reported on the population diversity of K. lactis present in cheese, 

succession of strains or physiological differences among different strains. 

The aim of this study is the exploration of strain heterogeneity within  

K. lactis isolated along the ripening process of goats’ and ewes’ cheeses. 

Genetic heterogeneity was analysed by RFLPs of mitochondrial DNA and 

RAPD PCR amplification of minisatellite M13. Physiological profiling of the 

different genetic types was accomplished by automated screening in 

microplates of K. lactis growth on lactose, lactose supplemented with salt 

and lactate media. Moreover, production of biogenic amines, and 

proteolytic and lipolytic activities were also investigated. 
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2. Materials and methods 

2.1 Yeast strains 

 K. lactis strains were isolated from artisanal goats’ and ewes’ milk 

cheeses produced in Castellón, Spain. Table 1 shows the strains isolated 

from each cheese type at the beginning of the process and along four 

weeks of ripening. Type strain of K. lactis CECT 1961T (Spanish Type 

Culture Collection) was included as control in all experiments. 

 

2.2 DNA isolation and mitochondrial DNA restriction 

 DNA isolation was performed according to Querol et al. (1992). 

Restriction of mitochondrial DNA (mtDNA RFLPs) was performed as 

reported in Belloch et al. (1997). DNA was digested with restriction 

endonuclease HinfI (Roche Applied Science, Mannheim, Germany) 

according to the supplier’s instructions. Restriction fragments were 

separated on 2% agarose gels in 1x TAE Buffer (40 mM Tris-acetate, 1 mM 

EDTA pH 8) stained with GelRedTM 3x (Biotium, Hayward, CA, USA) and 

visualized under UV light. DNA fragments sizes were estimated by 

comparison against lambda phage DNA digested with PstI.  

 

2.3 Generation of minisatellite M13 patterns 

 PCR amplification of minisatellite M13 (RAPD M13) was performed 

using the primer 5’-GAGGGTGGCGGTTCT-3′ as described elsewhere 

(Fadda et al., 2004) with some minor modifications using a PCR 

Mastercycler Pro (Eppendorf, Hamburg, Germany). Final volume reaction, 

50 μL, contained 0.3 μL rTaq (5U) DNApolymerase, 4 μL dNTP mix (2.5 

mM), 5 μL buffer (Takara Bio Inc., Shiga, Japan), 3 μL MgCl2 (1.5 mM) 
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(Sigma, St. Louis, MO, USA), 1 μL M13 primer (50 pmol/μL) (Isogen Life 

Science, PW de Meern, The Netherlands) and 80–100 ng of genomic DNA 

measured using a NanoDropTM (Thermo Fisher Scientific, Wilmington, DE, 

USA). PCR amplification conditions were as follow: initial denaturing at 

95ºC for 5 min; 40 cycles of denaturation at 93ºC for 45 s, annealing at 

44.5ºC for 1 min and extension at 72ºC for 1 min; a final extension step of 6 

min for 72ºC. PCR products were separated on 2% agarose gels in 1x TAE 

Buffer at 90 V for 180 min, stained with GelRedTM 3x (Biotium, Hayward, 

CA, USA) and visualized under UV light. Sizes were estimated by 

comparison against a 100 bp DNA ladder (Invitrogen, Carlsbad, CA, USA).  

 

2.4 Growth conditions on lactose, lactose supplemented with salt and 

lactate media 

Strains were inoculated on 5 mL of GPY medium (2% glucose, 0.5% 

peptone, 0.5% yeast extract) and incubated overnight at 28ºC and 100 

rpm/min shaking. Cells were collected by centrifugation at 3000 rpm/min 

and washed with sterile saline solution (0.9% sodium chloride). Cell growth 

experiments were conducted using a SPECTROstar Omega microplate 

reader (BMG Labtech, Ortenberg, Baden-Württemberg, Germany) in 96-

well microplates inoculated to approximately optical density (OD) 0.1. The 

inoculum was always above the detection limit of the apparatus, which was 

determined by comparison with a previously established calibration curve. 

Growth assays were done in 250 µl volume and 28ºC temperature. Growth 

was tested on lactose medium (L4) (4% of lactose 1-hydrate and 0.1% of 

yeast extract), lactose medium supplemented with NaCl at 2% (L4S2), 5% 

(L4S5) and 8% (L4S8), and lactate medium (2% of sodium lactate and 

0.1% of yeast extract). OD measurements at 600 nm were done every 30 

minutes for 3 days in case of L4 and L4S2, and every hour for 5 days in 
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case of L4S5, L4S8 and lactate medium. Each OD measurement was 

preceded by a shaking step (double orbital) for 30 seconds at 500 rpm. For 

each medium one microplate containing triplicates of each strain was used. 

Blank wells containing media but not inoculated were included in each 

microplate to subtract the noise signal from culture medium. A total of 285 

curves (19 strains x 5 media x 3 replicates) were obtained. Growth data 

were exported from the microplate reader and further processed in Excel 

(Microsoft Office 2010) following the methodology of Warringer and 

Blomberg (2003) for estimation of generation time, maximum OD and 

duration of lag phase with few modifications. The minimum lag phase 

observed from visual inspection of L4 and L4S2 curves resulted between 4 

and 5 hours, whereas the estimation in case of L4S5 was above 18 hours. 

Values above 72 hours were discarded in case of L4S5. Estimation of lag 

phase was based on this observations as in Warringer and Blomberg 

(2003). 

 

2.5 Evaluation of proteolytic and lipolytic activities 

 Proteolytic activity was evaluated on GPYA medium (2% glucose, 

0.5% peptone, 0.5% yeast extract and 2% agar) containing 10% skim milk 

(Difco, BD Diagnostics, NJ, USA) (Gardini et al., 2006). Proteolysis was 

considered positive when a transparent halo was visible (1 to 5 mm) after 

15 days incubation at 28ºC. Lipolytic activity was assayed on tween agar 

medium (1% peptone, 0.5% NaCl, 0.01% CaCl2) supplemented with 1% of 

Tween 40 (palmitic acid ester), Tween 60 (estearic acid ester) and Tween 

80 (oleic acid ester) (Sigma-Aldrich, St. Louis, MO, USA) following the 

methodology of Sierra (1957). Presence of a precipitation ring around the 

colonies after 15 days of incubation indicated positive lipolytic activity. 
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2.6 Production of biogenic amines 

 The ability of K. lactis to decarboxylate the amino acids ornithine, 

lysine, phenylalanine, tryptophan and histidine (Sigma-Aldrich, St. Louis, 

MO, USA) was tested following the methodology of Gardini et al. (2006).  

Y. lipolytica was used as positive control. Plates were incubated at 28ºC for 

8 days. Experiments were carried out in triplicate. 

 

2.7 Data analysis 

Graphics were produced using SPSS Statistics v.19.0 (Statistical 

Package for the Social Sciences, IBM, USA) and SigmaPlot 12.0 (Systat 

Software Inc., USA). UPGMA (unweighted pair-group method using 

arithmetic averages) dendrogram was constructed using the Jaccard 

Similarity Coefficient in the NTSYS package version 2.21p (NTSYS 

Numerical Taxonomy and Multivariate Analysis System, Exeter Publishing 

Ltd., USA). The Similarity Matrix was based on presence (1) and absence 

(0) of homologous bands in the electrophoretic patterns. Statistical 

comparisons of growth parameters were made using one-way analysis of 

variance (ANOVA) with significance among treatment groups evaluated 

using Fisher’s least significant difference (LSD) implemented in 

Statgraphics Centurion XV (Statpoint Technologies Inc., USA). 
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3. Results and Discussion  

 A total of 76 K. lactis strains (Table 1) isolated from two different 

cheese types, goats’ or ewes’, produced in the same cheese factory were 

analyzed for genetic diversity using mtDNA RFLP’s and RAPD M13. 

Strains pertaining to different genotyping groups were examined for their 

growth parameters on lactose, lactose supplemented with NaCl and lactate 

media using automated monitoring on microplates. Generation of biogenic 

amines and enzymatic activities, protease and lipase, were also evaluated. 

 

Table 1. List of K. lactis strains isolated from goats’ or ewes’ cheese at 

different ripening weeks. 

 Ripening week 

Cheese 0 1 2 3 4 

Goat 69-71 72-82 83-85 30, 31, 47-
49, 51, 53, 

63 

45, 54-61, 
64, 66-68 

Ewe 26-29, 33-
36 

20-25, 40, 
41 

9-19 4-8 1- 3 

 

3.1 Genotyping of K. lactis strains 

The mitochondrial DNA restriction profile (mtDNA RFLPs) was 

identical for all 76 K. lactis strains investigated (Figure 1). Previous 

applications of mtDNA RFLPs to study the strain diversity within dairy yeast 

species such as D. hansenii, Candida zeylanoides and Candida kefyr 

isolated from the same or related cheese factories found this technique 

very discriminating even within a small number of strains (Romano et al., 

1996; Suzzi et al., 2000). On the contrary a similar study conducted by 

Mounier et al. (2006) revealed a low intraspecific diversity with one highly 
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dominant mtDNA RFLP for D. hansenii. Moreover, a systematic exploration 

of K. lactis species and other species within the genus Kluyveromyces 

using mtDNA RFLPs indicated a high level of intraspecific mtDNA 

divergence (Belloch et al., 1997). In the opposite way as expected, the  

K. lactis strains tested here isolated from cheese show a high degree of 

homogeneity in their mtDNA. However, this result is in agreement with 

previous studies of electrophoretic karyotyping and sequence of the 5.8S 

rRNA gene and the two internal transcribed spacers 1 and 2 which were 

found identical for lactose positive K. lactis strains from dairy origin (Belloch 

et al., 2002). 

 

 

Figure 1. RFLPs of mitochondrial DNA digested with HinfI of several K. lactis 

strains isolated from cheese. M indicates molecular weight marker. 
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On the contrary, RAPD M13 yielded a large degree of diversity and 

up to 19 patterns (P1 to P19) were differentiated within the K. lactis strains 

(Figure 2). This technique has been used by several authors to explore the 

genetic diversity of different yeast species isolated from cheese (Capece 

and Romano, 2009; Fadda et al., 2004; Fadda et al., 2010; Lopandic et al., 

2006) and, in case of K. lactis has revealed a similar level of strain diversity 

(Fadda et al., 2004). 

Despite their heterogeneity, all patterns present a common structure 

consisting of 4 to 5 bands, delimited by black arrows in Figure 2. The 

UPGMA dendrogram separates three groups (A, B and C) at 55% similarity 

approximately (Figure 2). Group A is constituted by strains isolated from 

both types of cheeses, whereas groups B and C include strains isolated 

mostly from ewes’ or goats’ cheeses, respectively. No correspondence 

between RAPD M13 UPGMA groups and cheese ripening weeks was 

found. Most RAPD M13 patterns were characteristic of K. lactis from either 

goats’ or ewes’ cheeses, except P9, P10 and P17 which appear in K. lactis 

from both cheese types (Figure 3). Patterns P9 and P17 contain only two 

strains each, whereas P10 comprises 8 strains from ewes’ cheeses and 

only one strain from goats’ cheeses. The patterns containing the largest 

number of strains are P2 and P12 (Figure 2). Pattern P2 includes solely 

strains isolated from goats’ cheeses along the whole ripening process. 

Pattern P12 comprises only strains isolated from ewes’ cheeses up to the 

second ripening week (Figure 3). 
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Figure 3. Distribution of RAPD M13 profiles by cheese type and ripening week. BR 

means before the ripening process started and includes  

K. lactis strains isolated from serum and cheese before the cheese was taken into 

the maturation chamber. 
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 These results demonstrate the rich heterogeneity of K. lactis strains 

present along the ripening process of either goats’ or ewes’ cheese. 

Moreover, some K. lactis strains appear at the beginning and remain till the 

end of the ripening process whereas other genotypes appear in few strains 

that quickly disappear from the population. 

 

3.2 Lipase and protease activities 

Lipolytic and proteolytic activities of yeasts isolated from cheese are 

considered of technological importance for their positive contribution to 

cheese fermentation and maturation (Corbo et al., 2001; Roostita and 

Fleet, 1996; Welthagen and Viljoen, 1998). All K. lactis tested were able to 

hydrolyze casein except strains 24 and 38. On the contrary, very few 

strains were lipolytic against any of the tested substrates. Strains 7 and 79 

were able to hydrolyze Tween 40; whereas strains 85 and, 34 and 35 were 

able to hydrolyze Tween 60 and 80 respectively. The only K. lactis able to 

hydrolyze all substrates was strain 53. Very few studies have reported 

proteolysis and lipolysis activities in the species K. lactis isolated from 

cheese. Borelli et al. (2006) and Gardini et al. (2006) tested 6 and 10 

strains respectively, but found all of them negative for both enzymatic 

activities; whereas, Cosentino et al. (2001) reported a low number of strains 

positive for both activities. 

 

3.3 Production of biogenic amines 

Testing of biogenic amines was done solely on 19 strains 

representing the different genetic groups generated in the RAPD M13 

based UPGMA dendrogram. Only strain 69 produced biogenic amines from 

amino acid ornithine. Several yeasts have been tested for production of 
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amines from amino acids; however this negative trait has been scarcely 

found in K. lactis, but mostly in strains from the species D. hansenii and  

Y. lipolytica as well as several species from the genera Candida and 

Trichosporon (Gardini et al., 2006; Suzzi and Gardini, 2003; Wyder et al., 

1999). 

 

3.4 Phenotypic profiling of K. lactis 

Growth of genetically different K. lactis strains was evaluated using 

a microplate format and automated incubator-reader, in which OD was 

measured and recorded at selected times during several days. This 

automated screening of phenotypic profiles has been already proven very 

useful for large scale screening of Saccharomyces cerevisiae and other 

species within this genus in different cultivation conditions (Liccioli et al., 

2011; Salvadó et al., 2011; Warringer and Blomberg, 2003). The slight 

oxygen limitation affecting the growth of S. cerevisiae on microplates 

described in previous studies might also have a comparable effect on  

K. lactis in spite of being one of the few yeasts able to ferment lactose 

(Lachance, 2011). The mode of shaking used as well as OD measurements 

along the recording produced typical growth curves, as observed in a 

subset of OD data corresponding to K. lactis type strain CECT 1961T 

growing L4, L4S2 and L4S5 represented in Figure 4. Comparison of growth 

on lactose and NaCl containing lactose media reveals salt dependence; the 

higher the salinity, the lower the maximum OD and the longer the lag phase 

(Figure 4) as already reported by other authors (Warringer and Blomberg, 

2003). Moreover, the increase of the lag phase duration seemed to 

overcome our experimental conditions at the highest NaCl concentration, 

8%, because no strain growth could be observed after 5 incubation days. 

Growth on lactate 2% media was recorded for 5 days, but a steady 
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increase of the OD values was not observed in case of CECT 1961T or any 

cheese isolated K. lactis strain. Growth of K. lactis type strain on lactate 

has been described as positive when tested on solid media for 21 days 

incubation (Lachance, 2011). The short incubation time used in our 

experiments might have prevented observation of strain growth due to 

longer duration of the lag phase. Additionally, growth on lactate could also 

be delayed due to limited access to oxygen in the microplates as already 

observed in previous studies (Liccioli et al., 2011; Warringer and Blomberg, 

2003).  

