
Escola Tècnica Superior d’Enginyeria Informàtica
Universitat Politècnica de València

Graphical tools for ground truth
generation in HTR tasks

Proyecto Final de Carrera

Ingeniería Informática

Autor: Jorge Martínez Vargas

Director: Moisés Pastor i Gadea

February 6, 2014

Abstract

This report will cover the development of several graphical tools for ground
truth generation in HTR tasks, specifically for layout analysis, line segmen-
tation, and transcription, as well as one ad hoc tool needed for point classi-
fication in an implemented line size normalization method. It will show the
design process behind the tools, giving an overview of the internal structure
through class diagrams. It will also explain the mentioned phases of the HTR
with the aim of clarifying each tool context and utility. Finally, the report
will close with a brief conclusions and considerations about the future of the
tools.

Keywords: HTR, graphical tools, layout analysis, baseline detection, line size nor-
malization, ground truth

Resum

Aquest informe cobrirà el desenvolupament de diverses ferramentes gràfiques
utilitzades en la generació de ground truth en tasques de reconeixement de
text manuscrit (HTR), especificament anàlisi de layout, segmentació en línies
i transcripció, així com una ferramenta ad hoc requerida per a la classificació
de punts necessària en un mètode de normalització de tamany de línia que
vam implementar. Mostrarà el procès de disseny previ al desenvolupament
de les ferramentes, donant una visió general de l’estructura interna a través
de diagrames de classe. També explicarà les diferents fases del procès de
HTR previament mencionades, amb l’intenció de clarificar el context i l’u-
tilitat de les diferents ferramentes. Finalment, l’informe acabarà amb unes
breus conclussions i algunes consideracions sobre el futur de les ferramentes.

Keywords: HTR, ferramentes gràfiques, anàlisi de layout, detecció de baselines,
normalització de tamany de linia, ground truth

Resumen

Este informe cubrirá el desarrollo de diversas herramientas gráficas utilizadas
en la generación de ground truth en tareas de reconocimiento de texto ma-
nuscrito (HTR). Específicamente análisis de layout, segmentación en lineas
y transcripción, asi como una herramienta ad hoc requerida para la clasifica-
ción de puntos necesaria en un método de normalización de tamaño de línea
que implementamos. Mostrará el proceso de diseño previo al desarrollo de
las herramientas, dando una visión general de la estructura interna a través
de diagramas de clase. También explicará las diferentes fases del proceso de
HTR previamente mencionadas, con la intención de clarificar el contexto y la
utilidad de las diferentes herramientas. Finalmente, el informe acabará con
unas breves conclusiones y algunas consideraciones sobre el futuro de las he-
rramientas.

Keywords: HTR, herramientas gráficas, análisis de layout, detección de baselines,
normalización de tamaño de línea, ground truth

Contents
1. Introduction 4

2. Why supervised learning? 6

3. Tools design 7
3.1. GUI programming . 8
3.2. Tools internal structure . 9

4. Implemented tools 14
4.1. Page layout correction tool . 14

4.1.1. Layout analysis . 15
4.1.2. Motivation . 15
4.1.3. Tool description . 16

4.2. Baseline correction tool . 18
4.2.1. Line segmentation . 19
4.2.2. Motivation . 20
4.2.3. Tool description . 20

4.3. Points classification for size normalization 24
4.3.1. Problem introduction 24
4.3.2. Motivation . 25
4.3.3. Handwritten Text Preprocessing 26
4.3.4. Tool description . 34

4.4. Ground truth generation tool 36
4.4.1. Motivation . 37
4.4.2. The XML PAGE format 38
4.4.3. The tranScriptorium european project 39
4.4.4. Tool description . 40

5. Conclusions 48

6. Acknowledgments 50

Bibliography 50

2

Contents Contents

Appendix: Ground truth supervision tool user manual 52

3

1 Introduction

Nowadays there are a big amount of ancient documents that have been
preserved through time, and most of this documents contain useful informa-
tion. Of course the usefulness of the texts is often limited by diverse factors,
being availability one of the most important. That is the reason why the
possibility of scanning them, making them available through the Internet
to a much broader public, is almost a need, as it has made sharing docu-
ments much easier, allowing experts and research groups around the world
to work on the same document without having to move the original nor the
researchers.

Although having access to the documents is a big step forward, it does not
always mean that you have access to the information contained within them.
On the one hand the condition, the calligraphy and many other factors can
make the documents almost impossible to read for non-experts. On the other
hand, some archives have such a big amount of documents that searching for
an specific topic or content is not possible in a reasonable amount of time.
The obvious solution to both this problems is to have the texts transcribed,
as this would allow both reading and automatic searching. As a side effect
this would open the door for translation, making the information accessible
to even more people. The problem is that the same difficulties that apply
for accessing the information are there for translating the texts, making it a
really time consuming task, and therefore really expensive.

All the mentioned in the previous paragraph leads us to the necessity
of having good automatic transcription tools, able to go from the scanned
document to a plain text transcription without human intervention, or at
least minimizing the human effort as much as possible. In this context we
will explain why, even when we aim at automating the process, supervised
learning is needed, setting the focus of this report on explaining the tools we
have developed to assist the supervision of data.

4

1. Introduction

The use of graphical tools to assist in data manipulation processes is
nothing new, and yet developing friendly and useful graphical user interfaces
(GUIs), adapted to the user needs and expectations, is not an easy task, nor
a completely solved one.

In our case, the context of the project is that of handwritten text recog-
nition (HTR) tasks, ranging from page layout analysis to line size normaliza-
tion, and even the final transcription process. As several tools were developed
we will try to be general when possible and specific when needed.

This document will start by justifying the need of manually supervised
data for HTR, and therefore the need for our tools. The next section will
cover the tools design. It will first give some insight in how GUI program-
ming works, and then focus on the ideas behind our design, starting with
the general requisites and showing the decisions made to fit them. After
this general ideas it will be shown through diagrams and class definitions the
specifics of how the problem has been solved.

After explaining the design process, the next section will review the im-
plemented tools, trying to make clear the specific use of each one and the
relation between them. In order to do that we will describe the context of
each tool, i.e. in which projects and processes are being used. This section
will also explain the features of the tools and its use, trying to give the reader
a good idea of why the developed software is quick to learn and work with,
increasing its usefulness.

The document will close with some brief conclusions and future work.

5

2 Why supervised learning?

Most of the problems in HTR (also in transcription, and in general in
pattern recognition) can be seen as classifying samples into a set of classes,
or equivalently, assigning each sample a label. In order to do that we use
statistical models such as hidden Markov models (HMMs). Those models
learn from a set of data and then classify the new samples that you feed
them, but of course for them to learn correctly you need to make sure that
the learning data does not contain any errors, and there lies the problem.

When facing a new task it is usual to find that you do not have any la-
beled data, and therefore you cannot train any models. There are different
solutions to that problem, such us using a heuristic or training a first model
with similar data from a different problem, and using this to generate some
initial data. The problem of this solutions is that, no matter how good is
your heuristic or how similar the problem you used data from is, you will end
up with some errors in your generated initial data. But, as we have already
said, you need perfect data for training if you want a good model. Addition-
ally, you will also need perfect data for testing your models and measuring
the error rate, and the test data needs to be different from the training one.

This need for ground truth data (i. e. data we assume to have no errors)
is what forces us to supervise the initial data we want to use, whether it is
generated in some inexact way or labeled from scratch. Of course this initial
data could be generated/supervised by just editing the plain text or XML
files that contain the samples, but since the information is usually associated
to an image it will be really hard to do for a human. Therefore, a graphical
tool is needed to make this supervision quick and easy for the user.

6

3 Tools design

As we have already said, designing a graphical tool is not an easy task,
but fortunately there are some general design principles that can serve as
guidelines when doing so.

First off, we wanted our tool to be flexible and easy to modify or up-
grade, specially being in a research environment where the necessities (and
consequently the specifications) of a tool are continuously evolving. This was
one of the reasons to go for object oriented programming (OOP), specifically
in C++, and in this chapter you would find how we structured our code
towards this objective.

Another early decision was to use QT1 for the graphical interface. We
choose this library because it is very complete and cross platform while being
under GPL v3 license, which means it is open source. While programming
GUIs it works with the user’s graphical system, making the tool look familiar
to him right from the start. It also has a lot of available tools, like its own
integrated development environment (IDE).

The second important principle was friendliness, meaning that the tool
needed to be easy to understand and use. If a user needed to spend too much
time learning how to use the tool, or if it was too slow in performing the
required tasks, the whole purpose of the tool would have been defeated. In
order to achieve this goal we designed a GUI as intuitive as possible, trying
to make it light by including only the necessary information. Also, when
more general, multi-purpose tools were needed, we divided the functionalities
into several interaction modes, each one for an specific task. Additionally,
several keyboard shortcuts where added, meaning that once the user has
been working with the tool for a bit and has learned the shortcuts his work
will be much faster. Details about shortcuts and interaction with the tools
will be explained in the sections that describe each tool.

1http://qt-project.org/

7

3.1. GUI programming 3. Tools design

3.1. GUI programming
GUI programming is very different to traditional, non-interactive pro-

gramming. We want to highlight some of the differences since they have had
a considerable impact both in the design and the implementation of the tool.

In the first place the focus on GUI programming is on the user, in op-
position to having the focus on the process. This means that interaction is
very important, needing to be as intuitive and quick as possible, and also
means that the system is event based. Instead of doing a set of operations
and returning a result you want the system to react to the user input, mainly
via mouse clicks, and to do so in a short amount of time.

