
EDITORIAL
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

February 27, 2014

SLA-Driven Cloud Computing

Domain Representation and

Management

Philosophiæ doctor in Computer Science dissertation

Author: Andrés García García

Advisor: Ignacio Blanquer Espert

Advisor: Germán Moltó Martinez

Acknowledgements

I would like to thank my family and friends for the support given in
the years of the making of this Ph.D. Thesis.

I

Summary

Service Level Agreements (SLA), as well as all its concerning facets
such as SLA de�nition language, negotiation, monitoring, etc., have
been subject of research for years, but the advent of Cloud comput-
ing, and the need of means for de�ning and ensuring Quality of Service
(QoS) levels have greatly increased the interest on these developments.
As the size and complexity of Cloud systems increases, the manual
management of these platforms becomes a challenging issue. There-
fore, the automation of large scale systems management is another
promising feature of the SLA-driven autonomic Cloud solutions. Ad-
ditionally, SLA-driven Clouds need mechanisms to represent, store and
retrieve the information related to their particular domain. Usually
the domain changes between di�erent platforms, so custom models
are built to capture this information and ad-hoc implementations are
used to store and retrieve it.

This Ph.D. Thesis contributes to these topics by proposing a generic
methodology for the representation of the domain in Cloud solutions.
This methodology uses the WS-Agreement speci�cation for capturing
and manipulation arbitrary domain information using SLA fragments.
SLA fragments are parts of SLA documents that describe a single
computational element, and are composed on the �y in response to
user request to generate a complete SLA document. This methodol-
ogy provides the generality, extensibility and �exibility to unify the
modeling of the domain in arbitrary Cloud services. A SLA composi-
tion algorithm enables a prototype implementation of the methodol-
ogy in Cloudcompaas, a SLA-driven Cloud framework that manages
the complete resource (e.g. Virtual Machines, software, services) life-
cycle. This framework features an extension of the WS-Agreement
SLA speci�cation, tailored to the speci�c needs of Cloud computing.
In particular, Cloudcompaas enables Cloud providers with a generic
SLA model to deal with higher-level metrics, closer to end-user per-
ception, and with �exible composition of the requirements of multiple
actors in the computational scene. Moreover, Cloudcompaas provides
a framework for general Cloud computing applications that dynami-

II

cally reacts to changes on Cloud infrastructures to correct QoS level
guarantee violations.

The two major contributions of this Thesis are a generic methodology
for the description of Cloud services, and the architecture, design and
implementation of a SLA-driven Cloud framework. A use case pro-
vides a quantitative measure of the utility provided by the methodol-
ogy from a Cloud user and Cloud provider point of view, reducing the
price and increasing the ratio of users served. The e�ectiveness of the
framework is demonstrated through the simulation of several realistic
workload pro�les, where Cloudcompaas achieves minimum price and
maximum utility under highly heterogeneous utilization patterns.

III

Resumen

Los Service Level Agreements (SLA), así como sus aspectos asocia-
dos tales como lenguajes de de�nición de SLAs, negociación, moni-
torización, etc., han sido objeto de investigación durante años. Sin
embargo, la popularidad del Cloud computing y la necesidad de pro-
porcionar métodos para asegurar los niveles de calidad de servicio
(QoS) en la misma han incrementado el interés en este área de es-
tudio. Según aumenta el tamaño y la complejidad de los sistemas
Cloud, la administración manual de los mismos se convierte en un
reto. Por tanto la automatización de la administración de grandes
sistemas es una de las aplicaciones más prometedoras de las SLAs
aplicadas al Cloud. Adicionalmente dichos sistemas Cloud tienen la
necesidad de representar y almacenar información concerniente a su
dominio de aplicación. El dominio de aplicación es único y particu-
lar para cada plataforma, y por tanto modelos ad-hoc son utilizados
usualmente para cumplir este objetivo.

Esta Tesis contribuye a estos retos proponiendo una metodología para
la representación del entorno en plataforma Cloud. Esta metodología
utiliza la especi�cación WS-Agreement para capturar y manipular la
información del dominio mediante SLAs parciales. Las SLAs parciales
son fragmentos de documentos SLA que son compuestos dinámica-
mente en respuesta a peticiones de usuarios, generando un documento
SLA completo de forma dinámica. Esta metodología proporciona
la genericidad, extensibilidad y �exibilidad necesarias para uni�car
el modelado del entorno en plataformas Cloud arbitrarias. Un al-
goritmo de composición dinámica permite la implementación de la
metodología en Cloudcompaas, un framework Cloud dirigido por SLAs
para la administración del ciclo de vida completo de recursos Cloud
(e.g. máquinas virtuales, recursos software, servicios). Cloudcom-
paas incluye una extensión de WS-Agreement expeci�camente dis-
eñada para administrar despliegues Cloud. Cloudcompaas propor-
ciona a los proveedores Cloud un modelo genérico de SLAs para la
administración de métricas de alto nivel, con la composición �exible
de los requisitos de usuario. Adicionalmente, Cloudcompaas propor-

IV

ciona un framework general para la automatización del control de la
calidad de servicio de recursos Cloud.

Las dos principales contribuciones de esta Tesis son una metodología
genérica para la representatición de servicios Cloud, y la arquitectura,
diseño e implementación de una plataforma Cloud dirigida por SLAs
para la administración del ciclo de vida completo de recursos Cloud y
el control automático del nivel de calidad de servicio de los mismos.
Un caso de uso proporciona una medición cuantitativa del bene�o
obtenido por la metodología propuesta desde el punto de vista de
proveedores, incluyendo el número de usuario servidos, y usuarios,
incluyendo el precio del despliegue. La efectividad de la plataforma
Cloud se demuestra mediante la simulación de varios per�les de carga
de usuarios realistas, donde Cloudcompaas logra minimizar precio y
maximizar bene�cios bajo distintos patrones de utilización.

V

Resum

Els Service Level Agreements (SLA), així com els aspectes associats
a aquests, com ara llenguatges de de�nició d'SLA, negociació, mon-
itoratge, etc., han sigut objecte d'investigació durant anys. Això no
obstant, la popularitat de la informàtica en núvol (cloud computing)
i la necessitat de proporcionar mètodes per a assegurar-hi els nivells
de qualitat de servei (QoS) han fet créixer l'interès en aquesta àrea
d'estudi. A mesura que augmenten la grandària i la complexitat dels
sistemes en núvol, l'administració manual d'aquests esdevé un repte.
Per tant, l'automatització de l'administració de grans sistemes és una
de les aplicacions més prometedores de les SLA aplicades a la infor-
màtica en núvol. Addicionalment, aquests sistemes en núvol tenen
la necessitat de representar i emmagatzemar informació concernent al
seu domini d'aplicació. El domini d'aplicació és únic i particular per
a cada plataforma, i per tant, habitualment s'usen models ad-hoc per
a assolir aquest objectiu.

Aquesta tesi contribueix a donar resposta a aquests reptes proposant
una metodologia per a la representació de l'entorn en plataforma en
núvol. Aquesta metodologia fa servir l'especi�cació WS-Agreement
per a capturar i manipular la informació del domini mitjançant SLA
parcials. Les SLA parcials són compostes dinàmicament en resposta
a peticions d'usuaris. Aquesta metodologia proporciona el caràcter
genèric, l'extensibilitat i la �exibilitat que calen per a uni�car el mod-
elatge de l'entorn en plataformes en núvol arbitràries. Un algorisme
de composició dinàmica permet la implementació de la metodologia
en Cloudcompaas, un framework en núvol dirigida per SLA per a
l'administració del cicle de vida complet de recursos en núvol. Cloud-
compaas inclou una extensió de WS-Agreement dissenyada especí�-
cament per a administrar desplegaments en núvol. Cloudcompaas
proporciona als proveïdors en núvol un model genèric d'SLA per a
l'administració de mètriques d'alt nivell, amb la composició �exible
dels requisits d'usuari. Addicionalment, Cloudcompaas proporciona
un marc general per a l'automatització del control de la qualitat de
servei de recursos en núvol.

VI

Les dues principals contribucions d'aquesta tesi són: una metodologia
genèrica per a la representació de serveis en núvol; i l'arquitectura,
el disseny i la implementació d'una plataforma en núvol dirigida per
SLA per a l'administració del cicle de vida complet de recursos en
núvol i el control automàtic del nivell de qualitat de servei d'aquests
recursos. Un cas d'ús proporciona un mesurament quantitatiu del
bene�ci obtingut per la metodologia proposada des del punt de vista
dels proveïdors, incloent-hi el nombre d'usuari servits, i també des
dels usuaris, incloent-hi el preu del desplegament. L'efectivitat de la
plataforma en núvol es demostra mitjançant la simulació de diver-
sos per�ls de càrrega d'usuaris realistes, en què Cloudcompaas acon-
segueix minimitzar el preu i maximitzar els bene�cis sota diferents
patrons d'utilització.

VII

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives. 5

1.3 Method. 7

1.3.1 Cloud service representation methodology 7

1.3.2 SLA-Driven Cloud framework . 7

1.3.3 Composition algorithm . 8

1.3.4 Experimental evaluation . 8

1.4 Use case . 8

2 State of the art 11

2.1 Cloud computing . 11

2.2 Service Level Agreements. 19

2.3 QoS assessment in Cloud computing . 21

2.4 Cloud SLAs . 25

2.5 Cloud monitoring systems . 28

2.6 Cloud service representation . 31

IX

Contents

3 Design 33

3.1 Representation of Cloud services using SLA 33

3.2 Resource model . 35

3.2.1 IaaS . 35

3.2.2 PaaS . 36

3.2.3 SaaS . 37

3.2.4 Users . 38

3.2.5 SLA fragments, templates and instances. 39

3.3 Architecture . 53

3.3.1 SLA Manager . 53

3.3.2 Monitor . 54

3.3.3 Orchestrator . 55

3.3.4 Infrastructure connector . 55

3.3.5 Platform connector . 56

3.3.6 Service connector . 57

3.3.7 Catalog . 57

4 Implementation 59

4.1 SLA Composition. 59

4.1.1 The SLA Composition problem . 60

4.1.2 The SLA Composition algorithm . 61

4.1.3 Optimizations of the algorithm . 65

4.2 Cloudcompaas Framework . 69

4.2.1 Interactions and �ow of control . 69

4.2.2 Components Implementation Details 74

4.3 Dynamic Cloud resources management 81

X

Contents

5 Experimental results 87

5.1 Quality of Service assessment experiments 87

5.1.1 Setup . 88

5.1.2 Execution scenarios. 88

5.1.3 Experimental results and discussion 92

5.2 Resource model experiments . 97

5.2.1 Client-side setup . 99

5.2.2 Provider-side setup . 101

5.3 Algorithm Performance . 103

5.3.1 Algorithm Performance results and discussion 105

6 Concluding remarks 107

A Curriculum Vitae 109

XI

Contents

XII

List of Figures

3.1 Infrastructure model for Cloudcompaas. 35

3.2 Platform model for Cloudcompaas. 37

3.3 Service model for Cloudcompaas. 38

3.4 User model for Cloudcompaas. 38

3.5 Cloudcompaas architecture. 54

4.1 The solution space is represented by an array of booleans.
Each index value indicates whether the indexed tem-
plate is added or not to the solution. 60

4.2 Detail on how a VM combinatorial problem spawns a
physical resource combinatorial problem. 64

4.3 Interaction diagram for the search operation 69

4.4 Interaction diagram for the retrieve operation 70

4.5 Interaction diagram for the create operation 71

4.6 Interaction diagram for the terminate operation 72

4.7 Monitor architecture 83

XIII

List of Figures

5.1 Experiment for the Chemistry scenario. 93

5.2 Experiment for the High-Energy Physics scenario. . . . 95

5.3 Experiment for the Fusion scenario. 96

5.4 Active VM and rejection rate for each scenario and con-
�guration. 103

5.5 Execution time for the SLA composition algorithm for
di�erent number of SLA fragments and user query pa-
rameters. 105

XIV

List of Tables

5.1 Summary of experimental results. 93

5.2 VM resources for the experiments. 98

5.3 Results from the user point of view. 100

5.4 Results from the user point of view for the overprovi-
sioning scenarios. 100

5.5 Parameters of the cluster con�guration. 102

XV

Chapter 1

Introduction

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of con�gurable computing
resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal manage-
ment e�ort or service provider interaction [1]. Cloud computing is
currently being used to tackle challenging problems in di�erent appli-
cation domains, such as industry, science, and government [2][3][4][5].
Cloud and other related technologies and concepts, such as Utility
computing or Service-Oriented Infrastructures (SOI) are becoming
widespread in the Information and Communications Technology �eld.
Now that the infrastructure providers have a mature market and Cloud
standards are progressively emerging, such as Open Cloud Comput-
ing Interface (OCCI) [6], Cloud Infrastructure Management Interface
(CIMI) [7], Cloud Data Management Interface (CDMI) [8], etc., re-
search in Cloud computing is focusing on improving the access and
exploitation of Cloud resources.

Buyya et al. [9] were one of the �rst to focus attention on the role
of Cloud computing to deliver a sustainable, competitive and secure
computing utility. They propose Service Level Agreements (SLAs)
as the vehicle for the provision and management of resources and
the de�nition of Quality of Service (QoS) guarantees. A SLA is a

1

Chapter 1. Introduction

formal contract between providers and consumers, which de�nes the
resources, QoS, obligations and guarantees in the delivery of a speci�c
service. In the context of Cloud computing, SLAs are machine read-
able documents automatically managed by the provider. Therefore
SLAs are widely regarded as a key feature for the future development
of Cloud platforms. However, the application of SLAs for Grid and
Cloud systems has many open research lines. One of these challenges,
the de�nition of Cloud services, lies at the core of the objectives of
this Thesis.

Cloud services are the products and solutions that are delivered by a
Cloud platform. Cloud services can be described by their static and
dynamic features. Static features are the ones that describe the ser-
vice at deployment time. Common static features are resources (CPU,
memory, software) and dependences between resources. Dynamic fea-
tures are the ones that describe the service at execution time. Com-
mon dynamic features are QoS rules and the price of resources.

One of the current challenges in Cloud computing is to provide a
uni�ed technique for the de�nition of Cloud services, including its
static and dynamic features. This de�nition should also be generic
and extensible to include arbitrary Cloud services and features.

1.1 Motivation

Research projects have made advances in di�erent facets of SLA for
Grid or Cloud systems, focusing only on the development of speci�c
features such as resource provision [10][11], negotiation [12][13], mon-
itoring [13][14], reporting of guarantee violation [15][16], etc. One
feature that is common to the development of SLA-driven Cloud plat-
forms is how the resources, dependences and QoS rules are represented
[17].

However, the advances in techniques for the de�nition of Cloud ser-
vices have been limited. Usually each research project de�nes Cloud
services using ad-hoc representations. Available Cloud standards such

2

1.1 Motivation

as CIMI [7] and CDMI [8] focus only on the static features of Cloud
services (resource de�nition) and describe a small subset of them.

This Thesis introduces a novel methodology for the representation of
Cloud services in SLA-driven Cloud platforms. This approach consists
on using SLA fragments that de�ne their features and relationships,
and that can be composed to produce complete SLAs. The bene�ts
provided by this approach are the following.

• it provides a general methodology for the representation of Cloud
services;

• it is language-agnostic;

• it makes the Cloud platform self-contained;

• it improves the transparency of the SLAs.

This methodology can be applied to any scenario and needs no con-
sideration of ad-hoc solutions. It is formulated in terms of generic
SLAs and their general features. It does not restrict itself to any SLA
speci�cation, and as such can be used with any of them. Representing
Cloud services inside the SLA elegantly integrates all the information
needed by the platform in a single system. This integration reduces
the dependency on external components, reduces the complexity of
the system and improves its �exibility. Finally, this methodology can
be used to include in a single document all the information involved
in the deployment, providing the user with a transparent vision of the
service.

These arguments highlight the bene�ts of SLAs. However, our method-
ology proposes using SLA fragments that must be composed into com-
plete SLAs. This raises the question about what are the advantages
of SLA fragments that require an algorithm to be composed on-the-
�y, rather than using prede�ned templates. A methodology that uses
SLA fragments and composition has the same expressive power than
an equivalent methodology that uses complete SLAs. Indeed, it is pos-
sible to generate any possible SLA supported by the system a-priori.
However, a method that uses prede�ned SLAs also needs an algorithm

3

Chapter 1. Introduction

for the generation of these documents. The di�erence between both
models is whether the composition is made dynamically at runtime, or
statically at deployment time. On the ground that both representa-
tions are essentially equivalent, it can be argued that the convenience
of using SLA fragments and composition over using static SLAs is
qualitative, not quantitative.

Therefore, the SLA composition approach provides the following ad-
vantages over the static one.

• reduces operational and maintenance expenses;

� SLA template documents are generated on the �y, and
hence there is no need to explicitly store them;

� generation, modi�cation and elimination of elements are
simpli�ed. Changes to a single element imply changes to a
single template.

• each element is self-contained. Each SLA fragment is de�ned
considering its features and its restriction with other elements;

• improves �exibility. The number of templates available is not
restricted to a set of prede�ned templates, but SLAs can be
produced on-the-�y based on user requirements;

• implements a system suitable for the realization of Cloud mar-
kets. The ability of de�ning elements independently of each
other, and compose them at execution time provides the foun-
dation of a Cloud market. Di�erent agents can expose their
resources in a decentralized fashion and users can search for com-
binations of resources that satisfy their requirements.

4

1.2 Objectives

1.2 Objectives

The �rst objective of this Thesis is to provide a methodology for the
representation of Cloud services. The methodology uses SLA frag-
ments to describe the features of a Cloud service, and SLA composi-
tion to produce complete Cloud services. The methodology is generic
and extensible and can be used to describe arbitrary Cloud resources,
QoS rules, etc.

The major contributions of this objective are the following.

I proposing SLAs as an uni�ed representation of Cloud services;

II speci�cation of a methodology for the representation of the Cloud
services using SLA fragments;

III design of an algorithm for the composition of SLAs.

The second objective is to support the static and dynamic features of
Cloud services using the proposed methodology. This objective implies
the design and implementation of a SLA-driven Cloud framework that
follows the methodology. To this end, this Thesis implements Cloud-
compaas [18], a SLA-driven Cloud computing framework. Cloudcom-
paas covers all the steps involved on the management of SLAs, from
the set-up of the SLA with the �nal user, feeding the SLA into the
Cloud provider and interacting with the manager that allocates the
required resources in the infrastructure, to the monitoring of the SLA
and performing the necessary actions in order to maintain the QoS
levels speci�ed in the SLA.

Cloudcompaas is based on standards, such as the WS-Agreement [19]
speci�cation, for de�ning the SLAs, and on open-source initiatives,
such as the WSAG4J [20] framework, for implementing the prototype.
In this Thesis, the WS-Agreement speci�cation has been tailored to
meet the needs of Cloud computing, and the WSAG4J framework
has been extended and adapted to deal with the complete lifecycle of
the SLA, as well as with other requirements that are speci�c to the
domain.

5

Chapter 1. Introduction

The major contributions on this line of work are the following.

I a SLA-driven architecture for the automatic provision, schedul-
ing and allocation of Cloud resources (static features);

II a SLA-driven architecture for the assessment of QoS rules and
self-management operations (dynamic features);

III a model of Cloud resources;

IV the implementation of the SLA composition algorithm;

V Cloudcompaas, an open source implementation of a SLA-driven
Cloud framework for the management of Cloud services.

The third objective is the evaluation of the advantages of the proposed
methodology over other approaches. A set of experiments have been
performed to evaluate the utility achieved by the methodology regard-
ing the static and dynamic features of Cloud services compared with
other alternatives.

The major contributions on this line of work are the following.

I demonstrate the capabilities of the prototype by the resolution
of a use case;

II demonstrate the utility achieved by using the proposed method-
ology to de�ne Cloud resources versus using �xed resource de�-
nition (static features);

III demonstrate the utility achieved by using the proposed method-
ology to de�ne QoS rules versus not using QoS rules (dynamic
features).

6

1.3 Method

1.3 Method

1.3.1 Cloud service representation methodology

The de�nition of the methodology begins with a survey of the state
of the art and recent developments on this �eld. The aim of this sur-
vey is to identify projects that have dealt with resource modeling and
SLA composition. These projects will help to outline the proposed
methodology. Once the survey is done, the knowledge retrieved from
other projects can be used to develop the speci�cation of the method-
ology. The methodology must be generic enough to account for any
case that may appear on its domain of application. Also, it must solve
all the problems identi�ed on the �rst stage. The expected outcome of
this task is the speci�cation of a methodology for the representation
of Cloud services. This methodology includes the modeling of Cloud
resources and the representation of QoS rules.

1.3.2 SLA-Driven Cloud framework

In order to implement Cloudcompaas, it is necessary to review the
currently available SLA speci�cations and languages. Once a SLA
speci�cation and language is chosen, it is imperative to study its struc-
ture and organization. On this phase, the parts of the speci�cation
that are relevant to the Thesis are identi�ed. It is important to de-
�ne to which extent Cloudcompaas will support the SLA speci�cation.
After the SLA speci�cation is chosen, the next step is to de�ne the
Cloudcompaas architecture and components design. Supporting SLAs
in the system requires the arrangement of the components and their
interfaces. After the architecture and design have been speci�ed, a
prototype implementation will be developed.

The outcome of this task is the working prototype of a SLA-driven
Cloud framework that assesses the complete lifecycle of Cloud re-
sources. The framework models the Cloud domain using the proposed
methodology and includes the implementation of the SLA composition
algorithm.

7

Chapter 1. Introduction

1.3.3 Composition algorithm

The modeling methodology requires a composition algorithm that can
compose SLA fragments. This algorithm will be tailored to the par-
ticular requirements of the modeling methodology, although concepts
found during the state of the art survey may be useful. After the
algorithm design is done, its implementation must be integrated with
the Cloudcompaas framework. The algorithm will be included inside a
module of the Cloudcompaas framework. It will also be coupled with
a user interface, so that users will be able to retrieve SLAs.

The outcome of this task will be the design and implementation of
an algorithm that enables the composition of SLA fragments. This
algorithm supports the modeling methodology de�ned on the previous
task.

1.3.4 Experimental evaluation

The last stage consists on the experimental evaluation of the method-
ology, models and tools developed in the previous steps. A set of
experiments has been designed to measure the utility achieved by the
di�erent objectives of the thesis.

The outcome of this task is an experimental evaluation of the perfor-
mance of the proposed methodology and algorithm.

1.4 Use case

This section introduces a use case to illustrate the motivation of Cloud
service representation.

A group of developers want to migrate a web service to the Cloud to
bene�t from the high availability and scalability of this technology.
The web service is implemented in Java, so it depends on the Java
environment. It also requires a large quantity of memory to run prop-
erly. Since the service is stateless, it can easily scale to serve more
users.

8

1.4 Use case

Developers need a mechanism to de�ne the static (cloud resources,
dependences, etc.) and dynamic (QoS rules, restrictions, etc.) features
of their deployment in the Cloud.

The static features of this use case are the resources and dependences
de�ned explicitly and implicitly in the problem. These resources are
the web service, runtime, infrastructure and the user that deploys it.
The dependences are the requirement of the web service regarding the
runtime and memory of the machine.

The dynamic features of this use case are the elasticity rules that
govern the scaling of the web service.

This use case is elaborated in following sections to introduce the re-
quirements of the problem, implementation details of the model and
experimental evaluation of the prototype. This example is used to
demonstrate the capabilities of the proposed methodology to de�ne
Cloud services.