 
Figure 4. Growth curves of K. lactis CECT 1961T growing on lactose (L4) and 

lactose supplemented with 2% (L4 2S) and 5% (L4 S5) NaCl. 

 

Time (hours)

0 20 40 60 80 100 120 140

O
D

0,0

0,5

1,0

1,5

2,0

L4
L4S2

L4S5



 
 
 
 
 
 
 
Objective II 
 

128 

 Table 2 shows growth parameters of K. lactis strains. Generation 

time of K. lactis strains growing on L4 medium ranged from 4.90 h for strain 

6 to 7.28 h for strain 69. ANOVA analysis indicated that significant 

differences could be found among the strains (p<0.05) and Fisher’s LSD 

analysis separated the strains into 6 different groups. Generation time on 

L4S2 or L4S5 underwent a significant delay in most strains respect to L4, 

as indicated by ANOVA analysis (p<0.05). The average delay in generation 

time for strains growing on L4S2 and L4S5 respect to L4 was about 32% 

and 180%, respectively. Only strains 3, 48, 57 and CECT 1961T showed no 

significant differences in generation time when comparing L4 and L4S2. 

Generation time of K. lactis growing on L4S2 ranged from 6.25 h for strain 

3 to 13.53 h for strain 69. Similarly on L4S5, generation time stretched from 

9.79 h (strain 47) to 25.00 h (strain 69). As can be seen in Table 2, strain 

69 displayed the longest generation time growing in any medium. 

In NaCl containing media, ANOVA analysis indicated significant 

differences between averages of generation times of strains. Fisher’s LSD 

test separated the strains into 8 groups in case of L4S2 and 11 groups in 

case of L4S5. This increase in the number of Fisher’s LSD groups respect 

to L4 indicates that the differences in the generation times increase among 

the K. lactis strains. This might suggest that the K. lactis strains are 

differently affected by the presence of 5% salt in the culture media. 
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Table 2. Growth data from lactose 4% (L4), lactose 4% and salt 2% (L4 S2) and lactose 4% and salt 5% (L4 S5). Data are the 
mean of triplicates for each strain under each condition. 

Strain Generation Time (hours) Maximum OD Lag phase (hours) 

 L4 L4 S2 L4 S5 L4 L4 S2 L4 S5 L4 L4 S2 L4 S5 

1 5.057ef 6.580gh 17.305c 2.425g 2.047cdefg 1.358f 6.75cd * 7.92gh * 83.00a 
2 5.657cd 7.115defg 16.034cdef 2.480ef 2.062bcdefg 1.834bc 6.42de 9.08defgh 41.50c 
3 5.264def* 6.251h* 14.198ghi 2.504def 2.118abc 1.869b 4.42k 9.08defgh 42.00c 
5 5.644cd 7.074defg 16.026cdef 2.528bcde 2.010fg 1.576de 4.75jk 10.42d 43.83c 
6 4.899f 6.548gh 15.997cdef 2.423g 2.092bcde 1.590de 5.42ghij 10.25de 73.50b 
10 5.508cde 7.367cdef 13.196ij 2.571abc 2.117abcd 1.710cd 5.08hijk 12.50c 41.67c 
24 5.741c 6.769fgh 16.795cde 2.535abcd 2.061bcdefg 1.873b 6.92bcd * 8.58fgh * 29.83d 
29 5.794c 7.782c 15.321efgh 2.519cde 2.045efg 1.747bc 7.58b 16.42b 47.00c 
37 5.744c 7.124defg 16.805cde 2.499def 2.079bcdef 1.780bc 5.25ghij 8.83efgh 44.50c 
38 5.061ef 7.017efg 14.280ghi 2.561abc 2.112abcde 1.788bc 5.25ghij 10.08def 25.50d 
47 5.478cde 8.511b 9.786k 2.528bcde 2.010fg 1.795bc 7.42bc 19.17a 24.83d 
48 5.218def* 6.798fgh* 14.798fgh 2.462fg 2.003g 1.456ef 5.92efg 9.42defg 85.83a 
54 5.638cd 7.341cdef 19.470b 2.548abcd 2.045defg 1.812bc 5.58fghi 9.25defg 46.25c 
55 5.516cde 7.801c 16.887cd 2.576ab 2.121ab 1.846bc 4.92ijk 13.25c 29.25d 
57 6.595b* 6.582gh* 15.185fgh 2.583a 2.086bcde 1.802bc 5.75efgh * 7.58h * 42.50c 
59 5.492cde 7.664cd 15.571defg 2.558abc 2.103bcde 1.754bc 5.75efgh 13.42c 83.50a 
67 5.638cd 7.514cde 12.582j 2.536abcd 2.116abcde 1.811bc 6.25def 12.67c 28.00d 
69 7.279a 13.529a 25.005a 2.066i 0.977h 0.688g 14.25a 15.75b 82.00a 
1961 T 5.921c* 6.319h* 14.002hij 2.312h 2.183a 2.067a 5.25ghij 9.58def 28.17d 

Superindexes indicate significant differences between strains (p<0.05) growing under the same culture media. Asterisk * indicates not 
significant differences (P>0.05) between strains growing under different culture media. The standard deviation for generation time and 
maximum OD was inferior to 12% and for lag phase inferior to 20%. 
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Maximum OD was above 2 for all strains in case of L4 and L4S2 

except for strain 69 which maximum OD was below 1 in L4S2. Addition of 

5% NaCl generated a broader reduction of the maximum OD which 

decreased below 2 except in case of CECT 1961T. ANOVA analysis 

indicated significant differences among strains between L4 and L4S2 or 

L4S5. Strains 3, 48, 57 and CECT 1961T, which had showed no significant 

differences in their generation time between L4 and L4S2 media, showed a 

significant decrease in their maximum OD when lactose was supplemented 

with salt. This would indicate that maximum OD is independent from 

generation time as already observed by Warringer and Blomberg (2003). 

Other studies about the effect of salt on the growth rate (directly related to 

generation time) of yeasts revealed a decrease in this parameter with 

increasing NaCl levels (Held, 2010). 

Estimation of lag phase was not very accurate. The coefficient of 

variation increased above 15% in most cases, as already observed by 

Warringer and Blomberg (2003). Duration of lag phase in L4 experiments 

ranged from 4.92 h for strain 3 to 15.08 h for strain 69. ANOVA analysis 

indicated that significant differences could be found among the strains 

(p<0.05) and Fisher’s LSD analysis separated the strains into 11 different 

groups. Lag phase on L4S2 and L4S5 underwent a significant delay in 

most strains as indicated by ANOVA analysis (p<0.05). Only strains 1, 24, 

57 and 69 showed no significant differences in lag phase when comparing 

L4 and L4S2. Lag phase of K. lactis growing on L4S2 ranged from 7.75 h 

for strain 37 to 15.25 h for strain 69. Similarly on L4S5 lag phase stretched 

from 28.50 h (strain 10) to more than 72 h (strains 1, 6, 48, 59 and 69). 

Strains 55 and 48 showed the greatest increments in lag phase when 

comparing L4, L4S2 and L4S5. 
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There are few studies monitoring the growth of yeasts using 

microplates and in all of them Saccharomyces has been the main research 

subject; nevertheless, all these studies conclude that this methodology is 

suitable for testing a large number of yeast strains growing in different 

conditions (Liccioli et al., 2011; Salvadó et al., 2011; Warringer and 

Blomberg, 2003). In our study this methodology was used to generate 

phenotypic profiles of genetically different K. lactis growing on different 

medium containing lactose, lactose supplemented with NaCl and lactate. 

Our results indicate that K. lactis was able to grow on microplates 

generating reproducible and reliable data when using a methodology 

previously established for Saccharomyces. Moreover, the phenotypic 

analysis displayed strain differences in response to salt suggesting that 

generation time, maximum OD and duration of lag phase are parameters to 

take into account for further strain selection. Respect to generation of 

biogenic amines, only strain 69, the slowest yeast growing at any culture 

media was able to decarboxylate ornithine. Finally this study also confirms 

the scarce lipolytic activity of K. lactis strains although the proteolytic 

activity seems to be substantial in most of the strains.  
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ABSTRACT 

The β-galactosidase activity of fifteen Kluyveromyces strains 

isolated from cheese belonging to K. lactis and K. marxianus species was 

tested for the production of oligosaccharides derived from lactose (GOS) 

and lactulose (OsLu). All Kluyveromyces crude cell extracts (CCEs) 

produced GOS such as 6-galactobiose, 3’-, 4’- and 6’-galactosyl-lactose. At 

4 h of reaction, the main trisaccharide formed was 6´-galactosyl-lactose (20 

g/100g of total carbohydrates). The formation of OsLu was also observed 

by all CCEs tested, 6-galactobiose, 6’-galactosyl-lactulose and  

1- galactosyl-lactulose being found in all the reactions mixtures. The 

synthesis of trisaccharides predominated over other oligosaccharides.  

K. marxianus strain O3 produced the highest yields of GOS and OsLu after 

4 h of reaction reaching 42 g/100g of total carbohydrates (corresponding to 

80% lactose hydrolysis) and 45 g/100g of total carbohydrates 

(corresponding to 87% lactulose hydrolysis), respectively. Therefore, the 

present study contributes to a better insight into dairy Kluyveromyces  

β-galactosidases and shows the feasibility of these enzymes to 

transglycosylate lactose and lactulose producing high yields of prebiotic 

oligosaccharides. 

 

 

Keywords: Kluyveromyces lactis, Kluyveromyces marxianus, 

transgalactosylation, GOS, OsLu, lactose, lactulose. 
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1. Introduction 

β-Galactosidase (EC 3.2.1.23) is a hydrolase that attacks the 

terminal non-reducing β-D-galactosyl residues of oligosaccharides and 

transfers the galactosyl moiety to suitable acceptors. These enzymes have 

several applications in the food fermentation and dairy industries and, 

mainly due to their ability to hydrolyse lactose they have attracted the 

attention of researchers and dairy product manufacturers (Adam et al., 

2004). Transgalactosylation is favored over hydrolysis in presence of high 

substrate concentrations, and in the case of lactose, β-galactosidases 

produce galactooligosaccharides (GOS) (Boon et al., 2000). GOS are 

mainly disaccharides (allolactose and galactobiose) and trisaccharides  

(4’- and 6’-galactosyl-lactose), and longer chain oligosaccharides consisting 

of four or more monosaccharide units (Mussatto and Mancilha, 2007).  

Although transgalactosylation of lactose has been known for more 

than 50 years (Aronson, 1952), GOS production is gaining importance since 

their recognition as prebiotics (van Loo et al., 1999). Moreover the influence 

of GOS structure on prebiotic selectivity has been demonstrated (Gosling et 

al., 2010). Other health benefits such as improvement of mineral 

absorption, prevention of intestinal infections and enhancement of immune 

function among others have been described (Arslanoglu et al., 2008; 

Ebersbach et al., 2010; Pérez-Conesa et al., 2006; Vulevic et al., 2008). 

Recently, the synthetic disaccharide lactulose (4-O-β-D-

galactopiranosyl-D-fructose) has been proposed as an enzymatic substrate 

for lactulose-derived oligosaccharide (OsLu) production (Cardelle-Cobas et 

al., 2008b; Cardelle-Cobas et al., 2011a; Martínez-Villaluenga et al., 

2008b). Although lactulose has been recognized as prebiotic (Méndez and 

Olano, 1979; Rycroft et al., 2001), gas production associated with its 

fermentation in the proximal colon may represent a disadvantage for 
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lactulose ingestion (Tuohy et al., 2002). In this context, synthesis of OsLu 

may provide a new group of active compounds with health beneficial effects 

complementary to those provided by GOS (Olano and Corzo, 2009) and 

probably, without the inconvenient of lactulose consumption. 

Nowadays, microbial β-galactosidases represent a feasible 

alternative to chemical synthesis of GOS with the benefits of enzymatic 

stereospecificity and higher final yields. β-Galactosidases have been 

frequently characterized in lactic acid bacteria and bifidobacteria related to 

milk, milk products and the intestine of neonates (Osman et al., 2011; 

Schwab et al., 2011). The genus Kluyveromyces and specifically the 

species Kluyveromyces lactis has received considerable attention both as a 

genetic model and industrial yeast as a source of different metabolites and 

enzymes (Pariza and Johnson, 2001). Similarly, the species 

Kluyveromyces marxianus has been explored due to its potential 

biotechnological applications, although the accumulated knowledge on  

K. marxianus is much smaller compared to that on K. lactis (Fonseca et al., 

2008). Both species, present in dairy products, are considered GRAS 

(Generally Recognized As Safe) microorganisms and present a good 

growth yield and a higher β-galactosidase activity compared with other 

yeasts (Kaur et al., 2009). Thus, both species are relevant industrial 

sources of β-galactosidase activity, and they have been traditionally used to 

produce low-lactose products and for the biological treatment of cheese 

whey waste. With respect to oligosaccharide synthesis, lactose and to a 

lesser extent lactulose transgalactosylation by K. lactis commercial 

enzymatic preparations has been evaluated (Cardelle-Cobas et al., 2011a; 

Martínez-Villaluenga et al., 2008a; Rodríguez-Fernández et al., 2011; 

Rodríguez-Colinas et al., 2011), whereas K. marxianus β-galactosidases 

have been only recently tested for lactose transgalactosylation (Manera et 

al., 2010; Petrova and Kujumdzieva, 2010). 
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Previous studies have demonstrated that the transgalactosylation to 

hydrolysis ratio varies depending on the different sources of  

β-galactosidase, and that different enzymes can achieve different degrees 

of transgalactosylation leading to variations in the level and composition of 

synthesized GOS (Otieno, 2010). However, there is little information about 

the feasibility of food-isolated Kluyveromyces strains with potentially 

different metabolic characteristics to transgalactosylate different substrates.  

The aim of the present work was to evaluate the β-galactosidase 

activity from different strains of K. lactis and K. marxianus isolated from 

artisanal cheeses and to screen their potential to produce GOS and OsLu 

by hydrolysis and transgalactosylation of lactose and lactulose, 

respectively.  
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2. Materials and methods 

2.1 Chemicals  

Lactose was obtained from Scharlau (Barcelona, Spain). Lactulose, 

D-glucose, raffinose, D-fructose and o-nitrophenyl β-D-galactopyranoside 

(oNPG) were purchased from Sigma-Aldrich Co (Steinheim, Germany).  

D-Galactose was acquired from Fluka (Steinheim, Germany). D-Glucose 

and lactose for yeast culture media were obtained from Panreac 

(Barcelona, Spain), bacteriological peptone was purchased from Cultimed 

(Barcelona, Spain) and yeast extract and agar were acquired from 

Pronadisa (Madrid, Spain).   

 

2.2 Yeast strains 

Fifteen yeast strains belonging to K. lactis and K. marxianus species 

were isolated from artisanal ewes’ and goats’ milk cheeses produced in 

Cheese Company “Los Corrales” from rural Castelló province (Spain).  