We do this in QT by inheriting from their base classes and implement-
ing the methods that catch the events, for instance mousePressEvent. This
works only when the user interacts directly with an element, though. To
handle communication between elements in the GUI (for instance if we want
the display to react to a click on a button) the library uses a signal/slot
model2. The idea behind this model is to have elements emit a signal when
they want to communicate something, then connect this signal to a method
(called slot) in another element. It is important to note that every element
in the GUI, from the main window to each button or even each option in a
menu is an entity, making the use of signals and slots a must. The use of
this signals and slots requires an additional compilation step to translate the
signal/slot definitions to standard C++, but if you use the provided tools
(like qmake) it is transparent to both the programmer and the user.

The second important characteristic of GUI programming is that most
of the times the user performs an action he is expecting to see the outcome
of that action in a short amount of time. That is something that needs to
be understood, and any heavy computation should be made, when possible,
on batch programs, using the GUI application only for things that require
interaction. A problem we had related to this was that the images we used
were really big, having loading times of two or three seconds. This may seem
unimportant for one image, but it becomes relevant when working with large
sets. Since we could not solve this problem by modifying the software we
decided to change the format to a compressed one, having to find an equilib-
rium between compression and image quality.

2http://qt-project.org/doc/qt-5.1/qtcore/signalsandslots.html

8

3. Tools design 3.2. Tools internal structure

3.2. Tools internal structure

In this section we will present diagrams showing the classes implemented
for each tool, along with the important relations between this classes. In
order to do that we are going to divide the developed tools into two families:
the first one is that of the single-purpose tools. This tools were the first ones
to be developed and they all follow the same structure, inheriting from some
base classes that we implemented (that in turn inherited from the QT classes)
and adapting the specifics to the problem that the particular tool aimed to
solve. The second one is the multi-purpose family, to which belongs only
the Ground truth generation tool. For the implementation of this last tool
some code was reutilized but the classes inherited from the QT base classes
instead of ours. This had to be done this way because the first family base
classes were designed for single-purpose applications, making impossible the
use in the new tool. We also used this re-work as an opportunity to improve
the GUI, as it will be explained later.

Note that the class diagrams are simplified, showing only the class name
and the list of methods as methodName() : returnType, without their ar-
guments. For derived classes only implemented methods are present in the
diagram. Class diagrams should be read as follows: Green classes represent
QT classes. The special character before the method name indicates its type,
means protected, - means private and + public. Also, bold methods are
abstract methods that should be implemented by the child classes. Therefore,
any class with such method is a virtual class. Slots and signals are shown
along the methods with [SL] and [SI] tags respectively before the name of the
slot/signal, and have no return type in the diagram (in the implementation
the return type is always void).

As you can see in the diagram in figure 3.1 only some of the methods need
to be reimplemented, reducing the amount of code needed for each tool and
making sure that the common code remains the same through modifications.
For instance, the GUI elements (dock and menu) are the same for the three
tools. That also ensures that if someone has learned how to use one of the
tools, the interface of the others will be familiar, reducing the learning time.

Additionally, some of the reimplemented methods make a call to the base
class method and then add the new things they need (v.g. paintGL, the
mouse event handlers or connectSignalsToSlots). This is another way of
avoiding replicated code while adding new functionalities.

9

3.2. Tools internal structure 3. Tools design

Figure 3.1: Class diagram for the first family of tools.

10

3. Tools design 3.2. Tools internal structure

As for the second family (Ground truth generation tool, or GT_Tool_PAGE)
you can see in figure 3.3 that its organization in classes is similar to the first
family. The implementation of these classes is quite different though, having
to adapt to the new requirements, and thus giving support to multiple modes
and adding features. The specifics about working modes and features will be
discussed in section 4.4.

Another requirement that implied big changes was the decision to use the
XML PAGE format3 for the tool, since it is being used as a common ground
truth format for all the partners in the tranScriptorium4 project. To solve
this problem a new class was implemented to store all the PAGE informa-
tion, and also to handle the reading and writing of that data. A DOM tree
parser was used for the implementation, specifically the one included in the
QT library (QDomDocument). In figure 3.4 you can see the diagram for the
XML PAGE Document class and its associated structs.

The XML PAGE format project and the tranScriptorium will be fur-
ther explained in sections 4.4.2 and 4.4.3 respectively. For now, we should
note that all the developed tools were used in the tranScriptorium project,
except for the point classification one that was part of a UPV project. The
details of this work will be explained in section 4.3.

Figure 3.2: Comparison between first and second family GUI.

In the design phase of the new tool the GUI was also revised, as we have
already mentioned. We decided to change the dock menu for a toolbar, giving

3http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-
15/pagecontent.xsd

4http://transcriptorium.eu/

11

3.2. Tools internal structure 3. Tools design

the tool a lighter appearance and increasing the space the central OpenGL
window has. In figure 3.2 you can see a comparison between the first and
second family interfaces, and how the second is more compact.

Figure 3.3: Class diagram for the second family (GT_Tool_PAGE).

12

3. Tools design 3.2. Tools internal structure

Figure 3.4: Detail of the Document class and its associated structs.

13

4 Implemented tools

As we have shown in the previous section all the tools have a similar de-
sign, thus having a similar layout. They all present a central OpenGL window
where information is displayed and most of the interaction is performed, a
menu bar with some options and actions (most of them with associated key-
board shortcuts) and either a dock menu in the first family of tools or a
toolbar in the latest one. The main difference from the user point of view is
the central window, since is the one that determines the task. We will review
all the tools attending the order of the HTR process. That means that we
will go from layout analysis to point classification for line size normalization,
leaving for last the GT_Tool_PAGE, since that one is multi-purpose.

Despite the tools having some common functions and behaviours we will
explain what each tool can do in a different section for the sake of clarity.
By doing it this way we may repeat some information that all the tools
share, but at the same time it will be possible to read the information about
one specific tool and fully understand how it works without having to jump
through sections.

4.1. Page layout correction tool

This tool, along with the baseline and ground truth ones, were all devel-
oped for the tranScriptorium European project.

When trying to recognize handwritten text, it is usual that text appears
in paragraphs that are part of pages. Since we want the text segmented in
lines to recognize it, first we need to work at a page level to identify and
extract these lines, and then apply the HTR, line level, techniques to them.
Thus, this section and the following one will describe tools that work with
whole pages.

14

4. Implemented tools 4.1. Page layout correction tool

The first thing we need to do when trying to extract lines from a page is
to see which parts of the image are text paragraphs and which are images or
just white space, i.e. perform the layout analysis.

As this tool was developed to assist in the supervision of page layout in-
formation, in the following subsections we will explain what layout analysis
is, justifying the need for our tool, and then we will show the tool itself.

4.1.1. Layout analysis
Layout analysis, also known as document structure analysis, is the task

of finding the physical structure of a document page, as well as the log-
ical structure. The physical structure consists of elements such as pages,
columns, words, tables or images (and a long et cetera). It identifies what is
on the page image and where, without giving information about what is the
meaning of each element. On the other hand, the logical structure consists
of elements such as titles, authors, abstracts, sections, etc. That is, it tries
to roughly identify the content of each region of the page image.

As you can already imagine, those two kinds of structure analysis are
entwined, since a paragraph can be, for instance, an abstract or part of a
section, a text line can be both a title or contain the information about an au-
thor, and so on. Because of that the developed tool allows to correct or mark
regions and to assign them a label that can contain both types of information.

4.1.2. Motivation
If we look at the literature on the subject of document structure anal-

ysis we can see that there are several different approaches. For instance,
[Tsujimoto90] proposes the use of trees in both the physical an logical struc-
ture, trying to map the physical tree to a logical one. In [Conway93], on the
other hand, the use of deterministic grammars is proposed, and in [Tateisi94]
they try using stochastic grammars. And yet another approach is the use of
rule-based recognition systems, like in [Lin97] and [Kim00], although those
two use OCR to obtain information about the content of each part of the
page and will be hardly applicable to handwritten documents.

15

4.1. Page layout correction tool 4. Implemented tools

Since it is not the subject of this project we will not go into the details of
the different algorithms and approaches. It should suffice to say that none
of them obtains perfect results, thus being a problem that is not completely
solved by automatic means. Additionally, most of the consulted works on
the topic work with printed text, which is usually better structured than
handwritten text, and therefore we should expect worse results if we were to
apply those methods to our documents.

If you are interested in the matter, in [Mao03] you can read a survey on
numerous document structure analysis algorithms, some of which we have al-
ready mentioned. There you can see, yet again, that none of them can reach
a hundred percent accurate solutions, even when attacking easy problems as
printed, modern text. It is safe to assume that the problem of analyzing the
layout of antique, manuscript texts is a more difficult one, and therefore we
can safely state that an accurate automatic solution for the problem does
not exist.

This fully justifies the need for our tool, as layout analysis is one of the
first tasks that needs to be done when processing a document page, thus
having a great impact on the whole process, and only through manual su-
pervision we can reach the needed accuracy for our ground truth data.

4.1.3. Tool description
In figure 4.1 you can see how the tool looks like with an image loaded

and some layout information displayed over it. We will now explain how to
work with the tool, highlighting the key features.

First off, through the file menu it is possible to load a list of images, like
the one that is already loaded in the image, and also a labels file. The loading
of those lists could also be done when launching the tool from the command
line, adding the -l list_filename and -e labels_filename options to the call.