9

Chapter 1. Introduction

10

Chapter 2

State of the art

This chapter introduces the state of the art in several topics relevant
to the Thesis. Each section o�ers an historic perspective leading up
to the latest developments on each topic. This discussion is presented
from the more general, such as Cloud computing and Service Level
Agreements, to the more speci�c, such as QoS assessment in Cloud
computing, Cloud SLAs, Cloud monitoring systems and Cloud service
representation.

2.1 Cloud computing

The term Cloud computing appeared for the �rst time in the year
2001, when John Marko� published an article in the New York Times
[21]. Marko� refers to the strategy of Microsoft with the .NET plat-
form as Cloud computing, enabling access to services independently
of the client device. However, the �rst use of Cloud computing with a
meaning closest to today de�nition was on August 2006, in a Google
conference [22] when Eric Schmidt said the following.

�[. . .] there is an emergent new model [. . .] It starts with the premise
that the data services and architecture should be on servers. We call
it cloud computing - they should be in a �cloud� somewhere. [. . .] it

11

Chapter 2. State of the art

doesn't matter whether you have a PC or a Mac or a mobile phone
[. . .] you can get access to the cloud. [. . .] the computation and the
data and so forth are in the servers.�

This sentence describe the fundaments of Cloud computing. Work is
done on servers and client connect to an abstract cloud to interact
with them, independently of the device. Eric Schmidt cites companies
such as Amazon, IBM, Microsoft and Google as Cloud computing
providers. On August 2007, John Marko� wrote an article on Cloud
computing [23], de�ning the purpose of this technology as follows.

�[. . .] moving computing and data away from the desktop [. . .] simply
displaying the results of computing that takes place in a centralized
location and is then transmitted via the Internet�

This article again includes clients, servers and Internet connectivity.
However, under this loose de�nition, some authors (such as Princeton
Computing in the Cloud workshop [24]) list as Cloud computing P2P
programs, large web portals that make use of datacenters such as
eBay [25], online games, e-mail servers, etc. This criteria is confusing,
and does not help to distinguish Cloud computing as an emerging
technology providing innovative solutions.

It is on this context when Amazon introduced Simple Storage Service
(S3) and Elastic Compute Cloud (EC2). These two services o�er
storage and computing capabilities in a pool of Amazon servers. These
services are paid in a pay-as-you-go subscription, with a price per GB
stored (S3) or hour of running time (EC2). Around that time other
paradigmatic Cloud services went live, such as Google Docs [26] and
Google App Engine [27]. These services enable a more re�ned of the
Cloud computing de�nition, identifying it as an evolution of the client-
server paradigm.

In August 2008 David Chappell, in a business oriented Technical Re-
port, refers to Cloud computing as follows.

�Cloud platforms. As its name suggests, this kind of platform lets
developers write applications that run in the cloud, or use services
provided from the cloud, or both.�

12

2.1 Cloud computing

The novelty of this de�nition is that the Cloud is not only a client-
server platform, but an environment that hosts services on demand.
Chappell makes a distinction between applications in the Cloud and
applications for the Cloud. Later in the same report Chappell explains
the three models he identi�es in Cloud computing: Cloud platforms,
added functionalities and Software-as-a-Service (SaaS).

• cloud platforms: A Cloud platform is a service that enables
building applications in and for the Cloud. Users can connect
remotely to a development environment where they can build
applications that can be accessed by other users;

• added functionalities: A desktop application communicates with
Cloud services to provide new and improved capabilities;

• Software-as-a-Service (SaaS): Software applications that run en-
tirely on the Cloud. Users access these services using lightweight
interfaces.

SaaS is not a new concept. It refers to a software distribution paradigm,
where applications are distributed as services instead of products. In
software, a product must be bought, installed and �nally used. In a
service approach, software is hosted in a server and accessed through
the network and used on demand. SaaS is part of the Utility comput-
ing paradigm. Utility computing advocates using computing resources
as utilities, just like the power grid.

Up to this point the confusion surrounding the Cloud computing con-
cept is prominent. As Cloud computing pioneers (led by Amazon)
begin to create a relevant market volume, many companies and re-
search groups want to capitalize on the hot topic. Some companies
begin to market their products as Cloud computing, adapting terms
to their interests and generating more confusion in the process. This
trend is symbolized by Larry Ellison, CEO of Oracle, states in the
Wall Street Journal [28]:

�The interesting thing about Cloud computing is that we've rede�ned
Cloud computing to include everything we already do. . . �

13

Chapter 2. State of the art

On this context, the Hype Cycle 2009 report [29] by Gartner Inc.
puts Cloud computing on the summit of the cycle. According to the
analysts, Cloud computing was on the summit of popularity and ex-
pectative, but it would need another 2 to 5 years to get to the Plateau
of Productivity, a period when a technology has matured and becomes
productive.

Is around this time when the largest Cloud providers start appear-
ing, either as branches or products of existing companies or as totally
new ones. The most relevant IT companies begin to o�er Cloud so-
lutions, such as Windows Azure [30] (Microsoft), Google App Engine
[27] (Google), Network.com [31] (Sun Microsystem), Blue Cloud [32]
(IBM), etc.

Nevertheless, e�orts were being made in eliminating the confusion
surrounding Cloud computing and provide a formal de�nition. In
February 2009 researchers in Berkeley publish Above the Clouds: A
Berkeley View of Cloud Computing [33]. On this paper the authors
expose the bene�ts that Cloud computing can provide to enterprises,
such as use on demand, no capital investment, pay-per-use, as well as
to providers, such as obtaining revenue from unused hardware. The
paper also de�nes elasticity, the capacity of a Cloud system to react
quickly and automatically to load changes, and discusses risks, oppor-
tunities, tradeo�s and previsions on the future of this technology. This
paper is often considered a seminal work on Cloud computing, as the
authors provide de�nitions for many concepts that would acquire rel-
evance in the future. Speci�cally the authors de�ne Cloud computing
as follows.

�Cloud computing refers to both the applications delivered as services
over the Internet and the hardware and systems software in the data-
centers that provide those services. The services themselves have long
been referred to as Software as a Service (SaaS), so we use that term.
The datacenter hardware and software is what we will call a Cloud.�

According to this de�nition developers can become SaaS providers
while using Cloud platforms. This proposition sets an schematic view
of Cloud computing as a layered system. This was in fact proposed

14

2.1 Cloud computing

earlier in a less known paper. In December 2008, [34] tried to convey
a Cloud computing de�nition. The methodology consisted in compil-
ing 22 di�erent Cloud computing de�nitions performed in 2008 and
extracting the common elements, such as autonomic provisioning, vir-
tualization, remote access, scalability, pay-per-use, etc. The paper
also provides a comparison between Cloud computing and Grid com-
puting. The Cloud computing de�nition stated by the paper is the
following.

�Clouds are a large pool of easily usable and accessible virtualized re-
sources (such as hardware, development platforms and/or services).
These resources can be dynamically recon�gured to adjust to a vari-
able load (scale), allowing also for an optimum resource utilization.
This pool of resources is typically exploited by a pay-per-use model in
which guarantees are o�ered by the Infrastructure Provider by means
of customized SLAs�

Beyond the basic de�nition, the paper also includes a categorization
of Cloud computing on three models.

• IP manage a large set of computing resources, such as storing
and processing capacity. Through virtualization, they are able to
split, assign and dynamically resize these resources to build ad-
hoc systems as demanded by customers, the SPs. They deploy the
software stacks that run their services. This is the Infrastructure
as a Service (IaaS) scenario;

• Cloud systems can o�er an additional abstraction level: instead
of supplying a virtualized infrastructure, they can provide the
software platform where systems run on. The sizing of the hard-
ware resources demanded by the execution of the services is made
in a transparent manner. This is denoted as Platform as a Ser-
vice (PaaS);

• Finally, there are services of potential interest to a wide variety
of users hosted in Cloud systems. This is an alternative to locally
run applications. An example of this is the online alternatives of

15

Chapter 2. State of the art

typical o�ce applications such as word processors. This scenario
is called Software as a Service (SaaS).

Up to this point Cloud computing o�ers were assumed to be provided
by a third party hosting services and providing access to computing ca-
pabilities. However, Cloud computing technologies provide signi�cant
advantages not only to users, but also to providers, such as server
consolidation and e�cient hardware utilization. These advantages
led companies and research groups to become interested in applying
Cloud technologies to their own computational resources, giving birth
to the concept of private Cloud, opposed to public Cloud. The inter-
est on this new perspective on Cloud computing led to the creation
of research projects and tools oriented towards allowing organizations
to deploy Clouds on their own computational resources. Such tools
include Nimbus [35] (University of Chicago), Abiquo [36] (Abiquo),
OpenNebula (Universidad Complutense de Madrid) and Eucalyptus
(University of California).

Currently the most relevant and widely accepted de�nition of Cloud
computing is the one provided by the National Institute of Stan-
dards and Technology (NIST) [1]. NIST de�ned Cloud computing
as a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of con�gurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management e�ort or service
provider interaction. This cloud model is composed of �ve essential
characteristics, three service models, and four deployment models.

NIST lists �ve essential characteristics that any deployment must in-
clude to be considered Cloud. These characteristics are the following.

• on-demand self-service. Consumers must be able to automati-
cally provision computing resources, with no human interaction
required from the provider side;

• broad network access. Computing resources are accessed through
the network by using standard mechanisms, independently of the
client platform;

16

2.1 Cloud computing

• resource pooling. Computing resources are pooled together,
serving multiple users in a multi-tenant model, reassigning them
dynamically based on the demand. These backend operations
are transparent to the user, in the sense that these details are
generally concealed to them;

• rapid elasticity. Resources can be dynamically provisioned and
released, in some cases automatically, scaling up and down rapidly.
This ability gives the user the illusion of unlimited capacity, ad-
justing the provision of resources to the system load;

• measured service. Resource usage can be monitored, controlled
and reported at some level of abstraction relevant to the type of
resource.

Clouds can be classi�ed according to its service model and its deploy-
ment model. The service model de�nes the nature of the resources
delivered and managed by the platform, while the deployment model
de�nes how the platform itself is deployed and managed. NIST de-
�nes three basic service models that are traditionally considered the
core Cloud computing service model. A variety of other models have
been proposed by di�erent players, but most of them are derivations
of these three. The basic service models are the following.

• Infrastructure-as-a-Service (IaaS). The provided capability to
the user is processing, storage, network and other fundamental
computing resources. User has freedom to select the operating
system and run arbitrary software on this hardware;

• Platform-as-a-Service (PaaS). The provided capability to the
user is a runtime or environment targeted to a particular pro-
gramming language or applications. User has freedom to de-
ploy and run applications developed using languages, libraries
or tools supported by the provider. Although the user does not
have control over the underlying hardware con�guration (CPU,
memory, etc.), he may have control over con�guration settings
for the runtime;

17

Chapter 2. State of the art

• Software-as-a-Service (SaaS). The provided capability to the user
is a ready-to-use software service hosted by the cloud platform.
These services are accessible over the network using a variety of
client devices. Users have no control over the underlying hard-
ware or runtime con�guration, although services may provide
con�gurable settings.

The last feature of a Cloud platform is its deployment model. The
deployment models of Cloud platforms have been a topic of discussion
since the early attempts to produce a formal de�nition. The di�culty
to establish the deployments models arise from the ambiguity of the
de�nition of `public'and `private' use of resources, particularly in the
case where several institutions are involved. NIST attempts to conceal
the many variations on these topics by giving four deployment mod-
els generic enough to account for any particular instance of a Cloud
platform.

• public Cloud: The Cloud platform is provisioned for the use by
the general public. It may be owned and managed by a single
organization, or a combination of them;

• private Cloud: The Cloud platform is provisioned for the ex-
clusive use by a particular organization. It may be owned and
managed by the organization itself, or by a third party;

• community Cloud: The Cloud platform is provisioned for the
exclusive use by users from di�erent organizations. It may be
owned and managed by one or more of these organizations, by
a third party or by any combination of them;

• hybrid Cloud: The Cloud platform is composed by two or more
Cloud deployments, which remain independent from each other
and communicate exchanging data and applications using stan-
dard or proprietary protocols.

In the last years Cloud computing has been identi�ed as a technology
of strategic relevance by the European Commission [37]. International
initiatives have been established such as standardization committees

18

2.2 Service Level Agreements

[6][38][8][7]. Almost every major player in the IT industry has ac-
tive Cloud computing products, such as Google [27], Microsoft [30],
Amazon [39], IBM [40], HP [41], etc, and a myriad of Cloud com-
puting vendors have invaded the Cloud ecosystem, such as AppFog
[42], Apprenda [43], CloudBees [44], Cloudera [45], Engine Yard [46],
Heroku [47], Rightscale [48], Cloudscaling [49], GoGrid [50], Joyent
[51], Rackspace [52], Savvis [53], Tier 3 [54], Citrix [55], etc. The
large corpus of knowledge and expertise regarding Cloud comput-
ing is compiled in conferences and journals devoted to this topic as
well as several books, such as Cloud Architecture Patterns [56], Web
Services, Service-Oriented Architectures, and Cloud computing [57],
Cloud computing Architected: Solution Design Handbook [58], The
Cloud at Your Service [59], Cloud computing: Concepts, Technology
& Architecture [60] and Cloud computing Bible [61].

2.2 Service Level Agreements

Service Level Agreements (SLAs) are formal contracts between service
providers and service consumers that state assertions over the Qual-
ity of Service (QoS) of the delivery of a certain good. Speci�cally,
SLAs may de�ne the good to deliver, obligations of the parties, guar-
antees in the QoS level, warranties in case the expected quality is not
met, mechanisms to monitor these metrics and so on. Traditionally
SLAs have been represented as legal documents that explicitly state
some service level guarantees (e.g. 99.99% uptime) and corresponding
warranties for its violation (e.g. 10% discount in the service price).
[62] propose SLAs as a mean for the de�nition of requirements and
constraints of software resources, and the autonomic management of
services. In order to realize this application of SLAs, a formal, machine
readable de�nition of these documents is necessary.

Several speci�cations exists for SLA de�nition and management, with
di�erent levels of maturity and completeness. The major candidates to
form the basis of the Cloudcompaas framework are the most relevant
ones, WS-Agreement [19] and WSLA [63]. Other minor, less mature
or popular alternatives have also been considered. WS-Agreement

19

Chapter 2. State of the art

is the SLA speci�cation and a standard proposal of the Open Grid
Forum (OGF). WS-Agreement de�nes itself a Web Services protocol
for establishing SLAs between two parties using an extensible XML
language. The speci�cation consists of three parts: a schema for spec-
ifying SLAs, a schema for specifying SLA templates and a set of op-
erations for managing the SLA lifecycle. Although the speci�cation
is de�ned as a Web Services protocol, its extensible nature has made
WS-Agreement the language of choice for the SLA speci�cation in
many grid and cloud SLA projects [64]. Additionally, OGF provides
WSAG4J, a WS-Agreement framework for the Java language. This
framework includes almost all the elements of the speci�cation and
simplify the development of platforms adhering to the WS-Agreement
speci�cation.

The Web Service Level Agreement (WSLA) is a framework and spec-
i�cation developed by IBM for the de�nition and monitoring of SLAs
in a machine readable format within the domain of web services. The
WSLA language de�nes the parties involved in the SLA, the descrip-
tion of the service that the provider delivers to the consumer and the
obligations of the SLA, where the guarantees and constraints of the
SLA are de�ned. The WSLA framework is a tool for the SLA-driven
management of the lifecycle of web services, using the WSLA speci�-
cation. This framework integrates the usage of WSLA with other web
services standards such as WSDL.

Other proposals for the de�nition of SLAs are the SLAng [65] and
WSOL [66] languages. Both proposals are XML-based languages whose
aim is to de�ne QoS constraints in the domain of web services, and
therefore are tightly related to the web services technologies and stan-
dards. Unlike the aforementioned proposals, these two speci�cations
only de�ne a language for the expression of QoS levels, but do not
account for SLA lifecycle or assessment.

20

2.3 QoS assessment in Cloud computing

2.3 QoS assessment in Cloud computing

QoS in Cloud computing focuses on providing Cloud platforms with
mechanisms to enforce the requirements of Cloud users. These stud-
ies have been made on two major delivery models, Cloud services and
Cloud adapted work�ows. Even though Cloud services are the focus of
the o�er of the major Cloud providers, the QoS assessment in Cloud
work�ows represents a more complex scenario that includes stricter
requirements. Therefore the techniques and algorithms developed for
Cloud work�ows can be readily adopted for the Cloud services sce-
nario.

An algorithm to select services that comply with user requirements
from a pool of services is introduced in [67]. The paper proposes
modeling the QoS parameters of services and enable users to query
for services in di�erent pools. The algorithm implements four stages
to enable users to select a Cloud services according to QoS constraints.
In order to retrieve a service, the Cloud user feeds the system with a
description of the requirements, the QoS criteria and the importance of
each criterion. The search step selects the services from the di�erent
pools that �t the description of the service, the �lter step deletes
the retrieved services that do not meet the QoS criteria of the user
and the rank step sorts services according to the user preferences.
The user is then able to select a service from a list, and the system
proceeds to allocate the chosen resources. Finally, the update step
updates the values of the user preferences for subsequent searches.
Therefore when the user performs a new search, the system will rank
the services according to the updated user preferences, enhancing the
user experience.

A similar solution is proposed in [68] with the substantial di�erence
that it considers chains of services instead of single services. The pa-
per proposes a model in which services, grouped in pools, o�ers QoS
guarantees, and users search for services indicating QoS criteria and
preferences. Multiple services can be included in a single request, and
the utility achieved by a service composition is the aggregation of the
QoS levels of each service. The paper proposes LOEM, a QoS-aware

21

Chapter 2. State of the art

service composition algorithm, as a mean to achieve the best utility.
The problem of �nding the optimal combination of services is NP-
hard. Therefore the approximation proposed by LOEM is to provide
pareto-optimal solutions. The algorithm starts out by �ltering out
services that do not meet the required QoS criteria or provide poor
utility. Then, the algorithm proceeds to select at most h (0 < h < n
with n the total number of services) candidate services by using local
optimization methods. Finally, a complete enumeration of the combi-
nations of the h candidate services is performed, and a mixed integer
programming method is used to select the pareto-optimal solutions.
The paper proposes a solution to the problem of �nding a service chain
that maximizes compliance with the user QoS criteria and maximizes
certain utility function. Yet, it does not account for the stricter QoS
requirements of work�ows, where the QoS criteria are not asserted
over individual services, but over the relationship between services.

In [69] the authors propose a methodology to enact work�ows in
stages, introducing a synchronization barrier between each stage. The
synchronization barrier limits the resource load in each stage and
thereby allows meeting the QoS levels speci�ed by the user. How-
ever, even though it discusses to provide QoS guarantees in a Cloud
infrastructure and mentions to dynamically adjust the resources as-
signed to each stage, these possibilities are not explored.

In [70] the authors perform a deep analysis of the QoS assessment in
the delivery of Cloud services, and focus on very speci�c problems of
the Cloud platforms. On the �rst place the authors propose SLAs as
the vehicle for the QoS level speci�cation. This formal document cap-
tures the requirements of an actor respect to another, and provides a
common framework for the de�nition of QoS criteria, obligations and
penalties. On the second place the authors model the transitive rela-
tionship between Cloud providers and Cloud users, and Cloud users as
application providers and end-users as application consumers. Even
though the existence of this relationship has been cited in [33], the
paper analyses its impact in the QoS assessment. The most complex
role is the one of the Cloud users, since they need to establish two
SLAs, one with the Cloud provider and another with the end-user.
On the third place the authors shift the user-centric view of QoS as-

22

2.3 QoS assessment in Cloud computing

sessment typical of scienti�c environments to a business centric view.
This paper stress the aim of the provider on maximizing the pro�t
while meeting the QoS criteria of users.

The authors propose four scheduling policies for the dispatch of user
requests. The four algorithms are start VM, where a new request is
attended by starting a new VM; wait, where a new petition is attended
by queuing the request in an available resource; insert, where a new pe-
tition is attended by inserting the request in the queue of an available
resource before existing petitions, with the condition that no SLAs are
violated; and penalty delay, that proceeds as insert but allowing the
violation of currently scheduled petitions. These four policies de�ne
a gradient in the ratio between user satisfaction and pro�t, from the
�rst one, where almost every petition is attended at a high cost, to the
last one where petitions are accepted even if other ones are violated.
Based on these four scheduling policies, three admission control algo-
rithms are introduced. An admission control algorithm is composed
by several scheduling policies that are applied in order. The policies
that achieve the highest pro�t are applied �rst, and if the pro�t is
under a de�ned threshold, the next one is considered. If no policy
meets the minimum pro�t requirement, the user petition is rejected.
These three algorithms range from the most conservative, which only
uses the wait and new VM policies, to the most aggressive including
all four policies.

Finally, in [71] the authors introduce the architecture and working pro-
totype of the WfMS platform for the QoS-aware execution of work-
�ows. The platform captures the QoS criteria for the execution of
work�ows in SLA documents, and a monitoring system captures in-
formation related to these criteria from the running components and
publishes it to an index. The architecture is composed by three ma-
jor components. The work�ow manager is the central component in
charge of the coordination of the multiple components in the platform.
The work�ow enactor is the local component deployed in each Cloud
infrastructure responsible of the execution of each work�ow. The en-
actor is the component responsible of retrieving and comparing the
monitoring data to the QoS criteria de�ned in the SLA. If the moni-
toring data asserts the violation of QoS criteria, the enactor generates

23

Chapter 2. State of the art

an event that is processed by the work�ow enactor. The deployment
and execution of a work�ow in WfMS is composed of three phases.

On the publication phase the developer register services in the system
using description documents. For each service the developers de�ne
their input and output interfaces, as well as their resource require-
ments. Using the registered services the developers can proceed to
de�ne a work�ow document, specifying the involved services, their or-
der of execution and QoS rules. Using this information the system
generates a mapping from high level QoS criteria to low level parame-
ters, as retrieved by the monitoring system. On the negotiation phase
a user requests a work�ow execution from the Cloud provider, using
the template generated by the developer. Users can specify high-level
requirements and rules according to these templates that will be au-
tomatically checked and translated to resource requirements from the
Cloud infrastructure. Once evaluated, a cost is returned to the user,
and if the o�er is accepted, the work�ow is deployed and a SLA is
established between user and developer and between developer and
Cloud provider. On the execution phase the user manually requests
the execution of a deployed work�ow on the Cloud. When an ex-
ecution begins the platform allocates resources to the work�ow and
begins monitoring of the execution and evaluation of the QoS levels.
The Evaluator is in charge of guarantee that the QoS level required
by the user is met all along the execution. The execution lasts until
the work�ow ends or until it is manually stopped by the user.

This work di�ers from previous ones in the fact that it does not support
a query operation for the retrieval of services or service chains. Services
and work�ows are registered by developers and end users manually
specify the work�ow to execute. On the other hand this work is similar
to [70] in the sense that it models a three actor scenario with end-
user, developer/cloud user and cloud provider, and establishes SLAs
between them. This work improves the previous ones by providing a
QoS-aware execution of complete work�ows, not only of single services.
Moreover it provides a dynamic QoS guarantee assessment. In the
other projects the QoS is seen as a static feature that is met only
at the dispatch of a Cloud services i.e. required computing power or
estimated deadline. The WfMS platform however includes features of

24

2.4 Cloud SLAs

the services and work�ow that may change as QoS criteria (e.g. the
frame rate of a video streaming application). This feature introduces
the need of a dynamic QoS assessment mechanism that ensures that
the user requirements are met all along the execution of the service.