K. lactis CECT 1961T was obtained from the Spanish Type Culture 

Collection and was included in the study as control. Isolation sources are 

shown in Table 1. 

 

2.3 Kluyveromyces crude cell extracts (CCEs) 

 Yeasts were grown overnight in medium GPY (glucose 2%, 

peptone 0.5% and yeast extract 0.5%) at 28°C. Afterwards, yeast cells 

were transferred to LPY medium (lactose 2%, peptone 0.5% and yeast 

extract 0.5%) and incubated overnight at 28°C. For preparation of CCEs, 

cells were resuspended in 50 mM potassium phosphate pH 6.5 with 1mM 

MgCl2 and disrupted with glass beads (0.5 mm) in a Bead-Beater Cell 
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Disrupter (Model 1107900, Bio Spec Products Inc, Bartlesville, OK). 

Disruption was achieved at 4°C by subjecting the cells to three bursts of  

45 s with resting periods of 5 min. The resulting homogenates were 

centrifuged at 5000 × g for 20 min at 4°C and the supernatants, considered 

as CCEs, kept at -20°C until further analysis. 

 

2.4 Determination of β-galactosidase activity and protein content  

β-Galactosidase activity from CCEs was quantified using oNPG as 

substrate according to Martínez-Villaluenga et al. (2008a). One enzyme 

unit is defined as the amount of enzyme releasing 1 µmol of oNP per mL 

per minute at 40°C and pH 6.5. Activity against oNPG was used to adjust 

the activity of the different CCEs (6 U/mL) for transgalactosylation reaction 

(see below). Protein content of CCEs was determined using the Bradford 

assay with bovine serum albumin as standard (Bradford, 1976).  

 

2.5 Synthesis of oligosaccharides derived from lactose (GOS) and lactulose 

(OsLu) 

Production of lactose- and lactulose–derived oligosaccharides were 

carried out using 250 g/L of substrate in 0.1 M phosphate buffer pH 6.5 and 

6 U/mL β-galactosidase activity during incubation at 50°C up to 24 h, as 

described in Cardelle-Cobas et al. (2011a) and Martínez-Villaluenga et al. 

(2008a). Lactose and lactulose solutions were heated before the enzyme 

extract was added and were maintained at the required temperature 

throughout the experiment. Reactions were performed in individual 

Eppendorf tubes and incubated in an orbital shaker at 400 rpm. Samples of 

200 µL were withdrawn from the reaction mixtures at 0, 2, 4, 6 and 24 h 

and immediately immersed in boiling water for 5 min to inactivate the 
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enzyme. After appropriate dilution, 20 µL were injected into the 

chromatograph described below. Control samples were prepared in the 

same manner except no CCE was added. All experiments were performed 

in duplicate. 

 

2.6 Chromatographic determination of carbohydrates  

GOS and OsLu were determined by high-performance anion 

exchange chromatography with pulsed amperometric detection (HPAEC-

PAD) in a ICS2500 Dionex system (Dionex Corp., Sunnyvale, CA, USA) 

consisting of a GP50 gradient pump and ED50 electrochemical detector 

with a gold working electrode and Ag/AgCl reference electrode. Data were 

acquired and processed with Chromeleon 6.7 software (Dionex Corp.). 
Separations were performed on a CarboPac PA-1 column (250 × 4 mm) 

connected to a CarboPac PA-1 (50 × 4 mm) guard column following the 

method described by Splechtna et al. (2006). Detection time and voltage 

parameters were set as follows: E1=0.1V (t1=400ms), E2= 2.0V (t2=10ms), 

E3=0.6V, E4=-0.1V (t4=60ms); tt=500ms. Samples and standard solutions 

were filtered through a nylon Millipore FH membrane (0.22 µm) (Bedford, 

MA) before injection. Quantification of carbohydrates was performed by 

external calibration using standard solutions of galactose, fructose, lactose, 

lactulose and raffinose. The regression coefficients of the curves for each 

standard were always greater than 0.99. The amount of lactose or lactulose 

remaining and the yield of GOS and OsLu were expressed as g/100g of the 

total carbohydrate content in the reaction mixtures. 
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2.7 Statistical analysis 

Bonferroni test was used for mean comparison at 95% confidence 

level (StatGraphics Plus 5.1, StatPoint, Herndon, VA). 
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3. Results and Discussion 

3.1 β-Galactosidase activity 

As shown in Table 1, all CCEs hydrolysed oNPG. K. lactis CCEs 

showed higher oNPG hydrolysis than the two K. marxianus CCEs. K. lactis 

BP4 showed the highest β-galactosidase activity (13.1 U/mg), followed by 

the reference strain CECT 1961T (11.9 U/mg) whereas K. marxianus strains 

showed values of 1.3 and 1.6 U/mg. 

 

Table 1. β-Galactosidase activity against oNPG of yeast species CCEs screened 

for oligosaccharide production. 

Species Straina Isolation source 
Specific activity 

(U/mg) 
K. lactis CECT 1961T Gassy cheese, UK 11.8 
 BP1 Ewes’ milk cheese whey 03.5 
 BP2 Ewes’ milk cheese  05.8 
 BP3 Ewes’ milk cheese  07.4 
 BP4 Ewes’ milk cheese  13.1 
 BP5 Ewes’ milk cheese  03.9 
 BP6 Ewes’ milk cheese  04.6 
 BP7 Ewes’ milk cheese  03.3 
 BP8 Ewes’ milk cheese  04.8 
 O1 Ewes’ milk cheese  04.2 
 O2 Ewes’ milk cheese  02.7 
 C1 Goats’ milk cheese  03.4 
 C2 Goats’ milk cheese  03.0 
K. marxianus O3 Ewes’ milk cheese   01.3 
 O4 Ewes’ milk cheese whey  01.6 
aAll yeast strains, except CECT 1961T, were isolated from Spanish cheeses. 
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3.2 Synthesis of oligosaccharides derived from lactose (GOS)  

Lactose transgalactosylation by yeast CCEs was followed by 

HPAEC-PAD. Under the conditions tested (pH 6.5, 50°C, 250 g/L lactose,  

6 U/mL of β-galactosidase activity), which were previously optimized in the 

laboratory for a K. lactis commercial preparation (Martínez-Villaluenga et 

al., 2008a), GOS production from lactose was compared after 4 h reaction. 

All yeast CCEs synthesized galactosyl derivatives of lactose showing 

similar chromatographic profiles of GOS production. A representative 

chromatogram corresponding to lactose transgalactosylation catalysed by 

K. marxianus O3 CCE after 4h reaction is shown in Figure 1A. The peak 

1+2 corresponded to co-eluting galactose and glucose whereas peak 5+6 

was assigned to lactose and allolactose. Peak 4 was identified as  

6-galactobiose; peak 9 corresponded to trisaccharide 6’-galactosyl-lactose 

and peaks 12 and 13 corresponded to 4’-galactosyl-lactose and  

3’-galactosyl-lactose, respectively. These assignments were made by 

comparing relative retention times with those found in previous studies 

(Cardelle-Cobas et al., 2008a). Unidentified di- or trisaccharides as well as 

high retention time oligosaccharides (peaks marked with asterisk) were 

also detected. Table 2 summarizes GOS yields after 4 h reaction for all 

yeast β-galactosidases studied. Total GOS yields ranged approximately 

from 26 to 42 g/100g of total carbohydrates, in agreement with the range 

described for other microbial β-galactosidases (Otieno, 2010). Moreover, in 

a previous work, total GOS yields of approximately 30 g/100g of total 

carbohydrates were obtained with the commercial K. lactis preparation 

(Martínez-Villaluenga et al., 2008a) what it is in agreement with the total 

GOS yields found with most of the cheese-isolated yeast strains evaluated 

in the present work. Recently, a maximum GOS yield of 44 g/100g of total 

carbohydrates using 400 g/L of lactose and permeabilized K. lactis cells 

has been reported (Rodríguez-Colinas et al., 2011). 
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Figure 1. HPAEC-PAD profiles of carbohydrate mixtures obtained by enzymatic 

hydrolysis of lactose (A) and lactulose (B) by K. marxianus O3 β-galactosidase. (A) 

Compounds: 1, galactose; 2, glucose; 4, 6-galactobiose; 5, allolactose; 6, lactose; 

9, 6’-galactosyl-lactose; 12, 4’-galactosyl-lactose; 13, 3’-galactosyl-lactose; *, other 

oligosaccharides. (B) Compounds: 1, galactose; 3, fructose; 4, 6-galactobiose; 7, 

allolactulose; 8, lactulose; 10, 6’-galactosyl-lactulose; 11, 1’-galactosyl-lactulose; *, 

other oligosaccharides. 
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Table 2. Carbohydrate composition (g/100g of total carbohydrates) of the reaction mixtures during lactose hydrolysis (4 h).  

Strain Monosaccharides Lactose + allolactose 6-Galactobiose 6'-Galactosyl-
lactose 

Other GOS* Total GOS** 

CECT 1961T 
53.69 ± 2.18 bc 13.95 ± 0.45 e 5.63 ± 0.33 c 16.92 ± 0.84 e 8.82 ± 0.45 ab 32.36 ± 1.74 cd 

BP1 59.38 ± 1.86 de 10.41 ± 0.55 cd 5.40 ± 0.19 abc 14.37 ± 0.82 bcd 9.44 ± 0.30 abcd 30.21 ± 1.31 bc 

BP2 54.57 ± 0.18 bc 13.92 ± 0.20 e 5.29 ± 0.00 abc 16.01 ± 0.04 de 9.21 ± 0.09 abc 31.51 ± 0.02 c 

BP3 55.54 ± 1.03 cd 13.08 ± 0.38 e 5.27 ± 0.04 abc 15.64 ± 0.48 de 9.48 ± 0.10 abcd 31.39 ± 0.65 c 

BP4 66.27 ± 0.50 f 08.12 ± 0.26 a 4.92 ± 0.07 a 11.82 ± 0.33 a 8.03 ± 0.16 a 25.61 ± 0.24 a 

BP5 63.03 ± 0.95 ef 09.12 ± 0.17 abcd 5.09 ± 0.04 abc 13.53 ± 0.23 abc 8.33 ± 0.51 a 27.85 ± 0.78 ab 

BP6 62.68 ± 1.42 ef 09.90 ± 0.84 bcd 5.01 ± 0.15 ab 13.40 ± 0.44 abc 8.17 ± 0.11 a 27.41 ± 0.58 ab 

BP7 57.33 ± 0.46 cd 10.66 ± 0.13 d 5.57 ± 0.06 bc 15.14 ± 0.17 cde 10.29 ± 0.10 bcd 32.00 ± 0.32 cd 

BP8 59.51 ± 0.88 de 10.42 ± 0.18 cd 5.32 ± 0.26 abc 14.55 ± 0.37 cd 9.24 ± 0.05  abc 30.07 ± 0.70 bc 

O1 65.21 ± 0.64 f 08.52 ± 0.03 ab 5.32 ± 0.11 ab 12.01 ± 0.14 a 8.42 ± 0.40 a 26.26 ± 0.67 a 

O2 57.67 ± 0.05 cd 10.59 ± 0.14 d 5.16 ± 0.09 abc 15.49 ± 0.40 de 10.15 ± 0.25 bcd 31.73 ± 0.19 cd 

C1 57.83 ± 0.66 cd 10.28 ± 0.02 cd 5.45 ± 0.07 abc 14.70 ± 0.25 cd 10.73 ± 0.30 cd 31.90 ± 0.64 cd 

C2 63.34 ± 0.48 ef 08.81 ± 0.13 abc 5.05 ± 0.03 abc 12.64 ± 0.15 ab 9.26 ± 0.15 abc 27.85 ± 0.35 ab 

O3 40.54 ± 0.14 a 17.65 ± 0.82 f 4.90 ± 0.12 a 20.74 ± 0.39 f 15.15 ± 0.95 e 41.81 ± 0.67 e 

O4 50.58 ± 0.56 b 14.42 ± 0.09 e 5.48 ± 0.03 abc 16.57 ± 0.05 e 10.96 ± 0.46 d 35.01 ± 0.47 d 

Different letters indicate significant differences for carbohydrate group (Bonferroni test, p < 0.05). 
* 3’- and 4’-galactosyl-lactose are included.  
 **These values include 6-galactobiose, 6’-galactosyl-lactose and other GOS.
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 K. marxianus O3 CCE stood out as the best GOS producer (42 

g/100g of total carbohydrates from 250 g/L lactose) but also K. marxianus 

O4 and K. lactis CECT 1961T, BP7, O2 and C1 CCEs were good GOS 

producers as indicated by Bonferroni test. Remarkably the yield obtained 

with K. marxianus O3 β-galactosidase was more than two fold higher than 

that described using permeabilized cells of K. marxianus at an initial lactose 

concentration of 500 g/L (Manera et al., 2010). Some K. marxianus strains 

were also pointed out by Petrova and Kujumdzieva (2010) as the most 

effective strains in GOS production among yeast species isolated from 

dairy products. 

For all reactions, the main GOS product was the trisaccharide  

6’-galactosyl-lactose (12-21 g/100g of total carbohydrates yield), being the 

best producers K. marxianus O3 and O4 and K. lactis CECT 1961T CCEs. 

Maximum 6-galactobiose yields corresponded to K. lactis CECT 1961T and 

BP7 CCEs whereas the lowest levels were formed by K. marxianus O3 

CCE. Both oligosaccharides were also the main GOS described for 

Aspergillus aculeatus β-galactosidase (Cardelle-Cobas et al., 2008a) and 

for K. lactis commercial enzyme (Martínez-Villaluenga et al., 2008a). With 

respect to other GOS (including 4’- and 3’-galactosyl-lactose), yields 

ranged from 8 to 15 g/100g of total carbohydrates, being K. marxianus O3 

CCE the best producer. Although K. marxianus β-galactosidases with 

enhanced transgalactosylation activity have been recently described 

(Manera et al., 2010; Petrova and Kujumdzieva, 2010) individual 

oligosaccharides formed were not identified.  
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Time course (up to 24 h) of lactose hydrolysis and GOS production 

was evaluated for β-galactosidase extracts from the best GOS producers, 

K. marxianus O3 and O4 and K. lactis BP7 and CECT 1961T (Figure 2). 

Lactose was rapidly hydrolyzed (panel A) to monosaccharides (glucose and 

galactose) (panel B) which levels increased along the reaction time.  

