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Abstract

Autonomous agents may encapsulate their principals’ personal data attributes. These at-
tributes may be disclosed to other agents during agent interactions, producing a loss of
privacy. Thus, agents need self-disclosure decision-making mechanisms to autonomously de-
cide whether disclosing personal data attributes to other agents is acceptable or not. Current
self-disclosure decision-making mechanisms consider the direct benefit and the privacy loss
of disclosing an attribute. However, there are many situations in which the direct benefit
of disclosing an attribute is a priori unknown. This is the case in human relationships,
where the disclosure of personal data attributes plays a crucial role in their development.
In this paper, we present self-disclosure decision-making mechanisms based on psychological
findings regarding how humans disclose personal information in the building of their rela-
tionships. We experimentally demonstrate that, in most situations, agents following these
decision-making mechanisms lose less privacy than agents that do not use them. 1

Keywords: Multi-agent Systems, Privacy, Intimacy, Information Theory

1. Introduction

An autonomous agent usually encapsulates personal data attributes (PDAs) describing
its principal [3, 25]. PDAs can describe a great range of topics [20]. For instance, names (real
names, pseudonyms), physical characteristics, preferences, roles in organizations and insti-
tutions, social characteristics (affiliation to groups, friends), location (permanent address,
geo-location at a given time), reputation, competences, personality, psychological state, be-
haviors, and other private information. When agents carry out interactions on behalf of

1NOTICE: this is the author’s version of a work that was accepted for publication in Information Sci-
ences. Changes resulting from the publishing process, such as peer review, editing, corrections, struc-
tural formatting, and other quality control mechanisms may not be reflected in this document. Changes
may have been made to this work since it was submitted for publication. A definitive version was subse-
quently published: Jose M. Such, Agustin Espinosa, Ana Garcia-Fornes and Carles Sierra. Self-disclosure
Decision Making based on Intimacy and Privacy. Information Sciences, Vol. 211 pp. 93-111 (2012).
http://www.sciencedirect.com/science/article/pii/S0020025512003301
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their principals, they usually exchange PDAs. Hence, they play a crucial role to safeguard
and preserve their principals’ privacy [3].

Westin [27] defined privacy as a “personal adjustment process” in which individuals bal-
ance “the desire for privacy with the desire for disclosure and communication”. Humans have
different general attitudes towards privacy that influence this adjustment process [18, 1, 27]:
privacy fundamentalists are extremely concerned about privacy and reluctant to disclose
PDAs; privacy pragmatists are concerned about privacy but less than fundamentalists and
they are willing to disclose PDAs when some benefit is expected; and finally, privacy uncon-
cerned do not consider privacy loss when disclosing PDAs. In online interactions, just 10%
of users are unconcerned [28]. Therefore, privacy is of actual concern to most users in the
digital world [13].

Westin proposed his definition for privacy long before the explosive growth of the Internet.
As far as we are concerned, it also applies to autonomous agents that engage in online
interactions that require the disclosure of their principals’ PDAs. Agents, then, should
be able to autonomously balance their desire for privacy and their desire for disclosure and
communication. Thus, they need to incorporate self-disclosure2 decision-making mechanisms
allowing them to autonomously decide whether disclosing PDAs to other agents is acceptable
or not.

Most of the current self-disclosure decision-making mechanisms are based on the privacy-
utility tradeoff [10, 19, 14, 29]. This tradeoff considers the direct benefit of disclosing a PDA
and the privacy loss it may cause; for instance, the tradeoff between the reduction in time
to perform an online search when some PDAs (e.g. geographical location) are disclosed and
the privacy loss due to such disclosure [10].

There are many cases where the direct benefit of disclosing PDAs is not known in advance.
This is the case in human relationships, where the disclosure of PDAs in fact plays a crucial
role in the building of these relationships [5]. These relationships may or may not eventually
report a direct benefit for an individual. For instance, a close friend tells you what party he
voted for. He may disclose this information without knowing (or expecting) the future gain
in utility this may cause. Indeed, this disclosure may not report him any benefit.

Moreover, current self-disclosure decision making models do not consider repeated dis-
closures and their implications. These implications have been broadly studied in psychology,
which has lead to findings regarding how humans disclose personal information in the build-
ing of their relationships, such as the well-known disclosure reciprocity phenomenon [5].
This phenomenon is based on the observation that one person’s disclosure encourages the
disclosure of the other person in the interaction, which in turn, encourages more disclosures
from the first person.

In this paper, we propose self-disclosure decision-making mechanisms that consider the
disclosure reciprocity phenomenon and that relationships may not report any benefit (or this
benefit may not be known in advance). An example of the application of these self-disclosure
decision-making mechanisms in the long term is computer-mediated communication tech-

2We consider self-disclosure as the process by which individuals disclose PDAs about themselves to others
[5].
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nologies such as Internet-based social networking sites (e.g., Facebook, which has more than
800 million active users3), in which users disclose personal information and they establish
(or develop) relationships to others [8]. These decision-making mechanisms could be used
to aid, mediate, or even (partially) automate disclosures in these environments, in which
privacy is indeed of great concern [32]. Moreover, Tim Berners-Lee, who is one of the fa-
thers of the WWW as well as the Semantic Web, claims in [30] that the future of social
networking is decentralized social networks such as Diaspora4 and technologies such as the
Friend of a Friend5 (FOAF) [31] ontology for connecting decentralized social Web sites, and
the people they describe. In decentralized social networks users have more control of their
PDAs because PDAs can be stored locally in a device directly controlled by the user itself
rather than in a centralized social network site. Thus, the user can control to whom she/he
discloses personal information. Moreover, autonomous agents and Multi-agent Systems have
the potential to fit well in this scenario because of their inherently distributed nature.

