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Abstract. The CSP language allows the specification and verification of
complex concurrent systems. Many analyses for CSP exist that have been
successfully applied in different industrial projects. However, the cost of
the analyses performed is usually very high, and sometimes prohibitive,
due to the complexity imposed by the non-deterministic execution order
of processes and to the restrictions imposed on this order by synchroniza-
tions. In this work, we define a data structure that allows us to statically
simplify a specification before the analyses. This simplification can dras-
tically reduce the time needed by many CSP analyses. We also introduce
an algorithm able to automatically generate this data structure from a
CSP specification. The algorithm has been proved correct and its imple-
mentation for the CSP’s animator ProB is publicly available.

1 Introduction

The Communicating Sequential Processes (CSP) [3,13] language allows us to
specify complex systems with multiple interacting processes. The study and
transformation of such systems often implies different analyses (e.g., deadlock
analysis [5], reliability analysis [4], refinement checking [12], etc.) which are often
based on a data structure able to represent all computations of a specification.

Recently, a new data structure called Context-sensitive Synchronized Control-
Flow Graph (CSCFG) has been proposed [7]. This data structure is a graph that
allows us to finitely represent possibly infinite computations, and it is particu-
larly interesting because it takes into account the context of process calls, and
thus it allows us to produce analyses that are very precise. In particular, some
analyses (see, e.g., [8,9]) use the CSCFG to simplify a specification with respect
to some term by discarding those parts of the specification that cannot be ex-
ecuted before the term and thus they cannot influence it. This simplification is
automatic and thus it is very useful as a preprocessing stage of other analyses.

However, computing the CSCFG is a complex task due to the non-determinis-
tic execution of processes, due to deadlocks, due to non-terminating processes
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and mainly due to synchronizations. This is the reason why there does not
exist any correctness result which formally relates the CSCFG of a specification
to its execution. This result is needed to prove important properties (such as
correctness and completeness) of the techniques based on the CSCFG.

In this work, we formally define the CSCFG and a technique to produce the
CSCFG of a given CSP specification. Roughly, we instrument the CSP standard
semantics (Chapter 7 in [13]) in such a way that the execution of the instru-
mented semantics produces as a side-effect the portion of the CSCFG associated
with the performed computation. Then, we define an algorithm which uses the
instrumented semantics to build the complete CSCFG associated with a CSP
specification. This algorithm executes the semantics several times to explore
all possible computations of the specification, producing incrementally the final
CSCFG.

2 The Syntax and Semantics of CSP

In order to make the paper self-contained, this section recalls CSP’s syntax and
semantics [3, 13]. For concretion, and to facilitate the understanding of the follow-
ing definitions and algorithm, we have selected a subset of CSP that is sufficiently
expressive to illustrate the method, and it contains the most important opera-
tors that produce the challenging problems such as deadlocks, non-determinism
and parallel execution.

We use the following domains: process names (M, N ... € Names), processes
(P,Q... € Procs) and events (a,b... € X). A CSP specification is a finite set of
process definitions N = PwithP =M |a — P|PNQ|POQ|P || Q|STOP.

XCcx

Therefore, processes can be a call to another process or a combination of the

following operators:

Prefixing (a — P) Event a must happen before process P.

Internal choice (P M Q) The system chooses non-deterministically to execute

one of the two processes P or Q.

External choice (P O Q) It is identical to internal choice but the choice comes

from outside the system (e.g., the user).

Synchronized parallelism (P || @) Both processes are executed in parallel
XCcx

with a set X of synchronized events. In absence of synchronizations both pro-

cesses can execute in any order. Whenever a synchronized event a € X happens

in one of the processes, it must also happen in the other at the same time. When-

ever the set of synchronized events is not specified, it is assumed that processes

are synchronized in all common events. A particular case of parallel execution is

interleaving (represented by |||) where no synchronizations exist (i.e., X = 0).

Stop (STOP) Synonym of deadlock: It finishes the current process.