K. marxianus O3 β-galactosidase hydrolyzed lactose to a lesser extent (90 

g/100g of total carbohydrates) than the rest of CCEs which almost 

completely hydrolysed lactose (around 3 g/100g of total carbohydrates 

remaining). As a general trend the production of 6’-galactosyl-lactose 

(panel D) reached a maximum value (15-20 g/100g of total carbohydrates) 

after 2 h of reaction, the level of remaining lactose being 20-28 g/100g of 

total carbohydrates. In contrast, the formation of 6-galactobiose (panel C) 

reached maximum yields after 4 hours (remaining lactose of 10-18 g/100g 

of total carbohydrates), except for K. marxianus O3 β-galactosidase, which 

reached its optimal time production after 24 h (remaining lactose around 11 

g/100g of total carbohydrates). Maximum production of other GOS (panel 

E) were reached after 2 (K. lactis BP7 CCE) or 4 h of reaction (K. lactis 

CECT 1961T and K. marxianus O3 and O4 CCEs). The same pattern was 

observed for maximum formation of total GOS (panel F). Total GOS 

production decreased slightly from 4 to 24 h of incubation for K. marxianus 

O3 CCE whereas for the rest of β-galactosidases tested a higher GOS 

hydrolysis along the incubation time was observed. After 24 h of incubation 

K. marxianus O3 CCE stood out as the best GOS producer (40 g/100g of 

total carbohydrates). 
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Figure 2. Carbohydrate yields during lactose hydrolysis by selected yeast  

β-galactosidases. ●, K. lactis CECT 1961T; ○, K. lactis BP7; ■, K. marxianus O3; □, 

K. marxianus O4. Error bars indicate standard deviations. 
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3.3 Synthesis of oligosaccharides derived from lactulose (OsLu) 

Once the ability of CCEs to produce GOS by lactose 

transgalactosylation was tested, the time course (up to 24 h) of lactulose 

transgalactosylation by β-galactosidases from CECT 1961T, BP7, O3 and 

O4 was also evaluated. In a previous study of our research group, 

transgalactosylation of lactulose with β-galactosidases from commercial  

K. lactis and A. aculeatus preparations was studied and new structures 

such as the trisaccharides 6’galactosyl-lactulose and 1-galactosyl-lactulose 

were characterized (Cardelle-Cobas et al., 2008b; Martínez-Villaluenga et 

al., 2008b). In the present work under the experimental conditions used (pH 

6.5, 50°C, 250 g/L lactulose and 6 U/mL of β-galactosidase activity) 
(Martínez-Villaluenga et al., 2008b), the HPAEC-PAD analysis of reaction 

mixtures showed that all CCEs produced galactosyl-derivatives from 

lactulose. Similarly to GOS formation, products obtained from lactulose 

were the same in all reactions. Figure 1B shows a representative recording 

of the HPAEC-PAD profiles of the products formed by K. marxianus O3 

CCE after 24 h. Peaks 1, 3, 7 and 8 were assigned to galactose, fructose, 

allolactulose, and lactulose, respectively. Peak 4 was identified as the 

disaccharide 6-galactobiose while peaks 10 and 11 were assigned to the 

trisaccharides 6’-galactosyl-lactulose and 1-galactosyl-lactulose, 

respectively (Cardelle-Cobas et al., 2008b). Two unidentified di- or 

trisaccharides (retention times = 12.5 min and 14.8 min) and other high 

retention time oligosaccharides (peaks marked with asterisk) were also 

detected.  

Figure 3 shows the time course of lactulose conversion and OsLu 

synthesis for the yeast β-galactosidases. Lactulose (panel A) was 

hydrolyzed to galactose (panel B) and fructose (panel C). Comparison of 

Figures 2 and 3 demonstrates that lactulose hydrolysis was slower than 

that of lactose. K. lactis CECT 1961T β-galactosidase hydrolyzed lactulose 
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to a lesser extent (60% hydrolysis) than the rest of CCEs (80-90% 

hydrolysis). The amount of galactose present in the reaction mixtures was 

lower than that of fructose in all analyzed samples. As a general trend, 

trisaccharide formation (6’-galactosyl lactulose and 1-galactosyl-lactulose) 

predominated over the formation of the disaccharide 6-galactobiose. 

Synthesis of 6’-galactosyl-lactulose (panel E) and 6-galactobiose (panel D) 

increased with time, reaching a maximum after 24 h of reaction. Production 

of 1-galactosyl-lactulose (panel F) increased gradually and attained a 

maximum value after 2 h reaction in case of K. marxianus O3 CCE 

(remaining value of lactulose 52 g/100g of total carbohydrates) and after 6 

h reaction (remaining value of lactulose 47 g/100g of total carbohydrates) 

for K. marxianus O4 β-galactosidase. In contrast, formation of this 

trisaccharide by K. lactis CECT 1961T and BP7 β-galactosidases increased 

through the reaction time. The formation of other OsLu (including  

non-identified di- and trisaccharides and high retention time 

oligosaccharides) followed a similar trend to that of the disaccharide, with 

maximum yields after 24 h of reaction, and depending on the β-

galactosidase extract used, OsLu mixtures with different composition can 

be achieved. As in the case of lactose, the main OsLu were trisaccharides. 

Maximum production of 6’-galactosyl-lactulose (13 g/100g of total 

carbohydrates) at 24 h as well as 1-galactosyl-lactulose (17 g/100g of total 

carbohydrates) at 2 h was observed for K. marxianus O3 CCE. Maximum 

disaccharide levels (around 5 g/100g of total carbohydrates) were produced 

by K. marxianus CCEs. As in the case of GOS, the best OsLu producer 

was K. marxianus O3 β-galactosidase which yielded 45% total OsLu based 

on an amount of lactulose consumed of 87.5 g/100g of total carbohydrates.  



 
 
 
 
 
 
 
Objective III 
 

160 

Fr
uc

to
se

(g
/1

00
g 

to
ta

l c
ar

bo
hy

dr
at

es
)

0

5

10

15

20

25

30
G

al
ac

to
se

(g
/1

00
g 

to
ta

l c
ar

bo
hy

dr
at

es
)

0

5

10

15

20

25

30

La
ct

ul
os

e
(g

/1
00

g 
to

ta
l c

ar
bo

hy
dr

at
es

)

0

20

40

60

80

100

6-
G

al
ac

to
bi

os
e

(g
/1

00
g 

to
ta

l c
ar

bo
hy

dr
at

es
)

0

1

2

3

4

5

6

6'
-G

al
ac

to
sy

l-l
ac

tu
lo

se
(g

/1
00

g 
to

ta
l c

ar
bo

hy
dr

at
es

)

0

3

6

9

12

15

1-
G

al
ac

to
sy

l-l
ac

tu
lo

se
(g

/1
00

g 
to

ta
l c

ar
bo

hy
dr

at
es

)

0

3

6

9

12

15

18

Time (h)

0 5 10 15 20 25

O
th

er
 O

sL
u

(g
/1

00
g 

to
ta

l c
ar

bo
hy

dr
at

es
)

0

5

10

15

20

Time (h)

0 5 10 15 20 25

To
ta

l O
sL

u
(g

/1
00

g 
to

ta
l c

ar
bo

hy
dr

at
es

)

0

10

20

30

40

50

B 

C D

E F

G H

A

 

Figure 3. Carbohydrate yields during lactulose hydrolysis by selected yeast  

β-galactosidases. ●, K. lactis CECT 1961T; ○, K. lactis BP7; ■ K. marxianus O3; □, 

K. marxianus O4. Error bars indicate standard deviations. 
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Several studies have demonstrated that glycosidic linkages and 

molecular weights of carbohydrates contribute toward the selectivity of 

fermentation by beneficial gut bacteria. Our study demonstrates that the 

main oligosaccharides produced from lactose or lactulose 

transgalactosylation using enzyme extracts from cheese isolated yeasts are 

trisaccharides, which have been reported to show the highest selectivity 

toward bifidobacteria (Kaneko et al., 1994; Kaplan and Hutkins, 2000). 

Moreover GOS with β1  6 linkages, as those described in this work, can 

be easily cleaved by β-galactosidases from bifidobacteria (Dumortier et al., 

1994; Rowland and Tanaka, 1993) and thus exhibit prebiotic character. 

Cardelle-Cobas et al. (2011b) reported that the in vitro growth of different 

Lactobacillus, Streptococcus and Bifidobacterium strains was enhanced by 

β-galactosyl residues β1  6 and β1  1 linked over those with β1  4 

linkages. Likewise, Cardelle-Cobas et al. (2012) demonstrated the in vitro 

fermentation of OsLu by mixed fecal microbiota and proposed them as a 

new generation of prebiotics for improving the composition of gut 

microbiota. 

The present study shows the feasibility of β-galactosidases from  

K. lactis and K. marxianus strains isolated from cheese to 

transgalactosylate lactose and lactulose and produce reaction mixtures with 

different levels of individual oligosaccharides. To the best of our knowledge 

this is the first time that K. marxianus β-galactosidases are tested for 

lactulose transgalactosylation. Furthermore K. marxianus O3 enzyme 

yielded the highest total oligosaccharide amount when lactose or lactulose 

were used as acceptor carbohydrates. Moreover K. marxianus is 

considered as a thermophilic microorganism which suggests the possibility 

of developing transgalactosyl reactions at higher temperatures than 50°C 

with the benefit of using higher substrate concentrations for oligosaccharide 

yield improvement.  
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ABSTRACT 
 The contribution of Debaryomyces hansenii, Kluyveromyces lactis 

and Kluyveromyces marxianus strains to the typical flavour of traditional 

ewes’ and goats’ cheeses was assessed. Fourteen yeast strains were 

grown in liquid medium mimicking cheese composition and volatile 

compounds were identified by gas chromatography-mass spectrometry. 

Yeasts were able to produce key volatile compounds characteristic of the 

cheeses from which they were isolated. Inter-species and inter-strain 

variations were observed. Under the conditions tested D. hansenii 

produced the lowest levels of volatile compounds, with large intra-strain 

variations. Kluyveromyces strains primarily produced esters and alcohols. 

K. marxianus strains were associated with the production of acids, ethyl 

decanoate, 1-propanol and benzaldehyde, whereas K. lactis was correlated 

with the presence of ketones, ethyl acetate and secondary alcohols. In 

conclusion, this study shows the heterogeneous potential of dairy yeasts to 

contribute to final cheese flavour. 
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1. Introduction 

Yeasts play an important role in proteolysis, lipolysis, fermentation 

of residual lactose, and assimilation of lactic and citric acid during the 

ripening of some cheeses, contributing to aroma development and to the 

rheological properties of the final dairy product (McSweeney, 2004). 

Moreover yeasts have been recovered from all stages of cheesemaking, as 

well as from milk, brine and dairy process equipment among others (Corbo 

et al., 2001; Delavenne et al., 2011; Gardini et al., 2006; Seiler and Busse, 

1990). 

 Debaryomyces hansenii is the dominant yeast species found in 

most cheese varieties (Fleet, 1990; Fox et al., 2000). D. hansenii 

possesses the ability to grow at high salt concentrations, low pH and low 

water activity, as well as metabolising lactic and citric acids, which makes 

cheese a suitable environment for its proliferation (Breuer and Harms, 

2006). Lactose-fermenting yeasts Kluyveromyces lactis and Kluyveromyces 

marxianus are also regularly found in dairy products and milk. Their 

lactose-fermenting ability promotes their growth in the cheese, where other 

yeasts are scarce. Besides these species, cheeses may often contain other 

yeast species, such as Yarrowia lipolytica, Geotrichum candidum and 

Saccharomyces cerevisiae (Fleet, 1990). 

 Cheese flavour is one of the most relevant attributes influencing 

consumers’ acceptance and preference (Arora et al., 1995), and is the 

result of a complex balance between various volatile and non-volatile 

compounds, which individually do not reflect the overall odour and taste 

(Fox and Wallace, 1997). Many volatile compounds have been implicated 

in cheese aroma, such as acids, esters, ketones, aldehydes, alcohols or 

sulphur compounds, and each dairy product has a characteristic and 
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unique composition of volatile components (Plutowska and Wardencki, 

2007). 

 The contribution of yeasts to development of cheese aroma is 

considered positive in some instances, creating commercial interest in 

using selected strains as ripening cultures (Frohlich-Wyder, 2003; Romano 

et al., 2006). Several studies have shown that, in different cheeses, 

relevant yeast species contribute differently to volatile production.  

G. candidum and Y. lipolytica are known to produce considerable amounts 

of various volatile sulphur compounds; K. lactis, K. marxianus and S. 

cerevisiae have been found to produce primarily esters; and D. hansenii 

mainly produced branched-chain aldehydes and alcohols (Arfi et al., 2002; 

Leclercq-Perlat et al., 2004; Martin et al., 2001; Sørensen et al., 2011; 

Spinnler et al., 2001). However, these studies emphasised inter-species 

aroma production, with few surveys focusing on strain variation. Berger et 

al. (1999) reported the production of different yields of sulphur compounds 

by G. candidum, depending on the strain selected, and Gori et al. (2012) 

recently showed large strain variations in the production of flavour 

compounds by D. hansenii.  

 Iberian traditional cheeses made from ewes' and goats' milk have 

high intrinsic value, arising from their unique sensory characteristics, which 

makes them highly appreciated by consumers (Freitas and Malcata, 2000). 

In previous studies, yeasts present during the ripening process of ewes’ 

and goats’ raw milk cheeses produced in a small traditional dairy in the 

Mediterranean area of Spain were identified (Padilla et al., 2014).  

D. hansenii and K. lactis were the yeast species most frequently isolated 

from both kind of cheeses, and the former predominated at the end of 

ripening period. K. marxianus, although less frequent, was present during 

the first weeks of maturing. Moreover, results demonstrated genetic 

heterogeneity present in the isolates (Padilla et al., 2014), and their strain-
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dependent ability to generate bioactive compounds (García-Tejedor et al., 

2013; Padilla et al., 2012). However, there is little knowledge about the 

impact of the yeast isolates on the final quality of the cheeses. 

 The objective of the present study was to further characterize both 

the aforementioned raw milk cheeses and their yeast microbiota, to gain a 

better understanding of the relationship between yeast ripening strains and 

cheese flavour. For this purpose, the volatile profile of the cheeses was 

characterized. Volatile compounds were extracted by solid phase micro 

extraction (SPME) and analysed by gas chromatography-mass 

spectrometry (CG-MS). Moreover, the ability of 14 yeast strains belonging 

to D. hansenii, K. lactis and K. marxianus species to grow in a defined 

medium and produce volatile compounds also present in ripened cheeses 

was assessed. 
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2. Materials and methods 

2.1 Cheese samples 

Commercial semi-hard ewes’ and goats’ cheeses produced in an 

artisanal dairy farm sited in the rural Castelló province (Spain) were 

analysed for volatile compounds. The cheeses were made from raw milk 

coagulated with the addition of mesophilic lactic acid bacteria starters and 

plant (Cynara cardunculus) rennet (Abiasa Company, Pontevedra, Spain). 

After precipitation of proteins, the curd was cut with vertical and horizontal 

knives and crumbled manually. The remaining whey was removed first 

manually and afterwards using a press. After salting, cheeses were air-

dried until the rind was formed and ripened in wooden shelves at 10-12ºC 

and a relative humidity of 85-90% for 60 days. 

 Three cheeses from the same batch and from ewes’ milk and goats’ 

milk were analysed at the end of ripening period (3 batches x 2 cheeses = 6 

samples). After the rind was removed, cheeses were cut in pieces and 

ground with 0.75 mg butylated hydroxytoluene/20 g sample, wrapped in 

aluminium foil, vacuum-packed and stored at –20ºC until GC analysis. 