Our self-disclosure decision-making mechanisms are based on intimacy and privacy mea-
sures. We use these self-disclosure decision-making mechanisms to model privacy pragmatist
and fundamentalist agents. Then, we compare the performance of pragmatists and funda-
mentalists to agents that are not equipped with these mechanisms, which we will refer to
as unconcerned agents. We claim that, privacy pragmatist agents lose less privacy than
unconcerned agents in order to achieve the same intimacy level. We also claim that pri-
vacy fundamentalist agents lose less privacy than both pragmatist and unconcerned agents
but are unable to achieve the same intimacy. To prove these claims, we first present met-
rics grounded on information theory to measure the intimacy and the privacy loss between
two agents; second, we present self-disclosure decision making mechanisms based on these
metrics; and third, we present experiments performed comparing agents using these self-
disclosure decision-making mechanisms with privacy unconcerned agents that do not use
them.

The remainder of the paper is organized as follows. Section 2 introduces Uncertain
Agent Identities (UAIs), which is a formalism for describing agent’s believes based on PDAs.
Section 3 presents a measure for the degree of intimacy between two agents based on UAIs.
Section 4 presents a model for measuring the privacy loss of PDA disclosures based on UAIs.
Section 5 proposes self-disclosure decision-making mechanisms for autonomous agents based
on intimacy and privacy loss. Section 6 presents the experiments we carried out. Section 7
discusses related work. Finally, Section 8 presents some concluding remarks.

2. Uncertain Agent Identities

We assume a Multiagent System composed of a set of intelligent autonomous agents
Ag = {α1, . . . , αM} that interact with each other through message exchanges. Agents in Ag
are described using the same finite set of PDAs, A = {a1, . . . , aN}. Each PDA a ∈ A has a
finite domain of possible values Va = {v1, . . . , vKa}.

3http://www.facebook.com/press/info.php?statistics
4http://www.joindiaspora.com
5http://www.foaf-project.org/
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Each agent α ∈ Ag has values for their PDAs that are not known by the other agents in
Ag. Agents are able to disclose PDA values to others, but the values of the PDAs disclosed
may not be true (or may be just an opinion). Thus, agents are uncertain about the PDA
values of the other agents. Moreover, agents may not even be absolutely certain about the
specific values for their own PDAs (e.g. an agent could be uncertain about whether it is
competent in performing a given task). Therefore, agents maintain uncertain agent identities
(UAIs) modeling their own PDAs and the PDAs of the rest of the agents in Ag.

Definition 1 (Uncertain Agent Identity). Given a set of PDAs A = {a1, . . . , aN}, each
one with domain Va = {v1, . . . , vKa}, an uncertain agent identity I = {P1, . . . , PN} is a set
of discrete probability distributions Pi over the values Vai of each PDA ai.

We thus denote Pa as the probability distribution of a over Va and pa(· ) as its probability
mass function, so that pa(v) is the probability for the value of a being equal to v ∈ Va.

An agent α ∈ Ag manages its own UAI and two UAIs associated to each agent β ∈
Ag \ {α}. We will refer to the UAI of an agent α as Iα. We denote Iα,β as the UAI that α
believes that β has, i.e., what α knows (or thinks it knows) about Iβ. Moreover, it is crucial
for an agent α to also have UAIs modeling what the other agents in Ag may know about its
own UAI Iα for measuring privacy loss (as explained in section 4). We denote Iα,β,α as the
UAI that α believes that β believes that α has6.

UAIs may be initialized regarding the actual knowledge that an agent has for the prob-
ability distributions of each of the PDAs. For instance, if the agent is completely uncertain
about the distribution of a PDA a, then, its probability distribution Pa ∈ I may be initialized
to a uniform distribution, i.e., each pa(v) may be initialized to 1

|Va| for each v ∈ Va.

2.1. Uncertainty Measures

An agent may desire to measure how much uncertainty there is in the probability distri-
bution of a PDA. Taking into account this uncertainty, the agent may decide, for instance,
whether or not to take specific actions to reduce this uncertainty under a desired threshold.

A well-known measure of the uncertainty in a probability distribution is Shannon entropy
[22]:

H(Pa) = −
∑
v∈Va

pa(v) log2 pa(v) (1)

The entropy of each probability distribution in an UAI provides a measure of the un-
certainty for each PDA. However, as an UAI can span over several PDAs, a method for

6Subindexes of an UAI should be read from left to right, starting with the UAI and adding an that agent
believes for each agent that appears separated by a semicolon, except for the agent in the last position which
is read as that agent has. For instance, Iα should be read as the UAI that α has, Iα,β should be read as the
UAI that α believes that β has and Iα,β,α should be read as the UAI that α believes that β believes that α
has.
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aggregating the uncertainties of all of the probability distributions in an UAI is needed. In
this paper, we use a simple computational method that is the mean of the uncertainties in
each of the probability distributions in an UAI:

H(I) =
1

|A|
∑
a∈A

H(Pa) (2)

With this measure an agent is able to know how certain it is about an UAI. We assume
that at initialization time the entropy of an UAI I is the highest possible, i.e., the uncertainty
in I will decrease as the agent obtains more information related to the PDAs being modeled.

2.2. Updating UAIs

UAIs are supposed to be dynamic, i.e., they may change as time goes by. These changes
will potentially reduce the uncertainty in an UAI. An agent α may update the UAIs that
it manages as it gets more information about the probability distributions for the PDAs in
these UAIs. In this section, we provide a method for updating the two UAIs that α has per
each agent in Ag.

PDA values are private to each agent. We assume that α discloses its PDA values for a
to β by sending a message7 µ = 〈α, β, 〈α, a, Pa〉〉, where α represents the sender, β represents
the receiver, and 〈α, a, Pa〉 represents the claim “the probability distribution for the PDA a
of α is Pa”.

UAIs are updated with the disclosures that agents carry out. The update process of an
UAI has two steps: (i) updating the probability distribution of the PDA being disclosed; and
(ii) inferring updates of probability distributions of other PDAs based on the PDA being
disclosed and other information already known. We denote that an UAI I is updated with
a message µ as Iµ. Moreover, we denote that an UAI I is updated sequentially and in order
considering a tuple of messages M = (µ1, . . . , µP ) as IM .

We now detail how and which UAIs should be updated when receiving and when sending
a message.

