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Resumen

La presente memoria “Operadores en espacios ponderados de funciones holomor-
fas” trata diferentes áreas del análisis funcional tales como espacios de funciones
holomorfas, holomorfía en dimensión infinita y dinámica de operadores.

Después de un primer capítulo introductorio en el que incluimos la notación, las
definiciones y los resultados básicos que usaremos a lo largo de la tesis, el texto
queda dividido en dos partes. Una primera, correspondiente a los Capítulos 1 y
2, centrada en el estudio de espacios (LB)-ponderados de funciones enteras sobre
espacios de Banach, y una segunda, correspondiente a los Capítulos 3 y 4, en la
que estudiamos el comportamiento dinámico de los operadores de diferenciación e
integración actuando sobre diferentes clases de espacios ponderados de funciones
enteras. A continuación, presentamos una breve descripción de los capítulos:

En el Capítulo 1, dada una familia decreciente de pesos radiales y continuos so-
bre un espacio de Banach X, consideramos los límites inductivos ponderados de
funciones enteras V H(X) y V H0(X). Los espacios ponderados de funciones holo-
morfas aparecen de forma natural en el estudio de condiciones de crecimiento de
funciones holomorfas y han sido investigados por varios autores desde los traba-
jos de Williams en 1967, Rubel y Shields en 1970, y Shields y Williams en 1971.
Primero determinamos condiciones suficientes sobre la familia de pesos para que
el correspondiente espacio ponderado sea un álgebra o tenga una descomposición
de Schauder polinómica. Estudiamos álgebras de Hörmander de funciones enteras
definidas sobre un espacio de Banach y damos una descripción de ellas como espa-
cios de sucesiones. Estudiamos homomorfismos de álgebras entre estos espacios y
obtenemos un teorema de tipo Banach-Stone para familias de pesos de tipo expo-
nencial. Finalmente, analizamos el espectro de estas álgebras ponderadas, dotán-
dolo de una estructura analítica, y demostramos que cada función f ∈ V H(X)
puede extenderse de forma natural a una función analítica definida sobre el espec-
tro. Dado un homomorfismo de álgebras, también investigamos cómo la aplicación
inducida entre los espectros actúa sobre las correspondientes estructuras analíticas.
Vemos que en nuestro contexto los operadores de composición tienen un compor-
tamiento diferente del que tienen cuando consideramos funciones holomorfas de
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tipo acotado. Este trabajo ha sido motivado por un artículo reciente de Carando,
García, Maestre y Sevilla-Peris. Los resultados obtenidos han sido publicados por
Beltrán en [14].

En el Capítulo 2 obtenemos una linearización del espacio V H(X) a través de
un predual. Éste lo obtenemos aplicando el teorema de completación de Mujica
para espacios (LB), que además nos permite probar que el espacio V H(X) es
regular y completo. También estudiamos condiciones para asegurar la igualdad
V H0(X)′′ = V H(X), observando algunas diferencias entre los casos finito e infinito
dimensional. Finalmente damos condiciones suficientes para extender funciones
definidas en un subconjunto A de X, con valores en otro espacio de Banach E,
y admitiendo algunas extensiones débiles en un espacio de funciones holomorfas,
a funciones en el correspondiente espacio de funciones holomorfas sobre X con
valores vectoriales. La mayoría de los resultados incluidos en este capítulo han
sido publicados por Beltrán en [13].

En el resto de la tesis se analiza el comportamiento dinámico de los siguientes
operadores sobre espacios ponderados de funciones enteras: el operador de diferen-
ciación Df(z) = f ′(z), el operador de integración Jf(z) =

∫ z
0 f(ζ)dζ y el operador

de Hardy Hf(z) = 1
z

∫ z
0 f(ζ)dζ, z ∈ C.

En el Capítulo 3 estudiamos la dinámica de estos operadores sobre espacios de
Banach ponderados de funciones enteras definidos por normas de tipo integral o
supremo: los espacios ponderados de funciones enteras Bp,q(v), 1 ≤ p ≤ ∞, y
1 ≤ q ≤ ∞. Cuando q = ∞ se conocen como espacios generalizados de Bergman
ponderados de funciones enteras, y si además p = ∞, se denotan por Hv(C) y
H0
v (C). Analizamos cuándo los operadores son hipercíclicos, caóticos, de potencias

acotadas o (uniformemente) ergódicos en media, complementando así el trabajo de
Bonet y Ricker sobre operadores de multiplicación ergódicos en media. Además,
para pesos verificando ciertas condiciones, estimamos la norma de los operadores
y estudiamos su espectro. Se presta especial atención a pesos de tipo exponencial.
El contenido de este capítulo se ha publicado en [17] y en [15].

En el caso de operadores diferenciales φ(D) : Bp,q(v)→ Bp,q(v), conD : Bp,q(v)→
Bp,q(v) continuo y φ una función entera, estudiamos la hiperciclicidad y el caos.
El capítulo finaliza con un ejemplo de un operador hipercíclico y uniformemente
ergódico en media. Éste ha sido proporcionado por A. Peris, al que agradecemos
haber permitido su inclusión en esta tesis. Creemos que es el primer ejemplo de
un operador verificando estas dos propiedades al mismo tiempo.

El último capítulo se ha dedicado al estudio de la dinámica de los operadores
de diferenciación e integración actuando sobre límites inductivos y proyectivos
ponderados de funciones enteras. Damos condiciones suficientes para que D y J
sean continuous sobre los espacios y caracterizamos cuándo el operador de difer-



enciación es hipercíclico, topológicamente mezclante o caótico en el caso de límites
proyectivos. Finalmente investigamos la dinámica de estos operadores sobre las
álgebras de Hörmander Ap(C) y A0

p(C). Los resultados obtenidos en este capítulo
han sido incluidos por Bonet, Fernández y la autora en [16].





Resum

La tesi “Operadors en espais ponderats de funcions holomorfes” tracta diferents
àrees de l’anàlisi funcional tals com espais de funcions holomorfes, holomorfia de
dimensió infinita i dinàmica d’operadors. Després d’un primer capítol introductori
en el que incloem la notació, les definicions i els resultats bàsics que emprarem
a la tesi, el text queda dividit en dues parts. Una primera, corresponent als
Capítols 1 i 2, centrada a l’estudi d’espais (LB)-ponderats de funcions enteres
sobre espais de Banach, i una segona, corresponent als Capítols 3 i 4, on estudiem
el comportament dinàmic d’operadors de diferenciació i integració actuant sobre
diferents classes d’espais ponderats de funcions enteres. A continuació presentem
una breu descripció dels diferents capítols:

Al Capítol 1, donada una família decreixent de pesos radials i continus sobre un
espai de Banach X, considerem els límits inductius ponderats de funcions enteres
V H(X) i V H0(X). Els espais ponderats de funcions holomorfes apareixen de forma
natural a l’estudi de condicions de creixement de funcions holomorfes i han sigut
investigats per diversos autors desde els treballs de Williams en 1967, Rubel i
Shields en 1970 i Shields i Williams en 1971. Primer determinem condicions so-
bre la família de pesos per assegurar que el corresponent espai ponderat siga un
àlgebra o tinga una descomposició de Schauder polinòmica. Estudiem àlgebres
de Hörmander de funcions enteres definides sobre un espai de Banach i donem
una descripció d’elles com espais de successions. També estudiem homomorfismes
d’àlgebres entre aquests espais i obtenim un teorema de tipus Banach-Stone per
una família particular de pesos. Finalment, estudiem l’espectre d’aquestes àlge-
bres ponderades, dotant-lo d’una estructura analítica, i demostrem que cada funció
f ∈ V H(X) pot extendre’s de forma natural a una funció analítica definida sobre
l’espectre. Donat un homomorfisme d’àlgebres, també investiguem com l’aplicació
induïda entre els espectres actua sobre les corresponents estructures analítiques.
Veiem que en el nostre contexte els operadors de composició tenen un comporta-
ment diferent del que tenen quan actuen sobre funcions holomorfes de tipus fitat.
Aquest treball ha sigut motivat per un article recent de Carando, García, Maestre
i Sevilla-Peris. Els resultats obtinguts han sigut publicats per Beltrán en [14].

xv



Al Capítol 2 obtenim una linearització de l’espai V H(X) a través d’un predual.
Aquest l’obtenim aplicant el teorema de completació de Mujica per espais (LB),
que a més ens permet provar que l’espai V H(X) és regular i complet. També
estudiem condicions per assegurar la igualtat V H0(X)′′ = V H(X), observant
algunes diferències entre els casos finit i infinit dimensional. Finalment donem
condiciones suficients per extendre funcions definides en un subconjunt A de X,
amb valors en un altre espai de Banach E, i admetent algunes extensions dèbils en
un espai de funcions holomorfes, a funcions en el corresponent espai de funcions
holomorfes sobre X amb valors vectorials. La majoria dels resultats inclosos en
aquest capítol han sigut publicats per Beltrán en [13].

A la resta de la tesi s’analitza el comportament dinàmic dels següents operadors
sobre espais ponderats de funcions enteres: l’operador de diferenciació Df(z) =
f ′(z), l’operador d’integració Jf(z) =

∫ z
0 f(ζ)dζ i l’operador de Hardy Hf(z) =

1
z

∫ z
0 f(ζ)dζ, z ∈ C.

Al Capítol 3 estudiem la dinàmica d’aquests operadors sobre espais de Banach
ponderats de funcions enteres definits per normes de tipus integral o suprem: els
espais ponderats de funcions enteres Bp,q(v), 1 ≤ p ≤ ∞, i 1 ≤ q ≤ ∞.Quan q =∞
es coneixen com espais generalitzats de Bergman ponderats de funcions enteres,
i si a més p = ∞, es denoten per Hv(C) i H0

v (C). Analitzem quan els operadors
són hipercíclics, caòtics, de potències fitades o (uniformement) ergòdics en mitja,
complementant així el traball de Bonet i Ricker sobre operadors de multiplicació
ergòdics en mitja. A més, per a pesos verificant certes condicions, estimem la
norma dels operadors i estudiem el seu espectre. Es dóna especial atenció a pesos
de tipus exponencial. El contingut d’aquest capítol s’ha publicat en [17] i en [15].

En el cas d’operadores diferencials φ(D) : Bp,q(v) → Bp,q(v), amb D : Bp,q(v) →
Bp,q(v) continu i φ una funció entera, estudiem la hiperciclicitat i el caos. El
capítol finalitza amb un exemple d’un operador hipercíclic i uniformement ergòdic
en mitja. Aquest ha sigut proporcionat per A. Peris, a qui agraïm haver permés
la seua inclusió en aquesta tesi. Creiem que és el primer exemple d’un operador
verificant aquestes dues propietats al mateix temps.

L’últim capítol s’ha dedicat a l’estudi de la dinàmica dels operadors de diferen-
ciació i integració actuant sobre límits inductius i projectius ponderats de funciones
enteres. Donem condicions suficients perquè D i J siguen continus sobre els es-
pais i caracteritzem quan l’operador de diferenciació és hipercíclic, topològicament
mesclant o caòtic en el cas de límits projectius. Finalment investiguem la dinàmica
d’aquests operadors sobre les àlgebres de Hörmander Ap(C) i A0

p(C). Els resultats
obtesos en aquest capítol han sigut inclosos per Bonet, Fernández i l’autora en
[16].



Summary

The Ph.D. Thesis “Operators on weighted spaces of holomorphic functions” pre-
sented here treats different areas of functional analysis such as spaces of holomor-
phic functions, infinite dimensional holomorphy and dynamics of operators.

After a first chapter that introduces the notation, definitions and the basic results
we will use throughout the thesis, the text is divided into two parts. A first one,
consisting of Chapters 1 and 2, focused on a study of weighted (LB)-spaces of entire
functions on Banach spaces, and a second one, corresponding to Chapters 3 and
4, where we consider differentiation and integration operators acting on different
classes of weighted spaces of entire functions to study its dynamical behaviour. In
what follows, we give a brief description of the different chapters:

In Chapter 1, given a decreasing sequence of continuous radial weights on a Banach
space X, we consider the weighted inductive limits of spaces of entire functions
V H(X) and V H0(X).Weighted spaces of holomorphic functions appear naturally
in the study of growth conditions of holomorphic functions and have been inves-
tigated by many authors since the work of Williams in 1967, Rubel and Shields
in 1970 and Shields and Williams in 1971. We determine conditions on the fam-
ily of weights to ensure that the corresponding weighted space is an algebra or
has polynomial Schauder decompositions. We study Hörmander algebras of entire
functions defined on a Banach space and we give a description of them in terms of
sequence spaces. We also focus on algebra homomorphisms between these spaces
and obtain a Banach-Stone type theorem for a particular decreasing family of
weights. Finally, we study the spectra of these weighted algebras, endowing them
with an analytic structure, and we prove that each function f ∈ V H(X) extends
naturally to an analytic function defined on the spectrum. Given an algebra ho-
momorphism, we also investigate how the mapping induced between the spectra
acts on the corresponding analytic structures and we show how in this setting
composition operators have a different behavior from that for holomorphic func-
tions of bounded type. This research is related to recent work by Carando, García,
Maestre and Sevilla-Peris. The results included in this chapter are published by
Beltrán in [14].
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Chapter 2 is devoted to study the predual of V H(X) in order to linearize this space
of entire functions. We apply Mujica’s completeness theorem for (LB)-spaces to
find a predual and to prove that V H(X) is regular and complete. We also study
conditions to ensure that the equality V H0(X)′′ = V H(X) holds. At this point,
we will see some differences between the finite and the infinite dimensional cases.
Finally, we give conditions which ensure that a function f defined in a subset
A of X, with values in another Banach space E, and admitting certain weak
extensions in a space of holomorphic functions can be holomorphically extended
in the corresponding space of vector-valued functions. Most of the results obtained
have been published by the author in [13].

The rest of the thesis is devoted to study the dynamical behaviour of the following
three operators on weighted spaces of entire functions: the differentiation oper-
ator Df(z) = f ′(z), the integration operator Jf(z) =

∫ z
0 f(ζ)dζ and the Hardy

operator Hf(z) = 1
z

∫ z
0 f(ζ)dζ, z ∈ C.

In Chapter 3 we focus on the dynamics of these operators on a wide class of
weighted Banach spaces of entire functions defined by means of integrals and
supremum norms: the weighted spaces of entire functions Bp,q(v), 1 ≤ p ≤ ∞,
and 1 ≤ q ≤ ∞. For q = ∞ they are known as generalized weighted Bergman
spaces of entire functions, denoted by Hv(C) and H0

v (C) if, in addition, p = ∞.
We analyze when they are hypercyclic, chaotic, power bounded, mean ergodic
or uniformly mean ergodic; thus complementing also work by Bonet and Ricker
about mean ergodic multiplication operators. Moreover, for weights satisfying
some conditions, we estimate the norm of the operators and study their spectrum.
Special emphasis is made on exponential weights. The content of this chapter is
published in [17] and [15].

For differential operators φ(D) : Bp,q(v) → Bp,q(v), whenever D : Bp,q(v) →
Bp,q(v) is continuous and φ is an entire function, we study hypercyclicity and
chaos. The chapter ends with an example provided by A. Peris of a hypercyclic
and uniformly mean ergodic operator. To our knowledge, this is the first example
of an operator with these two properties. We thank him for giving us permission
to include it in our thesis.

The last chapter is devoted to the study of the dynamics of the differentiation and
the integration operators on weighted inductive and projective limits of spaces of
entire functions. We give sufficient conditions so that D and J are continuous on
these spaces and we characterize when the differentiation operator is hypercyclic,
topologically mixing or chaotic on projective limits. Finally, the dynamics of these
operators is investigated in the Hörmander algebras Ap(C) and A0

p(C). The results
concerning this topic are included by Bonet, Fernández and the author in [16].
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Introduction

Weighted spaces of entire functions defined on a finite or infinite dimensional
complex Banach space X constitute the core of this Ph.D. Thesis. We treat
different aspects about them. Given a weight v we define the weighted Banach
spaces of entire functions Hv(X) and H0

v (X). If instead of an only weight v we
consider a decreasing sequence of weights V := {vn}n, then we are able to define
the weighted (LB)-spaces of entire functions

V H(X) := indnHvn(X) and V H0(X) := indnH
0
vn(X),

endowed with the inductive limit topology. Analogously, given an increasing se-
quence of weights W := {wn}n, we define the weighted Fréchet spaces of entire
functions

HW (X) := projnHwn(X) and HW0(X) := projnH
0
wn(X),

endowed with the projective limit topology, that is, the Fréchet topology defined
by the norms ‖ ‖wn , n ∈ N.

Weighted spaces of holomorphic functions appear naturally in the study of growth
conditions of holomorphic functions and have been investigated by many authors
since the work of Williams in 1967, Rubel and Shields in 1970, and Shields and
Williams in 1971. They naturally arise in great profusion throughout such fields as
linear partial differential equations and convolution equations, distribution theory
and representation of distributions as boundary values of holomorphic functions,
complex and Fourier analysis, and spectral theory and the holomorphic functional
calculus (see [31]). The one variable case has been extensively studied by Rubel
and Shields [112], Williams [123], Bierstedt and Summers [32] and Bierstedt and
Bonet [25]. Lusky [95] completed the isomorphic classification of Hv(G) when G
is a balanced domain in the complex plane and the weight v is radial. Bierstedt,
Meise and Summers [31] studied a projective description of weighted inductive
limits of holomorphic functions on open subsets of Cd (see also [28], [40], [44] and
[45]), and Bierstedt, Bonet and Galbis [27] achieved significant advances in the
knowledge of these spaces on balanced domains G in Cd. Later, García, Maestre
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and Rueda [71] studied weighted Fréchet spaces of holomorphic functions defined
on Banach spaces. We carry on this work studying weighted inductive limits of
holomorphic functions defined on Banach spaces.

The starting point of the first chapter has been the article [56] by Carando and
Sevilla-Peris about the spectra of weighted Fréchet algebras HW (X), and its gen-
eralization to HW (U), U an unbounded open subset of X, given by Carando,
García, Maestre and Sevilla-Peris in [55]. We show that a similar situation holds
in our context of weighted (LB)-spaces V H(X).

In Section 1.1 we characterize when V H(X) is an algebra in terms of a condition
on the family of weights V, we give a sufficient condition on the family in order
to ensure the existence of a polynomial Schauder decomposition, and we present
some examples. This section collects some facts that are analogue to those for
HW (X) in [56] and [71]. Weighted algebras of continuous functions have been
studied by Oubbi in [108] and [109].

In Section 1.2 we study the special case of weighted (LB)-algebras Ap(X) de-
termined by a growth condition p : the Hörmander algebras of entire functions
defined on a Banach space X, and we give a description of them in terms of se-
quence spaces. They were introduced for the first time by Hörmander in [83] and
were intensively studied by Berenstein and Taylor in the context of interpolation
of entire functions (see e.g. [19]). The study of the locally convex structure of the
algebras Ap(C) was initiated by Meise in [99].

We treat algebra homomorphisms between spaces V H(X) and V H(Y ), X, Y Ba-
nach spaces, when V is a family of exponential weights, i.e., we consider the
algebras of holomorphic functions of exponential type Exp(X) and Exp(Y ). This
class of functions has been widely studied in function theory in one or several
variables since the 1930s ([36], [37]) and, even nowadays, its interest also arises in
areas such as harmonic and Fourier analysis, operator theory and partial differen-
tial equations in complex domains. The results on algebra homomorphisms allow
us to formulate a Banach-Stone type theorem: if Exp(X) ∼= Exp(Y ) as topological
algebras, then X ′ ∼= Y ′. Some recent articles on this kind of problems are [53], [56]
and [119]. A survey on different types of Banach-Stone theorems can be found in
[72].

In the last section of Chapter 1, whenever V H(X) is an algebra and X a symmet-
rically regular Banach space, we endow the spectrum of V H(X), i.e., the space
of non-zero continuous multiplicative functionals VM(X), with a topology that
makes it an analytic variety over X ′′. In [7, Corollary 2.4], Aron, Galindo, García
and Maestre gave the spectrum Mb(U) of the algebra of holomorphic functions
of bounded type Hb(U), the structure of a Riemann analytic manifold modelled
on X ′′, for U an open subset of X. For the case U = X, Mb(X) can be viewed
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as the disjoint union of analytic copies of X ′′, these copies being the connected
components of Mb(X). The same situation holds for VM(X). In [56], Carando and
Sevilla-Peris studied the spectrum of the weighted Fréchet algebras of holomorphic
functions HW (X), where W is an increasing family of weights satisfying certain
conditions. In [55], Carando, García, Maestre and Sevilla-Peris generalize these
results for the spectrum of HW (U), where U is an unbounded open subset of X.
Here, the conditions on the weights for entire functions are softer than those in
[56]. The first steps towards the description of the spectrum of Hb(X) were taken
by Aron, Cole and Gamelin in [6]. A survey with the most relevant recent develop-
ments on the research of the spectra of algebras of analytic functions can be found
in [54]. We also show, as in the case of Hb(X) and HW (X), that any function
f ∈ V H(X) extends naturally to an analytic function defined on the spectrum.
Moreover, under certain conditions on the family of weights, this extension can be
seen to belong, in some sense, to V H(VM(X)).

Finally, given an algebra homomorphism, we investigate how the mapping induced
between the spectra acts on the corresponding analytic structures and we also show
how in this setting composition operators have a different behavior from that for
holomorphic functions of bounded type.

Most of the results included in this chapter are published by Beltrán in [14].

Chapter 2 is devoted to find a linearization of the space V H(X) by means of
a predual. The existence for a given locally convex space E of a second locally
convex space F such that F ′ = E and having some additional properties has been
shown useful to obtain results in infinite dimensional holomorphy. Recall that
the proof of the completeness of the space of the germs of holomorphic functions
H(K) = indnH

∞(Vn), where K is a compact subset of a Fréchet space and Vn is
a sequence of open neighbourhoods of K such that K = ∩nVn, was substantially
simplified by Mujica [102] using the predual of H(K). The existence of predual
is also the key to prove that H(K) is an inductive limit where each canonical
injection Jn,n+1 is weakly compact when K is a compact subset of the Tsirelson
space [105]. This is a partial answer to the problem posed by Bierstedt and Meise
[30] of characterizing those Fréchet spaces for which the inductive limit above
has weakly compact canonical injections. The compact case was solved by these
authors in 1977.

As the closed unit ball Bvn of Hvn(X), n ∈ N, is compact with respect to the com-
pact open topology τco, we apply Mujica’s completeness theorem for (LB)-spaces
[102, Theorem 1], which was inspired by a theorem of Banach-Dixmier-Waelbroeck-
Ng on dual Banach spaces (cf. Waelbroeck [122, Proposition 1] and Ng [107]), in
order to find a predual of V H(X) and to prove the completeness of the space.
As a corollary of [25, Corollary 2], we also get that the inductive limit V H(X) is
regular. Moreover, for a regularly decreasing sequence of weights, we obtain that
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the predual F is a quasinormable Fréchet space, and thus, distinguished, that is,
V H(X) is topologically isomorphic to the strong dual F ′b. For these sequences of
weights we also study, using [25, Theorem 7], some conditions to ensure that the
equality V H0(X)′′ = V H(X) holds. Similar questions are treated in [70], [71] and
[115] for weighted Fréchet algebras.

Biduality on weighted Banach spaces of entire functions was treated for the first
time in the work of Williams [123] and Rubel and Shields [112], and their re-
sults were improved by Bierstedt and Summers in [32] for weighted Banach spaces
of holomorphic functions defined on an open set G of Cd. In fact, they proved
that the spaces H0

v (G)′′ and Hv(G) are isometrically isomorphic if and only if the
closed unit ball of H0

v (G) is dense in the closed unit ball of Hv(G) with respect
to the compact open topology. This result was generalized to the weighted spaces
V H(G) and HW (G) by Bierstedt and Bonet in [25]. At this point, we see some
differences between the finite and the infinite dimensional cases. Although several
of our results are based on the ones proved there, when moving to infinite dimen-
sions we loose local compactness and, consequently, the fact that the elements
of the topological dual of V H0(X) have an integral representation ([32, Theorem
1.1b]). So, whereas condition (ii) in [25, Theorem 7] is always satisfied in the finite
dimensional case by the Hahn-Banach and Riesz representation theorems, in the
infinite dimensional case, X must be at least reflexive.

Once we have a predual F, the following natural step is to use it to obtain a
linearization of holomorphic mappings. Linearization might be useful because it
permits to write spaces of “complicated” maps, for instance, holomorphic maps,
as spaces of linear maps defined on another space, which can be easier to han-
dle. Several authors have obtained linearization theorems for various classes of
holomorphic mappings. It seems that the first general result of this kind is due
to Mazet [98] who obtained a linearization theorem for holomorphic mappings on
locally convex spaces, thus improving various results of Schottenloher [118], Aron-
Schottenloher [8] and Ryan [116]. By specializing to smaller classes of mappings,
in the setting of Banach spaces, Mujica [104] obtained a linearization theorem
for bounded holomorphic mappings, whereas Galindo, García and Maestre [69]
obtained a linearization theorem for holomorphic mappings of bounded type. In
[57], Carando and Zalduendo generalize all these special cases linearizing functions
with values in locally convex spaces. We will show that in our case there exists a
holomorphic function ∆ : X → F with the following universal property: for each
Banach space E and each function f ∈ V H(X,E), there is a unique linear con-
tinuous operator Tf : F → E such that Tf ◦∆ = f. The correspondence f → Tf
is an isomorphism between the space V H(X,E) and the (LB)-space of operators
Li(F,E) induced with the inductive limit topology. Moreover, we obtain a more
general linearization result which includes the one given for V H(X,E).
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We finish the chapter considering the following general question: given two Ba-
nach spaces X and E, consider A ⊆ X, H ⊆ E′, and f : A → E such that for
every u ∈ H the function u ◦ f : A → C has an extension in V H(X) (HW (X)).
When does this imply that there is an extension F of f in the weighted space
of vector-valued holomorphic functions V H(X,E) (HW (X,E))? This problem
is motivated by the fact that a continuous function f : X → E belongs to
V H(X,E) (HW (X,E)) if and only if u◦f : X → C belongs to V H(X) (HW (X))
for every u ∈ E′. Despite the weak and the formal definition do not coincide in
general for V H0(X,E)(HW0(X,E)), we also give conditions in order to obtain
extensions results using weak extensions on these spaces.

Given a locally convex space E, the problem of deciding when a function f : Ω ⊆
C→ E is holomorphic whenever u◦f ∈ H(Ω) for each u ∈ E′ goes back to Dunford
[64], who proved that this happens when E is a Banach space. Grothendieck [81]
extended the result for a quasicomplete locally convex space E. Bogdanowicz [38]
gives extension results through weak extension proving among other results that
if Ω1 ⊆ Ω2 ⊆ C are two domains (open and connected subsets), E is a complex,
sequentially complete, locally convex Hausdorff space and f : Ω1 → E satisfies
that u ◦ f admits holomorphic extension for each u ∈ E′ then f admits a holo-
morphic extension to Ω2. More recently, Grosse-Erdmann, Arendt and Nikolski,
Bonet, Frerick, Wengenroth and Jordá have given results in this way smoothing
the conditions on Ω1 and also requiring extensions of u◦f only for a proper subset
H ⊆ E′ (see [4], [47], [67], [79]). Also Laitila and Tylli have recently discussed
the difference between strong and weak definitions for important spaces of vector
valued functions [89, Section 6]. In [85], Jordá analyzes a weak criterion for holo-
morphy and uses linearization in order to give extension results for Banach spaces
of holomorphic functions defined on a non-void open subset U of a Banach space
X.

Most of our results given in Chapter 2 have been published by the author in [13].

The rest of the thesis is devoted to study the dynamical behaviour of the following
three operators on weighted spaces of entire functions: the differentiation oper-
ator Df(z) = f ′(z), the integration operator Jf(z) =

∫ z
0 f(ζ)dζ and the Hardy

operator Hf(z) = 1
z

∫ z
0 f(ζ)dζ, z ∈ C. Although there is a huge literature on the

Hardy operator on different function spaces (see e.g. [9]), it seems that it has not
yet been studied in this context.

In Chapter 3 we focus the dynamics of the operators on a wide class of weighted
Banach spaces of entire functions defined by means of integrals and supremum
norms: the weighted spaces of entire functions Bp,q(v), 1 ≤ p ≤ ∞, and 1 ≤ q ≤ ∞,
also determined by a weight v. For q =∞ they are known as generalized weighted
Bergman spaces of entire functions, which are just the spaces Hv(C) and H0

v (C)
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if, in addition, p = ∞. Similar spaces of holomorphic functions on the disc have
been considered by Blasco in [33] and by Blasco and de Souza in [34].

The continuity of the differentiation and the integration operators on the space
Hv(C) has been studied by Harutyunyan and Lusky in [82]. They prove that the
continuity is determined by the growth or decline of v(r)eαr for some α > 0 in
an interval [r0,∞[. In [41], Bonet investigated when the operator of differentiation
is hypercyclic or chaotic on H0

v (C), and in [42], Bonet and Bonilla extend these
results to the generalized weighted Bergman spaces showing conditions to ensure
that the differentiation operator is chaotic, hypercyclic or frequently hypercyclic.
The surjectivity and the spectrum of the differentiation operator on the spaces
Bp,q(v), p = q, were studied by Atzmon and Brive in [10].

In this chapter we continue this work by analyzing the operators of differentia-
tion and of integration and the Hardy operator on the spaces Bp,q(v). We study
when they are hypercyclic or chaotic, but also other properties like being power
bounded, mean ergodic or uniformly mean ergodic; thus complementing also work
by Bonet and Ricker [50] about mean ergodic multiplication operators. Moreover,
we estimate the norm of the operators and study their spectrum. Special empha-
sis is made on exponential weights. The results obtained on the weighted Banach
spaces of entire functions Hv(C) and H0

v (C) are published by Bonet, Fernández
and the author in [17], and their generalization to weighted Banach spaces of entire
functions defined by means of integral norms are published by Beltrán in [15].

For differential operators φ(D) : Bp,q(v) → Bp,q(v), whenever D : Bp,q(v) →
Bp,q(v) is continuous and φ is an entire function, we study hypercyclicity and
chaos. Godefroy and Shapiro proved that if T : H(C)→ H(C), T 6= λI, commutes
with D, that is, TD = DT, it can be expressed as a differential operator φ(D)
for an entire function φ of exponential type [73]. Moreover, they proved that T is
chaotic. MacLane also considered the question about what are the possible rates
of growth of D-hypercyclic functions. He showed that there exists a D-hypercyclic
entire function f of exponential type 1, that is, for all ε > 0 there is M > 0 with
|f(z)| ≤ Me(1+ε)|z|. Bernal and Bonilla [21] have attacked the same problem for
general T following the idea of Chan and Shapiro in 1991 of replace H(C) by a
space of entire functions of restricted growth. We continue their work focusing
this problem on the weighted spaces of entire functions Bp,q(v), 1 ≤ p ≤ ∞, q = 0
or 1 ≤ q <∞.

In the last section of the chapter we include an example of a hypercyclic and
uniformly mean ergodic operator given by Peris. We thank him for giving us per-
mission to include his example in our Ph.D. Thesis. It consists on the backward
shift operator B acting on the weighted sequence space `p(v). Examples of oper-
ators being mean ergodic and hypercyclic at the same time seem to be unknown
until now.
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We conclude the thesis with a chapter devoted to the study of the dynamics
of the differentiation and the integration operators on weighted inductive and
projective limits of spaces of entire functions. We give sufficient conditions to
ensure that D and J are continuous on these spaces similar to those for Hv(C) in
[82] and [42, Proposition 2.1], and we characterize when the differentiation operator
is hypercyclic, topologically mixing or chaotic on HW (C). For the Hörmander
algebras Ap(C) and A0

p(C) we study when the operators are hypercyclic, chaotic,
power bounded and (uniformly) mean ergodic in terms of the order of growth of
the growth condition p, thus continuing the research by Bonet in [39]. According
to [2, Proposition 2.4]), since Ap(C) and A0

p(C) are complete and Montel, each
power bounded operator is uniformly mean ergodic.

Most of our results concerning this topic are included by Bonet, Fernández and
the author in [16].





Chapter 0

Preliminaries

The first chapter is devoted to introduce the notation, definitions and the basic
results we will use throughout the thesis.

0.1 Notation and basic definitions

We denote the natural numbers by N := {1, 2, 3, ...}, N0 := N ∪ {0}, the real
numbers by R, the positive real numbers by R+ := (0,∞) and the complex numbers
by C. By D(z0, ε) := {z ∈ C : |z − z0| < ε} we denote the open disc centred at
z0 ∈ C of radius ε > 0, and by D ⊆ C the open unit disc. For some z0 ∈ C and
R > 0, we denote by C(0, R) := {z ∈ C, |z| = R} the circumference centred at z0
of radius R.

If E is a normed space, we denote by BE the closed unit ball centred at zero, and
by B(x0, ε) the closed ball centred at x0 ∈ E of radius ε > 0. We say that a subset
U ⊆ E is balanced if λU ⊆ U for all λ ∈ C, |λ| ≤ 1.

We recall Landau’s notation of capital O-growth and little o-growth: given f and
g two functions defined on some unbounded subset of the real numbers, one writes
f(x) = O(g(x)) as x → ∞ if there is a positive constant M and x0 > 0 such
that |f(x)| ≤ M |g(x)| for all x > x0, and f(x) = o(g(x)) if limx→∞

f(x)
g(x) = 0

whenever g(x) is non-zero, or at least becomes non-zero beyond a certain point.
The expression f(x) ∼ g(x) means limx→∞

f(x)
g(x) = 1 and f(x) . g(x) means that

f(x) = O(g(x)). When f(x) . g(x) . f(x), we simply write f(x) ≈ g(x).

9
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Our notation for functional analysis and operator theory is standard. We refer the
reader e.g. to [65], [101], [110] and [113].

Given a locally convex space E, we denote by E∗ the algebraic dual of E, that
is, the space of all linear forms T : E → C, and by E′ its topological dual, i.e.,
the space of all continuous linear forms on E. The weak topology of E, denoted by
σ(E,E′), is defined as follows: a net {xα}α converges to x0 in (E, σ(E,E′)) if and
only if for all x′ in E′, {x′(xα)}α converges to x′(x0) in C. A net {x′α}α converges
to x′0 in the weak-star topology on E′, usually known as weak∗ or w∗ topology, and
denoted by σ(E′, E), if and only if for all x in E, {x′α(x)}α converges to x′0(x) in
C. For a locally convex space E, cs(E) denotes a system of continuous seminorms
determining the topology of E, and for two locally convex spaces E and F, the set
of all continuous linear maps from E to F is denoted by L(E,F ). Each element
T ∈ L(E,F ) is called an operator, and it defines another operator T ′ : F ′ → E′,
T ′(λ)(x) = λ(T (x)), λ ∈ F ′, x ∈ E, called its transpose. The expression E ∼= F
means that these spaces are topologically isomorphic.

The strong operator topology τs in L(E,F ) is determined by the family of semi-
norms

qx(S) := q(Sx), S ∈ L(E,F ),

for each x ∈ E and q ∈ cs(F ). In this case we denote the space by Ls(E,F ). The
uniform operator topology τb of uniform convergence on bounded sets is defined in
L(E,F ) via the seminorms

qB(S) := sup
x∈B

q(Sx), S ∈ L(E,F ),

for each bounded set B of E and each q ∈ cs(F ). In this case the space is denoted
by Lb(E,F ). When F = E, we simply write L(E), Ls(E) and Lb(E), respectively.
For a Banach space E, observe that τb is the operator norm topology in L(E). We
denote by σ(T ) the spectrum of T ∈ L(E), that is, the set of complex numbers
λ ∈ C such that the operator T − λI has no inverse. As usual, I denotes the
identity on E.

A set M is absorbing if ∪nnM = E. We say that a Hausdorff locally convex space
E is barrelled if every barrel, that is, if every closed, absolutely convex (i.e., convex
and balanced) and absorbing set in the space is a zero-neighbourhood. Banach-
Steinhaus theorem still holds on barrelled spaces.

In what follows we give an introduction to countable inductive and projective limits
of locally convex spaces. For the definitions, the proofs and more background, see
e.g. [24], [101] or [110].
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Let E be a linear space, {En : n = 1, 2, . . . } an increasing sequence of subspaces
of E and Jn : En → E, Jn,n+1 : En → En+1, the canonical injections. Suppose
that each En is endowed with a Hausdorff locally convex topology τn such that
each Jn,n+1 : (En, τn) → (En+1, τn+1) is continuous. Then E := {(En, τn) : n =
1, 2, . . . } is called an inductive sequence with respect to the mappings {Jn : n =
1, 2, . . . }. An inductive sequence is strict if each Jn,n+1 is an isomorphism onto its
image and hyperstrict if it is strict and each En is closed in (En+1, τn+1). Each
(En, τn) is called a step of E .

Let E be an inductive sequence and let τ be the finest locally convex topology
on E such that each Jn : (En, τn) → (E, τ) is continuous. Then (E, τ) is called
the inductive limit of the defining sequence E and we write (E, τ) = ind E =
ind{(En, τn) : n = 1, 2, . . . }. If E is strict (resp., hyperstrict), (E, τ) is said to be
the strict (resp., hyperstrict) inductive limit of E . If each (En, τn) of an inductive
sequence is a Banach (resp., Fréchet) space, then (E, τ) is said to be an (LB)-space
(resp., (LF)-space).

Proposition 0.1.1 ([110, 0.3.2]) If (E, τ) = ind{(En, τn) : n = 1, 2, . . . } and if

(i) {n(k) : k = 1, 2, . . . } is a strictly increasing sequence of positive integers,
then F := {(En(k), τn(k)) : k = 1, 2, . . . } is also a defining sequence for
(E, τ).

(ii) T : (E, τ) → F, F being a Hausdorff locally convex space, is a linear map-
ping, then T is continuous if and only if each T ◦ Jn : (En, τn) → F is
continuous.

(iii) U is an absolutely convex subset of E, then U is a 0-neighbourhood in (E, τ)
if and only if each U ∩En is a 0-neighbourhood in (En, τn). Thus a basis of
0-neighbourhoods in (E, τ) can be given by the sets Γ( ∪

n∈N
Un), where each

Un is a 0-neighborhood in (En, τn) and Γ denotes the absolutely convex hull.

Theorem 0.1.2 (Grothendieck’s Factorization Theorem [110, 1.2.20]) Let F be a
Baire space, E = indnEn a countable inductive limit of Fréchet spaces and T : F →
E a linear mapping with closed graph in F×E. Then, there exists a positive integer
k such that T (F ) is contained in Ek and T : F → (Ek, τk) is continuous.

We say that an inductive limit E = indnEn is regular if, for every bounded set
B ⊆ E, there exists n ∈ N such that B is a bounded subset of En. E is boundedly
retractive if, for every bounded subset B of E, there exists n ∈ N such that B
is bounded in En and the topologies of E and En coincide on B, and E is said
strongly boundedly retractive if E is regular and, for every n ∈ N, there exists
some m ∈ N, m ≥ n such that the topology τ of the inductive limit E and the
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topology of Em coincide on each bounded subset B of En. It is clear that a strongly
boundedly retractive inductive limit is boundedly retractive.

Proposition 0.1.3 ([24, page 80]) If E = indnEn is a separated countable induc-
tive limit of normed spaces, let Bn denote the closed unit ball of En for n = 1, 2, . . . .
If each Bn is even closed in the inductive limit, then E = indnEn is regular.

Given E,F and G three topological vector spaces, a bilinear map P : E × F →
G is said to be hypocontinuous if for each bounded set B ⊆ E and for each
zero neighbourhood V ⊆ G, there exists a zero neighbourhood U ⊆ F such that
P (B×U) ⊆ V, and for each bounded set B′ ⊆ F and for each zero neighbourhood
V ′ ⊆ G, there exists a zero neighbourhood U ′ ⊆ E such that P (U ′ × B′) ⊆ V ′.
All continuous bilinear maps are hypocontinuous ([110, see 11.3]).

Proposition 0.1.4 Let E = indn(En, ‖ ‖n) be a regular inductive limit of Banach
spaces and T : E ×E → E a symmetric bilinear map. Then, T is hypocontinuous
if and only if for every m ∈ N and every bounded set B ⊆ E there exists n ∈ N,
n ≥ m and C > 0 such that ‖T (x, y)‖n ≤ C‖y‖m for every x ∈ B and every
y ∈ Em.