 

2.2 Yeast strains  

 Fourteen yeast strains belonging to the species K. marxianus (Km1-

Km4), K. lactis (Kl1-Kl5) and D. hansenii (Dh1-Dh5) isolated during the 

ripening process from the artisanal cheeses described above and with 

different genetic characteristics were used in this study (Padilla et al., 

2014). Yeast strains were maintained on GPYA medium (2% glucose, 0.5% 

peptone, 0.5% yeast extract and 2% agar, pH 5.5). 
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2.3 Culture conditions and media 

 Cheese-like medium (CLM; casamino acids 15 g L-1, sodium lactate 

19 ml L-1, yeast extract 1 g L-1, CaCl2 0.1 g L-1, MgSO4 0.5 g L-1, KH2PO4 

6.8 g L-1, NaCl 10 g L-1 and lactose 28 g L-1) was prepared according to 

Kagkli et al. (2006) without addition of L-methionine. Flasks (100-mL) 

containing 50 mL of CLM were inoculated with 106 cells mL-1 from overnight 

pre-cultures grown in GPY medium (GPYA without agar) at 28ºC and 150 

rpm. CLM cultures were incubated over 48h at 28ºC and 150 rpm. At the 

end of the incubation period, samples were taken for OD600 measurement. 

Yeast cells were removed by centrifugation (3220 x g, 10 min) and culture 

pH was measured. Lactose and L-lactic acid were quantified in the 

supernatants using Roche enzymatic kits (Darmstadt, Germany). For each 

strain, three replicate cultures were analysed and a control without yeast 

inoculation was also included. 

 

2.4 Analysis of headspace volatile compounds by SPME GC–MS 

 An Agilent HP 7890 series II GC (Hewlett- Packard, Palo Alto, CA, 

USA) with an HP 5975C mass selective detector (Hewlett-Packard) 

equipped with Gerstel MPS2 multipurpose sampler (Gerstel, Mülheim an 

der Ruhr, Germany) was used in all experiments. The volatile components 

of the samples were extracted by SPME. All extractions were carried out 

using a DVB/CAR/PDMS (divinylbenzene/carboxen/polydimethylsiloxane) 

fibre of 50/30 mm film thickness (Supelco, Bellefonte, PA, USA). The fiber 

was conditioned as indicated by the manufacturer prior to use in order to 

remove any possible contaminants. For cheeses, 5 g of product was placed 

in a 20 mL headspace vial sealed with a PTFE-faced silicone septum. The 

vial was maintained at 50ºC for 15 min to equilibrate the headspace, and 

then the fiber was exposed over 30 min at the same temperature. Before 
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each injection, the fiber was baked at 250ºC for 10 min. Each sample was 

analysed in triplicate. For CLM yeast cultures, 7 mL of supernatant plus 1.4 

g of NaCl were added to a 20 mL headspace vial sealed with a PTFE-faced 

silicone septum. The vial was kept at 50ºC for 15 min to equilibrate the 

headspace. The SPME fiber was then exposed to the headspace while 

maintaining the sample at 30ºC for 15 min. During extraction, the sample 

was agitated continuously in pulses of 10 sec at 250 rpm. Before and after 

each injection, the fiber was baked at 250ºC for 10 and 5 min, respectively. 

Each sample was analysed twice. 

 After the extraction step, the analytes were thermally desorbed for 5 

min from the fiber into the injector port of the GC-MS operating at 240ºC in 

splitless mode. The compounds were then separated using a DB-624 

capillary column J & W Scientific (Agilent Technologies, Santa Clara, CA, 

USA) (30m, 0.25mm i.d., film thickness 1.4 μm). For volatile analysis, the 

GC oven temperature program began at 40ºC, where it was held for 5 min, 

then ramped to 100ºC at 3ºC min-1 and maintained for 5 min, then to 150ºC 

at 3ºC min-1 and to 210ºC at 4ºC min-1, and, finally, held at 210ºC for 5 min. 

Mass spectra were obtained by electron impact at 70 eV, and data were 

acquired across the range 29–400 amu (scan mode). 

 Compounds were identified by comparison with mass spectra from 

the library database (Nist'05), Kovats retention index (Kovats, 1965) and by 

comparison with authentic standards. The quantification of volatile 

compounds was done in SCAN mode using total ion chromatograms (TIC). 

The results were expressed as abundance units (AU x 10−6). Volatile 

compounds quantitated from CLM control were subtracted from each yeast- 

inoculated medium. 
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2.5 Statistical evaluation  

 The effect of yeasts on the generation of volatile compounds in CLM 

was tested by one-way analysis of variance (ANOVA). Differences between 

sample means were analysed according to Fisher's least significant 

difference (LSD) test. Principal component analysis (PCA) was used to test 

relationships among yeast species, pH, lactose and lactate consumption 

and main volatile compounds. Statistical analysis was performed using the 

statistic software XLSTAT, 2009.4.03 (Addinsoft, Barcelona, Spain). 
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3. Results  

3.1 Volatile compounds in ewes´and goats´milk cheeses 

 Sixty-five volatile compounds were quantitied in the headspace of 

Mediterranean ewes’ and goats’ cheeses (Table 1). They were classified 

into acids (14), esters (18), ketones (9), aldehydes (5), alcohols (17), 

terpenes (1) and sulphur compounds (1). Four of the sixty-five compounds 

were not present in the ewe’s cheese, while eight of them were not present 

in the headspace of goat’s cheese. As expected, most of the volatiles found 

in these cheeses have been previously reported in other varieties of ewes’ 

and goats’ raw milk cheeses (Table 1).  

 Esters and alcohols were the most abundant chemical families 

identified in the headspace of the Mediterranean cheeses studied, 

whereas, quantitatively, carboxylic acids were the most abundant volatiles. 

Among short and medium-chain carboxylic acids, the most abundant were 

acetic, butanoic, hexanoic, octanoic and decanoic acids, although 

branched-chain fatty acids such as 3-methylbutanoic and 2-methylbutanoic 

acids were also found in both cheeses. Among esters, ethyl esters were the 

most abundant, although propyl- and branched-chain esters were also 

identified. Methyl ketones were the most abundant ketones detected in 

these products while aldehydes were not major components in these 

cheeses. 
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Table 1. Abundance of volatile compounds (expressed as AU×106 extracted by 

SPME) in the headspace of the raw milk cheesesa. 

Compound LRIb RIc Goats’ cheese Ewes’ cheese 
Previously 
reportedd 

Acids 
     

 

Acetic acid 709 A 196.2 ± 13.6 224.6 ± 31.6 1-7  

Propanoic acid 815 A 3.2 ± 0.1  9.5 ± 1.6 3-7  

2-Methylpropanoic acid 852 A 27.3 ± 5.3 12.5 ± 0.1 1,3-6  

Butanoic acid 891 A 482.7 ± 15.0 216.3 ± 15.6 1-7  

3-Methylbutanoic acid 932 A 30.2 ± 7.1 20.8 ± 1.6 1,3,5-7  

2-Methylbutanoic acid 939 A 31.8 ± 7.8 15.1 ± 2.0 7  

Pentanoic acid 971 A 2.7 ± 0.3 1.3 ± 0.1 3,4,7  

Hexanoic acid 1080 A 676.6 ± 19.5 219.5 ± 9.6 1-4,6,7  

Heptanoic acid 1165 A 4.7 ± 0.2 2.0 ± 0.1 3,4  

Octanoic acid 1264 A 271.4 ± 7.9 67.1 ± 1.7 2-4  

Benzenecarboxylic acid  1283 A 2.0 ± 0.3 1.4 ± 0.1 2  

Nonanoic acid 1357 A 2.3 ± 0.1 nd 2,4  

Decanoic acid 1453 A 128.2 ± 9.5 33.0 ± 1.8 2-4  

Dodecanoic acid 1646 B 3.1 ± 0.4 0.9 ± 0.1 2,3  

Esters 
     

 

Ethyl acetate 641 A 7.3 ± 2.1 25.4 ± 5.2 1-7  

Propyl acetate 743 A 1.1 ± 0.1 4.1 ± 2.0 1,4,5,7  

1-Methylpropyl acetate 787 B nd 10.8 ± 7.4 1,7  

Ethyl butanoate 828 A 18.9 ± 6.3 11.2 ± 2.5 1-5,7  

Butyl acetate 844 A nd 0.6 ± 0.1 1,5,7  

3-Methyl-1-butanol acetate 907 A 5.6 ± 0.7 3.8 ± 0.3 1,7  

Propyl butanoate 923 A 4.6 ± 0.4 2.8 ± 0.7 3-5,7  

1-Methylpropyl butanoate 960 B 4.9 ± 0.6 7.5 ± 0.3 -  

2-Methylpropyl 2-methyl 
butanoate 979 B 0.6 ± 0.1 nd - 

 

Ethyl hexanoate 1027 A 28.9 ± 13.5 15.6 ± 1.0 1-7  

3-Methylbutyl butanoate 1084 B 6.2 ± 0.1 nd -  

2-Propenyl hexanoate 1111 B 0.5 ± 0.0 nd -  

Propyl hexanoate 1123 A 6.3 ± 0.1 2.1 ± 0.4 5, 7  

1-Methylbutyl butanoate 1175 B 1.4 ± 0.0 0.9 ± 0.1 -  

Ethyl 2-methyl-propanoate 1182 B 1.4 ± 0.1 nd 1  

Ethyl octanoate 1225 A 16.8 ± 1.4 3.9 ± 0.4 1,3-7  
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Table 1 (continued). 
     

 

Compound LRIb RIc Goats’ cheese Ewes’ cheese 
Previously 
reportedd 

 

Propyl octanoate 1322 B 1.0 ± 0.0 nd -  

Ethyl decanoate 1425 A 7.5 ± 0.8 1.5 ± 0.1 1,2,4-6  

Ketones 
     

 

Acetone 529 A 1.2 ± 0.1 1.1 ± 0.3 2  

2-Butanone 635 A 43.2 ± 10.7 529.3 ± 26.3 1,3-7  

2-Pentanone 729 A 41.7 ± 2.8 14.0 ± 6.2 1,4-7  

3-Hydroxy-2-butanone 779 A 3.1 ± 0.6 31.8 ± 7.9 5,6  

2-Hexanone 833 A 1.6 ± 0.0 nd 5-7  

2-Heptanone 932 A 42.1 ± 3.2 3.7 ± 1.6 1,2,4-7  

8-Nonen-2-one 1135 B 3.4 ± 0.5 nd -  

2-Nonanone 1139 A 147.4 ± 22.2 7.8 ± 2.9 1,2,4-7  

2-Undecanone 1344 A 3.2 ± 0.6 0.6 ± 0.1 -  

Aldehydes 
     

 

2-Propenal 519 A 1.4 ± 0.1 0.5 ± 0.1 1, 5, 7  

3-Methylbutanal 691 A 1.2 ± 0.2 1.0 ± 0.1 1-7  

Hexanal 838 A 0.8 ± 0.1 nd 1, 2, 5, 7  

Benzaldehyde 1017 A 1.1 ± 0.1 1.6 ± 0.2 2,3  

Benzeneacetaldehyde 1107 A 1.4 ± 0.2 0.8 ± 0.2 3  

Alcohols 
     

 

Ethyl alcohol 511 A 62.4 ± 9.2 32.5 ± 6.5 1,5-7  

Isopropyl alcohol 538 A 3.0 ± 0.5 1.6 ± 0.3 5,7  

2-Propen-1-ol 610 B 3.8 ± 0.4 2.7 ± 1.0 1,5-7  

1-Propanol 615 A 16.7 ± 1.5 20.6 ± 6.8 1,4-6  

2-Butanol 647 A 133.2 ± 13.4 461.4 ± 32.5 1,3-5  

2-Methyl-1-propanol 682 A 1.0 ± 0.1 0.4 ± 0.1 1,5,6  

1-Methoxy-2-propanol 718 B 1.3 ± 0.2 1.4 ± 0.3 3, 5, 6  

1-Butanol 719 A 3.2 ± 0.5 3.8 ± 0.7 1,2,4-7  

2-Pentanol 747 A 68.2 ± 5.3 10.7 ± 3.9 1,4-7  

3-Methyl-1-butanol 793 A 18.3 ± 0.8 6.6 ± 0.9 1,3-7  

2-Methyl-1-butanol 796 A 2.8 ± 0.2 1.2 ± 0.1 7  

2,3-Butanediol 879 A 37.9 ± 3.6 59.4 ± 6.4 -  

1-Hexanol 920 A 4.9 ± 0.3 2.8 ± 0.7 1,2,5,6  

2-Heptanol 944 A 71.2 ± 6.9 14.2 ± 5.9 1,4-7  

1-Heptanol 1022 A nd 0.8 ± 0.1 1,7  
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Table 1 (continued). 

Compound LRIb RIc Goats’ cheese Ewes’ cheese 
Previously 
reportedd 

 

2-Nonanol 1147 A 12.1 ± 1.1 2.7 ± 0.7 1, 4  

Phenylethyl alcohol 1193 A 5.8 ± 0.6 2.3 ± 0.3 -  

Terpenes 
     

 

D-Limonene 1043 A nd 39.2 ± 1.4 1, 2, 4, 5, 7  

Sulphur compounds 
     

 

Dimethyl sulfone 1057 A 3.1 ± 0.5 1.9 ± 0.3 -  

AU: Abundance units, the result of counting the total ion chromatogram (TIC) for each 
compound. 
aValues are mean ± SD (n=3). 
bLinear retention indices (LRI) of the compounds eluted from the GC-MS using a DB-624 
capillary column (J&W Scientific 30 m x 0.25 mm i.d. x 1.4 film thickness).  
cReliability of identification (RI): A, mass spectrum and retention time identical with an 
authentic standard; B, tentative identification by mass spectrum.    
dCompounds previously reported in ewes’ and goats’ raw milk cheeses. Reference numbers 
are as follows: (1) Carbonell et al., 2002; (2) Condurso et al., 2008; (3) Delgado et al., 2010; 
(4) Delgado et al., 2011; (5) Fernández-Garcıá et al., 2004; (6) Izco and Torre, 2000 and (7) 
Larráyoz et al., 2001. 
nd: Not detected. 

 

3.2 Yeast growth in CLM and production of volatile compounds 

 Growth and aromatic profile from pure cultures of yeast strains 

belonging to D. hansenii, K. lactis and K. marxianus were determined. All 

yeast strains were able to grow in a liquid medium mimicking cheese 

composition (CLM). Lactose and lactate concentrations and pH values after 

48 h of growing in CLM were determined. Kluyveromyces strains depleted 

the available lactose almost completely. K. lactis consumed around 5% 

lactate, while lactate consumption by K. marxianus strains was around 

16%. When grown in CLM, Kluyveromyces strains increased the pH from 5 

to 5.2-5.8. D. hansenii strains grew in CLM, consumed around 25% of 

lactose and 5% of lactate, and the pH value increased to 5.6-6.6. 
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 Volatile compounds detected in the headspace of CLM are 

summarised in Tables 2 and 3. Only compounds which were also found in 

the Mediterranean cheeses (Table 1) are listed in Table 2, while Table 3 

shows other volatile compounds detected in the headspace of CLM. 