2.2.1. Receiving a Message

If α receives µ = 〈β, α, 〈β, a,Qa〉〉 from β, then α can update Iα,β – the UAI that α
believes that β has. The resulting UAI is denoted as Iµα,β.

Update. Given µ = 〈β, α, 〈β, a,Qa〉〉, Pa ∈ Iα,β, and rα,β (which is the reliability that α
attaches to β and is explained below), let Sµa = rα,β ·Qa + (1− rα,β) · Pa. Then, we update
P µ
a ∈ I

µ
α,β as:

P µ
a =

{
Sµa if H(Sµa ) < H(Pa)

Pa otherwise
(3)

Pa is only updated if the message produces an information gain, i.e. resulting probability
distribution Sµa is more certain than Pa.

7In this paper, we use the terms message and disclosure as equivalents because we only consider messages
that involve a PDA disclosure.
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Reliability. The model for reliability is based on the difference between the values that agents
claim for their PDAs – the disclosures they send to other agents – and the values observed
for these PDAs by other agents. We assume that α builds another UAI Oα,β that is different
from Iα, Iα,β and Iα,β,α based on observations. Oα,β contains probability distributions that
α has inferred from the observation of β’s behavior. An example of observation may be
the following. Let competentTaskA be a PDA with domain {true, false}. If β discloses
〈β, α, 〈β, competentTaskA, {true→ 1, false→ 0}〉〉, α may request β to perform this task.
Then, α can observe the result of the task to assess whether or not β is actually competent
in carrying out the task and may infer the probability distribution for competentTaskA as
being {true→ 0.8, false→ 0.2}.

α measures the reliability of β as follows. Let a be a PDA β disclosed to α, let Pa ∈ Iα,β
be the probability distribution that α believes that β has (from what β disclosed to α), and
let Oa ∈ Oα,β be the probability distribution that α has observed for the PDA a of β. Then,
α’s assessment of the reliability of β on the basis of observing that Pa should have been Oa

is:

rα,β =
1

|A|
∑
a∈A

1

1 + KL(Oa ‖ Pa)
(4)

Where KL(Oa ‖ Pa) is the Kullback-Leibler divergence [11] that measures the distance
between two probability distributions:

KL(Oa ‖ Pa) =
∑
v∈Va

oa(v) log2

oa(v)

pa(v)
(5)

If all the probability distributions that α observed for all the disclosed PDAs from β are
close to the probability distributions for these PDAs in Iα,β, then KL values will be close
to 0 and rα,β will be close to 1. If all the probability distributions α observed for all the
disclosed PDAs from β are far from the probability distributions for these PDAs in Iα,β,
then KL values will be high and rα,β will be close to 0.

Inference. The rest of the probability distributions of PDAs not yet disclosed from β to
α may be inferred considering the PDAs that have already been disclosed. The inference
model that we consider in this paper is based on the existence of conditional probabilities
Pr(b | a)8, considering a as a PDA β disclosed to α and b as the PDA to be inferred. Thus,
if Qb is a probability distribution defined as:

qb(u) =
∑
v∈Va

Pr(b = u | a = v)pa(v) (6)

8More sophisticated methods, e.g. based on bayesian networks [6], could be used. The important point
is that inference should be considered when dealing with the disclosure of PDAs.
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then,

P µ
b =

{
Qb if H(Qb) < H(Pb)

Pb otherwise
(7)

A simple method based on frequencies for estimating these conditional probabilities may
be:

Pr(b = u | a = v) =
|{β | β ∈ Ag and Pa, Pb ∈ Iα,β and pa(v) > ε and pb(u) > ε}|

|Ag| − 1
(8)

This method averages the number of UAIs that α believes that other agents in Ag have
in which the probabilities for a and b to be v and u are higher than a threshold ε. This is a
simple method for estimating if the values v and u of PDAs a and b are commonly related
to each other for agents in Ag. This method requires a minimum knowledge about the other
agents in Ag.

2.2.2. Sending a Message

α discloses the probability distribution for its PDA a to β by sending a message µ =
〈α, β, 〈α, a,Q′a〉〉 to β. Then, α may update Iα,β,α – the UAI that α believes that β believes
that α has. The resulting UAI is denoted as Iµα,β,α.

α updates Pa ∈ Iα,β,α replacing it with Q′a, i.e., α assumes that β believes the probability
distribution for its PDA a is Q′a from this moment on. α may also update the probability
distributions of PDAs that α has not yet disclosed to β, which could be inferred from PDAs
that α has already disclosed to β using the inference method explained in the above section.

We also consider that α may be not sincere when performing a disclosure. To this aim,
we define what we call the level of insincerity as follows:

Definition 2 (Level of Insincerity). Given a disclosure from α to β in the form of the
message µ = 〈α, β, 〈α, a,Q′a〉〉, and the probability distribution Qa ∈ Iα, the level of insin-
cerity of α in this disclosure is:

S(µ) = KL(Q′a ‖ Qa) (9)

Informally speaking, we measure the distance between what α is disclosing and what
is in its UAI (Iα). When the level of insincerity S(µ) is 0, this implies that Q′a and Qa

are the same probability distributions — recall that KL() returns the distance between two
probability distributions, and it returns 0 if the two probability distributions are equal.
Thus, when S(µ) = 0 we say that α is sincere. Otherwise, when S(µ) > 0 we say that α is
insincere, with a level of insincerity of S(µ).

3. Intimacy

According to [17], intimate human partners have extensive personal information about
each other. They usually share information about their PDAs, including preferences, feel-
ings, and desires that they do not reveal to most of the other people they know. Indeed,
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self-disclosure and partner disclosure of PDAs play an important role in the development of
intimacy [5].

An agent α could simply count the number of PDAs disclosed to β, count the number of
PDAs that β disclosed to α to estimate its intimacy to β. However, as explained in section
2.2, when disclosing PDAs, it may be the case that more information is being disclosed
without explicitly disclosing it. Therefore, PDAs not yet disclosed may be inferred from
PDAs already disclosed so that α is actually giving β more information than just the PDAs
explicitly disclosed to β.