2.4 Cloud SLAs

Earlier de�nitions propose SLAs as a mean for the de�nition of QoS
constraints in electronic services [72]. Other works [62] propose SLA
as a mean for the autonomic management of services. More recently
these two concepts were brought together and SLA is used both for
the de�nition of requirements and the automatic management of the
complete lifecycle of resources. Signi�cant advances have been made
in the development of SLA-driven distributed computing systems. In
particular, several innovative projects have considered SLA-driven au-
tomatic resource management in the last decade.

In [73] an architecture for the provisioning of on-demand virtualized
services based on SLA is proposed. The authors de�ne it as �the �rst
attempt to combine SLA-based resource negotiations with virtualized
resources in terms of on-demand service provision�, and represents a
�rst step in the line of automated SLA-driven Clouds systems. Further
works deal with speci�c facets of SLA management, such as a system
for the monitoring of low level metrics in distributed environments
and its transformation to high level SLA parameters [74].

More recently [75] proposes an architecture for an SLA-oriented re-
source provisioning model for Cloud computing. This architecture is
realized using the Aneka platform [76], a solution that enables QoS-
driven resource provisioning for scienti�c computations, and provides
mechanisms for the de�nition of deadline constraints and the incorpo-
ration of multiple Cloud resources.

Several European projects in the last years are related at di�erent
degrees to the SLA-driven management of resources and other topics
covered by Cloudcompaas.

25

Chapter 2. State of the art

Reservoir [77] is a pioneering European project that enables providers
to build their own virtualized Cloud infrastructures. Although Reser-
voir does not cover SLAs and dynamic management of resources, a
number of spin-out technologies and derived projects aim to provide
these capabilities, such as BonFIRE [78], Optimis [79] and 4CaaSt
[80].

BonFIRE is a European project that provides a platform for the feder-
ation of Cloud deployments. It enables developers to deploy and man-
age Cloud services in a uni�ed environment, including service metrics
and monitoring. However BonFIRE does not use SLA to represent
resources. It does not include QoS assessment, dynamic management
of resources or resource scheduling.

Optimis is a European project that enables private Cloud to automat-
ically interact with public Cloud providers, optimizing the usage of
resources by means of Cloud federation, cloudbursting, live migration
and autoscaling. Optimis performs scheduling operations by decid-
ing the best provider to host resources. Optimis provides a domain-
speci�c extension of WS-Agreement to specify requirements at IaaS
level and constraints in Cloud services.

4CaaSt is a European project that provides a platform for the deploy-
ment, management and trade of Cloud services. It includes automatic
scaling and management of resources, allows providers to federate their
resources in a common marketplace and enables users to compose ser-
vices. However this platform does neither include SLAs for the repre-
sentation of resources, nor dynamic QoS management, nor scheduling
operations. Also it mainly focuses on the PaaS level of Cloud.

SLA@SOI [81] has among one of its aims the implementation of a
framework of tools and components that enables the creation of SLA-
driven Service Oriented Infrastructures (SOI). As a large scale project,
its developments span all the facets of SLA such as a SLA de�nition
language, negotiation, monitoring, violation prediction and detection,
etc. SLA@SOI has developed a methodology for the SLA-driven man-
agement of infrastructures and services, and encompasses activities
such as dynamic service discovery and composition, service monitoring

26

2.4 Cloud SLAs

and assessment, infrastructure planning and optimization etc. How-
ever this project does not consider Cloud computing infrastructures as
their target platform, and hence it does not account for some speci�c
needs of this �eld.

Cloud-TM [82] is a European project aimed to provide a data-centric
PaaS middleware for the development of distributed Cloud applica-
tions. Its two major aims are to ease the development of Cloud appli-
cations by providing high level data management abstractions and to
provide self-tuning mechanisms that optimize data operations based
on user QoS constraints. The SLA system is based on SLA@SOI.
However this project does not cover the PaaS and SaaS levels of Cloud
computing, and is focused in data-centric Cloud applications, instead
of general purpose Cloud computing.

Cloudscale [83] is a European project focused on o�ering a system to
automatically scale Cloud applications with minimal human interac-
tion. Although it covers extensively the upscaling and downscaling of
application, this project does not use SLAs for the representation of
resources. It does not account for the deployment and scheduling of
resources and does not provide a general mechanism for the dynamic
QoS management of resources.

PaaSage [84] is a recent European project whose aim is to build an
Integrated development environment to enable designers and devel-
opers to automatically deploy and optimize Cloud services, provide
runtime monitoring and dynamic adaptation, intelligent metadata re-
trieval, multi provider support, etc. Although this project covers sev-
eral topics dealing with QoS assessment and dynamic management of
resources, it does not use SLAs for the de�nition of resources and QoS
rules nor cover all the levels of Cloud computing.

Finally Contrail [85] aims to federate Cloud resources by providing
uni�ed interfaces for accessing resources. It covers all three levels of
Cloud by providing IaaS, PaaS and SaaS resources. It addresses sev-
eral topics regarding SLAs such as architecture for SLA management,
dynamic QoS assessment, monitoring, accounting and billing.

27

Chapter 2. State of the art

This section has presented an analysis of the state of the art in SLA
management in Cloud computing environments. Although signi�cant
advances have been achieved in this �eld, there are several issues that
require further developments. Particularly most of the presented so-
lutions do not provide a generic and standard representation of re-
sources, the do not account for the automatic provision and schedul-
ing of resources and they do not account for the QoS assessment of
resources.

2.5 Cloud monitoring systems

In the hardware monitoring �eld there is a number of well-established
and widely adopted distributed monitoring tools. Nagios [86] is an
open source tool for the monitoring of system metrics and network
usage. Nagios provides mechanisms for the generation of reports in
case a QoS violation is detected or �lling information about the state
of the infrastructure. Ganglia [87] is a distributed and scalable mon-
itoring system for high performance and high throughput computing
systems such as clusters and Grids. Ganglia uses e�cient storage and
communication methods to minimize the impact in the host node, en-
abling its use on infrastructures in the range of thousands of nodes.
Both Ganglia and Nagios retrieve information from the resources by
placing agents on the target nodes that are in charge of retrieving the
value of the metrics of interest. It is possible to combine both tools
to build a system able to monitor and infrastructure, generate reports
and perform actions based on the state of the resources.

The tools seen so far deal with the monitoring of hardware resources
in Grid computing or Cluster computing. There are other tools specif-
ically designed for the monitoring of applications in addition to hard-
ware resources. Zenoss core [88] is an open source tool for the monitor-
ing and management of systems (applications, network, servers, etc.)
that provides information about the performance and availability of
resources. Zenoss o�ers a speci�c tool for the monitoring of Cloud
resources, scalable to thousands of machines. Other available tools for

28

2.5 Cloud monitoring systems

the monitoring of resources include Zabbix [89], FireScope [90], Munin
[91] and Collectd [92].

Even though these tools are adequate for the monitoring of IaaS
Clouds, they fall short at dealing with higher abstraction levels such
as PaaS and SaaS. On these cases a �semantic gap� occurs between
the representations of resources. PaaS and SaaS Cloud levels handle a
di�erent set of metrics than that of the Infrastructure level, since each
one operates at a di�erent abstraction level. Hence the expression
of QoS requirements for each scenario is di�erent, although related
with each other. For instance, the high level QoS parameter �response
time� is meaningful only at SaaS level. Yet, the parameter �response
time� is related to the low level parameters �CPU load� and �mem-
ory load� that happen at IaaS level, and perhaps to other parameters
at di�erent abstraction levels. Therefore it is necessary to develop a
monitoring system that faces the challenges raised by the Cloud com-
puting paradigm. In order to deal with the aforementioned �semantic
gap�, three major approximations have been proposed. These approx-
imations, in increasing order of complexity, are described following.

The �rst approximation, the simplest one, consists on the expression
of the QoS requirements using low level metrics [93]. Using any of
the existing infrastructure monitoring systems, these metrics are re-
trieved and the rules evaluated. This approximation is straightforward
since both the monitoring system and the QoS requirements use the
same parameters. The additional work in this scenario consists on
the expression of QoS requirements that correctly model the expected
behavior of the application using low level metrics. The de�nition of
these rules requires extensive pro�ling of the application. The ma-
jor advantage is that the Cloud platform is simpli�ed, since currently
available monitoring solutions are used. The major drawbacks are the
extra e�ort required for the developer on the deployment of service,
as each new application deployed requires pro�ling and the design of
ad-hoc QoS requirements, and the little expressiveness allowed by the
model.

The second approximation consists on expressing the QoS require-
ments using high level metrics, using a monitoring system to retrieve

29

Chapter 2. State of the art

low level metrics and include in the Cloud platform mechanisms that
translates low level metrics to high level metrics, such as the LoM2HiS
framework [74]. On this approximation developers express the QoS
requirements in a natural way using high level parameters close to
the domain of services, while the platform automatically translate
these rules to the low level parameters monitored by the system. The
LoM2HiS framework uses a rule-based approach to perform the trans-
lation of low level to high level metrics, applying a set of rules stored
in the system. This approach requires the rules to be already de�ned
in the system for every possible service to be deployed, and in fact this
method is very close to the service pro�ling performed in the previous
approximation. In [94] the authors propose the use of a knowledge
system to leverage this problem, using past experiences of the system
to automatically decide and adjust the value of the parameters.

The major advantage of this approach is that developers are alleviated
from the e�ort of pro�ling their services and de�ne low level rules for
each one, focusing instead on expressing their requirements in term of
metrics interesting for their domain. The major drawback is that the
e�ort is shifted to the provider, considerably increasing the complexity
of the platform due to the inclusion of the translation mechanism, and
that the �exibility of this model is yet limited by the relation between
high level and low level parameters.

The third approximation, the most complex one, consists on express-
ing the QoS requirements using high level metrics, and retrieving high
level metric values from the monitoring system. On this case, as the
�rst one, both requirements and monitoring information are expressed
using the same metrics, and hence the evaluation of the QoS state is
immediate. Additionally, as on the second case, developers can easily
express their QoS requirements in a natural way using parameters close
to their application domain. The complexity of this third approach
lies in the monitoring system and the retrieval of high level monitoring
information. [95] proposes a multilayer Cloud monitoring framework
that retrieves high level metrics by instrumenting the deployed Cloud
services. The rationale behind this model is that QoS constraints are
usually de�ned for parameters relevant to each particular service, and
only services themselves can retrieve the value of these parameters.

30

2.6 Cloud service representation

In order to obtain these metrics, the framework includes a publishing
mechanism that is used by Cloud services to expose the relevant met-
rics, and this information is gathered and aggregated together with
monitoring information at other levels (for instance hardware moni-
toring).

The major advantage of this approach is that it provides high expres-
siveness since it uses monitoring information at di�erent abstraction
levels to determine the QoS state. The major drawback is that it re-
quires an e�ort from both developers and providers. Developers need
to modify their services to run on the Cloud, but this may not always
be possible as in the case of legacy code. On the other hand providers
need to include an appropriate monitoring system to retrieve and ag-
gregate the monitoring information at di�erent levels.

These three options represent the major approximations to the Cloud
monitoring �eld in the current literature. Any of these three options
can be adopted in a Cloud deployment to provide information about
the state of resources, or they can be combined together to produce
a system with enough �exibility to server any possible user request in
the most appropriate manner.

2.6 Cloud service representation

SLA@SOI de�ne the domain of the platform [96] as �a large number
of heterogeneous software, hardware and service elements inter-related
through a complex set of relationships and dependencies�. SLA@SOI
utilizes the domain information for the planning and deployment of
resources. The domain information is captured using a custom UML
model of their use cases, which stores key information. Even though
SLA@SOI modeling methodology enables autonomic distributed sys-
tems to store and retrieve information and establish relationship be-
tween elements, this method is not naturally extensible to other dis-
tributed environment such as Clouds, and cannot be generalized to
other domains.

31

Chapter 2. State of the art

Some early works propose models representing and capturing this in-
formation, even if they do not explicitly refer to the domain modeling.
[97] de�nes a hierarchy of elements and composition relationships. For
instance, in this model a service can be composed by a set of resources,
such as a web server and a database system. Further works introduce
the concept of di�erent entities and SLAs that de�ne their relation-
ship. [98] models a domain as a set of collaborating entities. A sched-
uler is able to collocate a set of resources from di�erent providers,
establishing a di�erent SLA with each pair.

More recently, [99] proposes a model of the context similar to the
domain modeling of SLA@SOI. The authors de�ne the context as the
information that represents the interaction between users and services,
and argue that changes in the context produce changes in these re-
lationships and hence these changes must be dynamically re�ected in
the SLA.

Therefore, most of the research projects use ad-hoc representations for
modeling the domain. However, any system managing the complete
lifecycle of cloud resources will need mechanisms to represent and
retrieve information for the di�erent stages of the process.

SLAs are more convenient to represent domain information than ad-
hoc representations, since they provides a generic methodology that
is language-agnostic, self-contained and transparent. However using
SLAs requires covering a wide set of potential combinations of re-
sources, entities and relations. A methodology that uses SLA frag-
ments and composition of SLAs provides additional qualitative ad-
vantages, such as reduced operation and maintenance cost, as well as
improved �exibility. This approximation to the domain modeling also
enables the representation of individual independent elements in the
domain, and provides the foundation for advanced applications such
as Cloud markets.

32

Chapter 3

Design

This chapter introduces the design of the elements that realize the
Cloud service representation and management methodology. Speci�-
cally, this chapter introduces the model of the resources used in Cloud-
compaas, the design of the SLA fragments that are the foundation of
the Cloud service representation methodology and the architecture of
Cloudcompaas.

3.1 Representation of Cloud services using SLA

The �rst step to design the representation of Cloud services is the
de�nition of the elements that populate the domain. Once the ele-
ments have been de�ned, the next step is to describe the relationships
between them. For this purpose we capture the information of these
relations using SLA. A simple approach is to model these relations as
SLAs between pairs of elements. This approach has several drawbacks.

• it potentially needs a very large number of SLAs. The number
of SLAs grows exponentially with the number of elements;

33

Chapter 3. Design

• it requires high maintenance and operational costs. The addition
of new elements requires the generation and update of many
SLAs;

• its �exibility is low. Static relations between �xed elements fail
to capture changes in a highly dynamic environment.

This approach is unpractical for a public cloud involving many types
of resources and a large number of services and users. For instance,
using this approach, for each new Virtual Service registered in the
framework, an SLA that combines that service with each available
hardware con�guration should be created. Also, changes in a Virtual
Service would imply changes in each SLA.

In order to capture the information of the domain using SLAs and
solving the aforementioned problems, our methodology proposes de-
scribing each element as a SLA fragment, and using a SLA Composi-
tion algorithm to produce complete SLA templates. An SLA fragment
is a document that includes only a subset of the elements that de�ne
an SLA. Our methodology includes the following three elements for
each SLA fragment.

• Service Terms, which describe static features. For instance, a
VM describes its hardware con�guration;

• Guarantee Terms, which describe the dynamic features. For
instance, Quality of Service assurance to the consumer, penalties
and rewards;

• Creation Constraints, which describe the constraints in the in-
stantiation of each element, and its relationship with other ele-
ments. For instance, a service can impose some restrictions so
that it can only be executed on machines with a certain amount
of memory.

This methodology provides a novel and unique approach to this prob-
lem, and enables building arbitrary Cloud services. The next sections
de�ne in detail the resource model de�ned in Cloudcompaas for the

34

3.2 Resource model

representation of resources, and the model of SLA fragments de�ned
for the representation of Cloud services.

3.2 Resource model

The resource model de�nes the type of resources that will be rep-
resented in Cloudcompaas. Most of SLA speci�cations provide an
extensible language for the de�nition of SLA documents that must be
complemented by a domain-speci�c representation.

The resources represented by Cloudcompaas were derived from the
uses case described in 1.4. Generalizing the use case requirements, we
can de�ne resources as belonging to the IaaS, PaaS, SaaS or user level.

3.2.1 IaaS

The data model of the Infrastructure level is depicted in Figure 3.1.

Figure 3.1: Infrastructure model for Cloudcompaas.

The basic building block of the IaaS level is the Virtual Machine. A
Virtual Machine (VM) is the aggregation of hardware resources, or
simply a hardware con�guration.

This model has the following requirements.

35

Chapter 3. Design

• several Physical Resources of the same kind can exist, each one
with a di�erent value;

• the system can store Physical Resources not related to any VM;

• a VM can have an unlimited number of resources;

• the model comprises at least one resource from one of the fol-
lowing types: Cores, Memory, Network and Architecture.

The restrictions that our resource model set on a VM are the following.

• a VM must have exactly one resource of the following types:
Cores, Memory, Network and Architecture;

• a VM cannot have two resources of the same type.

3.2.2 PaaS

The data model of the PaaS layer is depicted in Figure 3.2.

The basic building block of the PaaS level in Cloudcompaas is the
Virtual Container [100]. A Virtual Container is a software stack com-
posed by a hierarchy of components. The four level hierarchy model
has been designed based on the requirements of the use cases.

This model has the following requirements.

• a hierarchy of software dependencies;

• a Virtual Container can have multiple Virtual Runtimes, and a
Virtual Runtime can be associated to di�erent Virtual Contain-
ers;

• a Virtual Runtime can have multiple Software Resources, and a
Software Resource can be associated to di�erent Virtual Run-
times;

36

3.2 Resource model

Figure 3.2: Platform model for Cloudcompaas.

• a Software Resource can have multiple Software Add-ons, and
an Add-on can be associated to di�erent Software Resources.

The restriction of the model is that a Virtual Container cannot have
two Virtual Runtimes, Software Resources or Software Add-ons of the
same type. Finally, a Virtual Container must have at least one Virtual
Runtime.

3.2.3 SaaS

The data model of the SaaS level is depicted in Figure 3.3.

The building block of the SaaS level is the service, which has been
renamed as Virtual Service in the data model. This name is coherent
with the nomenclature used through this section, and it also helps to
discern the speci�c services running inside a Cloudcompaas deploy-
ment from Cloud Services.

37

Chapter 3. Design

Figure 3.3: Service model for Cloudcompaas.

This model has the requirement that a Virtual Service can have mul-
tiple versions.

The restrictions of the model are.

• a Virtual Service must have at least one Service Version;

• a Virtual Service can have an unlimited number of Service Ver-
sions;

• a Service Version is related to exactly one Virtual Service.

3.2.4 Users

The data model of the user is depicted in Figure 3.4.

Figure 3.4: User model for Cloudcompaas.

38

3.2 Resource model

This simple model is utilized to represent users in the system. The ele-
ment Organization is introduced to o�er the possibility of representing
simple user associations, similar to the Grid concept of Virtual Orga-
nizations.

In this model a User must belong to at least one Organization. A User
can belong to several Organizations.

3.2.5 SLA fragments, templates and instances

This section provides examples on how SLA templates, fragments and
instances are implemented in Cloudcompaas.

The scenario models the use case of section 1.4. The web service cho-
sen for the implementation is jLinpack [101], a Java implementation
of the Linpack service. The jLinpack service has a dependency on
the Java runtime. Moreover, due to its high memory requirements,
the developers encourage using this service in machines with a high
amount of memory.

Therefore the three basic Cloud resources involved in the scenario
are a VM, a runtime Java and a jLinpack service. According to the
methodology, these resources are represented using SLA fragments.
An SLA fragment is an XML document that represents a Cloud re-
source following the WS-Agreement directives. Listing 3.1 shows the
SLA fragment that represents the jLinpack service.

39

Chapter 3. Design

1 <Service Name="jLinpack">

2 <ServiceVersion Name="1.0"/>

3 <ServiceDescription>Java linpack implementation.</

ServiceDescription>

4 <CreationConstraints>

5 <Item Name="vm">

6 <xs:enumeration value="large"/>

7 </Item>

8 <Item Name="java">

9 <xs:enumeration value="Java"/>

10 </Item>

11 </CreationConstraints>

12 </Service>

Listing 3.1: SLA fragment for the jLinpack service

The XML document represents the jLinpack service and the restric-
tions that it has with respect to other resources. These restrictions are
represented with the WS-Agreement schema for CreationConstraints.
These constraints represent the restrictions that the service must run
in a VM of size large, and that the service must run in a VM that
includes the runtime Java.

Listing 3.2 shows the SLA fragment for the Java runtime. The run-
time is represented in a straightforward manner, since it includes no
dependences or options. Listing 3.3 shows the SLA fragment for the
VM large. The VM fragment de�nes the hardware con�guration of
a large VM in Cloudcompaas. The VM fragment includes the value
of the four basic components of a VM in the Cloudcompaas domain,
memory, cores, network and architecture.

1 <VirtualRuntime Name="Java"/>

Listing 3.2: SLA fragment for the Java runtime

40

3.2 Resource model

1 <VirtualMachine Name="large">

2 <PhysicalResource Name="Memory">

3 1024

4 </PhysicalResource>

5 <PhysicalResource Name="Cores">

6 2

7 </PhysicalResource>

8 <PhysicalResource Name="Network">

9 2

10 </PhysicalResource>

11 <PhysicalResource Name="Architecture">

12 x86_64

13 </PhysicalResource>

14 </VirtualMachine>

Listing 3.3: SLA fragment for a large VM

These are the explicit Cloud resources involved in the scenario. How-
ever there is also a implicit set of elements needed to deploy the re-
sources. First, the o�er should include the OS that will run on the
VM. Second, the Cloudcompaas domain model requires runtimes to
be included in an enclosing Virtual Container. Lastly, the user that
is deploying the resources must also be included in the SLA. Listing
3.4, 3.5 and 3.6 shows the SLA fragments of these elements.

1 <OperatingSystem>

2 <OSId>103</OSId>

3 <OSName>linux</OSName>

4 <OSVersion>10.10</OSVersion>

5 <OSFlavour>ubuntu</OSFlavour>

6 <Hypervisor>kvm</Hypervisor>

7 <Username>cloudcompaas</Username>

8 <Disk>9GB</Disk>

9 </OperatingSystem>

Listing 3.4: SLA fragments for the OS

41

Chapter 3. Design

1 <VirtualContainer Name="BasicUbuntuServer"/>

Listing 3.5: SLA fragments for Virtual Container

1 <User Name="angarg12">

2 <UserCredits>9999</UserCredits>

3 </User>

Listing 3.6: SLA fragments for the user

The user also wants to include a QoS rule that dynamically scales
the number of running service replica depending on the CPU load of
the VM. These rules are already included in Cloudcompaas, and are
de�ned as SLA fragments. Listing 3.7 shows the SLA fragment for an
upscaling QoS rule.