Navigation through the list of files is possible by either using the next/previous
image buttons or the right/left keyboard arrows. Labels files are used to cus-
tomize the set of labels that will be used when working with the tool, allowing
to easily switch the focus from physical to logical structure, or to add new
elements if need be. You can also, of course, save the information currently
displayed. This option should be rarely used though, since the tool has an
autosave feature that allows you to go from one file to the next/previous in

16

4. Implemented tools 4.1. Page layout correction tool

Figure 4.1: Screenshot of the layout correction tool.

the list without having to worry about manually saving the changes every
time.

The autosave feature was implemented because most of the time large
sets of files were to be corrected, and it made the work faster since you al-
ways want to save the corrections when you finish editing a file. Of course,
if you are using it for some other purpose or just do not like the option, you
can also deactivate it. Another available option related to that is to tick or
untick the overwrite checkbox. If the option is not selected the tool will ask
for a new filename every time it needs to save, whether it is automatically or
when the save command is selected from the file menu.

Another small save-related feature was the possibility to save the labels as
text or as a code (a number). This was made this way because two different
formats were used simultaneously, the textual one making visual scanning of
the file easier, and the coded being more compact.

As for the main features of the tool, that is the interaction with the data,
the tool has the basic zooming and panning options that any image display
usually has. Two quick camera reset functions were implemented too, al-
lowing you to go to a whole page view or to fit the page in width with a
single click of the mouse wheel. We think these are really useful because

17

4.2. Baseline correction tool 4. Implemented tools

manually centering the image after zooming in or moving to a specific region
can take a few seconds, while using the shortcuts will take you there instantly.

The layout information is displayed on top of the page image, and the
tool allows you to select the polygon defining points, being able to see their
coordinates and assigned label. You can also move the points if a region is
not correctly bounded. For this matter, a couple of assistance features were
implemented, allowing the user to lock movement in one axis while adjusting
the position of a point on the other axis, or to move a whole line of the quad
instead of a single point.

Regarding labels we figured that, specially for small sets of labels, there
was a quicker way to change to the right one than selecting in from the drop
down list. Consequently the tool allows you to change the label to the next
one in the list by clicking a point while holding the shift button, rotating
back to the first one if it reaches the end of the list.

Finally, the tool would not have been complete without the possibility to
add new regions in case you wanted to start from scratch, or the automatic
process has missed some. By simply holding the ctrl key and clicking the
place of the image where you want to add a point, new regions can be created.

We want to highlight that in a normal use of the tool, working with a
large set of files, a user is able to correct any mistakes without having to move
the mouse out of the display window, using the described key modifiers for
label changing and then going to the next file with the keyboard arrows,
auto-saving the changes. Since this was a common use scenario, we noticed
that the dock menu on the right side was mainly used for setting options or
when learning how to use the tool, but then rarely used by an experienced
user in a usual work session. Since it was taking a considerable amount of
space without adding any actual value, we decided to add an option to hide
the dock menu, increasing the image workspace without losing functionality.

4.2. Baseline correction tool
As we have already said, we need to segment the text in lines in order

to apply HTR techniques. Hence, it is only logical that the next step in the
page preprocessing is to detect the lines inside of the regions we found in the
previous step. Since there are several ways of doing this, we will explain why

18

4. Implemented tools 4.2. Baseline correction tool

it is a difficult problem and give a general overview of the possible solutions,
focusing then in the method used at PRHLT group. After this the need
for the baselines and the correction tool should be obvious, so we will then
describe the tool.

4.2.1. Line segmentation
Text line segmentation is the task of finding the lines in a document. It

is usually part of the preprocessing when trying to do word spotting or text
recognition, and even some methods of document structure analysis need it,
specially in printed, modern text. Being an important part of the prepro-
cessing, many techniques have been developed. Despite that, the problem is
far from solved in the case of ancient, handwritten text, probably because of
the difficulty of the task.

In the first place we have to consider that the format and structure of
the page may differ greatly between documents, since different epochs and
locations had different format rules, thus making the solutions dependant on
the corpus. Additionally, we have problems that make noise really hard to
remove, like faint typing or bleed through (in pages with text in both sides,
text from the other side that shows in the side you are trying to recognize).
This kind of problems sometimes makes impossible to filter the noise before-
hand, thus making it necessary for the line extraction algorithms to handle
them, removing the noise at a line level.

Another common problem that does not exist in printed text is having
irregular space between lines, or even having overlapping lines (i.e. the de-
scenders of a line going over the ascenders of the next one). Also, handwritten
text is often poorly aligned, making it harder to recognize. All in all, it is a
difficult and complex problem, and different methods solve better some parts
of it, while struggling with some others. A survey on different methods and
their application can be read in [Likforman-Sulem07] in case you are inter-
ested, since we will focus on the one used in our research group.

In [Bosch12a] and [Bosch12b] you can read about the method we use in
the PRHLT group. To put it simple, the main idea is to use machine-learning,
heuristic-free techniques, for the line detection. Without getting into the for-
mal definition, the method aims at dividing the document in four types of
regions, i.e. giving each detected region a label. Text is represented by two
of this regions, normal text lines, which comprise the main body of the hand-

19

4.2. Baseline correction tool 4. Implemented tools

written text, and inter lines, formed by the space between two normal text
lines, including some ascenders and descenders. The rest of the regions can
be labeled as blank lines, representing empty space at the beginning and the
end of the page, and as non-text lines. This last label is used for everything
that does not belong in any of the other region types. The final result of the
process is usually saved as the baselines of each line, which are basically the
lines that go under the main body.

4.2.2. Motivation
Despite the promising results shown by some of the methods, reaching

quite low error rates, and whether they try to search directly for the base-
lines, for the space between lines or for some other indicator to separate
the document in lines, all the line extraction techniques have one thing in
common: the results are not perfect. As it happens with almost everything
in pattern recognition tasks, there are always some lines that are harder to
detect, or some parts of the page where the algorithm works not so well.

Since HTR can only work in lines that are properly extracted, line de-
tection is a critical step in the preprocessing of a document, and even if the
error rate is as low as a 5% it deeply affects the final results. Thus, because
of the importance of having good lines, we need to have a step in the process
to supervise and correct the results of the automatic line extraction. This is
where our tool is needed, providing the team with a way of quickly reviewing
the automatic detection, moving, adding or deleting lines when an error is
detected.

4.2.3. Tool description
You can see in figure 4.2 that, as we have already said, the tool interface

is identical to that of the layout analysis tool. You can also appreciate that
the information displayed over the image in the central window is different,
corresponding to lines instead of text regions. We will now explain the tool
in detail, even if repeating some information that is the same in the previous
tool, highlighting the key features.

First off, the file menu is quite the same than in the layout tool. Being
so, you can load a list of images and a labels file. Of course, and also as in
the previous tool, you can also load those lists when launching the tool by

20

4. Implemented tools 4.2. Baseline correction tool

Figure 4.2: Screenshot of the baseline correction tool.

adding -l list_filename and -e labels_filename to the call.

Labels files allow you to customize the set of labels available for the lines,
though you could also opt for not using any labels if you just want to work
with the line position information. Through the same menu you can also
save, although as said before this option should be scarcely used due to the
autosave feature, since that allows you to go from file to file within the list
without worrying about manually saving every time.

As one would expect the same saving options that the layout tool has
remain available for this one, being able to deactivate the autosave feature
and to choose not to overwrite the existing files, giving a new file name each
time you want to save. The choice of saving the labels as text or as code
(number) is also available.

As for the central window of the tool, this is where the interaction with
the data happens, and therefore where the main differences with the other
tools lie. The basic functionalities of zooming and panning the image remain
the same, but the information displayed on top of the image corresponds to
baselines instead of regions. As you can see in the detail view of figure 4.3
the baselines can be defined as straight, two points lines, or as polylines if
you want a closer fit.

21

4.2. Baseline correction tool 4. Implemented tools

Figure 4.3: Screenshot of the baseline correction tool working with polylines.

Whether you are working with single lines or polylines, you can select
single points, being able to see their coordinates and the line assigned label.
You can also move points, as well as add new points to an existing lines, or
even create a new line. All of this operations are done with a single click,
using keyboard modifiers to indicate which one you want to perform. For
instance, just clicking is used for moving a point, since that is the most com-
mon operation, while ctrl+click will add a point to the line that is the closest
to where you clicked.

As in the previous tool, some assistance features were implemented in or-
der to make it easier to add and correct lines. One of the assistance features
available is, as in the layout tool, locking one of the axis of movement when
changing the position of a point. Another one is the possibility to move a
whole line, in case the length and inclination is correct but it is misplaced.
Last but not least you can also add whole lines with a single click. Lines
added through this method lack in precision, since the tool does not know
the boundaries of the text and just draws two points, one at each border of
the image, to define the line. However, this feature allows for really quick
annotation of baselines when generating new data, giving a rough but useful
approximation.

Finally, as in the layout tool, users can choose to hide the dock menu,
allowing them to have more space for the interaction and visualization of the
documents without losing functionalities. Of course the navigation through

22

4. Implemented tools 4.2. Baseline correction tool

the image list using the arrow keys remains the same, rendering the use of the
dock by experienced users unnecessary most of the time, and thus making
hiding it a great feature.

23

4.3. Points classification for size normalization 4. Implemented tools

4.3. Points classification for size normalization

Going forward in the top-down process of transcribing a page, after we
have extracted the lines finally comes the moment of actually recognising the
text in those lines. However, there is a lot of information on the lines, like
remaining noise or writer-dependant features, that make the HTR process
harder. In order to make it easier for the models to learn, some preprocessing
of the lines is needed. This preprocessing comprises several steps, which will
be explained in the following subsections, focusing in the size normalization
since it is the step where the developed tool was used.