Uncertainty and information are closely related to each other [9]. The amount of infor-
mation obtained by an action can be measured by the reduction of uncertainty due to that
action. Thus, information may be measured by the difference between the a priori uncer-
tainty – uncertainty before the action – and the a posteriori uncertainty – uncertainty after
the action. For instance, as stated in [23], if the action is the sending/reception of a message,
the information gain that a message provides may be measured by the difference in uncer-
tainty before sending/receiving the message and the uncertainty after sending/receiving the
message.

Definition 3 (Information Gain of a Message). Given an UAI I and a message µ, the
information gain of message µ is:

I(I, µ) = H(I)−H(Iµ) (10)

α may measure the amount of information it has about β by measuring the information
gain of all the messages received from β. α may measure the amount of information β has
about it by measuring the information gain of all the messages that α sent to β.

Definition 4 (Information Gain of a tuple of Messages). Given an UAI I and a tu-
ple of messages M , the information gain of M is:

I(I,M) = H(I)−H(IM) (11)

Sierra and Debenham [24] defined the intimacy between α and β considering the amount
of information that α knows about β and vice versa. We adapt this definition for the case
of UAIs. Thus, we define intimacy as follows.

Definition 5 (Intimacy). Given the UAIs Iα,β and Iα,β,α, a tuple of messages M from β
to α and a tuple of messages M ′ from α to β, the intimacy between α and β is:

Yα,β = I(Iα,β,M)⊕ I(Iα,β,α,M
′)

Where ⊕ is an appropriate aggregation function. Yα,β = 0 means that there is no
intimacy between α and β from the point of view of α. The higher the Yα,β, the more
intimacy between α and β from the point of view of α. It is worth noting that the intimacy
measure, as we define it, is not necessarily symmetric, i.e., Yα,β may be different from Yβ,α.

Intimacy is an amount of information resulting from the aggregation of the amount of
information α has from β and α believes β has from α. In the experiments we performed
(section 6) we used the arithmetic addition of these two amounts of information, i.e. ⊕ = +.

8



4. Privacy Loss

Privacy loss is defined in previous works ([14, 15]) as the probability of being identified
and the sensitivity of the PDAs — i.e., the importance of a PDA from a privacy perspective,
e.g., a person may probably feel her/his credit card number as being more sensitive than
her/his nationality. Thus, if an agent makes a disclosure, this may imply a privacy loss
because the agent that receives the disclosure knows the agent that sends the disclosure and
the value of the PDA disclosed. The specific amount of privacy loss is determined by: (i)
the sensitivity of this PDA, i.e., a more sensitive PDA implies more privacy loss than a less
sensitive PDA; (ii) the level of insincerity of the agents when it makes the disclosure, i.e.,
if the agent is insincere it may not experience privacy loss because the values of the PDA
disclosed do not correspond to the values in its own UAI9; (iii) and finally, disclosing an
attribute may also cause that other PDAs can be inferred from the PDA disclosed.

In order to consider the sensitivity of PDAs, we assume that agents in Ag can define
the subjective sensitivity that they attach to their PDAs. Therefore, α has a function
wα : A→ [0, 1] such that wα(a) is the subjective valuation that α attaches to the sensitivity
of a.

In order to consider the level of insincerity and possible inferences, as explained in Section
2, each agent α ∈ Ag has its own UAI Iα that is not known by the other agents in Ag.
Moreover, α has UAIs that it believes that other agents in Ag believe that α has, i.e., what
other agents in Ag may know about Iα. In this sense, α could estimate (from its point of
view) the extent to which β knows Iα by measuring the distance between Iα and Iα,β,α. α
can calculate this distance by measuring the distance between each probability distribution
for each PDA in these UAIs.

Given that a has the probability distributions Pa ∈ Iα and Qa ∈ Iα,β,α, we use the
Kullback-Leibler divergence [11] to measure the distance between Pa and Qa. KL mea-
sures the amount of information needed to encode the differences between two probability
distributions.

Based on the Kullback-Leibler divergence and the sensitivity of the PDAs, we define the
privacy loss of disclosing a PDA.

Definition 6 (Privacy Loss). Given two agents α and β, the message µ, and considering
Qa ∈ Iα,β,α, Qµ

a ∈ I
µ
α,β,α and Pa ∈ Iα , the privacy loss for agent α if it sends µ to agent β

is:

L(Iα,β,α, µ) =
∑
a∈A

wα(a) · (KL(Qa ‖ Pa)−KL(Qµ
a ‖ Pa)) (12)

For each PDA, we measure the KL between its probability distribution in Iα,β,α before
being updated taking into account µ and its probability distribution in Iα and the KL

9Note that this insincere disclosure can still produce an information gain to the agent that receives the
disclosure.
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between its probability distribution in Iα,β,α after being updated considering µ and its prob-
ability distribution in Iα. Then, we consider the difference between these two KLs stating
the amount of information that Iα,β,α would approach to Iα if the message µ is sent. This
amount of information that would be lost due to the sending of the message is then weighted
by the subjective sensitivity of the PDA. The final result of privacy loss is the addition of
the results for all of the PDAs (recall that values for PDAs that are not disclosed could be
inferred from PDAs that are disclosed as explained in Section 2). L(Iα,β,α, µ) = 0 means
that sending µ to β causes no privacy loss to α. The higher the L(Iα,β,α, µ), the more privacy
loss sending µ to β causes to α.

As explained later on in section 5, it is also useful for agents to measure the total privacy
that they have lost due to the messages that they sent to other agents.

Definition 7 (Total Privacy Loss). Given two agents α and β, the tuple of all messages
M sent from α to β and considering Qa ∈ Iα,β,α, QM

a ∈ IMα,β,α and Pa ∈ Iα, the Total Privacy
Loss from α to β is:

L(Iα,β,α,M) =
∑
a∈A

wα(a) · (KL(Qa ‖ Pa)−KL(QM
a ‖ Pa)) (13)

5. Self-disclosure Decision Making

In this section, we present two mechanisms for an agent α to decide which PDAs (if any)
to disclose to another agent β. These mechanisms are based on general privacy attitudes
and specific willingness to share a PDA. We model pragmatist and fundamentalist attitudes
towards privacy. To this aim, we use the information metrics explained above.