42

3.2 Resource model

1 <GuaranteeTerm Name="UPSCALE" Obligated="ServiceProvider">

2 <ServiceScope ServiceName="SAMPLE"/>

3 <QualifyingCondition>

4 MAX_REPLICAS gt ACT_REPLICAS

5 </QualifyingCondition>

6 <ServiceLevelObjective>

7 <KPITarget>

8 <KPIName>CPUAVG</KPIName>

9 <CustomServiceLevel>

10 list.avg(CPUPERC) le 90

11 </CustomServiceLevel>

12 </KPITarget>

13 </ServiceLevelObjective>

14 <BusinessValueList>

15 <Penalty>

16 50

17 </Penalty>

18 <Reward>

19 10

20 </Reward>

21 </BusinessValueList>

22 <VariableSet>

23 <Variable Name="MAX_REPLICAS"/>

24 <Variable Name="ACT_REPLICAS"/>

25 <Variable Name="CPUPERC"/>

26 </VariableSet>

27 </GuaranteeTerm>

Listing 3.7: SLA fragment for the upscaling QoS rule (guarantee term in

the WS-Agreement schema)

The QoS rule de�nition follows the WS-Agreement schema Guarantee
Term. The Qualifying Condition represents a condition that must be
met before evaluating the rule. On the Upscale rule, the Qualifying
Condition is that the number of VM running currently is less than the
maximum allowed. Following, the KPI Target de�nes the target that
the QoS rule wants to meet. On the Upscale rule, the KPI Target is
de�ned as list.avg(CPUPERC) le 90. This code represents that the
average CPU load of running VM should be less than 90%. Whenever
this formula evaluates to true, the expected QoS level is being deliv-
ered. When this rule evaluates to false, the QoS is considered violated

43

Chapter 3. Design

(i.e. the average CPU load is greater than 90%). Lastly, the Business
Value List de�nes the frequency of the evaluation of the rule as well
as the price paid by providers (penalty) and users (reward) when the
QoS rule is violated or ful�lled, respectively. On the Upscale rule, the
evaluation interval is de�ned as 2 minutes (PT2M). The price paid
by the provider to the user when the QoS rule is violated is 50 credits.
The price paid by the user to the provider for the QoS rule whenever
it is ful�lled is 10 credits.

These are the SLA fragments involved in the scenario. These SLA
fragments are composed in response to a user request to build a com-
plete SLA template. Listing 3.8 shows the SLA template resulting
from the composition of these fragments.

1 <Template>

2 <Name>SAMPLE1</Name>

3 <Context>

4 <ServiceProvider>AgreementResponder</ServiceProvider>

5 <TemplateId>_L-2-3_H-5_I-5_A-1_D-4_C-0_E-0</TemplateId>

6 <TemplateName>SAMPLE1</TemplateName>

7 </Context>

8 <Terms>

9 <All>

10 <ServiceDescriptionTerm>

11 <Metadata>

12 <Replicas>

13 1

14 </Replicas>

15 </Metadata>

16 </ServiceDescriptionTerm>

17 <ServiceDescriptionTerm>

18 <User Name="angarg12">

19 <UserCredits>9999</UserCredits>

20 </User>

21 </ServiceDescriptionTerm>

22 <ServiceProperties>

23 <VariableSet>

24 <Variable Name="MAX_REPLICAS"/>

25 <Variable Name="ACT_REPLICAS"/>

26 <Variable Name="CPUPERC"/>

27 </VariableSet>

28 </ServiceProperties>

44

3.2 Resource model

29 <GuaranteeTerm Name="UPSCALE" Obligated="ServiceProvider">

30 <QualifyingCondition>MAX_REPLICAS gt ACT_REPLICAS</

QualifyingCondition>

31 <ServiceLevelObjective>

32 <KPITarget>

33 <KPIName>CPUAVG</KPIName>

34 <CustomServiceLevel>list.avg(CPUPERC) le 90</

CustomServiceLevel>

35 </KPITarget>

36 </ServiceLevelObjective>

37 <BusinessValueList>

38 <Penalty>

39 50

40 </Penalty>

41 <Reward>

42 10

43 </Reward>

44 </BusinessValueList>

45 </GuaranteeTerm>

46 <ServiceDescriptionTerm>

47 <Service Name="jLinpack">

48 <ServiceVersion Name="1.0"/>

49 <ServiceDescription>Java linpack implementation.</

ServiceDescription>

50 </Service>

51 </ServiceDescriptionTerm>

52 <ServiceDescriptionTerm>

53 <VirtualMachine Name="large">

54 <OperatingSystem>

55 <OSId>103</OSId>

56 <OSName>linux</OSName>

57 <OSVersion>10.10</OSVersion>

58 <OSFlavour>ubuntu</OSFlavour>

59 <Hypervisor>kvm</Hypervisor>

60 <Username>cloudcompaas</Username>

61 <Disk>9GB</Disk>

62 </OperatingSystem>

63 <PhysicalResource Name="Memory">

64 1024

65 </PhysicalResource>

66 <PhysicalResource Name="Cores">

67 2

68 </PhysicalResource>

45

Chapter 3. Design

69 <PhysicalResource Name="Network">

70 2

71 </PhysicalResource>

72 <PhysicalResource Name="Architecture">

73 x86_64

74 </PhysicalResource>

75 </VirtualMachine>

76 </ServiceDescriptionTerm>

77 <ServiceDescriptionTerm>

78 <VirtualContainer Name="BasicUbuntuServer">

79 <VirtualRuntime Name="Java"/>

80 </VirtualContainer>

81 </ServiceDescriptionTerm>

82 </All>

83 </Terms>

84 <CreationConstraints>

85 <Item Name="vm">

86 <xs:enumeration value="large"/>

87 </Item>

88 <Item Name="java">

89 <xs:enumeration value="Java"/>

90 </Item>

91 </CreationConstraints>

92 </Template>

Listing 3.8: SLA template for the scenario

The resulting SLA template combines all the SLA fragments in a sin-
gle WS-Agreement document. The template has an id that uniquely
identi�es the template in the system. The template also has a name
that can be customized by the user. These values are grouped in the
context, which is a section speci�c of the template schema. The tem-
plate also includes a new term metadata, which speci�es the number
of replicas to deploy. The default value is 1, and can be customized
by the user. The remaining of the document consists on the SLA
fragments of the Cloud resources.

After retrieving a SLA template, users can customize the di�erent
values and produce a SLA o�er. Listing 3.9 shows an o�er generated
by a user based on the previous template.

1 <AgreementOffer>

46

3.2 Resource model

2 <Name>jLinpack server</Name>

3 <Context>

4 <ServiceProvider>AgreementResponder</ServiceProvider>

5 <TemplateId>_L-2-3_H-5_I-5_A-1_D-4_C-0_E-0</TemplateId>

6 <TemplateName>SAMPLE1</TemplateName>

7 </Context>

8 <Terms>

9 <All>

10 <ServiceDescriptionTerm>

11 <Metadata>

12 <Replicas>

13 <LowerBound>2</LowerBound>

14 <UpperBound>10</UpperBound>

15 </Replicas>

16 </Metadata>

17 </ServiceDescriptionTerm>

18 <ServiceDescriptionTerm>

19 <User Name="angarg12">

20 <UserCredits>9999</UserCredits>

21 </User>

22 </ServiceDescriptionTerm>

23 <ServiceProperties>

24 <VariableSet>

25 <Variable Name="MAX_REPLICAS"/>

26 <Variable Name="ACT_REPLICAS"/>

27 <Variable Name="CPUPERC"/>

28 </VariableSet>

29 </ServiceProperties>

30 <GuaranteeTerm Name="UPSCALE" Obligated="ServiceProvider">

31 <QualifyingCondition>MAX_REPLICAS gt ACT_REPLICAS</

QualifyingCondition>

32 <ServiceLevelObjective>

33 <KPITarget>

34 <KPIName>CPUAVG</KPIName>

35 <CustomServiceLevel>list.avg(CPUPERC) le 90</

CustomServiceLevel>

36 </KPITarget>

37 </ServiceLevelObjective>

38 <BusinessValueList>

39 <Penalty>

40 50

41 </Penalty>

42 <Reward>

47

Chapter 3. Design

43 10

44 </Reward>

45 </BusinessValueList>

46 </GuaranteeTerm>

47 <ServiceDescriptionTerm>

48 <Service Name="jLinpack">

49 <ServiceVersion Name="1.0"/>

50 <ServiceDescription>Java linpack implementation.</

ServiceDescription>

51 </Service>

52 </ServiceDescriptionTerm>

53 <ServiceDescriptionTerm>

54 <VirtualMachine Name="large">

55 <OperatingSystem>

56 <OSId>103</OSId>

57 <OSName>linux</OSName>

58 <OSVersion>10.10</OSVersion>

59 <OSFlavour>ubuntu</OSFlavour>

60 <Hypervisor>kvm</Hypervisor>

61 <Username>cloudcompaas</Username>

62 <Disk>9GB</Disk>

63 </OperatingSystem>

64 <PhysicalResource Name="Memory">

65 1024

66 </PhysicalResource>

67 <PhysicalResource Name="Cores">

68 2

69 </PhysicalResource>

70 <PhysicalResource Name="Network">

71 2

72 </PhysicalResource>

73 <PhysicalResource Name="Architecture">

74 x86_64

75 </PhysicalResource>

76 </VirtualMachine>

77 </ServiceDescriptionTerm>

78 <ServiceDescriptionTerm>

79 <VirtualContainer Name="BasicUbuntuServer">

80 <VirtualRuntime Name="Java"/>

81 </VirtualContainer>

82 </ServiceDescriptionTerm>

83 </All>

84 </Terms>

48

3.2 Resource model

85 </AgreementOffer>

Listing 3.9: SLA o�er for the scenario

A SLA o�er is very similar to a template. The only di�erences are
that Creation Constraints are dropped, and that the user is able to
modify the customizable values of the template. On this scenario, the
user modi�ed the name of the o�er to jLinpack server, and changed
the number of replicas from the default value �xed to 1 to a range of
replicas between 2 and 10. Notice that if the user changes any of the
non-customizable values, the o�er would be rejected as invalid. Once
a SLA has been accepted, Cloudcompaas creates a new SLA instance
and returns its identi�er to the user. Users can retrieve the state of
their SLA instances from Cloudcompaas using this id. Listing 3.10
shows the state retrieved for the previous SLA.

1 <AgreementProperties>

2 <Name>jLinpack server</Name>

3 <AgreementId>56</AgreementId>

4 <Context>

5 <ServiceProvider>AgreementResponder</ServiceProvider>

6 <TemplateId>_L-2-3_H-5_I-5_A-1_D-4_C-0_E-0</TemplateId>

7 <TemplateName>SAMPLE1</TemplateName>

8 <InitializationTime>2013-04-13 12:36:59.351</InitializationTime>

9 </Context>

10 <Terms>

11 <All>

12 <ServiceDescriptionTerm>

13 <Metadata>

14 <Replicas>

15 <LowerBound>2</LowerBound>

16 <UpperBound>10</UpperBound>

17 </Replicas>

18 </Metadata>

19 </ServiceDescriptionTerm>

20 <ServiceDescriptionTerm>

21 <User Name="angarg12">

22 <UserCredits>9999</UserCredits>

23 </User>

24 </ServiceDescriptionTerm>

25 <ServiceProperties>

26 <VariableSet>

49

Chapter 3. Design

27 <Variable Name="MAX_REPLICAS"/>

28 <Variable Name="ACT_REPLICAS"/>

29 <Variable Name="CPUPERC"/>

30 </VariableSet>

31 </ServiceProperties>

32 <GuaranteeTerm Name="UPSCALE" Obligated="ServiceProvider">

33 <QualifyingCondition>MAX_REPLICAS gt ACT_REPLICAS</

QualifyingCondition>

34 <ServiceLevelObjective>

35 <KPITarget>

36 <KPIName>CPUAVG</KPIName>

37 <CustomServiceLevel>list.avg(CPUPERC) le 90</

CustomServiceLevel>

38 </KPITarget>

39 </ServiceLevelObjective>

40 <BusinessValueList>

41 <Penalty>

42 50

43 </Penalty>

44 <Reward>

45 10

46 </Reward>

47 </BusinessValueList>

48 </GuaranteeTerm>

49 <ServiceDescriptionTerm>

50 <Service Name="jLinpack">

51 <ServiceVersion Name="1.0"/>

52 <ServiceDescription>Java linpack implementation.</

ServiceDescription>

53 </Service>

54 </ServiceDescriptionTerm>

55 <ServiceDescriptionTerm>

56 <VirtualMachine Name="large">

57 <OperatingSystem>

58 <OSId>103</OSId>

59 <OSName>linux</OSName>

60 <OSVersion>10.10</OSVersion>

61 <OSFlavour>ubuntu</OSFlavour>

62 <Hypervisor>kvm</Hypervisor>

63 <Username>cloudcompaas</Username>

64 <Disk>9GB</Disk>

65 </OperatingSystem>

66 <PhysicalResource Name="Memory">

50

3.2 Resource model

67 1024

68 </PhysicalResource>

69 <PhysicalResource Name="Cores">

70 2

71 </PhysicalResource>

72 <PhysicalResource Name="Network">

73 2

74 </PhysicalResource>

75 <PhysicalResource Name="Architecture">

76 x86_64

77 </PhysicalResource>

78 </VirtualMachine>

79 </ServiceDescriptionTerm>

80 <ServiceDescriptionTerm>

81 <VirtualContainer Name="BasicUbuntuServer">

82 <VirtualRuntime Name="Java"/>

83 </VirtualContainer>

84 </ServiceDescriptionTerm>

85 <ServiceReference Name="References">

86 <EndpointReference>

87 158.42.104.74

88 </EndpointReference>

89 <EndpointReference>

90 158.42.104.75

91 </EndpointReference>

92 </ServiceReference>

93 </All>

94 </Terms>

95 <AgreementState>

96 <State>Observed</State>

97 </AgreementState>

98 <GuaranteeTermState termName="REPLICAS">

99 <State>Fulfilled</State>

100 </GuaranteeTermState>

101 <ServiceTermState>

102 <State>Ready</State>

103 <Metadata>

104 <Replicas>

105 2

106 </Replicas>

107 </Metadata>

108 </ServiceTermState>

109 <ServiceTermState>

51

Chapter 3. Design

110 <State>Ready</State>

111 <User Name="angarg12">

112 <UserCredits>7799</UserCredits>

113 </User>

114 </ServiceTermState>

115 <ServiceTermState>

116 <State>Ready</State>

117 <Replica Id="158.42.104.74">

118 <LastUpdate>2013-04-13 12:41:42.311</LastUpdate>

119 <CPU_USED_PERC>0.3193057147535615</CPU_USED_PERC>

120 <MEM_USED_PERC>48.582985</MEM_USED_PERC>

121 <IN_NET>735.0</IN_NET>

122 <OUT_NET>0.0</OUT_NET>

123 </Replica>

124 <Replica Id="158.42.104.75">

125 <LastUpdate>2013-04-13 12:41:42.311</LastUpdate>

126 <CPU_USED_PERC>0.536918326854220</CPU_USED_PERC>

127 <MEM_USED_PERC>66.762424</MEM_USED_PERC>

128 <IN_NET>821.0</IN_NET>

129 <OUT_NET>0.0</OUT_NET>

130 </Replica>

131 </ServiceTermState>

132 </AgreementProperties>

Listing 3.10: SLA state for the scenario

A SLA state document includes the de�nition of Cloud resources from
the SLA. It also adds information regarding the SLA instance statistics
and monitoring information. The SLA state includes the id number of
the SLA instance that it belongs to. The context is update to include
the timestamp of when the SLA instance was created. At the end of
the service terms, the service reference schema is included. This WS-
Agreement schema is used to represent the endpoint references of the
deployed Cloud resources. On the scenario, this schema includes the
endpoint references of the deployed VM, namely their IP addresses.
At the end of the document, the SLA state, guarantee term state and
service term schemas include the state of the Cloud resources and their
monitoring information. The SLA state describes the state in which
the SLA instance is at that particular moment. On the scenario, the
state is Observed, which means that the SLA is currently active. The
SLA state describe whether a QoS rule is violated or ful�lled. The

52

3.3 Architecture

service term state describes whether a Cloud resource is ready or not
ready (e.g. if it is currently being deployed), and contains its moni-
toring information, if applicable. On this scenario, the VM resources
include monitoring information regarding the CPU, memory and net-
work usage, while the Virtual Container and the Service terms only
include the state. Two particular cases are the User and the Metadata.
The user term state includes the current number of credits of the user.
If the number of credits reaches 0, the SLA is decommissioned, since
the user cannot pay for it anymore. The metadata term includes the
current number of replicas of the Cloud resources.

3.3 Architecture

Cloudcompaas is a distributed framework built of interrelated compo-
nents that perform speci�c tasks, based on the architecture presented
in [100], depicted in Figure 3.5. This section describes the components
of this architecture and their role in the allocation and management
of Cloud services.

3.3.1 SLA Manager

The SLA Manager is the entry point to Cloudcompaas. The SLA-
driven nature of the framework implies that every interaction among
components is performed by means of SLAs. Therefore any external
interaction must pass through this component. The SLA Manager can
build documents, check o�ers for correctness and register new SLAs.
The four basic operations supported are search, create, query and
delete.

The search operation enable users to retrieve SLA templates according
to di�erent criteria. The create operation sends an SLA o�er to the
component. It checks that the o�er complies with the SLA template.
If this operation fails, the o�er is rejected. If the o�er is well de�ned,
the SLA Manager sends it to the Orchestrator to schedule its deploy-
ment. If this operation fails, for instance because no free resources are
available, the o�er is rejected. After an SLA has been accepted and its

53

Chapter 3. Design

Figure 3.5: Cloudcompaas architecture.

resources have been allocated, the SLA Manager registers the SLA in
the Monitor component. The query operation enable users to retrieve
the state of SLAs that they have sent to the framework (including
the rejected ones). The delete operation allows users to deallocate the
resources associated with an SLA and stop its monitoring. The SLA
Manager checks if the appointed SLA is currently active and if the
user has rights to delete it before interacting with the Orchestrator
and the Monitor to delete the SLA.

3.3.2 Monitor

The Monitor component performs the assessment of the dynamic fea-
tures of SLAs. For each SLA, this component schedules the retrieval
of the monitoring data of the resources and QoS rules. This data is
used to evaluate the rules and check for SLA violations.

54

3.3 Architecture

If a QoS rule violation is found, the Monitor apply corrective actions
to restore the state of the system and eliminate the violation. These
actions usually are speci�c to the domain of application.

The Monitor also performs accounting and billing operations. It charges
the user for the resources consumed periodically, and applies discounts,
penalties to each party when the QoS violations occur.

The Monitor depends on the SLA Manager to register and unregister
SLAs when they start and �nish they lifecycle, respectively.

3.3.3 Orchestrator

The Orchestrator is the central component of the framework and acts
as a global coordinator. When a new SLA is accepted by the SLA
Manager, a deployment request is sent to the Orchestrator. This
component keeps a global view of all the available Cloud backends,
and performs the scheduling of the Cloud service based on the SLA
requirements and the available resources. The Orchestrator manages
the deployment process by delegating the allocation operations to a set
of IaaS, PaaS and SaaS connectors. Hence, the scheduling procedure
selects the Cloud backend that will deploy the resources. The Orches-
trator performs a sequential process for the allocation of resources. It
communicates with the Infrastructure Connector, Platform Connec-
tor and Service Connector to deploy IaaS, PaaS and SaaS resources
on this order, and feeds each level with information retrieved from
the previous one. Using this procedure, the Orchestrator can deploy
resources from one level on top of resources from the lower levels of
the hierarchy.

3.3.4 Infrastructure connector

The Infrastructure Connector is the component in charge of deploying
the infrastructure resources in a speci�c IaaS Cloud backend. Hence
the main task of this component is to allocate required infrastruc-
ture and con�gure the resources according to the SLA speci�cation.
Since the Infrastructure Connector component can be implemented for

55

Chapter 3. Design

several di�erent Cloud providers, a plug-in approach has been used.
The basic Infrastructure Connector component provides a uniform in-
terface to Cloudcompaas, including the SLA deployment, SLA unde-
ployment and SLA adjustment operations. Several plug-ins provide a
speci�c implementation for each target Cloud provider.

When a plug-in receives an incoming request, it must check if the
Cloud deployment can serve that request. A provider may be unable
to serve a request either if there are no free resources available or if the
provider does not support at least one of the resources speci�ed in the
request. Once an SLA has been approved, the plug-in translates the
SLA representation of resources to the back-end speci�c representation
of resources and requests the resource allocation. When the resources
have been successfully allocated, the plug-in retrieves its identi�er,
reference endpoint and other relevant information.

Finally, the plug-in performs the con�guration of the deployed re-
sources. The con�guration step includes the automatic operations
needed for the correct behavior of the system such as the injection
and execution of a monitoring agent or the setup of a guest user ac-
count on the Virtual Machines. Once all operations have �nished, the
Infrastructure Connector returns the retrieved information (such as
the endpoint references) to the Orchestrator.

3.3.5 Platform connector

The Platform Connector receives the SLA representation of a Vir-
tual Container and translates it to the speci�c representation of the
PaaS backend. Then it deploys and con�gures the Virtual Container.
Once the resources are allocated, the endpoint reference of the Virtual
Containers and other relevant information is retrieved. As a partic-
ular case, the SLA can specify that the Virtual Containers must be
hosted in the Virtual Machines deployed previously. In this case, the
plug-in must retrieve the endpoint references of the Virtual Machines
and contextualize them with the Virtual Container software stack if
needed.

56

3.3 Architecture

3.3.6 Service connector

The Service Connector receives the SLA representation of a Virtual
Service and translates it to the speci�c representation of the SaaS
backend. Then it deploys and con�gures the Virtual Service. Once
the resources are allocated, the endpoint reference of the Virtual Ser-
vices and other relevant information is retrieved. As a particular case,
the SLA can specify that the Virtual Service must be hosted in the
Virtual Containers deployed previously. In this case, the plug-in must
retrieve the endpoint references of the Virtual Container and deploy
the Virtual Service on it.

3.3.7 Catalog

The Catalog implements an Information System, by means of a dis-
tributed and replicated database accessible through a RESTful API.
The other components use this Information System for retrieving and
storing a variety of information, such as SLAs, SLA templates, and
runtime and monitoring information.

57

Chapter 3. Design

58

Chapter 4

Implementation

This chapter provides insight at the particularities of the implemen-
tation of the software developed in the Thesis. It provides an analysis
of the SLA Composition algorithm, a key component for the imple-
mentation of the SLA composition methodology. This section also
introduces the implementation of Cloudcompaas and the components
involved in the SLA-driven resource lifecycle management, including
the scheduling and management of Cloud services.

4.1 SLA Composition

This section provides details on the implementation of the SLA com-
position methodology. It begins providing a formal statement of the
SLA composition problem. Next, it introduces the SLA composition
algorithm, including a basic implementation of the algorithm. Finally
it describes a set of optimizations to improve its performance.

59

Chapter 4. Implementation

1

Cores: 1

0

Cores: 2

0

Runtime
Java

1

Runtime
Python

1

VM:
small

0

VM:
medium

1

RAM:
256mb

0

RAM:
512mb

0 1 2 3 4 5 6 7

Template fragments

Search space

…

…

Figure 4.1: The solution space is represented by an array of booleans.

Each index value indicates whether the indexed template is added or not

to the solution.

4.1.1 The SLA Composition problem

In regular SLA-driven platforms, SLA templates are stored explicitly,
and users can retrieve a list of the available templates or perform
queries. In our proposed scenario SLA templates are generated on the
�y in response to user requests.

The SLA Composition problem can be characterized as a decision
problem over the space of template fragments. A problem instance is
a set of restrictions that the target template must met, and is repre-
sented as a Boolean expression composed by variables and AND, OR,
NOT operations. A solution to the problem is a combination of tem-
plate fragments that ful�ll the proposed restrictions, and is represented
as an array of Boolean values that indicates the template fragments
which are combined together, as depicted in Figure 4.1. A solution is
valid if and only if the provided values satisfy the restrictions of the
problem.