Whereas the rest of the tools were created on the more general context
of the tranScriptorium project, this tool was created to solve a very spe-
cific problem: relevant points classification for line size normalization. Since
it was where my work with the PRHLT group started and a fair amount of
time was invested in this part of the project, we will broaden the scope of the
explanation a bit, introducing the problem and the solution in detail first.
This will serve a double purpose: on one hand, it will give an accurate idea
of the tool context, and in the other hand will show some of the additional
work made during the project, beside the graphical tools.

On the note of this additional work, the proposed size normalization
technique was implemented. Furthermore, since the improvement of the size
normalization was a stand-alone project, experimental results were obtained
to assess the quality of the new implementation. All the work related to
the implementation and experimentation will be presented in the following
subsections, along with the experimentation results, allowing you to see how
our work influenced the quality of the HTR process results.

4.3.1. Problem introduction
We wanted to implement the semi-supervised text size normalization tech-

nique published by Gorbe et al. [Gorbe08]. In the following subsections we
will explain our motivations for doing that and follow with a brief overview
of the line preprocessing process. After this overview we will focus on the
specific part of the preprocessing that we were changing and explain the
technique and our needs in order to reproduce it. Knowing those needs the
purpose of the tool will be evident. We will then show the developed tool,
since we think it will be better understood in its context. To finish this

24

4. Implemented tools 4.3. Points classification for size normalization

section we will give some experimental results and some conclusions for this
part of the project.

4.3.2. Motivation
It is well known that the writing style does not help HTR systems to

transcribe handwritten texts. In fact, it makes the morphological modeling
more difficult, thus making the overall transcription process harder. Writ-
ing style is characterized mainly by the slant, slope, and character shape
and size. Usual HTR line preprocessing leads to minimize the impact of this
writing style characteristics by applying several transformations to the image
in order to correct slant and slope, and then normalizing it.

In addition to the writing style problem, due to the way features are ex-
tracted from the image [Toselli03], ascenders and descenders force to include
white zones (non informative) in the feature vector representation, providing
useless information. Text size normalization tries to minimize these zones, re-
ducing the empty background, while keeping ascenders and descenders. The
central body size is normalized too, trying to make the system as invariant
to the character size as possible.

Along this work we have implemented the semi-supervised text size nor-
malization technique published by Gorbe et al. [Gorbe08]. The aim of this
technique is to segment the text line into ascenders, descenders and central
body zones by adjusting four polylines to the text profiles, segmenting the
text line into these three zones and then using this segmentation to do the
size normalization. (see Fig. 4.4).

Figure 4.4: Three regions separated by polylines.

The main reason for reproducing the proposed technique was that Joan
Puigcerver measured a more than five points improvement (from 45.5 to 40.0)
in the word error rate (WER) by using the group’s transcription software,
changing only the size normalization module for the one used in the other

25

4.3. Points classification for size normalization 4. Implemented tools

preprocessing.

4.3.3. Handwritten Text Preprocessing
As we have said, in this part of the project we were trying to improve

the size normalization phase of the handwritten text preprocessing. Never-
theless, for the sake of completeness, before explaining our specific work we
are going to give a brief explanation on the whole preprocessing process.

As you may know each person has its own writing style, making the recog-
nition process harder. Since writer dependant variations do not carry useful
information when we are trying to recognize the words, the preprocessing
tries to eliminate as much as possible of this variability, as well as all the
noise that the image may have. In order to do that several operations are
applied: noise filtering, slope removal, slant removal and finally size normal-
ization. It is well known that a good preprocess can greatly improve the text
recognition process.

It is important to note that since there is no standard solution to each
step of the preprocess, neither is it the focus of our project, we will only
explain what each phase does without discussing particular techniques.

Noise Filtering

The digitalization of a handwritten text, even if the original is in a good
state, is not a clean process. This process often adds some parasites to the
signal that have nothing to do with the information on it. Moreover, when
working with historical documents it is frequent that paper degradation and
the state of conservation of the document add inherent noise.

Consequently, after digitalizing an image we often see salt and pepper
noise appear, as well as darkened areas. Having noise is an obvious problem,
as it obfuscates the text making it harder to recognize. It is only logical
that the first step in preprocessing the image needs to eliminate that noise,
producing a cleaner and clearer text.
In Figure 4.5 you can see an example of text before and after noise filtering,
and how the second one is much clearer.

26

4. Implemented tools 4.3. Points classification for size normalization

Figure 4.5: Image before and after applying noise filtering.

Note that, as we said previously, sometimes the noise is filtered at a page
level. However, in this specific work we had to perform it at a line level.

Slope Removal

After filtering the noise we need to correct the angle the text forms with
the horizontal axis of the image, i.e. correct the slope. Therefore, the prod-
uct of this phase will be an aligned text, which is needed for slant removal
and size normalization to work correctly.

Once again, a certain degree of slope removal can be performed at a page
level, depending on the corpus, but in our case we had to make it at a line
level. Anyways, even if corrected at a page level, slope can vary between
text segments in the same line, so this step is present almost always when
working with lines.

As we have said, since each word or text segment can have a different
slope, even if they are in the same line, the line needs to be divided into
segments separated by blanks. The slope removal algorithm is then applied
to each segment. It is important to note that this division is only to perform
slope removal and does not try to separate the text into words.
In Figure 4.6 you can see an example of text before and after slope removal.

Figure 4.6: Image before and after applying slope removal.

27

4.3. Points classification for size normalization 4. Implemented tools

Slant Removal

The next necessary step in the text preprocessing is the slant removal.
Slant is the angle between the vertical axis and the direction of the vertical
text strokes. In addition to making the text less dependant on writing style,
slant removal is very important because it deeply affects the local extrema
detection and the size normalization process. If we normalize a non vertical
stroke, specially with ascenders and descenders, it will suffer heavy deforma-
tions.
In Figure 4.7 you can see an example of text before and after slant removal.

Figure 4.7: Image before and after applying slant removal.

Size Normalization

The last operation in the preprocessing is the size normalization. This
step tries to make the text recognition process invariant to character size,
as well as to reduce the space used by ascenders and descenders. While the
previous size normalization tried to segment the text using two parallel lines
for each line of text, the new polylines based approach gives a more precise
fit to the text. You can see an example phrase for both methods in figure
4.8. Since our work is focused on this particular phase of the process, it will
be further discussed with examples and detailed explanations in subsections
4.3.3 and 4.3.3.

Relevant Points Classification

For the segmentation and size normalization to work properly, the poly-
lines need to be adjusted to the text contour. As we have explained, the
method we were trying to reproduce is based in local extrema classification,
and since the local extrema will determine the polylines used for the size

28

4. Implemented tools 4.3. Points classification for size normalization

Figure 4.8: From top to bottom: 1. Noise cleaned image. 2. Current text (asc.,
body and des.) segmentation. 3. Character height normalized. 4. New text
segmentation method. 5. Character height normalized.

normalization it is critical that the automatic classifier works correctly.

In order to obtain the points we automatically find local maxima and
minima of the upper and lower contour respectively. This points are then
classified in five classes: ascenders, descenders, upper and lower central body
and others in case they do not belong to any of the groups. After point clas-
sification we have the four polylines segmenting the text into three zones:
ascender, central body and descender.

Therefore, the first problem to solve is the point classification. Following
the work described in [Gorbe08], we have used an Artificial Neural Network
(ANN) for the local extrema classification. The input is a downsampled win-
dow around the point to classify. We take a 500x250 window around the
point in the original image, and then apply a fisheye lens that expands the
closer context and shrinks the farther. Then we downsample it to a 50x30
image that we use as input for the ANN (i.e. the input layer size is 1500).

The ANN topology consists of an input layer of 1500 neurons, as we have
already said, two hidden layers of 64 and 16 neurons, and an output layer
of size 3. We will talk more about the output in a moment. The activation
function used for both the hidden layers and the output layer is the symmet-
ric sigmoid.

The three output neurons correspond to the classification of the point as

29

4.3. Points classification for size normalization 4. Implemented tools

ascendant/descendant, upper/lower central body and others. An important
consideration is that if the higher value of the output layer is lower than
a given threshold value we consider the ANN is not sure enough about the
classification, labeling the point as others.

The library used to train and classify with the ANNs was FANN1, a free
and open source library developed in C. The use of this library has limited
the available choice of training algorithms and activation functions, but at
the same time has allowed us to work with ANNs without spending time
developing our own implementation.

We have trained the networks using the iRPROP- algorithm as described
in [Igel00]. This training algorithm automatically adjusts the learning speed
each iteration, both removing the difficult problem of choosing an adequate
learning rate and accelerating convergence.

As a first approximation two ANNs were trained to classify the points,
one for the upper contour and another one for the lower. Due to the lack of
labeled points for training, a bootstrapping technique was adopted.

A set of 800 random text line images were extracted from the IAMDB
corpus and divided into chunks of 200. We will give more information about
the corpus later. The first subset was labeled using a heuristic classifier and
corrected by a human using the developed graphical application, which we
will explain later, then two ANNs were trained with this data. For the next
iterations a new set of points was labeled using the ANNs trained in the
previous step, and then manually corrected using the graphical tool. Two
new ANNs were trained using all the available labeled data.