5.1. Privacy Pragmatist Agents

Privacy pragmatists are concerned about privacy, but they are willing to disclose personal
information when some benefit is expected ([18], [1] and [27]). In many situations, the actual
benefit of disclosing personal information may not be known in advance. We present a self-
disclosure decision-making mechanism modeling a pragmatic attitude towards privacy which
is grounded on information measures. Specifically, we consider the estimation of intimacy
gain between two agents (i.e., the amount of information two agents have about each other)
and the privacy loss (the distance between what the agents believe that others believe about
them and their actual UAI weighted by a subjective sensitivity).

We model a privacy pragmatist agent α as an agent that chooses to disclose a PDA that
maximizes the estimation of the increase in intimacy (described in Section 3) while at the
same time minimizing the privacy loss (described in Section 4). We call this tradeoff the
privacy-intimacy tradeoff. The privacy-intimacy tradeoff is a multi-objective optimization
problem. The most used approach to solve this kind of problems in the existing literature
on multi-objective optimization is the transformation of the multi-objective optimization
problem into a single-objective optimization problem [4]. Thus, we model a pragmatist
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agent α as an agent that maximizes the difference between the increase in intimacy and the
privacy loss10.

Formally, let M be a tuple of messages that α sent to β, α will choose to disclose µ∗ so
that:

µ∗ = arg max
µ

(I(IMα,β,α, µ)− L(IMα,β,α, µ)) (14)

One can easily note that the intimacy measure is not explicitly used in the privacy-
intimacy tradeoff formula (Equation 14). This is because we implicitly estimate the increase
of intimacy based on two main aspects: (i) we explicitly consider the information gain that
a disclosure from α may cause to β, i.e., I(IMα,β,α, µ); (ii) we then assume, based on the
disclosure reciprocity phenomenon [5], that β will reciprocate this information gain with a
disclosure to α in the future — later on in Section 5.1.1 we explain how α can check this and
act consequently in the event β not reciprocating to α. Therefore, maximizing I(IMα,β,α, µ)

will also maximize the intimacy Yα,β = I(IMα,β,α, µ) ⊕ I(IM
′

α,β, ν), considering ν as a future
message received by α from β as the reciprocation to µ. This is due to the cumulative nature
of intimacy as we define it.

The privacy loss part of the privacy-intimacy tradeoff formula (Equation 14) is the only
one that considers the sensitivity of what is to be disclosed (as can be seen in the definition
of privacy loss in Equation 12). This is because, when an agent performs a disclosure, it
knows how sensitive that disclosure is for itself. However, an agent may not be able to
anticipate how sensitive this disclosure will be seen by the agent that receives the disclosure
— as it would be required for considering sensitivity in the information gain part of the
privacy-intimacy tradeoff formula, i.e., α would need to know the sensitivity function of β
wβ. For instance, Huberman et al. [7] demonstrated that people whose weight was less
than average value their weight as a less sensitive issue, while people whose weight was
greater than average value that weight as a more sensitive issue. Thus, a person may be
very reluctant to disclose her or his weight while another person may be willing to disclose
her or his weight. In the event that the first person discloses her or his weight to the second
person, the first person will feel this disclosure as very sensitive. However, the second person
will receive this disclosure as little sensitive. Mechanisms for estimating the sensitivity that
other agents have are out of the scope of this paper, but they represent a very challenging
future line of research. One approach could be based on the semantics of the PDAs (e.g.,
considering an ontology such as in [23]).

Finally, it is worth noting that agents may not be sincere when they perform disclosures.
Agent α will choose a message µ∗ that maximizes the amount of information for the privacy-
intimacy tradeoff. Considering that µ∗ = 〈α, β, 〈α, a,Qa〉〉 and Pa ∈ Iα, to model sincere
agents when disclosing a PDA, µ∗ must satisfy that S(µ∗) = KL(Qa ‖ Pa) = 0. That
is, Qa, which is the probability distribution that α sends, and Pa, which is the probability
distribution that is on α’s own UAI Iα, must be the same probability distribution. To model

10Other approaches to solve this kind of problems can also be applied. To learn more approaches to solve
multi-objective problems refer to, for instance, [2] and [4].
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agents that are insincere when disclosing a PDA, µ∗ must satisfy that S(µ∗) = KL(Qa ‖ Pa)
matches the desired level of insincerity.

5.1.1. Balance

Agent α assumes, based on the reciprocity phenomenon, that β will reciprocate its dis-
closures, so that I(Iα,β,α, µ) is an estimation for I(Iα,β, ν), considering ν as a future message
received by α from β. However, this may be not the case for many reasons, such as if β is not
reliable when it makes claims about itself. For instance, β may not be reliable if β is not sin-
cere when it makes claims about itself or if β is unable to provide reliable information about
itself. Moreover, there could be agents that do not reciprocate disclosures because they are
not willing to increase their intimacy to α for whatever reason (e.g. agents that are only
interested in surveilling information about α). This could lead to I(Iα,β,α, µ) >> I(Iα,β, ν)
if ν is actually received.

α may assess to what extent β will reliably reciprocate future disclosures from α by
considering the amount of information that β has sent to α and the amount of information
that α has sent to β. To this aim, we use the concept of balance [24].

Definition 8 (Balance). Given the UAIs Iα,β and Iα,β,α, a tuple of messages M from β
to α and a tuple of messages M ′ from α to β, the balance between α and β from the point
of view of α is:

Bα,β = I(Iα,β,M)− I(Iα,β,α,M
′) (15)

Agent α may use the balance Bα,β as the basis for a disclosure strategy. That is, α may
use the balance to assess to what extent β will reliably reciprocate future disclosures from α.
Then, α may decide not to perform a disclosure to β if Bα,β < ζ. In this case, ζ is what we
call the reciprocity threshold that acts as a threshold of the minimum balance that α expects
from its interaction partners. Moreover, α may specify a different ζβ for each agent β ∈ Ag.
In this way, α may even consider an increasing ζβ as the intimacy Yα,β increases so that
ζ ′β = ζβ + λ · Yα,β, where λ is a normalizing constant. Using this dynamic ζβ, we can model,
for instance, that intimate partners can trust each other more than simple acquaintances
can.