We now recall the standard operational semantics of CSP as defined by
Roscoe [13]. It is presented in Fig. 1 as a logical inference system. A state of
the semantics is a process to be evaluated called the control. In the following,
we assume that the system starts with an initial state MAIN, and the rules of
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the semantics are used to infer how this state evolves. When no rules can be ap-
plied to the current state, the computation finishes. The rules of the semantics
change the states of the computation due to the occurrence of events. The set
of possible events is X7 = X U {r}. Events in X' are visible from the external
environment, and can only happen with its co-operation (e.g., actions of the
user). Event 7 is an internal event that cannot be observed from outside the
system and it happens automatically as defined by the semantics. In order to
perform computations, we construct an initial state and (non-deterministically)
apply the rules of Fig. 1.

(Process Call) (Prefixing) (Internal Choice 1) (Internal Choice 2)
NLThS(N) (a—»P)LP (PWQ)L»P (PWQ)LQ
(External Choice 1) (External Choice 2) (External Choice 3) (External Choice 4)
P p QL qQ PP Q=S Q
p = P ec X = ee X
(PUOQ —FDOQ) (PUQ) —(POQ) (PUQ)— P (POQ) =
(Synchronized Parallelism 1) (Synchronized Parallelism 2) (Synchronized Parallelism 3)

P P 5 Q pP-= p' <, Q'
———— e € Y\X QE—QEEET\X QQ QeEX
(PllQ) = (P']|Q) (Pl|Q) = (P]|Q") (PllQ) — (P'|Q")

X X X X X X

Fig. 1. CSP’s operational semantics

3 Context-sensitive Synchronized Control-Flow Graphs

The CSCFG was proposed in [7, 9] as a data structure able to finitely represent all
possible (often infinite) computations of a CSP specification. This data structure
is particularly useful to simplify a CSP specification before its static analysis.
The simplification of industrial CSP specifications allows us to drastically reduce
the time needed to perform expensive analyses such as model checking. Algo-
rithms to construct CSCFGs have been implemented [8] and integrated into the
most advanced CSP environment ProB [6]. In this section we introduce a new
formalization of the CSCFG that directly relates the graph construction to the
control-flow of the computations it represents.

A CSCFG is formed by the sequence of expressions that are evaluated during
an execution. These expressions are conveniently connected to form a graph. In
addition, the source position (in the specification) of each literal (i.e., events,
operators and process names) is also included in the CSCFG. This is very useful
because it provides the CSCFG with the ability to determine what parts of the
source code have been executed and in what order. The inclusion of source po-
sitions in the CSCFG implies an additional level of complexity in the semantics,
but the benefits of providing the CSCFG with this additional information are
clear and, for some applications, essential. Therefore, we use labels (that we call
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specification positions) to identify each literal in a specification which roughly
corresponds to nodes in the CSP specification’s abstract syntax tree. We de-
fine a function Pos to obtain the specification position of an element of a CSP
specification and it is defined over nodes of an abstract syntax tree for a CSP
specification. Formally,

Definition 1. (Specification position) A specification position is a pair (N, w)
where N € N and w 1s a sequence of natural numbers (we use A to denote the
empty sequence). We let Pos(o) denote the specification position of an expression
0. Each process definition N = P of a CSP specification is labelled with specifica-
tion positions. The specification position of its left-hand side is Pos(N) = (N, 0).
The right-hand side (abbrev. rhs) is labelled with the call AddSpPos(P, (N, A));
where function AddSpPos is defined as follows:

PN w) if PeN
STOP(N w) if P=STOP
AddSpPos(P, (N, w))= A(Nw.1) = (N,w) AddSpPos(Q, (N,w.2)) if P=a— Q
AddspPos(Q, (N,w.1)) op(n,.) AddSpPos(R, (N,w.2))
if P=QopR Vope{no,l}
We often use Pos(S) to denote a set with all positions in a specification S.