Some statistics on the number of needed corrections and the progression
between steps of the bootstrapping process can be seen in table 4.1.

corrections totalPoints % correct
Heuristic 2968 20082 14.8
1st ANN 1867 19921 9.4
2nd ANN 1872 20000 9.4
3rd ANN 1770 20097 8.8

Table 4.1: Classification error progress during the bootstrapping process

1http://leenissen.dk/fann/wp/

30

4. Implemented tools 4.3. Points classification for size normalization

After doing some tests with the final ANNs we observed that the upper
contour point classification was working much better than the lower. We
then decided to make some more tests, leading to a recount of the amount
of points in each class. The result of that recount can be seen in table 4.2.

Number of points % of the total
Ascendants 10631 13.27
Upper central body 26945 33.64
Lower central body 36982 46.17
Descendants 3758 4.69
Others 1784 2.23

Table 4.2: Number of points of each class in the training set

Since the problem of classifying upper or lower contour points was the
same but mirrored, and considering that having a small amount of descen-
dants was difficulting the learning of the ANN, we decided to try and use a
single ANN for both problems. In order to do that we slightly modified the
input we were going to feed to the network. For the upper contour points
it remained the same, but for the lower contour the input image (after the
window was extracted and the fisheye lens was applied) was turned upside
down. You can see an example of this in figure 4.9

Figure 4.9: Fisheye lens (up) and fisheye lens + 180o rotation (down).

With this new ANN we obtained better classification results, but even
so we think that the point classification is probably the weakest part of the
process, and has room for improvement. In this regard some work has been

31

4.3. Points classification for size normalization 4. Implemented tools

done using Extremely Randomized Trees (ERTs) as classifiers, but without
clear results to date.

Size Normalization

Once we have obtained and classified the local extrema, the size normal-
ization is not too complicated. Each set of points is used to define a polyline,
thus dividing the image in three regions: ascenders, descenders and central
body. The central body zone is then normalized to a given height without
modifying the width. After some tests we decided to calculate the new cen-
tral body height using the mode with context as described in [Romero06].
By doing this we attempt to minimize the changes in the image aspect ratio,
consequently avoiding the text deformation. The ascenders and descenders
zones are normalized too, scaling them to a height of 0.3 and 0.15 times the
central body size, respectively.

It is worth noting a couple of details about the normalizing process. First,
we needed the polylines to go from side to side of the image. That did not
happen for most images, so we decided to project the first and the last point
of every set of points into the image border.

The other important issue was the possibility of two polylines from dif-
ferent sets crossing each other, or getting too close. Since that should not
happen and it is probably caused by the misclassification of a point, when
it happens we ignore the point out of place and recalculate the polylines.
By doing this we discard incorrectly classified points and avoid unnecessary
deformations of the image.

Experimentation

Experiments have been conducted in order to determine if the studied
method is an improvement. The HTK tool (Hidden Markov Model Toolkit)
has been used for the experimentation. This tool was originally developed to
be used in Speech Recognition, but nowadays it is used in Offline Handwrit-
ten Text Recognition too. The text recognition model makes use of HMMs
for the morphologic level, Stochastic Finite State Automata for the lexical
level and n-grams as language model.

32

4. Implemented tools 4.3. Points classification for size normalization

Corpora

For the experimentation we decided to use the same corpus used in
[Gorbe08], since that was the work we were using as a reference. That cor-
pus consists of continuous sentences of English handwriting. The sentences
have been handwritten from the Lancaster-Oslo/Bergen (LOB) text corpus
[Johansson86] and compiled by the research group on Computer Vision and
Artificial Intelligence (FKI) of the Institute of Computer Science and Applied
Mathematics (IAM) from Berna. It is a well known corpus, and you can see
some statistics about the partition used in table 4.3.

Train Validation Test Total
Lines 6161 920 2781 9862
Running words 53884 8718 25473 88073
Vocabulary size 7764 2425 5312 11368
Writers 283 162 57 500

Table 4.3: Statistics about the IAMDB corpus partition used for experimen-
tation

Note that for this experiments the lines were already properly extracted,
thus working only in the preprocessing and transcription of lines, without
doing anything at a page level.

Language Model

A word bigram language model was trained with three different text cor-
pora: the LOB corpus (excluding those sentences that contain lines from the
test set of the IAM database), the Brown corpus, and the Wellington cor-
pus. An open dictionary of 20000 words was used, ignoring case sensitiveness.

Results

In table 4.4 are presented several results on the same corpus, including
the one with the new preprocessing. In row two and three you can see the
best result to the date this project was made, with 45.5 WER, and in bold
the result that served as motivation for our work, with more than a five
points difference. The other rows show the result obtained by [Espana10],
and the last row shows our result.

33

4.3. Points classification for size normalization 4. Implemented tools

Validation Test
ELiRF [Espana10] 32.80 38.80
PRHLT + Prep. PRHLT 38.74 45.54
PRHLT + Prep. ELiRF 32.99 40.08
PRHLT + New prep. 31.78 39.65

Table 4.4: WER comparison

As you can see we have managed to win back the five point difference,
which was our objective, and even improve a little bit. You can see nonethe-
less that better results already existed when this report was written, indicat-
ing that there’s still room to improve and work to be done.

Conclusions

We have reproduced the technique proposed by Gorbe et al. and obtained
the more than five point difference we were expecting, achieving our objective
for this work. We have also observed that with the new size normalization
we do not need to correct the slope because working with polylines corrects
it implicitly. While correcting slope was a solved problem for large bodies of
text, it was based on projections. That made short words (like ’it’ or ’as’)
troublesome, because their projection looks almost the same no matter how
you rotate them. As we have said, with the new size normalization explicit
slope correction is not needed, so this should no longer be a problem.

4.3.4. Tool description
In figure 4.10 you can see how the tool looks like with an image loaded

and the associated points information displayed over it. The first big dif-
ference with the other tools you may appreciate is that only a single line
is loaded at a time, instead of full pages. You can also see that, in addi-
tion to the points and its label information, the tool automatically draws
the polylines that result of the current classification. We implemented it
this way because it makes a lot easier to identify incorrectly classified points.
We will now explain how to work with the tool, highlighting the key features.

First off, as in the other tools, through the file menu it is possible to load
a list of images, like the one that is already loaded in the screenshot. You can

34

4. Implemented tools 4.3. Points classification for size normalization

Figure 4.10: Screenshot of the point classification correction tool.

also load the list when launching the tool from the command line by adding
-l list_filename to the call. Label classes were fixed for this tool, since it was
designed for a very specific task, instead of being loaded from a file. The
available labels corresponded to the point classification previously described.
As explained in the other tools, you can also save the information currently
displayed, but the tool is designed to save changes automatically when going
through the list, without having to manually save anything.

The autosave feature was much necessary because, as explained in section
4.3.3, chunks of 200 lines were corrected each time, and you always wanted
to correct the few points that had a wrong label and then save and continue
with the next line. However unlikely, if the tool was to be used for some
other purpose, the autosave option can be deactivated. Another available
option related to that is to tick or untick the overwrite checkbox. Although
you usually want to overwrite to save time, because otherwise you will need
to introduce a new name every time you go to a different image, it is possible
to disable the overwriting.

Another small save-related feature was the possibility to save the labels
as text or as a code (a number). Usually the code representation was used,
specially because the ANNs needed this format in order to work, but labels
could be saved as text for easy visual inspection of the files, if need be.

As for the main window features, this tool presents a simpler interaction
mode, due to the fact that it was designed for the sole purpose of point clas-

35

4.4. Ground truth generation tool 4. Implemented tools

sification correction, or what is the same, checking and changing the labels
assigned to points. First of all, the tool has the basic zooming and panning
options that any image display usually has. A camera reset on mouse wheel
click is available too, although for correcting labels you work mostly without
zoom, and since the image of a line is much bigger in width than in height,
when you zoom in you probably want to move the image from left to right
as you read. This makes the camera reset feature less critical than when
working at a page level, when you may zoom to a specific paragraph to see
some details and then want to quickly go back to full page, but it is still a
good addition to have.

As we said, in figure 4.10 you can see the tool with a line loaded. The
display shows the line image and the associated points information on top,
along with the polylines the current point classification would generate. By
selecting a point you can see its label and coordinates. Being able to see the
point coordinates was really important when trying to detect problems in the
new size normalization process, since we needed that information to be able
to obtain, for instance, the fisheye window that served as input for the ANNs.

In the same way as the previously explained tools, this tool allows the
user to cicle through the labels by holding shift and clicking on a point. Since
there are only five different labels, and also because the expected polylines
update in real time when changing labels, it is really quick and easy to spot
and correct any misclassified point. Of course you can also use the drop down
list if you are new to the tool, want to refresh what labels are available, or
in which order. However, for regular use the quick way should be used.

Finally, as in the other tools, you can choose to hide the dock menu
to have more display space. This is specially useful in this tool since, as
we have said, the line images are usually way wider than higher, and once
you have learned how to use the tool the dock is not needed most of the time.

4.4. Ground truth generation tool
As we previously stated, the ground truth generation tool is a multi-

purpose tool. At first it was designed as the combination of the layout and
the baseline tools, but afterwards a transcription mode was added, allowing
to visualize and edit the transcription associated to lines and paragraphs.
As we have already said, it was developed for the tranScriptorium project,

36

4. Implemented tools 4.4. Ground truth generation tool

about which we will give more information in section 4.4.3

Since we have already justified the need of tools for layout and line su-
pervision, in this section we will focus on explaining why a multi-purpose
one was needed and what differences the tool had with the previous ones.
We will also talk about the format used for storing the data, since it was an
important factor when designing the tool, and give some detailed informa-
tion about the project for which the software was developed. After that we
will describe the tool in detail, even if some things are similar to the other
described tools and may seem redundant. As explained before, we do it this
way because we want each section to be complete, avoiding having to jump
to the other sections.