Proof. By definition, since T is symmetric, T : E × E → E is hypocontinuous
if and only if for every bounded set B ⊆ E, the set {Tx, x ∈ B} ⊆ L(E) is
equicontinuous, where Tx : E → E is the linear map defined by Tx(y) = T (x, y),
x, y ∈ E. Since (LB)-spaces are barrelled, this is equivalent to the fact of {Tx, x ∈
B} being bounded on bounded sets. Since the inductive limit E is regular, this
is satisfied if and only if for every m ∈ N, the set {Tx(y) : x ∈ B, y ∈ Bm} is
bounded in E, and this is equivalent to the existence of n ∈ N and C > 0 such
that ‖Tx(y)‖n ≤ C for every x ∈ B and every y ∈ Bm. This yields the conclusion.
2

Certain properties of locally convex spaces are preserved by the operation of tak-
ing inductive limits. In fact, an inductive limit of barrelled spaces is barrelled.
However, even though we suppose that each of the locally convex spaces En in
an inductive limit has a Hausdorff topology, it is possible that the inductive limit
topology τ of E = indnEn is not Hausdorff. Regular inductive limits always carry
a Hausdorff topology.

Symmetric to the process of constructing inductive limits, is the construction of
projective limits of locally convex spaces.

Let {Fn : n = 1, 2, . . . } be a sequence of locally convex spaces. For all m,n with
m ≥ n let πn,m : Fm → Fn be a continuous linear mapping such that πn,n is the
identity and πn,m ◦ πm,s = πn,s (n ≤ m ≤ s). The pair {(Fn, {πn,m}m≥n)}n is
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called a projective sequence and the space

F :=
{
{x(n)}n ∈

∏
n∈N

Fn : πn,m(x(m)) = x(n) for all m ≥ n
}
,

endowed with the induced topology of
∏
n∈N

Fn is called its projective limit, denoted

by F = projnFn. If each Fn is Hausdorff, then it is even a closed subspace of∏
n∈N

Fn. The canonical projections F → Fn, {x(m)}m → x(n) will be denoted by

πn. In fact, the projective limit topology τ of F = projnFn is the weakest locally
convex topology, but also the weakest vector space topology or even the weakest
topology which makes all the canonical mappings πn : F → Fn continuous. If Vn
is a base of absolutely convex neighbourhoods in Fn, the finite intersections of the
sets π−1

n (Vn), Vn ∈ Vn, n ∈ N, form a basis V of absolutely convex neighborhoods
for F with this topology.

Proposition 0.1.5 Let E be a convex space and T a linear mapping of E into
the projective limit F = projnFn with mappings πn. Then T is continuous if and
only if for each n ∈ N, πn ◦ T is a continuous mapping of E into Fn.

In a projective limit, we have that a subset A of F is bounded, or precompact, if
and only if each πn(A) has the same property for every n ∈ N. Moreover, contrary
to what happens to inductive limits, a projective limit of Hausdorff spaces is
Hausdorff.

A projective limit F = projnFn is called reduced if the maps πk : projnFn → Fk
have dense range in Fk for every k ∈ N. There is no real restriction in considering
reduced projective limits only, as every projective limit is linearly homeomorphic
to a reduced one. When F is reduced, all the transpose mappings π′n : F ′n → F ′ are
injective, and the inductive limit indnF ′n is equal to F ′ = (projnFn)′ algebraically.

Proposition 0.1.6 ([24, page 57]) For any inductive sequence {(En, τn) : n =
1, 2, . . . } of locally convex spaces, {(E′n, J ′n,n+1)} is a projective sequence, and we
have (indnEn)′ = projnE

′
n algebraically. If E = indnEn is a regular inductive

limit, then

(indnEn)′b = projn(En)′b

holds algebraically and topologically. Analogously, we get that for a Banach space
F,

Lb(indnEn, F ) = projn(Lb(En, F ))

if indnEn is regular.
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Definition 0.1.7 ([24, page 78]) A locally convex space E is said to be a (DF)-
space if:

(i) it has a fundamental sequence of bounded sets,

(ii) it is σ-quasibarrelled in the sense that, for each sequence {Un}n of closed
absolutely convex 0-neighborhoods in E such that U := ∩nUn absorbs every
bounded set, this intersection U must again be a 0-neighborhood in E.

The strong dual of any metrizable locally convex space is a (DF)-space, each
normed space also enjoys the (DF)-property, the strong dual of every (DF)-space
is Fréchet, and a countable inductive limit E = indnEn of (DF)-spaces En is again
a (DF)-space.

Definition 0.1.8 A locally convex space E is quasinormable if for every ab-
solutely convex 0-neighbourhood U in E there exists an absolutely convex 0-
neighbourhood V in E, contained in U, such that for every a > 0 there is a
bounded subset B in E with V ⊆ B + aU.

Definition 0.1.9 Given F = projnFn, where {(Fn, {πn,m}m≥n)}n is a projective
sequence of Banach spaces, and a locally convex space E, we consider the induc-
tive limit indn(L(Fn, E), In,m), with In,m : Lb(Fn, E) → Lb(Fm, E), In,m(T ) :=
T ◦ πn,m as canonical injections. Since L(F,E) = indn(L(Fn, E), {In,m}m≥n)
algebraically, we define Li(F,E) to be the vector space of all continuous linear
operators from F into E, endowed with the inductive limit topology (see [46]). By
[110, Proposition 8.3.45], any quasinormable Fréchet space F is distinguised, that
is F ′i = F ′b.

0.2 Weighted Banach spaces of holomorphic functions

The weighted Banach spaces of holomorphic functions Hv(G) and H0
v (G), where G

is an open balanced set in Cd, appear naturally in the study of growth conditions
of holomorphic functions and have been investigated in many papers since the
works of Shields and Williams in 1978 and 1982. See e.g. [27, 28, 35, 68, 94, 95]
and the references therein. In this section we give an introduction to these spaces.

We denote by H(G) the space of all analytic functions on G, which is usually
endowed with the compact-open topology τco. This is the topology of uniform
convergence on the compact subsets of G, defined by the seminorms

{qK : H(G)→ [0,∞), K compact subset of G},
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where qK(f) = ‖f‖K := max
z∈K
|f(z)|. Furthermore, we consider sometimes on H(G)

the topology τp of pointwise convergence, defined by the seminorms

{qF : H(G)→ [0,∞), F ⊆ C finite}

such that qF (f) := sup
z∈F
|f(z)|. By H∞(G) we denote the space of all bounded

analytic functions on G, by Pn(C) the polynomials of degree less than or equal to
n on C and by P(C) the set of all polynomials on C.

Definition 0.2.1 A weight is a continuous bounded strictly positive function v :
G → R+. If G ⊆ C and v(z) = v(|z|) for all z ∈ G, then v is called radial.
Furthermore, if G = D, we call a weight typical if it is radial, non-increasing with
respect to |z| and satisfies lim|z|→1− v(z) = 0. Hence, a typical weight v on D has
a continuous extension to the boundary of D by zero. We say that a weight v on
C is rapidly decreasing at infinity if it is radial and lim

r→∞
rkv(r) = 0 for all k ∈ N.

Throughout the thesis we consider all the weights on D typical and on C rapidly
decreasing.

We say that a function g : G→ R vanishes at infinity on G if for each ε > 0 there
exists a compact subset K ⊆ G such that |g(z)| < ε for all z ∈ G \K.

Definition 0.2.2 For an arbitrary weight v on G we define the weighted spaces
of holomorphic functions (defined on G) with O- and o-growth conditions as

Hv(G) := {f ∈ H(G) : ‖f‖v := sup
z∈G

v(z)|f(z)| <∞}

and

H0
v (G) := {f ∈ H(G) : v|f | vanishes at infinity on G }.

By definition, lim|z|→1_ v(z)|f(z)| = 0 for all f ∈ H0
v (D). If we let v ≡ 1 on

D, we get the Hardy space Hv(D) = H∞(D), and the Maximum Modulus The-
orem [114, Theorem 10.24] shows that H0

v (D) = {0}. Both spaces (Hv(G), ‖ ‖v)
and (H0

v (G), ‖ ‖v) are Banach spaces, and (H0
v (G), ‖ ‖v) ↪→ (Hv(G), ‖ ‖v) ↪→

(H(G), τco) with continuous inclusions. Since we assume all weights v on C rapidly
decreasing, H0

v (C) and Hv(C) contain the polynomials.

We denote by Bv and B0
v the closed unit balls of Hv(G) and H0

v (G), respectively.
Since

Bv = {f ∈ H(G) : |f(z)| ≤ 1
v(z) for all z ∈ G},
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the closed unit ball is uniformly bounded on the compact subsets of G, and since
the evaluation map δz : H(G)→ C, f 7→ f(z) is τco-continuous on H(G) and

Bv = ∩
z∈G

δ−1
z (D(0, 1/v(z))),

it is τco-closed and τco-compact in the Montel space H(G). Thus, the topology
induced by τco and the topology induced by τp coincide in Bv.

Given a weight v on G, its associated weight ṽ is defined as

ṽ(x) := 1
sup{|f(x)| : f ∈ Hv(G), ‖f‖v ≤ 1} .

It is known (see [28, Proposition 1.2]) that v ≤ ṽ and Hv(G) = H
ṽ
(G) isomet-

rically. H0
ṽ
(G) is a closed subspace of H0

v (G), but these spaces do not coincide
in general. Two weights v and w on G are called equivalent if there exist con-
stants C,C ′ > 0 such that Cv(z) ≤ w(z) ≤ C ′v(z) for all z ∈ G. Moreover, a
weight v on G is said to be essential if there exists a constant C > 0 such that
v(z) ≤ ṽ(z) ≤ Cv(z) for all z ∈ G. As mentioned by Bierstedt, Bonet and Taskinen
in [28], many results on weighted spaces of analytic functions and on composition
operators defined on them have to be formulated in terms of the associated weights
and not directly on the given weights, since they satisfy nice additional properties.

Example 0.2.3 ([28, 1.7 and 1.9]) The following weights verify that ṽ = v for
C and α positive constants and n a fixed natural number. Then, they all are
essential:

(i) G = C, v(z) = exp(−C|z|n),

(ii) G = D, v(z) = exp
(
− C

(1−|z|)α

)
,

(iii) G = D, v(z) = (1− |z|)α,

(iv) G = D, v(z) = max(1,−C log(1− |z|)),

(v) G = C, v(z) = (1 + |z|)−n exp(−n|Imz|),

For examples of essential weights such that the constant C is not equal to one,
we refer to [28, Section 3.A and 3.B] and we remark that Example 1.7 yields the
existence of non-essential weights.

In [32, Theorem 1.1 and Corollary 1.2], Bierstedt and Summers obtain that the
expression H0

v (G)′′ = H∞v (G) holds isometrically if and only if the closed unit ball
B0
v is τco-dense in Bv. For G = D, it is enough that the weight is typical, and for

G = C, that the weight is rapidly decreasing.
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Given G a balanced subset of C, each f ∈ H(G) has a Taylor series representation
around zero f(z) =

∑∞
k=0 akz

k, z ∈ G, with ak ∈ C, k ∈ N0. The Cesàro means
of the partial sums of the Taylor series of f around zero are denoted by Cnf,
n = 0, 1, . . . , and defined as

(Cnf)(z) := 1
n+ 1

n∑
i=0

(
i∑

k=0
akz

k

)
, z ∈ G.

Observe that for each n ∈ N0 and f ∈ H(G), the function Cnf is a polynomial of
degree less or equal to n and Cnf → f uniformly on every compact subset of G.
Moreover, by the Cauchy inequalities, the coefficients of the Taylor polynomials,
and hence the polynomials Cnf, depend continuously on f ∈ H(G) with respect
to τco on H(G). Moreover, since for f ∈ H(G) and z ∈ G we have

|(Cnf)(z)| ≤ max
|λ|=1
|f(λz)|, n = 0, 1, ...,

we get that given a weight v on G such that H0
v (G) contains all the polynomials,

Cnf converge to f in ‖ ‖v for every f ∈ H0
v (G). Hence, the polynomials are dense

in H0
v (G). Moreover, for each n ∈ N0, the operator Cn : f → Cnf, f ∈ H∞v (G)

is a continuous linear operator of finite rank from Hv(G) into H0
v (G) satisfying

‖Cnf‖v ≤ ‖f‖v for every f ∈ Hv(G). See [27] for the details.

Weighted Banach spaces of entire functions are treated in Chapter 3, Section 3.6,
where we study dynamical properties of the differentiation, the integration and the
Hardy operator acting on them. See [27] for more details and background about
weighted spaces of holomorphic functions defined on a balanced set G of Cd.

0.3 Weighted spaces of entire functions on Banach
spaces

In this section we deal with weighted spaces of entire functions defined on a Banach
space X. First we introduce some basic results concerning infinite dimensional
holomorphy, that is, the study of holomorphic functions on Banach spaces. We
refer the reader to [63] or [103] for background information.

A mapping P : X → C is said to be a k-homogeneous polynomial if there exists
a continuous k-linear mapping A : X × k)... ×X → C such that P (x) = A(x, ..., x)
for every x ∈ X. Given an homogeneous polynomial P, there exists a unique
continuous symmetric k-linear mapping A, that is, a k-linear mapping satisfying

A(xσ(1), . . . , xσ(n)) = A(x1, . . . , xn)
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for all x1, . . . , xn ∈ X and any permutation σ of the first n natural numbers, such
that P (x) = A(x, . . . , x). It can be obtained through the Polarization formula:

A(x1, . . . , xn) = 1
2nn!

∑
εi=±1

ε1 . . . εnP (
n∑
i=1

εixi).

Given an homogeneous polynomial P, we denote by P̌ its associated continuous
symmetric k-linear mapping, and given a continuous k-linear mapping A, we de-
note by Â its corresponding k-homogeneous polynomial Â(x) = A(x, . . . , x), x ∈
X. We shall denote by P(kX) the vector space of all k-homogeneous polynomials.
It is a Banach space under the supremum norm given by ‖P‖ = sup‖x‖≤1 |P (x)|,
P ∈ P(kX). A mapping P : X → C is said to be a polynomial of degree at most
n if it can be represented as a sum P = P0 + P1 + · · · + Pn, where Pk ∈ P(kX)
for k = 0, . . . , n. We denote by P(X) the vector space of all polynomials, and by
L(kX) (Ls(kX)) the vector space of all continuous (symmetric) k-linear mappings.

A mapping f : X → C is said to be holomorphic on X or entire if it has a
complex Fréchet derivative at each point of X. Equivalently, f is holomorphic if
for each x0 ∈ X there exists a ball B(x0, r), centred at x0 with radius r > 0, and a
sequence of polynomials {Pk}k, Pk ∈ P(kX), such that f(x) =

∑∞
k=0 Pk(x− x0)

uniformly for x ∈ B(x0, r). We shall denote by H(X) the vector space of all
holomorphic mappings from X into C. The sequence {Pk}k is uniquely determined
by f and x0. We shall write Pkf(x0) = Pk, Pkf = Pkf(0) and we will denote by
Akf(x0) and Akf its respectively associated symmetric k-linear mappings. The
series

∑∞
k=0 Pkf(x0)(x − x0) is called the Taylor series of f at x0. Its radius of

uniform convergence is the supremum of all r ≥ 0 such that the series converges
uniformly on the closed ball centred at x0 and radius r. This radius R is given by
the Cauchy-Hadamard Formula 1/R = lim supk→∞ ‖Pk‖1/k.

If X is an infinite dimensional Banach space, it is no longer true that the Taylor
series of each function f ∈ H(X) at each x0 ∈ X converges uniformly on any ball
around x0. In fact, there exist holomorphic mappings such that the Taylor series at
each x0 ∈ X does not converge uniformly on some ball around x0. This is because
a holomorphic function in this case is not necessarily bounded on bounded sets.
Therefore, we consider the space Hb(X) of holomorphic functions of bounded type
on X, i.e., holomorphic functions bounded on bounded sets. This space is endowed
with the locally convex topology τb of uniform convergence on the bounded subsets
of X.

We say that a map v : X →]0,∞[ is a weight if there exists a continuous decreasing
function η : [0,∞[→]0,∞[ rapidly decreasing, that is, limr→∞ η(r)rk = 0 for all
k ∈ N, such that v(x) = η(‖x‖) for all x ∈ X. Given a weight v, we define the
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weighted Banach spaces of entire functions

Hv(X) = {f : X → C holomorphic: ‖f‖v := sup
x∈X

v(x)|f(x)| <∞}

and

H0
v (X) = {f ∈ Hv(X) : v|f | vanishes at infinity outside bounded sets}.

We recall that a function f on X vanishes at infinity outside bounded sets (o.b.s)
if for all ε > 0 there exists a bounded set A ⊆ X such that |f(x)| < ε for all
x ∈ X \ A. We also denote by Bv and B0

v their closed unit balls, respectively.
Since

sup
x∈X

v(x)|pk(x)| = sup
x∈X

v(x)‖x‖k
∣∣∣∣pk ( x

‖x‖

)∣∣∣∣ ≤ sup
x∈X

v(x)‖x‖k‖pk‖

for every pk ∈ P(kX) and the weights are rapidly decreasing, P(X) ⊆ H0
v (X)

with continuous inclusion.

As in Section 0.2, given a weight v on X, its associated weight ṽ is defined as

ṽ(x) := 1
sup{|f(x)| : f ∈ Hv(X), ‖f‖v ≤ 1} .

As in the case X = C, from the definition, v ≤ ṽ and Hv(X) = H
ṽ
(X) isometri-

cally. If there exists a constant C > 0 for which ṽ ≤ Cv, the weight is also called
essential.

In [71], García, Maestre and Rueda defined and studied weighted spaces of holo-
morphic functions defined on Banach spaces. In the paper, given an increasing
sequence of weights W := {wn}n, they define the weighted Fréchet spaces of entire
functions on Banach spaces

HW (X) := {f ∈ H(X) : ‖f‖n := sup
x∈X

wn(x)|f(x)| <∞ for all n ∈ N}

and

HW0(X) := {f ∈ H(X) : wn|f | vanishes at ∞ o.b.s for all n ∈ N},

endowed with the projective limit topologies. That is,

HW (X) = projnHwn(X) and HW0(X) = projnH
0
wn(X)

are Fréchet spaces with norms {‖ ‖n}n.

On the other hand, weighted spaces of holomorphic functions defined by a decreas-
ing sequence of weights V := {vn}n, i.e., vn ≥ vn+1 for all n ∈ N, were studied
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in depth by Bierstedt, Meise and Summers [31] for open subsets of Cd (see also
[28], [40], [44] and [45]). For X a Banach space, we denote the weighted inductive
limits of spaces of holomorphic functions by

V H(X) := {f ∈ H(X) : ∃n ∈ N such that sup
x∈X

vn(x)|f(x)| <∞}

and

V H0(X) := {f ∈ H(X) : ∃n ∈ N such that vn|f | vanishes at ∞ o.b.s },

endowed with the inductive limit topologies τ and τ ′, respectively, that is,

V H(X) := indnHvn(X) and V H0(X) := indnH
0
vn(X).

Observe that V H0(X) is continuously included in V H(X), but we cannot assure
a priori that it is a topological subspace. We denote by Bn and B0

n the closed unit
balls of Hvn(X) (Hwn(X)) and H0

vn(X) (H0
wn(X)), respectively.

Countable locally convex inductive limits of weighted spaces of holomorphic func-
tions naturally arise in great profusion throughout such fields as linear partial
differential equations and convolution equations, distribution theory and repre-
sentation of distributions as boundary values of holomorphic functions, complex
analysis in one and several variables, and spectral theory and the holomorphic
functional calculus (see [31]).

As in the finite dimensional case, given a weight v on X and a function f ∈ H0
v (X),

the Cesàro means

CNf = 1
N + 1

N∑
l=0

(
l∑

k=0
Pkf

)
, N ∈ N,

converge to f in H0
v (X) (see [71, Proposition 4]). Hence, given a decreasing or an

increasing family of weights V or W, respectively, for each n ∈ N, P(X) is dense
in H0

wn(X) and in H0
vn(X), and thus, in HW0(X) and V H0(X). Since our weights

are defined through continuous and decreasing functions, HW (X) ↪→ Hb(X)
and V H(X) ↪→ Hb(X) with continuous inclusions, and thus, HW (X), HW0(X),
V H(X) and V H0(X) are Hausdorff spaces. The linear map δx : Hb(X)→ C, f 7→
f(x) is τco-continuous for every x ∈ X, so, given a weight v, the closed unit ball

Bv = ∩
x∈X

δ−1
x (D(0, 1/v(x)))

is τco-closed. Moreover, if we fix a compact set K ⊆ X, then

sup
f∈Bv

sup
x∈K
|f(x)| ≤ max

x∈K

1
v(x) <∞,
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so, Bv is uniformly bounded on the compact subsets of X. Therefore, by [103,
Proposition 9.15], Bv is equicontinuous, and since (Hb(X), τco) is semi-Montel
(see [25, p.130]), Bv is τco-compact. Thus, by Proposition 0.1.3, V H(X) is a
regular inductive limit.

In many concrete situations it is important to know an explicit formulation of
the continuous seminorms of the inductive limit topology. In order to obtain
the seminorms describing the topology of V H(X), Bierstedt, Meise and Summers
studied in [31] the problem of projective description for weighted inductive limits
of spaces of holomorphic functions.

Definition 0.3.1 Given a decreasing sequence of weights V = {vn}n we define
the maximal Nachbin family of weights associated to V by

V := {v : X → R : v ≥ 0, v u.s. and sup
x∈X

v(x)
vn(x) <∞ for all n ∈ N},

where v u.s. denotes v upper semicontinuous. Clearly, for every sequence {αn}n
of strictly positive numbers, infn αnvn is upper semicontinuous and belongs to V .

Definition 0.3.2 The projective hulls of the weighted inductive limits are defined
as follows:

HV (X) := {f ∈ H(X) : pv(f) := sup
x∈X

v(x)|f(x)| <∞ for every v ∈ V }

and

HV 0(X) := {f ∈ H(X) : vf vanishes at infinity o.b.s. for all v ∈ V },

both endowed with the locally convex topology defined by the seminorms {pv, v ∈
V }.

HV 0(X) is a closed subspace of HV (X), and HV (X) is Hausdorff (the canonical
injection HV (X) ↪→ (C(X), τp) is continuous). We always have the continuous
injections V H(X) ↪→ HV (X) and V H0(X) ↪→ HV 0(X), and the spaces V H(X)
and HV (X) coincide algebraically.

We define now the spaces for the vector-valued case:

Given a Hausdorff locally convex space G, we denote by H(X,G) the space of
vector-valued holomorphic functions. If G is a Banach space, a function f ∈
H(X,G) is holomorphic if and only if u ◦ f ∈ H(X) for every u ∈ G′. See [103,
Chapter 2] for the definition and more background about vector-valued holomor-
phic functions.
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Given a weight v : X → ]0,∞[, we define the weighted spaces of vector-valued
holomorphic functions by

Hv(X,G) = {f ∈ H(X,G) : rv,q(f) := sup
x∈X

v(x)q(f(x)) <∞ for all q ∈ cs(G)},

(3.1)

H0
v (X,G) = {f ∈ H(X,G) : v(q ◦ f) vanishes at ∞ o.b.s. ∀q ∈ cs(G)},

which are Banach spaces in the case G is a Banach space.

Given a decreasing (increasing) sequence of weights V (W ), the associated weighted
spaces of vector-valued holomorphic functions are defined by

V H(X,G) := {f ∈ H(X,G) : ∃n ∈ N : sup
x∈X

vn(x)q(f(x)) <∞ for all q ∈ cs(G)},

endowed with the inductive limit topology, i.e., V H(X,G) := indnHvn(X,G), and
by

HW (X,G) := {f ∈ H(X,G) : sup
x∈X

vn(x)q(f(x)) <∞ ∀q ∈ cs(G),∀n ∈ N},

endowed with the projective limit topology, i.e., HW (X,G) = projnHwn(X,G). It
is a locally convex space with seminorms {rn,q}n,q, rn,q(f) := supx∈X vn(x)q(f(x)).

Weighted (LB)-spaces of entire functions on Banach spaces are the spaces we work
with in Chapters 1 and 2. In Chapter 3 we deal with the weighted Banach spaces
of entire functions Hv(C) and H0

v (C), together with other weighted spaces of entire
functions defined by integral norms. The spaces HW (C), HW0(C), V H(C) and
V H0(C) appear in Chapter 4. The vector-valued case is considered in Sections 2.2
and 2.4.

0.4 Arens and Aron-Berner extensions

In this section we consider the problem of extending holomorphic functions of
bounded type from a Banach space X to its bidual X ′′ as a holomorphic function.
For the details and more background, see, e.g., [5] and [63, Section 6.2].

Various approaches to extensions have been proposed and developed in recent
years and, whether explicit or implicit, each successful effort employs one or both
of the canonical mappings JX : X → X ′′, JX′ : X ′ → X ′′′. We concentrate here
on the Aron-Berner extension operator ABk : P(kX)→ P(kX ′′) defined in [5].
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By Goldstine’s theorem, BX is weak∗-dense in BX′′ . If L ∈ L(kX), then Ek(L) or
L̃ denotes the k-linear mapping on (X ′′)k defined by

L̃(x′′1 , . . . , x′′k) = lim
α1
· · · lim

αk
L(xα1 , . . . , xαk), (4.2)

where {xαj}αj is a net in X such that JXxαj → x′′j in the σ(X ′′, X ′) topology for
all j ∈ {1, . . . , k}. Ek is well defined, since for each j ∈ {1, . . . , k−1}, {xi}ji=1 ∈ Xj

and {x′′i }ki=j+2 ∈ (X ′′)k−j−1, the mapping

x′′ ∈ X ′′ → L̃(JXx1, . . . , JXxj , x
′′, x′′j+2, . . . , x

′′
k)

is σ(X ′′, X ′) continuous. It is important to note the order, right to left, in which
the limits are taken in (4.2). A different ordering may give rise to a different
extension, because the extension Ek(L) is not necessarily separately weak-star
continuous in each variable. From the proof of [63, Proposition 1.53] we have
L̃ ∈ L(kX ′′) and ‖L‖ = ‖L̃‖. If L̂ = P ∈ P(kX), then its Aron-Berner extension is
defined by ABk(P )(z) := L̃(z, . . . , z) for all z ∈ X ′′, and is also norm-preserving,
i.e., ‖P̃‖ = ‖P‖ for all P ∈ P(kX). In fact, Davie and Gamelin showed in [60] that
if z ∈ X ′′, there is {xα}α ⊆ X such that ‖xα‖ ≤ ‖z‖ for all α, and P (xα)→

α
P̃ (z)

for all polynomial P on X. For convenience of notation we sometimes write P̃
instead of ABk(P ).

Now we consider the question of permuting the order of taking limits in (4.2). If
L ∈ L(kX) and the order can be interchanged, then we say that L is Arens regular,
and if every L ∈ L(kX) is Arens regular, we say that X is Arens regular. In this
case, Ek(Ls(kX)) ⊆ Ls(kX ′′), but this is not satisfied in general.

See the following alternative construction of the Aron-Berner extension. We only
require the k = 2 case but the procedure can be carried out for all k. If A ∈ L(2X)
we define TA ∈ L(X,X ′) by the formula [TA(x)](y) = A(x, y) for all x, y ∈ X. The
double transpose of TA, T ′′A, maps X ′′ into X ′′′ and E2(A)(x′′, y′′) = Ã(x′′, y′′) =
[T ′′A(x′′)](y′′).

Given a Banach space X, we say that T ∈ L(X,X ′) is weakly compact if T maps
the unit ball of X into a weakly relative compact subset of X ′. A complex Banach
space X is said to be (symmetrically) regular if every continuous (symmetric)
linear mapping T : X → X ′ is weakly compact. Recall that T is symmetric if
Tx1(x2) = Tx2(x1) for all x1, x2 ∈ X.

Proposition 0.4.1 ([63, Proposition 6.13]) If X is a symmetrically regular Ba-
nach space, then for all k ≥ 1, each continuous symmetric k-linear form on X
extends to a separately weak-star continuous symmetric k-linear form on X ′′.
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For regular spaces we have the next result:

Proposition 0.4.2 ([63, Proposition 6.14]) The following are equivalent for a Ba-
nach space X :

(i) each L ∈ L(kX) is Arens regular,

(ii) if L ∈ L(kX, ) then Ek(L) is separately weak-star continuous in each vari-
able,

(iii) each continuous linear mapping from X to X ′ is weakly compact, i.e., X is
regular.

The Aron-Berner extension of a bounded holomorphic function on a Banach space
X into its bidual X ′′ is defined through its Taylor series:

Proposition 0.4.3 ([63, Proposition 6.16]) If X is a Banach space, then there
exists a multiplicative, continuous linear mapping

AB : Hb(X)→ Hb(X
′′
), AB(f) :=

∑
k≥0

ABk(Pkf)

such that AB(f)|X = f. We say that AB(f) is the Aron-Berner extension of f to
X ′′, and in order to simplify, we denote it by f̃ .

0.5 An introduction to linear dynamics

In this section we introduce some basic definitions and results about linear dy-
namical systems. For motivation, more examples and background about linear
dynamics we refer the reader to the books by Bayart and Matheron [12] and by
Grosse-Erdmann and Peris [80], the article by Godefroy and Shapiro [73] and the
surveys [76] and [78] by Grosse-Erdmann.

Let X be a topological vector space and T : X → X an operator, that is, a linear
and continuous mapping. We call the pair (X,T ) a linear dynamical system. For
x ∈ X, we denote by Orb(x, T ) := {x, Tx, T 2x, ...} its orbit under T , and we say
that a point x ∈ X is periodic if there is some n ∈ N such that Tnx = x. The
smallest n ∈ N which verifies this condition is called the period of x.

An operator T : X → X is called topologically transitive if, for any pair U, V of
non-empty open subsets of X, there exists some n ∈ N0 such that Tn(U)∩V 6= ∅,
and T is called topologically mixing if, for any pair U, V of non-empty open subsets
of X, there exists some N ∈ N0 such that Tn(U) ∩ V 6= ∅ for all n ∈ N, n ≥ N.
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An operator T : X → X is said to be hypercyclic (Beauzamy, 1986) if it has a
dense orbit, that is, if there is some x ∈ X such that its orbit is dense in X.
Any such vector is called a hypercyclic vector and the set of hypercyclic vectors is
denoted by HC(T ).

For X a complete metric vector space, an operator T : X → X is called chaotic
(Godefroy, Shapiro, 1991) if it is hypercyclic and it has a dense set of periodic
points.

By the Birkhoff’s transitivity criterion (see [80, Theorem 1.16]), if X is a separable
complete metric vector space, then T is hypercyclic if and only if it is topologically
transitive.

The first simple criterion to ensure that an operator T on a separable complete
metrizable topological vector space is hypercyclic (even topologically mixing), was
presented by Kitai in her Thesis (1982) (see [80, Theorem 3.4]). It was discov-
ered independently by Gethner and Shapiro (1987) and was improved by several
authors. A weakening of the Kitai-Gethner-Shapiro criterion is the famous Hyper-
cyclicity Criterion due to Bès and Peris in 1999 (see [20] and [22]). The condition
in this weaker criterion do not imply that the operator is topologically mixing.

Theorem 0.5.1 (Hypercyclicity Criterion.) Let T : X → X be an operator on
a separable complete metrizable topological vector space X. Suppose that there are
dense subsets Y0, Y1 ⊆ X, an increasing sequence {nk}k of positive integers, and
maps Snk : Y1 → X, k ≥ 1, not necessarily linear nor continuous, such that:

(i) Tnkx→ 0 for each x ∈ Y0,

(ii) Snky → 0 for each y ∈ Y1, and

(iii) TnkSnky → y for each y ∈ Y1,

then T is hypercyclic.

If the Hypercyclicity Criterion is satisfied for the sequence of all positive integers,
then the proof shows that the operator T is even topologically mixing. Bès and
Peris proved that an operator T satisfies the assumptions of the Hypercyclicity
Criterion if and only if T ⊕ T is hypercyclic on X ⊕ X. Only very recently, De
La Rosa and Read ([61]) were able to exhibit hypercyclic operators which do not
satisfy the hypercyclicity criterion, thus solving a long standing problem. Their
example was improved later by Bayart and Matheron ([12]), who presented exam-
ples defined on classical Banach sequence spaces. The next result, first observed
by Kitai, gives a sufficient condition for an operator not to be hypercyclic.



26 Preliminaries

Lemma 0.5.2 (A “non-hypercyclicity criterion” [80, Lemma 2.53]) Suppose T is
an operator on a metrizable topological vector space X, and that T ′ : X ′ → X ′ has
an eigenvalue. Then T is not hypercyclic.

A vector x ∈ X is called frequently hypercyclic for T if, for every non-empty open
subset U of X,

dens {n ∈ N : Tnx ∈ U} > 0,

where

dens(A) = lim inf
N→∞

|{n ∈ A : n ≤ N}|
N

denotes the lower density of a subset A of N and |S| denotes the cardinality of a
set S. The operator T is called frequently hypercyclic if it possesses a frequently
hypercylic vector.

The orbit of a frequently hypercyclic vector is therefore, in the specified sense,
frequently recurrent. Obviously, frequent hypercyclicity is a stronger notion than
hypercyclicity.

According to Bayart and Grivaux [11], a bounded operator T on a Banach space
X is said to have a perfectly spanning set of eigenvectors associated to unimod-
ular eigenvalues if there exists a continuous probability measure σ on the unit
circle T such that for every σ-measurable subset A of T which is of σ-measure 1,
span(∪{Ker(T − λI) : λ ∈ A}) is dense in X.

Theorem 0.5.3 ([74, Theorem 1.4]) If a bounded operator T on a Banach space
X has a perfectly spanning set of eigenvectors associated to unimodular eigenval-
ues, then T is frequently hypercyclic on X.

See [80, Section 9] for more background and details about frequently hypercyclic
operators.

0.5.1 Linear dynamics on locally convex spaces

Since much of modern analysis also occurs in locally convex Hausdorff spaces
which are not metrizable, there is some interest in extending the definitions and
properties about dynamical systems to this more general setting. See [80, Chapter
12] and [88] for more background and details.

Since no topological vector space E has isolated points, every hypercyclic operator
T on E is topologically transitive, but the converse is not true in general (see [80,
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Example 12.9]). In this context, the hypothesis of the Hypercyclicity Criterion in
0.5.1 does not imply hypercyclicity, but topologically transitivity (see [80, Theo-
rem 12.33]). Following [80, Definition 12.11], since hypercyclicity and topological
transitivity no longer coincide, we adopt Devaney’s original definition of chaos,
that is, T : E → E is chaotic if it is topologically transitive and has a dense set of
periodic points.

In what follows, consider E is a barrelled locally convex space, and T : E → E an
operator. T is said to be power bounded if the sequence {TN}N is an equicontinuous
set of L(E). By the uniform boundedness principle, this is equivalent to the fact
that the set {TNx}N is bounded for every x ∈ E, and if E is a Banach space, to
supN ‖TN‖ <∞.

Given T ∈ L(E), let

T[N ] := 1
N

N∑
j=1

T j , N ∈ N, (5.3)

denote de Cesàro means of the iterates of T. The operator T is said to be Cesàro
power bounded if the sequence {T[N ]}N is equicontinuous, and mean ergodic if the
limits Px := limN→∞ T[N ]x, x ∈ X, exist in E. If {T[N ]}N is convergent in the
uniform operator topology τb, then T is called uniformly mean ergodic.

A power bounded operator T is mean ergodic precisely when

E = Ker(I − T )⊕ Im(I − T ), (5.4)

where Im(I − T ) denotes the range of I − T and the bar denotes the closure in
E. In general, Im(I − T ) is the set of all x ∈ E for which the sequence {T[N ]x}N
converges to 0 in E. The space E itself is called mean ergodic (resp. uniformly mean
ergodic) if every power bounded operator on E is mean ergodic (resp. uniformly
mean ergodic). F. Riesz showed in 1938 that all spaces Lp (1 < p <∞) are mean
ergodic. In 1939, E.R. Lorch proved that all reflexive Banach spaces are mean
ergodic.

Mean ergodic operators in Fréchet spaces and barrelled locally convex spaces have
been considered by Albanese, Bonet and Ricker in [1] and [2].

Proposition 0.5.4 ([1, Proposition 2.8]) Let E be any (DF) or (LF)-space which
is Montel. Then X is uniformly mean ergodic.
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Clearly, since

TN

N
= 1
N

N∑
j=1

T j − N − 1
N

1
N − 1

N−1∑
j=1

T j ,

if T is mean ergodic (uniformly mean ergodic), then TN/N converges to zero in
the strong operator topology (uniform operator topology).

The next two results will be used in Chapter 3 in order to show the uniform mean
ergodicity of some operators on Banach spaces.

Theorem 0.5.5 (Lin [91]) Let X be a Banach space and T ∈ L(X) such that
‖TN/N‖ → 0. Then, T is uniformly mean ergodic if and only if Im(I − T ) is
closed.

A Banach space X is called a Grothendieck space (see [65, Exercise 3.42]) if every
weak∗-convergent sequence in X ′ is weak-convergent. X has the Dunford-Pettis
property (see [65, Definition 13.41]) if x′n(xn)→ 0 whenever xn ∈ X and x′n ∈ X ′,
n ∈ N, satisfy xn → 0 in (X,σ(X,X ′)) and x′n → 0 in (X ′, σ(X ′, X)). `∞ and the
Hardy space H∞ are examples of Grothendieck Banach spaces with de Dunford-
Pettis property.

Theorem 0.5.6 (Lotz [92]) Let X be a Grothendieck Banach space satisfying the
Dunford-Pettis property. If T ∈ L(X) is such that ‖TN/N‖ → 0, then T is mean
ergodic if and only if T is uniformly mean ergodic.

The spaces we are going to consider are either (LB)-spaces or Fréchet spaces which
can be expressed as intersection of a decreasing sequence of Banach spaces. In both
cases, the spaces are barrelled. Therefore, an operator T ∈ L(E) is power bounded
if and only if for each bounded set B of E, the set {T k(x) : k ∈ N, x ∈ B} is
bounded in E. In particular, we get the next equivalence:

Proposition 0.5.7 (i) Let E = indnEn be a regular inductive limit of Banach
spaces. An operator T ∈ L(E) is power bounded if for every m ∈ N there
exists n ∈ N and some constant C > 0 such that ‖T kx‖n ≤ C‖x‖m for
every k ∈ N and x ∈ Em.

(ii) Given F = projnFn a projective limit of Banach spaces, the operator T :
F → F is power bounded if for every n ∈ N there exists m ∈ N and some
constant D > 0 such that ‖T kx‖n ≤ D‖x‖m for every k ∈ N and every
x ∈ F.
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Proof. (i) Since the inductive limit E is regular, T is power bounded if and only
if for every m ∈ N, the set {T k(x) : k ∈ N, x ∈ Bm} is bounded in E. And this
happens if and only if there exists n ∈ N and C > 0 such that ‖T k(x)‖n ≤ C
for every k ∈ N and every x ∈ Bm, which yields (i). (ii) follows using the same
arguments we use for the characterization of equicontinuous operators on Fréchet
spaces. 2

Lemma 0.5.8 Let E = indnEn be an inductive limit of Banach spaces. If T :
E → E is a linear map such that T| : En → En is continuous and mean ergodic
(power bounded) for every n ≥ n0, n0 ∈ N, then the operator T : E → E is
continuous and mean ergodic (power bounded). If E is regular and T| : En → En
is uniformly mean ergodic for every n ∈ N, then T : E → E is uniformly mean
ergodic.

Proof. Only uniform mean ergodicity needs a proof, since the other implications
are direct. Since every T| : En → En is mean ergodic, T : E → E is mean ergodic.
Let P (x) := limN→∞

1
N

∑N
j=1 T

jx, x ∈ E. Take a bounded set B in E. Since E is
regular, there exists some n ∈ N such that B ⊆ En and it is bounded in En. As
T| : En → En is uniformly mean ergodic, 1

N

∑N
j=1 T

j converges uniformly on B
with respect to ‖ ‖n, and thus, it converges to P uniformly on B with respect to
the inductive limit topology. 2

Analogously,

Lemma 0.5.9 Let E = projnEn be a projective limit of Banach spaces. If T :
E1 → E1 is an operator such that T| : En → En is continuous and (uniformly)
mean ergodic for every n ≥ n0, n0 ∈ N, then the operator T : E → E is continuous
and (uniformly) mean ergodic. If T| : En → En is power bounded for every n ∈ N,
then T is power bounded on E.

Lemma 0.5.10 ([39, Lemma 3]) Let T be a continuous linear operator on a lo-
cally convex space E. Let F be a locally convex space which is continuously and
densely contained in E. If T |F : F → F is well-defined, continuous and hypercyclic
(resp. chaotic), then T is also hypercyclic (resp. chaotic) on E.

Lemma 0.5.11 Let E be a barrelled locally convex space and T ∈ L(E).

(i) If T is topologically transitive, then {(T ′)k(v)}k is unbounded in E′b for
every v ∈ E′, v 6= 0.