This characterization is a reduction of the SLA Composition prob-
lem to the Boolean satis�ability (SAT) problem. SAT is a well-known
instance of NP-complete problem [102]. Many decision and optimiza-
tion problems can be reduced to SAT, and this reduction is used as a

60

4.1 SLA Composition

proof of the NP-completeness of a particular problem instance [103].
Based on this reduction, the NP-completeness of the SLA Composition
problem is proven. The general complexity of NP-complete problems
is O(2n), where n is the number of SLA templates in the system.

However this linear characterization does not represent the nature of
the problem. The hierarchical organization of the elements in Cloud-
compaas is recursive for some elements. For instance, a SLA must de-
cide the set of Cloud resources that complies with a set of restrictions.
When selecting the VM resource, the problem consists on determining
which VM hardware con�guration complies with the set of restrictions.
Therefore the problem is applied recursively for each Cloud resource,
where a decision problem is solved at each node of a tree hierarchy
(e.g. a hierarchy of VMs, Runtimes, Software...) with a cost of O(2n).

4.1.2 The SLA Composition algorithm

Following the general overview of the SLA Composition problem, a
brute force SLA composition algorithm, depicted in Algorithm 1, has
been designed. This algorithm sets the grounds for the proposed solu-
tions to this problem. The brute force algorithm for SLA Composition
consists of two major steps, the branching step and the sub-problem

61

Chapter 4. Implementation

resolution step. The algorithm explores the solutions in the search
space �ltering out those that do not meet the restrictions of the model.

Data: target, searchspace, solutionspace
Result: solutionspace

1 if searchspace.end then

2 if meetRestrictions(target) and isValid(target) then
3 solutionspace.add(target);
4 end

5 return;
6 end

7 if isTerminal(searchspace.current) then
8 // do not add the item
9 compose(target, searchspace.next, solutionspace);

10 // add item
11 newtarget = merge(target, searchspace.current);
12 compose(newtarget, searchspace.next, solutionspace);
13 else

14 // spawn new combinatorial problem
15 subsearchspace = generateSearchSpace(searchspace.current);
16 compose(searchspace.current, subsearchspace, subsolutionspace);
17 merge(searchspace, subsolutionspace);
18 compose(target, searchspace.next, solutionspace);
19 end

Algorithm 1: Brute force implementation

The algorithm receives as input a target item, a search space and
a solution space. The search space is the set of template fragments
considered for the current problem. The solution space is the set of
combined template fragments that are valid solutions to the problem.
The target is the template being currently analyzed for a solution.
In the characterization of the problem, the solutions are represented
as arrays of Booleans which de�ne the templates used in the com-
position. However, for the actual SLA Composition algorithm, this
representation is cumbersome, and also do not properly represents the
data involved in the process. A structure called Composition Item
is used as replacement of the solution array depicted in the previous

62

4.1 SLA Composition

section. Instead of representing a candidate solution as an array of
Booleans where each index indicates whether the corresponding frag-
ment is added or not to the target, candidate solutions are represented
by the corresponding template. This structure stores four elements of
data, a template fragment, an id, a length value and a Boolean that
determines whether the item is a terminal element or not.

Terminal elements represent elements that do not produce new frag-
ments. For instance, a Physical Resource Memory: 256MB represents
a single element that cannot be combined any further with other el-
ements. Non-terminal elements represent elements that can be com-
bined with others by solving a combinatorial instance, and produce a
new set of template fragments. For instance, a VM element may be
combined with several Physical Resources, producing a set of possible
hardware con�gurations for that VM.

The composition algorithm is naturally recursive. The base case oc-
curs when the search space is empty. In the base case, the target
template is evaluated, and if it is correct according to the constraints,
then it is added to the solution space. The recursion step occurs when-
ever the search space is not empty. In the recursion step, an element
from the search space is selected and processed. The behavior of the
algorithm depends on whether the processed element is terminal or
non-terminal.

Figure 4.2 illustrates a step-by-step example of an execution of the
SLA composition brute force algorithm. Non-terminal elements (NT)
represent the internal nodes of the search tree (e.g. VM). Terminal
elements (t) represent the leaf nodes of the search tree (e.g. physical
resources such as memory, cores, etc.). A NT element is composed
by an aggregation of t elements. Each arrow in the tree represents
a combinatorial problem for a NT element over a search space of t
elements.

The algorithm begins with an empty SLA template, and a search space
populated by the non-terminal elements NT0 and NT1 (1). The pro-
cedure starts considering the �rst element in the search space (NT0)
to be added to the empty template. When the algorithm tries to

63

Chapter 4. Implementation

Virtual Machine combination

Composition
Item target Solution space Search space

Empty agreement
template

NT0 NT0, NT1

NT1 NT0, NT1 NT1 …

Do not add Add

Physical Resource combination

NT0
-t0 t0,t1

NT0
-t1 t0,t1 NT0-

t0-t1
NT0-

t1 t0,t1

Do not add Add

NT0
-t1 t0,t1 NT0-t1,

NT0-t0-t1 t0,t1

Add AddX X

1

2
3

4 5

6

7 8

Figure 4.2: Detail on how a VM combinatorial problem spawns a physical

resource combinatorial problem.

add NT0 to the template, it notices that it is not a terminal element,
and then spawns a new combinatorial problem (2). The newly spawn
combinatorial problems aim is to generate all the terminal elements
derived from a non-terminal one, NT0 on this case. The combinato-
rial problem will explore a search space populated by two terminal
elements, t0 and t1, trying to generate all the valid combinations of
NT0. First the new combinatorial problem explores the branch where
t0 is not added to NT0 (3). Then, it explores the branch where t1 is
also not added to NT0 (4). However, this operation fails. A combina-
tion operation fails because it violates some restriction of the domain
data model. For instance, one restriction that could cause the failure
of step 4 is that an NT element must include at least one t element.
The algorithm proceeds by the alternative branch in the composition
procedure, and adding t1 to NT0 (5). This operation succeeds and
the resulting template (NT0-t1) is added to the solution space.

The algorithm continues the depth-�rst exploration of the tree by
considering adding t0 to NT0 (6). This operation succeeds and then
the next steps in the algorithm considers whether to add the next
element of the search space (t1) to the partial solution found so far
(NT0-t0). The �rst branch explores the possibility of not adding t1
and therefore produces NT0-t0 as a �nal solution (7). However this
step fails and that template is not added to the solution space. Lastly,
the algorithm adds t1 to the partial result (8) and produces NT0-t0-
t1. This operation succeeds, that is, this con�guration of elements is

64

4.1 SLA Composition

correct according to the data model, and hence this template is added
to the solution space.

After the combinatorial problem ends, the NT0 template from the
parent problem has been substituted by NT0-t1 and NT0-t0-t1. NT0,
which was a non-terminal element, has been substituted by all the
possible valid combinations of NT0 con�gurations. This allows the
algorithm to treat these templates as terminal elements and continue
exploring the search space to produce new solutions.

4.1.3 Optimizations of the algorithm

The brute force SLA Composition algorithm has a complexity of O(2n)
for n templates. Problems of such complexity are considered as not
tractable by brute force techniques. Programming techniques have
been developed to tackle some of these problems. This section ex-
plains three major optimization techniques applied to the brute force
algorithm. These techniques rely on two principles to reduce the com-
plexity of the problem, using heuristics and focusing on special cases.
Heuristics are used to produce good solutions in a fraction of time of
the original algorithm, even tought it doesn't guarantee �nding an op-
timal or correct solution. Focusing on special cases may allow solving
some instances of an NP-Complete problem in polynomial time.

Branch and bound

Branch and bound is a general algorithm for �nding the optimal so-
lution to a variety of problems, especially combinatorial optimization
problems. This algorithm consists on the systematic enumeration of
all candidate solutions, where large subsets of fruitless candidates are
discarded by using an estimator of the candidate solutions quality.
The objective of the algorithm formulated as a combinatorial prob-
lem is �nding feasible solutions in the solution space. The algorithm
explores a search tree with all the possible template fragments com-
binations, where invalid combinations are discarded from the tree. In
the SLA composition problem the number of fragments included in a

65

Chapter 4. Implementation

template, de�ned as its `length', can be used as an estimator of the
quality of the solution. The reason is that solutions that involve less
template fragments provide the required functionality using fewer re-
sources. This estimator can be used to prune branches for `longer'
templates. The technique of pruning by size reduces the execution
time by exploring a subset of the solution space.

The branch and bound algorithm stops the search as soon as the `short-
est' possible answers are found, applying backtracking to explore other
alternatives if no valid solution is found. Backtracking consists in re-
suming the exploration of a combinatorial problem already computed,
in order to retrieve the next set of solutions. It occurs when the
selected shortest candidate items do not provide valid solutions. The
computational cost of the worst case scenario of the branch and bound
algorithm is the same as the base algorithm, since it may be possible
for the branch and bound method to explore the complete search space
before �nding a solution. However the experimental average cost of
the algorithm is much lower than the worst case scenario.

Dynamic programming

The branch and bound algorithm works well for the resolution of a
single combinatorial problem. However, as described before, the SLA
Composition problem is recursive at some elements, solving several
combinatorial problems on the process. At this level is where the
Dynamic Programming paradigm is applied.

Dynamic Programming is a method for solving complex problems.
The problems candidate to be solved by this paradigm must include
two features, optimal substructure and overlapping subproblems. Op-
timal substructure refers to the possibility of obtaining an optimal
solution for a problem based on the optimal solution of its subprob-
lems. Overlapping subproblems refers to the redundant nature of the
recursive structure of the problem, where the same problem instances
are solved several times.

The SLA Composition problem exhibits both features.

66

4.1 SLA Composition

• optimal substructure: In order to �nd a valid template composed
by the fewer number of fragments, the fragments must be valid
and composed by the fewest number possible themselves;

• overlapping subproblems: For each pair of element to be com-
posed in the SLA structure, the product set of both elements
instances is the set of subproblems to solve. If any of those
elements itself can be composed with another set of items, a
recursive instance of the problem is produced.

Dynamic Programming methods can be used to speed up the execution
of the SLA Composition problem. Algorithm 2 shows a script that
implements the behavior of the algorithm. Every time a non-terminal
node is found in the search space, a global cache is checked for the
solution of the combinatorial problem spawn from that node. In case
the subproblem has been solved previously, the stored solution is used.
Otherwise, a new subproblem is spawn and solved, and the solution
is stored in the global cache for future reference. This procedure is
called memoization.

Data: target
Result: solutionspace

1 solutionspace = getCache(target);
2 if solutionspace == null then
3 searchspace = generateSolutionSpace(target);
4 for item ∈ searchspace do
5 compose(item, searchspace, solutionspace);
6 end

7 putCache(target, solutionspace);
8 end

9 return solutionspace;
Algorithm 2: Memoized version of the recursion step in the SLA
composition algorithm

67

Chapter 4. Implementation

Ad-hoc optimizations

Even though generic programming techniques such as branch and
bound and programming provide a substantial improvement in the
performance of the algorithm, the SLA Composition problem exhibits
certain features that may be exploited to increase the e�ciency in the
calculations.

The �rst optimization is implicit pruning by semantic restrictions.
Even though the brute force approach generates all the combinations
of templates and checks their validity just before adding them to the
solution space, some templates can be identi�ed as invalid much earlier
and removed from the search space, reducing the space to explore. One
example of such restrictions is that no template may have more than
one VM. Using this restriction is possible to prune the search space of
fruitless candidates improving the performance of the algorithm.

The second optimization exploits the structure of the data to reduce
the number of operations to perform. The brute force approach pro-
duces the Cartesian product of two sets of items every time a new
combinatorial subproblem is spawn, producing, for instance, every
combination of Operating System and Software components. How-
ever, in a real scenario not every Software is available to every Oper-
ating System. By capturing this information in the data model of the
algorithm, it is possible to reduce the search space of combinatorial
subproblems by limiting the number of combinations explored.

The third optimization combines both preceding techniques. It con-
sists in reducing the search space based on the semantic restrictions
of the model and the organization of the data. For instance, the se-
mantic restriction that one Virtual Service can include only a single
Service Version can be exploited to reduce the combinatorial problem
on Services. Instead of producing every possible combination of Ser-
vice Versions, that has a cost of O(2n), the algorithm explores each
Service Version only once, with a cost of O(n).

The last optimization consists on pruning the search space by means
of user restrictions. In the brute force algorithm, the user restrictions

68

4.2 Cloudcompaas Framework

are used only to �lter out the solutions at the end of the calculation.
However it is possible to embed these restrictions into the search pro-
cess. For instance, if the user speci�es that a particular VM must be
included in the solution, the algorithm directly includes that template
to the base template, and start o� the search procedure from a non-
empty template. As users provide more restrictions, the algorithm
explores a smaller subset of the search space.

4.2 Cloudcompaas Framework

The Cloudcompaas framework implements the architecture present in
section 3.3, including a module for each component in the architecture.
Cloudcompaaas implements a SLA-driven framework for the complete
lifecycle management of Cloud services. The framework manages both
the static (e.g. resources deployment and scheduling) and dynamic
(e.g. QoS management) features of Cloud services. The following
sections describe concrete implementation details concerning relevant
aspects of the framework.

4.2.1 Interactions and �ow of control

An interaction with Cloudcompaas begins when a user sends a request
to the SLA Manager. The operations available to users are searching
for SLAs, creating a SLA, retrieving the state of a SLA or terminating
a SLA. An interaction diagram for each one of these functions is show
following.

Figure 4.3: Interaction diagram for the search operation

69

Chapter 4. Implementation

Figure 4.3 shows the interaction diagram for the search operation.
The interaction begins with a user sending a search request to the
SLA Manager component. The SLA Manager retrieves a set of SLA
fragments from the catalog according to the user requests, performs
the SLA composition algorithm and returns the resulting template
back to the user.

Figure 4.4: Interaction diagram for the retrieve operation

Figure 4.4 shows the interaction diagram for the retrieve operation.
The interaction begins with a user sending a retrieve request to the
SLA Manager component. The SLA Manager retrieves the indicated
SLA from the catalog and returns it back to the user.

Figure 4.5 shows the interaction diagram for the create operation.
The interaction begins with a user sending a create request to the
SLA Manager component. The SLA Manager veri�es that the SLA
o�er is correct, and sends a register request to the Monitor component.
This request is asynchronous since the monitoring process continues as
long as the SLA is active. Following, the SLA Manager sends a deploy
request to the Orchestrator. The Orchestrator coordinates the deploy-
ment of the Cloud resources de�ned in the SLA communicating with
the corresponding connectors. The order in which the communica-
tion occurs is relevant, since resources at di�erent levels may depend
on one another. The Orchestrators begins sending a deploy opera-
tion to the Infrastructure Connector. The Infrastructure Connector
communicates with a speci�c Cloud back-end (such as OpenNebula,
OpenStack or EC2) to deploys the VM resources speci�ed in the SLA,
and returns back to the Orchestrator the state of these resources (i.e.
their IP addresses). The Orchestrator continues sending a deploy op-
eration to the Platform Connector, that deploy the resources (Vir-

70

4.2 Cloudcompaas Framework

Figure 4.5: Interaction diagram for the create operation

tual Containers, software components) in a Cloud back-end (such as
Azure, Heroku or VM deployed by the Infrastructure Connector). The
Platform Connector sends back to the Orchestrator the state of the
platform when done. Finally, the Orchestrator sends a deploy opera-
tion to the Service Connector. The Service Connector deploys a user
de�ned services in a PaaS Cloud (such as AppEngine or a Virtual
Container deployed by the Platform Connector) or allocates a service
from a Cloud back-end. The Service Connector sends back to the Or-
chestrator the state of the services. The Orchestrator combines the
state of the Cloud service and sends it back to the SLA Manager.
Finally the SLA Manager updates the SLA with the state and stores
the SLA in the Catalog. The Catalog sends back to the SLA Manager
the identi�er of the newly created SLA, and the SLA Manager sends
back the id to the user.

71

Chapter 4. Implementation

Figure 4.6: Interaction diagram for the terminate operation

Figure 4.6 shows the interaction diagram for the terminate operation.
This is the only asynchronous operation, since it returns no value. The
interaction begins with a user sending a terminate request to the SLA
Manager component. The SLA Manager veri�es that the user has
rights to terminate the SLA, and sends a stop request to the Monitor
component. The Monitor stops the monitoring cycle for the SLA and
deletes it. Following, the SLA Manager sends a delete request to the
Orchestrator. The Orchestrator communicates with the Connectors
in order to undeploy and delete the resources. The Orchestrator sends
a delete request to the Service Connector, Platform Connector and
Infrastructure Connector on this order. Each connector is in charge of
deleting the resources associated with the SLA at that level. Finally,
the SLA Manager modi�es the value of the SLA and sends an update
request to the Catalog.

72

4.2 Cloudcompaas Framework

Interfaces and communications

The interfaces and communication system are designed according to
the REST principle [104]. REST (Representational State Transfer) is
a design principle where the interactions are performed by means of
the manipulation of representation of resources. These manipulations
are done using four basic HTTP operations GET, PUT, POST and
DELETE. A service that adheres to the REST principles is RESTful.
The interfaces of the components of the framework follow RESTful
paradigm. As the WS-Agreement speci�cation provides a reference
SOAP interface for the implementation of the standard, a reference
REST interface for WS-Agreement is de�ned in [105]. Using these
guidelines, the interfaces of the components are designed to maintain
a uniform semantic for the operations in the framework.

Scheduling

The role of the Orchestrator is to schedule and coordinate the deploy-
ment of the SLAs. A relevant decision in the design of the frame-
work is how the scheduling process will be done. The major actors
in the deployment process are the Infrastructure Connectors, each
one interacting with a speci�c Cloud back-end, and the Orchestrator,
coordinating the actions of di�erent Infrastructure Connectors. The
scheduling process can be performed by the Orchestrator component,
by the Infrastructure Connector or by both at di�erent extents.

Scheduling at Infrastructure Connector level is simpler. The Infras-
tructure Connector scheduling operation decides whether a back-end
can deploy or not an SLA. On the other hand, the component only
has a limited view of the complete system, and cannot take global
scheduling decisions that optimize resource utilization.

Scheduling at Orchestrator level has the greatest �exibility regarding
resource usage. The Orchestrator has a global view of the system,
the available resources, Infrastructure Connectors state, etc. Using
all the available information a wide variety of scheduling schemas and
algorithms can be implemented, following di�erent criteria as needed

73

Chapter 4. Implementation

(maximize user satisfaction, minimize providers cost, etc.). On the
other hand, managing that amount of information and coordinating
disparate components greatly increases the complexity of the opera-
tions of the module. A mixed approach consists on limiting the vision
the Orchestrator has of the whole system and support the scheduling
process at both component levels. Using this schema, the Orchestra-
tor makes global scheduling decisions, and delegates the rest of the
process to the selected Infrastructure Connectors. The Infrastructure
Connector then performs local scheduling decisions.

Metadata representation

The domain model for Cloudcompaas includes four elements, namely
Infrastructure, Platform, Service and User, and their relationships.
When this model is translated to a domain-speci�c language that is
expressed in a WS-Agreement document, these elements and their
restrictions and requirements are represented as Service Description
Terms, with each Term including all the information regarding each
element. However, some information is not captured in this model,
speci�cally implementation information commonly described as Meta-
data. The Metadata term, unlike the other four terms, does not de-
scribe resources in the system, but captures information needed for the
management of the SLA. Introducing this �fth term to the Cloudcom-
paas SLA schema, the framework captures all the information needed
for the proper management of resources.

4.2.2 Components Implementation Details

This section provides insight at the details of the implementation of
the framework modules.

74

4.2 Cloudcompaas Framework

SLA Manager

The SLA Manager provides a RESTful implementation of the WS-
Agreement operations. The SLAManager extends theWSAG4J frame-
work to provide additional dynamic resource management capabilities.
The full extent of the modi�cations performed to the framework are
presented in Section 4.3.

Orchestrator

The Orchestrator coordinates the components and the deployment and
management of SLAs. When a SLA deployment operation is received,
the Orchestrator forwards the request to an appropriate Infrastruc-
ture Connector. An Infrastructure Connector is appropriate if it can
support a given SLA. The Orchestrator determines appropriate In-
frastructure Connectors by matching the SLA requirements with the
Connector capabilities.

The Orchestrator retrieves the information returned by the Infrastruc-
ture Connector (usually the endpoint reference of the newly deployed
VMs). If the SLA de�nes a Virtual Container, the Orchestrator for-
wards the request to a Platform Connector and includes the infor-
mation retrieved from the previous component. This communication
�ow allows the Platform Connector to communicate with the newly
deployed VMs and proceed with the installation and con�guration of
the required software.

The Orchestrator retrieves the information returned by the Platform
Connector, and if the SLA de�nes a Virtual Service, repeats the op-
eration forwarding the request to a Service Connector, passing the
information retrieved from the previous components.

SLA undeployment operations are processed in a similar fashion but
in reverse order. The Orchestrator begins by forwarding the request to
the Service Connector, Platform Connector and Infrastructure Con-
nector on this order. The rationale is to allow services to be deallo-
cated in order before shutting down the host VM, allowing users to

75

Chapter 4. Implementation

�nish ongoing interactions and performing a clean shutdown. The Ser-
vice Connector sends a shutdown operation to the deployed services,
waiting for them to cleanly allow users to �nish the current interac-
tion before stopping the service. The Platform Connector sends a
shutdown operation to the Virtual Container, that waits for current
operations to �nish and stops the Container. Finally, the Platform
Connector sends a shutdown operation to the VMs and performs the
deallocation of the resources.

Infrastructure Connector

The Infrastructure Connector is the component in charge of connecting
Cloudcompaas to di�erent IaaS Cloud backends. The Infrastructure
Connector component provides a common interface, communications
and security systems. A plug-in system implements the operations
needed to deploy SLAs in each di�erent Cloud provider.

Infrastructure Connector also performs local scheduling labors. In the
current implementation these operations are straight forward. The
plug-in �rst determines the minimum set of resources o�ered by the
provider that comply with the SLA document, and checks if there is
enough capacity to deploy the resources. If this operation succeeds,
the plug-in allocates and contextualizes the services; otherwise the
operation fails.

The Infrastructure Connector main operation consists on translating
the WS-Agreement representation of resources of Cloudcompaas to the
domain speci�c representation of resources of the underlying Cloud
platform. This operation must be manually implemented for each
plug-in.

For instance, the OpenNebula plug-in translates the Cloudcompaas
representation of VM of Listing 4.1 to the ONE representation of VM
of Listing 4.2. The plug-in may use a common parser to extract the
key information from the SLA fragment of a VM (such as CPU cores or
memory). However, it needs to implement a function that builds the
ONE representation of VM from the parsed information. This func-

76

4.2 Cloudcompaas Framework

tion must account for the limitations and restrictions of each Cloud
platform, for instance if a speci�c resource is not supported.