An approach to obtain an appropriate ζ (or an initial ζβ) can be based on the existing
polls to obtain the privacy attitude of humans, such as [26] or any of the other surveys that
Alan Westin conducted between 1978 and 2004 [12]. In the experiments section (specifically
in Section 6.3) we present an interval of the values of ζ that can make pragmatic agents to
behave different. Therefore, based on the responses to a poll to obtain the privacy attitude
of humans, we can obtain a degree of privacy attitude that can be directly matched to a
reciprocity threshold in that interval. For instance, a person that has a degree of privacy
attitude that is considered pragmatist but is very close to unconcerned may be modeled
with a ζ = −5 (as shown in Section 6.3).
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5.2. Privacy Fundamentalist Agents

Privacy fundamentalists are extremely concerned about privacy and very reluctant to
disclose PDAs ([18], [1] and [27]). They feel like they have already lost much privacy and
are not willing to lose privacy any more.

We model fundamentalist agents as pragmatist agents that establish a maximum total
privacy loss ξ. In this way, a fundamentalist agent α considers the privacy-intimacy tradeoff
to decide what PDA (if any) to disclose to β. α also considers the balance Bα,β to assess
to what extent β will reliably reciprocate future disclosures from α. Then, α may decide
not to perform a disclosure to β if Bα,β < ζ. The difference between pragmatists and
fundamentalists is the following. If α is a fundamentalist agent, when the total privacy loss
of α to β reaches ξ, α will not disclose PDAs to β any more.

Suppose that α has sent a sequence of messages M = {µ1, . . . , µP} to β. Then, let
ρ = minµL(IMα,β,α, µ), i.e., ρ is the minimum privacy loss for α if she decides to disclose any
PDA not yet disclosed to β. α will not disclose any other PDA to β if ρ+L(Iα,β,α,M) > ξ.

Moreover, α may specify a different ξβ for each agent β ∈ Ag. In this way, α may
consider an increasing ξβ as the intimacy Yα,β increases so that ξ′β = ξβ + λ · Yα,β, where λ
is a normalizing constant.

An approach to obtain an appropriate fundamentalist threshold (ξ) can be based on the
existing polls to obtain the privacy attitude of humans, in a similar way than as explained
in the previous section for the reciprocity threshold ζ. In this case, the higher the degree of
fundamentalism, the lower the fundamentalist threshold.

6. Implementation and Experimental Results

We implemented unconcerned, pragmatist and fundamentalist agents in Java. We imple-
mented pragmatist and fundamentalist agents as agents that use the self-disclosure decision-
making mechanisms explained in Section 5. On the contrary, we implemented unconcerned
agents as agents that do not use the mechanisms presented in this paper. Specifically, we
implemented unconcerned agents as agents that do not take into account privacy loss when
disclosing PDAs to other agents. We considered unconcerned, pragmatist and fundamental-
ists to be sincere when disclosing a PDA.

We performed experiments in which unconcerned, pragmatist, and fundamentalist agents
interact with other target agents. For each experiment, we calculated the intimacy that each
agent achieved with each target agent and the total privacy that each agent lost with each
target agent. The results for intimacy and privacy loss are given in bits because the unit of
measure for information is the bit when base 2 logarithms are used to calculate entropies
and KLs. Moreover, the results are the average of the results obtained when repeating each
experiment 100 times.

The experiments that we performed were composed of a number of disclosure rounds
(DRs). In each DR, agents were given the chance to choose an interaction partner and then
decide whether or not to perform a new disclosure to that particular interaction partner.
Agents may or may not disclose one attribute to that particular interaction partner. Thus,
agents perform at most one disclosure for each DR.
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The UAI Iα of each agent in each experiment was created as randomly generated distri-
butions Pa for each PDA a ∈ A over the domain V (both A and V are specified in Table
1). The probability distributions in the UAIs that each agent has modeling other agents
and what other agents might know about it (i.e., in case of agent α all the UAIs Iα,β and
Iα,β,α for each β ∈ A) are initialized to uniforms over V , i.e., agents are completely uncertain
about the UAIs that other agents have at initialization time.

We performed several experiments varying all of the possible parameters. Specifically,
we performed experiments considering: only sincere and reciprocating targets (Section 6.1);
a varying number of malicious targets (Section 6.2); different reciprocity and fundamentalist
thresholds (Sections 6.3 and 6.4); a unique shared sensitivity array and one sensitivity array
per agent (Section 6.5); and finally, different number of agents, attributes and values (Section
6.6).

We implemented all agents as capable of making observations for the attributes of other
agents. In this way, agents can call to an observe() method to obtain observed distributions
for attributes of other agents. Then, agents estimate the reliability of other agents using
these observed values and the values other agents claimed for themselves (i.e. the disclosures
they made) as inputs for the reliability model presented in section 2. We assumed that when
an agent calls the observe() method, it always returns the correct probability distribution
for an attribute of another agent. However, we also conducted an experiment (Section 6.7)
in which we consider that the observe() method introduces a random normally-distributed
noise when it returns the probability distribution for an attribute of another agent.

6.1. Sincere and Reciprocating Targets

In this section, we present the experiments that we performed comparing unconcerned,
pragmatist, and fundamentalist agents when interacting with other target agents. These
target agents reciprocate all of the disclosures they receive. Moreover, they perform such
reciprocations in a sincere way, i.e., a target agent α reciprocates with a level of insincerity
of KL(Q′a ‖ Qa) = 0 that means that Q′a and Qa are the same distribution, considering Q′a
as the distribution disclosed and Qa as the distribution in Iα for the a attribute.