(ii) If T is topologically mixing, then for each v ∈ E′, v 6= 0, no infinite subset
of {(T ′)k(v)}k is bounded in E′b. In particular, if E is a Banach space, T
topologically mixing implies limk→∞ ‖(T ′)k(v)‖ =∞ for each v ∈ E′, v 6= 0.
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Proof. (i) Assume that for some 0 6= v ∈ E′, the set U := {(T ′)k(v)}k is bounded
in E′b. Since U is bounded and E barrelled, the polar U◦ is a 0-neighbourhood, and
thus, has non-empty interior (see [110, Proposition 3.1.1]). Therefore, if V := {x ∈
E : |〈x, v〉| > 2}, we have T k(U◦) ∩ V 6= ∅ for some k, which is a contradiction.
(ii) Analogously, assume that for some 0 6= v ∈ E′ there exists some sequence
{nk}k ⊆ N such that the set U := {(T ′)nk(v)}k is bounded in E′b. The polar
U◦ has non-empty interior, therefore, if V := {x ∈ E : |〈x, v〉| > 2}, we have
T k(U◦)∩V 6= ∅ for every k ∈ N, k ≥ n0, for some n0 ∈ N, which is a contradiction.
2



Chapter 1

Spectra of weighted (LB)-algebras
of entire functions on Banach
spaces

In this chapter, given a decreasing family of weights on a Banach space X, we
consider the weighted inductive limits of spaces of entire functions V H(X) and
V H0(X) that have been introduced in section 0.3. Motivated by recent research
by Carando and Sevilla-Peris on weighted Fréchet algebras of entire functions on
Banach spaces [56], we determine conditions on the family of weights to ensure
that the corresponding weighted space is an algebra or has polynomial Schauder
decompositions. We study Hörmander algebras of entire functions defined on a
Banach space and we give a description of them in terms of sequence spaces. We
also focus on algebra homomorphisms between these spaces and obtain a Banach-
Stone type theorem for a particular decreasing family of weights. Finally, we study
the spectra of these weighted algebras, endowing them with an analytic structure.
Most of the results included in this chapter are published by Beltrán in [14].

By an algebra we understand a locally convex algebra, that is, an algebra A with a
locally convex structure so that multiplication is jointly continuous. The spectrum
of A is the space of non-zero continuous multiplicative functionals. We denote by
Mb(X) the spectrum of the space of entire functions of bounded type Hb(X), and
in the case V H(X) is an algebra, we denote its spectrum by VM(X).

31
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1.1 Weighted algebras of holomorphic functions

In this section we characterize when V H(X) is an algebra in terms of a condi-
tion on the family of weights V. By the next lemma, it es enough to show that
multiplication is well defined:

Lemma 1.1.1 ([43, Remark 2.2]) In every (LB)-space, pointwise multiplication
is well defined if and only if it is jointly continuous.

We have seen in section 0.3 that given a weight v on X, the unit ball Bv is compact
with respect to the compact open topology τco. Hence, for every x0 ∈ X, since
the evaluation map δx0 : Hb(X) → C is τco-continuous, the supremum in the
definition of associated weight (see section 0.3) is even a maximum. Thus, there
exists some f ∈ Hv(X) with ‖f‖v ≤ 1 such that ṽ(x0) = 1

|f(x0)| . Using this fact
and following the same ideas of [43, Proposition 2.1] and [56, Proposition 1], we
prove the following theorem:

Theorem 1.1.2 V H(X) is an algebra if and only if for each m ∈ N there exist
n ∈ N, n ≥ m, and C > 0 such that

vn(x) ≤ Cṽ2
m(x) for all x ∈ X. (1.1)

Proof. Let us begin by assuming that V H(X) is an algebra. Multiplication is
a continuous bilinear map, in particular hypocontinuous. Then, by Proposition
0.1.4, given a bounded set B ⊆ V H(X) and m ∈ N, there exists n ∈ N and C > 0
such that ‖fg‖n ≤ C‖g‖m for every g ∈ Hvm(X) and every f ∈ B. For a fixed
x0 ∈ X and m ∈ N, there exists some f ∈ Hvm(X) with ‖f‖vm ≤ 1 such that
ṽm(x0) = 1

|f(x0)| . So, if we consider B := Bm, there exists n ≥ m and C > 0 such
that

vn(x0) = |f2(x0)|vn(x0) 1
|f2(x0)| ≤ ‖f

2‖vn
1

|f2(x0)| ≤ Cṽ
2
m(x0).

The converse is clear from (1.1) and the fact that ‖f‖
ṽj

= ‖f‖vj for every f ∈
Hvj (X) and every j ∈ N. By Lemma 1.1.1, multiplication is jointly continuous.
2

Corollary 1.1.3 Given a weight v, the weighted Banach space Hv(X) is never
an algebra.

Proof. Given a weight v, by [28, Proposition 1.2], Hv(X) = H
ṽ
(X). If we assume

it is an algebra, applying Theorem 1.1.2 to H
ṽ
(X) we get that ṽ is bounded below,

since ˜̃v = ṽ also by [28, Proposition 1.2]. So, Hv(X) is the space of bounded entire
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functions on X, that is, the space of constant functions, which does not contain
the homogeneous polynomials. A contradiction, since we are considering rapidly
decreasing weights. 2

Corollary 1.1.4 If the family V consists of essential weights, V H(X) is an al-
gebra if and only if for each m ∈ N there exist n ∈ N, n ≥ m, and C > 0 such that
vn ≤ Cv2

m.

Example 1.1.5 Given a weight v on X, the inductive limit V H(X), where V =
{vn}n, is always an algebra.

In Section 0.3, we have seen that given a function f ∈ H0
v (X), the Cesàro means

Cnf converge to f in H0
v (X). Moreover, if for each function f ∈ V H(X) (resp.

V H0(X)) the Taylor series expansion of f at zero converges to f for the inductive
limit topology τ, then {P(kX)}k≥0 is said to be a Schauder decomposition of
V H(X) (V H0(X)). We are going to see that this condition, which is not satisfied
in general, holds when we introduce an additional condition on the weights.

Definition 1.1.6 A sequence {En}n of subspaces of a locally convex space E is
a Schauder decomposition of E if:

(i) for all x ∈ E there exists a unique sequence {xn}n, xn ∈ En, such that
x =

∑∞
n=1 xn := limm→∞

∑m
n=1 xn.

(ii) the projections {um}m, um(
∑∞
n=1 xn) :=

∑m
n=1 xn are continuous.

Definition 1.1.7 Let S denote the set of all scalar sequences α := {αn}∞n=1 such
that lim supn→∞ |αn|1/n ≤ 1. A Schauder decomposition {En}n of a locally convex
space E is an S-absolute decomposition if for all α ∈ S and x =

∑∞
n=1 xn ∈ E, xn ∈

En,

(i) α · x :=
∑∞
n=1 αnxn ∈ E,

(ii) for each continuous seminorm p and α ∈ S, pα(
∑∞
n=1 xn) :=

∑∞
n=1 |αn|p(xn)

defines a continuous seminorm on E.

When the last condition holds for the unit constant sequence 1, i.e., p1(
∑∞
n=1 xn) :=∑∞

n=1 p(xn) is a continuous seminorm for all continuous seminorm p on E, we say
that {En}n is an absolute decomposition of E.

Definition 1.1.8 An absolute Schauder decomposition {En}n of a locally convex
space E is a γ-complete decomposition if given {xn}∞n=1, xn ∈ En, such that∑∞
n=1 p(xn) <∞ for all continuous seminorm p, the series

∑∞
n=1 xn converges in

E.
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Lemma 1.1.9 ([71, Proposition 3]) If V is a decreasing family of weights, the
map Pk : V H(X) → V H(X), f 7→ Pkf, is continuous for each k ∈ N. Moreover,
‖Pkf‖vn ≤ ‖f‖vn for all f ∈ Hvn(X), n ∈ N.

Definition 1.1.10 Let V = {vn}n be a decreasing sequence of weights. We say
that V satisfies Condition (A) if for each m ∈ N there exist R > 1, D > 0 and
n ∈ N, n ≥ m, such that

‖Pkf‖vn ≤ D
1
Rk
‖f‖vm ∀f ∈ Hvm(X), k = 0, 1, 2, ...

Observe that this condition is analogous to Condition II in [71, Definition 7]. As in
[71, Proposition 8], the next proposition gives a condition that implies Condition
(A) and that is easier to check.

Proposition 1.1.11 Let V = {vn}n be a decreasing sequence of weights. If for
each m ∈ N there exist R > 1, D > 0 and n ∈ N, n ≥ m such that

vn(x) ≤ Dvm(Rx) ∀x ∈ X (Condition (A’)),

then the family V satisfies Condition (A).

Proof. Given m ∈ N and f ∈ Hvm(X), by Lemma 1.1.9, ‖Pkf‖vm ≤ ‖f‖vm ,
k = 0, 1, ... Hence, by hypothesis there exist R > 1, D > 0 and n ∈ N, n ≥ m,
such that

Rk‖Pkf‖vn = sup
x∈X

vn(x)|Pkf(Rx)| ≤ D sup
x∈X

vm(Rx)|Pkf(Rx)| ≤ D‖f‖vm .

2

Lemma 1.1.12 Given a decreasing sequence of weights V = {vn}n, the spaces
Hv1(X), V H(X) and Hb(X) induce the same topology on P(kX) for all k ∈ N.
It is equivalent to the supremum norm topology on P(kX).

Proof. Since the weights are rapidly decreasing,

P(kX) ↪→ Hv1(X) ↪→ V H(X) ↪→ Hb(X)

with continuous inclusions. Hence, since the supremum norm on P(kX) coincides
with the uniform convergence topology τb, we have the equivalence of all this
topologies on P(kX). 2

The next proposition is analogous to [71, Corollary 12], but its proof is essentially
different.
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Proposition 1.1.13 If V is a family of weights satisfying Condition (A), then
the spaces V H(X) and V H0(X) coincide algebraically and topologically.

Proof. Given m ∈ N and a function f ∈ Hvm(X), by Condition (A) there exists
n ≥ m, n ∈ N, such that

∑
k∈N Pkf converges absolutely to some g in H0

vn(X).
By the uniqueness of the Taylor series, f = g, and therefore, the identity map
i : Hvm(X) ↪→ H0

vn(X) is continuous. 2

Now, we can proceed as in the proof of [71, Theorem 11] to obtain the next
theorem:

Theorem 1.1.14 Let V be a family of weights on X satisfying Condition (A).
Then {P(kX)}k≥0 is an S-absolute, γ-complete Schauder decomposition of V H(X).

Proof. By Lemma 1.1.9 and the proof of Proposition 1.1.13, {P(kX)}k≥0 is a
Schauder decomposition of V H(X). Let us see that it is S-absolute: consider

S := {{aj}j ∈ CN : lim sup
j→∞

|aj |1/j ≤ 1}.

Given f ∈ V H(X), there exists m ∈ N such that f ∈ Hvm(X). Thus, by Condition
(A), there exists R > 1, D > 0 and n ∈ N, n ≥ m such that ‖Pkf‖vn ≤ D 1

Rk
‖f‖vm

for every k ∈ N. Given {aj}j ∈ S we can find j0 ∈ N such that |aj |1/j < (1 +R)/2
for each j ≥ j0. For c > 0 large enough we have |aj | ≤ c

( 1+R
2
)j for all j ∈ N0,

and then,

sup
x∈X

vn(x)|ajPjf(x)| ≤ D |aj |
Rj
‖f‖vm ≤ cD

(
1 +R

2R

)j
‖f‖vm .

Since 0 < 1+R
2R < 1, we have that

∑∞
j=0 ajPjf converges in H0

vn(X), and thus, on
V H(X). Moreover, given a continuous seminorm p on V H(X) and {aj}j ∈ S, the
map q : Hvm(X) → [0,∞[, q(f) :=

∑∞
j=0 |aj |p(Pjf) is continuous. In fact, since

Hvn(X) ↪→ V H(X) is continuous, there exists Cn > 0 such that p(f) ≤ Cn‖f‖vn
for all f ∈ Hvn(X). Thus, for each j ∈ N,

|aj |p(Pjf)/Cn ≤ |aj |‖Pjf‖vn ≤ D
|aj |
Rj
‖f‖vm ≤ cD

(
1 +R

2R

)j
‖f‖vm .

Hence, since q : Hvm(X) → [0,∞[ is continuous for every m ∈ N, q defines a
continuous seminorm on V H(X).

Finally, let us show that it is a γ-complete decomposition. As V H(X) is regular,
given a sequence {Qj}j , Qj ∈ P(jX), such that {

∑k
j=0Qj}k is bounded, there

exists m ∈ N such that {
∑k
j=0Qj}k is included and bounded in Hvm(X). Hence,
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by Condition (A), there exist R > 1, D, C > 0 and n ∈ N, n ≥ m, such that for
each k ∈ N,

k∑
j=0
‖Qj‖vn =

k∑
j=0

∥∥∥∥∥Pj
(

k∑
i=0

Qi

)∥∥∥∥∥
vn

≤ D R

R− 1

∥∥∥∥∥∥
k∑
j=0

Qj

∥∥∥∥∥∥
vm

< C.

Therefore, {
∑k
j=0Qj}k converges in Hvn(X), and thus, on V H(X). 2

Given a rapidly decreasing continuous function η : [0,∞[→]0, 1], we are going to
consider the sequences of weights V = {vn}n, vn(x) = η(‖x‖)n, and W = {wn}n,
wn(x) = η(n‖x‖), n ∈ N. The real function η can be radially extended to a weight
on C by η(z) = η(|z|) for z ∈ C, and its associated weight is given by

η̃(z) = 1
sup{|g(z)| : g ∈ H(C), |g| ≤ 1/η on C}

.

Proposition 1.1.15 ([56, Proposition 2 and Remark 1]) Let X be a Banach space
and v a weight defined by v(x) = η(‖x‖) for x ∈ X. Then, ṽ(x) = η̃(‖x‖) for all
x ∈ X, and w̃n(x) = η̃(‖x‖n) for each n ∈ N, x ∈ X.

A consequence of this result is that v is essential if and only if η is so. As we have
seen in Example 1.1.5, V H(X) is always an algebra. We proceed as in the proof of
[56, Proposition 4] in order to characterize when the space WH(X) is an algebra.

Proposition 1.1.16 WH(X) is an algebra if and only if there exist k > 1 and
C > 0 such that, for all t ≥ 0,

η(kt) ≤ Cη̃(t)2. (1.2)

If, furthermore, η is essential, then WH(X) is an algebra if and only if there exist
k > 1 and C > 0 so that, for all t ≥ 0,

η(kt) ≤ Cη(t)2. (1.3)

In this case, V H(X) ↪→ WH(X) continuously and there exist positive constants
a, b and α such that η(t) ≤ ae−btα for all t ≥ 0.

Proof. Assume WH(X) is an algebra. Therefore, by Theorem 1.1.2, given m = 1
there exist k ∈ N, k > 1 and C > 0 such that

η(k‖x‖) = wk(x) ≤ Cw̃2
1(x) = Cη̃(‖x‖)2

for all x ∈ X. On the other hand, if (1.2) is satisfied, given m ∈ N, x ∈ X, we have

wkm(x) = η(km‖x‖) ≤ Cη̃(m‖x‖)2 = Cw̃2
m(x).
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By Theorem 1.1.2, WH(X) is an algebra.

If η is essential, condition (1.2) is equivalent to (1.3). In this case, η(t) ≤
C2n−1η(t/kn)2n for all t > 0 and n ∈ N. Hence, given n ∈ N take m ≥ kn in
order to get

wm(x) = η(m‖x‖) ≤ C2n−1η(‖x‖)2n ≤ C2n−1η(‖x‖)n = C2n−1vn(x),

which yields the continuity of V H(X) ↪→WH(X).

The last statement is proved in [56, Proposition 4]. We include here the details
for the sake of completeness. Since η(t) tends to zero as t tends to infinity, we can
choose r > 0 such that Cη(r) < 1. We have

η(knr) ≤ C2n−1η(r)2n ≤ (Cη(r))2n

for all n ∈ N since we can assume C > 1. Now, for any t > r, let n be such that
knr ≤ t < kn+1r. As 2n = knlogk2 ≥ 1

2
(
t
r

)logk2
, then

η(t) ≤ η(knr) ≤ (Cη(r))2n ≤ (Cη(r))1/2(t/r)logk2
,

which is bounded by ae−btα for all t > 0 and some positive constants a, b and α,
since there exists L ≥ 0 such that e−L = Cη(r) < 1. 2

Proposition 1.1.17 The family W satisfies Condition (A’) and {P(kX)}k≥0 is
an S-absolute γ-complete Schauder decomposition of WH(X).

As in [56, Proposition 6], we characterize when the family V satisfies Condition
(A’) in terms of the function η. This condition also imposes a relationship between
V H(X) and WH(X).

Proposition 1.1.18 The family V satisfies Condition (A’) if and only if there
exist R > 1 and α, C > 0 so that, for all t > 0,

η(t)α ≤ Cη(Rt). (1.4)

In this case, WH(X) ↪→ V H(X) continuously.

Proof. If V satisfies Condition (A’), given m = 1, there exist n ≥ 1, D > 0
and R > 1 such that η(t)n ≤ Dη(Rt), and (1.4) is satisfied. On the other hand,
if (1.4) is satisfied, for any m ∈ N, choose n ≥ max(αm,m). Hence, η(t)n ≤
η(t)αm ≤ Cmη(Rt)m. In this case, we have that for all n ∈ N, Hwn(X) ↪→ V H(X)
is continuous. In fact, if we take k ∈ N such that Rk > n, from (1.4) we get

η(t)α
k

≤ C
αk−1
α−1 η(Rkt) ≤ C

αk−1
α−1 η(nt).
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Hence, take m > αk, m ∈ N, in order to have Hwn(X) ↪→ Hvm(X) continuously.
2

Corollary 1.1.19 If the function η is essential, WH(X) is an algebra and V
satisfies Condition (A’), then WH(X) = V H(X) topologically.

1.2 Algebra homomorphisms between weighted
algebras

The aim of this section is to find conditions to ensure that two weighted algebras
defined on two different Banach spaces by the same family of weights are homeo-
morphic as locally convex algebras. This aim is achieved under certain conditions
for a large class of algebras known as Hörmander algebras.

Definition 1.2.1 A growth condition is an increasing continuous function p :
[0,∞[→ [0,∞[ with the following properties:

(α) ϕ : r → p(er) is convex,

(β) log(1 + r2) = o(p(r)) as r tends to ∞,

(γ) there exists λ ≥ 0 with p(2r) ≤ λ(p(r) + 1) for all r ≥ 0.

Example 1.2.2 The following functions are easily seen to be growth conditions:

(i) p(r) = rd, d > 0,

(ii) p(r) =
{

(log r)α if r ≥ 1
0 if r ≤ 1 , α > 1.

The Young conjugate ϕ∗ : [0,∞[→ R of ϕ is given by

ϕ∗(s) := sup{sr − ϕ(r), r ≥ 0}.

There is no loss of generality to assume that p vanishes on [0, 1]. Thus, ϕ∗ has
only non-negative values, it is convex and ϕ∗(r)/r is increasing and tends to ∞ as
r → ∞. In fact, ϕ∗(t) ≥ nt − ϕ(n) for all n ∈ N. Hence, ϕ

∗(t)
t ≥ n − ϕ(n)

t for all
n ∈ N, t > 0, and thus, for each n ∈ N there exists some tn > 0 such that, for all
t ≥ tn, ϕ

∗(t)
t ≥ n− 1. Therefore, limt→∞

t
ϕ∗(t) = 0. As an immediate consequence,

since nϕ∗(j/n) > j for j big enough, the series
∑
j∈N exp(−nϕ∗(j/n)) converges

for all n ∈ N.
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For a growth condition p, we set V = {vn}n, vn(x) = η(‖x‖)n, x ∈ X, where
η(t) = e−p(t), and we consider the Hörmander algebra

Ap = Ap(X) := V H(X).

The algebras Ap(C) were introduced for the first time by Hörmander in [83]. They
were intensively studied by Berenstein and Taylor in the context of interpolation
of entire functions (see e.g. [19]). The study of the locally convex structure of the
algebras Ap(C) was initiated by Meise in [99]. We refer the reader to Chapter 2
in [18] for a detailed exposition of the role of the algebras Ap(C) in interpolation.

By Condition (γ) in Definition 1.2.1, the family V satisfies Condition (A’). Indeed,
by hypothesis, there exists λ > 0 such that−λp(t) ≤ λ−p(2t) for each t ≥ 0.Hence,
there exists C > 0 such that η(t)λ ≤ Cη(2t) and (1.4) is satisfied. By Condition
(β), the weights are rapidly decreasing. In fact, given n ∈ N, there exists rn > 0
such that log(1 + r2)n ≤ p(r) for all r ≥ rn, and thus, rne−p(r) ≤

(
r

1+r2

)n
, which

tends to zero as r tends to infinity.

Corollary 1.2.3 The sequence {P(kX)}k is an S-absolute γ-complete Schauder
decomposition of the algebra Ap for every growth condition p.

The fact that the polynomials on two different spaces of holomorphic functions are
isomorphic does not in general imply that the spaces are isomorphic, even having
a decomposition like that in Corollary 1.2.3. The aim now is to show that, under
certain conditions, for Hörmander algebras this does hold. To see this we give
a representation of Ap(X) as a sequence space (Theorem 1.2.7). First, the next
lemma is needed. It is a generalization of [100, Proposition 1.10] (see also [99]),
where the case X = C is considered.

Lemma 1.2.4 Given a growth condition p and n ∈ N, the following holds:

(i) If f ∈ Hb(X) satisfies supx∈X |f(x)| exp(−np(‖x‖)) = A, then
supj ‖Pjf‖ exp(nϕ∗(j/n)) ≤ A.

(ii) If supj ‖Pj‖ exp(nϕ∗(j/n)) = A, where Pj ∈ P(jX), then
∑
j≥0 Pj con-

verges to some f ∈ Hb(X) with supx∈X |f(x)| exp(−np(2‖x‖) ≤ 2A.

Proof. (i) By [103, 7.3], for all j ∈ N and R > 0,

‖Pjf‖ ≤
1
Rj

sup
‖x‖≤R

|f(x)| ≤ ‖f‖vn
Rj

sup
‖x‖≤R

exp(np(‖x‖)) ≤ ‖f‖vn
Rj

exp(np(R)).
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Thus, since

sup
R>0
{Rj exp(−np(R))} = exp(n sup

R>0
{ j
n

logR− p(R)})

= exp(n sup
R≥1
{ j
n

logR− p(R)})

= exp(n sup
r≥0
{ j
n
r − p(er)})

= exp(nϕ∗(j/n)), (2.5)

we get

sup
j
‖Pjf‖ exp(nϕ∗(j/n)) ≤ ‖f‖vn . (2.6)

(ii) As ‖Pj‖ ≤ A exp(−nϕ∗(j/n)) for every j ∈ N and ϕ∗(r)/r tends to ∞ as r →
∞, by the Cauchy-Hadamard formula, the series

∑
j≥0 Pj converges in (Hb(X), τb)

to some f, and thus, Pj = Pjf for every j ∈ N. Since by (2.5)

|f(x)| exp(−np(2‖x‖) ≤
∑
j≥0
|Pjf(x)| exp(−np(2‖x‖)

≤
∑
j≥0

1
2j ‖Pjf‖‖2x‖

j exp(−np(‖2x‖))

≤ 2 sup
j≥0
‖Pjf‖ exp(nϕ∗(j/n))

for every x ∈ X, the conclusion follows. 2

Definition 1.2.5 Given a Banach space X and a growth condition p, for each
n ∈ N consider the Banach space

`∞,n(X, p) :=

{Pj}j ∈∏
j∈N
P(jX) : |||{Pj}j |||n := sup

j
‖Pj‖ exp(nϕ∗( j

n
)) <∞

 .

The inclusions `∞,n(X, p) ↪→ `∞,n+1(X, p) are continuous, therefore, we denote
by κ∞(X, p) the locally convex space indn(`∞,n(X, p), ||| · |||n) endowed with the
inductive limit topology.

Proposition 1.2.6 Given a Banach space X and a growth condition p, the space
κ∞(X, p) is an algebra with multiplication {Pj}j · {Qk}k := {

∑
j+k=h PjQk}h.
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Proof. If we take {Pj}j , {Qk}k ∈ κ∞(X, p), then there exist n,m ∈ N such
that {Pj}j ∈ `∞,n(X, p) and {Qk}k ∈ `∞,m(X, p). By (2.5) and Condition (γ) in
Definition 1.2.1, there exists λ ∈ N such that, for all h ∈ N,

‖
∑

j+k=h
PjQk‖ ≤

∑
j+k=h

‖Pj‖‖Qk‖

≤ CD
∑

j+k=h
exp(−nϕ∗(j/n)) exp(−mϕ∗(k/m))

= CD
∑

j+k=h
inf
r≥0

(2r)−j exp(np(2r)) inf
r≥0

r−k exp(mp(r))

≤ CD inf
r≥0

r−h exp(np(2r) +mp(r))
∑

0≤j≤h

1
2j

≤ 2CDenλ inf
r≥0

r−h exp((m+ nλ)p(r))

= 2CDenλ exp(−(m+ nλ)ϕ∗(h/(m+ nλ))),

where C = |||{Pj}j |||n and D = |||{Qk}k|||m. Therefore, {
∑
j+k=h PjQk}h ∈

`∞,m+nλ(X, p) and the product is well defined and separately continuous. By
Lemma 1.1.1, multiplication is continuous. 2

Theorem 1.2.7 For a growth condition p, the map φ : Ap → κ∞(X, p), f =∑
j Pjf 7→ {Pjf}j , where Pjf ∈ P(jX), is an algebra topological isomorphism.

Proof. By Lemma 1.2.4(i), |||{Pjf}|||n ≤ ‖f‖vn for each f ∈ Hvn(X), n ∈ N.
Then, φ is well defined and continuous. On the other hand, by Lemma 1.2.4(ii),
if there exists n ∈ N such that |||{Pj}j |||n <∞, then

∑
j≥0 Pj converges to some

f ∈ Hb(X) and

sup
x∈X
|f(x)| exp(−np(2‖x‖) ≤ 2|||{Pj}j |||n.

By Condition (γ) in Definition 1.2.1, there exists some λ ∈ N such that ‖f‖nλ ≤
2enλ|||{Pj}j |||n. Therefore, φ is a topological isomorphism. By Proposition 1.2.6,
φ is also an algebra homomorphism. 2

Definition 1.2.8 We say that a growth condition p satisfies the BMM Condition
if there exists H > 1 such that 2p(r) ≤ p(Hr) + H for all r ≥ 0. This condition
for the weights was introduced by Bonet, Meise and Melikhov in [49].

The next proposition is inspired by [70, Theorem 9], although the proof uses
different techniques.
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Lemma 1.2.9 Let X and Y be Banach spaces. Suppose that for each j ∈ N there
exist an isomorphism φj : P(jX)→ P(jY ) and constants a,A, b, B > 0 such that

‖φj(Pj)‖ ≤ aAj‖Pj‖ and ‖Pj‖ ≤ bBj‖φj(Pj)‖ for all Pj ∈ P(jX). (2.7)

Then, the spaces κ∞(X, p) and κ∞(Y, p) are topologically isomorphic for every
growth condition p. Moreover, if

φk(PjQr) = φj(Pj)φr(Qr) for all Pj ∈ P(jX), Qr ∈ P(rX), j + r = k, (2.8)

is satisfied, then they are also algebra isomorphic.

On the other hand, if p satisfies the BMM Condition, then we have the converse
result: if φ : κ∞(X, p) → κ∞(Y, p) is a topological isomorphism such that φ =
(φj)j , where φj : P(jX)→ P(jY ), then φj is a topological isomorphism satisfying
(2.7).

Proof. Consider φ : κ∞(X, p) → κ∞(Y, p), φ({Pj}j) = {φj(Pj)}j . As p(2r) =
O(p(r)), given A > 0 as in the hypothesis, we can find k ∈ N, λ ∈ N and µ > 0
such that p(Ar) ≤ λkp(r) + µ for every r ≥ 0. Fix n ∈ N and consider {Pj}j such
that supj ‖Pj‖ exp(nϕ∗(j/n)) <∞. We get

|||{φj(Pj)}j |||nλk ≤ a sup
j
Aj‖Pj‖ sup

r≥0
rj exp(−nλkp(r))

≤ a sup
j
‖Pj‖ sup

r≥0
(Ar)j exp(−np(Ar) + nµ)

= aenµ|||{Pj}j |||n.

Hence, we have that φ is well defined and continuous. From the fact that φj is a
topological isomorphism and from the second inequality in (2.7), φ−1 is also well
defined and continuous. If (2.8) is satisfied, it is easy to check that φ is an algebra
topological isomorphism.

Let us see now the other direction. Obviously, for any Banach space Z and any
growth condition p, we can define sj : P(jZ) → κ∞(Z, p) by sj(Pj) = {Pk}k,
with Pk = 0 if k 6= j. Consider φj for some j ∈ N and assume φj(Pj) = φj(Qj).
Since φ(sj(Pj)) = φ(sj(Qj)) and φ is injective, we get Pj = Qj . Observe that it
is also onto. Take Qj ∈ P(jY ). As φ is onto, there exists {Pk}k ∈ κ∞(X, p) such
that φ({Pk}k) = sj(Qj). Thus, there exists Pj ∈ P(jX) such that φj(Pj) = Qj .
Observe that the BMM Condition in Definition 1.2.8 is equivalent to the next one:
for each n ∈ N there exist some cn, δn > 0 such that p(s) ≤ 1

np(cns) + δn for all
s ≥ 0. In this case, for each n ∈ N there are dn, δn > 0 such that

ϕ∗(t) ≤ nϕ∗( t
n

) + dnt+ δn ∀t ≥ 0. (2.9)
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In fact, if we take dn > 0 such that cn = edn , since

1
n
ϕ(s) = 1

n
p(es) ≥ p( e

s

cn
)− δn = ϕ(s− dn)− δn,

we have

ϕ∗(t) = n sup
s≥0
{ t
n
s− 1

n
ϕ(s)}

≤ n sup
s≥dn
{ t
n

(s− dn)− ϕ(s− dn)}+ dnt+ δn

≤ n sup
s≥0
{ t
n
s− ϕ(s)}+ dnt+ δn = nϕ∗( t

n
) + dnt+ δn.

On the other hand, since φ is continuous, there exist n ≥ 1 and C > 0 such that
|||φ(sj(Pj))|||n ≤ C|||sj(Pj)|||1 for all Pj ∈ P(jX), j ∈ N, i.e.,

‖φj(Pj)‖ ≤ C‖Pj‖ exp(ϕ∗(j)− nϕ∗(j/n)).

Therefore, by (2.9), there exist dn and δn > 0 such that ‖φj(Pj)‖ ≤ Ceδn(edn)j‖Pj‖
for every j ∈ N. Moreover, as φ−1 is continuous, we have that there exist m ≥ 1
and D > 0 such that |||sj(Pj)|||m ≤ D|||φ(sj(Pj))|||1 for all Pj ∈ P(jX), j ∈ N,
i.e.,

‖Pj‖ ≤ D‖φj(Pj)‖ exp(ϕ∗(j)−mϕ∗(j/m)).

Again, (2.9) yields the isomorphism and the requested bound. 2

As an immediate consequence of Lemma 1.2.9 and Theorem 1.2.7 we get:

Proposition 1.2.10 Let X and Y be Banach spaces such that for each j ∈ N
there exists an isomorphism φj : P(jX) → P(jY ) satisfying (2.7). Then, Ap(X)
and Ap(Y ) are topologically isomorphic for every growth condition p. If (2.8) is
satisfied, then they are isomorphic also as algebras.

The BMM Condition is satisfied, for instance, for p(r) = rd for each d > 0, but
it is not satisfied for an arbitrary growth condition. If p(r) = max(0, (log r)2),
r ≥ 0, we get that for r ≥ 1 and H ≥ 1, the expression 2p(r) − p(Hr) = log2 r −
2 logH log r − log2H cannot be bounded.

Now, we are going to see that, under certain conditions on the spaces and with
the particularly well behaved growth condition p(r) = r, r ≥ 0, it is enough that
the 1-homogeneous polynomials coincide to obtain that the weighted algebras Ap
are isomorphic, thus obtaining a Banach-Stone type theorem. Observe that in this
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case, the Hörmander algebras coincide with the space of holomorphic functions of
exponential type Exp(X).

We recall that a (continuous) mapping T between two locally convex spaces X
and Y is affine if there exist some (continuous) L ∈ L(X,Y ) and y0 = T (0) ∈ Y
such that T (x) = L(x) + y0 for all x ∈ X. We say that it is weakly affine if for
each y′ ∈ Y ′, y′ ◦ T : X → C is affine.

Remark 1.2.11 If f : Y → C is a holomorphic function such that there ex-
ist A,B > 0 with |f(y)| ≤ A‖y‖ + B for all y ∈ Y, then it is affine. In fact,
as f ∈ H(Y ), there exists a sequence {Pjf}j , Pjf ∈ P(jY ), such that f(y) =∑
j∈N Pjf(y) for all y ∈ Y. By the Cauchy inequalities (see [103, 7.4]),

tj |Pjf(y)| = |Pjf(ty)| ≤ sup
|θ|=1

|f(θty)| ≤ At‖y‖+B.

Hence, tj‖Pjf‖ ≤ At+B for all t ∈ C. For j ≥ 2, we get ‖Pjf‖ = 0, as otherwise
the polynomial tj‖Pjf‖ − At is not bounded on C. Therefore, there exist P1f ∈
Y ′, P0f = f(0) ∈ C such that f(y) = P1f(y) + P0f for all y ∈ Y.

Remark 1.2.12 If a continuous mapping T : X → Y between two locally convex
spaces X and Y is weakly affine, then it is also affine: by hypothesis, for each
y′ ∈ Y ′, there exists x′ ∈ X ′ and c(y′) ∈ C such that, for all x ∈ X, (y′ ◦ T )(x) =
y′(T (x)) = x′(x) + c(y′), where c(y′) = y′(T (0)) for all y′ ∈ Y ′. Consider now the
continuous map S : X → Y, S(x) := T (x)− T (0). Observe that it is lineal: given
x1, x2 ∈ X, then,

y′(T (x1 + x2)− T (0)− T (x1) + T (0)− T (x2) + T (0))
= y′(T (x1 + x2))− y′(T (x1))− y′(T (x2)) + y′(T (0))
= x′(x1) + x′(x2) + c(y′)− x′(x1)− c(y′)− x′(x2)− c(y′) + c(y′) = 0.

As this happens for all y′ ∈ Y ′ and 〈X,X ′〉 is a dual pair, we have that S(x1+x2) =
S(x1) + S(x2). Take now λ ∈ C. We have

y′(T (λx)− T (0)− λT (x) + λT (0))
= y′(T (λx))− y′(T (0))− λy′(T (x)) + λy′(T (0))
= λx′(x) + c(y′)− y′(T (0))− λx′(x)− λc(y′) + λy′(T (0)) = 0.

Therefore, S(λx) = λS(x), and the map S is linear and continuous.

The following lemma is similar to [56, Lemma 3].

Lemma 1.2.13 Let A : Exp(X) → Exp(Y ) be a continuous algebra homomor-
phism. Then Ax′ is a degree 1 polynomial for all x′ ∈ X ′ (i.e., A maps linear
forms on X to affine forms on Y ).
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Proof. A is continuous, then given n ∈ N there exist m ∈ N and C > 0 such that,
for every f ∈ Hvn(X),

sup
y∈Y
|Af(y)|e−m‖y‖ ≤ C sup

x∈X
|f(x)|e−n‖x‖.

Take x′ ∈ X ′ and define fM (x) :=
∑M
j=0

x′(x)jnj
‖x′‖jj! ∈ P(MX) ⊆ Hvn(X), M ∈ N.

Since A is an algebra homomorphism,

sup
y∈Y

∣∣∣∣∣∣
M∑
j=0

(Ax′)(y)jnj

‖x′‖jj!

∣∣∣∣∣∣ e−m‖y‖ ≤ C sup
x∈X

∣∣∣∣∣∣
M∑
j=0

x′(x)jnj

‖x′‖jj!

∣∣∣∣∣∣ e−n‖x‖
≤ C sup

x∈X

M∑
j=0

‖x‖jnj

j! e−n‖x‖

≤ C sup
x∈X

en‖x‖e−n‖x‖ = C

for everyM ∈ N, hence supy∈Y
∣∣∣∣enAx′(y)

‖x′‖

∣∣∣∣ e−m‖y‖ ≤ C. Then, if we take n = 1, there

exists K1 > 0 such that <( Ax
′

‖x′‖ (y)) ≤ K1‖y‖ + K2 for all y ∈ Y, where < stands
for the real part of a complex number. Also, if |λ| = 1 we have <(λ Ax

′

‖x′‖ (y)) =

<(A λx′

‖x′‖ (y)) ≤ K1‖y‖+K2. This gives
∣∣∣A x′

‖x′‖ (y)
∣∣∣ ≤ K1‖y‖+K2 for all y ∈ Y. By

Remark 1.2.11, A x′

‖x′‖ is affine on y, and so is Ax′. 2

By Lemma 1.2.13 and Remark 1.2.12, we obtain the next corollary:

Corollary 1.2.14 If φ : Y → X is a holomorphic mapping and the composition
operator Cφ : Exp(X)→ Exp(Y ) given by Cφ(f) = f ◦ φ is continuous, then φ is
affine.

The proof of the next theorem follows the same steps as the proof of [56, Theorem
2].

Theorem 1.2.15 If Exp(X) ∼= Exp(Y ) as topological algebras, then X ′ ∼= Y ′.
Moreover, if X and Y are symmetrically regular, or X is regular, then Exp(X) ∼=
Exp(Y ) if and only if X ′ ∼= Y ′.

Proof. Let A : Exp(X) → Exp(Y ) be an isomorphism between these spaces. By
Lemma 1.2.13, Ax′ is affine for every x′ ∈ X ′. Define S : X ′ → Y ′ by Sx′ =
Ax′ − Ax′(0Y ). S is linear and continuous. Consider also S̃ : Y ′ → X ′ given by
S̃y′ = A−1y′ − A−1y′(0X). Since Ax′(0Y ) and A−1y′(0X) are constants, and so,
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invariant for both A and A−1, it is easily seen that S and S̃ are inverse one to
each other. So, X ′ and Y ′ are isomorphic.

Conversely, if X and Y are symmetrically regular and S : X ′ → Y ′ is an iso-
morphism, by [90, Theorem 4] the mapping Ŝj : P(jX) → P(jY ) given by
Ŝj(P ) = P̃ ◦ S′ ◦ JY , where JY denotes the canonical embedding of Y into Y ′′
and P̃ the Aron-Berner extension of P to X ′′ (see section 0.4), is an isomorphism.
Moreover, since the Aron-Berner extension is norm preserving for polynomials, for
every P ∈ P(jX), j ∈ N,

‖Ŝj(P )‖ = sup
‖y‖≤1

∣∣∣∣P̃ ( S′(y)
‖S′(y)‖

)∣∣∣∣ ‖S′(y)‖j ≤ ‖S‖j‖P‖,

and analogously for S−1. The fact that P(jX) and P(jY ) are a Schauder decom-
position of Exp(X) and Exp(Y ) with isomorphisms Ŝj , j ∈ N, satisfying equation
(2.7), together with Proposition 1.2.10, gives the topological isomorphism. By the
multiplicative nature of the Aron-Berner extension, i.e., f̃g = f̃ g̃ for f, g holo-
morphic functions, also equation (2.8) in Lemma 1.2.9 is satisfied, which gives the
conclusion. The other case is analogous, since X or Y regular and X ′ ∼= Y ′ implies
by [52, Proposition 1] that both of them are regular. 2

Remark 1.2.16 Observe that given two dual-isomorphic symmetrically regular
Banach spaces X and Y (or X regular), we can proceed as in the proof of Theorem
1.2.15 in order to obtain Ap(X) ∼= Ap(Y ) as topological algebras for a general
growth condition p.

An example of two dual-isomorphic regular Banach spaces can be found in [52,
Section 2]. They consist on the spaces X = C[0, 1] and Y = c0(J,C[0, 1]), which
satisfy

X ′ = `1
(
J, `1(N)⊕1 L

1[0, 1]
)

= `1
(
J × J, `1(N)⊕1 L

1[0, 1]
)

= `1(J,X ′) = Y ′,

where J is a set having the power of the continuum. By Remark 1.2.16, for every
growth condition p, we get Ap(X) ∼= Ap(Y ) as topological algebras.