Ezample 1. Consider the CSP specification in Fig. 2(a) where literals are labelled
with their associated specification positions (they are underlined) so that labels
are unique.

MAIN(wan,0) = (a(MAIN,l.l) — (uamw,1) STOP (wp1n,1.2)) I (MAIN, A)
a

(Puatn,2.1) O (uaw,2) (@mary,2.2.1) — (uarn,2.2) STOP (yaw,2.2.2)))

Pr,0) = b,1) = (¢,4)SKIP(p,2)

(a) CSP specification (b) CSCFG

Fig. 2. CSP specification and its associated CSCFG

In the following, specification positions will be represented with greek letters
(o, B, ...) and we will often use indistinguishably an expression and its associated
specification position when it is clear from the context (e.g., in Example 1 we
will refer to (P,1) as b).
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In order to introduce the definition of CSCFG, we need first to define the
concepts of control-flow, path and context.

Definition 2. (Control-flow) Given a CSP specification S, the control-flow is
a transitive relation between the specification positions of S. Given two specifi-
cation positions o, B in S, we say that the control of a can pass to [ iff

i) a=N A = first(N,A)) with N=rhs(N)e S
i) ae{N,0,|]} A B e {first(a.1),first(a.2)}
ii)a=81A f= —
iv)a= — A (= first(a.2)
, al fa= —
where first(«) is defined as follows: first(a) = {a otherwise

We say that a specification position « is executable in S iff the control can pass
from the initial state (i.e., MAIN) to .

For instance, in Example 1, the control can pass from (MAIN,2.1) to (P,1)
due to rule i), from (MAIN,2) to (MAIN,2.1) and (MAIN, 2.2.1) due to rule ii), from
(MAIN,2.2.1) to (MAIN,2.2) due to rule iii), and from (MAIN,2.2) to (MAIN,2.2.2)
due to rule iv).

As we will work with graphs whose nodes are labelled with positions, we use
I(n) to refer to the label of node n.

Definition 3. (Path) Given a labelled graph G = (N, E), a path between two
nodes ni, m € N, Path(ny,m), is a sequence ny,...,ng such that n, — m € E
and for all 1 <i<k we have n; — n;41 € E. The path is loop-free if for all i # j
we have n; # n;.

Definition 4. (Context) Given a labelled graph G = (N, E) and a node n € N,
the context of n, Con(n) = {m | l(m)=M with (M =P)€ S and there ezists a
loop-free path m —* n}.

Intuitively speaking, the context of a node represents the set of processes
in which a particular node is being executed. This is represented by the set of
process calls in the computation that were done before the specified node. For
instance, the CSCFG associated with the specification in Example 1 is shown
in Fig. 2(b). In this graph we have that Con(4) ={0, 3}, i.e., b is being executed
after having called processes MAIN and P. Note that focussing on a process call
node we can use the context to identify loops; i.e., we have a loop whenever
n € Con(m) with I(n) = I(m) € Names. Note also that the CSCFG is unique
for a given CSP specification [9].

Definition 5. (Context-sensitive Synchronized Control-Flow Graph) Given a
CSP specification S, its Context-sensitive Synchronized Control-Flow Graph
(CSCFQG) is a labelled directed graph G = (N, E., E;, E5) where N is a set of
nodes such that ¥ n € N. l(n) € Pos(S) and l(n) is executable in S; and edges
are divided into three groups: control-flow edges (E.), loop edges (E;) and syn-
chronization edges (E;).
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— E. is a set of one-way edges (denoted with — ) representing the possible
control-flow between two nodes. Control edges do not form loops. The root of
the tree formed by E. is the position of the initial call to MAIN.

— Ej is a set of one-way edges (denoted with ~~) such that (ny ~ ng) € E; iff
l(n1) and l(n2) are (possibly different) process calls that refer to the same
process M € N and ny € Con(ny).

— E is a set of two-way edges (denoted with <>) representing the possible
synchronization of two event nodes (I(n) € X).