 As observed in this study, yeasts were able to produce 27 

compounds of those compounds found in the cheeses, including 6 acids, 7 

esters, 3 ketones, 2 aldehydes and 9 alcohols (Table 2). Interestingly, the 

volatile composition of the headspace of CLM showed inter-species and 

inter-strain variations. General variations can be seen in Figure 1, which 

shows volatile compounds classified by chemical groups and yeast 

species. K. marxianus and K. lactis were the best producers of esters and 

alcohols, without significant differences between the two species. Similar 

production of aldehydes was found for K. marxianus and D. hansenii, while 

the former was the best acid producer. In general, D. hansenii produced the 

lowest levels of volatile compounds in the conditions tested. Moreover, 

standard deviations indicated large strain variations for D. hansenii. 
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Figure 1. Total volatile compounds abundance by chemical group (expressed as 

AU x 106) in the headspace of CLM supernatants after yeast growth: Km: 

Kluyveromyces marxianus; Kl: Kluyveromyces lactis; Dh: Debaryomyces hansenii. 

Data are mean ± SD of levels of volatile compounds produced by the different 

strains tested. Different letters in the same chemical group indicate significant 

differences (p < 0.05) among yeast species. 
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Table 2. Volatile compounds (expressed as AU×106 extracted by HS-SPME) identified in the headspace of CLM after yeast 

growtha. 

 
Kluyveromyces marxianus Kluyveromyces lactis Debaryomyces hansenii 

Compound Km1 Km2 Km3 Km4 Kl1 Kl2 Kl3 Kl4 Kl5 Dh1 Dh2 Dh3 Dh4 Dh5 

Acids 
              

Acetic acid 214.81a 206.69a 247.29a 97.49b 5.57c nd 4.19c 49.31bc 17.97c nd nd 22.70c nd nd 

Propanoic acid nd nd nd 6.24a nd nd nd nd nd 2.71a nd nd nd nd 
2-Methylpropanoic 
acid 21.33f 19.76f 39.16de 25.23ef 68.89b 59.98bc 55.01bcd 91.20a 104.68a 23.03ef 0.11h 45.83cd 0.56h 0.93gh 
3-Methylbutanoic 
acid 11.49a 12.52a 1.41bc 2.53b nd nd nd nd nd 1.51bc nd 2.46b 0.60c 0.50c 
2-Methylbutanoic 
acid 52.52a 54.62a 35.17c 29.28cd 38.15bc 34.90c 34.82c 51.31a 50.65a 20.70d 2.93e 46.13ab 0.88e 2.28e 

Octanoic acid 1.32b nd 3.18a 0.50b nd nd nd nd nd nd nd nd nd nd 

Total acids 301.47a 293.59a 326.21a 161.27b 112.61cd 94.88de 94.02de 191.82b 173.30b 47.95ef 3.04f 117.12cd 2.04f 3.71f 

Esters 
              

Ethyl acetate 770.82d 914.69d 909.30d 904.95d 1418.8c 1612.9abc 1519.0bc 1702.7ab 1795.4a 185.98e 1.86e 58.67e 10.29e 0.80e 

Propyl acetate 15.06cde 22.94a 19.76ab 12.86de 10.35e 16.25bcd 11.84de 18.41abc 16.00bcd 0.68f nd nd nd nd  

Butyl acetate nd nd 11.88a 11.33a 0.53b 0.84b 0.34b 0.55b 0.49b nd nd nd nd nd 
3-Methyl-1-butanol 
acetate 1290.6b 1561.4a 545.40c 550.74c 120.26de 148.23de 144.69de 188.40d 163.81de 4.96e 0.30e 0.91e nd nd 
3-Methylbutyl  
butanoate nd 0.79a nd 0.74a nd 0.74a 0.68a 0.65a 0.79a nd nd nd nd nd 

Ethyl octanoate 2.23a 3.19a nd nd nd nd nd nd nd nd nd nd nd nd 
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Table 2 (continued). 
        

Compound Km1 Km2 Km3 Km4 Kl1 Kl2 Kl3 Kl4 Kl5 Dh1 Dh2 Dh3 Dh4 Dh5 

Ethyl decanoate 2.00bc 1.38cd 2.85 b 5.78a nd nd nd nd nd 2.13bc nd 0.91d nd nd 

Total esters 2080.7b 2504.4a 1489.2d 1486.4d 1549.9d 1778.9bcd 1676.6cd 1910.7bc 1976.5bc 193.75e 2.16e 60.49e 10.29e 0.80e 

Ketones 
              

2-Pentanone nd nd nd  nd 1.24b 0.95bc 0.52de 0.76cd 1.95a nd nd nd 0.24e nd 

2-Heptanone nd nd nd nd 8.22d 11.28c 10.97c 15.90a 13.51b nd nd nd nd nd 

2-Nonanone nd nd nd nd 4.54c 6.36c 5.26c 11.02a 8.80b nd nd nd nd nd 

Total ketones nd nd nd nd 14.00d 18.59c 16.75c 27.68a 24.26b nd nd nd 0.24e nd 

Aldehydes 
              

3-Methylbutanal nd nd nd nd nd nd nd nd nd 1.62a nd nd nd 2.13a 

Benzaldehyde nd nd 21.59b 38.96a nd nd nd nd nd nd nd nd nd nd 

Total aldehydes nd nd 21.59b 38.96a nd nd nd nd nd 1.62c nd nd nd 2.13c 

Alcohols 
              

Ethyl alcohol 1075cde 1054.3de 1273.6a 1134.1bcd 1215.5ab 1011.8e 994.4e 1157.9bc 1140.8bcd 543.92f nd 252.55g 10.85h 12.37h 

1-Propanol 29.90c 26.35c 55.70b 66.05a 16.34d 14.92de 16.13d 12.09de 10.85ef 7.15fg 0.29h 2.95gh 0.52h 0.33h 
2-Methyl-1-
propanol 193.25d 193.23d 187.82d 156.24e 283.99b 277.63bc 256.03c 285.64b 337.74a 193.06d 10.53g 66.77f 9.97g 3.02g 

3-Methyl-1-butanol 1570.1cd 1517.2cd 1619.7bc 1440.6d 1748.1ab 1658.9abc 1633.5abc 1578.4cd 1789.1a 591.30ef 702.24e 458.81f 87.48g 31.85g 

2-Methyl-1-butanol 942.22e 932.17e 1228.1a 1181.0abc 1144.8bcd 1130.8cd 1110.8d 1111.0d 1110.0d 1213.1ab 191.44g 825.22f 28.01h 22.46h 

2,3-Butanediol 13.98b 11.58bc 31.72a 14.40b 8.91cd 2.03e 4.06e 7.66d 7.88d nd nd nd nd nd 

2-Heptanol nd nd nd nd 6.11b 6.61b 5.78b 7.64a 8.44a nd nd nd nd nd 
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Table 2 (continued). 
          

Compound Km1 Km2 Km3 Km4 Kl1 Kl2 Kl3 Kl4 Kl5 Dh1 Dh2 Dh3 Dh4 Dh5 

2-Nonanol nd nd nd nd 8.37b 8.34b 7.65b 11.72a 13.13a nd nd nd nd nd 
Phenylethyl 
alcohol 1301.5a 1291.7a 745.37b 578.62c 282.76de 251.70de 286.85d 230.59de 218.21e 47.08f 230.40de 49.93f 15.12f 28.15f 

Total alcohols 5126.1a 5026.5ab 5142.0a 4571.0cd 4714.9bc 4362.7d 4315.1d 4402.6cd 4636.1cd 2595.6e 1134.9g 1656.2f 151.95h 98.18h 

AU: Abundance units, the result of counting the total ion chromatogram (TIC) for each compound. 
aValues are mean from n=3. Volatile compounds from CLM control were subtracted to each yeast CLM. Means followed by different letters in the same row 
indicate significant differences  among yeast strains (p<0.05; one-way ANOVA with Fisher’s LSD test).                       
nd: Not detected. 
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Table 3. Generation of volatile compounds (not found in the Mediterranean 

cheeses) in the headspace of CLM inoculated with yeasts.  

   
Yeasta 

Compound LRIb RIc Km Kl Dh  
Esters 

     Ethyl propanoate 738 A 100 100 80 
Ethyl 2-methyl-propanoate 785 A 100 100 40 
2-Methylpropyl acetate 804 A 100 100 20 
Propyl propanoate 837 A 50 100 0 
Ethyl 2-methyl-butanoate   876 A 100 100 40 
Ethyl 3-methyl-butanoate   879 A 0 0 40 
2-Methylpropyl propanoate 895 A 75 100 20 
2-Methyl-1-butanol acetate 909 A 100 100 40 
3-Methyl-1-butanol propanoate 995 A 100 100 20 
2-Methyl-1-butanol propanoate 999 A 100 80 20 
2-Methylbutyl 2-methyl-propanoate 1044 A 50 100 40 
3-Methylbutyl 2-methyl-butanoate 1128 A 0 0 40 
2-Methylbutyl 2-methyl-butanoate 1133 A 0 0 40 
2-Phenylethyl acetate 1317 A 25 100 20 
2-Phenylethyl propanoate 1407 A 100 100 0 
Phenylethyl butyrate 1451 A 100 100 20 
Ketones 

     Methyl isobutyl ketone 781 B 0 0 80 
Aldehydes 

     Acetaldehyde 469 A 0 100 60 
2-Methylpropanal  595 A 0 0 60 
2-Methylbutanal 700 A 0 0 60 
Alcohols 

     3-Methyl-pentanol 899 A 0 100 80 
3,7-Dimethyl-6-octen-1-ol 1285 B 100 100 20 
Sulphur compounds 

     Methionol 1060 A 100 100 20 
a Percentage of strains producing volatile compound in CLM media.  
b Refer to footnote a in Table 1. 
c Refer to footnote b in Table 1. 
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 Among D. hansenii strains (Table 2), Dh1 produced the highest 

levels of total esters and alcohols. K. marxianus species was prominent 

due to the production of acetic acid. Production of octanoic acid was 

restricted to K. marxianus species, with Km3 being the best producer strain. 

K. marxianus Km2 stood out as the leading producer of total esters, due to 

the high production of 3-methyl-1-butanol acetate, the level of which was 

almost ten-fold higher than that produced by K. lactis strains. Among 

esters, K. lactis strains produced primarily ethyl acetate. Interestingly, ethyl 

octanoate production was restricted to K. marxianus Km1 and Km2 under 

the conditions tested. With the exception of 2-pentanone production by 

Dh4, ketone production was restricted to K. lactis strains. In contrast, none 

of the K. lactis strains were able to produce aldehydes. Only two aldehydes 

were detected after yeast growth in CLM: benzaldehyde produced by K. 

marxianus Km3 and Km4 and 3-methylbutanal produced by D. hansenii 

Dh1 and Dh5. Regarding alcohol production, K. lactis produced 9 different 

volatiles, although K. marxianus strains Km1, Km2 and Km3 stood out as 

the best total alcohol producers, given the production of phenylethyl 

alcohol. Neither K. marxianus nor D. hansenii species were able to produce 

2-heptanol and 2-nonanol. Moreover 2,3-butanediol was not detected after 

growth of D. hansenii in CLM, while K. marxianus strains were the best 

producers of such compounds (Table 2). 

 Apart from these compounds, 23 more volatiles compounds were 

identified in the headspace of CLM after yeast growth (Table 3). Those 

compounds mainly comprised esters (16), although 1 ketone, 3 aldehydes, 

2 alcohols and methionol were also detected; Table 3 also shows the 

percentage of yeast strains able to produce each compound. Some of 

these, 3 esters, 2 aldehydes and methyl isobutyl ketone, were only 

detected in CLM after growth of D. hansenii. In contrast, none of the D. 

hansenii strains tested was able to produce propyl and 2-phenylethyl 
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propanoate. It is also worthwhile to note that none of the K. marxianus 

strains were producers of aldehydes or 3-methyl-pentanol. Although these 

compounds were not detected in the cheeses, most of them have been 

described as typical cheese volatiles (Curioni and Bosset, 2002). 

 

3.3 Principal component analysis 

 Finally, a PCA model was developed using a dataset with 14 yeast 

strains and 30 variables, comprising 27 volatiles (those present in cheeses 

and CLM, Table 2), lactose and lactate consumption and pH of the medium 

(Figure 2). Two principal components were able to explain 70.5% of the 

total variance observed. Principal component 1 (PC1) accounted for 39.6% 

of the variance while PC2 accounted for 30.9%. PC1 differentiated the 

incubations by the yeast genera inoculated. Kluyveromyces strains 

appeared in the positive part of PC1, while Debaryomyces was situated in 

the negative side. Kluyveromyces strains were related to the maximum 

production of volatile compounds and to the highest lactose consumption. 

On the other hand, growth of D. hansenii was associated with the highest 

increase in pH value, and with the presence of 3-methylbutanal. PC2 

differentiated the inoculations within Kluyveromyces strains. K. lactis was 

related to the presence of volatiles compounds such as ketones, ethyl 

acetate and secondary alcohols; on the other side, K. marxianus strains 

were associated with the highest consumption of lactate and with the 

production of acids (acetic, propanoic and octanoic acids), ethyl decanoate, 

1-propanol and benzaldehyde, among others. 
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Figure 2. Loadings of the first two principal components (PC1-PC2) of the 

analysed parameters (pH, percentage of lactose and lactate consumption and 

volatile compounds) of CLM after growth of different yeast strains: Km1-Km4 

(Kluyveromyces marxianus), Kl1-Kl5 (Kluyveromyces lactis), Dh1-Dh5 

(Debaryomyces hansenii). 
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4. Discussion 

 This study provides a characteristic fingerprint of volatiles present in 

Mediterranean cheeses and indicates the metabolic potential of ripening 

yeast strains to impact on cheese flavour. The proportion of volatile 

compounds depends on the extraction method used, and in this case a 

SPME technique with DVB/CAR/PDMS fibres was employed. The method 

used allowed comparisons among the different yeast strains, since the 

volatile compounds were obtained on a semi-quantitative basis.  

 The present research demonstrates the ability of K. marxianus and 

K. lactis, and to a lesser extent D. hansenii strains, to produce key volatile 

compounds characteristic of the cheeses from which they were isolated 

(Table 1 and 2). All the strains tested in this study were able to grow in a 

defined cheese-like medium (CLM) containing lactose, lactate and 

casamino acids and generate volatile compounds. Although these 

conditions differ from real cheese, this medium has been successfully used 

for screening purposes of yeast species and strains with potential use in 

cheese ripening (Kagkli et al., 2006; Spinnler et al., 2001). 

 As expected, D. hansenii strains consumed less lactose than 

Kluyveromyces, and this might account for the lower production of aroma 

compounds in CLM. The prevalence of D. hansenii during ripening in 

different kind of cheeses has been reported by several authors (Fleet, 

1990; Fox and Wallace, 1997; Fox et al., 2000) and it is considered as an 

obvious candidate for starter cultures (Bockelmann, 2002). Recently, Gori 

et al. (2012) reported the potential of D. hansenii strains to increase the 

nutty/malty flavour of cheese due to the production of aldehydes, although 

large strain variations were found. In this study and under the conditions 

tested, 3 branched-chain aldehydes (2-methylpropanal, 3-methylbutanal 

and 2-methylbutanal) were only produced by D. hansenii, with a large inter-
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strain variation. 2-Methylpropanal and 2-methylbutanal derived from the 

catabolism of valine and isoleucine, respectively, were only detected in 

CLM, whereas 3-methylbutanal derived from leucine was also detected in 

cheeses characterized here. Aldehydes are potent odorants in several 

cheese varieties, although they are considered transitory compounds 

because they are quickly reduced to primary alcohols (Curioni and Bosset, 

2002). In fact, the corresponding alcohols derived from the three branched-

aldehydes (2-methyl-1-propanol, 3-methyl-1-butanol and 2-methyl-1-

butanol) were detected in the cheeses and in D. hansenii CLM, as also 

reported by Sørensen et al. (2011). 