1.3 The spectrum

In this section we study the analytic structure of the spectrum of V H(X), denoted
by VM(X), when X is a symmetrically regular Banach space and V H(X) is an
algebra. We show, in the spirit of the results given in [6], [7], [55] and [56], that
the spectrum can be viewed as the disjoint union of analytic copies of X ′′, these
copies being the connected components of VM(X). The copies of the bidual are
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constructed laying a copy of X ′′ around every element φ in the spectrum. We
consider, for each z ∈ X ′′, the homomorphism that on f ∈ V H(X) takes the value
φ(x ∈ X  f̃(JXx + z)), where JX denotes the canonical embedding of X into
X ′′ and f̃ the Aron-Berner extension of f to X ′′. See Section 0.4, [5], [63, Chapter
6.2] and [66, Section 6] for more background about Aron-Berner extensions. If we
move z in X ′′, we obtain a subset of the spectrum homeomorphic to X ′′. So, we
have to show that the function x ∈ X  f̃(JXx+ z) belongs to V H(X).

Definition 1.3.1 Following [55, Section 1] we say that a sequence of weights
V = {vn}n has good local control if for every m ∈ N there exists n ∈ N, n ≥ m,
such that, for each s > 0 there exists Cs > 0 with vn(x) ≤ Csvm(x + y) for all
x, y ∈ X with ‖y‖ ≤ s.

Proposition 1.3.2 If a sequence of weights V = {vn}n satisfies Condition (A’),
then it has good local control.

Proof. By Condition (A’), given m ∈ N there exist R > 1, D > 0 and n ∈ N,
n ≥ m, such that vn(x) ≤ Dvm(Rx) for each x ∈ X. Fix s > 0 and consider
y ∈ X such that ‖y‖ ≤ s. Therefore, if ‖x‖ > s

R−1 ≥
‖y‖
R−1 , then ‖x + y‖ ≤ R‖x‖

and vn(x) ≤ Dvm(Rx) ≤ Dvm(x + y). On the other hand, if ‖x‖ ≤ s
R−1 , then

‖x + y‖ ≤ R
R−1s. Hence, there exists Cs > 0 such that supx∈X

vn(x)
vm(x+y) ≤ Cs for

each y ∈ X, ‖y‖ ≤ s. 2

Lemma 1.3.3 If the sequence of weights V = {vn}n has good local control, then
the mapping V H(X)→ V H(X) given by f 7→ f(·+y) is well defined and continu-
ous for every fixed y ∈ X. Moreover, given m ∈ N there exists n ∈ N, n ≥ m, such
that for all s > 0 there exists a constant Cs > 0 such that ‖f(·+ y)‖vn ≤ Cs‖f‖vm
for each y ∈ X, ‖y‖ ≤ s.

Proof. By Definition 1.3.1, given m ∈ N, there exists n ∈ N, n ≥ m, such that,
for each s > 0 there exists Cs > 0 with vn(x) ≤ Csvm(x+ y) for all x, y ∈ X with
‖y‖ ≤ s. Therefore, for all y ∈ X with ‖y‖ ≤ s,

‖f(· + y)‖vn = sup
x∈X

vn(x)
vm(x+ y) |f(x+ y)|vm(x+ y)

≤ sup
x∈X

vn(x)
vm(x+ y)‖f‖vm ≤ C‖f‖vm ,

and the map Hvm(X)→ V H(X), f 7→ f(·+ y) is well defined and continuous. 2

In what follows, we consider a family of weights V satisfying Condition (A’) and
such that V H(X) is an algebra. Then the polynomials form a Schauder decom-



48 Spectra of weighted (LB)-algebras of entire functions on Banach spaces

position. In order to study the spectrum VM(X), we follow the notation of [63,
Section 6.3] for Mb(X).

As linear functionals belong to V H(X) because the weights are rapidly decreasing,
we define

π : VM(X)→ X ′′ , π(φ) = φ|X′ .

Since the Aron-Berner extension AB : Hb(X) → Hb(X ′′), f → f̃ is continuous,
we can also define

δ : X ′′ → VM(X), δ(z)(f) = f̃(z).

As π(δ(z))(x′) = δ(z)|X′(x′) = z(x′) for every x′ ∈ X ′, π is an onto map. Each
f ∈ V H(X) defines a mapping f̂ : VM(X) → C by f̂(φ) = φ(f). It is called the
Gel’fand transform of f.

Proposition 1.3.4 Given a weight v, the Aron-Berner extension is an isometry
from (P(kX), ‖ ‖v) into (P(kX ′′), ‖ ‖v) for all k ∈ N. Therefore, given a sequence
of weights V satisfying Condition (A), the Aron-Berner extension AB : V H(X)→
V H(X ′′), f =

∑
k Pkf 7→

∑
k P̃kf is continuous, linear and multiplicative.

Proof. If P ∈ P(kX), clearly ‖P‖vn ≤ ‖P̃‖vn . Davie and Gamelin showed in [60]
that given z ∈ X ′′ we can choose {xα}α ⊆ X in such a way that ‖xα‖ ≤ ‖z‖ and

vn(z)P̃ (z) = lim
α
vn(z)|P (xα)| ≤ sup

α
vn(xα)|P (xα)| ≤ ‖P‖vn .

Therefore, ‖P‖vn = ‖P̃‖vn . This implies that for each m ∈ N, the map AB :
Hvm(X) → V H(X ′′), f 7→ f̃ is continuous. In fact, given f ∈ Hvm(X), by
Condition (A), there exist n ∈ N, n > m and R > 1 such that

∑∞
k=0 Pkf converges

to f in Hvn(X). Therefore, we obtain

‖f̃‖vn ≤
∞∑
k=0
‖P̃k(f)‖vn =

∞∑
k=0
‖Pk(f)‖vn ≤

R

R− 1‖f‖vm

and we get the continuity. By Proposition 0.4.3, it is also multiplicative. 2

For a fixed z ∈ X ′′, we consider τz(x) = JXx + z for x ∈ X. Since there is
no risk of confusion we also denote by τz : V H(X) → V H(X) the mapping
given by (τzf)(x) = f̃(JXx+ z) = (f̃ ◦ τz)(x). This is well defined, multiplicative
and continuous because the Aron-Berner extension AB : V H(X) → V H(X ′′) is
so by Proposition 1.3.4 and we can apply Lemma 1.3.3 to X ′′ in order to get
f̃ ◦ τz ∈ V H(X ′′). Thus, (f̃ ◦ τz)|X belongs to V H(X). As a consequence, we get
φ ◦ τz ∈ VM(X) for every φ ∈ VM(X) and z ∈ X ′′. Since X is symmetrically
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regular and V H(X) ↪→ Hb(X) continuously, we can apply [63, Lemma 6.28] in
order to get τz+wf = (τz ◦ τw)f for all f ∈ V H(X) and for all z, w ∈ X ′′. If
z ∈ X ′′ and x′ ∈ X ′, then τz(x′) = x′+z(x′), where z(x′) is the constant mapping
on X, and π(φ ◦ τz) = π(φ) + z for all φ ∈ VM(X).

For each φ ∈ VM(X) and ε > 0 we consider

Vφ,ε = {φ ◦ τz : z ∈ X ′′, ‖z‖ < ε}.

As in [63, Section 6.3], we obtain that Vφ := {Vφ,ε}ε>0 forms a neighborhood basis
at φ for a Hausdorff topology on VM(X). In fact, if φ1 ∈ Vφ,ε then φ1 = φ ◦ τz for
some z ∈ X ′′, ‖z‖ < ε. Let δ = ε− ‖z‖. If ω ∈ X ′′, ‖ω‖ < δ, since associativity is
easily checked, then

φ1 ◦ τω = (φ ◦ τz) ◦ τω = φ ◦ (τz ◦ τω) = φ ◦ τz+ω ∈ Vφ,ε

and hence Vφ1,δ ⊆ Vφ,ε. Let us see that the topology is Hausdorff: consider φ, φ1 ∈
VM(X). Let 2ε = ‖π(φ)− π(φ1)‖ if π(φ) 6= π(φ1) and suppose φ2 ∈ Vφ,ε ∩ Vφ1,ε.
We have φ2 = φ ◦ τz = φ1 ◦ τz1 for some z, z1 ∈ X ′′, ‖z‖ < ε and ‖z1‖ < ε. Hence

π(φ) + z = π(φ ◦ τz) = π(φ1 ◦ τz1) = π(φ1) + z1

and

2ε = ‖π(φ)− π(φ1)‖ = ‖z − z1‖ < 2ε.

This shows that Vφ,ε ∩ Vφ1,ε = ∅. Now suppose π(φ) = π(φ1). If φ2 ∈ Vφ,r ∩ Vφ1,s

for r, s positive then φ2 = φ ◦ τz = φ1 ◦ τz1 for some z, z1 ∈ X ′′ and

π(φ) + z = π(φ ◦ τz) = π(φ1 ◦ τz1) = π(φ1) + z1.

Since π(φ) = π(φ1) this implies z = z1 and

φ = φ ◦ τz ◦ τ−z = φ1 ◦ τz1 ◦ τ−z = φ1 ◦ τz1−z = φ1.

So, the topology is Hausdorff and π(φ) = π(φ1) implies φ = φ1 or Vφ,r ∩ Vφ1,s = ∅
for all r, s > 0. The mapping π restricted to Vφ,ε has the form π(φ ◦ τz) = π(φ) + z
and clearly maps Vφ,ε homeomorphically onto the open ball in X ′′ centred at
π(φ) and radius ε. Hence, π is a local homeomorphism. Thus, (VM(X), π) is a
Riemann domain spread over X ′′. In particular, VM(X) is a Riemann analytic
manifold spread over X ′′.

Clearly, Vφ,∞ := ∪ε>0Vφ,ε is mapped homeomorphically onto X ′′ and it is an open
subset of VM(X). Proceeding as in [63, page 430], we also get that it is closed: if
φ ◦ τzn → φ1 ∈ VM(X) as n→∞, then π(φ) + zn → π(φ1) as n→∞ and {zn}n
converges to some point z ∈ X ′′. Hence φ ◦ τz = limn φ ◦ τzn = φ1 and φ1 ∈ Vφ,∞.
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Observe that, if Vφ1,∞ ∩ Vφ2,∞ 6= ∅, with φ1, φ2 ∈ VM(X), then these two copies
of X ′′ must coincide. In fact, if there exists φ ∈ VM(X) such that φ = φ1 ◦ τz1 =
φ2◦τz2 , z1, z2 ∈ X ′′, then φ2 = φ2◦τz2◦τ−z2 = φ1◦τz1◦τ−z2 = φ1◦τz1−z2 ∈ Vφ1,∞.
Then, Vφ2,∞ ⊆ Vφ1,∞. Analogously, we get the other inclusion. Therefore, VM(X)
can be viewed as the disjoint union of analytic copies of X ′′, these copies being
the connected components of VM(X). Hence, we can visualize the spectrum as a
collection of sheets laying one over the other in such a way that all the points in
a vertical line are projected by π on the same element of X ′′.

Since the weights are rapidly decreasing, the polynomials belong to V H(X) and
the inclusion V H(X) ↪→ Hb(X) has dense range. Hence, we have a one to one
identification Mb(X) ↪→ VM(X), but we do not know if they coincide.

In the case of Hb(X) (HW (X)), the Gel’fand transform f̂ of each f ∈ Hb(X)
(f ∈ HW (X)) is holomorphic on Mb(X) (MW (X)) and belongs, in some sense,
to Hb(Mb(X)) (HW (MW (X))) (see [63, Proposition 6.30] and [56, Theorem 1]).
Now, we show, using the techniques given in [55], that the analogous situation holds
in this setting, i.e., we can extend each f ∈ V H(X) to a holomorphic function
on VM(X). By the Riemann domain structure of VM(X), “holomorphic” means
that f̂ ◦ (π|Vφ,∞)−1 is holomorphic on X ′′ for all φ ∈ VM(X). Observe that the
restriction of f̂ to X ′′ coincides with the Aron-Berner extension f̃ .

In what follows, given f ∈ V H(X), we denote by Pk and Pk(x0) the k-homogeneous
polynomials of its Taylor series centred at 0 and x0 ∈ X, respectively, and we
denote by Ak and Ak(x0) the unique symmetric k-linear mappings such that
Ak(x, . . . , x) = Pk(x) and Ak(x0)(x, . . . , x) = Pk(x0)(x), x ∈ X.

Proceeding similarly to [55, page 5, Lemma 2.10 and Lemma 2.11], we obtain
the next proposition. The “local Aron-Berner extension” defined there is just the
Aron-Berner extension for the entire case.

Proposition 1.3.5 If V is a family of weights satisfying Condition (A’), then for
every m ∈ N there exists n ∈ N, n ≥ m, such that, for every s > 0 there exists a
constant Cs > 0 satisfying:

(i) P̃k(·)(z) ∈ Hvn(X) with ‖P̃k(·)(z)‖vn ≤ Cs‖f‖vm for every k ∈ N, f ∈
Hvm(X) and z ∈ X ′′, ‖z‖ ≤ s.

(ii)
∑
k ‖P̃k(·)(z)‖vn ≤ 2Cs‖f‖vm for every f ∈ Hvm(X) and every z ∈ X ′′,

‖z‖ ≤ s/2. Therefore,
∑
k P̃k(·)(z) converges absolutely and uniformly in

Hvn(X) on the bounded subsets of X ′′.
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(iii) Ãk(·)(z1, . . . , zk) ∈ Hvn(X) with

‖Ãk(·)(z1, . . . , zk)‖vn ≤ Cs
kk

k!sk ‖f‖vm‖z1‖ . . . ‖zk‖

for each z1, . . . , zk ∈ X ′′, k ∈ N, and f ∈ Hvm(X).

Proof. Given m ∈ N, by Proposition 1.3.2, there exists n ∈ N, n ≥ m, such that,
for each s > 0, there exists Cs > 0 with vn(x) ≤ Csvm(JXx + z) for all x ∈ X,
z ∈ X ′′, ‖z‖ ≤ s.
(i) By [7, page 552], P̃k(·)(z) ∈ Hb(X) for all z ∈ X ′′ and f̃(z) =

∑
k P̃k(x)(z− x)

for every f ∈ Hvm(X) and x ∈ X. By the Cauchy integral formula, we get

vn(x)|P̃k(x)(z)| ≤ 1
2π

∫
|λ|=1

vn(x)|f̃(x+ λz)|d|λ|.

Fix now x ∈ X and z ∈ X ′′ with ‖z‖ ≤ s. By [60, Lemma page 355], there
exists some {xα}α ⊆ X with ‖xα‖ ≤ ‖z‖ < s for all α such that |f̃(x + λz)| =
limα |f(x+ λxα)|. Then, we have

vn(x)|f̃(x+ λz)| = lim
α
vn(x)|f(x+ λxα)| ≤ sup

α
vn(x)|f(x+ λxα)|

≤ sup
α
Csvm(x+ λxα)|f(x+ λxα)| ≤ Cs‖f‖vm .

This yields vn(x)|P̃k(x)(z)| ≤ Cs‖f‖vm for all x ∈ X and all z ∈ X ′′, ‖z‖ ≤ s.
(ii) By (i),

‖P̃k(·)(z)‖vn = sup
x∈X

vn(x)

∣∣∣∣∣P̃k(x)
(

s

‖z‖
z

)(
‖z‖
s

)k∣∣∣∣∣
=
∥∥∥∥P̃k(·)

(
s

‖z‖
z

)∥∥∥∥
vn

(
‖z‖
s

)k
≤ Cs

2k ‖f‖vm

for every z ∈ X ′′ with ‖z‖ ≤ s/2. Therefore, the mapping x  
∑
k P̃k(x)(z) is

absolutely and uniformly convergent in Hvn(X) on each bounded subset of X ′′.
(iii) By the Polarization formula, given f ∈ Hvm(X),

Ãk(x)(z1, . . . , zk) = 1
2kk!

∑
εl=±1

ε1 . . . εkP̃k(x)(ε1z1 + · · ·+ εkzk)

= kk

2kk!
∑
εl=±1

ε1 . . . εkP̃k(x)
(
ε1z1 + · · ·+ εkzk

k

)
,
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and so, Ãk(·)(z1, . . . , zk) ∈ Hvn(X). Moreover, by (i),

vn(x)|Ãk(x)(z1, . . . , zk)| ≤ Cs
kk

2kk!
∑
εl=±1

‖f‖vm

for all ‖z1‖, . . . , ‖zk‖ ≤ s, k ∈ N, since
∥∥ ε1z1+...εkzk

k

∥∥ < s. For general z1, . . . , zk ∈
X ′′, the conclusion follows easily. 2

Lemma 1.3.6 Let V be a family of weights satisfying Condition (A’). Then, given
f ∈ V H(X) and φ ∈ VM(X), the mapping z  φ(P̃k(·)(z)) belongs to P(kX ′′)
for every k ∈ N.

Proof. Given f ∈ V H(X) there exists m ∈ N such that f ∈ Hvm(X). By Propo-
sition 1.3.5, the mapping z  φ(P̃k(·)(z)) is well defined since there exists some
n ∈ N with P̃k(·)(z) ∈ Hvn(X) for every z ∈ Z ′′. Let Ãk(x) : X ′′ × · · · ×X ′′ → C
be the symmetric k-linear mapping associated to P̃k(x). Thus, since by Propo-
sition 1.3.5, x  Ãk(x)(z1, . . . , zk) belongs to Hvn(X) for all z1, . . . , zk ∈ X ′′

and φ(Ãk(·)(z, . . . , z)) = φ(P̃k(·)(z)) for every z ∈ X ′′, it is enough to show that
the mapping (z1, . . . , zk) φ(Ãk(·)(z1, . . . , zk)) belongs to L(kX ′′). k-linearity is
clear. Moreover, using Proposition 1.3.5 and the fact that φ : Hvn(X) → C is
continuous, there exists M > 0 such that, for every s > 0 there exists Cs > 0 with

sup
‖zi‖≤1,1≤i≤k

|φ(Ãk(·)(z1, . . . , zk))| ≤M sup
‖zi‖≤1,1≤i≤k

‖Ãk(·)(z1, . . . , zk)‖vn

≤MCs
kk

k!sk ‖f‖vm .

Then, the mapping z  φ(P̃k(·)(z)) belongs to P(kX ′′) for every k ∈ N. 2

Theorem 1.3.7 Let X be a symmetrically regular Banach space and V a family
of weights satisfying Condition (A’) and such that V H(X) is an algebra. Then,
for every f ∈ V H(X), the Gel’fand transform f̂ : VM(X) → C is a holomorphic
function of bounded type.

Proof. Given f ∈ V H(X) there exists m ∈ N such that f ∈ Hvm(X). For any
φ ∈ VM(X) and z ∈ X ′′ we have

(f̂ ◦ (π|Vφ,∞)−1)(π(φ) + z) = f̂(φ ◦ τz) = (φ ◦ τz)(f) = φ(τzf).

We shall prove that the mapping z ∈ X ′′  φ(τzf) = φ(x 7→ f̃(JXx + z)) is
holomorphic. Let us consider the Taylor series at zero of f =

∑
k Pk, where
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Pk ∈ P(kX) for all k ∈ N. As in [7, page 552], we get a pointwise representation

(τzf)(x) = f̃(JXx+ z) =
∞∑
j=0

P̃j(JXx+ z) =
∞∑
k=0

P̃k(x)(z).

By Proposition 1.3.5, there exists n ∈ N, n ≥ m, such that the last series is
absolutely convergent in Hvn(X). Then, φ(τzf) =

∑∞
k=0 φ(P̃k(·)(z)) is well defined

and, by Lemma 1.3.6, φ(P̃k(·)(z)) belongs to P(kX ′′) . Moreover, for each s > 0
and z ∈ X ′′ with ‖z‖ ≤ s/2,

∞∑
k=0
|φ(P̃k(·)(z))| ≤M

∞∑
k=0
‖P̃k(·)(z)‖vn ≤ 2MCs‖f‖vm

for some M > 0 and Cs the constant in Proposition 1.3.5. Therefore, the series
converges uniformly on the bounded subsets of X ′′, and then, z ∈ X ′′  φ(τzf)
is a holomorphic function of bounded type. 2

Remark 1.3.8 We have shown that f̂ ∈ Hb(VM(X)) for every f ∈ V H(X). If
we assume that for each m,n ∈ N, n ≥ m, there exist q ∈ N and δ > 0 such
that supx∈X

vn(x)
vm(JXx+z) ≤

δ
vq(z) for every z ∈ X ′′, then we can even get that in

some sense it belongs to V H(VM(X)). To be more precise, let φ ∈ VM(X) and
f ∈ Hvm(X). By the proof of Theorem 1.3.7, for every s > 0 and every z ∈ X ′′
with ‖z‖ ≤ s/2,

|f̂(φ ◦ τz)| = |φ(τzf)| ≤ 2MCs‖f‖vm <∞,

where M and Cs > 0 are the constants in the proof. As Cs > 0 in Lemma 1.3.3
can be improved by supx∈X

vn(x)
vm(JXx+z) for every z ∈ X ′′, by hypothesis we get

vq(z)|f̂(φ ◦ τz)| ≤ 2Mvq(z) sup
x∈X

vn(x)
vm(JXx+ z)‖f‖vm ≤ 2Mδ‖f‖vm

for each z ∈ X ′′. Therefore, f̂ belongs to V H of each copy of X ′′ in the spectrum.
This assumption is satisfied, for instance, when V = {vn}, v(x) = η(‖x‖), and η
is a function such that there is α > 0 with η(s)η(t) ≤ αη(s+ t). In fact,

η(‖x‖)n

η(‖JXx+ z‖)m ≤ α
m η(‖x‖)n

η(‖x‖)mη(‖z‖)m ≤
αm

η(‖z‖)m .

A simple example of such a function is η(t) = e−t, t ≥ 0.

Every algebra homomorphism A : Exp(X) → Exp(Y ) induces a mapping θA :
VM(Y )→ VM(X) defined by θA(φ) = φ◦A. By the analytic structure of VM(Y ),
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θA is continuous if and only if θA maps sheets into sheets continuously. So, pro-
ceeding as in [56, Theorem 3], we characterize the continuity of θA. We include
the proof for the sake of completeness.

Theorem 1.3.9 Let X and Y be symmetrically regular Banach spaces and let A :
Exp(X)→ Exp(Y ) be an algebra homomorphism. The following are equivalent.

(i) There exist φ ∈ VM(X) and T : Y ′′ → X ′′ affine and w∗-w∗-continuous so
that Af(y) = φ(f̃(·+Ty)) for all y ∈ Y.

(ii) θA maps sheets into sheets.

(iii) θA maps Y ′′ into a sheet.

In particular, θA is continuous if and only if it is continuous on Y ′′.

Proof. Let us note first that T : Y ′′ → X ′′ is affine and w∗-w∗-continuous if
and only if there exist R : X ′ → Y ′ linear and continuous and x′′0 ∈ X ′′ so that
T (y′′) = R′(y′′) + x′′0 .

We begin by assuming that (i) holds. If A has such a representation, let us see
that then the Aron-Berner extension of Af is of the form

Ãf(y′′) = φ(f̃(·+ Ty′′)). (3.10)

Indeed, let h(z) = φ(f(·+ z)) = φ(x→ f(x+ z)) for z ∈ X. By [6, Theorem 6.12],
its Aron-Berner extension is given by h̃(x′′) = φ(f̃(· + x′′)) = φ(x → f̃(x + x′′)).
We define now h(y′′) = φ(f̃(·+ Ty′′)). Then

h(y′′) = (h̃ ◦ T )(y′′) = h̃(R′(y′′) + x′′0) =
(
τx′′0 (h̃) ◦R′

)
(y′′).

Since h̃ is the Aron-Berner extension of a function, τx′′0 (h̃) is the Aron-Berner
extension of some other function ([6, Theorem 6.12]). On the other hand, by [6,
Lemma 9.1], the composition of an Aron-Berner extension with the transpose of
a linear mapping is again the Aron-Berner extension of some function. Hence,
h = τx′′0 (h̃) ◦ R′ is the Aron-Berner extension of a function; but h coincides with
Af on Y, therefore h = Ãf and (3.10) holds.

Now, to see that θA maps sheets into sheets it is enough to find S : Y ′′ → X ′′ such
that θA(ψ ◦ τy′′) = (θAψ) ◦ τSy′′ . We define Sy′′ = Ty′′ − x′′0 . First we have

θA(ψ ◦ τy′′)(f) = (ψ ◦ τy′′)(Af) = ψ[y → Ãf(y + y′′)]
= ψ[y → φ[x→ f̃(x+ T (y + y′′))]]
= ψ[y → φ[x→ f̃(x+ Ty + Sy′′)]].
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Let us call g(x) = f̃(x + Sy′′). As above, we can check that its Aron-Berner
extension is g̃(x′′) = f̃(x′′ + Sy′′). With this we obtain

(θAψ ◦ τSy′′)(f) = θAψ[x→ f̃(x+ Sy′′)] = ψ[y → Ag(y)]
= ψ[y → φ[x→ g̃(x+ Ty)]] = ψ[y → φ[x→ f̃(x+ Ty + Sy′′)]]

and (ii) holds. Clearly, (ii) implies (iii).

Let us suppose that θA maps Y ′′ into a single sheet. Hence, θA(δy′′) = θA(δ0) ◦
τSy′′ = φ ◦ τSy′′ for some Sy′′ in X ′′. This means that δy′′(Af) = (φ ◦ τSy′′)(f) for
all f ∈ V H(X) and from this Ãf(y′′) = φ(f̃(·+ Sy′′)). Let us see that S is affine.
Let x′ ∈ X ′, then Ax′ is a degree one polynomial and so is Ãx′. Also,

Ãx′(y′′) = φ[x→ AB(x′)(x+ Sy′′)]
= φ[x→ x′(x) + Sy′′(x′)] = φ(x′) + S(y′′)(x′). (3.11)

This shows that S is w∗ affine; hence, in a similar way than in Remark 1.2.12, S
is affine.

Let us finish by proving that S is w∗-w∗-continuous. Indeed, let {y′′α}α be a net
w∗-converging to y′′. By Lemma 1.2.13 we have, for every x′ ∈ X ′, Ax′ = y′x′+λx′ .
Then Ãx′(y′′α) = y′′α(y′x′) + λx′ for some y′x′ ∈ Y ′ and λx′ ∈ C, and this converges
to y′′(y′x′) + λx′ = Ãx′(y′′). Finally, limα S(y′′α)(x′) = limα Ãx′(y′′α) − φ(x′) =
Ãx′(y′′)− φ(x′) = S(y′′)(x′), and this completes the proof. 2

In the case θA maps Y ′′ into X ′′, φ in the last theorem must coincide with δT1(0)
for some T1. Then

Ãf(y′′) = δT1(0)[x 7→ f̃(x+ Ty′′)] = f̃(T1(0) + Ty′′) = (f̃ ◦ T2)(y′′).

We say that A : Exp(X) → Exp(Y ) is an AB-composition homomorphism if
there exists an affine mapping g : Y ′′ → X ′′ such that Ãf(y′′) = f̃(g(y′′)) for all
f ∈ Exp(X) and all y′′ ∈ Y ′′ (see [53]). Similar to [56, Corollary 2], we get the
following:

Corollary 1.3.10 Let X and Y be symmetrically regular Banach spaces and A :
Exp(X)→ Exp(Y ) an algebra homomorphism. Then θA(Y ′′) ⊆ X ′′ if and only if
A is the AB-composition homomorphism associated to an affine mapping.

Proof. We shall see the converse implication, since the direct one is proved above.
By hypothesis, there exists g : Y ′′ → X ′′ such that Ã(f)(y′′) = f̃(g(y′′)). Thus,
last theorem is satisfied with T = g and φ = δ0 ∈ VM(X). Hence, proceeding as
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in the proof of Theorem 4.3.5, we get θA(δ0 ◦ τy′′) = (θA(δ0)) ◦ τg(y′′) = δ0 ◦ τg(y′′).
2

As in [56], there are some differences between the weighted algebras Exp(X) and
Hb(X). By Theorem 4.3.5 and the comments above, each AB-composition homo-
morphism A induces a continuous θA. In [53], we find examples of composition
homomorphisms inducing discontinuous θA. Analogously to [56, page 901], Corol-
lary 1.3.10 implies that, if the spectrum of Exp(X) does not coincides with X ′′,
there are homomorphisms on Exp(X) that are not AB-composition ones (see [56]).



Chapter 2

Linearization of weighted
(LB)-spaces of entire functions

This chapter is devoted to study the predual of V H(X) in order to linearize this
space of entire functions. We also show that V H(X) is complete and we study
some conditions to ensure that the equality V H0(X)′′ = V H(X) holds. At this
point, we will see some differences between the finite and the infinite dimensional
cases. Finally, we give conditions which ensure that a function f defined in a
subset A of X, with values in another Banach space E, and admitting certain weak
extensions in a space of holomorphic functions can be holomorphically extended in
the corresponding space of vector-valued functions. Most of our results concerning
this topic have been published by the author in [13].

2.1 Preduals and biduality of weighted (LB)-spaces of
entire functions

2.1.1 Predual of V H(X)

In Section 0.3 it is shown that given a weight v on X, the closed unit ball Bv
is compact with respect to the compact open topology τco. This fact allows as
to obtain, as a corollary of Mujica’s completeness theorem for (LB)-spaces [102,
Theorem 1], which was inspired by a theorem of Banach-Dixmier-Waelbroeck-Ng
on dual Banach spaces (cf. Waelbroeck [122, Proposition 1] and Ng [107]), the

57
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predual of the space V H(X). As a corollary of [25, Corollary 2], we also get that
the inductive limit V H(X) is complete.

Theorem 2.1.1 (Mujica) Let (E, τ) = indnEn be an (LB)-space, and suppose
that
(∗) there exists a locally convex Hausdorff topology τ̃ ≤ τ on E such that the closed
unit ball Bn of each En is τ̃ -compact, n = 1, 2, . . .

a) Then

F := {u ∈ E∗ : u|Bn is τ̃ -continuous for each n ∈ N},

endowed with the topology of uniform convergence on the sets Bn, is a
Fréchet space (in fact, a closed subspace of E′b) such that the evaluation
mapping J : E → F ′ given by [J(x)](u) := u(x) for all x ∈ E and u ∈ F,
yields a topological isomorphism of E onto the inductive dual F ′i , and hence
E must be complete.

b) If, in addition,
(CNC) τ has a 0-neighbourhood base of convex, balanced τ̃ -closed sets,
then F is distinguished, i.e., F ′i = F ′b, and E is topologically isomorphic to
the strong dual F ′b.

Corollary 2.1.2 ([25, Corollary 2]) If one identifies E with F ′i via J, then each
bounded subset of E is equicontinuous on F, and F ′i is a regular inductive limit.

Proposition 2.1.3 Given a decreasing sequence of weights V, the space

F := {u ∈ V H(X)∗ : u|Bn is τco-continuous for each n ∈ N},

where Bn denotes the closed unit ball of Hvn(X), endowed with the topology of
uniform convergence on Bn, n ∈ N, is a Fréchet space (in fact, a closed subspace of
V H(X)′b ). The evaluation mapping J : V H(X)→ F ′ given by J(f)(u) = u(f) for
all f ∈ V H(X) and u ∈ F yields a topological isomorphism from V H(X) onto the
inductive dual F ′i , and hence V H(X) must be complete. Moreover, each bounded
subset of V H(X) is equicontinuous on F, and V H(X) is a regular inductive limit.

Remark 2.1.4 (i) Since V H(X) is regular, {nBn}n is a fundamental se-
quence of bounded sets in V H(X). Therefore, equivalently,

F = {u ∈ V H(X)∗ : u|B is τco-continuous ∀ bounded set B ⊆ V H(X)}.

(ii) Given a decreasing sequence of weights V, the inclusion

(Bn, τco) ↪→ (Bn, σ(V H(X), F ))
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is continuous since u|Bn is τco-continuous for any u ∈ F. Moreover, since
Bn is τco-compact and (Bn, σ(V H(X), F )) is Hausdorff, we obtain that the
other inclusion is also continuous, and thus, τco and σ(V H(X), F ) induce
the same topology on Bn for every n ∈ N. Therefore, we also get

F = {u ∈ V H(X)∗ : u|Bn is σ(V H(X), F )-continuous for each n ∈ N}.

Definition 2.1.5 ([31, Definition 2.1]) A sequence of weights V = {vn}n is reg-
ularly decreasing if, given n ∈ N, there exists m ≥ n so that, for every ε > 0 and
every k ≥ m, it is possible to find δ > 0 such that, if

vm(x) ≥ εvn(x), then vk(x) ≥ δvn(x).

In other words, V is regularly decreasing if, and only if, given n ∈ N, there exists
m ≥ n such that, on each subset of X on which the quotient vm/vn is bounded
away from zero, also all quotients vk/vn, k ≥ m, are bounded away form zero.

Lemma 2.1.6 ([31, Proposition 2.2]) V is a regularly decreasing family of weights
if and only if

∀n ∈ N, ∃m ≥ n such that, ∀ε > 0,∃ v ∈ V : vm ≤ max(εvn, v),

where V is the maximal Nachbin family of weights associated to V (see Section
0.3).

The next proposition can be found in [31] for X a Hausdorff locally compact
topological space and V C(X) a weighted inductive limit of spaces of continuous
functions.

Proposition 2.1.7 If V is a regularly decreasing sequence of weights, then V H(X)
is boundedly retractive. As a consequence, the predual F of V H(X) is a quasi-
normable Fréchet space, and thus, distinguished. Therefore, V H(X) is topologi-
cally isomorphic to the strong dual F ′b. In this case, V H(X) has a 0-neighbourhood
basis of absolutely convex σ(V H(X), F )-closed sets.

Proof. We start by showing that V H(X) is boundedly retractive. As V H(X)
is a regular inductive limit, it is enough to show that for every Bn, n ∈ N,
there exists m ∈ N such that the topologies of V H(X) and Hvm(X) coincide
on Bn, and by [111, Lemma 1 in page 102], it is enough to check that the 0-
neighbourhoods coincide. Apply Lemma 2.1.6 in order to find m ≥ n such that,
for all ε > 0 there is v ∈ V with vm ≤ max(εvn, v). Hence, as every f ∈ Bn
satisfies supx∈X |f(x)|vn(x)ε < ε, Bn ∩ Bv(0, ε) ⊆ Bn ∩ Bvm(0, ε), and thus,
Hvm(X) and HV (X) induce the same 0-neighbourhoods on Bn. Since the in-
clusions Hvm(X) ↪→ V H(X) ↪→ HV (X) hold continuously, V H(X) is bound-
edly retractive, which implies by [25, Remark 4] that F is quasinormable. By
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[110, Proposition 8.3.45], any quasinormable Fréchet space is distinguished, i.e.,
F ′i = F ′b. Therefore, by Proposition 2.1.3, F ′b = V H(X). Since (CNC) holds for
τ̃ = σ′(E,F ) when a locally convex space E is the strong dual of some (quasi-)
barrelled locally convex space F, the last assertion holds (see [25, page 116]). 2

2.1.2 Biduality of V H0(X)

In this section we characterize when the identity (V H0(X)′b)′i = V H(X) holds
canonically, i.e., under which conditions the restriction map R : F → (V H0(X))′b
is a topological isomorphism onto. Moreover, we show that condition (ii) in the
next theorem is not always satisfied for X an infinite dimensional Banach space,
differing from the finite dimensional case.

Theorem 2.1.8 ([25, Theorem 7]) The restriction mapping R : F → (V H0(X))′b
given by R(u) = u|V H0(X), u ∈ F, is always well-defined, linear and continuous.
Moreover, it is a topological isomorphism onto if and only if the following two
conditions are satisfied:

(i) For each n ∈ N there are m ≥ n and M ≥ 1 with Bn ⊆ MB0
m (where the

closure on the right hand side is taken in (V H(X), σ(V H(X), F )).

(ii) The restriction of each u ∈ V H0(X)′ to any B0
n is σ(V H(X), F )-continuous,

n = 1, 2, . . .
Whenever R is a topological isomorphism onto, V H0(X) is a topological subspace
of V H(X) and V H(X) is canonically the bidual (V H0(X)′b)′i.

Lemma 2.1.9 If V is a decreasing sequence of weights, then Bn ⊆ B0
n for every

n ∈ N, where the closure is taken in (V H(X), σ(V H(X), F )).

Proof. By Remark 2.1.4(ii), it is enough to show that if v is a rapidly decreasing
weight, then Bv ⊆ B0

v

τco
. Indeed, given f ∈ Bv, it is known that the Cesàro means

{Cjf}j ⊆ P(X) of the partial sums of the Taylor series of f at the origin converge
to f in the compact open topology τco (see [27]). Since by [27, Proposition 1.2]
‖Cjf‖v ≤ ‖f‖v for every j ∈ N, we get the conclusion. 2

If V H(X) is reflexive, then each Banach space (P(kX), ‖ · ‖), k ∈ N, must be
reflexive, since any closed subspace of a reflexive space is also reflexive. Under the
assumption that the family of weights V satisfies Condition (A) (see Definition
1.1.10), proceeding as in [71, Corollary 13], we get the converse:

Proposition 2.1.10 If V is a sequence of weights satisfying Condition (A), then
V H0(X) = V H(X) is reflexive if and only if (P(kX), ‖ · ‖) is a reflexive Banach
space for every k ∈ N.
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Proof. By Proposition 1.1.13, V H(X) and V H0(X) coincide algebraically and
topologically. Since by Theorem 1.1.14 the sequence {P(kX)}k is an S-absolute
decomposition of V H(X), by [62, Corollary 3.14], it is a shrinking decomposition.
Moreover, it is γ-complete, and then, [86, Theorem 3.2] gives the conclusions,
since by [117, page 144] a locally convex space E is reflexive if and only if it is
semi-reflexive and barrelled. 2

Example 2.1.11 Alencar, Aron and Dineen gave in [3] the first example of an
infinite dimensional Banach space X for which the space P(kX) is reflexive for
every k ∈ N. This space is the Tsirelson space T ∗. By the last proposition, given
V a sequence of weights satisfying Condition (A), the space V H(T ∗) is reflexive.

Lemma 2.1.12 Let X be a Banach space and denote by BX′ the closed unit ball
of X ′. If z′′|B

X′
is σ(X ′, X)-continuous for every z′′ ∈ X ′′, then X must be reflexive.

Proof. Our assumption yields that (BX′ , σ(X ′, X)) ↪→ (BX′ , σ(X ′, X ′′)) is contin-
uous. By Alaouglu-Bourbaki, the unit ball BX′ is σ(X ′, X)-compact. This implies
that BX′ is also σ(X ′, X ′′)-compact, and thus, X ′, or equivalently, X, is reflexive.
2

Recall that a set of functions F defined on an open subset Ω of a locally convex
space and taking their values in a normed linear space is said to be locally bounded
(l.b.) if and only if for each x ∈ Ω there exists a neighbourhood Vx of x contained
in Ω such that supf∈F supy∈Vx ‖f(y)‖ <∞ (see [63, page 24]). From [63, Example
1.24 and Lemma 1.23] we get the next lemma.

Lemma 2.1.13 If X is a normed space, then the locally bounded subsets of P(nX)
are bounded with respect to the supremum norm.

Proposition 2.1.14 ([63, Proposition 1.17]) If E is a locally convex space then

P(nE) ∼= (
⊗̂
n,s,π

E)′,

where
⊗̂
n,s,π

E denotes the completion of the space
⊗
n,s

E := span{x⊗· · ·⊗x : x ∈ E}

endowed with the locally convex topology π or projective topology. In the case that
E is a Banach space,

⊗̂
n,s,π

E is also a Banach space (see [63, page 19]).

Proposition 2.1.15 If V is a decreasing sequence of weights and the restriction
of each u ∈ V H0(X)′ to any B0

n is σ(V H(X), F )-continuous, then (P(kX), ‖ · ‖)
is reflexive for every k ∈ N.
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Proof. Take p′ ∈ P(kX)′ for a fixed k ∈ N and define p′ : V H0(X) → C, f 7→
〈p′, Pkf〉. Fix n ∈ N and consider the restriction p′ : H0

vn(X) → C. As Hvn(X)
induces the supremum norm topology on P(kX) for all k, n ∈ N (see Lemma
1.1.12), we get that p′ ∈ V H0(X)′, since there exists some C > 0 such that, for
every f ∈ H0

vn(X),

|〈p′, Pkf〉| ≤ ‖p′‖P(kX)′‖Pkf‖ ≤ C‖p′‖P(kX)′‖Pkf‖vn ≤ C‖p′‖P(kX)′‖f‖vn .

By hypothesis, p′|B0
n
is σ(V H(X), F )-continuous. As the inclusion J : P(kX) →

H0
vn(X) is continuous, there exists Dn > 0 such that J( 1

Dn
BP(kX)) ⊆ B0

n(X) for
all n ∈ N, where BP(kX) denotes the unit ball of (P(kX), ‖ · ‖). Then, we get that
p′ = p′ ◦ J : 1

Dn
BP(kX) → C is σ(V H(X), F )-continuous. Since by Lemma 1.1.12,

V H(X) induces the supremum norm topology on P(kX), by Lemma 2.1.13, the
locally bounded subsets of P(kX) are τ -bounded. Therefore, by [63, Proposition
1.28] and Remark 2.1.4, we have F ⊆ Q(kX) ∼=

⊗̂
k,s,π

X, where

Q(kX) := {φ ∈ P(kX)∗ : φ is τco-continuous on the l.b. subsets of P(kX)}

is endowed with the topology of uniform convergence on the locally bounded sub-
sets of P(kX). Therefore, p′ : 1

Dn
BP(kX) → C is σ(P(kX),

⊗̂
n,s,π

X)-continuous.