4.4.1. Motivation

Being in a research environment means continuously evolving require-
ments for the developed software, and sometimes those new requirements
call for a new tool instead of a patch over an old one. This was the case
when, after the PRHLT group started working with the layout and baseline
tools, we found that sometimes you needed to correct lines taking in consid-
eration the region in which they were contained. Since we could not display
that information in the existing tools as they were, and no easy workaround
was found, we were inclined towards developing a new tool.

At the same time, a common format to share ground truth information
between the partners of the tranScriptorium project was agreed, the XML
PAGE. We will explain the format in detail in the next subsection, but the
fact is that the introduction of this new format would have required a rework
of a big part of the tools. Therefore, considering this and the aforementioned
need of displaying layout and line information simultaneously, it was decided
that a new, more general tool, needed to be developed.

Note that this tool was created to substitute both the layout and the
baseline correction ones, unifying the generation and revision of page level
ground truth information into a single tool, instead of having to do it as a
two-step process.

37

4.4. Ground truth generation tool 4. Implemented tools

4.4.2. The XML PAGE format
As we explained previously, the XML PAGE format2 was agreed amongst

the partners in the tranScriptorium to be used as a common format to
share the generated ground truth information. This has the obvious advan-
tage of being able to share and utilize information without having to do
format conversion, but it also has some disadvantages. In this section we
will explain briefly the format, and what implications its use had for us.

First off, the format is well defined through an XML schema, which is
available online on the link provided as footnote. As you can see there, the
format gives support to a lot of the information that you can detect within a
document, ranging from regions (paragraphs, but also image regions, glyphs
and the like) to bounding boxes of words, including of course the bounding
boxes of lines and the associated baselines. You can also add transcriptions
to the different elements, from single words to whole regions. Additionaly,
each one of those elements can have associated information such as language
or script. Finally, you can also save information at a page level, for instance
the reading order or the relations between elements.

As you can see, it gives a general enough framework to hold most of the
information that can be generated as ground truth for layout analysis, line
extraction or even transcription. However, having the possibility to have the
same information at several levels (v.g. transcription of a region and the
transcriptions of the lines inside that region) can cause some problems with
coherence and has to be handled carefully, specially when combining ground
truth information from different sources. In PRHLT group we worked mostly
at a line level.

Regarding the tool, following a strict format means that you know exactly
what you can expect of a file and what your implementation has to support,
but in our case also meant that some elements our implementation needed
(v.g. the baselines) were not present in the definition. That was not in the
current version but in the 2010 one, which was the only one that existed
when we started working with the format. We solved the problem by using
a custom format that was PAGE with some modifications, thus having to
implement format conversion tools, and our needs were added in the next
version of the format.

2http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-
15/pagecontent.xsd

38

4. Implemented tools 4.4. Ground truth generation tool

Although a little out of the scope of this report, it is worth noting that
due to my work with XML PAGE to develop the tool I was the person in
charge of all the format-related problems during the time I worked with the
PRHLT group, having to implement several side-tools for format conversion
and insertion of transcriptions into an XML with the detected baselines of a
document, as well of acting as a consultant in PAGE related decisions.

4.4.3. The tranScriptorium european project

We have mentioned the tranScriptorium3 project several times, and
since this tool was developed exclusively for such project, we think this will
be the right place to give some details about the tool context, thus giving
some information about tranScriptorium. Quoting the official project web-
site:

”tranScriptorium is a STREP of the Seventh Framework Pro-
gramme in the ICT for Learning and Access to Cultural Resources
challenge. tranScriptorium is planned to last from 1 January
2013 to 31 December 2015.

tranScriptorium aims to develop innovative, efficient and cost-
effective solutions for the indexing, search and full transcription of
historical handwritten document images, using modern, holistic
Handwritten Text Recognition (HTR) technology.”

The partners of the project are:

Universitat Politècnica de València - UPV (Spain)

University of Innsbruck - UIBK (Austria)

National Center for Scientific Research "Demokritos" - NCSR (Greece)

University College of London - UCL (UK)

Institute for Dutch Lexicology - INL (Netherlands)

University of London Computer Centre - ULCC (UK)

3http://transcriptorium.eu/

39

4.4. Ground truth generation tool 4. Implemented tools

With the UPV having the management role, as well as working in dif-
ferent parts of the project. A detailed list of the specific tasks each partner
develops could be found, when published, under the deliverables tag of the
website.

Aside from the management tasks in which I did not take part, during
my time working in the project we focused mainly in layout analysis and line
extraction, and lately on transcription of the detected lines, making the tool
a fundamental part in several steps of the workflow.

4.4.4. Tool description

Figure 4.11: Screenshot of the GT_Tool without any image loaded.

In figure 4.11 you can see a screenshot of the tool. Since this is a multi-
purpose tool we will explain first the menus and general features, and then
have a subsection for each work mode. Although some of the modes are
similar to previously described tools, we will explain each one in detail so

40

4. Implemented tools 4.4. Ground truth generation tool

this section is self-contained.

First off, we have a menu similar to the one in the single-purpose tools,
only that adding a mode option to select in which mode we are going to
work. The change between modes can also be performed through keyboard
shortcuts. As one could expect, the file menu allows you to load either a
single file or a list of files, and also to save (or save as) the file in which you
are working. You can also, as with the previous tools, launch the tool with
a single file or a list loaded, by adding either the filename or -l list_filename
respectively. There are no labels files in this tool, since the list of available
labels is defined in the XML PAGE schema, thus being fixed.

In addition to supporting the new format and displaying the relations
between lines and layout, we used the opportunity to redesign the user inter-
face a bit, improving the usability and the look of the tool. The dock menu
has been changed for a toolbar that displays the same information and has
the same functionality, but in a more compact way. Additionally, the config-
uration options that were present in the old dock (autosave and overwrite)
have been moved to the options menu. Through this menu you can access a
settings window where the different configuration options can be configured.
Also, the settings window has been designed in a way that allows for easy
extension, being able to add and manage new options easily.

The general features are similar to the ones in the previous tools, being
able to navigate the list of files using the keyboard arrows, autosaving on the
change of file if you want and asking for new file names if configured that
way. As for the central window where the image and the associated infor-
mation are displayed, it maintains the usual zooming and panning utilities,
along with the quick camera resets to fit the image in width or height. The
rest of the interaction options are dependant on the active mode, and will be
detailed in the following subsections.

Note that, as explained in section 3.2, not only graphical improvements
were made. The tool internal design was also changed to fit the new require-
ments, and it was built in a way that allowed for creating other modes if
need be. This is the case of the transcription utility, that was not required
nor planned in the first version of the tool, yet it was added later, when the
need arose in the project, without any trouble.

Despite the changes, we have tried to maintain the main principles of the
tool, those being ease to use and learn, and the expert user being able to

41

4.4. Ground truth generation tool 4. Implemented tools

work with mouse and keyboard shortcuts without having to leave the main
window. A detailed list with the specifics of those shortcuts can be found in
the tool user manual that accompanies the report as an annex.

Region mode

Figure 4.12: Screenshot of the GT_Tool in region mode.

In figure 4.12 you can see a screenshot of the tool with a file loaded and
set in region mode. The aim of the region mode is to produce or supervise
layout analysis ground truth information. Since the problem of document
structure analysis was explained in section 4.1.1, and the motivation for hav-
ing this mode remains the same, we will focus on explaining the functionality.

As seen in the figure in this mode you have regions defined usually by four
points, although there can be regions defined by any number of points. In
any case, you can select and drag points by using the mouse, thus redefining
the regions, and also add points to create new regions. On this note, while
the tool supports loading files with regions defined by an arbitrary number
of points, you can only create new regions with four points. Of course you

42

4. Implemented tools 4.4. Ground truth generation tool

can also change the label of the selected region using shortcuts instead of the
drop-down list, and delete regions you do not want.

In addition to the described functionalities, that are pretty much the
same as the layout analysis tool had, some improvements were made. The
first one was changing the "locking in one axis" system, that felt unintuitive
and awkward to most users. This system was mostly used to try and align
points after moving them, so as instead handles were implemented. Handles
are fictitious points that appear at the middle of each line when mousing
over, as you can see in figure 4.12 (the green point is the handle for that
line). By selecting and moving the handle the user is able to move the whole
line parallel to where it was, thus avoiding the need to manually lock the
other axis before moving, and also the need to realign the points afterwards.

Another addition that was key in greatly reducing the required time for
adding missing regions or generating layout information from zero was the
possibility of adding a rectangular region. By clicking on one point while
holding the required keys, you start a rectangle. Then you can move the
mouse, previsualizing the rectangle you would generate, and click again to
add it to the page.

Line bounding box mode

In figure 4.13 you can see the same file from the previous section, but
with the tool set in line bounding box mode. This mode does not correspond
to any of the previous tools, and that is because we usually do not work with
bounding boxes but with baselines. However, the PRHLT group needed to
correct bounding boxes provided by another partner of the tranScriptorium
project, so this mode was added.

It is worth noting that the bounding box of a line and the baseline can
be associated to the same text line, that is saying, more or less, that the
baseline is inside of the bounding box. That is why, as you can see, the base-
lines are also shown in this mode, and the baseline associated to the selected
box is highlighted too. Also, because of the mentioned relation, most of the
operations that affect a whole baseline will also affect the associated bound-
ing box and vice versa. Consequently, some of the possible operations and
shortcuts available for baselines were added to the bounding box mode for
the sake of coherence. All in all, the two modes are quite similar, being the
only difference the kind of elements you can add, i.e. if you can add points

43

4.4. Ground truth generation tool 4. Implemented tools

Figure 4.13: Screenshot of the GT_Tool in line bounding box mode.

to bounding boxes or to baselines.