— Given a CSCFG, every node labelled (M, A) has one and only one incoming
edge in E.; and every process call node has one and only one outgoing edge
which belongs to either E. or Ej.

Ezample 2. Consider again the specification of Example 1, shown in Fig. 2(a),
and its associated CSCFG, shown in Fig. 2(b). For the time being, the reader
can ignore the numbering and color of the nodes; they will be explained in
Section 4. Each process call is connected to a subgraph which contains the right-
hand side of the called process. For convenience, in this example there are no
loop edges;! there are control-flow edges and one synchronization edge between
nodes (MAIN,2.2.1) and (MAIN, 1.1) representing the synchronization of event a.

Note that the CSCFG shows the exact processes that have been evaluated
with an explicit causality relation; and, in addition, it shows the specification
positions that have been evaluated and in what order. Therefore, it is not only
useful as a program comprehension tool, but it can be used for program sim-
plification. For instance, with a simple backwards traversal from a, the CSCFG
reveals that the only part of the code that can be executed before a is the
underlined part:

MAIN = (a — STOP) || (P O (a — STOP))
{a}

P =b — STOP

Hence, the specification can be significantly simplified for those analyses fo-
cussing on the occurrence of event a.

4 An Algorithm to Generate the CSCFG

This section introduces an algorithm able to generate the CSCFG associated
with a CSP specification. The algorithm uses an instrumented operational se-
mantics of CSP which (i) generates as a side-effect the CSCFG associated with
the computation performed with the semantics; (ii) it controls that no infinite
loops are executed; and (iii) it ensures that the execution is deterministic.
Algorithm 1 controls that the semantics is executed repeatedly in order
to deterministically execute all possible computations—of the original (non-
deterministic) specification—and the CSCFG for the whole specification is con-
structed incrementally with each execution of the semantics. The key point of

! We refer the reader to [10] where an example with loop edges is discussed.
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the algorithm is the use of a stack that records the actions that can be per-
formed by the semantics. In particular, the stack contains tuples of the form
(rule, rules) where rule indicates the rule that must be selected by the seman-
tics in the next execution step, and rules is a set with the other possible rules
that can be selected. The algorithm uses the stack to prepare each execution of
the semantics indicating the rules that must be applied at each step. For this,
function UpdStack is used; it basically avoids to repeat the same computation
with the semantics. When the semantics finishes, the algorithm prepares a new
execution of the semantics with an updated stack. This is repeated until all
possible computations are explored (i.e., until the stack is empty).

The standard operational semantics of CSP [13] can be non-terminating due
to infinite computations. Therefore, the instrumentation of the semantics incor-
porates a loop-checking mechanism to ensure termination.

Algorithm 1 General Algorithm

Build the initial state of the semantics: state = (MAINua 0,0, e, (0,0),0,0)
repeat
repeat
Run the rules of the instrumented semantics with the state state
until no more rules can be applied
Get the new state: state = (_, G, _, (0, 50), -, ¢)
state=(MAINgu, 0y, G, o, (UpdStack(So),0), 0, 0)
until UpdStack(Sy) =0
return G
where function UpdStack is defined as follows:
(rule,rules\{rule}) : S’ if S = (_,rules): S’ and rule € rules
UpdStack(S) = { UpdStack(S’) if S (-,0):58
0 ifs =0

The instrumented semantics used by Algorithm 1 is shown in Fig. 3. It is an
operational semantics where we assume that every literal in the specification has
been labelled with its specification position (denoted by a subscript, e.g., P,). In
this semantics, a state is a tuple (P, G, m, (S, So), 4, (), where P is the process
to be evaluated (the control), G is a directed graph (i.e., the CSCFG constructed
so far), m is a numeric reference to the current node in G, (5, Sy) is a tuple with
two stacks (where the empty stack is denoted by () that contains the rules to
apply and the rules applied so far, A is a set of references to nodes used to draw
synchronizations in G and ¢ is a graph like G, but it only contains the part of
the graph generated for the current computation, and it is used to detect loops.
The basic idea of the graph construction is to record the current control with a
fresh reference? n by connecting it to its parent m. We use the notation G [n»ﬁa]
either to introduce a node in G or as a condition on G (i.e., G contains node
n). This node has reference n, is labelled with specification position « and its