Since this holds for every p′ ∈ P(kX)′, by Proposition 2.1.14 and Lemma 2.1.12,
we conclude that P(kX) is reflexive. 2

Proposition 2.1.15 shows a difference between the finite dimensional and the in-
finite dimensional case that must be stressed. Whereas for a finite dimensional
Banach space X condition (ii) in Theorem 2.1.8 is always satisfied by the Hahn-
Banach and Riesz representation theorems (see [25, Section 3.B]), in the infinite
dimensional case, X has to be at least reflexive.

2.2 Linearization of weighted spaces of entire
functions

In this section we obtain a representation of the weighted space of vector-valued
holomorphic functions V H(X,E), X and E Banach spaces, as a space of operators
Li(F,E) defined on the predual F of the corresponding weighted space V H(X).
Our results here complement [27], [29] and [48].

Remark 2.2.1 In Proposition 2.1.3 we have seen that

F = {u ∈ V H(X)∗ : u|B is τco-continuous for each bounded set B ⊆ V H(X)}
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is a Fréchet space such that the evaluation map J : V H(X) → F ′i , f 7→ Jf(u) =
u(f) is a topological isomorphism. Observe that for the case V = {v}, a result
given by Ng in [107] ensures that the space F is a Banach space and that the
mapping J is an isometric isomorphism.

In what follows, we denote by {qn}n the fundamental sequence of continuous
seminorms in F. Recall that they are given by qn(u) := supf∈Bn |u(f)| for all
u ∈ F.

Since for every x ∈ X, the evaluation map δx : V H(X) → C, δx(f) := f(x) for
all f ∈ V H(X), belongs to F, the mapping ∆ : X → F, ∆(x) := δx, x ∈ X, is
well defined. Moreover, since Bn is equicontinuous for every n ∈ N by Proposition
2.1.3, it is easy to see that ∆ is continuous. Observe that each function in V H(X)
linearizes through ∆ since f = Jf ◦∆ and F ′i = V H(X) topologically. Therefore,
by [57, Corollary 2], the predual F must be isomorphic to the predual V H∗(X)
given in [57, Definition 2]. As in [57, Proposition 2], the next lemma shows that
the map ∆ inherits properties of f ∈ V H(X).

Lemma 2.2.2 The map ∆ : X → F, ∆(x) := δx, x ∈ X, is holomorphic. More-
over, it belongs to V H(X,F ) if and only if the family V contains only a weight v.
In this case, ‖∆‖v ≤ 1.

Proof. Since F is complete and ∆ is continuous, it follows from a classical result
of Grothendieck [81] that it is enough to show that ∆ is weakly holomorphic, that
is, φ◦∆ : X → C is holomorphic for each φ ∈ F ′. Since F ′ = J(V H(X)), we check
this property for each Jf, f ∈ V H(X). We have

(Jf ◦∆)(x) = Jf(δx) = f(x),

therefore, Jf ◦∆ is holomorphic. Moreover, observe that ∆ belongs to V H(X,F )
if and only if there exists some v ∈ V such that

sup
x∈X

v(x)qn(δx) = sup
x∈X

v(x) sup
f∈Bn

|f(x)| = sup
x∈X

v(x)/ṽn(x) <∞

for every n ∈ N, i.e., ifHvn(X) ⊆ Hv(X) for every n ∈ N, sinceHvn(X) = H
ṽn

(X).
2

Lemma 2.2.3 The set ∆(X) := {δx, x ∈ X} is total in F, i.e., the linear span
of ∆(X) is dense in F.

Proof. The conclusion follows from the Hahn-Banach theorem. Indeed, suppose
that f ∈ F ′ = V H(X) satisfies that f(x) = 〈δx, f〉 = 0 for each x ∈ X. This
implies f ≡ 0. 2
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We consider now the linearization of the vector-valued case. It must be compared
to the one given in [48, Theorem 3.3] for the weighted Fréchet space HW (G,E),
where G is an open connected domain in Cd and E is a complete locally convex
space.

Theorem 2.2.4 Let X be a Banach space and let V be a decreasing sequence of
weights. For every Banach space E and every f ∈ V H(X,E), there exists a unique
continuous operator Tf ∈ L(F,E) such that Tf ◦ ∆ = f. Moreover, the mapping
f ∈ V H(X,E)→ Tf ∈ Li(F,E) is a topological isomorphism.

Proof. For f ∈ Hvn(X,E) ⊆ V H(X,E), we define Tf : F → (E′)∗ by Tf (u) :
E′ → C, (Tf (u))(z′) := u(z′ ◦ f). Since z′ ◦ f : X → C is holomorphic and

sup
x∈X
|(z′ ◦ f)(x)|vn(x) ≤ ‖z′‖ sup

x∈X
‖f(x)‖vn(x) <∞,

z′ ◦ f ∈ Hvn(X) ⊆ V H(X) for every z′ ∈ E′, and the map Tf (u) is well-defined
and linear for each u ∈ F ⊆ V H(X)′. Since u ∈ Hvn(X)′, by Proposition 2.1.3,

|Tf (u)(z′)| = |u(z′ ◦ f)| ≤ qn(u)‖z′ ◦ f‖vn ≤ qn(u)‖z′‖‖f‖vn .

Therefore, Tf (u) ∈ E′′ with ‖Tf (u)‖ ≤ qn(u)‖f‖vn for each u ∈ F. Thus, since by
the very definition Tf : F → E′′ is linear, Tf ∈ L(F,E′′).

On the other hand, Tf (δx) ∈ E for each x ∈ X, since

(Tf (δx))(z′) = δx(z′ ◦ f) = z′(f(x)),

which yields that 〈z′, Tf (δx)〉 in the pair (E′, E′′) coincides with 〈z′, f(x)〉 in the
pair (E′, E) for every z′ ∈ E′. Since {δx, x ∈ X} is total in F by Lemma 2.2.3,
Tf ∈ L(F,E′′), and E is complete, we get Tf (F ) ⊆ E and Tf ∈ L(F,E) with
Tf (δx) = f(x) for every x ∈ X. Observe that if we get T ∈ L(F,E) such that
(T ◦ ∆)(x) = f(x), then T (δx) = Tf (δx) for every x ∈ X. Since {δx, x ∈ X} is
total in F, then T = Tf in F.

We claim now that the map ψ : V H(X,E) → Li(F,E), f → ψ(f) := Tf , which
is clearly linear, is also continuous. Indeed, for each n ∈ N, ψ : Hvn(X,E) →
L(Fn, E), where F = projnFn, is continuous, since

sup
qn(u)≤1

‖Tf (u)‖ ≤ ‖f‖vn (2.1)

for each f ∈ Hvn(X,E).

In order to find the isomorphism, we now define χ : Li(F,E) → V H(X,E) by
χ(T ) := T ◦ ∆, T ∈ Li(F,E). By Lemma 2.2.2, χ(T ) ∈ H(X,E). Moreover, it
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belongs to V H(X,E). Indeed, since T ∈ Li(F,E), there exists some m ∈ N such
that T ∈ L(Fm, E). Hence,

‖χ(T )(x)‖ = ‖T ◦∆(x)‖ = ‖T (δx)‖
≤ sup

u∈F
qm(u)≤1

‖T (u)‖ qm(δx) ≤ sup
u∈F

qm(u)≤1

‖T (u)‖/vm(x).

Therefore, χ(T ) ∈ Hvm(X,E) ⊆ V H(X,E) with

‖χ(T )‖vm ≤ sup
u∈F

qm(u)≤1

‖T (u)‖. (2.2)

Then, clearly χ is linear and continuous.

To complete the proof, it remains to show that the two mappings defined above
are the inverse of each other. Observe that ψ ◦ χ coincides with the identity on
Li(F,E). For T ∈ Li(F,E), (ψ ◦ χ)(T ) = ψ(T ◦∆) ∈ Li(F,E). For each x ∈ X,
we have (as we proved above)

(ψ(T ◦∆))(δx) = (T ◦∆)(x) = T (δx).

Consequently, ψ(T ◦∆) and T are continuous linear maps which coincide on the
total subset ∆(X) of F. Therefore, ψ(T ◦∆) = T. On the other hand, χ◦ψ coincides
with the identity on V H(X,E). Indeed, if f ∈ V H(X,E) and x ∈ X, we have

(χ ◦ ψ)(f)(x) = (χ(ψ(f)))(x) = ψ(f)(δx) = f(x).

2

The problem of the topological identity Lb(F,E) = Li(F,E) for a Fréchet space F
and a Banach space E is related to the problem of topologies of Grothendieck, and
it was investigated thoroughly since its solution by Taskinen in the mid 1980’s. We
refer the reader to Section 6 in [26] for further information and detailed references.

Remark 2.2.5 In the case V = {v}, observe that the mapping f ∈ V H(X,E)→
Tf ∈ Lb(F,E) is an isometric isomorphism. Indeed, by Remark 2.2.1, equation
(2.1) and doing T = Tf in equation (2.2), we easily get ‖Tf‖ = ‖f‖v for every
f ∈ Hv(X,E).

We translate now certain properties of a mapping f ∈ V H(X,E) into properties
of the corresponding operator Tf ∈ Li(F,E). If X is a set and Y is a vector space,
then a mapping f : X → Y is said to have finite rank if the subspace N of Y
generated by f(X) is finite dimensional. In that case, we define the rank of f
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to be the dimension of N. Proceeding as in [104, Proposition 3.1 and Proposition
3.4], we get the next proposition:

Proposition 2.2.6 Let X and E be Banach spaces.

(i) A mapping f ∈ V H(X,E) has finite rank if and only if the corresponding
operator Tf ∈ L(F,E) has finite rank. In that case, rankf = rank Tf .

(ii) A mapping f ∈ V H(X,E) has a relatively compact range (resp. rela-
tively weakly compact range) if and only if the corresponding operator Tf ∈
L(F,E) is compact (resp. weakly compact).

Remark 2.2.7 There exist several obstructions when trying to extend the lin-
earization Theorem 2.2.4 replacing a Banach space E by a Fréchet space E :

The first one is that in general ∪nL(Fn, E) 6= L(F,E) algebraically if E is a Fréchet
space. This follows trivially e.g. taking E = F , since ∪nL(Fn, E) coincides with
the space LB(F,E) of linear maps that send a neighbourhood of F into a bounded
subset of E. The question of the coincidence of L(F,E) and LB(F,E) for pairs
of Fréchet spaces F and E have been considered by many authors, starting with
Vogt’s paper [120].

The second problem one encounters refers to the topological coincidence. To
mention a concrete example, consider on the complex plane the weights vn(z) =
e−n|z|, z ∈ C. The (LB)-space V H(C) satisfies that its strong dual F is isomor-
phic to H(C). Since V H(C) is nuclear, F coincides with the predual of V H(C).
For an arbitrary Fréchet space E, we have the isomorphisms

Lb(F,E) ∼= Lb(H(C), E) ∼= VH(C)⊗̂εE

(see [87]). By Vogt [121, Theorem 4.9], this space is barrelled if and only if the
space E satisfies the topological invariant (Ω) (cf. [105]). If we take a Fréchet space
E which does not satisfy property (Ω), the non-barrelled space Lb(F,E) cannot
coincide topologically with the (LF)-space V H(C, E). Operator representations of
the space V (G,E′b) for Fréchet spaces E, where G is an open subset of Cd, were
obtained by Bierstedt and Holtmanns in [29]. The commutativity of inductive
limits and tensor products and the topological structure of spaces of type L(F,E)
for pairs of Fréchet spaces F and E have been discussed by many authors after
Vogt’s work [121]; see e.g. [26].
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2.3 Linearization of spaces of vector-valued functions

In Section 2.2 we obtain a linearization of the weighted (LB)-spaces of entire
functions V H(X,E), where X and E are Banach spaces. Here we give a more
general linearization result which includes the one given for V H(X,E).

Consider Ω a non-empty set and F(Ω) = G′ a dual Banach space of functions
f : Ω → C such that each evaluation map δx : F(Ω) → C, δx(f) := f(x), x ∈ Ω,
belongs to G. By the Hahn-Banach theorem, the linear span of {δx, x ∈ Ω} is
norm dense in G. This happens, for instance, if the topology restricted to BF(Ω)
is the pointwise topology. Now, given a Banach space E, consider the space

F(Ω, E) := {f : Ω→ E, e′ ◦ f ∈ F(Ω) for every e′ ∈ E′}.

Given f ∈ F(Ω, E), the map Sf : E′ → F(Ω), Sf (e′) := e′ ◦ f, e′ ∈ E′, is well-
defined, linear and weak-star pointwise continuous. By the closed graph theorem
Sf is continuous, and therefore we can endow F(Ω, E) with the norm ‖f‖ :=
sup‖e′‖≤1 ‖e′ ◦ f‖F(Ω). The map ∆ : Ω → G, x 7→ δx, x ∈ Ω, is well-defined, and
by [107], F(Ω) factors through ∆, that is, there exists an isometric isomorphism
J : F(Ω) → G′b, f → Jf(u) = u(f), such that Jf ◦ ∆ = f for every f ∈ F(Ω).
From this, we obviously get that ∆ belongs to F(Ω, G) and ‖∆‖ = 1. Following
the same steps as in the proof of [44, Lemma 10], we get the next linearization
result, where the functions do not need to be holomorphic. For instance, in [57,
Example 7] we have linearization in a space of continuous functions.

Lemma 2.3.1 The space F(Ω, E) is isomorphic to the space of linear and con-
tinuous operators L(G,E) in a canonical way. In particular, it is a Banach space.

Let Z = indnZn be an inductive limit of Banach spaces such that there exists a
Hausdorff locally convex topology τ such that BZn is τ -compact for every n ∈ N.
By [102], the space

G := {u ∈ Z ′ : u|BZn is τ -continuous for every n ∈ N}

is a predual of Z, and by [107], the space

Gn := {u ∈ Z ′n : u|BZn is τ -continuous }

is a predual of Zn for every n ∈ N.

Assume that Zn = Fn(Ω) is a space of functions and that the evaluation maps
{δx, x ∈ Ω} belong to the predual Gn of Zn, for every n ∈ N. Let E be a Banach
space and consider

Fn(Ω, E) := {f : Ω→ E, u ◦ f ∈ Fn(Ω) for every u ∈ E′}.
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By the Hahn Banach theorem, the linear span of {δx, x ∈ Ω} is norm dense in
Gn for every n ∈ N, hence the projective limit projnGn is reduced. Therefore,
G = projnGn. This fact yields the next general linearization result for weighted
(LB)-spaces of vector-valued functions:

Theorem 2.3.2 The space indnFn(Ω, E) is isomorphic to the space of linear and
continuous operators Li(G,E) in a canonical way, when we consider in L(G,E)
the inductive limit topology.

Proof. The conclusion comes easily from Lemma 2.3.1 and the fact that projnGn
is a reduced projective limit which coincides with G. Indeed,

indnFn(U,E) ∼= indnL(Gn, E) ∼= Li(projGn, E) ∼= Li(G,E)

(see Definition 0.1.9). 2

A version of the last linearization result can be found in Theorem 2.2.4 for the
weighted (LB)-space of holomorphic functions V H(X,E). Using Theorem 2.3.2, it
is enough to consider Fn(Ω) = Hvn(X) for every n ∈ N, since the fact that weakly
holomorphic functions are holomorphic and weakly bounded sets are bounded
implies that Fn(Ω, E) coincides with the natural definition of the space Hvn(X,E)
given in (3.1).

By Proposition 0.1.6 we get:

Theorem 2.3.3 In the case Z = projnFn(Ω) is a projective limit of Banach
spaces such that there exists a Hausdorff topology τ with BFn(Ω) τ -compact for
every n ∈ N, and such that the inductive limit of the preduals indnGn, G′n =
Fn(Ω), is regular, we get:

projnFn(Ω, E) ∼= projnLb(Gn, E) = Lb(indnGn, E).

Corollary 2.3.4 Let X be a Banach space and let W = {wn}n be an increasing
sequence of weights. For every Banach space E, HW (X,E) ∼= Lb(GW (X), E),
where

GW (X) = {u ∈ HW (X)∗ : u|B is τco-continuous ∀ bounded set B ⊆ HW (X)}

is the predual of HW (X).

Proof. In [115, Section 2.2.2] Rueda obtains that HW (X) = GW (X)′b. Moreover,
by [115, Teorema 2.2.34 and Nota 2.2.36], GW (X) = indnGwn(X) is a regular
inductive limit, where

Gwn(X) = {u ∈ Hwn(X)∗ : u|Bn is τco-continuous}
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is the predual of Hwn(X). The conclusion follows now by Theorem 2.3.3. 2

2.4 Extensions of functions in weighted spaces of
holomorphic functions

We finish the chapter with the next general question: given two Banach spaces X
and E, consider A ⊆ X, H ⊆ E′, and f : A → E such that for every u ∈ H the
function u◦f : A→ C has an extension in V H(X)(HW (X)).When does this imply
that there is an extension F of f in the weighted space of vector-valued holomor-
phic functions V H(X,E)(HW (X,E))? This problem is motivated by the fact that
a continuous function f : X → E belongs to V H(X,E)(HW (X,E)) if and only
if u ◦ f : X → C belongs to V H(X)(HW (X)) for every u ∈ E′. Despite the weak
and the formal definition do not coincide in general for V H0(X,E)(HW0(X,E)),
we also give conditions in order to obtain extension results using weak extensions
on these spaces.

2.4.1 Extensions of functions in inductive and projective limits
of dual Banach spaces

Let U be a connected open subset of a Banach space X. The space of all the
holomorphic functions on U is denoted by H(U). A subset A ⊆ U is called U -
bounded if it is bounded and the distance of A to the complementary of U is
positive. For U = X, U -bounded means simply bounded. If E is a Banach
space, the space of E-valued holomorphic functions on U is denoted by H(U,E).
A weight v : U → ]0,∞[ is a continuous function which is strictly positive, and
bounded below in each U -bounded subset A of U. The weighted Banach spaces of
holomorphic functions are defined by

Hv(U) := {f ∈ H(U) : sup
x∈U

v(x)|f(x)| <∞}

and

H0
v (U) := {f ∈ H(U) : vf vanishes at infinity on U -bounded sets}.

A function g : U → R is said to vanish at infinity on U -bounded sets when for
each ε > 0 there exists an U -bounded subset A such that |g(x)| < ε for x ∈ U \A.
Hv(U) is continuously included in the space Hb(U) endowed with the topology of
uniform convergence on U -bounded sets.



70 Linearization of weighted (LB)-spaces of entire functions

Analogously, for a Banach space E we define the weighted Banach spaces of vector-
valued holomorphic functions

Hv(U,E) := {f ∈ H(U,E) : sup
x∈U

v(x)‖f(x)‖ <∞} (4.3)

and

H0
v (U,E) := {f ∈ H(U,E) : v‖f‖ vanishes at infinity on U -bounded sets}.

Let Av(U) ⊆ Hv(U) be a closed subspace with compact closed unit ball for τco.
Notice that this condition implies that Av(U) is norm closed. We define the Banach
space of vector valued functions in a weak sense:

Av(U,E) := {f : U → E : u ◦ f ∈ Av(U) for all u ∈ E′}. (4.4)

Since weakly holomorphic functions are holomorphic and weakly bounded sets
are bounded, it follows that for Av(U) = Hv(U), definition (4.4) agrees with the
strong definition (4.3). By Lemma 2.3.1 we get that Av(U,E) can be identified
with L(GAv , E), being GAv the predual of Av(U).

In what follows we use some results given by Jordá in [85], which are extensions
of those obtained by Frerick, Jordá and Wengenroth in [67] for spaces of bounded
holomorphic and harmonic functions on open subsets of finite dimensional sub-
spaces with values in locally convex spaces. They allow us to obtain the analogous
for weighted spaces of holomorphic functions.

A subset H of E′ is said to determine boundedness whenever all the σ(E,H)-
bounded subsets of E are bounded. The linear span of such sets is σ(E′, E)-dense.

A subset A ⊆ U is called a set of uniqueness for Av(U) if each f ∈ Av(U) which
vanishes on A is identically null. For the case of one variable holomorphic functions
it is clearly enough to have an accumulation point in A. By standard duality
arguments, A is a set of uniqueness if and only if the linear span of {δx : x ∈ A}
is σ(Av(U)′, Av(U))-dense in Av(U)′. Given a decreasing (increasing) sequence of
weights V (W ), we say that A ⊆ X is a set of uniqueness for V H(X) (HW (X)) if
each function f ∈ V H(X) (HW (X)) which vanishes on A vanishes on the whole
X. Obviously, A is a set of uniqueness of V H(X) if and only if it is a set of
uniqueness of Hvn(X) for every n ∈ N.

Theorem 2.4.1 ([85, Theorem 10]) Let v be a weight on U, let Av(U) be a sub-
space of Hv(U) with τco-compact closed unit ball, let A be a set of uniqueness for
Av(U), let E be a Banach space and let H ⊆ E′ be a subspace which determines
boundedness in E. If f : A→ E is a function such that u ◦ f admits an extension
fu ∈ Av(U) for each u ∈ H, then f admits a unique extension F ∈ Av(U,E).
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Corollary 2.4.2 Let V be a decreasing sequence of weights on X, let A be a set
of uniqueness for V H(X), let E be a Banach space and let H be a closed subspace
of E′ which determines boundedness in E. If f : A → E is a function such that
u ◦ f admits an extension fu ∈ V H(X) for each u ∈ H, then f admits a unique
extension F ∈ V H(X,E).

Proof. Consider the map Tf : H → V H(X) defined by u → fu. Since it is
linear and continuous if we consider in V H(X) the pointwise topology given by
the elements of A, by the closed graph theorem we obtain that Tf is continuous.
Hence, by Grothendieck’s factorization theorem, we obtain that there exists some
n ∈ N such that fu ∈ Hvn(X) for every u ∈ H. Therefore, applying Theorem 2.4.1,
we get that f admits a unique extension F ∈ Hvn(X,E) ⊆ V H(X,E). 2

Corollary 2.4.3 Let W be an increasing sequence of weights on X, let A be a
set of uniqueness for Hwn(X) for every n ∈ N, let E be a Banach space and let
H ⊆ E′ be a subspace which determines boundedness in E. If f : A → E is a
function such that u ◦ f admits an extension fu ∈ HW (X) for each u ∈ H, then
f admits a unique extension F ∈ HW (X,E).

Proof. By hypothesis, for every n ∈ N, u ◦ f admits an extension fu ∈ Hwn(X)
for each u ∈ H. Thus, Theorem 2.4.1 implies that there exists a unique extension
Fn ∈ Hwn(X) of f. Since Fn ∈ Hw1(X) for every n ∈ N, the uniqueness yields
that F1 = Fn for every n ∈ N, and thus, the conclusion holds. 2

We study now the problem of extending functions which admit extensions for
functionals in a subspace H of E which we assume only to be σ(E′, E)-dense. In
this case we require that A is quite large.

A subset A ⊆ U is said to be sampling for Av(U) if there exists some constant
C ≥ 1 such that, for every f ∈ Av(U),

sup
x∈X

v(x)|f(x)| ≤ C sup
a∈A

v(a)|f(a)|.

Theorem 2.4.4 ([85, Theorem 12]) Let v be a weight on U, let Av(U) be a sub-
space of Hv(U) with τco-compact unit ball, and let A be a sampling set for Av(U).
Let E be a Banach space and let H be a σ(E′, E)-dense subspace of E′. If f :
A→ E is a function such that supa∈A v(a)‖f(a)‖ <∞ and such that u ◦ f admits
an extension fu ∈ Av(U) for each u ∈ H, then there exists a unique extension
F ∈ Av(U,E) of f.
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Given V a decreasing sequence of weights on X, we say that A is sampling for
V H(X) if for every n ∈ N there exists some constant Cn ≥ 1 such that

sup
x∈X

vn(x)|f(x)| ≤ Cn sup
a∈A

vn(a)|f(a)|

for every f ∈ V H(X). Observe that A sampling on V H(X) yields A sampling on
Hvn(X) for every n ∈ N.

Corollary 2.4.5 Let V be a decreasing sequence of weights on X, let A be a
sampling set for V H(X), let E be a Banach space and let H be a σ(E′, E)-dense
subspace of E′. If f : A → E is a function such that there exists m ∈ N with
supa∈A vm(a)‖f(a)‖ < ∞ and such that u ◦ f admits an extension fu ∈ V H(X)
for each u ∈ H, then there exists a unique extension F ∈ V H(X,E) of f.

Proof. Since u ◦ f ∈ V H(X) for every u ∈ H and A is sampling on V H(X), there
exists some C > 0 such that

sup
x∈X

vm(x)|(u ◦ f)(x)| ≤ C sup
a∈A

vm(a)|(u ◦ f)(a)| ≤ C‖u‖ sup
a∈A

vm(a)‖f(a)‖ <∞.

Therefore, since A is sampling on Hvm(X), Theorem 2.4.4 yields the conclusion.
2

Proceeding as in Corollary 2.4.3, we get the next corollary:

Corollary 2.4.6 Let W be an increasing sequence of weights on X, let A be
a sampling set for every Hwn(X), n ∈ N, let E be a Banach space and let
H be a σ(E′, E)-dense subspace of E′. If f : A → E is a function such that
supa∈A wm(a)‖f(a)‖ <∞ for every m ∈ N and such that u◦f admits an extension
fu ∈ HW (X) for each u ∈ H, then there exists a unique extension F ∈ HW (X,E)
of f.

In [85, Remark 13] it is shown that the conditions on the set A where the functions
are defined and in the subspaceH cannot be simultaneously relaxed. The condition
of boundedness in the extensions cannot be dropped either.

For arbitrary Banach spaces in Hv(U) with no assumption on the unit ball, The-
orem 2.4.4 is no longer true. In fact, the equivalence between the weak and the
strong definitions does not hold in general. Jordá proves in [85, Example 15] that
for X finite dimensional and H0

v (U) infinite dimensional, the space

H0
v (U,E)w := {f : U → E : u ◦ f ∈ H0

v (U) for all u ∈ E′},

when E = c0 satisfiesH0
v (U, c0) ( H0

v (U, c0)w. The equalityH0
v (U,E)w = H0

v (U,E)
holds if we add some conditions, for instance, if E is a Banach space satisfying the
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Schur property, that is, if every sequence {xn}n in E which is weakly convergent
is also norm convergent [85, Proposition 14]. The well known theorem of Schur
asserts that `1 satisfies this property. But the Schur property is not enough in
order to have Theorems 2.4.1 and 2.4.4 for Hv0(U,E) (see [85, Example 17]). To
have such an extension we need relatively compact range, as we show in the next
section.

2.4.2 Extensions of functions in inductive and projective limits
of general Banach spaces

In this section we study extensions of functions in general Banach spaces, not
necessarily having a predual, considering the natural extension to the weighted
case of the vector-valued compact holomorphic functions introduced by Aron and
Schottenloher in [8] by means of the weak definition. Most of these results are
published by Jordá in [85].

Given two locally convex spaces F and E, we denote by FεE its ε-product of
Schwartz, that is, the space of all linear and continuous mappings Le(F ′co, E),
endowed with the topology of uniform convergence on the equicontinuous subsets
of F ′. F ′co is F ′ endowed with the topology τco of uniform convergence on the convex
compact subsets of F. The ε-product is symmetric by means of the transpose
mapping [87, §43.3(3)]. In case E and F are Banach spaces, T : F ′ → E belongs
to FεE if and only if T is a compact operator which is weak∗-weak continuous
[87, §43.3.(2)]. Let Ω be a non-void set and let v : Ω → (0,∞) be a bounded
continuous function. If E is a Banach space, consider

Bv(Ω, E) := {f : Ω→ E, (vf)(Ω) bounded in E},

Bvc(Ω, Et) := {f : Ω→ E, (vf)(Ω) relatively compact in (E, t)},

where t can be the norm, weak, or weak-star (in the case E is a dual Banach
space) topology on E. Bv(Ω, E) is a Banach space under the norm given by
supx∈Ω v(x)‖f(x)‖. In the case E = C, put Bv(Ω) := Bv(Ω,C) = Bvc(Ω,C).

Given a closed subspace F(Ω) of Bv(Ω), and a Banach space E, consider

F(Ω, Et) := {f ∈ Bv(Ω, E) : u ◦ f ∈ F(Ω) for every u ∈ E′}.

Fc(Ω, Et) := {f ∈ Bvc(Ω, Et) : u ◦ f ∈ F(Ω) for every u ∈ E′}.
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As above, we say that a set A ⊆ Ω is sampling for F(Ω) if there exists some
constant C ≥ 1 such that, for every f ∈ F(Ω),

sup
x∈Ω

v(x)|f(x)| ≤ C sup
a∈A

v(a)|f(a)|.

The key to obtain a linearization of general Banach spaces of functions is the exis-
tence of an identification between each Banach space E and the linear functionals
on E′ that are weak-star continuous [65, Corollary 3.94]. This yields that the
evaluation mapping

J : F(Ω)→ {T ∈ F(Ω)′′ : T weak-star continuous}, f 7→ Jf(u) := u(f),

is an isometric isomorphism. Since δx ∈ F(Ω)′ for every x ∈ Ω, the map ∆ :
Ω → F(Ω)′, ∆(x) := δx, x ∈ Ω, is well-defined. Note also that each function
f ∈ F(Ω) linearizes through ∆, since f = Jf ◦ ∆, and J defined above is an
isometry. Observe that this is analogous to [107] for general Banach spaces. In
fact, the map ∆ : Ω → F(Ω)′, x 7→ δx, satisfies that u ◦ ∆ ∈ F(Ω) for every
u ∈ F(Ω).

Theorem 2.4.7 ([85, Theorem 19]) Let A ⊆ Ω be a sampling set for F(Ω), let
E be a Banach space and let H be a weak-star dense subspace of the dual of
Et := (E, t), where t can be the norm, weak, or weak-star (in the case E is a dual
Banach space) topology on E. The following are equivalent:

(i) f : A→ E satisfies that vf(A) is relatively compact in Et and u ◦ f admits
an extension fu ∈ F(Ω) for each u ∈ H.

(ii) The linear mapping Tf : H → F(Ω), u → fu admits an extension T̂ ∈
F(Ω)εEt.

(iii) f can be extended to F ∈ Fc(Ω, Et).

Observe that, setting A = Ω and H = E′ in Theorem 2.4.7 we have a linearization
of the space Fc(Ω, Et). In fact, we get that for each Banach space E and each
function f ∈ Fc(Ω, Et), there is a unique operator Tf ∈ F(Ω)εEt such that Tf ◦
∆ = f. This fact can be obtained as a consequence of the much more general
linearization result given by Bierstedt in [23, Bemerkung 3.1].

Corollary 2.4.8 If E is a Banach space, then

Fc(Ω, Et) = F(Ω)εEt = {T ∈ L(F(Ω)′, E), T |BF(Ω)′ is weak∗-t continuous},

where t can be the norm or the weak topology on E. For a dual Banach space,

{f ∈ Bvc(Ω, E′w∗) : u ◦ f ∈ F(Ω) for every u ∈ E} = F(Ω, E′w∗) = L(E,F(Ω)),
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where w∗ denotes the weak-star topology on E′.

Proof. The case t is the norm or the weak topology on E follows easily from
Theorem 2.4.7 and [87, §43.3.(2)]. If t is the weak-star topology, then the first
equality follows by Alaoglu-Bourbaki theorem and from the identification be-
tween E and the linear functionals on E′ that are weak-star continuous. In
fact, F(Ω, E′w∗) = Fc(Ω, E′w∗). By Theorem 2.4.7 and [87, §43.3.(2)] we get
F(Ω, E′w∗) = F(Ω)εE′w∗ = L(F (Ω)′w∗, E′w∗), and this is equal to L(Ew, F (Ω)w) =
L(E,F(Ω)) ([84, page 161]). 2

Observe that if we apply Corollary 2.4.8 to a Banach space F(Ω) with a predual
G, we get that

Fc(Ω, Et) = G′εEt = K(G,Et).

We have seen in Lemma 2.3.1 that in this case we do not need compactness to
have a linearization.

By [85, (36)], the spaces

H0,c
v (U,E)w := {f ∈ Hv(U,E) : (vf)(U) is r.c. and u ◦ f ∈ H0

v (U) ∀u ∈ E′}

and

H0,c
v (U,E) = {f ∈ H0

v (U,E) : (vf)(U) is relatively compact}

coincide, where r.c. means relatively compact.

In case X is finite dimensional, the space H0
v (U,E) is the space of holomorphic

functions such that f is continuous in the Alexandroff compactification U ∪ {∞}
of U and f(∞) = 0. Hence H0

v (U,E) = H0,c
v (U,E) in this case. If X is infinite

dimensional the inclusion H0,c
v (U,E) ⊆ H0

v (U,E) is strict in general. Observe that
if U is the unit ball and v vanishes at ∞ on U then I|U ∈ H0

v (U,X) \H0,c
v (U,E).

So, if we consider F(Ω) = H0
v (U), the next extensions hold:

Proposition 2.4.9 If A ⊆ U is a sampling set for H0
v (U), E a Banach space and

f : A→ E is a function such that vf(A) is relatively compact and u ◦ f admits an
extension fu ∈ H0

v (U) for each u ∈ H ⊆ E′, H a weak-star dense subspace, then
f admits an extension F ∈ H0,c

v (U,E).

Proceeding as in the proof of Corollaries 2.4.5 and 2.4.3, for the spaces V Hc
0(U,E)

:= indnH
0,c
vn (U,E) and HW c

0 (U,E) := projnH
0,c
wn(U,E) we get:
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Corollary 2.4.10 Let A be a sampling set for every H0
vn(U), n ∈ N, let E be a

Banach space and let H be a σ(E′, E)-dense subspace of E′. If f : A → E is a
function such that there exists m ∈ N with vmf(A) relatively compact and such
that u ◦ f admits an extension fu ∈ V H0(U) for each u ∈ H, then there exists a
unique extension F ∈ V Hc

0(U,E) of f.

Corollary 2.4.11 Let A be a sampling set for every H0
wn(U), n ∈ N, let E be a

Banach space and let H be a σ(E′, E)-dense subspace of E′. If f : A → E is a
function such that wnf(A) relatively compact for every n ∈ N, and such that u ◦ f
admits an extension fu ∈ HW0(U) for each u ∈ H, then there exists a unique
extension F ∈ HW c

0 (U,E) of f.



Chapter 3

Dynamics of differentiation and
integration operators on weighted
spaces of entire functions

In this chapter we are concerned with the dynamical behaviour of the following
three operators on weighted Banach spaces of entire functions defined by supre-
mum or integral norms: the differentiation operatorDf(z) = f ′(z), the integration
operator Jf(z) =

∫ z
0 f(ζ)dζ and the Hardy operator Hf(z) = 1

z

∫ z
0 f(ζ)dζ, z ∈ C.

In particular we analyze when they are hypercyclic, chaotic, power bounded, and
(uniformly) mean ergodic. Moreover, for weights satisfying some conditions, we
estimate the norm of the operators and study their spectrum. For differential
operators φ(D), φ an entire function, we study hypercyclicity and chaos, and we
include an example of a hypercyclic and mean ergodic operator given by Peris.

The results obtained on the weighted Banach spaces of entire functions Hv(C)
and H0

v (C) are published by Bonet, Fernández and the author in [17], and their
generalization to weighted Banach spaces of entire functions defined by means of
integral norms are included by Beltrán in [15].
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3.1 Notation and Preliminaries

It is easy to see that the three operators, D, J and H, are continuous on H(C). In
1952 MacLane proved that the differentiation operator D is hypercyclic on H(C).
He used a construction to find an entire function with dense orbit in [96]. Now it
can be proved very easily using the Hypercyclicity Criterion, since the polynomials
are dense in H(C). Moreover, using Runge’s Theorem (see [58, page 202, Theorem
2.2]), Shapiro characterized simple connectivity of a domain G ⊆ C in terms of the
hypercyclicity (even chaoticity) of the differentiation operator D acting on H(G).
More precisely, he proved that simply connectivity of G is equivalent to D being
hypercyclic or chaotic on H(G).

For r ≥ 0 and f ∈ H(C), consider

Mp(f, r) :=
(

1
2π

∫ 2π

0
|f(reiθ)|pdθ

)1/p

for 1 ≤ p <∞

and

M∞(f, r) := sup
|z|=r

|f(z)|.

By the classical Hardy convexity theorem and the Maximum Modulus Theorem,
the mapping r →Mp(f, r) is increasing and logarithmically convex.

As defined in Section 0.2, a weight v on C is a strictly positive continuous function
on C which is radial, non-increasing and rapidly decreasing. For such a weight,
1 ≤ p ≤ ∞ and q ∈ {0,∞}, the generalized weighted Bergman spaces of entire
functions are defined by

Bp,∞(v) := {f ∈ H(C) : |||f |||p,v := sup
r>0

v(r)Mp(f, r) <∞}

and

Bp,0(v) := {f ∈ H(C) : lim
r→∞

v(r)Mp(f, r) = 0}.

Both are Banach spaces under the norm given by |||f |||p,v. In case p = ∞ these
spaces are usually denoted by Hv(C) and H0

v (C) (see [27, 28, 35, 68, 95]). The
inclusions Bp,0 ⊆ Bp,∞ ⊆ B1,∞ ⊆ H(C) are continuous for every 1 ≤ p ≤ ∞.
As in [42], take r > 0, select R0 > r, fix |z| ≤ r and apply the Cauchy formula,
integrating around the circle of center 0 and radius R0, to get

R0 − r
R0

|f(z)| ≤M1(f,R0) ≤Mp(f,R0) ≤M∞(f,R0).
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This implies

sup
|z|≤r

|f(z)| ≤ R0

(R0 − r)v(R0)v(R0)Mp(f,R0) ≤ R0

(R0 − r)v(R0) |||f |||p,v. (1.1)

Then, for every 1 ≤ p ≤ ∞, the closed unit ball of Bp,∞(v), denoted by Cp,∞, is
bounded on H(C) and τco-closed, since for r > 0 the mapping δp,r : H(C) → C,
f 7→Mp(f, r) is continuous and

Cp,∞ =
⋂
r≥0

δ−1
p,r([0,

1
v(r) ]).

As H(C) is Montel, then Cp,∞ is τco-compact.

For 1 ≤ p ≤ ∞ and 1 ≤ q <∞, we consider the space

Bp,q(v) :=
{
f ∈ H(C) : ‖f‖p,q,v :=

(
2π
∫ ∞

0
rv(r)qMp(f, r)qdr

)1/q
<∞

}
.

Given a compact set K and z ∈ K, we get by the mean value formula that

|f(z)| ≤ 1
π

∫
D(z,1)

|f(λ)|dλ ≤ 1
π

∫
D(0,R)

|f(λ)|dλ

for every f ∈ H(C), where R > 0 is such that z ∈ K ⊆ ∪z∈KD(z, 1) ⊆ D(0, R).

|f(z)| ≤ 1
π

∫ R

0
r

∫ 2π

0
|f(reiθ)|dθdr = 2

∫ R

0
rM1(f, r)dr ≤ 2

∫ R

0
rMp(f, r)dr,

so, applying Hölder’s inequality, we obtain that for every z ∈ K,

|f(z)| ≤ 2R1− 1
q

(∫ R

0
rqMp(f, r)qdr

) 1
q

≤ 2R2− 2
q

v(R)

(∫ ∞
0

rv(r)qMp(f, r)qdr
) 1
q

.

(1.2)
This implies that convergence in Bp,q(v) implies the uniform convergence on the
compact subsets of C. Thus, Bp,q(v) is a closed subset of the Banach space{

f : C→ C measurable: ‖f‖ :=
∫ ∞

0
rv(r)q

(∫ 2π

0
|f(reiθ)|pdθ

)q/p
dr <∞

}
,

and therefore, a Banach space. Observe that for p = q the last measurable space
is usually denoted by Lpv(C), the Banach space of all complex functions f on C
such that fv ∈ Lp(C, dλ), where λ is the Lebesgue measure on R2. When p = 2
this is a Hilbert space. For these spaces, we simply write Bpv := Bp,p(v) and
denote the norm by ‖ ‖p,v. Spaces of this type appear in the study of growth
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conditions of analytic functions and have been investigated in various articles, see
e.g. [27, 28, 35, 93, 94] and the references therein.

By (1.2), the closed unit ball of Bp,q(v), denoted by Cp,q, is bounded on H(C).
It is τco-closed since for every r0 > 0 the mapping δp,q,r0 : H(C) → C, f 7→∫ r0

0 rv(r)qMp(f, r)qdr is continuous and

Cp,q =
⋂
r0≥0

δ−1
p,q,r0([0, 1

2π ]).