 Ester formation in cheese is mainly related to yeast metabolism 

(Molimard and Spinnler, 1996) although some lactic acid bacteria and 

Micrococcaceae, as well as chemical reactions, can be responsible (Gripon 

et al., 1991). Esters come from a reaction between an alcohol, derived from 

lactose fermentation or amino-acid catabolism, and a fatty acid or amino 

acid catabolite intermediate. Most esters detected in cheese are described 

as having sweet, fruity and floral notes. Although a fruity flavour is 

traditionally regarded as a defect in cheese varieties such as Cheddar 

(Horwood et al., 1987), it is a positive attribute of other cheese varieties 

such as Parmigiano Reggiano (Meinhart and Schreier, 1986). Ester 

production by Kluyveromyces strains has been reported by several authors 

(Arfi et al., 2002; Jiang, 1993; Leclercq-Perlat et al., 2004; Martin et al., 

2001). Ethyl acetate was the main ester produced, although ethyl 

propanoate, propyl acetate, butyl acetate, ethyl butanoate and ethyl 

octanoate were also detected after growth of Kluyveromyces (Arfi et al., 

2002; Leclercq-Perlat et al., 2004). Moreover, 2-phenylethyl acetate, 3-

methylbutyl ethanoate and 2-methylpropyl ethanoate are also produced by 

Kluyveromyces strains (Jiang, 1993; Leclercq-Perlat et al., 2004), but 

strain-specific variations were not addressed. The present results confirm 
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ethyl acetate as one of the primarily esters formed by Kluyveromyces 

strains, together with the production of 3-methyl-1-butanol acetate by two 

strains of K. marxianus. In total, K. marxianus and K. lactis strains 

produced 20 and 16 different kinds of esters, respectively,  (Table 2 and 3) 

highlighting the capability of the genus Kluyveromyces for ester production. 

Production of ethyl octanoate, restricted to K. marxianus strains under the 

conditions tested, was also reported by Leclercq-Perlat et al. (2004). These 

authors also observed that the ester production efficiency of K. marxianus 

was higher than that of D. hansenii, in agreement with the results obtained 

here. With the exception of two ester compounds, the five K. lactis strains 

tested produced the same ester profile, whereas K. marxianus strains 

differed in seven esters. These results suggest a lower inter-strain variation 

in K. lactis than in K. marxianus. 

 Several of the potential alcohols which may be precursors of the 

aforementioned esters were also identified in yeast CLM. Those alcohols 

were also detected after the growth of D. hansenii strains, where production 

of esters was negligible. It has been suggested that a highly hydrolytic 

activity towards esters in D. hansenii strains might be the reason for the 

limited accumulation of ester compounds (Besancon et al., 1995). The D. 

hansenii strains tested in this study have also been characterized as having 

hydrolytic activity towards fatty acid esters (Padilla et al., 2014). 

 Interestingly this study shows that only K. lactis strains were able to 

produce 2-pentanone, 2-heptanone and 2-nonanone, which were 

characteristic compounds of those cheeses from which they were isolated 

(Table 1 and 2). A previous study has shown the ability of K. lactis to 

produce other kinds of ketones, such as 3-hydroxy-2-butanone and 1-

hydroxy-2-propanone, from a medium containing glucose, yeast extract and 

vitamins (Jiang, 1993). However, to the best of our knowledge, ketones 

generation by yeasts in a medium mimicking cheese composition has not 
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been reported. Methyl ketones are associated with fruity, floral and musty 

notes, and their synthesis has been related to the enzymatic activity of 

moulds in surface-ripened cheeses (Curioni and Bosset, 2002). 

 Short-chain free fatty acids, predominant components of the flavour 

of many cheeses such as those described here, were mainly characteristics 

of K. marxianus CLM. As milk fat was not present in CLM, those acids may 

originate from the degradation of lactose and free amino acids or by 

oxidation of ketones, esters and aldehydes (Molimard and Spinnler, 1996). 

Branched-chain fatty acids, such as 2-methylpropanoic, 2- and 3-

methylbutanoic acids, are characteristic compounds of goat and ewe 

cheeses, and they are probably derived from valine, isoleucine and leucine 

respectively (Kuzdzal-Savoie, 1980). The potential of selected yeast strains 

to produce fatty acids when grown in a fat-containing medium deserves 

further study. 

 Sulphur compounds were not abundant volatiles either in cheeses 

or CLM. López del Castillo-Lozano et al. (2007) reported the necessity of 

methionine supplementation in culture media for the production of volatile 

sulphur compounds by yeasts. Since only one sulphur compound was 

detected in cheeses under the conditions tested, we did not consider 

supplementing casamino acids present in CLM with methionine. The only 

sulphur compound generated in CLM was methionol (Table 3), a stable end 

product of methionine metabolism by yeasts (Liu and Crow, 2010). In the 

conditions tested, methionol was produced by Kluyveromyces strains, and 

only to a small extent by Debaryomyces strains. 
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5. Conclusions 

 This study has confirmed the potential of dairy yeasts to contribute 

to the final cheese flavour. Moreover, species and strain variations were 

significant, indicating a heterogeneous contribution to volatile compound 

production and the feasibility of strain selection to modulate cheese flavour 

and aroma. However, the development of suitable yeast starters requires 

further studies, since complex interactions among cheese microbiota 

should be taken into account. Characterization of enzyme activities 

involved in flavour formation by dairy yeasts is in progress.  



 
 
 
 
 
 
 

Objective IV 
 

199 

6. Acknowledgements 

 Authors thank grants Consolider Ingenio Fun-C-Food, CSD2007-

00063, INIA RM2007-00010 and AGL2012-38884-C02-01 for financial 

support. BP thanks CSIC for a JAE Predoc contract. Authors are grateful to 

the Cheese Company “Los Corrales” for kindly supplying the cheese 

samples.  

 



 
 
 
 
 
 

 
Objective IV 
 

200 

7. References 

Arfi K., Spinnler H., Tache R., Bonnarme P. (2002). Production of volatile 
compounds by cheese-ripening yeasts: requirement for a 
methanethiol donor for S-methyl thioacetate synthesis by 
Kluyveromyces lactis. Applied Microbiology and Biotechnology 
58:503-510.  

Arora G., Cormier F., Lee B. (1995). Analysis of odor-active volatiles in 
Cheddar cheese headspace by Multidimensional GC/MS/Sniffing. 
Journal of Agricultural and Food Chemistry 43:748-752.  

Berger C., Khan J.A., Molimard P., Martin N., Spinnler H.E. (1999). 
Production of sulfur flavors by ten strains of Geotrichum candidum. 
Applied and Environmental Microbiology 65:5510-5514. 

Besancon X., Ratomahenina R., Galzy P. (1995). Isolation and partial 
characterization of an esterase (EC 3.1.1.1) from a Debaryomyces 
hansenii strain. Netherlands Milk and Dairy Journal 49:97-110. 

Bockelmann W. (2002). Development of defined surface starter cultures for 
the ripening of smear cheeses. International Dairy Journal 12:123-
131. 

Breuer U., Harms H. (2006). Debaryomyces hansenii - an extremophilic 
yeast with biotechnological potential. Yeast 23:415-437. 

Carbonell M., Núñez M., Fernández-García E. (2002). Evolution of the 
volatile components of ewe raw milk La Serena cheese during 
ripening. Correlation with flavour characteristics. Le Lait 82:683-698. 

Condurso C., Verzera A., Romeo V., Ziino M., Conte F. (2008). Solid-phase 
microextraction and gas chromatography mass spectrometry 
analysis of dairy product volatiles for the determination of shelf-life. 
International Dairy Journal 18:819-825. 

Corbo M.R., Lanciotti R., Albenzio M., Sinigaglia M. (2001). Occurrence 
and characterization of yeasts isolated from milks and dairy 



 
 
 
 
 
 
 

Objective IV 
 

201 

products of Apulia region. International Journal of Food 
Microbiology 69:147-152. 

Curioni P.M.G., Bosset J.O. (2002). Key odorants in various cheese types 
as determined by gas chromatography-olfactometry. International 
Dairy Journal 12:959-984.  

Delavenne E., Mounier J., Asmani K., Jany J.-L., Barbier G., Le Blay G. 
(2011). Fungal diversity in cow, goat and ewe milk. International 
Journal of Food Microbiology 151:247-251. 

Delgado F.J., González-Crespo J., Cava R., Ramírez R. (2011). Formation 
of the aroma of a raw goat milk cheese during maturation analysed 
by SPME–GC–MS. Food Chemistry 129:1156-1163.  

Delgado F.J., González-Crespo J., Cava R., García-Parra J., Ramírez R. 
(2010). Characterisation by SPME–GC–MS of the volatile profile of 
a Spanish soft cheese P.D.O. Torta del Casar during ripening. Food 
Chemistry 118:182-189.  
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Cheesemaking is an intensely investigated process in which milk is 

acidified by lactose fermentation and casein is coagulated by addition of 

enzymes. Microorganisms are key components during cheesemaking as 

long as they perform the fermentation, and influence the quality of the final 

dairy product by proteolysis and lipolysis. Besides the role of starter lactic 

acid bacteria, an important contribution is recognized to the secondary 

microbiota (Beresford et al., 2001). Particularly, yeasts have been 

described as responsible for the production of specific volatile compounds 

(Fleet, 2007). Moreover, biotechnological advances highlight these 

microorganisms and their enzymes as producers of functional ingredients 

increasing the interest on the study of yeast composition in food and 

beverages (Deak, 2009).  

Frequently, physiological and technological properties of 

microorganisms are strain dependent, therefore studies involving a wide 

number of isolates are essential to succeed while screening technological 

applications. In this sense, traditional fermented foods account for an 

important microbial diversity when compared with industrial goods. On the 

other hand, the heterogeneity of microorganisms present in natural 

fermentations influences the unique sensorial properties of artisanal 

products (Capozzi and Spano, 2011). In the case of traditional raw milk 

cheeses, its special aroma is highly appreciated and determines consumer 

preferences. Hence, the study of the influence of native yeasts on cheese 

volatilome attracts de attention of researchers (Marilley and Casey, 2004).  

Artisanal production of food and beverages has a strong impact in 

local economies and rural development. Moreover there is an increasing 

consumer pressure for a larger variety of distinctive quality food products 

(Renting et al., 2003). However, severe EU food safety legislation has 

resulted in lower flexibility in food production and will eventually lead to the 

disappearance of a number of geographical and artisanal dairy products 
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and their native microorganisms (Golić et al., 2013). The evaluation of 

yeast diversity conducted in this thesis remarks the influence of unique 

production processes, such as the use of unpasteurized milk, the specific 

environmental conditions or the use of homemade brine on the microbial 

ecology of goats’ and ewes’ cheeses, and thus on the final product quality.  

The aim of this thesis was to explore yeast biodiversity of artisanal 

goats’ and ewes’ raw milk cheeses produced within the borders of Natural 

Park “Sierra de Espadán” and to study their technological applications, in 

particular galactooligosaccharide (GOS) synthesis and volatile compound 

production.  

In order to screen molecular and technological traits of yeasts and 

to study microbial population dynamics, a total of 530 yeast strains were 

isolated and identified from artisanal goats’ and ewes’ cheeses along the 

ripening period. Yeast species composition changed greatly along the 

process; although at the end of the ripening only Debaryomyces hansenii 

could be isolated. Other yeast species commonly found in dairy products 

were present at the first maturing weeks and disappeared at different times 

of the process. The most abundant yeast species D. hansenii, was followed 

in number by Kluyveromyces lactis and Candida mesenterica. These 

species codominated the cheese environment up to the third week in some 

cheeses. D. hansenii has been described as the predominant yeast in 

Pecorino di Filano, Gouda and Portuguese ewes’ cheese (Capece and 

Romano, 2009; Pereira-Dias et al., 2000; Welthagen and Viljoen, 1998). 

However, in a Brazilian cheese, together with D. hansenii, Torulaspora 

delbrueckii and Candida catenulata were the prevalent yeasts after five 

days of ripening (Borelli et al., 2006). Similarly, D. hansenii, K. lactis, 

Geotrichum candidum, Candida zeylanoides and Candida lambica were the 

prevalent species during Fiore Sardo ripening (Fadda et al., 2004).  
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Other minoritary species were also isolated from the Mediterranean 

cheeses such as Kluyveromyces marxianus or Yarrowia lipolytica. All these 

species have been previously described as typical from dairy environments 

as summarized in the Introduction (Table 4) (Andrighetto et al., 2000; 

Corbo et al., 2001; Vasdinyei and Deák, 2003). However, to the best of our 

knowledge, the species Trichosporon coremiiforme and Trichosporon 

domesticum have been found for the first time in cheese. Other species 

belonging to Trichosporon genus, in particular T. beigelii, T. ovoides and T. 

capitatum have been isolated from milk, butter or yogurt (Büchl and Seiler, 

2011). Moreover, Meyerozyma guilliermondii has been for the first time 

isolated from goats’ cheeses, although it was previously described in other 

dairies such as butter milk, yogurt and in the dairy environment (Büchl and 

Seiler, 2011).  

Cheese yeasts may come from various origins such as milk, the 

dairy factory environment or brine, as different scientific publications have 

shown for strains isolated from other cheese varieties (Mounier et al., 

2005). Giannino et al. (2011) found D. hansenii and T. delbrueckii in the 

wooden boxes where Taleggio cheese was dried salted. Likewise, an 

assessment of yeast diversity associated with Gouda and Cheddar making 

found Y. lipolytica, C. intermedia and S. cerevisiae (Viljoen and Greyling, 

1995). Moreover, Seiler and Busse (1990) revealed the presence of 

different yeast species including D. hansenii, S. cerevisiae, K. marxianus 

and C. versatilis in German cheese brines. Additionally, a study conducted 

by Corbo et al. (2001) found yeasts belonging to D. hansenii, Candida, 

Cryptococcus and Pichia genera in milks from different animal origin. The 

presence and survival of yeasts in cheese seems to be correlated to their 

degree of tolerance to low pH, salt, low water activity and low storage 

temperature (Ferreira and Viljoen, 2003). The high tolerance of D. hansenii 

to these physico-chemical factors might favor its dominance at most stages 

of the cheese ripening process. However, the low tolerance of other yeasts 
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to these conditions would imply their faster disappearance from the cheese 

environment (Ferreira and Viljoen, 2003). 