2 We assume that fresh references are numeric and generated incrementally.
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parent is m. The edge introduced can be a control, a synchronization or a loop
edge. This notation is very convenient because it allows us to add nodes to G,
but also to extract information from G. For instance, with G[3*>a] we can know
the parent of node 3 (the value of m), and the specification position of node 3
(the value of «).

Note that the initial state for the semantics used by Algorithm 1 has
MAIN(y1y,0) in the control. This initial call to MAIN does not appear in the spec-
ification, thus we label it with a special specification position (MAIN,0) which is
the root of the CSCFG (see Fig. 2(b)). Note that we use e as a reference in the
initial state. The first node added to the CSCFG (i.e., the root) will have parent
reference e. Therefore, here e denotes the empty reference because the root of
the CSCFG has no parent.

An explanation for each rule of the semantics follows.

(Process Call)

(Na,G,m, (8, 80), A, ¢) == (P',G",n, (8, 50),0,(")

(P’,G',¢’) = LoopCheck(N,n,G[n Uit al,¢U{n it al)

(Prefixing)

(aa —p P,G,m, (S, 50), A4,¢) N (P,GIn Do, 0 ks B, 0, (S, S0),{n},cU{n Do, 0 81

(Choice)

(PN Q,G,m, (S, S0),A4,¢) = (P,Gn ™ al,n, (5,5),0,{U{n & al})
(P',(S’,8))) = selectBranch(P Ma Q, (S, So))

(STOP)

(STOPq,G,m, (S, 50),4,¢) — (L,Gn ¥ al,n, (S, 5),0, U {n ™ a})

Fig. 3. An instrumented operational semantics that generates the CSCFG

(Process Call) The called process N is unfolded, node n (a fresh reference) is
added to the graphs G and ¢ with specification position « and parent m. In
the new state, n represents the current reference. The new expression in the
control is P’, computed with function LoopCheck which is used to prevent infinite
unfolding and is defined below. No event can synchronize in this rule, thus A is
empty.

(Os(rhs(N)), Gln ~ 8], U{n ~ s}) if Is.s+5N € G
LoopCheck(N,n,G, ()= As € Path(0,n)

(rhs(N),G, Q) otherwise

Function LoopCheck checks whether the process call in the control has not been
already executed (if so, we are in a loop). When a loop is detected, a loop edge
between nodes n and s is added to the graph G and to (; and the right-hand
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side of the called process is labelled with a special symbol Og. This label is later
used by rule (Synchronized Parallelism 4) to decide whether the process must be
stopped. The loop symbol O is labelled with the position s of the process call of
the loop. This is used to know what is the reference of the process’ node if it is
unfolded again.

(Prefixing) This rule adds nodes n (the prefix) and o (the prefixing operator) to
the graphs G and (. In the new state, o becomes the current reference. The new
control is P. The set A is {n} to indicate that event a has occurred and it must
be synchronized when required by (Synchronized Parallelism 3).

(Choice) The only sources of non-determinism are choice operators (different
branches can be selected for execution) and parallel operators (different order
of branches can be selected for execution). Therefore, every time the semantics
executes a choice or a parallelism, they are made deterministic thanks to the
information in the stack S. Both internal and external can be treated with a
single rule because the CSCFG associated to a specification with external choices
is identical to the CSCFG associated to the specification with the external choices
replaced by internal choices. This rule adds node n to the graphs which is labelled
with the specification position a and has parent m. In the new state, n becomes
the current reference. No event can synchronize in this rule, thus A is empty.