So, also Cp,q is τco-compact.

Since the weights are rapidly decreasing and
∫∞
r0
rjv(r)dr =

∫∞
r0
rj+2v(r) 1

r2 dr for
every r0 > 0, the polynomials are included in Bp,q(v) for all 1 ≤ p ≤ ∞ and q = 0,
1 ≤ q ≤ ∞. By [94, Theorem 2.1] (see also [93, Proposition 2.1]), the polynomials
are even dense whenever q 6=∞. In particular, Bp,q(v) is separable. For 1 < p <∞
and 1 ≤ q <∞ or q = 0, the monomials are a Schauder basis of Bp,q(v), but this
is not satisfied in general for p ∈ {1,∞} [94, Theorem 2.3].

Throughout the chapter, Bp,q(a, α) shall denote the space associated to the fol-
lowing weight: va,α(r) = e−α, r ∈ [0, 1[, va,α(r) = rae−αr, r ≥ 1, if a < 0, and
va,α(r) = (a/α)ae−a, r ∈ [0, a/α[, va,α(r) = rae−αr, r ≥ a/α, if a > 0. Clearly,
changing the value of v on a compact interval does not change the spaces and gives
an equivalent norm. Moreover, we can assume without loss of generality that the
weight is differentiable. In case a = 0, we simply write Bp,q(α). The norms will be
denoted by || · ||p,q,a,α and || · ||p,q,α, respectively. In case q =∞, we simply write
||| · |||p,a,α and ||| · |||p,α. If, in addition, p = ∞, then the spaces are denoted by
Ha,α(C), H0

a,α(C), Hα(C) and H0
α(C), and the norms by || · ||a,α and || · ||α. For

p =∞ consider 1/p := 0 and for q ∈ {0,∞}, consider 1/q := 0.

In the next lemmata, we show some inclusions that are satisfied between these
spaces:

Lemma 3.1.1 Given a weight v, consider vs := vs for s > 0. For 1 ≤ p ≤ ∞,
q = 0 or 1 ≤ q ≤ ∞, we get

Hva(C) ↪→ Bp,∞(va) ↪→ Bp,q(vb) ↪→ H0
vc(C)

continuously if 0 < a < b < c.
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Proof. Hva(C) ⊆ Bp,∞(va) follows easily since Mp(f, r) ≤ M∞(f, r) for every
f ∈ H(C) and r ≥ 0. Given f ∈ Bp,∞(va),∫ ∞

0
rvb(r)qMp(f, r)qdr =

∫ ∞
0

r(va(r)Mp(f, r))qvb−a(r)qdr

≤ |||f |||qp,va

∫ ∞
0

rvb−a(r)qdr <∞

if 1 ≤ q <∞ and

vb(r)Mp(f, r) = va(r)Mp(f, r)vb−a(r) ≤ |||f |||p,vavb−a(r),

so Bp,∞(va) ↪→ Bp,q(vb). The last inclusion follows from (1.2), since this implies
that

vc(R)|f(z)| ≤ 2R2−2/qv(R)c−b‖f‖p,q,vb

for every z ∈ C, |z| ≤ R and the weight is rapidly decreasing. 2

Lemma 3.1.2 Given a weight v, consider 1 ≤ p ≤ ∞. If there exists some q1 ≥ 1
such that

v(R)q1 = O

(∫ ∞
R

rv(r)q1dr
)

as R→∞, (1.3)

then:

(i) Bp,q1(v) ↪→ Bp,0(v) continuously,

(ii) Bp,q1(v) ↪→ Bp,q2(v) continuously for q1 ≤ q2 ≤ ∞.

Proof. (i) This follows easily, since given f ∈ Bp,q1(v), then

(Mp(f,R)v(R))q1 = O

(
Mp(f,R)q1

∫ ∞
R

rv(r)q1dr
)
.

(ii) By (i), Bp,q1(v) ⊆ Bp,0(v), then, given f ∈ Bp,q1(v) there exists a constant
C > 0 such that supr≥0 v(r)q2−q1Mp(f, r)q2−q1 ≤ C, and thus,∫ ∞

0
rv(r)q2Mp(f, r)q2dr ≤ C

∫ ∞
0

rv(r)q1Mp(f, r)q1dr.

2

Remark 3.1.3 Condition (1.3) in Lemma 3.1.2 is satisfied when:

(i) v is a weight such that supr≥0
v(r)
v(r+1) <∞.
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(ii) v(r) = rae−r
b for 1 ≤ b ≤ 2 and a ∈ R.

Proof. (i) follows easily, since for R ≥ 1,

v(R)q = O(v(R+ 1)q) = O

(∫ R+1

R

v(r)qdr
)

= O

(∫ R+1

R

rv(r)qdr
)
.

(ii) Observe that in this case,∫ ∞
R

rv(r)qdr =
∫ ∞
R

rb−1e−qr
b

raq+2−bdr ≥
∫ ∞
R

rb−1e−qr
b

raqdr,

therefore ∫ ∞
R

rv(r)qdr ≥ 1
qb
e−qR

b

Raq + a

b

∫ ∞
R

e−qr
b

raq−1dr.

In case a ≥ 0 we are done. If a < 0,

1
qb
e−qR

b

Raq ≤
∫ ∞
R

rv(r)qdr + |a|
b

∫ ∞
R

e−qr
b

raq−1dr.

As the second integral is smaller than the first one, we conclude. 2

For the estimates of the norms of the operators on these spaces, we use the Stirling
formulas

n! ∼
√

2πn
(n
e

)n
and Γ(x+ 1) ∼

√
2πx

(x
e

)x
, x > 0,

where Γ denotes the Gamma function. Recall that Γ(z) =
∫∞

0 e−ttz−1dt, z ∈ C,
and Γ(n) = (n− 1)! for every n ∈ N.

The next Lemma is an extension of [42, Lemma 2.2]:

Lemma 3.1.4 Given a weight v, a > 0, 1 ≤ p ≤ ∞, and q = 0 or 1 ≤ q ≤ ∞, the
following are equivalent:

(i) {eaθz : |θ| = 1} ⊆ Bp,q(v),

(ii) there is θ ∈ C, |θ| = 1, such that eaθz ∈ Bp,q(v),

(iii) limr→∞ v(r) e
ar

r
1
2p

= 0 if q = 0, supr≥0 v(r) e
ar

r
1
2p
<∞ if q =∞, or r

1
q−

1
2p ear ∈

Lqv([r0,∞[) for some r0 > 0 if 1 ≤ q <∞.
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Proof. Observe that for each θ ∈ C with |θ| = 1 we have ‖eaθz‖p,q,v = ‖eaz‖p,q,v.
(i)⇔(ii)⇔(iii) is proved in [42, Lemma 2.2] for the case q = 0. We include the
proof here for the sake of completeness. Consider f(z) = eaz, z ∈ C, and write
z = r(cos t + i sin t). Now, apply the Laplace methods for integrals as in formula
(2.31) in page 33 in [106] to conclude, for r > 0,

2πMp(f, r)p =
∫ 2π

0
earp cos tdt =

(
π

2arp

)1/2
earp + earpO

(
1
rp

)
.

This yields, for a certain constant cp > 0 depending on p,

Mp(f, r) = cp
ear

r
1
2p

+ earO

(
1
r

1
p

)
.

This implies that for each 1 ≤ p < ∞ there are dp, Dp > 0 and r0 > 0 such that,
for each |θ| = 1 and each r > r0,

dp
ear

r
1
2p
≤Mp(eaθz, r) ≤ Dp

ear

r
1
2p
. (1.4)

Now the equivalence follows easily, even for 1 ≤ q <∞, since for every s > r0,

dqp

∫ ∞
s

r1− q
2p v(r)qearqdr ≤

∫ ∞
s

rv(r)qMp(eaθz, r)qdr

≤ Dq
p

∫ ∞
s

r1− q
2p v(r)qearqdr. (1.5)

2

From (1.4) we get the next corollary:

Corollary 3.1.5 If we consider the exponential weight v(r) = e−αr, α > 0, then
eλz ∈ Bp,∞(α) if and only if eλz ∈ Bp,0(α) for every 1 ≤ p <∞ and λ ∈ C. This
is not satisfied for p =∞, since eαz ∈ Hv(C) \H0

v (C).

Lemma 3.1.6 For every 1 ≤ p ≤ ∞, the unit ball Cp,0 is τco-dense in Cp,∞.

Proof. Given f ∈ Cp,∞, let fr(z) := f(rz), r ∈ (0, 1). Fix r and ε > 0 and get n ∈
N such that rn+1 < ε/4. If f(z) =

∑∞
k=0 akz

k is the Taylor series representation of
f at 0, then the Taylor polynomial Pn(z) :=

∑n
k=0 akz

k ∈ Bp,0(v), so there exists
R > 0 such that v(s)Mp(Pn, s) < min( ε2 , 1) for all s > R. Since r → Mp(f, r) is
increasing for every f ∈ H(C), for all s > R,

v(s)Mp((Pn)r, s) = v(s)Mp(Pn, rs) ≤ v(s)Mp(Pn, s) < ε/2. (1.6)
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Besides, if we consider g := f − Pn and h(z) :=
∑∞
k=n+1 akz

k−(n+1), z ∈ C, then
g(z) = zn+1h(z). For s > R, by Minkowski’s inequality, we get

v(s)Mp(g, rs) = v(s)Mp(zn+1h, rs) = rn+1sn+1v(s)Mp(h, rs)
≤ rn+1sn+1v(s)Mp(h, s) = rn+1v(s)Mp(g, s) (1.7)
= rn+1v(s)Mp(f − Pn, s) ≤ rn+1v(s)Mp(f, s)

+ rn+1v(s)Mp(Pn, s) ≤ rn+1(|||f |||p,v + min(ε/2, 1))
≤ 2rn+1 ≤ ε/2.

By (1.6) and (1.7) we obtain

v(s)Mp(fr, s) = v(s)Mp(gr + (Pn)r, s)
≤ v(s)Mp(gr, s) + v(s)Mp((Pn)r, s) ≤ ε

for all s > R, which implies that fr ∈ Bp,0(v). Moreover, fr ∈ Cp,0 since

|||fr|||p,v = sup
s≥0

v(s)Mp(f, rs) ≤ |||f |||p,v ≤ 1,

and it is easy to see that fr converges to f in τco as r → 1 since f is uniformly
continuous on the compact subsets of C. 2

The next lemma is inspired by [41, Proposition 1.1].

Lemma 3.1.7 Let T : (H(C), τco) → (H(C), τco) be a continuous linear operator
such that T (P) ⊆ P, let v be a weight and 1 ≤ p ≤ ∞. The following conditions
are equivalent:

(i) T (Bp,∞(v)) ⊆ Bp,∞(v),

(ii) T : Bp,∞(v)→ Bp,∞(v) is continuous,

(iii) T (Bp,0(v)) ⊆ Bp,0(v),

(iv) T : Bp,0(v)→ Bp,0(v) is continuous.

If (i)-(iv) hold, then ||T ||L(Bp,∞(v)) = ||T ||L(Bp,0(v)).

Proof. The equivalences (i)⇔(ii) and (iii)⇔(iv) follow from the closed graph the-
orem, since Bp,∞(v) ↪→ H(C) continuously and T is continuous on (H(C), τco).
(ii)⇒(iii) comes easily from the fact that the polynomials are dense in Bp,0(v),
T (P) ⊆ P and Bp,0(v) is closed in Bp,∞(v). Clearly ||T ||L(Bp,0(v)) ≤ ||T ||L(Bp,∞(v)).

(iv)⇒(i) By Lemma 3.1.6, the unit ball of Bp,0(v) is τco-dense in the unit ball of
Bp,∞(v), so given f in Cp,∞ there exists {fα}α in Cp,0 such that {fα}α converges to
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f in τco and |||Tfα|||p,v ≤ ‖T‖L(Bp,0(v)). Since T is τco-continuous, Tfα converges
to Tf in τco, and since the unit ball of Bp,∞(v) is τco-closed, we have |||Tf |||p,v ≤
‖T‖L(Bp,0(v)). Since this happens for every f in the unit ball of Bp,∞(v), the op-
erator T : Bp,∞(v) → Bp,∞(v) is continuous with ||T ||L(Bp,∞(v)) ≤ ||T ||L(Bp,0(v)),
and thus, the norms coincide. 2

In what follows we write |||T |||p,v instead of ||T ||L(Bp,∞(v)) = ||T ||L(Bp,0(v)) for
1 ≤ p ≤ ∞ and ||T ||p,v instead of ||T ||L(Bpv). For 1 ≤ q < ∞ we use the notation
||T ||p,q,v. Moreover, |||T |||p,a,α, ||T ||p,a,α and ||T ||p,q,a,α refer to the norm of the
operator acting on the respective spaces associated to the weight va,α. For v(r) =
e−αr, r ≥ 0, we omit the a.

Using Lemma 3.1.7 we get the next proposition. In fact, following the proof we even
get that if J is mean ergodic on Bp,∞(v) or on Bp,0(v), then limN

(J+···+JN )(f)
N = 0

for every f in the corresponding space. Observe also that as the polynomials are
dense in Bp,0(v), the operator D is mean ergodic on Bp,0(v) if and only if it is
Cesàro power bounded. In this case, P (f) = 0 for every f ∈ Bp,0(v).

Proposition 3.1.8 Let T = D or T = J and assume that T is continuous on
Bp,∞(v), and equivalently, on Bp,0(v). The following conditions are equivalent:

(i) T : Bp,∞(v)→ Bp,∞(v) is uniformly mean ergodic,

(ii) T : Bp,0(v)→ Bp,0(v) is uniformly mean ergodic,

(iii) limN→∞
|||T+···+TN |||p,v

N = 0.

Proof.

(i)⇒(ii) and (iii)⇒(i) are clear. We show (ii)⇒(iii).

Suppose first that T = D is uniformly mean ergodic on Bp,0(v). Since the polyno-
mials are dense and the sequence { 1

N

∑N
j=1D

j}N converges pointwise to zero on
P, we have that

lim
N→∞

1
N
|||

N∑
j=1

Dj |||p,v = 0.
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For T = J , we only have to prove that limN
(J+···+JN )(f)

N = 0 for each f ∈ Bp,0(v).
By assumption, the limit limN

(J+···+JN )(f)
N exists. Moreover,

J

(
lim
N

(J + · · ·+ JN )(f)
N

)
= lim

N

(
(J + · · ·+ JN+1)(f)

N + 1
N + 1
N

− Jf

N

)
= lim

N

(J + · · ·+ JN )(f)
N

.

Since J has no fixed points different from zero, the conclusion follows. 2

Proposition 3.1.9 If T ∈ L(E) is a uniformly mean ergodic operator satisfying
that the limit limN→∞

||T+···+TN ||
N = 0, then 1 6∈ σ(T ).

Proof. If limN→∞
||T+···+TN ||

N = 0, for N big enough the operator I − 1
N

∑N
j=1 T

j

is invertible, i.e., N /∈ σ(q(T )) for q(z) =
∑N
j=1 z

j , which, by the spectral mapping
theorem, coincides with q(σ(T )). Thus, 1 /∈ σ(T ). 2

For every 1 ≤ p ≤ ∞ and n ∈ N, Mp(zn, r) = rn, and thus, ‖zn‖p,q,v = ‖zn‖∞,q,v.
In what follows, we denote it simply by ‖zn‖q,v. As in [41], it is important to
estimate the norms of the monomials. In fact, from the inequalities ‖1‖q,vn! =
‖Dn(zn)‖q,v ≤ ||Dn||p,q,v||zn||q,v and ||z

n||q,v
n! ≤ ‖Jn(1)‖q,v ≤ ||Jn||p,q,v‖1‖q,v we

get the next lemma:

Lemma 3.1.10 Let v be a weight such that the differentiation operator D and the
integration operator J are continuous on Bp,q(v), 1 ≤ p ≤ ∞, q = 0 or 1 ≤ q ≤ ∞.

(i) If D is power bounded (resp. uniformly mean ergodic), then infn ||z
n||q,v
n! > 0

(resp. { ||z
n||q,v

(n−1)! }n tends to infinity).

(ii) If J is power bounded (resp. mean ergodic), then { ||z
n||q,v
n! }n is bounded

(resp. { ||z
n||q,v
n!n }n tends to zero).

For weights v(r) = rae−αr (α > 0, a ∈ R) for r ≥ r0 for some r0 ≥ 0 we have

||zn||v ≈
(
n+ a

eα

)n+a
, (1.8)

with equality for v(r) = e−αr, r ≥ 0. It is enough to estimate the maximum of
the function g(r) = rn+ae−αr and to have in mind that the symbol ≈ appears as
a consequence of the fact that the value of a given weight v can be changed on
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a compact interval in order to satisfy some required conditions without changing
the spaces and giving an equivalent norm.

For 1 ≤ q <∞, the Stirling formula yields:

‖zn‖q,a,α ≈
(

2π
∫ ∞

0
r(a+n)q+1e−αrqdr

)1/q
=
(

2πΓ((a+ n)q + 2)
(αq)(a+n)q+2

)1/q

∼
(

(a+ n)q + 1
eαq

)a+n+ 3
2q

. (1.9)

Observe that (1.9) tends to (1.8) as q →∞. Applying again the Stirling formula,

‖zn‖q,a,α
n! ≈ na+ 3

2q−
1
2

αn
. (1.10)

3.2 The integration operator

Proposition 3.2.1 The operator J is never hypercyclic on H(C), nor on Bp,q(v),
1 ≤ p ≤ ∞ and q = 0 or 1 ≤ q <∞, provided it is continuous, J − λI is injective
on H(C) for all λ ∈ C, and J has no periodic points different from 0 on H(C).

Proof. Jf(0) = 0 for every f ∈ H(C), thus Im(J), and the orbit of an element,
cannot be dense. We even get that Jmf tends to zero in the compact open
topology for every f ∈ H(C). Indeed, given f(z) =

∑∞
k=0 akz

k ∈ H(C), Jmf(z) =∑∞
k=0 akz

k+m k!
(k+m)! , then

|Jmf(z)| ≤ Rm
∞∑
k=0
|ak|Rk

k!
(k +m)! ≤

Rm

m!

∞∑
k=0
|ak|Rk

for every z ∈ C, |z| ≤ R. Thus, Jmf tends to zero in the compact open topology.

If λ = 0, J is injective, since Jf = 0 implies f = DJf = 0. If λ 6= 0 and Jf−λf =
0, then f − λDf = 0, so f(z) = Ce

1
λ z for some C ∈ C. But f(0) = 1

λJf(0) = 0,
which implies 0 = f(0) = C, and thus, f = 0.

Now suppose that Jmf = f for some f 6= 0 and some m ∈ N. Using the trivial
decomposition Jm−I = (J−θ1I) . . . (J−θmI), θmj = 1, j = 1, . . . ,m, we conclude
that there is g ∈ H(C), g 6= 0, and θ ∈ C, θm = 1, such that (J − θI)g = 0. But
J − θI is injective, so we get a contradiction. 2
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Proposition 3.2.2 Let v be a weight such that J is continuous on Bp,q(v), 1 ≤
p ≤ ∞, 1 ≤ q ≤ ∞ or q = 0 and assume that v(r)eαr is non decreasing for some
α > 0. Then, σ(J) ⊇ (1/α)D.

Proof. To see that (1/α)D ⊆ σ(J) we show that J−λI is not surjective on Bp,q(v)
for |λ| < 1

α . For λ = 0, J is not surjective on any Bp,q(v) (without any additional
assumption) since Jf(0) = 0 for each f, hence the equation Jf = 1 has no solution.
Now assume that λ 6= 0 and that there is f ∈ Bp,q(v) such that Jf − λf = 1.
Then, f − λf ′ = 0 and, as by Lemma 3.1.4, ez/λ /∈ Bp,q(v), we have f ≡ 0, and
thus, Jf − λf 6= 1. 2

Following [10] we define, for every λ ∈ C, an integral operator Kλ on H(C) by

Kλf(z) = eλz
∫ z

0
e−λζf(ζ)dζ, f ∈ H(C), z ∈ C.

It maps H(C) into itself continuously and it is a right inverse of the operator
D − λI. Integrating along the segment that joins 0 to z, we obtain, for every
f ∈ H(C),

Kλf(z) = z

∫ 1

0
eλz(1−t)f(zt)dt, z ∈ C. (2.11)

Observe that for λ = 0, it is just the integration operator J.

Proposition 3.2.3 Let v be a weight such that v(r)eαr is non increasing for some
α > 0 and let 1 ≤ p ≤ ∞. If |λ| < α, then the operator Kλ is continuous on
Bp,∞(v) and on Bp,0(v) with |||Kλ|||p,v ≤ 1

α−|λ| . As a consequence, J is contin-
uous on Bp,∞(v) with |||J |||p,v ≤ 1/α. In particular, σ(J) ⊆ (1/α)D. Moreover,
|||Jm|||p,a,α ≈ 1/αm for all m ∈ N0 and a ≤ 0, with equality for a = 0.

Proof. Given f ∈ Bp,∞(v), we have

Mp(Kλf, r) =
(

1
2π

∫ 2π

0
|Kλf(reiθ)|pdθ

)1/p

= r

(
1

2π

∫ 2π

0

∣∣∣∣∫ 1

0
eλre

iθ(1−t)f(treiθ)dt
∣∣∣∣p dθ

)1/p

.
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So, applying the Minkowski integral inequality we obtain

Mp(Kλf, r) ≤ r
∫ 1

0

(
1

2π

∫ 2π

0
e|λ|r(1−t)p

∣∣f(treiθ)
∣∣p dθ)1/p

dt

= r

∫ 1

0
e|λ|r(1−t)Mp(f, rt)dt.

Thus, by hypothesis, for |λ| < α,

v(r)Mp(Kλf, r) ≤ r
∫ 1

0
v(tr)Mp(f, rt)er(t−1)(α−|λ|)dt ≤ |||f |||v,p

α− |λ|

and Kλ : Bp,∞(v) → Bp,∞(v) is continuous with |||Kλ|||p,v ≤ 1
α−|λ| . Let us see

now that Kλ(Bp,0(v)) ⊆ Bp,0(v). Since

Kλ(1) = − 1
λ

+ 1
λ
eλz ∈ Bp,0(v),

and integrating by parts,

Kλ(zn) = − 1
λ
zn + n

λ
Kλ(zn−1), n ∈ N,

we get

Kλ(P) ⊆ P ⊕ span{eλz} ⊆ Bp,0(v).

Since the polynomials are dense in Bp,0(v), Kλ : Bp,0(v)→ Bp,0(v) is continuous.

If we consider λ = 0, we get |||J |||p,v ≤ 1/α, and the spectral radius formula yields
σ(J) ⊆ (1/α)D. As a consequence, |||J |||p,a,α . 1/α for a ≤ 0.

The lower estimate is satisfied for a general 1 ≤ q ≤ ∞, whenever J is continuous,
using equation (1.10):

||Jm||p,q,a,α ≥ sup
k

||Jm(zk)||p,q,a,α
||zk||q,a,α

= sup
k

||zk+m||q,a,α
||zk||q,a,α

k!
(k +m)!

& lim
k

1
αm

(
1 + m

k

)a+ 3
2q−

1
2 = 1

αm
. (2.12)

2

Proposition 3.2.4 Let v be a weight such that v(r)eαr is non increasing for some
α > 0 and let 1 ≤ p < ∞, p > 1

α . Then, the operator Kλ is continuous on Bpv if
|λ| < α and J is continuous on Bpv with ||Jm||p,v .

(
p

αp−1

)m
for every m ∈ N. In

particular, σ(J) ⊆ p
αp−1D. Moreover, ||Jm||p,a,α & 1/αm for all m ∈ N0.
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Proof. The continuity is proved in [10, Theorem 4] for weights of the type v(z) =
exp(−ϕ(|z|)), z ∈ C, where ϕ is a non-negative concave function on R+ such that
ϕ(0) = 0 and limt→+∞

ϕ(t)
log t = +∞. We include the proof here with the proper

changes needed for our weights, and we get an estimate for the norm.

Kλ : H(C) → H(C) is continuous, so it would be enough to show that Kλ is
bounded on the space Lpv(C). But this is not the case for 1 ≤ p < ∞. Simple
examples show that the operator is even not defined on this space for 1 ≤ p ≤ 2.
However, for 1 ≤ p < ∞, the measure v(z)pdλ(z) can be replaced by another
positive Borel one µ on C such that the space Lp(C, dµ) includes Bpv , the restriction
of its norm Np to Bpv is equivalent to the Lpv(C) norm, and Kλ maps Lp(C, dµ)
continuously into itself. Fix 1 ≤ p <∞, denote by χ the characteristic function of
the unit disc D and consider the positive Borel measure µ on C defined by

dµ(z) = v(z)p[|z|−1χ(z) + (1− χ(z))]dλ(z). (2.13)

Let Np denote the norm on the Banach space Lp(C, dµ). Note that

Np
p (f) =

∫ 2π

0

∫ 1

0
|f(reiθ)|pv(r)pdrdθ +

∫ 2π

0

∫ +∞

1
|f(reiθ)|pv(r)prdrdθ.

It is clear that Lp(C, dµ) ⊆ Lpv(C), and for f in Lp(C, dµ)

‖f‖p,v ≤ Np(f).

Now by (1.2), there exists a positive constant C such that for all f ∈ Bpv

|f(z)| ≤ C‖f‖p,v, |z| ≤ 1.

Thus setting

C1 =
(

2πCp
∫ 1

0
v(r)pdr + 1

)1/p

we get that for all f ∈ Bpv

‖f‖p,v ≤ Np(f) ≤ C1‖f‖p,v.

So, on Bpv , the Lpv(C) and Lp(C, dµ) norms are equivalent.

We show now that for |λ| < α, the operator Kλ maps Lp(C, dµ) continuously into
itself. Since v(r)eαr is non increasing, observe that the function ρ(r) := v(r) for
0 ≤ r ≤ 1, and ρ(r) := v(r)r1/p for r > 1, satisfies ρ′(r)

ρ(r) = v′(r)
v(r) < −α if r ≤ 1 and

ρ′(r)
ρ(r) = v′(r)

v(r) + 1
rp < −α+ 1

p if r > 1. So, applying the mean value theorem to the
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function log ρ, we get

ρ(t) ≤ ρ(x)e( 1
p−α)(t−x), 0 < x < t, (2.14)

which yields ∫ +∞

x

ρ(t)pdt ≤ ρ(x)p

αp− 1 , x ∈ R+. (2.15)

Let us see that the linear transformation Vγ defined on the vector space L1
loc(R+)

(of locally integrable functions on R+) by

Vγf(x) = eγx
∫ x

0
e−γtf(t)dt, x ∈ R+,

is bounded on Lpρ(R+), the Banach space of all complex functions f on R+ such
that the function fρ is in Lp(R+), equipped with the norm ‖f‖p,ρ = ‖fρ‖Lp(R+).
Since the linear transformation Mγ defined on L1

loc(R+) by Mγf(x) = eγxf(x),
x ∈ R+, maps LpMγρ

(R+) isometrically onto Lpρ(R+), and Vγ = MγV0M−γ , it
follows that if the operator V0 is bounded on LpMγρ

(R+), then the operator Vγ is
bounded on Lpρ(R+). This shows that it suffices to prove the continuity for γ = 0.
Since for every f ∈ L1

loc(R+),

|V0f(x)| ≤ (V0|f |)(x), x ∈ R+,

it suffices to show that there exists a constant b > 0 such that if f is a non-negative
continuous function on R+ with compact support then ‖V0f‖p,ρ ≤ b‖f‖p,ρ, since
the continuous functions on R+ with compact support are dense in Lpρ(R+). If f
is such a function, and h is the function on R+ defined by

h(x) =
∫ +∞

x

ρ(t)pdt, x ∈ R+,

then (V0f(0))ph(0) = 0, and since limt→∞ h(t) = 0 and V0f is bounded, we have
that limt→+∞(V0f(t))ph(t) = 0 and therefore, integrating by parts, we get

‖V0f‖pp,ρ = p

∫ ∞
0

(V0f(t))p−1f(t)h(t)dt.

Thus using (2.15), we obtain that

‖V0f‖pp,ρ ≤
p

αp− 1

∫ ∞
0

(V0f(t))p−1f(t)(ρ(t))pdt.
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Applying to the above integral Hölder’s inequality (with respect to the measure
ρ(t)pdt), we get

‖V0f‖pp,ρ ≤
p

αp− 1‖V0f‖p−1
p,ρ ‖f‖p,ρ,

thus,

‖V0f‖p,ρ ≤
p

αp− 1‖f‖p,ρ,

as we wanted to see. We show next that for all f ∈ Lp(C, dµ)

Np(Kλf) ≤ ‖V|λ|‖Np(f),

where ‖V|λ|‖ denotes the norm of V|λ| as an operator on Lpρ(R+). Since the con-
tinuous functions on C with compact support are dense in Lp(C, dµ), it suffices to
establish the inequality for such functions. Let f be a continuous function on C
with compact support. For every θ ∈ [0, 2π], denote by fθ the continuous function
on R+ with compact support defined by fθ(r) = f(reiθ), r ∈ R+. It follows from
(2.11) that

|Kλf(reiθ)| ≤ V|λ||fθ|(r), r ∈ R+, θ ∈ [0, 2π],

and therefore

Np
p (Kλf) =

∫ 2π

0

∫ ∞
0
|Kλf(reiθ)|pρp(r)drdθ ≤

∫ 2π

0
‖V|λ||fθ|‖pp,ρdθ

≤ ‖V|λ|‖p
∫ 2π

0
‖fθ‖pp,ρdθ = ‖V|λ|‖pNp

p (f).

So, in the case λ = 0 we get Np(J) ≤ ‖V0‖ ≤ p
αp−1 . Since the norms Np and

‖ ‖p,v are equivalent on Bpv , we conclude ||Jm||p,v .
(

p
αp−1

)m
for every m ∈ N.

Therefore, the conclusion about the norm and the spectrum follows. The lower
estimate is calculated in equation (2.12). 2

Corollary 3.2.5 The spectrum of J : Bp,q(a, α)→ Bp,q(a, α) satisfies

σ(J) = (1/α)D

for 1 ≤ p ≤ ∞, q ∈ {0,∞} and

(1/α)D ⊆ σ(J) ⊆ p

αp− 1D

for 1 ≤ p <∞, p > 1
α , p = q.
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Proof. For each β < α, the function va,α(r)eβr is decreasing in [r0,∞[ for some
r0 > 0. Therefore, by Propositions 3.2.3 and 3.2.4, the integration operator J is
continuous on Bp,q(a, α), and for an equivalent norm, ||Jm|| ≤ 1

βm on Bp,∞(v)

and ||Jm|| ≤
(

p
βp−1

)m
on Bpv for 1 ≤ p < ∞. Thus, the spectral radius r(J) of

J satisfies r(J) ≤ 1
β and r(J) ≤ p

βp−1 , respectively. Since β < α is arbitrary,
σ(J) ⊆ (1/α)D and σ(J) ⊆ p

αp−1D holds. On the other hand, va,α(r)eγr is non
decreasing for every γ > α. By Proposition 3.2.2, σ(J) ⊇ (1/γ)D for every γ > α,
and thus, σ(J) ⊇ (1/α)D. 2

Theorem 3.2.6 (a) Let 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞ or q = 0, and assume
J : Bp,q(v)→ Bp,q(v) is continuous. The following are satisfied:

(i) If rae−αr = O(v(r)) for α < 1, a ∈ R or α = 1, a > 1
2 −

3
2q , then J

is not power bounded on Bp,q(v).

(ii) J is not uniformly mean ergodic on Bp,q(v) if for all β > 1, v(r)eβr
is non decreasing. In particular J is not uniformly mean ergodic on
Bp,q(a, 1) for all a ∈ R.

(iii) If r
3
2−

3
2q e−r = O(v(r)), then J is not mean ergodic on Bp,q(v). In

particular, it is not mean ergodic on Bp,q(a, α) when α < 1, a ∈ R.

(b) For 1 ≤ p ≤ ∞ and q ∈ {0, p,∞}, we get:

(iv) J is power bounded on Bp,q(v) for q ∈ {0, p,∞} and mean ergodic for
q ∈ {0, p} provided that v(r)e(1+ 1

q )r is non increasing. In particular,
this condition is satisfied for the weight va,1+ 1

q
for every a ≤ 0.

(v) J is uniformly mean ergodic on Bp,q(v) if for some α > 1+ 1
q , v(r)eαr

is non increasing.

Proof.

(i) ||z
n||q,a,α
n! = O( ||z

n||v
n! ) and (1.10) implies that the sequence { ||z

n||q,a,α
n! }n is

unbounded for α < 1, a ∈ R, or α = 1, a > 1
2 −

3
2q . So, by Lemma 3.1.10(ii) J is

not power bounded.

(ii) If for all β > 1, v(r)eβr is non decreasing in some interval [r0,∞[, σ(J) ⊇ D.
Since 1 ∈ σ(J), Lemma 3.1.9 yields the conclusion.
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(iii) By (1.10), the sequence
{ ||zn||

q, 32−
3
2q ,1

n!n

}
n

does not tend to zero and

||zn||q, 32− 3
2q ,1 = O(||zn||p,q,v).

By Lemma 3.1.10 (ii), J is not mean ergodic on Bp,q(v).

(iv) The first statement follows from the estimates of the norm of Jm in Proposi-
tions 3.2.3 and 3.2.4. Moreover, for each k ∈ N,

||Jm(zk)||p,q,v = k!
(m+ k)! ||z

m+k||q,v .
k!

(m+ k)! ||z
m+k||q,1+ 1

q
.

So, by (1.10), the successive iterates tend to zero on the polynomials. As J is
power bounded and the polynomials are a dense subset, {Jmf}m converges to
zero for each f ∈ Bp,q(v), and thus, 1

m

∑m
j=1 J

jf also converges to 0.

(v) {||Jn||p,q,v}n tends to zero by Propositions 3.2.3 and 3.2.4, therefore∥∥∥∥∥∥ 1
m

m∑
j=1

Jj

∥∥∥∥∥∥
p,q,v

≤ 1
m

m∑
j=1
||Jj ||p,q,v → 0.

2

Corollary 3.2.7 Let 1 ≤ p ≤ ∞. The integration operator J is uniformly mean
ergodic on Bp,q(α), q ∈ {0, p,∞}, if α > 1 + 1

q , and it is not mean ergodic on
these spaces if 1

q < α < 1. J is power bounded and mean ergodic on Bp,q(1 + 1
q ),

q ∈ {0, p}, not uniformly mean ergodic on Bp,q(1), q ∈ {0, p,∞}, and not mean
ergodic on H1(C).

Proof. All the statements but one follow from Theorem 3.2.6. It only remains to
show that J is not mean ergodic on H1(C). The space H1(C) is a Grothendieck
Banach space with the Dunford-Pettis property since it is isomorphic to `∞ by
[95]. As ||Jn||1/n → 0, we can apply Theorem 0.5.6 to conclude that J is not
mean ergodic in H1(C) because it is not uniformly mean ergodic by Theorem 3.2.6
(ii) and Proposition 3.1.8. 2
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3.3 The differentiation operator

The results of the first part of this section are inspired by [41] and [42].

Proposition 3.3.1 Let v be a weight such that C := supr>0
v(r)
v(r+1) <∞. Then the

differentiation operator D : Bp,q(v)→ Bp,q(v) is continuous for every 1 ≤ p ≤ ∞,
and q = 0 or 1 ≤ q ≤ ∞.

Proof. The case q ∈ {0,∞} is proved in [42, Proposition 2.1], where it is shown
that Mp(f ′, r) ≤ r+1

2r+1Mp(f, r + 1) for every f ∈ H(C), r > 0 and 1 ≤ p ≤ ∞.
Therefore,

‖Df‖qp,q,v = 2π
∫ ∞

0
rv(r)qMp(f ′, r)qdr

≤ Cq2π
∫ ∞

0
(r + 1)v(r + 1)qMp(f, r + 1)qdr

≤ Cq‖f‖qp,q,v,

and D is continuous. 2

Proceeding as in [41, Theorem 2.3], we get:

Theorem 3.3.2 Let 1 ≤ p ≤ ∞ and 1 ≤ q <∞ or q = 0. Assume that the differ-
entiation operator D : Bp,q(v) → Bp,q(v) is continuous. The following conditions
are equivalent:

(i) D satisfies the hypercyclicity criterion.

(ii) D is hypercyclic.

(iii) lim infn→∞ ‖z
n‖q,v
n! = 0.

Proof. (i)⇒(ii) is trivial. Assume now that D is hypercyclic on Bp,q(v). By
Lemma 0.5.11(i), the sequence {(D′)n(δ0)}n is unbounded in Bp,q(v)′ where δ0 :
Bp,q(v) → C, δ0(f) = f(0), hence, by the Banach Steinhaus Theorem [114, 5.8],
there is f ∈ Bp,q(v) such that {f (n)(0)}n is unbounded in C. Fix n ∈ N. By the
Cauchy inequalities, for each r > 0,

rn
|f (n)(0)|

n! = rn

2π

∣∣∣∣∣
∫
|w|=r

f(w)
wn+1 dw

∣∣∣∣∣ ≤ 1
2π

∫ 2π

0
|f(reiθ)|dθ = M1(f, r) ≤Mp(f, r),

which yields |f (n)(0)|‖z
n‖q,v
n! ≤ ‖f‖p,q,v for every n ∈ N. Since {f (n)(0)}n is un-

bounded, there exists an increasing sequence {nk}k such that limk→∞ |f (nk)(0)| =
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∞. Hence, lim infn→∞ ‖z
n‖q,v
n! = 0.

(iii)⇒(i): since D is continuous, there is C ≥ 1 such that ‖f (j)‖p,q,v ≤ Cj‖f‖p,q,v
for each f ∈ Bp,q(v) and each j ∈ N. Set n0 = 0 and use (iii) inductively to find
nk ∈ N with nk+1 > nk + k + 1 and

‖znk+k+1‖q,v
(nk + k + 1)! <

1
kCk

.

This is the increasing sequence of natural numbers required on the hypercyclicity
criterion. Take V = W as the set of all polynomials, which is dense in Bp,q(v).
Define Snk := Snk on W , with S the integration map defined on the monomials
by S(zn) = zn+1/(n+ 1). Since D ◦S(P ) = P for each polynomial P and for each
P of degree less or equal to N , DnP = 0 for n ≥ N + 1, it only remains to show
that limk→∞ SnkP = 0 in Bp,q(v) for each polynomial P .

In order to see this, fix s ∈ N ∪ {0} and take k ≥ s. Observe that

Snk(zs) = s!
(nk + s)!z

nk+s

and

Dk+1−s(znk+k+1) = (nk + k + 1)!
(nk + s)! znk+s.

This implies

‖Snk(zs)‖q,v = s!
(nk + s)!‖z

nk+s‖q,v = s!
(nk + k + 1)!‖D

k+1−s(znk+k+1)‖q,v

≤ s!Ck+1−s ‖znk+k+1‖q,v
(nk + k + 1)! < s!Ck+1−s/(kCk) = s!

k
C1−s.

Hence, by linearity, limk→∞ SnkP = 0 in Bp,q(v) for each polynomial P , and D
satisfies the criterion. 2

If we consider the stronger assumption limn→∞
‖zn‖q,v
n! = 0, then we obtain the

following equivalence, analogous to [41, Theorem 2.4].

Theorem 3.3.3 Assume that the differentiation operator D : Bp,q(v) → Bp,q(v)
is continuous. The following conditions are equivalent:

(i) D is topologically mixing.

(ii) limn→∞
‖zn‖q,v
n! = 0.
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Proof. (i)⇒(ii) Assume thatD is topologically mixing. Then, by Lemma 0.5.11(ii),

lim
n→∞

‖δ0 ◦Dn‖ = lim
n→∞

‖(D′)n(δ0)‖ =∞. (3.16)

Proceeding as in the proof of Theorem 3.3.2, for each f ∈ Bp,q(v) with ‖f‖p,q,v ≤ 1
and each n ∈ N,

|δ0 ◦Dn(f)| ‖z
n‖q,v
n! = |f (n)(0)| ‖z

n‖q,v
n! ≤ ‖f‖p,q,v.

So, (ii) holds. Since the polynomials are dense in Bp,q(v), (ii) implies that D
satisfies the assumptions of the criterion of Kitai-Gethner-Shapiro, and thus, D is
topologically mixing. 2

The following lemma is the analogous of [42, Theorem 2.3] for general weighted
spaces of entire functions.