Following identification, a typing method to characterize strains from 

the same species was performed. As proposed by other authors the 

presence of diverse strains of D. hansenii and K. lactis in ewes’ and goats’ 

cheeses was revealed by RAPD analysis (Capece and Romano, 2009; 

Fadda et al., 2004; Lopandic et al., 2006). Twelve and nineteen M13 

profiles were found for D. hansenii and K. lactis, respectively. Moreover, in 

K. lactis some patterns were found specific for ewes’ or goats’ cheese, 

which suggests the type of milk as the most probable origin of these 

particular strains. The diversity of genotypes within both yeast species 

isolated from cheese is in agreement with previous studies of other authors 

who found different but closely related groups of these species in cheeses 

(Fadda et al., 2004; Romano et al., 1996). It is important to highlight that 

the presence of different genetic patterns could indicate that more than one 

strain of D. hansenii and K. lactis may be involved in the ripening process 

as suggested by Petersen et al. (2001). Additionally, in the case of D. 

hansenii, different strains are present at the end of the process suggesting 

the lack of a single strain imposition.  

The evaluation of the enzymatic activities showed differences 

between yeast species but also within isolates from the same species. A 

total of 83% of the isolates presented proteolytic activity against casein, the 

main protein present in milk, while in a study conducted by Cosentino et al. 

(2001) only around 30% of the isolates presented such enzymatic activity. 

Proteolysis is one of the most important biochemical changes occurring 

during the ripening of cheese which influences both texture and flavour 

development through peptides and amino acids formation (Gonzáles de 

Llano et al., 1991). Likewise, cheese ripening is also associated with 

lipolysis of milk fat, an essential element of the development of cheese 
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aroma (Molkentin, 2013). Different esters from dairy fatty acids (palmitic, 

steraic and oleic acid esters) were selected to screen esterase activity of 

yeast isolates. Around 60% of total strains presented activity against 

palmitic and stearic acid ester, but less than 40% of the strains could 

hydrolysate oleic acid ester, probably due to the double bound present on 

its chemical structure. Cosentino et al. (2001) reported similar percentage 

of positive strains for esterase activity against esters. Moreover, 57% of the 

isolates presented both caseinolytic and esterase activity. This outcome 

highlights the contribution of dairy yeasts to milk proteolysis and lipolysis in 

agreement with literature findings (Capece and Romano, 2009; Fadda et 

al., 2010).  

Additionally to lipolysis and proteolysis, consumption of lactate and 

lactose by yeasts is determinant for the typical characteristics of some 

cheese varieties (Jakobsen and Narvhus, 1996), therefore these 

parameters should be evaluated. Moreover, cheese is a product containing 

a notable amount of salt, and the presence of this compound in the cheese 

environment may affect microbial growth (Roostita and Fleet, 1999). Thus, 

different media composed by lactate or lactose and various concentrations 

of salt were used to evaluate the growth of genetically different K. lactis 

strains. Yeast growth was evaluated using a microplate format and 

automated incubator-reader, in which OD was measured during several 

days. The yeast strains showed slight differences in their growth behaviour 

and a general trend could be observed. All K. lactis were able to grow on 

media containing lactose, and lactose supplemented with 2% and 5% NaCl 

although the addition of 8% NaCl seemed to prevent their growth. 

Additionally, comparison of growth on lactose and NaCl containing lactose 

media revealed salt dependence as has been previously found in 

Saccharomyces by other authors (Warringer and Blomberg, 2003). 

Nevertheless, K. lactis strains are likely to have a positive impact on 

cheese quality as the percentage of salt in cheeses varies between 2 and 
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4%. However, under the conditions tested, K. lactis strains were unable to 

grow on lactate, contrarily to other studies performed using longer 

incubation time (Lachance, 2011).  

Yeasts may also negatively affect food quality, producing spoilage 

or generating toxic compounds, such as biogenic amines (Fleet, 1992; 

Wyder et al., 1999). It is well known that fermented foods and particularly 

cheeses may contain biogenic amines, therefore an evaluation of microbial 

strains is essential to ensure a selection of safe starters (Komprda et al., 

2007; Schirone et al., 2011). K. lactis examination for biogenic amine 

production, revealed that only one from the nineteen strains tested was 

positive for ornithine decarboxylation, indicating the weak contribution of 

this yeast to biogenic amine formation, in agreement with previous 

published reports (Gardini et al., 2006).  

The identification and subsequent technological and genetic 

characterization of yeasts isolated from a natural dairy environment points 

out the relevance of these microorganisms in artisanal cheese production 

and their impact on its quality. Nevertheless, it would be interesting to know 

the origin of the yeasts found along the ripening process. Thus further 

studies should be addressed to study representative samples from the milk 

and from the cheese factory environment, such as brine solution, wood 

shelves or producers’ hands in order to broaden the information related to 

yeast origin. Moreover, different cheese batches produced along the year 

or from diverse periods should be sampled to determine the seasonal 

diversity of yeasts, as suggested by other authors (Rea et al., 2007; Viljoen 

and Greyling, 1995).  

From all the dairy isolates belonging to K. lactis, K. marxianus and 

D. hansenii species, several strains were selected for prebiotic synthesis 

and volatile compound production. Strains isolated from different kind of 



 
 
 
 
 

 
 

General discussion 
 

213 

cheeses, several ripening weeks and exhibiting different M13 profiles were 

chosen. 

In this thesis, the use of crude cell extracts (CCEs) from different K. 

lactis and K. marxianus strains containing β-galactosidases was assessed 

for transglycosilation reactions using lactose and lactulose as substrate. 

The β-galactosidases produced a mixture of different prebiotic 

galactooligosaccharides (GOS) from lactose, containing mainly the 

disaccharide 6-galactobiose, and the trisaccharides 3’-, 4’- and 6’-

galactosyl-lactose among other minor lactose derived compounds. The 

synthesis of oligosaccharides from lactulose (OsLu) resulted in mixtures 

composed mainly by 6-galactobiose, 6’-galactosyl-lactulose and 1-

galactosyl-lactulose. It is important to highlight that from all the strains 

tested, K. marxianus strains produced the highest yield of total GOS and 

OsLu.  

In our experiments, oligosaccharide mixtures were formed mainly by 

trisaccharides, although compounds with a higher degree of polymerization 

were also detected but not identified. Notably, trisaccharides show the 

highest selectivity towards bifidobacteria (Kaneko et al., 1994). Similarly, 

commercial GOS preparations contain mixtures of tri, tetra, penta, and 

hexagalactooligosaccharides (Cardelle-Cobas, 2009). Moreover, the 

mixtures obtained in our experiments were mainly formed by linkages 

β16 and to a lesser extent by β13 and β14. Glycosidic linkages β16 

and β11 seemed to be more effective than those β14 (Cardelle-Cobas 

et al., 2011). Cup-Oligo and VivinalGOS produced by Cryptococcus 

laurentii and Bacillus circulans β-galactosidases, respectively, contain GOS 

with glycosidic linkages β13 and β14. On the contrary, Bimuno which is 

produced by Bifidobacterium bifidum, contains mainly linkages β13 

(Cardelle-Cobas, 2009). Besides, a product manufactured combining 

Aspergillus oryzae and Streptococcus thermophilus β-galactosidases 
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named Oligomate contains mainly structures with linkages β16 and β14 

(Ito et al., 1990). The difference in composition found among different 

commercial preparations and the mixtures obtained in this thesis with 

Kluyveromyces β-galactosidases may be due to the different microbial 

origins of the enzymes and to variations in physico-chemical conditions 

such as substrate concentration, time, pH or temperature (Otieno, 2010).  

The industrial production of prebiotics faces several challenges, 

including the search for abundant and economical raw materials (Figueroa-

González et al., 2011). An approach in food and beverage industry is to 

profit byproducts to generate value-added goods. This strategy has been 

widely employed with cheese whey, because its worldwide production is 

estimated around 180 to 190×106 ton/year, only 50% is processed and 

displays serious environmental problems (Baldasso et al., 2011; Gänzle et 

al., 2008). In this context, production of prebiotic oligosaccharides is a 

feasible option (Rustom et al., 1998). In fact, several studies report GOS 

and OsLu production from cheese whey permeate (Adamczak et al., 2009; 

Corzo-Martínez et al., 2013). Thus the use of dairy Kluyveromyces 

regarding prebiotic synthesis from cheese whey would be an interesting 

approach for further studies.  

Although GOS are currently added to infant formulas, fruit juices, 

yoghurts, milk or buttermilk powder (Čurda et al., 2006; Torres et al., 2010), 

some of the applications of the health claims based on their bifidogenic 

properties have been recently rejected by European regulatory bodies 

(EFSA Panel on Dietetic Products, 2011). Further studies should be 

addressed to unravel the specific mechanism of action through which 

prebiotics exert a beneficial effect to the gut of the host (van Loveren et al., 

2012). 

Some of the microorganisms frequently isolated from traditional 

dairies have been declared as probiotics indicating the possible health-
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promoting role of the artisanal products (Golić et al., 2013). Other health 

related activities have been attributed to non-conventional yeasts such the 

improvement of bioavailability of minerals through the hydrolysis of phytate 

and folate biofortification (Moslehi-Jenabian et al., 2010). In the particular 

case of Kluyveromyces, it has been proven that K. lactis is able to produce 

phytases (Nakamura et al., 2000) and that K. marxianus increases the 

content of folate in a fermented African product (Hjortmo et al., 2008) and 

has been characterized as probiotic (Maccaferri et al., 2012). Hence, 

coming investigations with food isolates may be addressed to evaluate 

health beneficial properties of non-conventional yeast, as has been 

suggested by recent scientific publications (Binetti et al., 2013; Diosma et 

al., 2013; Pedersen et al., 2012).  

Finally, the aromatic profile of Mediterranean ewes’ and goats’ 

cheeses was analyzed. In order to study how native yeasts influence 

cheese aroma, different strains isolated from the studied cheeses were 

inoculated in a synthetic cheese-like medium. This simple method has been 

previously validated by other authors and has been applied in this thesis as 

a first approach to know which volatile compounds may be generated due 

to yeast inoculation (Kagkli et al., 2006). Since the volatile compounds were 

extracted by SPME, comparisons can be only done among the different 

yeast strains used in the present study. 

Different strains belonging to three different species were studied: 

D. hansenii and K. lactis were selected since both were the predominant 

yeast species in the studied cheeses and K. marxianus because it was the 

yeast yielding the highest amount of GOS and OsLu, and could therefore 

add interest to the evaluation. We have shown that native yeasts are likely 

to have an impact on raw milk cheese volatilome. Principal chemical groups 

detected were: alcohols, aldehydes, ketones, esters and acids. Distinct 

flavour profiles were obtained, since marked differences at quantitative and 
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qualitative level among strains and species were detected. Kluyveromyces 

strains were related to the main production of volatile compounds. K. lactis 

produced compounds such as ketones, esters such as ethyl acetate and 

secondary alcohols, whereas K. marxianus produced acids (acetic, 

propanoic and octanoic acids), ethyl decanoate, 1-propanol or 

benzaldehyde among others.  

In this thesis, the effect of a single yeast strain inoculation in the 

volatile compound production was evaluated, while in cheese, different 

yeast species and strains coexist along the ripening process (Fadda et al., 

2004). Besides coexisting, interactions are likely to occur, affecting growth 

parameters of the strains involved. In this sense, some strains of D. 

hansenii isolated from Camembert and blue-veined cheeses enhanced the 

growth of Y. lipolytica and K. marxianus (Addis et al., 2001). Therefore, 

further experiments should evaluate the effect of longer co-inoculation of a 

combination of different native yeasts in order to understand how microbial 

population dynamics affects production of volatile compounds (Fleet, 2007). 

Mixed cultures of bacteria and yeast should also be addressed. Martin et al. 

(2001) studied the aroma compound formation in cheese curd by growing 

K. lactis with bacteria, and high production of aldehydes and esters was 

found. Moreover the overall aroma compound production of K. lactis was 

enhanced in comparison with pure cultures. On the contrary, Y. lipolytica 

produced unremarkable changes when associated with bacteria. Similarly, 

De Freitas et al. (2008) studied the impact of inoculating yeast to real 

Cantalet cheese, where K. lactis but not Pichia fermentans promoted 

flavour development. Thus, both studies have shown frequent interactions 

between species and that aromatic profiles may vary when grown in mixed 

cultures. Therefore, the influence of coculturing lactic acid bacteria with 

yeasts should be also taken into account in future experiments since both 

kinds of microorganisms are present in the cheese ecosystem. Moreover, 

research should be also addressed to test the volatile production ability in a 
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medium composed by milk, cheese or directly in a cheese model (De 

Freitas et al., 2008; Leclercq-Perlat et al., 2004; Price et al., 2013; 

Sørensen et al., 2011). In these cases, results might be much closer to the 

real cheese context.  

Even though only four K. marxianus strains were isolated along the 

ripening process of the studied cheeses, this species presented the most 

promising results concerning both generation of key volatile compounds 

and synthesis of prebiotic oligosaccharides. Contrarily to our results, 

surveys of other dairies revealed a widest population of this yeast, as it is 

the case of kefir or French cheeses (Gao et al., 2012; Sohier et al., 2009; 

Vardjan et al., 2013). Therefore it would be interesting to explore a large 

variety of K. marxianus strains obtained from other sources to test their 

potential technological abilities. 
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1. Yeast diversity associated with raw milk artisanal ewes’ and goats’ 

cheeses produced in Mediterranean Spain has been shown, 

although at the end of the ripening process only Debaryomyces 

hansenii was found. Moreover, the enzymatic characterization 

pointed out the potential contribution of isolated yeasts to the 

release of fatty acids and amino acids from milk components.  

 

2. Population analysis of D. hansenii showed limited genetic 

divergence, indicating a close relationship which could be 

associated with the same origin of isolation. The diversity of D. 

hansenii and Kluyveromyces lactis isolated from goats’ cheeses 

increased along the cheese ripening process. K. lactis strain 

patterns were characteristic of either goats’ or ewes’ milk cheeses. 

 

3. K. lactis strains were able to grow on lactose media but not on 

lactate medium. The growth on lactose media was affected by salt 

content. Production of biogenic amines was not a frequent 

characteristic of K. lactis strains. 

 
4. The feasibility of β-galactosidases from K. lactis and K. marxianus to 

transgalactosylate lactose and lactulose has been shown. Reaction 

mixtures with different concentrations of individual oligosaccharides 

were obtained. K. marxianus enzyme yielded the highest total 

oligosaccharide amount when lactose or lactulose were used as 

acceptor carbohydrates. 
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5. Dairy yeasts were capable to generate cheese key volatile 

compounds, which suggests their influence on cheese aroma. 

Quantitative and qualitative differences in volatile compounds were 

found among yeast species and among strains. In the conditions 

tested, Kluyveromyces species stood out for volatile production 

whereas D. hansenii contribution was not relevant.  

 

6. This study has confirmed the potential of dairy yeasts to produce 

prebiotic ingredients and to contribute to the final cheese flavor. 

Since marked differences were found among strains belonging to 

the same species, strain selection is highly advisable for 

biotechnological applications. 

 
7. This thesis highlights the biotechnological potential of K. marxianus, 

since this species was the best prebiotic oligosaccharide and 

volatile compound producer. 
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	Atribuido a Hypatia de Alejandría.