Function SelectBranch is used to produce the new control P’ and the new
tuple of stacks (57, 5]), by selecting a branch with the information of the stack.
Note that, for simplicity, the lists constructor “:” has been overloaded, and it is
also used to build lists of the form (A : a) where A is a list and a is the last
element:

(P, (S',(C1,{C2}) : Sp)) if S =5": (CL,{C2})
SelectBranch(Pr,Q, (S, 50))=1<¢ (Q, (5, (C2,0) : Sp)) if §=5":(C2,0)
(P, (0, (C1,{C2}):Sy)) otherwise

If the last element of the stack S indicates that the first branch of the choice
(C1) must be selected, then P is the new control. If the second branch must be
selected (C2), the new control is Q. In any other case the stack is empty, and
thus this is the first time that this choice is evaluated. Then, we select the first
branch (P is the new control) and we add (CL, {C2}) to the stack Sy indicating
that C1 has been fired, and the remaining option is C2.

For instance, when the CSCFG of Fig. 2(b) is being constructed and we
reach the choice operator (i.e., (MAIN,2)), then the left branch of the choice is
evaluated and (C1,{C2}) is added to the stack to indicate that the left branch
has been evaluated. The second time it is evaluated, the stack is updated to
(C2,0) and the right branch is evaluated. Therefore, the selection of branches
is predetermined by the stack, thus, Algorithm 1 can decide what branches are
evaluated by conveniently handling the information of the stack.

(Synchronized Parallelism 1 and 2) The stack determines what rule to use when
a parallelism operator is in the control. If the last element in the stack is SP1,
then (Synchronized Parallelism 1) is used. If it is SP2, (Synchronized Parallelism 2) is
used.
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In a synchronized parallelism composition, both parallel processes can be
intertwiningly executed until a synchronized event is found. Therefore, nodes for
both processes can be added interwoven to the graph. Hence, the semantics needs
to know in every state the references to be used in both branches. This is done by
labelling each parallelism operator with a tuple of the form («, n1,n2,7) where «
is the specification position of the parallelism operator; n; and no are respectively
the references of the last node introduced in the left and right branches of the
parallelism, and they are initialised to e; and 7 is a node reference used to decide
when to unfold a process call (in order to avoid infinite loops), also initialised to
e. The sets A’ and (" are passed down unchanged so that another rule can use
them if necessary. In the case that ¢ is equal to ¢”, meaning that nothing has
change in this derivation, this rule detects that the parallelism is in a loop; and
thus, in the new control the parallelism operator is labelled with © and all the
other loop labels are removed from it (this is done by a trivial function Unloop).
These rules develop the branches of the parallelism until they are finished or
until they must synchronize. They use function InitBranch to introduce the
parallelism into the graph and into ¢ the first time it is executed and only if it
has not been introduced in a previous computation. For instance, consider a state
where a parallelism operator is labelled with ((MAIN, A), e e e). Therefore, it is
evaluated for the first time, and thus, when, e.g., rule (Synchronized Parallelism

1) is applied, a node 1 A (MAIN, A), which refers to the parallelism operator,

is added to G and the parallelism operator is relabelled to ((MAIN, A),x,e,e)
where x is the new reference associated with the left branch. After executing
function InitBranch, we get a new graph and a new reference. Its definition is
the following:

. [ (GoZal], ¢ U{oBal,o0) ifn=-e
InitBranch(G,(,n,m,«a) = {EG,[C,’I”L)] { }0) otherwise
(Synchronized Parallelism 3) It is applied when the last element in the stack is
SP3. It is used to synchronize the parallel processes. In this rule, 7" is replaced
by e, meaning that a synchronization edge has been drawn and the loops could
be unfolded again if it is needed. The set sync of all the events that have been
executed in this step must be synchronized. Therefore, all the events occurred
in the subderivations of P1 (A;) and P2 (As) are mutually synchronized and
added to both G” and ¢'.