1 <VirtualMachine Name="large">

2 <OperatingSystem>

3 <OSId>103</OSId>

4 <OSName>linux</OSName>

5 <OSVersion>10.10</OSVersion>

6 <OSFlavour>ubuntu</OSFlavour>

7 <Hypervisor>kvm</Hypervisor>

8 <Username>cloudcompaas</Username>

9 <Disk>9GB</Disk>

10 </OperatingSystem>

11 <PhysicalResource Name="Memory">

12 1024

13 <PhysicalResource Name="Cores">

14 2

15 </PhysicalResource>

16 <PhysicalResource Name="Network">

17 2

18 </PhysicalResource>

19 <PhysicalResource Name="Architecture">

20 x86_64

21 </PhysicalResource>

22 </VirtualMachine>

Listing 4.1: Cloudcompaas representation of a VM

1 CPU = 2

2 MEMORY = 1024

3 OS = [ARCH = "x86_64"]

4 DISK = [

5 IMAGE_ID = 103

6]

7 NIC=[NETWORK_ID=2]

Listing 4.2: OpenNebula representation of a VM

Infrastructure Connector plug-ins also manage the implementation de-
tails of each speci�c Cloud platform and hide them from Cloudcom-

77

Chapter 4. Implementation

paas. For instance, OpenNebula assigns to each VM an id. This
id is independent from the Cloudcompaas id for the SLA. Therefore
the Infrastructure Connector must keep track of which OpenNebula
VM ids correspond to the VM instances of each SLA transparently to
Cloudcompaas.

Catalog

The Catalog module implements a distributed database that stores in-
formation such as SLAs, instances, monitoring information, etc. The
Catalog is used by the other modules to store and retrieve this infor-
mation. The current implementation of the Catalog module includes
an embedded HSQLDB [106] database that stores the data model of
the framework. A RESTful interface enables authorized users to ma-
nipulate the information.

The RESTful interface enables components to perform the four basic
operations (GET, POST, PUT and DELETE) on a piece of data.
Each piece of data is referenced by a URL. In order to operate on
di�erent data, modules must manipulate them one at a time.

Resources point to a URL, so if you want for instance to store in-
formation on di�erent tables, you need to create di�erent resources.
URL is the endpoint representation of the table-item that you want
to manage.

The interface is determined by the URLs used to access the catalog.
All the URLs begin by BASEURL, that is the endpoint of the Catalog.
TABLE is the string identi�er of the table to be accessed (e.g. moni-
toring_information). ITEM is the numeric identi�er of an element in
a table. search is a reserved keyword that de�nes a search operation.
The search operation is transferred as a querystring, of the following
form.

search?field=value&field2=value2...

Each type of operation is performed as follows.

78

4.2 Cloudcompaas Framework

GET

Retrieves data from the Catalog. The data is retrieved in XML format.

URL = BASEURL/{TABLE}

Returns the id of all the items on the table {TABLE}.

URL = BASEURL/{TABLE}/{ITEM}

Returns the XML representation of the item with id {ITEM} in the
table {TABLE}.

URL = BASEURL/{TABLE}/search

Returns the id of the items that match the search criteria.

POST

Stores a piece of data in the Catalog, creating a new entry in the
database. The �eld information is sent in XML format in the HTTP
request. The XML �le can be easily generated by a properties �le,
using �eld-value pairs to specify the value of each �eld of the new
item in the database. This operation returns a small XML fragment
containing the id of the new item.

URL = BASEURL/{TABLE}

Creates a new item in the table {TABLE}, �lling the �elds with the
information included in the request.

PUT

Replaces an existing piece of data in the Catalog. No information is
returned.

URL = BASEURL/{TABLE}/{ITEM}

Modi�es the item {ITEM} in table {TABLE} by replacing the values as
indicated in the request.

79

Chapter 4. Implementation

URL = BASEURL/{TABLE}/search

Modi�es all the items in {TABLE} that match with the search criteria
by replacing the values as indicated in the request.

DELETE

Deletes a piece of data from the catalog. No information is returned.

URL = BASEURL/{TABLE}/{ITEM}

Delete the item {ITEM} from the table {TABLE}.

URL = BASEURL/{TABLE}/search

Delete all the items in the table {TABLE} that match with the search
criteria.

Other implementation considerations

This section brie�y introduces some general considerations of particu-
lar relevance about the implementation of Cloudcompaas. The use of
REST decouples the components and uni�es the interfaces using stan-
dard technologies for the exchange of information. The communication
mechanisms between components is provided as a set of operations in a
library included in every Cloudcompaas module. The library includes
commands to perform REST operations on target URLs or compo-
nent type, and operations to easily manipulate the XML documents
exchanged.

Components of the platform need to maintain a group view. The
group view consists on the knowledge of the endpoint reference of
other components so that requests can be sent to the appropriate
module as needed. This problem is solved by registering all running
components in the Catalog. The communication library is then able
to query the Catalog and retrieve a list of the available components.
This solution however raises the problem of how does the communi-
cation system retrieve the endpoint reference of the Catalog in the

80

4.3 Dynamic Cloud resources management

�rst place. The solution to this problem consists on the inclusion of
a little bootstrapping step at the beginning of the execution of ev-
ery component. At startup, the modules set up the communication
library with the endpoint reference of at least one running Catalog
that is provided beforehand. The library proceeds to register the cur-
rent component in the Catalog and then retrieves the list of currently
running components, resuming the execution of the module once it is
ready to exchange messages.

The last relevant implementation consideration is the monitoring sys-
tem that feeds the Catalog. This system is left open for third party
software to be plugged in the system. For the current implementation,
a custom service that periodically updates the catalog with the value
of relevant metrics has been developed. Once a VM is deployed, the
contextualization step sends to the service the endpoint reference of
the Catalog components and begins its execution.

4.3 Dynamic Cloud resources management

The Monitor module of the SLA Manager performs the dynamic as-
sessment of the QoS rules from active SLAs. The three basic opera-
tions of the Monitor are updating the SLA terms state, checking the
guarantees state and performing self-management operations. SLAs
registered in the Monitor are set to be updated every certain period
of time, commonly de�ned as monitoring cycle. At each cycle, the
Monitor performs these three operations in order. The monitoring
continues until one of the following conditions becomes true:

• the SLA is completed. This condition is met if the SLA is de-
�ned for a certain period of time, or when it is de�ned on the
basis of particular objectives (e.g. associated to an individual
experiment or execution), which must be completed;

• the SLA is terminated by the consumer;

81

Chapter 4. Implementation

• the SLA is rejected by the provider. An accepted SLA can be
rejected by the framework at any time, although this form of
termination may involve penalties to the service provider.

The update operation consists on the retrieval of the status of the
SLA terms from the Catalog component. Derived or external values,
such as the current time and date, are also computed on this step.
The check step uses the values retrieved in the previous step to de-
termine the status of the guarantee terms. The monitor evaluates the
formulas of the guarantee terms and sets the value of the guarantees
to either Ful�lled or Violated. The self-management step performs the
assessment operations based on the outcome of the guarantee check.
For each guarantee evaluated as Ful�lled, the Monitor performs the
billing operation, charging the user for the service. For each guar-
antee evaluated as Violated, the Monitor performs corrective actions
aimed to restore the proper functioning of the service. Corrective ac-
tions are domain-speci�c functions that act on the con�guration of
the resources. This step e�ectively implements the QoS assessment
capabilities. The WSAG4J framework has been used as the basis for
the development of the SLA Manager component. This open-source
framework has been extended with new components and operations
to ful�l the needs of Cloudcompaas. Figure 4.7 shows the structure
of the modules that have been modi�ed in WSAG4J to perform the
dynamic management of the SLA.

The �rst major modi�cation to WSAG4J is that the guarantee eval-
uation and the SDT monitoring have been decoupled. In the original
implementation of WSAG4J, SDT monitoring is scheduled at �xed
periods of time, with the guarantee evaluation done right after it.
However, this behavior lacks from the �exibility needed to implement
the WS-Agreement speci�cation, which allows service providers to de-
�ne the monitoring cycle for each guarantee term. Therefore, the
monitoring of the state and the evaluation of the guarantees must be
performed independently.

In order to perform these operations, the CloudcompaasMonitor (1)
schedules the execution of a ServiceTermJob (2a) and a GuaranteeTer-
mJob (2b) for each SLA. These two classes are in charge of updating

82

4.3 Dynamic Cloud resources management

Figure 4.7: Monitor architecture

the monitoring information and evaluating the QoS rules for an SLA,
respectively. They exchange information by storing and retrieving the
monitoring information in a shared SLA instance, and using synchro-
nization mechanisms to avoid race conditions.

The ServiceTermJob executes a TermMonitor (3a) at each monitoring
cycle, which updates the state of the SDT. The TermMonitor updates
the state of each individual SDT by executing each one of the available
ServiceTermMonitoringHandler (4a), which are individual handlers
designed to update the di�erent SDT. For instance, the VirtualMa-
chineMonitoringHandler is the handler that gathers the monitoring

83

Chapter 4. Implementation

information that concerns to the virtual machines, and decides the
SDT state, accordingly.

The GuaranteeTermJob (2b) executes an IGuaranteeEvaluator (3b),
which updates the state of each guarantee term of the SLA. Similarly
to the original implementation of WSAG4J, the IGuaranteeEvaluator
uses an IAccountingSystem (4b) to issue rewards and penalties.

One of the major limitations of the original WSAG4J approach, where
SDT monitoring is scheduled at prede�ned times, is that in WSAG4J
the same guarantee term cannot de�ne di�erent monitoring cycles for
di�erent business values (for instance, a 5 min interval for reward,
and a 1 min interval for penalty). Cloudcompaas de�nes a group of
GuaranteeTermJobs per SLA, using a possibly di�erent monitoring
cycles per job de�ned by the templates.

The second major modi�cation to WSAG4J is the introduction of a
self-management component in the monitoring process. In the original
implementation, the IGuaranteeEvaluator issues penalties or rewards
by means of the IAccountingSystem. However, Cloudcompaas needs
autonomic decision making based on the SLA terms.

This capability is introduced by the ISelfManagement (5b) compo-
nent. This component is instantiated when the IGuaranteeEvaluator
evaluates that a guarantee state is violated and it performs the re-
quired operations to restore the state of the violated guarantee.

Each ISelfManagement groups a set of ICorrectiveAction (6b), and
interfaces with the matchmaking system. The ICorrectiveAction pro-
vides the domain-speci�c implementation of the actions required to re-
store a violated guarantee. These actions may range from very generic,
general purpose actions to application speci�c actions. In [107] the au-
thors discuss the dynamic adaptation of Cloud resources, de�ning a
hierarchy of actions to perform for di�erent typical Cloud scenarios.
Several important contributions have been made to this �eld in the
recent years, such as the usage of a knowledge system to decide the
corrective actions to execute [108].

84

4.3 Dynamic Cloud resources management

Implementing the WS-Agreement speci�cation requires that the guar-
antee states to be checked at each monitoring cycle, issuing rewards
and penalties, and applying corrective actions (when needed). How-
ever, corrective action could take longer to execute than the monitor-
ing cycle of the associated guarantee, which may cause the accumu-
lation of corrective actions. For instance, an auto-scaling guarantee
is assessed every 2 minutes. Its corrective action consists on the de-
ployment of new virtual machines. The deployment could take more
than 2 minutes to complete and when the guarantee is checked again
it will still be evaluated as violated, and another corrective action
will be issued. This problem may also appear when the correction
of di�erent guarantees lead to the same corrective action. The issue
of the accumulation of corrective actions has a negative impact in
a SLA-mediated system, because introduces an unnecessary overload
and may cause violations of additional guarantees.

In Cloudcompaas, this issue has been addressed by using a cooldown
approach. To this end, the ISelfManagement de�nes a cooldown for
each corrective action. Every time a new request is received, the cor-
rective action is registered as `ongoing'. When the system receives
a request for a corrective action, which is currently ongoing, then it
ignores the request. Additionally, after the cooldown expires, the on-
going action is deleted from the registry.

Beside these two major modi�cations, other smaller changes have been
made in order to increase the �exibility of the WSAG4J framework and
to adapt it to the particular needs of a multi-tenant environment. For
example, Cloudcompaas has modi�ed the language used for expressing
conditions in WSAG4J. One of the signi�cant contributions to the
language is the introduction of array variables and math operations
as possible values for the KPI of the SLO of the guarantees. Using
these variables, complex values can be expressed, such as the mean
CPU % usage of all deployed virtual machines. Another example is
the possibility of using expressions instead of literals in the value of
rewards and penalties. This change allows SLAs expressing dynamic
prices for the resources. For instance, in Cloudcompaas, it is possible
to express the price as a function of the number of running Virtual
Machines.

85

Chapter 4. Implementation

86

Chapter 5

Experimental results

This chapter introduces the results obtained from the set of experi-
ments. The resource model experiments evaluate the utility achieved
by the SLA composition methodology by simulating how Cloud re-
source requests are served by Cloudcompaas using the methodology
compared to using �xed templates. The Quality of Service experi-
ments evaluates the utility achieved by an elastic Cloud services using
Cloudcompaas QoS assessment rules compared to an static Cloud ser-
vices. The SLA composition experiment evaluates the performance of
the SLA composition algorithm to prove that the applied optimiza-
tions provide competitive performance.

5.1 Quality of Service assessment experiments

This section introduces a set of experiments designed to check the
Quality of Service assessment capabilities of the methodology. The
experiment consists in the simulation of real use case scenarios on
Cloudcompaas, and the measure of the performance is done in terms
of the value of certain QoS indicators. Discussion is made comparing
a �xed Cloud service with an elastic Cloud service.

87

Chapter 5. Experimental results

5.1.1 Setup

The experiment setup consists on the use case described in section 1.4.

The case study simulates a service deployment, which consists on an
SLA template that de�nes three assets: a Virtual Service, a Virtual
Container where this service will be executed, and a Virtual Machine
that will host the Virtual Container.

The experiments use jLinpack as a Virtual Service. The service listens
to user requests for the execution of the Linpack benchmark for a
variable size, de�ned by the user. This service is utilized to re�ect
user requests served by an application demanding intensive CPU and
memory.

The Virtual Container is the software container that enables the ex-
ecution of virtual services. In the experimental setup, the virtual
container is the Java runtime.

The Virtual Machine de�nes the virtual hardware that hosts the vir-
tual containers and services. In the experimental setup, the virtual
machine is a `small' prede�ned instance, which has 512 MB of RAM
and 1 CPU core.

In the experiments, these resources are deployed by the SLA Man-
ager on an IaaS Cloud. The IaaS backend used for the experiments
is an OpenNebula deployment on a cluster composed by 8 nodes run-
ning Ubuntu Server 10.04 (x86-64) on Intel c©Xeon c©Processor L5430
(12M Cache, 2.66 GHz, 1333 MHz FSB). The nodes have 16 GB DDR3
(1333 MHz) of RAM memory and a Hard Drive Disk SATA II (7200
RPM).

5.1.2 Execution scenarios

The case study is composed by three scenarios, and each scenario is
measured in two di�erent con�gurations. The scenarios model the
load from di�erent scienti�c computing domain. The load pro�les
correspond to the usage of the EGI grid by three di�erent scienti�c

88

5.1 Quality of Service assessment experiments

communities [109]. The scienti�c domain load pro�les are extracted
from the real usage of the EGI infrastructure and comprise the exe-
cution of di�erent applications of di�erent users. Those applications
involve mostly multiple batch jobs.

Two con�gurations have been used in the experiments. The �xed
con�guration provides a prede�ned number of Virtual Machines. The
elastic con�guration provides a variable number of Virtual Machines,
governed by the QoS rules of Cloudcompaas.

The metrics measured in the experiments are the price of the resources
and the number of failed user requests. The price is directly related
to the amount of resources used by the IaaS provider to serve the
experiment. The number of failed user requests is a direct re�ection
of the application user satisfaction with the PaaS user / application
provider. This value is complementary to the number of successful
user requests served.

The price of the deployment measures the cost for running the assets
for a certain period of time (the span of the experiment). SLAs de�ne
the price applied to each resource in their guarantee terms. These
guarantees are evaluated at each monitoring cycle of 5 seconds. The
cost a running a single Virtual Machine for 24 hours is 1.44 e. This
price is the same than that of an Amazon EC2 small instance [39].

However these metrics does not enable measuring the tradeo� between
price and failures made between di�erent con�gurations. Usually the
elastic con�guration provides a lower value at the cost of increasing
the number of failed user requests. Whether the tradeo� is positive
or negative depends on the expected revenue produced by each user,
or conversely the pro�t lost for not serving users compared with the
money saved by reducing the price. In order to properly compare dif-
ferent con�gurations, derived metrics are calculated for each scenario.

The average expected revenue per user r is de�ned as the total revenue
divided by the number of users served. Total revenue is the revenue
obtained by the provider from the users of the service. The number
of users served is the number of total users that accessed the service

89

Chapter 5. Experimental results

minus the number of failed users. Failed users are the ones that ac-
cessed the service but ultimately were unable to �nish they requests
successfully.

r =
total revenue

total users− failed users
(5.1)

This value represents the average money the service provider expects
to obtain out of each individual user. Using this derived metric, it is
possible to calculate the pro�t made by di�erent con�gurations with
total users t and failed users f .

profit = r ∗ (t− f)− price (5.2)

Pro�t can be used to properly compare both con�gurations and de-
termine which one perform best. However, pro�t is determined by r,
which is a value that depends on the service o�ered. For the experi-
ments, three derived metrics based in extreme values of r have been
calculate, quantifying the performance di�erence for each con�gura-
tion.

The �rst derived metric is the break-even point Be. This is the value
of r for which both con�gurations provide the same pro�t.

(t− ff) ∗Be− pf = (t− fe) ∗Be− pe (5.3)

Be =
pf − pe
fe − ff

(5.4)

For ff and fe the failed requests for the static and elastic scenarios
respectively and pf and pe the price for the static and elastic scenarios
respectively. This value indicates that for r < Be the elastic con�gu-
ration outperforms the static one. The higher the value, the wider the
range of pro�ts for which the elastic con�guration dominates. How-

90

5.1 Quality of Service assessment experiments

ever, Be is an absolute value, and hence it does not provide enough
information to properly compare both con�gurations.

The second derived metric is the ratio of over performance Or. This
value represents the ratio of pro�t (i.e. di�erence between revenue and
infrastructure cost) for which the elastic con�guration provides better
performance than the static one. In order to derive Or from Be, the
value of r for which the pro�t is 0, r0f , is needed.

r0f =
pf

t− ff
(5.5)

Or =
Be

r0f
(5.6)

Therefore, whenever the ratio of pro�t of the static scenario is lower
than Or, the elastic scenario will outperform the static one.

The third derived metric is the ratio of pro�tability Pr. It might
happen that, since the price of the elastic con�guration is lower, a
value for r that is not pro�table in the static con�guration is indeed
pro�table in the elastic one. The pro�tability ratio represents the
percentage of values of r that are pro�table for the elastic scenario
but they are not for the static one. The higher the value, the wider
the range of revenues for which the elastic scenario outperforms the
static one. In order to calculate the ratio, the values of r0, r0f and
r0e, for which the pro�t of the static and elastic con�guration is 0
need to be calculated.

r0e =
pe

t− fe
(5.7)

Pr = 1− r0e
r0f

(5.8)

Moreover, the sign of Be and Pr give information about the general
behavior of the elastic con�guration respect the �xed one. If both
values are positive, the elastic con�guration outperforms the �xed one

91

Chapter 5. Experimental results

for r < Be. If Be is negative and Pr is positive, the elastic con�gu-
ration outperforms the �xed one for all values of r. If both values are
negative, the elastic con�guration will never outperform the �xed one.

5.1.3 Experimental results and discussion

The three modelled scenarios correspond to the user load pro�le of
Grid users in the �elds of Chemistry, High-Energy Physics and Fusion.
The Chemistry scenario begins with a very high user load that steadily
drops until the half of the experiment, where it begins to rise again.
At about three quarters of the experiment the load falls. The High-
Energy Physics scenario begins with a very high user load, and keeps
about the same load all along the experiment until the end. The Fusion
scenario begins with a very low load, until about three quarters of the
experiment where the user load peaks to the maximum value and drops
again almost immediately to the previous values.

For each one of these scenarios the performance is measured in two
di�erent con�gurations. One con�guration consists on allocating stat-
ically the minimum number of replicas needed to serve the maximum
load on the experiment. The second con�guration consists on allocat-
ing an initial number of replicas that are managed by Cloudcompaas.
Cloudcompaas dynamically asses the QoS rules for the Virtual Service,
which specify the adequate load regime for a proper performance. Us-
ing these rules the framework allocates and deallocates replicas on the
�y to balance the current service load.

Each experiment is illustrated with a �gure that includes the number
of requests, number of replicas and failed requests per unit of time.
A request is a user interaction with the service, while a failed request
is a user interaction that times out un�nished. The total number of
requests, price and failed requests for each experiment is included,
and the derived metrics Be, Or and Pr calculated. Table 5.1 summa-
rizes the metrics calculated for each experiment. Discussion in base
of the value of these metrics is made in order to estimate the relative
performance of both con�gurations for each scenario.

92

5.1 Quality of Service assessment experiments

Scenario Con�g.
Total Failed

Price Be Or Pr
requests requests

Chemistry
Fixed

247,971
40 10.05e

0.0082e 20,229% 70.44%
Elastic 901 2.96e

High-Energy Fixed 122 10.22e
Physics Elastic

565,259
158 9.96e

0.0071e 39,261% 2.54%

Fusion
Fixed

174,467
150 10.06e

0.1680e 291,106% 66.89%
Elastic 190 3.33e

Table 5.1: Summary of experimental results.

Figure 5.1: Experiment for the Chemistry scenario.

Figure 5.1 depicts the experimental results for the Chemistry scenario.
Chemistry has an execution pro�le that exhibits a moderate variable
load, with two alternating peaks and valleys of high and medium/low
load. For the �xed con�guration, 7 machines are able to accommo-
date the load peaks, producing 40 failed requests out of 247,971, which
enters the random failure margin1. The total price is 10.05e, which
corresponds to the number of credits needed to keep 7 machines run-
ning for roughly 24 hours. This price is similar for all three �xed

1Random failures correspond to failed requests due to network, computing or
other errors independent from server capacity. Experiments suggests a random
failure margin of 0∼200 for the presented scenarios.

93

Chapter 5. Experimental results

scenarios, since the same number of machines is run for the same
amount of time.

For the elastic con�guration the number of failures is 901, more than
20 times higher than the �xed con�guration. These failures come
from the delay between the framework detecting an overload of the
computational resources and the deployment of extra replicas to ac-
commodate this load. Fine-tuned QoS rules or the usage of predictive
models along with reactive techniques may reduce this delay and the
number of extra failed requests.

On the other hand, the price for this con�guration is 2.96e, less than
a third part of the �xed con�guration. This reduction in price comes
for the downscale of the infrastructure when the load is not at its peak
value. Since the load is at sub-peak values for most of the experiment,
by turning o� unused machines great savings are achieved.

Even though a reduction of a third of the price at the cost of 20 times
more failures may intuitively seem a bad trade, the derived metrics
show that the elastic con�guration performs well. The Be is 0.0082,
with a Or of 20,229% and a Pr of 70.44%. These values indicate that
even though the failures increase considerably, the reduction in price
makes up for the revenue lost by not serving the clients. Assuming
that all the clients are equally valuable, a service would need a pro�t
higher than 20,229% the price of the Cloud service in order for the �xed
con�guration to outperform the elastic one. Also the Pr of 70.42%
shows that there is a wide range of services that are not pro�table
under the �xed con�guration, but are pro�table under the elastic one.

Figure 5.2 depicts the experimental results for the High-Energy Physics
scenario. It has an execution pro�le that exhibits an almost constant
high load with little variability. The �xed con�guration produces 122
failed requests for a price of 10.22e, while the elastic scenario yields
158 failures for a price of 9.96e.