Lemma 3.3.4 Let A ⊆ αD, α > 0, be a subset with at least one accumulation
point in αD or such that A ∩ δ(αD) is dense in δ(αD) := {z ∈ C, |z| = α}. If for
1 ≤ p ≤ ∞, limr→∞ v(r) e

αr

r
1
2p

= 0, then the set Y := span{ea : a ∈ A} is dense

in Bp,0(v), where eω(z) := eωz with z, ω ∈ C. If for some r0 > 0, r
1
q−

1
2p eαr ∈

Lqv([r0,∞[) for 1 ≤ p ≤ ∞ and 1 ≤ q < ∞, then Y is dense in Bp,q(v). Under
these assumptions, zneζ(z) ∈ Bp,q(v) for every n ∈ N and ζ ∈ C, |ζ| ≤ α.

Proof. Let u be a continuous functional on Bp,q(v), and assume that u(f) = 0
for each f ∈ Y. Consider the function S : αD → Bp,q(v), ζ 7→ eζ and define
ũ := u ◦ S : αD → C, ũ(ζ) = u(eζ), ζ ∈ αD. By Lemma 3.1.4, S is well defined
and bounded. Indeed, by equation (1.4), for 1 ≤ p ≤ ∞, there exists some constant
C > 0 such that for each ζ ∈ αD,

|||S(ζ)|||p,v = |||eζz|||p,v = sup
r≥0

v(r)Mp(eζz, r) ≤ D sup
r≥r0

v(r) e
αr

r
1
2p

in case q = 0, whereas for 1 ≤ q <∞, there exists some constant D > 0 such that

‖S(ζ)‖p,q,v = ‖eζz‖p,q,v ≤ C
(

2π
∫ ∞
r0

r1− q
2p v(r)qeαrqdr

)1/q
:= M.

By [79, Theorem 1], since S is locally bounded (even bounded), in order to show
that S is holomorphic on αD, it is enough to find a σ(Bp,q(v)′, Bp,q(v))-dense
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subset G of Bp,q(v)′ such that u ◦ S : αD → C is holomorphic for each u ∈ G.
Since the compact open topology is coarser than the norm topology, consider

G := {u ∈ Bp,q(v)′ which are continuous for τco}.

G is σ(Bp,q(v)′, Bp,q(v))-dense: fix f ∈ Bp,q(v). If u(f) = 0 for all u ∈ G, we
have that given λ ∈ H(C)′ we can define ũ := λ|Bp,q(v) ∈ G. By hypothesis we
get λ(f) = ũ(f) = 0. Thus, since f ∈ Bp,q(v) ⊆ H(C) and 〈H(C)′,H(C)〉 is
a dual pair, f = 0. Applying now the Hahn-Banach Theorem, we have that G
is σ(Bp,q(v)′, Bp,q(v))-dense. Observe now that u ◦ S : αD → C is holomorphic
for each u ∈ G: we know that S : C → (H(C), τco), ζ 7→ eζz is holomorphic,
hence, its restriction to αD is also holomorphic in τco. Let u ∈ G and consider u
◦ S : αD S→ Bp,q(v) u→ C. For a fixed ζ0 ∈ αD,

lim
ζ∈αD,ζ→ζ0

(u ◦ S)(ζ)− (u ◦ S)(ζ0)
ζ − ζ0

= lim
ζ∈αD,ζ→ζ0

u

(
S(ζ)− S(ζ0)

ζ − ζ0

)
=

= u

(
lim

ζ∈αD,ζ→z0

S(ζ)− S(ζ0)
ζ − ζ0

)
= u(S′(ζ0)) ∈ C

since u is τco-continuous and S is τco-holomorphic. Hence, for every ζ0 ∈ αD,
(u ◦ S)′(ζ0) = u(S′(ζ0)) ∈ C, where S′(ζ0) is the derivative of S with respect to
τco, and so, u ◦ S : αD → C is holomorphic. Therefore, S is holomorphic on αD
with zneζ(z) = S(n)(ζ) ∈ Bp,q(v).

Let us see now that S : αD → Bp,q(v) is continuous. Since S is holomorphic on
αD, it is enough to prove the continuity at each ζ0 in the boundary of αD. Fix a
sequence {ζj}j ∈ αD converging to ζ0. The case q = 0 can be found in the proof
of [42, Theorem 2.3]. We include the proof here for the sake of completeness. Fix
ε > 0. Since limr→∞ v(r) e

αr

r
1
2p

= 0, there is r1 > r0 such that v(r) e
αr

r
1
2p

< ε/(4Dp),
with Dp > 0 and r0 > 0 as in (1.4). We can apply the second inequality in (1.4)
to conclude

sup
r>r1

v(r)Mp(eζjz − eζ0z, r) < ε/2.

Since the map C → H(C), ζ → eζz, is continuous, we find δ > 0 such that
|ζ − ζ0| < δ implies sup|z|≤r1 |e

ζz − eζ0z| < ε
2v(0) . Find j0 ∈ N with |ζj − ζ0| < δ

for j ≥ j0. Therefore, for r ≤ r1 and j ≥ j0, we get

v(r)Mp(eζjz − eζ0z, r) ≤ v(r)M∞(eζjz − eζ0z, r) < ε/2.

This implies |||S(ζj)−S(ζ0)|||p,v < ε, and S is continuous for q = 0. For 1 ≤ q <∞
observe that, given ζ0 in the boundary of αD and a sequence {ζj}j ∈ αD converging
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to ζ0, by (1.4) there exist some C > 0 and r0 > 0 such that

‖S(ζj)− S(ζ0)‖qp,q,v = 2π
∫ ∞

0
rv(r)qMp(eζjz − eζ0z, r)qdr

≤ C
∫ ∞
r0

r1− q
2p v(r)qeαrqdr.

Given ε > 0, by hypothesis, there exists r1 > r0 such that
∫∞
r1
r1− q

2p v(r)qeαrqdr <
ε

2C . Since the map C → H(C), ζ 7→ eζz, is continuous, there exists j0 ∈ N such
that∫ r1

r0

rv(r)qMp(eζjz − eζ0z, r)qdr ≤
∫ r1

r0

rv(r)qM∞(eζjz − eζ0z, r)qdr < ε

2C .

So, S is continuous. Since u◦S is holomorphic on αD, continuous at the boundary
and vanishes in A, it is zero in αD. In particular, 0 = (u ◦S)(n)(0) = u(S(n)(0)) =
u(zn) for each n ∈ N0. As the polynomials are dense in Bp,q(v), then u = 0. By
the Hahn-Banach theorem we conclude that Y is dense in Bp,q(v). 2

Theorem 3.3.5 Assume that the differentiation operator D : Bp,q(v) → Bp,q(v)
is continuous. If limr→∞ v(r) er

r
1
2p

= 0 if q = 0 or r
1
q−

1
2p er ∈ Lqv([r0,∞[) for some

r0 > 0, if 1 ≤ q < ∞, then D is frequently hypercyclic, and thus, hypercyclic.
Moreover, it is topologically mixing on Bp,q(v) for 1 ≤ p ≤ ∞ when q = 0 and for
1 < p ≤ ∞ when 1 ≤ q <∞.

Proof. By Theorem 0.5.3, in order to prove that D is frequently hypercyclic, it
is enough to show that D has a perfectly spanning set of eigenvectors associated
to unimodular eigenvalues. As a probability measure we consider the normalized
Lebesgue measure on T. If a subset A of T has Lebesgue measure 1, then A is
dense in T. Applying Lemma 3.3.4, span{ea : a ∈ A} is dense in Bp,q(v), and the
condition is satisfied.

By Theorem 3.3.3, to prove the assertion about the topologically mixing property,
it is enough to show that the limit limn

‖zn‖q,v
n! is equal to zero. For q = 0, the

hypothesis yields that given ε > 0, there exists rε > 0 such that v(r) ≤ εr
1
2p e−r

for every r ≥ rε. If we consider rn a global maximum of the function r 7→ v(r)rn,
by [82, Lemma 1.2], rn tends to ∞ as n tends to ∞, so, there exists some nε such
that, for n ∈ N, n ≥ nε,

‖zn‖v
n! = sup

r≥rε
v(r)r

n

n! ≤ ε sup
r≥rε

r
1
2p e−r

rn

n! ≤ ε
‖zn‖ 1

2p ,1

n! . (3.17)
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By (1.10),
‖zn‖ 1

2p ,1

n! converges to 0 for 1 < p ≤ ∞ and to 1 for p = 1. Therefore,
since (3.17) holds for every ε > 0, limn

‖zn‖v
n! = 0. For 1 ≤ q <∞,

‖zn‖qq,v
n!q .

∫ ∞
r0

rv(r)q r
nq

n!q dr =
∫ ∞
r0

rnq+
q
2p e−rq

n!q v(r)qr1− q
2p erqdr

≤
‖zn‖q1

2p ,1

n!q

∫ ∞
r0

v(r)qr1− q
2p erqdr.

Applying again that
‖zn‖ 1

2p ,1

n! converges to 0 for 1 < p ≤ ∞, we get limn
‖zn‖q,v
n! = 0.

2

Theorem 3.3.6 Assume that the differentiation operator D : Bp,q(v) → Bp,q(v)
is continuous for some 1 ≤ p ≤ ∞, q = 0 or 1 ≤ q <∞. The following conditions
are equivalent:

(i) D is chaotic.

(ii) D has a periodic point different from 0.

(iii) limr→∞ v(r) er

r
1
2p

= 0 if q = 0 and r
1
q−

1
2p er ∈ Lqv([r0,∞[) for some r0 > 0,

if 1 ≤ q <∞.

Proof. Clearly (i) implies (ii). Let us see (ii)⇒(iii). By hypothesis, there exists a
function 0 6= f ∈ Bp,q(v) such that, for some n ∈ N, Dnf = f . Using the trivial
decomposition Dn− I = (D−θ1I) . . . (D−θnI), θnj = 1, j = 1, . . . , n, we conclude
that there is θ ∈ C, |θ| = 1, and g ∈ Bp,q(v), g 6= 0, such that (D− θI)g = 0. This
yields eθz ∈ Bp,q(v). Using Lemma 3.1.4, we obtain (iii).

(iii)⇒(i) Denote by P the linear span of the functions eθz, θ ∈ C, θn = 1 for
some n ∈ N. Obviously, P is formed by periodic points and, by Lemma 3.3.4, it is
dense in Bp,q(v). On the other hand, since D is hypercyclic by Theorem 3.3.5, it
is chaotic. 2

Observe that Theorems 3.3.6 and 3.3.5 yield that any chaotic continuous differenti-
ation operator D : Bp,q(v)→ Bp,q(v) is frequently hypercyclic, even topologically
mixing on Bp,q(v) for 1 ≤ p ≤ ∞ when q = 0 and for 1 < p ≤ ∞ when 1 ≤ q <∞.

In [42, Corollary 2.6, Corollary 2.7 and Corollary 2.10], some examples of weights
for which the differentiation operator on Bp,q(v), 1 ≤ p ≤ ∞, q = 0, is topologically
mixing, chaotic, or none of them are shown. We present here some examples for
the case 1 ≤ q <∞.
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Corollary 3.3.7 Consider the weight va,α, a ∈ R, α > 0, 1 ≤ p ≤ ∞ and q = 0
or 1 ≤ q <∞.

(a) If α < 1, then D is neither hypercyclic nor chaotic on Bp,q(v).

(b) If α > 1 then D is topologically mixing and chaotic on Bp,q(v).

(c) If α = 1, D is hypercyclic (even topologically mixing) if and only if a <
1
2 −

3
2q and D is chaotic if and only if a < 1

2p −
2
q .

Proof. Theorem 3.3.6 yields the conclusion about chaos since va,α(r)err−
1
2p =

er(1−α)ra−
1
2p tends to zero as r → ∞ if and only if α > 1, or α = 1 and a < 1

2p ,

and
∫∞
r0
r1+aq− q

2p e−rq(α−1)dr <∞ if and only if α > 1, or α = 1 and a < 1
2p −

2
q .

Theorem 3.3.3 and (1.10) yield the conclusion about hypercyclicity. 2

Corollary 3.3.8 Assume that 1 ≤ p ≤ ∞ and q = 0 or 1 ≤ q <∞.

(a) If v(r) = r
1
2p−

1
q e−r

ϕ(r) for r large enough, where ϕ(r) is a positive increasing
continuous function such that supr>0

ϕ(r+1)
ϕ(r) < ∞, limr→∞ ϕ(r) = ∞ if

q = 0 or 1
ϕ(r) ∈ L

q([r0,∞[) for 1 ≤ q < ∞, then D : Bp,q(v) → Bp,q(v) is
chaotic.

(b) If v(r) = r
1
2p−

1
q e−r for r large enough, then D : Bp,q(v) → Bp,q(v) is

continuous but it is hypercyclic (even topologically mixing) if and only if
1
p + 1

q < 1. D is never chaotic. Observe that for q = 0 and p > 1 it is
always topologically mixing, but not chaotic.

Proof. (a) is trivial from Proposition 3.3.1 and Theorem 3.3.6. (b) follows from
Corollary 3.3.7 considering a = 1

2p −
1
q . 2

From now on we restrict our attention to the spaces Bp,q(a, α), a ∈ R, α > 0.

Proposition 3.3.9 Let 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. If a > 0, then

||Dn||p,q,a,α = O
(
n!
(eα
n

)n)
.

If a ≤ 0 and n > |a|, then

||Dn||p,q,a,α = O

(
n!
(

eα

n+ a

)n+a
)
.
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If 1 ≤ q <∞,

n!
(

eαq

(a+ n)q + 1

)n+a+ 3
2q

= O(||Dn||p,q,a,α),

and for q =∞,

n!
(

eα

n+ a

)n+a
= O(|||Dn|||p,a,α),

with equality for a = 0.

Proof. For the lower estimate we use

‖Dn‖p,q,a,α ≥ ‖Dn( zn

‖zn‖q,a,α
)‖p,q,a,α = n!‖1‖q,a,α

‖zn‖q,a,α

and (1.9). Applying Jensen’s inequality and Fubini’s Theorem as in [42, Proposi-
tion 2.1], we get

Mp(f (n), r) =
(

1
2π

∫ 2π

0
|f (n)(reiθ)|pdθ

)1/p

=
(

1
2π

∫ 2π

0

∣∣∣∣ n!
2πi

∫ 2π

0

f(Reiϕ)iReiϕ

(Reiϕ − reiθ)n+1 dϕ

∣∣∣∣p dθ
)1/p

≤ n!
(

1
2π

∫ 2π

0

(
1

2π

∫ 2π

0

|f(Reiϕ)|R
|Reiϕ − reiθ|n+1 dϕ

)p
dθ

)1/p

= n!R
R2 − r2

(
1

2π

∫ 2π

0
( 1
2π

∫ 2π

0

|f(Reiϕ)|
|Reiϕ − reiθ|n−1P

r
R

(θ − ϕ)dϕ)pdθ
)1/p

≤ n!R
(R2 − r2)(R− r)n−1

(
1

2π

∫ 2π

0

1
2π

∫ 2π

0
|f(Reiϕ)|pP r

R
(θ − ϕ)dϕdθ

)1/p

= n!R
(R2 − r2)(R− r)n−1

(
1

2π

∫ 2π

0
|f(Reiϕ)|p 1

2π

∫ 2π

0
P r
R

(θ − ϕ)dθdϕ
)1/p

= n!R
(R2 − r2)(R− r)n−1Mp(f,R)

for every R > r, where Ps(t) = 1−s2
1−2s cos t+s2 , 0 ≤ s < 1 is the Poisson Kernel for

the unit disc. Then, if we consider R = r + ε for some ε > 0, we get

Mp(f (n), r) ≤ n!
εn−1

r + ε

ε2 + 2rεMp(f, r + ε) ≤ n!
εn
Mp(f, r + ε).
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If a > 0, then va,α(r)
va,α(r+ε) = rae−αr

(r+ε)ae−α(r+ε) ≤ eαε for r big enough. Thus,

va,α(r)Mp(f (n), r) ≤ n!
εn
eαεva,α(r + ε)Mp(f, r + ε) (3.18)

for r big enough. This yields that there exists a constant A > 0 such that
‖Dn‖p,q,a,α ≤ A n!

εn e
αε for every ε > 0. If we take ε = n

α , which minimizes eαε

εn , we
get

||Dn||p,q,a,α ≤ An!
(eα
n

)n
.

If a ≤ 0, then there exists a constant B > 0 such that va,α(r)
va,α(r+ε) = raeαε

(r+ε)a ≤ B eαε

εa

for r big enough and ε > ε0, for some ε0 > 0. Thus,

va,α(r)Mp(f (n), r) ≤ Bn!eαε

εn+a va,α(r + ε)Mp(f, r + ε) (3.19)

for r, ε, big enough. Therefore, if we take ε = n+a
α ≥ ε0, we obtain that there

exists some D2 > 0 such that

||Dn||p,q,a,α ≤ D2n!
(

eα

n+ a

)n+a

for every n ∈ N. 2

Proposition 3.3.10 The spectrum of D : Bp,q(a, α)→ Bp,q(a, α) satisfies

σ(D) = αD

for 1 ≤ p ≤ ∞ and q = 0 or 1 ≤ q ≤ ∞.

Proof. If |λ| < α, the function eλ(z) := eλz belongs to Bp,q(a, α) by Lemma 3.1.4
and satisfies Deλ = λeλ. Therefore, αD ⊆ σ(D). On the other hand, the spectral
radius of D satisfies r(D) = limn ||Dn||1/np,q,a,α. Using the Stirling formula and the
upper estimates for the norms in Proposition 3.3.9, r(D) ≤ α. 2

Lemma 3.3.11 ([10, Proposition 4]) Let T be a bounded operator on a Banach
space X. If λ belongs to the boundary of σ(T ), then T − λI is not surjective.

Lemma 3.3.11 implies that D − λI is not surjective on Bp,q(a, α) for |λ| = α.
D − λI is injective if and only if eλz 6∈ Bp,q(a, α). So, by Lemma 3.1.4, the next
proposition holds:
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Proposition 3.3.12 For the weight va,α(r) = rae−αr, r big enough, and 1 ≤ p ≤
∞, D − λI is injective on Bp,q(a, α) if and only if |λ| > α or |λ| = α and

(i) a ≥ 1
2p when q = 0,

(ii) a > 1
2p when q =∞,

(iii) a ≥ 1
2p −

2
q if 1 ≤ q <∞.

By Propositions 3.2.3 and 3.2.4, we get the following:

Proposition 3.3.13 Let v be a weight such that D is continuous on Bp,q(v),
1 ≤ p ≤ ∞, q ∈ {0, p,∞}, and v(r)eαr is non increasing. If |λ| < α, the operator
D − λI is surjective on Bp,q(v) and it even has

Kλf(z) = z

∫ 1

0
eλz(1−t)f(zt)dt, z ∈ C,

as a continuous linear right inverse. In particular, this is satisfied for the weight
va,α, a ≤ 0, α > 0.

Theorem 3.3.14 Given 1 ≤ p ≤ ∞, q = 0 or 1 ≤ q ≤ ∞ :

(i) For α > 1 or α = 1 and a < 1
2 −

3
2q , D is not power bounded on Bp,q(a, α).

(ii) If D is chaotic, then D is not mean ergodic on Bp,q(a, α). Consequently, D
is not mean ergodic on Bp,q(a, α) if α > 1 or α = 1 and a < 1

2p −
2
q .

(iii) For α < 1, D is power bounded and uniformly mean ergodic on Bp,q(a, α).

(iv) D is not uniformly mean ergodic on Bp,q(a, 1), a ∈ R.

Proof.

(i) By (1.10),

‖Dn‖p,q,a,α ≥
n!‖1‖q,a,α
‖zn‖q,a,α

&
αn

na+ 3
2q−

1
2

and this limit tends to infinity for the values of α in the hypothesis.

(ii) If D is mean ergodic, for each f ∈ Bp,q(a, α), f
′+f ′′+···f(N)

N → 0, which is not
the case if D is chaotic, since ez ∈ Bp,q(a, α).
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(iii) Since

n!
(eα
n

)n
≤ n!

(
eα

n− a

)n−a
for every a > 0 and n big enough, Proposition 3.3.9 yields

||Dn||p,q,a,α = O

(
n!
(

eα

n− |a|

)n−|a|)
.

Applying the Stirling’s formula we get

||Dn||p,q,a,α = O

((
n

n− |a|

)n−|a|
n|a|+1/2αn−|a|

)
.

Therefore, for α < 1, limn→∞ ||Dn||p,q,a,α = 0, and thus,

lim
m→∞

∥∥∥∥∥∥ 1
m

m∑
j=1

Dj

∥∥∥∥∥∥
p,q,a,α

≤ lim
m→∞

1
m

m∑
j=1
||Dj ||p,q,a,α = 0.

(iv) Since 1 ∈ σ(D), the conclusion follows from Proposition 3.1.9. 2

Corollary 3.3.15 Given vα(r) = e−αr, α > 0, 1 ≤ p ≤ ∞, q = 0 or 1 ≤ q ≤ ∞,
we have the following:

(i) If α > 1, then D is not mean ergodic on Bp,q(v).

(ii) If α < 1, then D is uniformly mean ergodic on Bp,q(v).

(iii) If α = 1, then D is not uniformly mean ergodic on Bp,q(v). It is not mean
ergodic for p = q =∞ and for 1 ≤ p <∞ if 2

q <
1
2p , q 6=∞.

Proof. All the statements but one follow by Proposition 3.3.14. Let us see that D
is mean ergodic on H1(C). Since H1(C) is a Grothendieck Banach space with the
Dunford-Pettis property (in fact it is isomorphic to `∞ by Galbis [68] or Lusky
[95]) and ||Dn||1/n → 0, we can apply Theorem 0.5.6 to conclude that D is not
mean ergodic on H1(C) because it is not uniformly mean ergodic by Propositions
3.3.14 (iv) and 3.1.8. 2

We do not know if the differentiation operator is mean ergodic on the space Bp,q(1)
for q = 0 and p = ∞, for q = ∞ and 1 ≤ p < ∞, and for 1 ≤ q < ∞ and q ≤ 4p.
Related partial results can be seen in [35].
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3.4 The Hardy operator

Whereas the behavior of the iterates of the differentiation and the integration
operators depends heavily on the weights, the Hardy operator is power bounded
and uniformly mean ergodic in all cases.

Theorem 3.4.1 Given a weight v, 1 ≤ p ≤ ∞ and q = 0 or 1 ≤ q ≤ ∞, the Hardy
operator H : Bp,q(v) → Bp,q(v), Hf(z) = 1

z

∫ z
0 f(ζ)dζ, z ∈ C, is well defined and

continuous with norm ‖H‖ = 1. Moreover, H2 is compact and H2(Bp,∞(v)) ⊆
Bp,0(v). If the integration operator J : Bp,q(v) → Bp,q(v) is continuous, then H
is compact. Moreover, H(Bp,∞(v)) ⊆ Bp,0(v).

Proof. For every f ∈ H(C) and r ≥ 0 we have

Mp(Hf, r)p = 1
2π

∫ 2π

0

∣∣∣∣∣ 1
reiθ

∫ reiθ

0
f(ω)dω

∣∣∣∣∣
p

dθ = 1
2π

∫ 2π

0

∣∣∣∣∫ 1

0
f(treiθ)dt

∣∣∣∣p dθ
≤
∫ 1

0

1
2π

∫ 2π

0
|f(treiθ)|pdθdt ≤Mp(f, r)p.

Hence, for every f ∈ Bp,q(v) we have ‖Hf‖p,q,v ≤ ‖f‖p,q,v and ‖H‖ := ‖H‖p,q,v ≤
1. On the other hand, since H(c) = c for every c ∈ C, taking g := c/‖c‖q,v ∈
Bp,q(v), we obtain ‖H‖ = 1.

Given f =
∑∞
k=0 akz

k ∈ Bp,q(v), the Cauchy and Jensen inequalities imply

|ak| =

∣∣∣∣∣ 1
2πi

∫
|ω|=R

f(ω)
ωk+1 dω

∣∣∣∣∣ ≤ 1
Rk

M1(f,R) ≤ 1
Rk

Mp(f,R) (4.20)

for every R > 0, then, |ak|‖zk‖p,q,v ≤ ‖f‖p,q,v for every k ∈ N0. As H2f(z) =∑∞
k=0

ak
(k+1)2 z

k, one has∥∥∥∥∥H2f −
N∑
k=0

ak
(k + 1)2 z

k

∥∥∥∥∥
p,q,v

≤
∞∑

k=N+1

|ak|‖zk‖q,v
(k + 1)2 ≤ ‖f‖p,q,v

∞∑
k=N+1

1
(k + 1)2 ,

(4.21)
which shows that the finite rank operators H2

N (
∑∞
k=0 akz

k) :=
∑N
k=0

ak
(k+1)2 z

k are
bounded on Bp,q(v) and that

||H2 −H2
N ||p,q,v ≤

∞∑
k=N+1

1
(k + 1)2 ,

from where the compactness of H2 follows. Since H2f belongs to the closure of
the polynomials, H2f belongs to Bp,0(v) if f ∈ Bp,∞(v).
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Finally, suppose that the integration operator J : Bp,q(v)→ Bp,q(v) is continuous.
Since for every r ≥ 0, Mp(Hf, r) = 1

rMp(Jf, r), then the Hardy operator H :
Bp,∞(v)→ Bp,0(v) is well defined, as for every r ≥ 0,

v(r)Mp(Hf, r) = v(r)1
r
Mp(Jf, r) ≤

|||J |||p,v
r

|||f |||p,v.

Take a sequence {fn}n in the unit ball of Bp,q(v). As it is compact with respect
to the compact open topology τco, there exists a subsequence {nk}k such that fnk
tends to some f in the unit ball of Bp,q(v) in τco. Given ε > 0, take R > 0 such
that R > 2

ε‖J‖p,q,v in order to get

v(r)Mp(Hfnk −Hf, r) ≤ v(r)1
r
Mp(Jfnk − Jf, r) ≤

2
R
‖J‖p,q,v ≤ ε

for r ≥ R and

2π
∫ ∞
R

rv(r)qMp(Hfnk −Hf, r)qdr

≤ 2π
∫ ∞
R

r1−qv(r)qMp(Jfnk − Jf, r)qdr

≤ 1
Rq
‖Jfnk − Jf‖qp,q,v ≤

2q

Rq
‖J‖qp,q,v < εq.

Since the Hardy operator H : H(C)→ H(C) is continuous, we get that there exists
k0 such that, for k ≥ k0, ‖Hfnk −Hf‖p,q,v ≤ ε, and therefore, H is compact. 2

An operator T is said to be quasi-compact if Tm is compact for somem ∈ N. Quasi-
compact operators share some properties of compact operators, in particular its
spectrum σ(T ) reduces to its eigenvalues and {0}.

Corollary 3.4.2 The Hardy operator H is power bounded and uniformly mean
ergodic on Bp,q(v) for 1 ≤ p ≤ ∞ and q = 0 or 1 ≤ q ≤ ∞. Moreover, its spectrum
is σ(H) = { 1

n}n ∪ {0}.

Proof. As H is quasi-compact, σ(H) = {λ : λ is an eigenvalue of H}, and the
eigenvalues of H are { 1

n : n ∈ N}. Clearly H is power bounded. The compactness
of H2 implies that Im(I −H2) = Im(I −H)(I +H) = Im(I −H) is closed, since
−1 /∈ σ(H). Now the conclusion follows from a criterion due to Lin (see Theorem
0.5.5). 2

Observe that contrary to what happens for the operators of integration J and of
differentiation D, the Hardy operator H is uniformly mean ergodic and 1 belongs
to the spectrum of H on the space Bp,q(v). In this case, the Cesàro means of the
iterates of H do not converge to zero on the polynomials. Being power bounded,
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H cannot be hypercyclic on Bp,q(v). In fact, since δ0(Hnf) = f(0) for each f ∈
H(C), H is not hypercyclic on H(C). Moreover, it is not difficult to show that
the spectrum of H : H(C) → H(C) reduces to its eigenvalues { 1

n}n, since by the
Cauchy-Hadamard theorem, H − λI is surjective for λ 6∈ { 1

n}n.

3.5 Differential operators

This section is devoted to study the dynamics of differential operators φ(D) :
Bp,q(v) → Bp,q(v) whenever D : Bp,q(v) → Bp,q(v) is continuous and φ is an
entire function. Godefroy and Shapiro proved that if T : H(C) → H(C), T 6= λI,
commutes with D, that is, TD = DT, it can be expressed as a differential operator
φ(D) for an entire function φ of exponential type [73]. Moreover, they proved
that T is chaotic. MacLane also considered the question about what are the
possible rates of growth of D-hypercyclic functions. He showed that there exists
a D-hypercyclic entire function f of exponential type 1, that is, for all ε > 0
there is M > 0 with |f(z)| ≤ Me(1+ε)|z|. Bernal and Bonilla [21] have attacked
the same problem for general T following the idea of Chan and Shapiro (1991)
of replace H(C) by a space of entire functions of restricted growth. We continue
their work focusing this problem on the weighted spaces of entire functions Bp,q(v),
1 ≤ p ≤ ∞, q = 0 or 1 ≤ q <∞. See [80, 4.2] for more references and background
on this topic.

An entire function φ is said to be of exponential type if there are constants A,R > 0
such that

|φ(z)| ≤ AeR|z| for all z ∈ C.

Equivalently, an entire function φ(z) =
∑∞
n=0 anz

n is of exponential type if and
only if there are A,B > 0 such that, for n ≥ 0, |an| ≤ ABn

n! (see [80, Lemma 4.18]).

Given φ(z) =
∑∞
n=0 anz

n ∈ H(C), the formal differential operator φ(D) is defined
by

φ(D)f =
∞∑
n=0

anf
(n), f ∈ H(C).

In [80, Proposition 4.19] it is shown that given an entire function of exponential
type φ(z) =

∑∞
n=0 anz

n, then φ(D)f =
∑∞
n=0 anD

nf converges in H(C) for every
entire function f and defines a continuous operator on H(C).

Our aim now is to extend the results given in [21], where it is shown that if
T : H(C)→ H(C), T 6= λI, commutes with D and T = φ(D) is its representation
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with an entire function φ, then for any τ > min{|z| : |φ(z)| = 1} there is a T -
hypercyclic entire function with |f(z)| ≤Meτ |z|, z ∈ C. This seems to be the best
growth result known for general operators T commuting with D. For individual
operators, much better results are available. For T = D, since φ(z) = z, and
min{|z| : |φ(z)| = 1} = 1, for any ε > 0 there is some D-hypercyclic function f
with

|f(z)| ≤Me(1+ε)|z|, z ∈ C.

MacLane had already shown the better result that type 1 is possible. MacLane’s
growth condition can be improved, and one can even determine the least possible
rate of growth.

Theorem 3.5.1 ([75]) If ϕ :]0,∞[→ [1,∞[ is any function with ϕ(r) → ∞ as
r →∞ then there is a D-hypercyclic entire function f with

|f(z)| ≤ ϕ(|z|) e
|z|√
|z|

for |z| sufficiently large,

but there is no D-hypercyclic entire function f that satisfies

|f(z)| ≤M e|z|√
|z|

for |z| 6= 0

with some M > 0.

For the translation operator Tz0f(z) = f(z+ z0), z0 6= 0, we have that Tz0 = ez0D

since the Taylor series of f centred at z ∈ C gives

f(z + z0) =
∞∑
k=0

f (k)(z)zk0
k! .

Hence, Tz0 = φ(D), φ(z) = ez0z and min{|z| : |φ(z)| = 1} = 0. This yields that
for any ε > 0 there is some hypercyclic function with |f(z)| ≤ Meε|z|, z ∈ C.
But Duyos-Ruiz (1983) had already shown that there are hypercyclic functions of
arbitrarily slow transcendental growth.

Given an operator T defined on a Banach space X and an entire function φ(z) =∑∞
n=0 anz

n, the expression φ(T ) =
∑∞
n=0 anT

n defines also an operator on X.
In fact, ‖φ(T )‖ ≤

∑∞
n=0 |an|‖T‖n < ∞. In the next theorem we study the hy-

percyclicity and chaos of the differential operator φ(D) on the weighted Banach
spaces of entire functions Bp,q(v), 1 ≤ p ≤ ∞, q = 0 or 1 ≤ q ≤ ∞, defined by a
weight v in which the operator D : Bp,q(v)→ Bp,q(v) is continuous. We thank L.
Bernal for suggesting the author the ideas for the proof:
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Theorem 3.5.2 Let φ be a nonconstant entire function and α > min{|z| : |φ(z)| =
1}. Let 1 ≤ p ≤ ∞ and suppose v is a weight such that limr→∞ v(r) e

αr

r
1
2p

= 0

for q = 0 or r
1
q−

1
2p eαr ∈ Lqv([r0,∞[) for some r0 > 0 and 1 ≤ q < ∞. If

D : Bp,q(v) → Bp,q(v) is continuous, then the operator φ(D) : Bp,q(v) → Bp,q(v)
is topologically mixing. Moreover, φ(D) is chaotic and not mean ergodic.

Proof. We prove that φ(D) verifies the Hypercyclicity Criterion for the entire
sequence of positive integers. Consider the sets

V := span{ea : |a| < α, |φ(a)| < 1},

W := span{ea : |a| < α, |φ(a)| > 1},

where ea(z) := eaz, a ∈ C, z ∈ C. Since φ is non constant and open, φ(αD) is
an open set, which together with φ(αD) ∩ T 6= ∅ implies that αD ∩ φ−1(D) and
αD ∩ φ−1(C \D) are non-empty open sets of C. Thus, they have an accumulation
point in αD.On the other hand, by Lemma 3.1.4, ea ∈ Bp,q(v) for all a ∈ αD, which
implies by Lemma 3.3.4 that V and W are dense subsets of Bp,q(v). Furthermore,
φ(D)ea = φ(a)ea for all n ∈ N, then, φ(D)nea = φ(a)nea for each n ∈ N, a ∈ C.
Hence, by linearity, φ(D)nf → 0 as n tends to infinity for all f ∈ V . Define
S : W → Bp,q(v) as S(ea) = 1

φ(a)ea ∈ W and extend it by linearity to W . Then,
Sn(ea) = 1

φ(a)n ea → 0 if n tends to infinity, so Snf converges to 0 for every f ∈W .
As φ(D)nSnf = f for all f ∈ W , the Hypercyclicity Criterion holds. Consider
now the set

P := span{ea : |a| < α, φ(a)n = 1, n ∈ N} ⊆ Bp,q(v).

As φ(D)nea = φ(a)nea, P is formed by periodic points. There exists z0 ∈ αD
such that |φ(z0)| = 1. Take an open set U containing z0 and such that U ⊆ αD As
φ(U) is open, φ(U) ∩ T contains a dense set formed by roots of the unity. Then,
the preimages by φ of this set contain a sequence in U, and thus, the set {a ∈ C :
|a| < α, φ(a)n = 1, n ∈ N} has an accumulation point in αD. Therefore, again
by Lemma 3.3.4, P is a dense set of periodic points, and hence, φ(D) is chaotic.
Finally, given a ∈ C, |a| < α, with |φ(a)| > 1, ‖φ(D)n(ea)‖p,q,v

n = |φ(a)|n
n ‖ea‖p,q,v

does not tend to zero. Therefore, φ(D) cannot be mean ergodic. 2

Corollary 3.5.3 Let 1 ≤ p ≤ ∞ and suppose v is a weight such that there exists
α > 0 with limr→∞ v(r) e

αr

r
1
2p

= 0 for q = 0, or r
1
q−

1
2p eαr ∈ Lqv([r0,∞[) for some

r0 > 0 and 1 ≤ q < ∞. If the differentiation operator D : Bp,q(v) → Bp,q(v)
is continuous, then the translation operator Tz0 : Bp,q(v) → Bp,q(v), Tz0f(z) =
f(z + z0), z ∈ C, z0 6= 0, is topologically mixing, chaotic and not mean ergodic.
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Proof. We have seen above that the translation operator is a differential operator
given by the entire function of exponential type φ(z) = ez0z, z ∈ C. Since the
hypothesis of Proposition 3.5.2 are satisfied, it is topologically mixing and chaotic.
2

3.6 Dynamics of differentiation and integration
operators on H0

v (C) and Hv(C)

In order to simplify the exposition, in this section we summarize the results ob-
tained in this chapter about the dynamics of the differentiation, the integration
and the Hardy operators acting on the weighted Banach spaces of entire functions
H0
v (C) and Hv(C). We omit the proofs here, since they are included in the last

sections. This content is published by Bonet, Fernández and the author in [17].

Lemma 3.6.1 Let T : (H(C), τco) → (H(C), τco) be a continuous linear operator
such that T (P) ⊆ P. Given a weight v, the following conditions are equivalent:

(i) T (H∞v (C)) ⊆ H∞v (C),

(ii) T : H∞v (C)→ H∞v (C) is continuous,

(iii) T (H0
v (C)) ⊆ H0

v (C),

(iv) T : H0
v (C)→ H0

v (C) is continuous.

Moreover, if (i)-(iv) hold, then ||T ||L(H∞v (C)) = ||T ||L(H0
v(C)) and σH∞v (C)(T ) =

σH0
v(C)(T ).

Proof. All the statements but the one about the spectrum are proved in Lemma
3.1.7. This follows easily since the reflexivity of H(C) yields T ′′ = T and the
bidual of H0

v (C) is Hv(C) by [27]. So, the bitranspose of T : H0
v (C) → H0

v (C) is
T : H∞v (C)→ H∞v (C), and it is well-known that σ(T ) = σ(T ′′). 2

In the case of the integration operator J we get the following:

Proposition 3.6.2 The operator J is never hypercyclic on H0
v (C).

Proposition 3.6.3 (i) Let v be a weight such that v(r)eαr is non increasing
for some α > 0. Then, J is continuous with ||J ||v ≤ 1/α. In particular,
σv(J) ⊆ (1/α)D.

(ii) If J is continuous on Hv(C) and v(r)eαr is increasing for some α > 0, then
σv(J) ⊇ (1/α)D.
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(iii) ||Jn||a,α ≈ 1/αn for all n ∈ N0, α > 0 and a ≤ 0, with equality for a = 0,
and σa,α(J) = (1/α)D.

Theorem 3.6.4 (a) If J : Hv(C)→ Hv(C) is continuous, then:

(i) If rae−r = O(v(r)), with a > 1/2, then J is not power bounded on
Hv(C).

(ii) J is not uniformly mean ergodic on H0
v (C) if for all β > 1, v(r)eβr is

increasing in some interval [r0,∞[. In particular J is not uniformly
mean ergodic on H0

a,1(C) for all a ∈ R.

(iii) If r3/2e−r = O(v(r)), then J is not mean ergodic on H0
v (C). In par-

ticular, it is not mean ergodic in H0
a,α(C) when α < 1, a ∈ R.

(b) (iv) J is power bounded on Hv(C) and mean ergodic on H0
v (C) provided

that v(r)er is non increasing in some interval [r0,∞[. In particular,
it is mean ergodic on H0

a,1(C) for every a ≤ 0.

(v) J is uniformly mean ergodic on Hv(C) if for some α > 1, v(r)eαr is
non increasing.

For the differentiation operator we get:

Proposition 3.6.5 The following holds for a > 0:

||Dn||a,α = O
(
n!
(eα
n

)n)
and

n!
(

eα

n+ a

)n+a
= O(||Dn||a,α).

For a ≤ 0 and n > |a|,

||Dn||a,α ≈ n!
(

eα

n+ a

)n+a
,

with equality for a = 0. Moreover, σa,α(D) = αD for every a ∈ R, α > 0.

By [10, Proposition 4], D − λI is not surjective on Ha,α(C) or on H0
a,α(C) for

|λ| = α. On the other hand, we get the following:



3.6 Dynamics of D and J on H0
v (C) and Hv(C) 113

Proposition 3.6.6 Let v be a weight such that D is continuous on Hv(C) and
that v(r)eαr is non increasing. If |λ| < α, then the operator D−λI is surjective on
Hv(C) and it even has a continuous and linear right inverse. The same holds on
H0
v (C). In particular, if |λ| < α, D− λI has a continuous and linear right inverse

on Ha,α(C).

Proposition 3.6.7 (i) For α > 1 or α = 1 and a < 1/2, D is not power
bounded on Ha,α(C).

(ii) If D is chaotic, then D is not mean ergodic on H0
v (C). Consequently, D is

not mean ergodic on H0
a,α(C) if α > 1 or if α = 1 and a < 0.

(iii) For α < 1, D is power bounded and uniformly mean ergodic on Ha,α(C).

(iv) D is not uniformly mean ergodic on H0
a,1(C), a ∈ R and not mean ergodic

on H1(C).

We do not know if the differentiation operator is mean ergodic on the space H0
1 (C).

Related partial results can be seen in [35].

Corollary 3.6.8 Consider the weight va,α, a ∈ R, α > 0.

(a) If α < 1, then D is neither hypercyclic nor chaotic on H0
v (C).

(b) If α > 1 then D is topologically mixing and chaotic on H0
v (C).

(c) If α = 1, D is hypercyclic (even topologically mixing) if and only if a < 1
2

and D is chaotic if and only if a < 0.