The parameters used for this experiment are summarized in Table 1. We considered 10
unconcerned agents, 10 pragmatist agents, 10 fundamentalist agents, and 30 target agents.
We also considered 10 PDAs with a domain of 10 values each of them. Agents have a
shared randomly distributed array of sensitivities for each of the attributes. Moreover, the
reciprocity threshold and the fundamentalist threshold are set to -1 and 2 respectively. All of
these parameters are varied in the subsequent sections. Finally, we performed experiments
varying the number of DRs ranging from 1 DR to 300 DRs. The maximum number of DRs is
300 DRs because it is equal to the number of target agents (30) multiplied by the number of
attributes (10). Thus, this number of DRs is enough for any agent (regardless its attitude)
to have the chance to disclose all of their PDAs to all of the target agents.

Figure 1(a) shows the average intimacy achieved by the agents for each number of DRs
considered. Both unconcerned and pragmatist agents achieve the same intimacy for all of
the experiments. Moreover, both unconcerned and pragmatist agents achieve more intimacy
with target agents than fundamentalists. This is because when fundamentalists reach their

14



Parameter Description Value

Nun # Unconcerned 10
Npr # Pragmatists 10
Nfu # Fundamentalists 10
Nta # Target Agents 30
A Personal Data Attributes {a1, . . . , a10}
V PDAs’ Domain {v1, . . . , v10}
w Subjective Sensitivity Random [0, 1]10

ζ Reciprocity threshold -1
ξ Fundamentalist Threshold 2

NDRs Max. # of Disclosure Rounds 300
NRep # of Repetitions of the Experiment 100

Table 1: Parameters used in the experiments.
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Figure 1: Results considering sincere and reciprocating target agents.

maximum privacy loss ξ, they will no longer disclose PDAs so that intimacy is no longer
increased.

Figure 1(b) shows the averaged privacy loss of the agents for each number of DRs. As
expected, pragmatist agents lost less privacy than unconcerned agents for most of the ex-
periments. For instance, for 16 DRs unconcerned agents lost 10 times more privacy than
pragmatists; for 60 DRs unconcerned agents lost 5 times more privacy than pragmatists;
for 130 DRs unconcerned lost 3 times more privacy than pragmatists; for 180 DRs uncon-
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cerned agents lost twice the privacy that pragmatists lost; and for 220 DRs unconcerned
agents lost 1.5 times more privacy than pragmatists. Therefore, for most of the experiments
performed, pragmatist agents lost less privacy than unconcerned agents while achieving the
same intimacy.

The privacy loss was similar for both pragmatist and unconcerned agents in the exper-
iments with a high number of DRs (from 270 up to 300 DRs). This is because, in these
experiments, the agents disclosed almost all of their PDAs to all of the agents, so that they
ended up losing all their privacy regardless their privacy attitude.

As expected, pragmatist and fundamentalist agents lost less privacy than unconcerned
agents. Moreover, fundamentalists lost less privacy than pragmatist agents. This is due to
the fact that fundamentalists do not lose privacy beyond the threshold they define ξ.

6.2. Malicious Targets

In these experiments, we consider unconcerned, pragmatist, and fundamentalist agents
interacting with target agents. For each experiment, we establish a number of malicious
target agents (MTs) among the target agents. We consider malicious agents to be agents that
are only interested in obtaining information from other agents without increasing intimacy.
We model malicious agents as agents that either do not reciprocate or lie (are not sincere)
about themselves. We implemented malicious agents such that when they receive a disclosure
they do not reciprocate with a probability of 0.5. Moreover, when they reciprocate (the other
0.5 times) they are not sincere. We implemented malicious agents with a level of insincerity
of 5 bits (recall that a level of insincerity of 0 means that an agent is completely sincere
when disclosing her attributes). Thus, a malicious target agent α reciprocate with a level
of insincerity of KL(Q′a ‖ Qa) = 5 considering Q′a as the distribution disclosed and Qa as
the distribution in its UAI Iα for the a attribute. Therefore, there are 5 bits of difference
between the distribution disclosed and the distribution in her UAI.

The parameters used for the experiments are the same as the ones in Table 1. We
performed experiments varying the number of MTs from 0 up to 30. Thus, we model
environments in which agents interact with a varying % of MTs among the target agents
from 0% up to 100% (recall that the number of target agents Nta is set to 30). Moreover,
we also considered a varying number of DRs from 50 up to 300. This allows us to assess
the properties of the intimacy and privacy loss metrics when agents have few chances to
disclose any of their PDAs to the target agents (50 DRs), and when agents have the chance
to disclose all of their PDAs to all of the target agents (300 DRs) — but recall that agents
will only disclose if they find this to be appropriate.

Figures 2 and 3 show, for each number of DRs, the average intimacy achieved by the
agents and the average privacy loss of the agents for each number of MTs considered. We
can observe that, in general, all of the agents, regardless their privacy attitude, achieved
less intimacy as the number of MTs increased. This is because as the number of MTs
increases there are more target agents that do not reciprocate or do so with very unreliable
information. Moreover, for a moderate number of MTs (that varies depending on the number
of DRs), pragmatists achieved more intimacy than unconcerned. This is because pragmatists
choose to interact with the most reliable and reciprocating agents, while unconcerned agents
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Figure 2: Results considering malicious target agents (50, 100, and 150 DRs).

are not concerned about privacy and do not expect their disclosures to be reciprocated.
Moreover, as in the previous experiments (Section 6.1), both unconcerned and pragmatist
agents achieved more intimacy with other target agents than fundamentalists (except for 50
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Figure 3: Results considering malicious target agents (200, 250, and 300 DRs).

DRs). This is because when fundamentalists reach their maximum privacy loss ξ, they will
not disclose PDAs so that intimacy is no longer increased.