The behavior of both con�gurations is very similar on this scenario.
Since the load variability is very low, the elastic scenario keeps running
7 machines during the complete duration of the experiment, up until

94

5.1 Quality of Service assessment experiments

Figure 5.2: Experiment for the High-Energy Physics scenario.

the end when the load falls to 0. The elastic scenario therefore achieves
a small saving in the cost while providing virtually the same number of
failures, since both experiment are within the random failure margin.

This fact is re�ected on the derived metrics. The elastic con�guration
has a negligible Pr of 2.54%, since it essentially behaves as the �xed
con�guration. The Be is 0.0071 and the Or 39,261%, which is sensi-
bly lower than the Chemistry scenario. Nevertheless the value of Or
indicate that the little savings obtained by the elastic scenario for the
same number of failures produces a positive performance.

Figure 5.3 depicts the experimental results for the Fusion scenario.
Fusion has an execution pro�le that exhibits a low load for most of
the time, with a peak of very high load on the second half of the pro�le.
This peak last for a small fraction of the total duration, and it has
the steepest variation of all the experiments. The �xed con�guration
produces 150 failed requests with a total price of 10.06e, while the
elastic scenario produces 190 failures for a price of 3.33e.

The most notable comparison is that the number of failures is very
similar in both cases. This fact is due to the ability of the frame-
work to detect an increase in the load and react quickly deploying

95

Chapter 5. Experimental results

Figure 5.3: Experiment for the Fusion scenario.

new replicas when the load peek occurs, with a small number of fail-
ures happening as the load goes up. The �xed con�guration of this
scenario is a clear case of overprovisioning, since the resources are idle
for most of the execution. Overprovisioning scenarios are favorable
for an elastic con�guration, since great savings could be achieved by
turning o� idle resources. The experimental metrics back o� this in-
tuitive appreciation, as the price of the elastic scenario is roughly one
third of the �xed one.

Derived metrics indeed show that this is the scenario for which the
elastic con�guration achieves the best performance. With a Be of
0.1680 and a Or of 291,106%, that is, around 17 times higher than
the Chemistry scenario. This is due to the fact that the elastic con-
�guration yields almost the same number of failures than the �xed
con�guration, but provides a substantial saving in price. On the other
hand the Pr is 66.89%, comparable to the value obtained for the
Chemistry scenario.

Some general conclusions can be drawn from the experimental results
obtained from the di�erent scenarios. First, the experimental results
show the general tendency of elastic con�gurations to yield a higher
number of failures, due to the delay in the deployment of new resources

96

5.2 Resource model experiments

in response to load increases, and lower price, due to the deployment
of less resources when the load is low. Second, for services that serve
a large number of users and rely on economies of scale to provide
pro�ts, the tradeo� between failures and cost is positive, since the
opportunity cost of not serving users is lower than the money saved
in the infrastructure. Third, the performance of the elastic con�gura-
tion depends on the load pro�le of the service. For a load with little
variance, the elastic con�guration provides little advantage. For an
average variable load, the elastic con�guration provides a large per-
formance improvement. The best scenario occurs for very irregular
loads with large peaks, where the elastic con�guration vastly outper-
forms the �xed one by avoiding overprovisioning of resources. Fourth,
the Pr values for the variable load pro�les show that there is a wide
range of services that not being pro�table under an �xed con�guration
might indeed be pro�table by adopting an elastic con�guration.

5.2 Resource model experiments

This section presents a set of experiments designed to check the advan-
tage provided by the methodology regarding Cloud services modeling.
The experiment consists in the simulation of user request for VMs in
a Cloud service and the measure of the performance, in terms of the
value of certain indicators, such as cost and number of failed requests.
Discussion is made concerning the utility achieved using static tem-
plates for the provision of resources compared to the utility achieved
using composed SLA templates.

The experiment setup consists on the simulation of a medium size
Cloud infrastructure. The experiment de�nes two scenarios, one using
static templates for the VM con�guration and other using composed
SLA fragments. Each user requests from the framework a Virtual
Machine with certain memory requirements, CPU requirements and
Time To Live (TTL), and the framework answers providing with the
smallest VM con�guration that complies with the required resources.
The �rst scenario (static templates) de�nes seven static VM con�gu-
ration templates, as illustrated in Table 5.2. This scenario is analog to

97

Chapter 5. Experimental results

VM Size Memory (GB) Cores

1 2 1
2 4 2
3 8 4
4 16 8
5 32 16
6 64 32
7 128 64

Table 5.2: VM resources for the experiments.

current available commercial Cloud providers. Cloud providers usu-
ally o�er a limited set of resource alternatives. This limited o�er is
justi�ed by the providers by the ease of managing a small number of
alternatives as well as simplifying the decision for the user. The fact
of using resource sizes which are multiples of one another is usually
justi�ed by the assumption that these sizes lower the fragmentation of
the computing cluster memory and cores when Virtual Machines are
allocated.

The second scenario (composed templates) de�nes 64 memory tem-
plates (from 2 to 128 in steps of 2) and 64 cores templates (from 1
to 64). These templates are composed covering all possible pairs a
total of 64*64=4096 combinations. The simulation setup considers
requirements up to 128 GB RAM and 64 cores. Each scenario can be
measured on one side from the Cloud user point of view and on the
other side from the Cloud provider point of view. This duality allows
the experiment to provide a global vision of the potential advantages
and disadvantages of both approaches.

From the Cloud user point of view, the indicators of the performance
of the Cloud infrastructure are the cost of running the Virtual Machine
and the number of SLA violations. From the Cloud provider point of
view, the indicators of performance of the Cloud infrastructure are
the number of active physical nodes and the number of rejected user
requests.

98

5.2 Resource model experiments

5.2.1 Client-side setup

The cost of running a VM is the cost of the resources utilized multi-
plied by the running time. The number of SLA violations is related
to the expected Quality of Service in the delivery of the resources.
The QoS target on this experiment has been de�ned as the resources
provided with respect to the resources required by the user. However,
VM may produce peaks of load that go beyond its capacity. Since the
experiments do not model a Cloud platform that provides QoS assess-
ment, every time the VM load goes beyond its capacity, this behavior
is considered a SLA violation. In order to model SLA violations, it
is necessary to de�ne its frequency and magnitude. The frequency of
violations is simply de�ned by a probability γ, and the magnitude of
the violation is de�ned using a normal distribution with mean µ and
standard deviation σ. At each simulation cycle, a random roll is done
on this probability to decide whether a violation occurs, and a second
random roll on a normal distribution N(µ, σ2) decides the magnitude
of the violation.

Client-side results and discussion

The simulation experimental results under the user point of view are
summarized in Table 5.3. The values obtained for the cost and viola-
tions are in concordance with the model of the scenarios. The static
template scenario incurs in a higher cost since the user has less �exi-
bility to choose the con�guration of the templates, as opposed to the
composed scenario. On the other hand, the number of violations is
signi�cantly lower, since the di�erence between the required and the
provided resources is higher in the static templates scenario than in
the composed templates. This di�erence represents the spare resources
that user applications may use before a QoS violation is raised.

The value of cost per violation is used to provide a fair comparison
of the performance of between the di�erent approaches. The cost per
violation is the product of the cost and the average number of viola-
tions, and represents the balance between both parameters. The value
of this parameter is 170% higher on the composed scenario, represent-

99

Chapter 5. Experimental results

Scenario Cost Violations

Static 0.61 3.78
Composed 0.46 13.29

Table 5.3: Results from the user point of view.

Scenario Cost Violations

Static +20% 0.78 0.60
Composed +20% 0.51 0.68

Table 5.4: Results from the user point of view for the overprovisioning

scenarios.

ing that the reduction of the cost is outweighed by the increase in the
number of violations. Since SLA violations depend on the surplus of
resources provided with respect to the resources required, this prob-
lem can be mitigated by enforcing SLAs to perform an overprovision
of resources. Overprovisioning consists on assigning to the users a cer-
tain quantity of resources on top of the user request. This technique
may end up assigning larger templates or the same templates to each
request. The composed scenario is prone to provide larger templates,
since the range of resources is smaller. The static scenario is prone to
provide the same template, since the range of resources is larger, and
this usually conveys an implicit overprovisioning of resources. Table
5.4 summarizes the experimental results obtained with an overprovi-
sioning factor of 20% of the user request.

The results show that increasing the number of allocated resources
e�ectively reduces the number of violations, incurring in a higher cost.
However, the reduction on the number of violations in the composed
scenario is notably higher than in the static scenario. On this case the
cost per violation is 34% higher on the static scenario. This value
represents that, using a 20% overprovisioning value, the composed
scenario o�ers better performance, balancing out the increase in the
number of violations with a lower cost.

100

5.2 Resource model experiments

5.2.2 Provider-side setup

The experiment simulates a cluster where clients allocate Virtual Ma-
chines on demand. Clients can request the allocation of a VM or shut
down a running one at any time. The time that a particular VM
is running is de�ned as its Time To Live (TTL). The rate at which
clients request the deployment of a new VM is de�ned as the arrival
rate of requests. The number of active physical nodes on a cluster
de�nes how much energy the cluster consumes, and hence is a factor
in the monetary cost of the infrastructure management. This value is
averaged on the length of the experiment. The number of rejected user
requests represents the number of VM requests from users that cannot
be served since there are not enough free resources. If no machine in
the cluster has enough free resources to allocate a user request, it is
rejected. This typically occurs when the infrastructure is almost at
full capacity.

The simulation runs on discrete units of time de�ned as simulation
cycles. At each cycle, the arrival rate de�nes the chance that a user
requests the deployment of a new VM (e.g. an arrival rate of 0.9
implies a 90% chance that a new request is issued). The VM Memory,
Cores are drawn at random following a uniform distribution. The TTL
is drawn from an exponential distribution such that 99% of them is
lower than a certain value de�ned in the simulation, the 99 percentile
TTL. When a request is received, the platform chooses the physical
node that will host the VM using the best �t strategy. Best �t selects
a candidate host such that it has enough free resources to allocate the
VM and the spare resources left after the allocation are the minimum
of all possible candidates, that it, it selects the machine that �t best
the request. In case no active physical node has spare resources to
allocate the VM, a new physical node is added to the cluster active
node list. In case no more nodes are available in the cluster, the user
request is rejected. At each cycle the simulation assesses the VM state,
calculating possible violations, cost and diminishing its TTL. Once the
TTL of a VM reaches 0, the VM is eliminated. If the hosting physical
node becomes empty due to this operation, the node becomes inactive.

101

Chapter 5. Experimental results

Parameter Small Default Large

Cores 40 80 160
Memory 80 GB 160 GB 320 GB
Arrival rate 0.1 0.5 0.9
99% TTL 500 1000 2000

Table 5.5: Parameters of the cluster con�guration.

The hardware con�guration of the simulation mimics that of a real
Cloud infrastructure from a Google datacenter. Section 6.7 of [110]
shows how a rack from the Google datacenter in Las Vegas is com-
posed by 20 servers, each one with two processors AMD Barcelona
(dual core) and 8 GB of RAM, for a total of 20 machines, 80 cores
and 160 GB of RAM. Preliminary tests proved that the behavior of
the platform is highly dependent on the con�guration of the param-
eters of the simulation. In order to generalize the conclusions of the
experiments, several cluster con�gurations have been used to measure
the value of the performance indicators.

Table 5.5 summarizes the con�guration values used on the simulations.
The values a�ecting the performance of the experiments are the ca-
pacity (number of cores and memory) per machine, the arrival rate
and the 99 percentile TTL. Each experiment set all parameters to the
default value except for one. Then, two experiments are performed
setting the free parameter to the small and large value respectively.
This method enables comparing the impact on the experiment out-
come of the variation each parameter individually.

Provider-side results and discussion

The experimental results under the provider point of view are illus-
trated at Figure 5.4. The experiments with di�erent simulation values
enable comparing the performance of the scenarios in several situations
and draw conclusions about the general behavior of both approxima-
tions. Notice that the overprovisioning ratio has not been included in
the experiments, since from the provider point of view the overprovi-

102

5.3 Algorithm Performance

sioning is transparent, as he only sees requests for resources. Experi-
ments show distinctive trends in the performance of the scenarios.

0
2
4
6
8

10
12
14
16
18
20

Ac
tiv

e
N

od
es

Nodes Static

Nodes Composed

0%

5%

10%

15%

20%

25%

Re
je

ct
io

n
ra

te

Rejection Static

Rejection Composed

Figure 5.4: Active VM and rejection rate for each scenario and con�gu-

ration.

The �rst trend shows that when the number of active VM is lower than
20, the experiments produce almost no rejections. This occurs because
the cluster is not working at full capacity i.e. it has spare resources
to accommodate user requests. Conversely when the number of active
VM is close to 20 the rejection rate increases dramatically. This occurs
because the cluster is at full capacity and it cannot accommodate more
user requests. The second trend shows that the values obtained for
the composed scenario are consistently lower than the static scenario
for both rejection rate and number of active VM. This trend implies
that the composed scenario is able to �t more user requests using
the same number of machines. This ability to �t more users in the
same number of machines implies that when the cluster is not at full
capacity, less machines are needed to serve users, and when the cluster
is at full capacity, more users can be served with the same number of
machines.

5.3 Algorithm Performance

This set of experiments explores the performance of the execution
of SLA composition algorithm. These experiments explore the im-
pact of the number of restrictions imposed by a user in the execution

103

Chapter 5. Experimental results

time of the optimized version of the algorithm. Notice that the non-
optimized versions of the algorithm run on exponential time, making
the comparison with the optimized version unpractical. The aim of
the experiment is to measure the performance of the best version of
the algorithm available. This implementation includes the following
optimizations.

• branch and bound by size;

• dynamic programming;

• guided solution space exploration;

• trimming by semantic constraints;

• trimming by user constraints.

The cost of the algorithm has been measured in steps, where each step
is a recursive invocation of the algorithm main body. The experiments
have been performed by issuing user request with varying number of
restrictions and number of SLA fragments of each resource category.
A user restriction is a condition imposed in the composition algorithm.
For instance, the following conditions are restrictions, VM = small,
Runtime = Java, Service = jLinpack. Restrictions reduce the search
space in the composition algorithm, and therefore reduce execution
cost. The experiment aims to measure how introducing more restric-
tions impacts on the execution cost. The number of SLA fragments
represents how many SLA the framework stores for each resource cat-
egory. A value of 4 indicates 4 SLA fragments for VM, Runtime,
Service, etc. The motivation is that each user request explores a dif-
ferent set of resources, and therefore increasing the number of only one
category of resources will produce varying results for di�erent search
executions. The experiment aims to measure how the global grow of
the number of SLA fragments and the restrictions imposed by the user
impact the execution cost.

104

5.3 Algorithm Performance

0

5000

10000

15000

20000

25000

2 4 8 16 32 64

Ex
ec

ut
io

n
st

ep
s

Number of fragments of each category

1 restriction

2 restrictions

3 restrictions

Figure 5.5: Execution time for the SLA composition algorithm for di�erent

number of SLA fragments and user query parameters.

5.3.1 Algorithm Performance results and discussion

Figure 5.5 shows the execution steps obtained for di�erent user queries
and number of template fragments for the fully optimized algorithm.

The number of execution steps grows with the size of the search space.
However the progression of the growth di�ers signi�cantly for di�erent
cases. For queries with one restriction, a polynomial regression �ts
the growth curve to a second degree polynomial with a correlation
coe�cient of 0.999999, and queries with two and three restrictions �t
to a one degree polynomial with a correlation coe�cient of 1.

The algorithm reduces the execution steps as more restrictions are
added. This tendency become irregular between one and two restric-
tions, where the number of execution steps greatly decreases reducing
the asymptotic cost from O(n2) to O(n). This experiment shows the
unpredictable nature of the branch and bound algorithm in the num-
ber of execution steps for di�erent cases. Even though the theoretical
cost of the algorithm is O(2n), the experimental cost of the algorithm
for typical inputs approximates O(n2), and can go down to O(n) for
some input restrictions.

105

Chapter 5. Experimental results

106

Chapter 6

Concluding remarks

This Thesis introduces a novel methodology for the representation of
Cloud services using Service Level Agreements. This methodology
provides several advantages such as an independent de�nition of each
element, composition of SLAs and lower cost for domain representa-
tion. This methodology avoids ad-hoc formulations since it is based
on available standards. It provides SLA-driven Cloud platforms with
an integrated solution to the problem of the representation Cloud ser-
vices. As a fundamental component of the methodology stands the
SLA composition algorithm. This Thesis introduces the design and
optimized implementation of this algorithm, which enables on-the-�y
composition of SLA fragments in order to produce complete SLA tem-
plates, and captures the dynamic nature of a Cloud environment.

The proposed methodology also tackles the static and dynamic fea-
tures of Cloud services. A model for the representation of resources
and their dependences has been de�ned. Also general mechanisms for
the management of the QoS and dynamic aspects of Cloud services
has been developed and tested.

A use case on a simulated environment shows how composed SLA doc-
uments are able to represent information more concisely and provide
better utility than �xed SLA documents. Users are able to reduce

107

Chapter 6. Concluding remarks

the cost by adjusting the resource request to the expected resource
usage at a �ner scale. Providers are able to serve more users using
fewer machines, obtaining greater pro�t by reducing cost and increas-
ing revenue. The methodology also encompasses open problems that
provide further research work into this topic. Future works include
a restriction representation system, including more complex relation-
ships between elements and restrictions checking at a semantic level.

This Thesis introduces Cloudcompaas, a SLA-driven Cloud frame-
work. Cloudcompaas features an extension of the WS-Agreement SLA
speci�cation providing an SLA-driven management of the complete
Cloud resource lifecycle. Finally, a complete working prototype has
been introduced as a proof of concept, showcasing an elastic deploy-
ment. A set of experiments for di�erent load pro�les and con�gura-
tions measure key metrics that quantify the performance improvement
provided by using an elastic con�guration.

The integral approach followed by the Cloudcompaas project features
some open problems that originates a wide variety of research lines.
These research lines includes but are not limited to a negotiation pro-
tocol for the establishment of SLA, the design of monitoring systems,
a decision making system for the election of the corresponding correc-
tive action for each type of violation, distributed SLA monitoring and
a disaster recovery protocol.

108

Appendix A

Curriculum Vitae

Andrés García García started working in the High Performance and
Grid Computing Group (GRyCAP) in November 2007 as an under-
graduated. Upon obtaining the bachelor in computer science by the
Universitat Politècnica de València (UPV) in September, 2008, he
joined the group as a graduate under a collaboration fellowship. He
obtained the Master Degree in September 2010 with the Master Thesis
Cloud computing PaaS Platform - Cloudcompaas. Since then, he con-
tinued developing the Cloudcompaas framework speci�cally towards
the �eld of Service Level Agreements as the subject of his Ph.D. The-
sis.

Participation in research projects

Title: Organización y Puesta en Marcha de la red de e-ciencia en
España (CAC-2007-52)
Entity: Universitat Politècnica de València.
Duration: 3 years.

Title: Supporting and structuring Healthgrid activities & research in
Europe: Developing a roadmap.

109

Chapter A. Curriculum Vitae

Entity: European Commission.
Duration: 2 years and 4 months.

Title: Biomasa@UPV, set up of a Desktop Grid infrastructure for the
optimization of energy resources.
Entity: GRyCAP, Instituto ITACA, UPV, in colaboration with the
Instituto de Ingeniería Energética (IEE), UPV.
Duration: 6 months.

Fellowships

Name: Beca para la Formación de Personal Investigador de carácter
predoctoral.
Funding entity: Generalitat Valencia.
Fellowship aim: Carrying out the Master Degree and Ph.D. Thesis.
Duration: 04/2009∼04/2013
Destination entity: Instituto ITACA, UPV; Instituto I3M, UPV.

Name: Collaboration fellowship.
Funding entity: Universitat Politècnica de València.
Fellowship aim: Carrying out the Ph.D. Thesis, participation in
other research projects.
Duration: 10/2008∼03/2009
Destination entity: Instituto ITACA, UPV.

Name: Specialization fellowship.

Funding entity: Universitat Politècnica de València.
Fellowship aim: Carrying out the Computer Science degree Disser-
tation.
Duration: 12/2007∼09/2008
Destination entity: Instituto ITACA, UPV.

110

Participation in conferences, workshops and other scienti�c

events

Name: 3a Reunión Plenaria de la Red Española de e-Ciencia.
Place: Universitat Politècnica de València, Valencia, Spain, 29-30/10/2009.
Organizer: Grupo de Grid y Computación de Altas Prestaciones,
GRyCAP, UPV.
Participation: Organization.

Name: Cracow Grid Workshop 2009.
Place: AGH University of Science and Technology, Kracow, Poland,
12-14/10/2009.
Organizer: ACC Cyfronet AGH, Institute of Computer Science AGH,
IFJ PAN
Participation: Speaker.

Name: Ibergrid 2009
Place: Universitat Politècnica de València, Valencia, Spain, 20-22/05/2009.
Organizer: Grupo de Grid y Computación de Altas Prestaciones,
GRyCAP, UPV.
Participation: Organization, Speaker.

Name: I Jornadas Ibéricas de Supercomputación.
Place: Universitat Politècnica de València, Valencia, Spain, 19/05/2009.
Organizer: Centro Informático Cientí�co de Andalucía (CICA) Junta
de Andalucía.
Participation: Organization.

Name: IX Jornadas de seguridad RedIRIS: Cloud computing.
Place: Universitat Politècnica de València, Valencia, Spain, 10/03/2011.
Organizer: RedIRIS.
Participation: Attendee.

111

Chapter A. Curriculum Vitae

Name: 6th International Conference on Software and Data Technolo-
gies, ICSOFT 2011.
Place: Universidad de Sevilla, Sevilla, Spain, 18-21/06/2011.
Organizer: Institute for Systems and Technologies of Information,
Control and Communication (INSTICC).
Participation: Speaker.

Courses

Name: Cloud computing: Tecnologías y Herramientas para Trabajar
en la Nube.
Organizer: Universitat Politècnica de València.
Duration: 32 hours.

Publications

Paper �Design of a Platform of Virtual Service Containers for Service
Oriented Cloud Computing�, CGW 2009 Proceedings. March 2010.

Paper �Biomass@UPV: Computacional Resources Optimization of
GIS-based Applications using a BOINC Infrastructure�, 3rd Iberian
Grid Infrastructure Conference Proceedings, May 2009.

Paper �Overview of current commercial PaaS platforms� has been
sent to the Workshop �IWCCTA 2011 - International Workshop on
Cloud computing, Technology and Applications�, inside the frame-
work of the conference �ICSOFT 2011 - 6o International Conference
on Software and Data Technologies�, July 2011

Paper �Towards SLA-driven Management of Cloud Infrastructures to
Elastically Execute Scientic Applications�, Miguel Caballer, Andrés
García, Germán Moltó, and Carlos de Alfonso, Ibergrid 2012.

112

Paper A. García García, et al., �SLA-driven dynamic cloud resource
management�. Future Generation Computer Systems (2013),
http://dx.doi.org/10.1016/j.future.2013.10.005

Paper Andrés García García, and Ignacio Blanquer Espert, �Cloud
domain representation using SLA composition�. Journal of Grid Com-
puting, under review.

Paper Toni Masteli¢, Andrés García García, and Ivona Brandic, �To-
wards Automatic Management of XaaS O�erings�. CCGRID 2014,
under review.