Specifically, in this mode the user can select and move points to redefine
bounding boxes, as well as delete existing points or add new points, either to
a existing box or to define a new one. You can also delete whole bounding
boxes, along with the associated baseline information, if any. Lastly, you can
select the next line by pressing the spacebar, and move the selected line up
and down using the keyboard arrows. This two features were used mostly
in baseline mode and do not have much use in this mode, but as we said we
decided to include them just in case.

Baseline mode

In figure 4.14 you can see the same file set in baseline mode. As you
can appreciate this mode is, as already stated, almost the same as the line
bounding box mode. This mode corresponds to the baseline tool, with the
addition of the bounding boxes, but some utility options where added too.

44

4. Implemented tools 4.4. Ground truth generation tool

Figure 4.14: Screenshot of the GT_Tool in baseline mode.

In this mode you can do the same operations that in the previous one,
only adding or deleting points from baselines instead of bounding boxes. Ad-
ditionally, you can move a whole line freely using a keyboard shortcut and
dragging with the mouse, allowing to freely reposition it without losing the
relative position of the points. Also, the possibility of adding whole lines
that was present on the baseline tool was implemented, since it allows for
a rough but quick approximation when working with pages that have no
ground truth information. However, this approximation was improved by
making the two points that form the line adjust to the region in which is
being added, instead of to the whole page. This is one of the advantages of
having a multi-purpose tool and being able to use the information about the
relations between elements.

Although it was mentioned in the bounding box mode description we
want to highlight here the two features we said that were mostly used in
baseline mode, that is, being able to reposition lines and move from one to
another using only the keyboard. This options allowed to quickly improve

45

4.4. Ground truth generation tool 4. Implemented tools

the correction time in instances where you only want to check if the lines are
in place and adjust them to fit the text line closely, which is not an uncom-
mon problem when doing automatic line detection.

Transcription mode

Figure 4.15: Screenshot of the GT_Tool in transcription mode.

In figure 4.15 you can see the same file with the tool set in transcription
mode. As you can see this mode allows the user to see all the information
about the page, that is, all the regions and lines. However, you can only
interact with the different elements to see and edit the transcription.

This mode was the last to be implemented, after the first version of the
tool was in use for a while. The project had the need to transcribe pages,
as well as to check the results of automatic transcription, and since it makes
sense associating each transcription to a line instead of doing whole pages in
a text editor, it was decided to add the feature to the tool.

46

4. Implemented tools 4.4. Ground truth generation tool

There are two main differences between this mode and the others. First
off, the one already mentioned, the possibility to interact with elements of
both layout and line level, although in a more limited fashion than in the
corresponding modes. The second difference introduced was the creation of
the transcription dock, which you can see in the screenshot, on the lower
part of the screen. After some thought and some tests, we decided that this
was the better place to situate it, since it allows for a whole width view of
the text, and can be set close enough to the line you are transcribing so you
do not have to shift your view much during work.

We would like to highlight a couple of things about transcription mode.
In the first place you can see that the transcription dock is divided in two
text fields. This was done that way because the XML PAGE has two tran-
scriptions associated to each element, one as plain text and another one as
unicode, and this way we gave support to both options. The second impor-
tant thing, also to support more features of the XML PAGE, is that even
when we usually wanted to do transcription at a line level, you could also
transcribe whole regions if you want to do so.

47

5 Conclusions

We have developed several tools, covering each step of the ground truth
generation process for page level analysis. We have also, with the multi-
purpose tool, contributed an integrated tool for the tranScriptorium project,
allowing to visualize and correct the data in all the phases of the ground truth
generation in a single tool. The tool has been used extensively and is a key
element in the current page processing workflow of the project, proving that
it has great utility and is well fitted to its purpose.

The design of the tool was also put to the test when transcription mode
had to be added after the tool was finished and in use. This has shown that
the modular design we chose is flexible and allows for further growth without
much difficulty or time investment, which we think is a key feature in modern
software development.

Additionally, as explained in section 4.3, we have implemented a new tool
for the size normalization step of the line level preprocessing, and also per-
formed the required experimentation to prove that is an actual improvement
over the method in use up to this moment.

As more of a personal conclusions, I would say that the problem of de-
veloping well integrated, easy to use GUIs is far from solved in general, and
needs to be approached with an specific analysis depending on the problem
and the target users. However, as explained in chapter 3, I think that there
are several principles and guidelines that hold true for most cases. In any
case, this project has allowed me to learn how to analyze the user needs and
try to develop graphical tools to solve those needs. At the same time I have
been able to work in collaboration with other people and experience what is
like to be integrated in a research group.

As for the future of the tools, being in a research environment it is nearly
impossible to have a finished product, and even in other environments, when-

48

5. Conclusions

ever software is used in real applications it is usual that it gets updated and
improved along the way. In our case, several additions and improvements
have already been made to the tools during the time of the project. How-
ever, it is likely that some modifications will be needed in the future, for
instance if the PAGE format gets updated, as it happened during 2013, leav-
ing the old 2010 version outdated. It is also possible that more features of
the format that are not supported currently are needed, and this will require
to modify the multi-purpose tool.

As we have explained the tool is designed in a way that should make easy
the addition of new modes or the modification of the existing ones, as well
as the modification of the data structures as long as the interface between
elements remains similar. Since new versions of the format should build on
the previous ones, this should allow for an easy adaptation of the tool in the
future. Therefore, we think that if the PRHLT group wants to keep using
the tool it should not be too difficult for someone to maintain and update it
when need be.

49

6 Acknowledgments

This project has been partially supported by EU 7th FPtranScriptorium
project (Ref: 600707) and UPV Primeros Proyectos (PAID-06-11).

Thanks to Moisés Pastor i Gadea and Joan Andreu Sánchez Peiró for
trusting me to work with them, and to the whole group for making me feel
part of the team.

To my family and friends, for supporting me no matter what I decided to
do, and specially to Pepe, Juaneu and Sergi for listening to my blabbering
when I was trying to figure out something difficult. Also, Pepe deserves a
special mention for helping me learn GUI design with QT at the start, when
I was utterly clueless, probably saving me quite some time.

Finally, to my grandfather Rafael, who always kept his curiosity and his
illusion for learning new things, inspiring me and helping shape who I am
today.

50

Bibliography

[Bosch12a] Bosch, Vicente, Alejandro Héctor Toselli, and Enrique Vidal.
"Statistical Text Line Analysis in Handwritten Documents." Frontiers
in Handwriting Recognition (ICFHR), 2012 International Conference
on. IEEE, 2012.

[Bosch12b] Bosch, Vicente, Alejandro Héctor Toselli, and Enrique Vidal.
"Natural language inspired approach for handwritten text line detection
in legacy documents." Proceedings of the 6th Workshop on Language
Technology for Cultural Heritage, Social Sciences, and Humanities. As-
sociation for Computational Linguistics, 2012.

[Conway93] Conway, Alan. "Page grammars and page parsing. a syntactic ap-
proach to document layout recognition." Document Analysis and Recog-
nition, 1993., Proceedings of the Second International Conference on.
IEEE, 1993.

[Espana10] S.Espana-Boquera, M.J.Castro-Bleda, J.Gorbe-Moya,
F.Zamora-Martínez. “Improving Offline Handwritten Text Recog-
nition with Hybrid HMM/ANN Models”. IEEE Transactions on
Pattern Analysis and Machine Intelligence. vol. 99. 2010.

[Gorbe08] J.Gorbe-Moya, S.España, F.Zamora and M.J.Castro, "Hand-
written Text Normalization by using Local Extrema Classification",
"PRIS’08", pp. 164-172, 2008.

[Igel00] C. Igel, M. Husken, "Improving the Rprop learning algorithm." In
Proceedings of the second international ICSC symposium on neural com-
putation, pp. 115-121, 2000.

[Johansson86] S.Johansson, E.Atwell, R.Garside, and G.Leech, “The Tagged
LOB Corpus: User’s Manual”, Norwegian Computing Centre for the
Humanities, Bergen, Norway, 1986.

51

Bibliography Bibliography

[Kim00] Kim, Jongwoo, Daniel X. Le, and George R. Thoma. "Automated
labeling in document images." Photonics West 2001-Electronic Imaging.
International Society for Optics and Photonics, 2000.

[Likforman-Sulem07] Likforman-Sulem, Laurence, Abderrazak Zahour, and
Bruno Taconet. "Text line segmentation of historical documents: a sur-
vey." International Journal of Document Analysis and Recognition (IJ-
DAR) 9.2-4 (2007): 123-138.

[Lin97] Lin, Chun Chen, Yosihiro Niwa, and Seinosuke Narita. "Logical
structure analysis of book document images using contents information."
Document Analysis and Recognition, 1997., Proceedings of the Fourth
International Conference on. Vol. 2. IEEE, 1997.

[Mao03] Mao, Song, Azriel Rosenfeld, and Tapas Kanungo. "Document
structure analysis algorithms: a literature survey." Electronic Imaging
2003. International Society for Optics and Photonics, 2003.

[Romero06] V.Romero, M.Pastor, A.H.Toselli and E.Vidal, “Criteria for
handwritten off-line text size normalization”, Procc. of The Sixth
IASTED international Conference on Visualization, Imaging, and Image
Processing (VIIP 06)”,2006.