(Synchronized Parallelism 4) This rule is applied when the last element in the
stack is SP4. Tt is used when none of the parallel processes can proceed (because
they already finished, deadlocked or were labelled with (9). When a process is
labelled as a loop with O, it can be unlabelled to unfold it once? in order to
allow the other processes to continue. This happens when the looped process is
in parallel with other process and the later is waiting to synchronize with the
former. In order to perform the synchronization, both processes must continue,

3 Only once because it will be labelled again by rule (Process Call) when the loop is
repeated. In [10], we present an example with loops where this situation happens.
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thus the loop is unlabelled. Hence, the system must stop only when both parallel
processes are marked as a loop. This task is done by function LoopControl. It
decides if the branches of the parallelism should be further unfolded or they
should be stopped (e.g., due to a deadlock or an infinite loop):

LoopControl(P]| (ap.a. 1)@ m) =
X

OB s @) T P = O (P) N Q=03 (Q)
P (apsart) P = Opa(Ph) Q= LV (T = po A @ # 0.)

P(/ﬁ)‘l(a,po,q’7po)Q/ if P'= OPQ(P(/D) A Q/ 7£ AT # Po A Ql # 07(*)
1L otherwise

where (P, p’,Q",¢') € {(P,p,Q,q),(Q,q,P,p)}.
When one of the branches has been labelled as a loop, there are three options:

(i) The other branch is also a loop. In this case, the whole parallelism is marked
as a loop labelled with its parent, and 1" is put to e. (ii) Either it is a loop that
has been unfolded without drawing any synchronization (this is known because
Y is equal to the parent of the loop), or the other branch already terminated
(i.e., it is L). In this case, the parallelism is also marked as a loop, and the other
branch is put to L (this means that this process has been deadlocked). Also
here, 7" is put to e. (iii) If we are not in a loop, then we allow the parallelism to
proceed by unlabelling the looped branch. When none of the branches has been
labelled as a loop, L is returned representing that this is a deadlock, and thus,
stopping further computations.

(Synchronized Parallelism 5) This rule is used when the stack is empty. It basically
analyses the control and decides what are the applicable rules of the semantics.
This is done with function AppRules which returns the set of rules R that can
be applied to a synchronized parallelism P || Q:

X

{SP1} if 7 € FstEvs(P)
) {SP2} if r ¢ FstEvs(P) A T € FstEvs(Q)
AppRules(P)H(Q) R if 7 ¢ FstEvs(P) AT & FstEvs(Q) A R # 0
{SP4} otherwise

where

SPle R ifJe €FstEvs(P)Ae¢g X
SP2e€ R if Je € FstEvs(Q)ANe & X
SP3 € R if Je € FstEvs(P) AJe € FstEvs(Q) Aee X

Essentially, AppRules decides what rules are applicable depending on the
events that could happen in the next step. These events can be inferred by using
function FstEvs. In particular, given a process P, function FstEvs returns the
set of events that can fire a rule in the semantics using P as the control. There-
fore, rule (Synchronized Parallelism 5) prepares the stack allowing the semantics to
proceed with the correct rule.
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FstEvs(P) =
{a} if P=a—Q
0 if P=0Q VvV P=1
{r} if P=MVP=ST0PVP=QMNRVP=(L|L)
Vv P=(0Q|OR) v P=(0 Q1) v P=(L|OR)
V(P=(O Q)ﬁR) A FstEvs(R) §§() V(P=(Q| SR) AFstEvs(Q)CX)
V(P=Q]| Rji\ FstEvs(Q) C X AFstEvs(R) Q)‘;(/\ (| FstEvs(M)=0)
X Me{Q,R}
E  otherwise, where P = Q|| R A E = (FstEvs(Q) UFstEvs(R))\
(Xn (FsiEvs(Q)\FstEvs(R) UFstEvs(R)\FstEvs(Q)))

(STOP) Whenever this rule is applied, the subcomputation finishes because L
is put in the control, and this special constructor has no associated rule. A node
with the STOP position is added to the graph.