To finish, we look at the Hardy operator H : Hv(C)→ Hv(C) :

Theorem 3.6.9 Let v be an arbitrary weight. The Hardy operator H : Hv(C)→
Hv(C) is well defined and continuous with ‖H‖v = 1. Moreover, H2(Hv(C)) ⊆
H0
v (C) and H2 is compact. If the integration operator J : Hv(C) → Hv(C) is

continuous, then H is compact. So, H is power bounded and uniformly mean
ergodic on Hv(C). Moreover, its spectrum is σ(H) = { 1

n}n ∪ {0}.

The operator H can be compact even if J is not continuous. In fact, by the
work of Harutyunyan and Lusky [82], the integration operator J is not continuous
on Hv(C) for v(r) = exp(−(log r)2). Moreover, by Lusky [94, Theorem 2.5.],
the monomials constitute a basis of the space H0

v (C) and the norm of Hv(C) is
equivalent to ||

∑∞
k=0 akz

k||v = supk |ak|||zk||v. Moreover, H0
v (C) is isomorphic to

c0. In this example the Hardy Operator H maps Hv(C) into H0
v (C) (just look at
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the Taylor expansion of the function). As Hv(C) is canonically isometric to the
bidual of H0

v (C) by [27], H is weakly compact as an operator on both spaces Hv(C)
and H0

v (C). Since H0
v (C) is isomorphic to c0, H is compact on H0

v (C) (see e.g.
[84, Corollary 17.2.6]). As H on Hv(C) coincides with the bitranspose, it follows
that it is also compact.

The next theorem summarizes our results for the spaces Hα(C) and H0
α(C) :

Theorem 3.6.10 (i) The differentiation operator D satisfies ||Dn||α = n!
(
eα
n

)n
for each n ∈ N, hence it is power bounded if and only if α < 1. The spec-
trum of D is the closed disc of radius α. It is uniformly mean ergodic on
Hα(C) and H0

α(C) if α < 1, not mean ergodic if α > 1, and it is not mean
ergodic on H1(C) and not uniformly mean ergodic on H0

1 (C).

(ii) The integration operator J is never hypercyclic on H0
α(C) and it satisfies

||Jn||α = 1/αn for each n ∈ N. Hence, it is power bounded if and only if
α ≥ 1. The spectrum of J is the closed disc of radius 1/α. If α > 1, then J
is uniformly mean ergodic on Hα(C) and H0

α(C) and it is not mean ergodic
on these spaces if α < 1. If α = 1, then J is not mean ergodic on H1(C),
and mean ergodic but not uniformly mean ergodic on H0

1 (C).

Theorem 3.6.11 ([41, Corollary 2.6]) The differentiation operator on H0
α(C) is

not hypercyclic and has no periodic point different from 0 if α < 1, it is hypercyclic
and has a dense set of periodic points if α > 1 and it is hypercyclic but has no
periodic point different from 0 if α = 1.

3.7 An example of a topologically mixing and mean
ergodic operator

The author thanks A. Peris for providing her with the following theorem, where an
example of a topologically mixing uniformly mean ergodic operator is given. The
example is published by Martínez-Giménez, Oprocha and Peris in [97, Theorem
2.1], and gives an example of a topologically mixing not distributionally chaotic
operator. Peris uses the same example in order to prove the existence of topolog-
ically mixing mean ergodic operators. Examples of operators being mean ergodic
and hypercyclic at the same time seem to be unknown until now.

The example consists on the backward shift operator B acting on the weighted
`p-space

`p(v) =
{
{xn}n ∈ CN :

∞∑
n=1
|xn|pvn <∞

}
, 1 ≤ p <∞,
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where v = {vn}n is a positive discrete weight sequence and B({xn}n) = {xn+1}n,
{xn}n ∈ `p(v). By [59] and [80, Example 4.4(a)], B is continuous on `p(v) if and
only if supn vn

vn+1
<∞ and it is hypercyclic if and only if infn vn = 0. First, some

definitions are needed:

Given a subset A ⊆ N, its upper density is the number

dens(A) = lim sup
n→∞

1
n
|{i < n : i ∈ A}|,

where |S| denotes the cardinality of the set S. Using this notation, distributional
chaos can be defined as follows:

Definition 3.7.1 Let T be a continuous self map on a metric space (X, d). If
there exists an uncountable set D ⊆ X and ε > 0 such that for every t > 0 and
every distinct x, y ∈ D the following conditions hold:

dens{i ∈ N : d(T i(x), T i(y)) ≥ ε} = 1,

dens{i ∈ N : d(T i(x), T i(y)) < t} = 1,

then we say that T exhibits uniform distributional chaos. In this case we say that
the operator T is distributionally chaotic and that the set D is a distributionally
ε-scrambled set.

Theorem 3.7.2 ([97, Theorem 2.1]) Let nk := (k!)3, k ∈ N, and let v = {vj}j
be the sequence of discrete weights given by vj = k−1 for nk ≤ j < nk+1, k ∈ N.
Then the operator B is topologically mixing on X := `p(v), 1 ≤ p < ∞, but it is
not distributionally chaotic.

Proof. The fact that B is mixing can be deduced from [59] (see also Chapter 4 in
[80] for more details), since limj vj = 0.

We will show that, for each x ∈ X and for every ε ∈]0, 1[,

lim
n→∞

|{j ≤ n : ‖Bj(x)‖ < ε}|
n

= 1,

i.e.,

lim
n→∞

|{j ≤ n : ‖Bj(x)‖ ≥ ε}|
n

= 0, (7.22)

that excludes the possibility of existence of distributionally chaotic pairs. In fact,
if we take x, y ∈ X, then, for every ε > 0, the set {j ≤ n : d(Bj(x), Bj(y)) ≥ ε} is
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included in the union

{k ≤ n : ‖Bk(x)‖ ≥ ε/2} ∪ {l ≤ n : ‖Bl(y)‖ ≥ ε/2}.

So, (7.22) yields

lim
n→∞

|{j ≤ n : d(Bj(x), Bj(y)) ≥ ε}|
n

= 0,

and the operator cannot be distributionally chaotic.

First, fix an integer k0 > 6 satisfying∑
j≥nk0

|xj |pvj < ε/4 and k−1
0 < ε/4.

If n ≥ nk0+1, let k ≥ k0 with nk+1 ≤ n < nk+2. We can write n = Nnk +m with
m,N ∈ N, m ≤ nk, N > k3. Since

N−1∑
i=1

(i+1)nk−1∑
j=ink

|xj |pvj

 ≤ ∑
j≥nk

|xj |pvj < ε/4 < 1,

then, for

I :=

i < N :
(i+1)nk−1∑
j=ink

|xj |pvj ≥ k−2

 ,

we have |I| ≤ k2. Thus,

|{1, . . . , N − 1} \ I| ≥ N − 1− k2.

If i ∈ J := {1, . . . , N − 1} \ I, then

(i+1)nk−1∑
j=ink

|xj |p ≤ (k + 1)
(i+1)nk−1∑
j=ink

|xj |pvj <
k + 1
k

1
k0

< ε/2

by the definition of I, and since vj ≥ (k+ 1)−1 for j ≤ (i+ 1)nk − 1 ≤ Nnk − 1 <
n < nk+2. This implies that, if we fix i ∈ J and j ∈ [ink, (i+ 1)nk − nk−1], then

‖Bj−1x‖p =
(i+1)nk−1∑

l=j
|xl|pvl−j+1 +

∑
l≥(i+1)nk

|xl|pvl−j+1

≤
(i+1)nk−1∑
l=ink

|xl|p +
∑

l≥(i+1)nk

|xl|pvl
vl−j+1

vl
<
ε

2 + 3ε
8 < ε, (7.23)
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since j < nk+2 and l − j + 1 ≥ nk−1 whenever l ≥ (i + 1)nk, and by taking into
account that

vs/vr ≤
vnk−1

vnk−1+nk+2

=
vnk−1

vnk+2

= (k + 2)/(k − 1) ≤ 3/2 (7.24)

if r > s ≥ nk−1 and r− s < nk+2, since nk−1 +nk+2 < nk+3. Therefore, by (7.23),

|{j ≤ n : ‖Bjx‖p < ε}|
n

≥
∑
i∈J(nk − nk−1)

n
≥ (N − 1− k2)(nk − nk−1)

n

≥
(
N − 1− k2

N + 1

)(
nk − nk−1

nk

)
>

(
1− k2 + 2

k3 + 1

)(
1− 1

k3

)
−→
k→∞

1,

since n ≤ nk(N + 1), |J | ≥ N − 1− k2 and N > k3. So, as nk+1 ≤ n < nk+2, B is
not distributionally chaotic. 2

Theorem 3.7.3 (Peris) Let nk := (k!)3, k ∈ N, and let v = {vj}j be the se-
quence of discrete weights given by vj = k−1 for nk ≤ j < nk+1, k ∈ N. Then
the operator B is topologically mixing on X := `p(v), 1 ≤ p < ∞, and uniformly
mean ergodic.

Proof. Fix x ∈ X and ε > 0. In the proof of Theorem 3.7.2 we have seen that
there exists M > 0 such that

|{j ≤ n : ‖Bjx‖ ≥ ε}|
n

≤ 1−
(

1− k2 + 2
k3 + 1

)(
1− 1

k3

)
≤ M

k

for all n ∈ [nk+1, nk+2[, for all k ∈ N. By the selection of the weight sequence,
‖Bl‖ ≤ k1/p if l < nk. Indeed, proceeding as in (7.24),

‖Bl(x)‖p =
∑
j≥l+1

|xj |pvj−l ≤ sup
j≥l+1

vj−l
vj

∑
j≥l+1

|xj |pvj ≤
v1

vnk
‖x‖p = k‖x‖p.

Let k0 ∈ N satisfying ∑
i≥nk0

|xi|pvi <
εp

Mp
.
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If n ≥ nk0+1, let k ≥ k0 with nk+1 ≤ n < nk+2. We have, for J := {j ≤ n :
‖Bjx‖ ≥ ε}, that∑

j≤n ‖Bjx‖
n

≤ ε+
∑
j∈J ‖Bjx‖

n
≤ ε+

∑
j<nk

‖Bjx‖
n

+
∑
j∈J∩[nk,n] ‖Bjx‖

n

≤ ε+ nkk
1/p‖x‖
nk+1

+

∑
j∈J∩[nk,n]

(∑
i>j

vi−j
vi
|xi|pvi

)1/p

n

≤ ε+ ‖x‖
k2 +

∑
j∈J∩[nk,n]

(∑
i>j |xi|pvi

)1/p (
supi>j

vi−j
vi

)1/p

n

≤ ε+ ‖x‖
k2 + |J |

n
(k + 2)1/p ε

M
< 3ε+ ‖x‖

k2 ,

since, proceeding as in (7.24), supi>j
vi−j
vi
≤ v1

vnk+2
= k + 2.

As ε > 0 was arbitrary, we conclude that the operator B is uniformly mean ergodic.
2



Chapter 4

Classical operators on the
Hörmander algebras

We conclude the thesis with a chapter devoted to the study of the dynamics of
the differentiation operator Df(z) = f ′(z) and the integration operator Jf(z) =∫ z

0 f(ζ)dζ, z ∈ C, on weighted inductive and projective limits of spaces of entire
functions, continuing the research in [39]. Most of our results concerning this topic
are included by Bonet, Fernández and the author in [16].

4.1 Notation and Preliminaries

In Chapter 3, given a weight v on C, 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞ or q = 0, we
studied the dynamics of D, J and H on the weighted spaces of entire functions
Bp,q(v), known as the generalized weighted Bergman spaces when q ∈ {0,∞},
and as the weighted Banach spaces of entire functions Hv(C) and H0

v (C) when,
in addition, p =∞. In this chapter we consider inductive and projective limits of
these spaces and we study how the operators behave on them.

In Lemma 3.1.1 it is shown that given a weight v, if we consider vs := vs for s > 0,
then, for 0 < a < b < c,

Hva(C) ↪→ Bp,∞(va) ↪→ Bp,q(vb) ↪→ H0
vc(C)

continuously for every 1 ≤ p ≤ ∞, q = 0 or 1 ≤ q ≤ ∞. This implies that
given a weight v ≤ 1, if we consider the decreasing sequence of weights V =
{vn}n, vn = vn, the inductive limits indnBp,q(vn), V H(C) = indnHvn(C) and

119
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V H0(C) = indnH
0
vn(C) coincide for every 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ or q = 0.

Analogously, for the increasing sequence of weights W = {wn}n, wn = v
1
n , the

weighted projective limits projnBp,q(vn), HW (C) = projnHwn(C) andHW0(C) =
projnH

0
wn(C) coincide. See Section 0.3 for an introduction to the spaces V H(C)

and HW (C).

In Section 1.2, given a growth condition p : [0,∞[→ [0,∞[ we consider the weight
v(z) = e−p(|z|), z ∈ C, the decreasing sequence of weights V = {vn}n, vn = vn, and
we define the weighted spaces of entire functions known as Hörmander algebras
(see e.g. [19], [18]):

Ap(C) :=
{
f ∈ H(C)| there is n ≥ 1 : sup

z∈C
|f(z)| exp(−np(z)) <∞

}
,

that is, Ap(C) = V H0(C), endowed with the inductive limit topology, for which it
is a (DFN)-algebra (cf. [99]). Analogously, if we consider the increasing sequence
of weights W = {wn}n, wn = v1/n, we define

A0
p(C) :=

{
f ∈ H(C)| for all n ∈ N : sup

z∈C
|f(z)| exp

(
−p(z)

n

)
<∞

}
,

that is, A0
p(C) = HW0(C), endowed with the projective limit topology, for which it

is a nuclear Fréchet algebra (cf. [100]). Along this section, we do not assume that
the growth condition satisfies condition (α) in the definition, that is, the function
ϕ : r → p(er) is not needed to be convex.

Clearly A0
p(C) ⊆ Ap(C). In Section 1.2 it is shown that the weight v(z) = e−p(|z|),

z ∈ C, is rapidly decreasing, consequently, the polynomials are contained and
dense in Ap(C) and in A0

p(C).

Weighted algebras of entire functions of this type have been considered since the
work of Berenstein and Taylor [19] by many authors; see e.g. [18] and the references
therein. Braun, Meise and Taylor studied in [51], [99] and [100] the structure of
(complemented) ideals in these algebras. As an example, when p(z) = |z|a, then
Ap(C) consists of all entire functions of order a and finite type or order less than
a, and A0

p(C) is the space of all entire functions of order at most a and type 0. For
a = 1, Ap(C) is the space of all entire functions of exponential type, and A0

p(C) is
the space of entire functions of infraexponential type.

In what follows we study the dynamics of the operators D,J and H on the Hör-
mander algebras Ap(C) and A0

p(C). According to Proposition 0.5.4 in Section 0.5.1
(see also [2, Proposition 2.4]), since Ap(C) and A0

p(C) are complete and Montel,
they are uniformly mean ergodic, that is, each power bounded operator is auto-
matically uniformly mean ergodic.
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In Section 3.4 it is shown that the Hardy operator (Hf)(z) = 1
z

∫ z
0 f(ζ)dζ, z ∈ C,

is continuous and power bounded on H0
v (C) for every weight v. Hence, by 0.5.7, it

is power bounded and uniformly mean ergodic on Ap(C) and on A0
p(C). Thus, we

restrict our attention to the differentiation and the integration operators.

Proposition 4.1.1 ([39, Proposition 8]) Given a decreasing sequence of weights
V = {vn}n, the following is satisfied:

(i) If for each n there are m and C > 0 such that vm(r) ≤ Cvn(r+ 1) if r ≥ 1,
then the differentiation operator D : V H(C)→ V H(C) is continuous.

(ii) If for each k there are l and C > 0 with rvl(r) ≤ Cvk(r) if r ≥ 1, then the
integration operator J : V H(C)→ V H(C) is continuous.

The next proposition is the analogous for the projective limits HW (C) :

Proposition 4.1.2 Given an increasing sequence of weights W = {wn}n, the
following is satisfied:

(i) If for each m there are n and C > 0 such that wm(r) ≤ Cwn(r+1) if r ≥ 1,
then the differentiation operator D : HW (C)→ HW (C) is continuous.

(ii) If for each l there are k and C > 0 with rwl(r) ≤ Cwk(r) if r ≥ 1, then the
integration operator J : HW (C)→ HW (C) is continuous

Proof. If the inequalities are satisfied for r ≥ 1, they are also satisfied for every
r ≥ 0. So, by the Cauchy inequalities, (i) implies that for every m ∈ N there exists
n ∈ N and C > 0 such that

‖Df‖wm = sup
z∈C

wm(|z|)|f ′(z)| ≤ sup
z∈C

Cwn(|z|+ 1) sup
|w|=1+|z|

|f(w)| ≤ C‖f‖wn .

Hence, we get the continuity. On the other hand, (ii) yields that for every l ∈ N
there exists k ∈ N and C > 0 such that

wl(|z|)|Jf(z)| ≤ wl(|z|)|z| sup
|λ|=|z|

|f(λ)| ≤ Cwk(|z|) sup
|λ|=|z|

|f(λ)| = C‖f‖wk ,

which yields the continuity of the integration operator. 2

Corollary 4.1.3 The differentiation operators D : Ap(C) → Ap(C) and D :
A0
p(C) → A0

p(C) and the integration operators J : Ap(C) → Ap(C) and J :
A0
p(C)→ A0

p(C) are continuous.
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Proof. Conditions (i) and (ii) in Propositions 4.1.1 and 4.1.2 are satisfied by the
sequence of weights defining Ap(C) and A0

p(C). Indeed, by condition (γ) in the
definition of the growth condition p (see Definition 1.2.1), there exist constants
A,B > 0 such that

sup
r≥1

exp(bp(r + 1)− ap(r)) ≤ sup
r≥1

exp(bp(2r)− ap(r))

≤ B sup
r≥1

exp(p(r)(Ab− a)) <∞,

for a > Ab. By condition (β) in the definition of p (see Definition 1.2.1),

sup
r≥1

r exp(p(r)(b− a)) ≤ sup
r≥1

r

(1 + r2)(a−b) <∞,

for a > b. 2

In [18, page 110] it is shown that both spaces are stable under differentiation by
the doubling condition (γ) in the definition of p and the Cauchy integral formula.

4.2 The differentiation operator

In this section we consider the action of the differentiation operator on the Hör-
mander algebras Ap(C) and A0

p(C). The next lemma provides us with a sufficient
condition for the power boundedness of D:

Lemma 4.2.1 Let u and v be two weights on C such that there are 0 < α < 1
and C > 0 such that u(r)eαr ≤ Cv(R)eαR for each 0 ≤ r ≤ R. Then for each
n ∈ N, the operator

Dn : Hv(C)→ Hu(C)

is continuous. Moreover, for each f ∈ Hv(C) the sequence {Dn(f)}n converges to
0 in Hu(C).

Proof. Fix f ∈ Hv(C) and n ∈ N. Given z ∈ C and ε > 0, by the Cauchy integral
formula we have, since v is decreasing,

|f (n)(z)| ≤ n!
εn

sup|z−ω|=ε|f(ω)| ≤ n!
εn
||f ||v

1
v(|z|+ ε) .

Thus

u(|z|)|f (n)(z)| ≤ n!
εn
||f ||v

u(|z|)
v(|z|+ ε) ≤ C||f ||v

n!
εn
eαε.
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This implies, by the Stirling formula,

||f (n)||u ≤ C||f ||vn! infε>0( e
αε

εn ) = C||f ||vn!α
nen

nn ≤ C
′||f ||vαn

√
2πn,

which converges to 0 as n→∞, since 0 < α < 1. 2

As an immediate consequence, if we consider just one weight v, we get the next
corollary. See also [82].

Corollary 4.2.2 If v is a weight such that for some 0 < α < 1 the function
v(r)eαr is increasing, then D : Hv(C) → Hv(C) is continuous and the orbit of
each f ∈ Hv(C) converges to 0 in norm.

As an immediate consequence of Lemma 4.2.1 we get the next corollary:

Corollary 4.2.3 (a) Let {vk}k be a decreasing sequence of weights such that
for every m there are k ≥ m, C > 0 and 0 < α < 1 such that vk(r)eαr ≤
Cvm(R)eαR if 0 ≤ r ≤ R. Then D : V H(C) → V H(C) is continuous and
{Dn(f)}n converges to 0 in V H(C) for each f ∈ V H(C). Therefore, it is
power bounded, and thus, not hypercyclic.

(b) Let {wk}k be an increasing sequence of weights such that for each m there
are k ≥ m, C > 0 and 0 < α < 1 such that wm(r)eαr ≤ Cwk(R)eαR if
0 ≤ r ≤ R. Then the differentiation operator D : HW (C) → HW (C) is
continuous and {Dn(f)}n converges to 0 in HW (C) for each f ∈ HW (C).
Therefore, it is power bounded, and thus, not hypercyclic.

Lemma 4.2.4 Let E be a locally convex space of entire functions continuously
included in H(C) and assume that there is a > 1 such that eaz ∈ E. If D : E → E
is continuous, then it is not mean ergodic.

Proof.Set ea(z) := eaz, z ∈ C. If D is continuous on E and mean ergodic, then
1
n

∑n
m=1D

mea converges in E. Since E is continuously included H(C), the se-
quence {

1
n

n∑
m=1

Dmea(0)
}
n

=
{

1
n

n∑
m=1

am

}
n

converges. This is impossible for a > 1. 2

Theorem 4.2.5 (i) If r = O(p(r)) as r →∞, then D is not mean ergodic on
Ap(C).
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(ii) If r = o(p(r)) as r →∞, then D is not mean ergodic on A0
p(C).

(iii) If p(r) = o(r) as r → ∞, then D is power bounded, hence uniformly mean
ergodic and not hypercyclic on Ap(C) and on A0

p(C).

Proof. Statements (i) and (ii) follow from Lemma 4.2.4. In fact, by hypothesis,
there exists C > 0 such that

lim
r→∞

eare−bp(r) ≤ lim
r→∞

er(a−b/C) (2.1)

for every a, b > 0. So, for a > 1 and b ∈ N, b > aC, the limit (2.1) tends to
zero, and eaz ∈ Ap(C). For A0

p(C), fix a > 1. Given 1/b := n ∈ N, take C := 1
2na

so that limr→∞ eare−p(r)/n tends to zero for every n ∈ N. The election of Cn is
possible, since r = o(p(r)). We conclude (iii) from Corollary 4.2.3. By condition
(γ) in the definition of p, there exists A > 0 such that p(r+s) ≤ A(1+p(r)+p(s))
for each r, s > 0. As p(r) = o(r), for every a > 0 there exists C > 0 such that
Aap(s) < C + 1

2s for each s ≥ 0. If b > Aa and 0 ≤ r ≤ R we have, for s = R− r,

ap(R) = ap(r +R− r) ≤ aA(1 + p(r)) + aAp(R− r)

< aA(1 + p(r)) + C + R− r
2 ≤ C1 + bp(r) + R

2 −
r

2
for some C1 > 0. This yields

e−bp(r)er/2 ≤ eC1e−ap(R)eR/2

for 0 ≤ r ≤ R. So, Corollary 4.2.3(a) is satisfied if we take a = m ∈ N and
b = k ∈ N, and Corollary 4.2.3(b) is satisfied if we take b = 1/m ∈ N and
a = 1/k ∈ N. 2

Theorem 4.2.6 (i) If p(r) = o(r − 1
2 log(r)) as r → ∞, then D is not hyper-

cyclic on Ap(C).

(ii) If r = O(p(r)) as r → ∞, then D is topologically mixing and has a dense
set of periodic points on Ap(C).

(iii) If r = o(p(r)) as r → ∞, then D is topologically mixing and has a dense
set of periodic points on A0

p(C).

Proof. Statements (i) and (ii) were proved in [39]. In fact, (ii) and (iii) follow from
Bonet [41], since for α > 1 the weighted Banach space of entire functions

H0
α(C) := {f ∈ H(C) : supz∈C|f(z)|e−α|z| <∞}

is continuously and densely included in Ap(C) if r = O(p(r)) (r →∞) and inA0
p(C)

if r = o(p(r)) (r → ∞) (they include the polynomials) and the differentiation
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operator is topologically mixing and chaotic on this space by Corollary 3.6.8. The
conclusions now follow by the comparison principle in Lemma 0.5.10. 2

Corollary 4.2.7 Let pa(r) = ra, a > 0 :

(i) If a > 1, then D is topologically mixing, chaotic and not mean ergodic on
Apa(C) and on A0

pa(C).

(ii) If a < 1, then D is power bounded, hence uniformly mean ergodic and not
hypercyclic on Apa(C) and on A0

pa(C).

(iii) If a = 1, then D is topologically mixing, chaotic and not mean ergodic on
Ap1(C) and it is power bounded, hence uniformly mean ergodic and not
hypercyclic on A0

p1
(C).

Proof. All the statements but (iii) for A0
p1

(C) (p(r) = r) follow by Theorems 4.2.5
and 4.2.6. A0

p1
(C) is the intersection of the spaces H0

vn(C) for vn(r) = e−
r

n+1

and the differentiation operator D is power bounded on each H0
vn(C) by Theorem

3.6.10. So, by Proposition 0.5.7, D is power bounded on A0
p1

(C). 2

It is possible to extend some of these results to the weighted Fréchet spaces
HW0(C). See also [41, Theorems 2.3, 2.4].

Theorem 4.2.8 If the differentiation operator D : HW0(C) → HW0(C) is con-
tinuous, then the following are equivalent:

(i) D satisfies the hypercyclicity criterion.

(ii) D is hypercyclic.

(iii) there exists a sequence {ks}s such that lims→∞
||zks ||n
ks! = 0 for every n ∈ N.

Proof. (i)⇒(ii) is clear. (ii)⇒(iii): If D is hypercyclic and f is a hypercyclic
function, we have that {f (k)(0) : k ∈ N} is dense, and therefore, unbounded in
C. So, there exists a subsequence {ks}s such that lims→∞ |f (ks)(0)| = ∞. By the
Cauchy inequalities, for each n ∈ N,

wn(r) |f
(k)(0)|
k! rk = wn(r)

∣∣∣∣∣ 1
2πi

∫
|z|=r

f(z)
zk+1 dz

∣∣∣∣∣ rk ≤ wn(r) max
|z|=r

|f(z)| ≤ ‖f‖n,

(2.2)
so we get |f (ks)(0)|‖z

ks‖n
ks! ≤ ‖f‖n, and thus, lims→∞

‖zks‖n
ks! = 0, which yields (iii).

Let us see (iii)⇒(i). Take Y = Y0 as the set of all polynomials, which is dense in
HW0(C). Define Sj := Sj on Y , j ∈ N, with S the integration map defined on the
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monomials by S(zk) = zk+1/(k+1). Since D◦S(q) = q for each polynomial q, and
for each q of degree less or equal to M , Dkq = 0 for k ≥ M + 1, it only remains
to show that there exists some sequence {Nj}j such that limj→∞ SNjq = 0 in
HW0(C) for each polynomial q.

Since D is continuous, given m ∈ N and j ∈ N there exists nm,j ∈ N and Cm,j > 1
such that ‖Dlf‖m ≤ Cm,j‖f‖nm,j for every l ≤ j and each f ∈ HW0(C).

Given j ∈ N, consider the weight wnj,j . Since lims→∞
‖zks‖nj,j

ks! = 0, set ks0 = 0

and find ksj such that ‖z
ksj ‖nj,j
ksj ! ≤ 1

jCj,j
and ksj+1 > ksj + j + 2. Consider Nj :=

ksj − j − 1, j ∈ N. Notice that Nj+1 > Nj + j + 1. Since

SNj (zk) = k!
(Nj + k)!z

Nj+k

and

Dj+1−k(zNj+j+1) = (Nj + j + 1)!
(Nj + k)! zNj+k

for k ≤ j + 1, k ∈ N0, given m, for j ≥ m we get

‖SNj (zk)‖m ≤
k!

(Nj + k)!‖z
Nj+k‖j = k!

(Nj + j + 1)!‖D
j+1−k(zNj+j+1)‖j

≤ k!Cj,j
‖zNj+j+1‖nj,j
(Nj + j + 1)! ≤

k!
j
.

Thus, for every k ∈ N and eachm ∈ N, we get limj→∞ ‖SNj (zk)‖m = 0. Therefore,
SNl tends to zero on the polynomials, and the hypercyclicity criterion is satisfied.
2

Remark 4.2.9 (ii)⇔(iii) in Theorem 4.2.8 is a special case of a result by Grosse-
Erdmann in [77, Theorem 7] in the case the monomials are a basis of HW0(C).
Indeed, in this case HW0(C) is a sequence space and the differentiation oper-
ator D becomes the weighted backward shift operator Bw : (x1, x2, x3, . . . ) →
(w2x2, w3x3, . . . ), where w = {wn}n, wn = n, n ∈ N. Since |f

k(0)|
k! ‖z

k‖n ≤ ‖f‖n
for every f ∈ Hvn(C) by (2.2), the hypothesis in [77, Theorem 7] are satisfied.
The monomials are a basis of the spaces Ap(C) and A0

p(C) (see Corollary 1.2.3 in
Chapter 1, [71, Theorem 11] or [99] and [100]), but in general this is not satisfied
(see [94]).

Theorem 4.2.10 If the differentiation operator D : HW0(C)→ HW0(C) is con-
tinuous, then the following are equivalent:
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(i) D is topologically mixing.

(ii) limk→∞
‖zk‖n
k! = 0 for every n ∈ N.

Proof. (i)⇒(ii): Suppose that for some n ∈ N the sequence {‖z
k‖n
k! }n does not

converge to zero. Then we findM > 0 and a subsequence {ks}s such that ‖z
ks‖n
ks! >

M. As {(D′)ks(δ0) : s ∈ N} is unbounded in (HW0(C))′ by Lemma 0.5.11, there is
f ∈ HW0(C) such that the set {f (ks)(0) : s ∈ N} is unbounded, and therefore there
is a subsequence that we still denote by {ks}s such that lims→∞ |f (ks)(0)| = ∞.
Now,

wn(r)|f (k)(0)|r
k

k! ≤ wn(r) max
|z|=r

|f(z)| ≤ ‖f‖n.

Then, for n, s ∈ N and r > 0,

wn(r)r
ks

ks!
≤ ‖f‖n
|f (ks)(0)|

,

which implies

M <
‖zks‖n
ks!

→
s→∞

0,

a contradiction.

(ii)⇒(i). It is enough to show that D satisfies the assumptions of the criterion
of Kitai-Gethner-Shapiro [80, Theorem 3.4]. As in the proof of Theorem 4.2.8,
we take Y0 = Y1 the set of all polynomials and denote by S the operator of
integration in the set of polynomials. Clearly {Dj}j tends pointwise to 0 in the
set of polynomials and D ◦ S coincides with the identity on this set. So, it only
remains to prove that {Sk(g)}k converges to 0 in HW0(C) for all polynomial g.
Since Sj(zk) = k!zk+j/(k+ j)! for each k ∈ N, it is enough to show that {‖ z

k

k! ‖n}k
converges to 0 for every n ∈ N, which holds by condition (ii). 2

Theorem 4.2.11 If the differentiation operator D : HW0(C)→ HW0(C) is con-
tinuous, then the following are equivalent:

(i) D is chaotic.

(ii) D has a periodic point different from 0.

(iii) limr→∞ wn(r)er = 0 for every n ∈ N.
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Proof. Clearly (i) implies (ii). Let us see (ii)⇒(iii). By hypothesis, there exists a
function 0 6= f ∈ HW0(C) such that, for some n ∈ N, Dnf = f . Using the trivial
decomposition Dn− I = (D−θ1I) . . . (D−θnI), θnj = 1, j = 1, . . . , n, we conclude
that there is θ ∈ C, |θ| = 1, and g ∈ HW0(C), g 6= 0, such that (D − θI)g = 0.
This yields eθz ∈ HW0(C), and thus, (iii) is satisfied.

(iii)⇒(i) Denote by P the linear span of the functions eθz, θ ∈ C, θn = 1 for
some n ∈ N. Obviously, P is formed by periodic points and, by Lemma 3.3.4, it
is dense in H0

wn(C) for every n ∈ N, and thus, on HW0(C). On the other hand,
since in the proof of Theorem 3.3.5 it is shown that limr→∞ wn(r)er = 0 implies
limk→∞

‖zk‖n
k! = 0, D is topologically mixing by Theorem 4.2.10, and thus, chaotic.

2

4.3 The integration operator

In this section we consider the action of the integration operator J on the Hörman-
der algebras Ap(C) and A0

p(C). It is worth mentioning that J is not continuous on
Hv(C) for v(r) = e−αr

a

, a < 1, α > 0. In fact, an easy computation gives that

||zj ||v =
(

j

eαa

) j
a

,

since supr≥0 r
je−αr

a is attained in r =
(
j
aα

)1/a
. Hence,

‖J(zj)‖v
‖zj‖v

= ‖zj+1‖v
(j + 1)‖zj‖v

=
(

1
eαa

) 1
a
(
j + 1
j

) j
a

(j + 1) 1
a−1.

As a < 1, we get that J is not continuous on Hv(C), since the right hand side
diverges to infinity as j →∞.

The next lemma gives a sufficient condition for which J is power bounded:

Lemma 4.3.1 Let u, v be two weights and assume that for some α ≥ 1 and C > 0,
u(R)eαR ≤ Cv(r)eαr for all 0 ≤ r ≤ R. Then, for every n ∈ N the operator

Jn : Hv(C)→ Hu(C)

is continuous and for each f ∈ Hv(C) the sequence {Jnf}n is bounded in Hu(C),
and in case α > 1, it converges to 0.
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Proof. Observe that

|Jnf(z)| ≤
∫ 1

0
|z||Jn−1f(t1z)|dt1 =

∫ 1

0
|z|
∫ 1

0
t1|z||Jn−2f(t2t1z)|dt2dt1 ≤ . . .

≤
∫ 1

0
|z|
∫ 1

0
t1|z|

∫ 1

0
t2t1|z|

∫ 1

0
. . .

∫ 1

0
tn−1 . . . t1|z||f(tn . . . t1z)|dtn . . . dt1.

By hypothesis, there exist α ≥ 1 and C > 0 such that

u(|z|) ≤ Cv(t1 . . . tn|z|)eαt1...tn|z|e−α|z|

= Cv(t1 . . . tn|z|)eα|z|(t1−1)eαt1|z|(t2−1)eαt1t2|z|(t3−1) . . . eα|z|t1...tn−1(tn−1).

Then,

u(|z|)|Jnf(z)| ≤

≤ C‖f‖v
∫ 1

0
|z|eα|z|(t1−1)

∫ 1

0
. . .

∫ 1

0
tn−1 . . . t1|z|eα|z|t1...tn−1(tn−1)dtn . . . dt1

which yields

||Jnf ||u ≤ ||f ||v
C

αn
.

2

If we consider just one weight v, we get the next corollary. See also [82].

Corollary 4.3.2 If v is a weight such that for some α > 1 the function v(r)eαr is
decreasing, then J : Hv(C)→ Hv(C) is continuous and the orbit of each f ∈ Hv(C)
converges to 0 in norm.

As an immediate consequence of Lemma 4.3.1 we get:

Corollary 4.3.3 (a) Let {vk}k be a decreasing sequence of weights such that
for every m there are k ≥ m, C > 0 and α ≥ 1 such that vk(R)eαR ≤
Cvm(r)eαr if 0 ≤ r ≤ R. Then J : V H(C) → V H(C) is continuous
and {Jnf}n is bounded in V H(C) for each f ∈ V H(C). If α > 1, then
{Jnf}n converges to 0 in V H(C) for each f ∈ V H(C). Therefore, it is
power bounded, and thus, not hypercyclic.

(b) Let {wk}k be an increasing sequence of weights such that for each m there
are k ≥ m, C > 0 and α ≥ 1 such that wm(R)eαR ≤ Cwk(r)eαr if 0 ≤
r ≤ R. Then J : HW (C)→ HW (C) is continuous and {Jnf}n is bounded
in HW (C) for each f ∈ HW (C). If α > 1, then {Jnf}n converges to 0 in
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HW (C) for each f ∈ HW (C). Therefore, it is power bounded, and thus,
not hypercyclic.

Proposition 4.3.4 J is not hypercyclic on the Hörmander algebras Ap(C) nor
A0
p(C).

Proof. By Proposition 3.2.1, the operator J is power bounded on H(C), therefore
it is not hypercyclic. Consequently, as Ap(C) and A0

p(C) are densely and continu-
ously included in H(C), the non-hypercyclicity of J on these spaces follows by the
comparison principle in Lemma 0.5.10. 2

Theorem 4.3.5 (i) The operator of integration is power bounded and hence
uniformly mean ergodic on Ap(C), provided that r = O(p(r)) as r →∞.

(ii) If p(r) = o(r) as r →∞, then J is not mean ergodic on Ap(C).

(iii) J is power bounded and hence uniformly mean ergodic on A0
p(C) provided

that r = o(p(r)) as r →∞.

(iv) If p(r) = O(r) as r →∞, then J is not mean ergodic on A0
p(C).

Proof. (i) As r = O(p(r)), we may assume without loss of generality that 2r ≤
p(r) + c for some c > 0 and all r > 0. Indeed, if r ≤ A(p(r) + 1) for some
A > 0 and every r ≥ 0, we can consider the growth condition q(r) = 2Ap(r), since
Ap(C) = Aq(C). Put vm(r) = e−mp(r). Then, for all 0 ≤ r ≤ R we have

−(m+ 1)p(R) +mp(r) = −p(R) +m(p(r)− p(R)) ≤ c− 2R ≤ c+ 2(r −R),

that is,

vm+1(R)e2R ≤ Cvm(r)e2r,

hence, if supz∈C|f(z)|vm(z) <∞, the sequence (Jnf)n converges to 0 in the next
step of the inductive limit by Proposition 4.3.1.

(ii) If J is mean ergodic, then for each f ∈ Ap(C) the sequence {J
nf
n }n tends to

zero in Ap(C). Since the sequence of weights is regularly decreasing (see Definition
2.1.5), Ap(C) is boundedly retractive by Proposition 2.1.7, and so, there is m such
that {||J

nf
n ||m}n converges to 0. In particular, for f ≡ 1 this means that { ||z

n||m
n!n }n

converges to zero. But since p(r) = o(r), we have that for some constant C > 0,
mp(r) ≤ r

2 + C for all r, hence

||zn||m
n!n ≥ 1

eC
sup
r≥0

( r
n

n!ne
−r/2) = 1

eC
||zn||1/2
n!n
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and the right hand side diverges by (1.10) in Chapter 3.

(iii) Since r = o(p(r)), for each m there is cm > 0 such that for all r, 4mr ≤
cm + p(r). Then, as before, for 0 ≤ r ≤ R we have

− 1
m
p(R) + 1

2mp(r) ≤ − 1
2mp(R) ≤ cm − 2R ≤ cm + 2(r −R),

which by the proof of Lemma 4.3.1 implies that there exists some Cm > 0 such
that, for all n,

‖Jnf‖wm ≤
Cm
2n ‖f‖w2m .

(iv) If J is mean ergodic, then for each f ∈ A0
p(C) the sequence {J

nf
n }n tends to

zero in A0
p(C), that is, {||J

nf
n ||m}n converges to 0 for every m ∈ N. In particular,

for f ≡ 1 this means that { ||z
n||m
n!n }n converges to zero for every m ∈ N. But since

p(r) = O(r), we have that for some constants C,D > 0, p(r) ≤ Cr + D for all r,
hence

||zn||m
n!n ≥ 1

eD/m
sup
r≥0

( r
n

n!ne
−Cr/m) = 1

eD/m
||zn||C/m
n!n ,

and the right hand side diverges for m > C by (1.10) in Chapter 3. 2

Remark 4.3.6 The function p(0) = 0, p(r) = 2nn for 2n ≤ r ≤ 2n + 2n−1,
and linear and continuous in [2n + 2n−1, 2n+1], is increasing, p(2r) = O(p(r)) and
r = o(p(r)) as r → ∞. Hence J is power bounded on Ap(C) as well as on A0

p(C)
by Theorem 4.3.5. However, e−p(r)eαr is not decreasing for each α > 0. Hence
Theorem 3.2.6 cannot be applied to the operator J on weighted Banach spaces of
entire functions defined by weights of the form e−ap(|z|), a > 0. Observe that the
function p is not convex. However, the convexity of the function ϕ : r → p(er) is
not assumed in this chapter to study the behaviour of the differentiation or the
integration operators on the algebras Ap(C) and A0

p(C).

As an immediate consequence of Theorem 4.3.5, we get the next corollary:

Corollary 4.3.7 Given pa(r) = ra, r ≥ 0, then:

(i) J is power bounded and uniformly mean ergodic on Apa(C) for a ≥ 1, and
it is not mean ergodic for a < 1.

(ii) J is power bounded and uniformly mean ergodic on A0
pa(C) for a > 1 and

it is not mean ergodic for a ≤ 1.
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