[Tateisi94] Tateisi, Yuka, and Nohuyasu Itoh. "Using stochastic syntactic
analysis for extracting a logical structure from a document image." Pat-
tern Recognition, 1994. Vol. 2-Conference B: Computer Vision & Image
Processing., Proceedings of the 12th IAPR International. Conference on.
Vol. 2. IEEE, 1994.

[Toselli03] A.Toselli, A.Juan, D.Keysers, J.González, I.Salvador, H.Ney,
E.Vidal and F.Casacuberta “Integrated Handwriting Recognition and
Interpretation using Finite-State Models.” International Journal of Pat-
tern Recognition and Artificial Intelligence, 2003.

[Tsujimoto90] Tsujimoto, Suichi, and Haruo Asada. "Understanding multi-
articled documents." Pattern Recognition, 1990. Proceedings., 10th In-
ternational Conference on. Vol. 1. IEEE, 1990.

52

Appendix: Ground truth super-
vision tool user manual

Use Manual
Ground truth supervision tool

Jorge Mart́ınez Vargas
jormarv5@fiv.upv.es

October 7, 2013

1 Introduction

The tool has been designed to allow the user to quickly supervise and correct both region
and line detection information, aswell as reading and editing the associated transcriptions.
This manual assumes you have already compiled the tool. Nevertheless, you can find the
compilation instructions in the annex at the end of the document.
The following sections explain in detail how to work with the tool. The file format used
for the region and line information is XML PAGE 1. Note that while the tool does fully
support the XML PAGE format, meaning that if you open and save a file all elements will
be preserved, a lot of the features of the XML PAGE format are not accessible through the
tool.

2 GUI description

This section will cover what each element of the user interface is for. It will aswell describe
all the menu entries.
In figure 1 you can see the user interface. The following parts could be identified:

1. Central window:Central window:Central window: The central window is an openGL display where you can see the
region/lines information. The interaction with this window will be explained later.

2. Menu bar:Menu bar:Menu bar: The menu bar contains four sub-menus, left to right:

2.1 File:File:File: Open either a single file or a list of files. Save/save as the changes made to
the loaded data.

2.2 Mode:Mode:Mode: Set the tool to region/line supervision mode, or transcription mode.

2.3 Options:Options:Options: Opens the Settings window. We will talk about the available settings
later.

2.4 Help:Help:Help: Display the program help (refers to this manual) and about.

1http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15 draft/pagecontent.xsd

1

Figure 1: GUI general view.

3. File counter:File counter:File counter: Shows the current image number and the total amount of images in the
loaded list.
You can change the number and press Enter to go to a different image.

4. Navigation arrows:Navigation arrows:Navigation arrows: Pressing the left/right arrow you can go to the previous/next image
in the list.

5. Label selection:Label selection:Label selection: Shows the selected region label. You can also click and select another
one to change the label.

6. Selected item ID:Selected item ID:Selected item ID: Shows the selected region/line ID.

7. Position:Position:Position: Displays the selected item position.

8. Image name:Image name:Image name: Shows the loaded image name, as it appears in the XML file.

In addition to the graphical menu interaction, you can also open a file/list file when
launching the tool, using the following commands:
GT Tool file.xml opens the tool with file.xml loaded.
GT Tool -l listfile opens the tool with the listfile loaded and the first xml file in the list
opened.

2.1 Central window: Region mode

At figure 2 you can see the central window in region mode. For every region of text it shows
the four points that define it in blue, and the lines between them in purple. The selected

2

Figure 2: Central window in region mode.

point is indicated by a red square around it, and the selected region is highlighted in a darker
tone that the rest of the regions.
In the figure you can also see a green point in the middle of one of the lines. That green
point is a handle, and every line has one, but they’re shown only when hovering over with
the mouse.
It is important to note that while you can open files that contain regions defined by more
than four points, you can only define new regions with four points each.
The following operations are possible while in this mode:

• Move the camera focus: right click and drag with the mouse.

• Zoom in/out: mouse wheel.

• Reset the camera to fit image width: mouse wheel click.

• Reset the camera to fit image height: Ctrl+mouse wheel click.

• Select a region: left click the region (one of the lines that forms it).

• Select a point: left click the point.

• Move a point: left click the point and drag with the mouse.

• Move a line in parallel: left click the line handle and drag with the mouse.

• Change the selected region label: Shift+left click.

3

• Delete the selected region: Del.

• Add a point: Ctrl+left click. When you have added four new points, they will form a
region.

• Add a rectangular region: Ctrl+Shift+left click. Hold Ctrl+Shift and drag the mouse
to see the preview of the region, then left click again to add the new region.

2.2 Central window: Baseline mode

Figure 3: Central window in baseline mode.

At figure 3 you can see the central window in baseline mode. For every block of text
detected in layout mode it shows the lines in purple. The selected layout when the mode
changed is highlighted, and only the lines inside it are displayed. The baselines are shown in
blue, and the selected line is highlighted in dark blue. Note that the baselines are polylines,
defined by a set of points.
In addition to the baselines the bounding boxes of each line can be present too. Those will
appear in a different blue, and have the same interaction possibilities as the baselines (except
for the addition of new elements).
The following operations are possible while in this mode:

• Move the camera focus: right click and drag with the mouse.

• Zoom in/out: mouse wheel.

4

• Reset the camera to fit image width: mouse wheel click.

• Reset the camera to fit image height: Ctrl+mouse wheel click.

• Select a point: left click the point.

• Select a line: left click the line (or alternatively a point of the line).

• Move a point: left click the point and drag it with the mouse.

• Move a whole line: Shift + left click a point of the line and drag it with the mouse.

• Delete the selected point: Del.

• Delete the selected line: Shift + Del. Note that this will delete both the baseline and
the bounding box if they are associated to the same TextLine element.

• Add a point: Ctrl+left click. The point will be added to the closest line.

• Add a new line: Ctrl+Shift+left click. A single point, belonging to a new line, will be
added.

• Add a new horizontal line: Ctrl+Shift+right click. Two points will be added, creating
a line from side to side of the region.

• Move the selected line up/down: Up/Down arrow key.

• Select the next line: Spacebar.

2.3 Central window: Line bounding box mode

Figure 4: Central window in line bounding box mode.

At figure 4 you can see the central window in line bounding box mode. As it has been
already said, this mode has the same options that baseline mode except for the addition of
new elements. In this mode you can add new bounding boxes using the following operations:

5

• Add a point: Ctrl+left click. The point will be added to the closest box.

• Add a new box: Ctrl+Shift+left click. A single point, belonging to a new line, will be
added.

We recommend adding the points of each box in order.

2.4 Central window: Transcription mode

Figure 5: Central window in transcription mode.

At figure 5 you can see the central window in transcription mode. The first important
thing to note is that a new dock item appears in the lower part of the screen, containing two
text boxes. This is where the transcription information will appear.
We still have the central window too. For every block of text detected in region mode it
shows the lines in purple. The selected region (if any) is highlighted in a similar way as it
is in region and lines modes. All the lines detected in the image are shown in blue, and
when selected a line is highlighted the same way it was in lines mode. Note that the lines
are polylines, defined by a set of points, but we do not show the points because they give no
relevant information in this mode.
The following operations are possible while in this mode:

• Move the camera focus: right click and drag with the mouse.

• Zoom in/out: mouse wheel.

• Reset the camera to fit image width: mouse wheel click.

6

• Reset the camera to fit image height: Ctrl+mouse wheel click.

• Select a region: left click the region (one of the lines that forms it).

• Select a line: left click the line.

• Edit the transcription of a selected item: Write in the corresponding text box.

3 Keyboard shortcuts

Some of the operations that can be done through menus can also be called with a keyboard
shorcut. Here is the list of available shortcuts:

• F1:F1:F1: Switch to layout mode.

• F2:F2:F2: Switch to baseline mode.

• F3:F3:F3: Switch to transcription mode.

• F4:F4:F4: Switch to line bounding box mode.

• Ctrl+S:Ctrl+S:Ctrl+S: Save current files.

• Ctrl+Shift+S:Ctrl+Shift+S:Ctrl+Shift+S: Save current files as. A saving window will pop to ask for a new file
name.

• Left arrow:Left arrow:Left arrow: Go to previous image.

• Right arrow:Right arrow:Right arrow: Go to next image.

4 Settings

This last section will describe the options you can configure through the Settings window,
as well as list their default values.

• AutosaveAutosaveAutosave before loading a new image/closing the program. Default value: Disabled.
If autosave is disabled, the progam will ask before discarding changes.

• Overwrite XML fileOverwrite XML fileOverwrite XML file when saving. Default value: Enabled.

7

A How to compile the tool

First of all, in order to compile the tool, aswell as for the tool to work, you will need QT4.x2

installed in your computer.
Once you have installed the QT library, you need to open a terminal and go to the folder
where you have the source for the tool, then execute the script MakeGT Tool PAGE (you
may need to do chmod +x MakeGT Tool PAGE first). If the compiling script was not in-
cluded with the code you need to follow this steps:

1. Write qmake -project. A qt project file will be generated (.pro extension).

2. Open the .pro file that was just created, add the line QT+=opengl xml and save the
file.

3. Write qmake on the console. A makefile will be generated.

4. Write make on the console. A binary with the same name as the folder should be
generated, that’s the tool.

2Any of the QT4 versions should do, http://qt-project.org/downloads and scroll down to the required
version. The tool was developed and tested using qt 4.7

8