We illustrate this semantics with a simple example.

Ezxample 3. Consider again the specification in Example 1. Due to the choice
operator, in this specification two different events can occur, namely b and a.
Therefore, Algorithm 1 performs two iterations (one for each computation) to
generate the final CSCFG. Figure 2(b) shows the CSCFG generated where white
nodes were produced in the first iteration; and grey nodes were produced in
the second iteration. For the interested reader, in [10] all computation steps
executed by Algorithm 1 to obtain the CSCFG associated with the specification
in Example 1 are explained in detail.

5 Correctness

In this section we state the correctness of the proposed algorithm by showing that
(i) the graph produced by the algorithm for a CSP specification S is the CSCFG
of S; and (ii) the algorithm terminates, even if non-terminating computations
exist for the specification S.

Theorem 1 (Correctness). Let S be a CSP specification and G the graph
produced for S by Algorithm 1. Then, G is the CSCFG associated with S.

This theorem can be proved by showing first that each step performed with
the standard semantics has an associated step in the instrumented semantics;
and that the specification position of the expression in the control is added to
the CSCFG as a new node which is properly inserted into the CSCFG. This can
be proved by induction on the length of a derivation in the standard semantics.
Then, it must be proved that the algorithm performs all possible computations.
This can be done by showing that every non-deterministic step of the semantics
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is recorded in the stack with all possible rules that can be applied; and the
algorithm traverses the stack until all possibilities have been evaluated. The
interesting case of the proof happens when the computation is infinite. In this
case, the context of a process call must be repeated because the number of
process calls is finite by definition. Therefore, in this case the proof must show
that functions LoopCheck and LoopControl correctly finish the computation.
The proof of this theorem can be found in [10].

Theorem 2 (Termination). Let S be a CSP specification. Then, the execution
of Algorithm 1 with S terminates.

The proof of this theorem must ensure that all derivations of the instru-
mented semantics are finite, and that the number of derivations fired by the
algorithm is also finite. This can be proved by showing that the stacks never
grow infinitely, and they will eventually become empty after all computations
have been explored. The proof of this theorem can be found in [10].

6 Conclusions

This work introduces an algorithm to build the CSCFG associated with a CSP
specification. The algorithm uses an instrumentation of the standard CSP’s op-
erational semantics to explore all possible computations of a specification. The
semantics is deterministic because the rule applied in every step is predetermined
by the initial state and the information in the stack. Therefore, the algorithm
can execute the semantics several times to iteratively explore all computations
and hence, generate the whole CSCFG. The CSCFG is generated even for non-
terminating specifications due to the use of a loop detection mechanism con-
trolled by the semantics. This semantics is an interesting result because it can
serve as a reference mark to prove properties such as completeness of static
analyses based on the CSCFG. The way in which the semantics has been in-
strumented can be used for other similar purposes with slight modifications. For
instance, the same design could be used to generate other graph representations
of a computation such as Petri nets [11].

On the practical side, we have implemented a tool called SOC [8] which is
able to automatically generate the CSCFG of a CSP specification. The CSCFG
is later used for debugging and program simplification. SOC' has been inte-
grated into the most extended CSP animator and model-checker ProB [2, 6],
that shows the maturity and usefulness of this tool and of CSCFGs. The last
release of SOC implements the algorithm described in this paper. However, in
the implementation the algorithm is much more complex because it contains
some improvements that significantly speed up the CSCFG construction. The
most important improvement is to avoid repeated computations. This is done by:
(i) state memorization: once a state already explored is reached the algorithm
stops this computation and starts with another one; and (ii) skipping already
performed computations: computations do not start from MAIN, they start from
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the next non-deterministic state in the execution (this is provided by the infor-
mation of the stack). The implementation, source code and several examples are
publicly available at: http://users.dsic.upv.es/~jsilva/soc/
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