Paper Miguel Caballer, et al., �A Platform to Enable Execution of
Programming Models on the Clouds�. Journal of Systems and Soft-
ware, under review.

Research visits

Duration: 01/02/2013∼30/04/2013
Host institution: Distributed Systems Group, Technische Univer-
sität Wien
Topic of the visit: Integration of the M4Cloud tool with the Cloud-
compaas framework.

113

Bibliography

[1] P. Mell and T. Grance, �The NIST de�nition of cloud computing
(draft),� NIST special publication, vol. 800, no. 145, p. 7, 2011.

[2] The Open Cloud Manifesto, �Cloud Computing Use Cases White
paper,� tech. rep., The Open Cloud Manifesto, 2010.

[3] The VENUS-C consortium, �Virtual Multidisciplinary Environ-
ments Using Clouds,� 2012.

[4] SIENA, �SIENA Roadmap on Distributed Computing Infras-
tructure for e-Science and Beyond Europe,� tech. rep., SIENA,
2012.

[5] P. Deussen, K.-P. Eckert, L. Strick, and D. Witaszek, �Cloud
Concepts for the Public Sector in Germany-Use Cases,� tech.
rep., Fraunhofer Institute FOKUS, 2011.

[6] R. Nyrén, A. Edmonds, A. Papaspyrou, and T. Metsch, �Open
Cloud Computing Interface - Core,� tech. rep., Open Grid Fo-
rum, 2010.

[7] D. M. T. Force, �Cloud Infrastructure Management Interface,�
tech. rep., Distributed Management Task Force Inc., 2013.

[8] SNIA, �SNIA Cloud Data Management Interface,� 2010.
http://www.snia.org/tech_activities/standards/curr_standards/
cdmi [Online; accessed 12-12-2013].

115

Bibliography

[9] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
�Cloud computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility,� Future
Gener. Comput. Syst., vol. 25, pp. 599�616, June 2009.

[10] A. McCloskey, B. Simmons, and H. Lut�yya, �Policy-based dy-
namic provisioning in data centers based on SLAs, business rules
and business objectives,� in Network Operations and Manage-
ment Symposium, 2008. NOMS 2008. IEEE, pp. 903�906, 2008.

[11] Q. He, J. Yan, R. Kowalczyk, H. Jin, and Y. Yang, �Lifetime
service level agreement management with autonomous agents for
services provision,� Inf. Sci., vol. 179, pp. 2591�2605, July 2009.

[12] S. Hudert, H. Ludwig, and G. Wirtz, �Negotiating SLAs-
An Approach for a Generic Negotiation Framework for WS-
Agreement,� Journal of Grid Computing, vol. 7, no. 2, pp. 225�
246, 2009.

[13] M. Chhetri, J. Lin, S. Goh, J. Yan, J. Y. Zhang, and R. Kowal-
czyk, �A coordinated architecture for the agent-based service
level agreement negotiation of Web service composition,� in Soft-
ware Engineering Conference, 2006. Australian, pp. 10 pp.�,
2006.

[14] O. Rana, M. Warnier, T. B. Quillinan, and F. Brazier, �Monitor-
ing and Reputation Mechanisms for Service Level Agreements,�
in Proceedings of the 5th international workshop on Grid Eco-
nomics and Business Models, GECON '08, (Berlin, Heidelberg),
pp. 125�139, Springer-Verlag, 2008.

[15] L. Eyraud-Dubois, H. Larchevêque, et al., �Optimizing Resource
allocation while handling SLA violations in Cloud Computing
platforms,� in IPDPS-27th IEEE International Parallel & Dis-
tributed Processing Symposium, 2013.

[16] V. Emeakaroha, T. Ferreto, M. Netto, I. Brandic, and
C. De Rose, �CASViD: Application Level Monitoring for SLA

116

Bibliography

Violation Detection in Clouds,� in Computer Software and Ap-
plications Conference (COMPSAC), 2012 IEEE 36th Annual,
pp. 499�508, 2012.

[17] I. Breskovic, J. Altmann, and I. Brandic, �Creating standardized
products for electronic markets,� Future Generation Computer
Systems, vol. 29, no. 4, pp. 1000 � 1011, 2013.

[18] A. García, C. de Alfonso, and V. Hernández, �Design of a Plat-
form of Virtual Service Containers for Service Oriented Cloud
Computing,� in Cracow Grid Workshop '09 Proceedings, (Cra-
cow, Poland), pp. 20�27, ACC CYFRONET AGH, 2010.

[19] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
T. Nakata, J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu, �Web
Services Agreement Speci�cation (WS-Agreement),� tech. rep.,
Global Grid Forum, Grid Resource Allocation Agreement Pro-
tocol (GRAAP) WG, Sept. 2011.

[20] Fraunhofer Institute SCAI, �WSAG4J: The WS-Agreement for
Java framework,� 2011.

[21] J. Marko�, �Internet Critic Takes on Microsoft,� The New York
Times, April 9, 2001.

[22] E. Schmidt, �Conversation with Eric Schmidt hosted by Danny
Sullivan , Search Engine Strategies Conference,� August 9,
2006.
http://www.google.com/press/podium/ses2006.html [Online;
accessed 12-12-2013].

[23] B. contributors, �Why Can`t We Compute in the Cloud?,� The
New York Times, August 24, 2007.

[24] P. U. s Center for Information Technology Policy, �Computing
in the Cloud Workshop,� Januray 14-15, 2008.

[25] eBay Inc., � eBay ,� 2010.
http://www.ebay.com/ [Online; accessed 12-12-2013].

117

Bibliography

[26] Google Inc., � Google Docs ,� 2010.
http://docs.google.com/ [Online; accessed 12-12-2013].

[27] Google Inc., �Google App Engine,� 2012.
http://code.google.com/appengine/ [Online; accessed 12-12-
2013].

[28] L. Ellison, �Quote from Larry Ellison,� September 26, 2008.

[29] Gartner Inc. , � Gartner's 2009 Hype Cycle Special Report Eval-
uates Maturity of 1,650 Technologies ,� tech. rep., Gartner Inc.,
August 11, 2009.

[30] Microsoft Corporation, �Windows Azure,� 2012.
http://www.microsoft.com/windowsazure/ [Online; accessed
12-12-2013].

[31] Sun Microsystem , � Network.com, posteriormente renombrado
Sun Cloud ,� 2010. [O�ine. Sun Cloud fue cancelado tras la
adquisición de Sun Microsystem por parte de Oracle Corpora-
tion].

[32] International Business Machines Corp. , � Blue Cloud ,� 2010.
http://www-03.ibm.com/press/us/en/pressrelease/22613.wss
[Online; accessed 12-12-2013].

[33] M. Armbrust, A. Fox, R. Gri�th, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, �Above the Clouds: A Berkeley View of Cloud
Computing,� Tech. Rep. UCB/EECS-2009-28, EECS Depart-
ment, University of California, Berkeley, Feb 2009.

[34] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner,
�A break in the clouds: towards a cloud de�nition,� SIGCOMM
Comput. Commun. Rev., vol. 39, pp. 50�55, Dec. 2008.

[35] University of Chicago , � Nimbus ,� 2010.
http://www.nimbusproject.org/ [Online; accessed 12-12-2013].

[36] Abiquo , � Abiquo ,� 2010.
http://www.abiquo.com/ [Online; accessed 12-12-2013].

118

Bibliography

[37] e. a. Keith Je�ery, Burkhard Neidecker-Lutz, �The Future Of
Cloud Computing,� tech. rep., European Commission, 2009.

[38] Distributed Management Task Force, �Open Virtualization For-
mat,� tech. rep., Distributed Management Task Force Inc., 2013.

[39] Amazon.com Inc., �Amazon EC2 (Elastic Compute Cloud),�
2012.
http://aws.amazon.com/ec2/ [Online; accessed 12-12-2013].

[40] IBM, �IBM Smart Cloud,� 2012.
http://www.ibm.com/cloud-computing/us/en/ [Online; ac-
cessed 12-12-2013].

[41] Hewlett-Packard Development Company, L.P., �HP Cloud,�
2012.
https://www.hpcloud.com/ [Online; accessed 12-12-2013].

[42] AppFog, Inc. , � AppFog ,� 2013.
https://www.appfog.com/ [Online; accessed 12-12-2013].

[43] Apprenda Inc. , � Apprenda ,� 2013.
http://apprenda.com/ [Online; accessed 12-12-2013].

[44] CloudBees Inc. , � CloudBees ,� 2013.
http://www.cloudbees.com/ [Online; accessed 12-12-2013].

[45] Cloudera, Inc. , � cloudera ,� 2013.
http://www.cloudera.com [Online; accessed 12-12-2013].

[46] Engine Yard Inc., � Engine Yard Cloud ,� 2010.
http://www.engineyard.com/ [Online; accessed 12-12-2013].

[47] Heroku Inc. , � Heroku ,� 2013.
https://www.heroku.com [Online; accessed 12-12-2013].

[48] RightScale Inc., � RightScale ,� 2010.
http://www.rightscale.com/ [Online; accessed 12-12-2013].

[49] Cloudscaling Inc. , � Cloudscaling ,� 2013.
http://cloudscaling.com/ [Online; accessed 12-12-2013].

119

Bibliography

[50] GoGrid Cloud Hosting , � GoGrid ,� 2010.
http://www.gogrid.com/ [Online; accessed 12-12-2013].

[51] Joyent, Inc. , � Joyent ,� 2013.
http://www.joyent.com/ [Online; accessed 12-12-2013].

[52] Rackspace, US Inc. , � Rackspace ,� 2013.
http://www.rackspace.com/ [Online; accessed 12-12-2013].

[53] Savvis Inc., � Savvis ,� 2010.
http://www.savvis.net/ [Online; accessed 12-12-2013].

[54] CenturyLink Inc. , � CenturyLink ,� 2013.
http://www.centurylinkcloud.com/ [Online; accessed 12-12-
2013].

[55] Citrix Systems, Inc. , � Citrix ,� 2013.
http://www.citrix.com/ [Online; accessed 12-12-2013].

[56] B. Wilder, Cloud Architecture Patterns. Oreilly and Associate
Series, Oreilly & Associates Incorporated, 2012.

[57] D. Barry, Web Services, Service-Oriented Architectures, and
Cloud Computing: The Savvy Manager's Guide. The Savvy
Manager's Guides, Elsevier Science, 2012.

[58] J. Rhoton and R. Haukioja, Cloud Computing Architected. Re-
cursive, Limited, 2011.

[59] J. Rosenberg and A. Mateos, The Cloud at Your Service: The
When, How, and Why of Enterprise Cloud Computing. Manning
Pubs Co Series, Manning Publications Company, 2010.

[60] T. Erl, R. Puttini, and Z. Mahmood, Cloud Computing: Con-
cepts, Technology & Architecture. The Prentice Hall Service
Technology Series from Thomas Erl, Pearson Education, 2013.

[61] B. Sosinsky, Cloud Computing Bible. Wiley, 2010.

120

Bibliography

[62] I. Brandic, �Towards self-manageable cloud services,� in Com-
puter Software and Applications Conference, 2009. COMPSAC
'09. 33rd Annual IEEE International, vol. 2, pp. 128 �133, july
2009.

[63] E. Keller and H. Ludwig, �The WSLA Framework: Specifying
and Monitoring Service Level Agreements for Web Services,�
Journal of Network and Systems Management, vol. 11, p. 2003,
2003.

[64] O. Wäldrich, P. Wieder, and W. Ziegler, �A meta-scheduling
service for co-allocating arbitrary types of resources,� in Pro-
ceedings of the 6th international conference on Parallel Process-
ing and Applied Mathematics, PPAM'05, (Berlin, Heidelberg),
pp. 782�791, Springer-Verlag, 2006.

[65] D. D. Lamanna, J. Skene, and W. Emmerich, �SLAng: A Lan-
guage for De�ning Service Level Agreements,� in Proceedings
of the The Ninth IEEE Workshop on Future Trends of Dis-
tributed Computing Systems, FTDCS '03, (Washington, DC,
USA), pp. 100�, IEEE Computer Society, 2003.

[66] V. Tosic, K. Patel, and B. Pagurek, �WSOL - Web Service
O�erings Language,� in Revised Papers from the International
Workshop on Web Services, E-Business, and the Semantic Web,
CAiSE '02/ WES '02, (London, UK, UK), pp. 57�67, Springer-
Verlag, 2002.

[67] L. Zhao, Y. Ren, M. Li, and K. Sakurai, �Flexible service selec-
tion with user-speci�c qos support in service-oriented architec-
ture,� Journal of Network and Computer Applications, vol. 35,
no. 3, pp. 962 � 973, 2012.

[68] L. Qi, W. Dou, X. Zhang, and J. Chen, �A qos-aware compo-
sition method supporting cross-platform service invocation in
cloud environment,� Journal of Computer and System Sciences,
vol. 78, no. 5, pp. 1316 � 1329, 2012.

[69] R. Tolosana-Calasanz, J. Ángel Bañares, C. Pham, and O. F.
Rana, �Enforcing qos in scienti�c work�ow systems enacted over

121

Bibliography

cloud infrastructures,� Journal of Computer and System Sci-
ences, vol. 78, no. 5, pp. 1300 � 1315, 2012.

[70] L. Wu, S. K. Garg, and R. Buyya, �SLA-based admission control
for a software-as-a-service provider in cloud computing environ-
ments,� Journal of Computer and System Sciences, vol. 78, no. 5,
pp. 1280 � 1299, 2012.

[71] S. Gogouvitis, K. Konstanteli, S. Waldschmidt, G. Kousiouris,
G. Katsaros, A. Menychtas, D. Kyriazis, and T. Varvarigou,
�Work�ow management for soft real-time interactive applica-
tions in virtualized environments,� Future Generation Computer
Systems, vol. 28, no. 1, pp. 193 � 209, 2012.

[72] H. Ludwig, A. Keller, A. Dan, and R. King, �A service level
agreement language for dynamic electronic services,� in Ad-
vanced Issues of E-Commerce and Web-Based Information Sys-
tems, 2002. (WECWIS 2002). Proceedings. Fourth IEEE In-
ternational Workshop on Advanced Issues of E-Commerce and
Web-Based Information Systems (WECWIS 2002), pp. 25�32,
2002.

[73] A. Kertesz, G. Kecskemeti, and I. Brandic, �An SLA-based re-
source virtualization approach for on-demand service provision,�
in Proceedings of the 3rd international workshop on Virtual-
ization technologies in distributed computing, VTDC '09, (New
York, NY, USA), pp. 27�34, ACM, 2009.

[74] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, �Low
level Metrics to High level SLAs - LoM2HiS framework: Bridging
the gap between monitored metrics and SLA parameters in cloud
environments,� in High Performance Computing and Simulation
(HPCS), 2010 International Conference on, pp. 48 �54, 28 2010-
july 2 2010.

[75] R. Buyya, S. K. Garg, and R. N. Calheiros, �SLA-oriented re-
source provisioning for cloud computing: Challenges, architec-
ture, and solutions,� in Proceedings of the 2011 International

122

Bibliography

Conference on Cloud and Service Computing, CSC '11, (Wash-
ington, DC, USA), pp. 1�10, IEEE Computer Society, 2011.

[76] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya,
�The Aneka platform and QoS-driven resource provisioning for
elastic applications on hybrid Clouds ,� Future Generation Com-
puter Systems, vol. 28, no. 6, p. 861(10), 2012-06-01.

[77] The Reservoir Consortium, �Resources and Services Virtualiza-
tion without Barriers,� 2012.
http://www.reservoir-fp7.eu/ [Online; accessed 12-12-2013].

[78] The BonFIRE Consortium, �Building service test beds on
FIRE,� 2012.

[79] The OPTIMIS Consortium, �OPTIMIS: Optimized Infrastruc-
ture Services,� 2012.
http://www.optimis-project.eu/ [Online; accessed 12-12-2013].

[80] The 4CaaSt Consortium, �Building the PaaS Cloud of the Fu-
ture,� 2012.
http://4caast.morfeo-project.org/ [Online; accessed 12-12-2013].

[81] The SLA@SOI consortium, �SLA@SOI Empowering the service
economy with SLA-aware infrastructures,� 2011.

[82] The Cloud-TM Consortium, �Cloud-TM: A novel programming
paradigm for cloud computing,� 2012.
http://www.cloudtm.eu/ [Online; accessed 12-12-2013].

[83] The Cloudscale Consortium, �Scalability Management for Cloud
Computing,� 2012.
http://www.cloudscale-project.eu/ [Online; accessed 12-12-
2013].

[84] The PaaSage Consortium, �PaaSage: Model Based Cloud Plat-
form Upperware,� 2012.
http://www.paasage.eu/ [Online; accessed 12-12-2013].

123

Bibliography

[85] The Contrail Consortium, �Open computing infrastructure for
elastic services,� 2012.
http://contrail-project.eu/ [Online; accessed 12-12-2013].

[86] W. Barth, Nagios: System and Network Monitoring. San Fran-
cisco, CA, USA: No Starch Press, 2nd ed., 2008.

[87] M. Massie, �The ganglia distributed monitoring system: design,
implementation, and experience,� Parallel Computing, vol. 30,
pp. 817�840, July 2004.

[88] Zenoss, Inc., �Zenoss.�
http://community.zenoss.org/index.jspa [Online; accessed 12-
12-2013].

[89] Zabbix SIA., �Zabbix.�
http://www.zabbix.com [Online; accessed 12-12-2013].

[90] FireScope, Inc., �FireScope.�
http://www.�rescope.com/ [Online; accessed 12-12-2013].

[91] Edgewall Software, �Munin.�
http://munin-monitoring.org/ [Online; accessed 12-12-2013].

[92] Florian octo Forster, �Collectd.�
http://collectd.org/ [Online; accessed 12-12-2013].

[93] F. Doelitzscher, M. Held, C. Reich, and A. Sulistio, �Viteraas:
Virtual cluster as a service,� in Cloud Computing Technology
and Science (CloudCom), 2011 IEEE Third International Con-
ference on, pp. 652 �657, 29 2011-dec. 1 2011.

[94] M. Maurer, I. Brandic, and R. Sakellariou, �Simulating Auto-
nomic SLA Enactment in Clouds Using Case Based Reasoning,�
in ServiceWave, pp. 25�36, 2010.

[95] G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis,
A. Menychtas, and T. Varvarigou, �A Self-adaptive hierarchi-
cal monitoring mechanism for Clouds,� J. Syst. Softw., vol. 85,
pp. 1029�1041, May 2012.

124

Bibliography

[96] The SLA@SOI Consortium, �Deliverable D.A3a SLA-aware Ser-
vice Management.�

[97] J. Sauvé, F. Marques, A. Moura, M. Sampaio, J. Jornada, and
E. Radziuk, �SLA Design from a Business Perspective,� in In
Proceedings of DSOM 2005, Springer, 2005.

[98] A. Pichot, O. Wäldrich, W. Ziegler, and P. Wieder, �Dynamic sla
negotiation based on ws-agreement,� inWEBIST (1), pp. 38�45,
2008.

[99] C. Herssens, S. Faulkner, and I. J. Jureta, �Context-Driven Au-
tonomic Adaptation of SLA,� in Proceedings of the 6th Interna-
tional Conference on Service-Oriented Computing, ICSOC '08,
(Berlin, Heidelberg), pp. 362�377, Springer-Verlag, 2008.

[100] A. Garcia Garcia, C. De Alfonso Laguna, and V. Hernandez Gar-
cia, �Design of a Platform of Virtual Service Containers for
Service Oriented Cloud Computing,� in Cracow Grid Work-
shop 2009, pp. 20�27, Academic Computer Centre CYFRONET,
2009.

[101] M. Jeckle, D. M. Doolin, P. McMahan, P. McMahan, R. Wade,
B. Toy, and J. Dongarra, � Linpack Java implementation ,� 2004.
http://www.jeckle.de/freeStu�/jLinpack/ [Online; accessed 12-
12-2013].

[102] S. A. Cook, �The complexity of theorem-proving procedures,�
in Proceedings of the third annual ACM symposium on Theory
of computing, STOC '71, (New York, NY, USA), pp. 151�158,
ACM, 1971.

[103] R. M. Karp, �Reducibility Among Combinatorial Problems,� in
Complexity of Computer Computations (R. E. Miller and J. W.
Thatcher, eds.), pp. 85�103, Plenum Press, 1972.

[104] R. T. Fielding, Architectural styles and the design of network-
based software architectures. PhD thesis, University of Califor-
nia, Irvine, 2000. Chair-Taylor, Richard N.

125

Bibliography

[105] R. Kübert, G. Katsaros, and T. Wang, �A RESTful implemen-
tation of the WS-agreement speci�cation,� in Proceedings of the
Second International Workshop on RESTful Design, WS-REST
'11, (New York, NY, USA), pp. 67�72, ACM, 2011.

[106] The HSQLDB Development Group , �HyperSQL DataBase,�
2010.
http://hsqldb.org/ [Online; accessed 12-12-2013].

[107] M. Maurer, I. Brandic, and R. Sakellariou, �Adaptive re-
source con�guration for cloud infrastructure management,� Fu-
ture Generation Computer Systems, vol. 29, no. 2, pp. 472 � 487,
2013.

[108] M. Maurer, I. Brandic, V. Emeakaroha, and S. Dustdar, �To-
wards Knowledge Management in Self-Adaptable Clouds,� in
Services (SERVICES-1), 2010 6th World Congress on, pp. 527
�534, july 2010.

[109] The Venus-C Consortium, �D3.10 - Future Sustainability
Strategies,� 2012.
http://www.venus-c.eu/deliverables_year2/VENUS-
C_D3.10.pdf [Online; accessed 12-12-2013].

[110] J. L. Hennessy and D. A. Patterson, Computer Architecture,
Fifth Edition: A Quantitative Approach. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 5th ed., 2011.

126

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Method
	1.3.1 Cloud service representation methodology
	1.3.2 SLA-Driven Cloud framework
	1.3.3 Composition algorithm
	1.3.4 Experimental evaluation

	1.4 Use case

	2 State of the art
	2.1 Cloud computing
	2.2 Service Level Agreements
	2.3 QoS assessment in Cloud computing
	2.4 Cloud SLAs
	2.5 Cloud monitoring systems
	2.6 Cloud service representation

	3 Design
	3.1 Representation of Cloud services using SLA
	3.2 Resource model
	3.2.1 IaaS
	3.2.2 PaaS
	3.2.3 SaaS
	3.2.4 Users
	3.2.5 SLA fragments, templates and instances

	3.3 Architecture
	3.3.1 SLA Manager
	3.3.2 Monitor
	3.3.3 Orchestrator
	3.3.4 Infrastructure connector
	3.3.5 Platform connector
	3.3.6 Service connector
	3.3.7 Catalog

	4 Implementation
	4.1 SLA Composition
	4.1.1 The SLA Composition problem
	4.1.2 The SLA Composition algorithm
	4.1.3 Optimizations of the algorithm

	4.2 Cloudcompaas Framework
	4.2.1 Interactions and flow of control
	4.2.2 Components Implementation Details

	4.3 Dynamic Cloud resources management

	5 Experimental results
	5.1 Quality of Service assessment experiments
	5.1.1 Setup
	5.1.2 Execution scenarios
	5.1.3 Experimental results and discussion

	5.2 Resource model experiments
	5.2.1 Client-side setup
	5.2.2 Provider-side setup

	5.3 Algorithm Performance
	5.3.1 Algorithm Performance results and discussion

	6 Concluding remarks
	A Curriculum Vitae