As expected, pragmatist and fundamentalist agents always lost much less privacy than
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unconcerned agents for all numbers of MTs and DRs. Moreover, unconcerned agents lost
the same privacy for the same number of DRs regardless the number of MTs, because
they always disclose one PDA to one agent for each DR without considering the privacy
loss this may cause. Fundamentalists lost less privacy than pragmatists and unconcerned
agents. Moreover, fundamentalists lost the same privacy, regardless the number of MTs.
This is because when fundamentalists achieve their maximum privacy loss ξ, they will no
longer disclose PDAs, regardless whether or not targets are being malicious or reliable and
reciprocating.

We now detail the results that we obtained for each number of DRs considered. Figure
2(a) shows that for few DRs (50 DRs), all of the agents achieved the same intimacy regardless
their privacy attitude. This is because at this stage agents may have performed very few
disclosures to the same target agent (recall that there are 30 target agents). However,
pragmatic and fundamentalist agents lost less privacy than unconcerned, as shown in Figure
2(b).

For 100 DRs, we obtained that fundamentalists start being unable to achieve the same
intimacy as unconcerned and pragmatists (Figure 2(c)). This is because they will no longer
disclose when they reach their fundamentalist threshold ξ. However, due to this thresh-
old, we can see in Figure 2(d) that fundamentalists lose less privacy than pragmatists and
unconcerned, except for a high number of MTs in which fundamentalists and pragmatist
lose the same privacy. Pragmatists are aware that most of the agents to which they are
interacting are malicious, so that they end up not disclosing to them, and thus, losing less
privacy. Moreover, pragmatists are able to achieve the same intimacy as unconcerned but
losing less privacy.

Figure 2(e) shows the average intimacy achieved by the agents for each number of MTs
considered for 150 DRs. As can be observed, pragmatists are able to achieve greater intimacy
than unconcerned agents for 1 up to 28 MTs (from 3.3% up to 93.3% MTs). This is due
to the fact that pragmatists choose to interact with the most reliable and reciprocating
agents, while unconcerned agents are not concerned about privacy and do not expect their
disclosures to be reciprocated. From 28 MTs on, pragmatists achieved less intimacy than
unconcerned agents because pragmatists will not disclose PDAs to MTs and there are not
enough reliable and reciprocating agents in the system to achieve more intimacy. We can
also see the same pattern for 200 DRs (Figure 3(a)) and 250 DRs (Figure 3(c)). In this case,
the higher the number of DRs, the sooner pragmatists start achieving less intimacy than
unconcerned. Moreover, when the number of DRs is the maximum (300 DRs) pragmatists
achieved less intimacy than unconcerned from 1 MT, as shown in Figure 3(e). This is because
in 300 DRs unconcerned always disclosed all of their attributes to all of the target agents
while pragmatists may have not disclosed all their attributes if they realized that they are
interacting with MTs.

Figure 2(f) shows the average privacy loss of the agents for each number of MTs con-
sidered for 150 DRs. For 0 up to 25 MTs, pragmatists lost an slightly increasing amount
of privacy. This is due to the fact that as the number of MTs increases, pragmatists have
more difficulties in finding agents that reciprocate their disclosures. Therefore, they lose
a little (and slightly increasing) amount of privacy while seeking reliable and reciprocating
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agents to whom concentrate their disclosures. For MTs from 25 up to 30, pragmatists lost
less privacy as the number of MTs increased. This is because once pragmatists discover
that an agent is malicious, they no longer disclose PDAs. As the number of MTs increases
the number of total PDAs disclosed decreases so that privacy loss also decreases. We can
also observe the same pattern for 200 DRs (Figure 3(b)) and 250 DRs (Figure 3(d)). The
main difference is that privacy loss starts decreasing earlier as the number of DRs increases.
This is because, as there are more DRs pragmatists need more target agents that recipro-
cate their disclosures. Therefore, pragmatists have more chances to interact with a MT.
Moreover for 300 DRs (Figure 3(f)), pragmatists have a privacy loss that decreases linearly
with the number of MTs. For 300 DRs, pragmatists disclose all of their attributes to all of
the target agents when all the target agents are sincere and reciprocating (MTs=0). Thus,
they end up losing all of their privacy. However, as the number of MTs increases they start
losing less privacy because they can detect malicious agents, and thus, they do not perform
disclosures to them.

6.3. Reciprocity Threshold

In this section, we detail the experiments that we performed to ascertain to what extent
the reciprocity threshold ζ influences the behavior of pragmatic agents. To this aim, we
repeated the experiment detailed in the previous section so that each time the reciprocity
threshold has the value of -0.1, -0.5, -1, -1.5, -2, and -5 bits. Intuitively, we sought to consider
pragmatic agents that expect almost the same information gain that they provide to others
(ζ = −0.1), pragmatic agents that expect reciprocations but are more permissive than the
first ones (ζ = {−0.5,−1.0,−1.5,−2.0}), and pragmatic agents that seek to be reciprocated
but are less concerned with the possibility of being interacting with malicious agents that
may not reciprocate them (ζ = −5.0). The rest of parameters are as in Table 1.

For the sake of the clarity and appropriate visibility of the figures depicted in this section,
we only show the results obtained for 200 DRs but similar results were also obtained for
other number of DRs. Figure 4(a) shows the intimacy achieved. As one can observe, the
reciprocity threshold ζ clearly influences the intimacy achieved by agents. The lower the
reciprocity threshold, the higher the maximum intimacy that pragmatic agents achieved.
For instance, the maximum intimacy that pragmatic agents achieved is when ζ = −0.1,
since there are few MTs and pragmatic agents only interact with reliable and reciprocating
agents. However, the lower the reciprocity threshold, the sooner the change in tendency
starts, i.e., intimacy starts decreasing as the number of MTs increases. This is because it
is more difficult for pragmatic agents to find enough target agents that reliably reciprocate
them as they expect (i.e., the reciprocity threshold). For instance, when ζ = −0.1 pragmatic
agents start being unable to achieve the same intimacy from ≈ 12 MTs on.

We can also observe in Figure 4(a) that the higher the reciprocity threshold, the less
the difference between pragmatic and unconcerned agents. Moreover, when ζ = −5 we
can see that pragmatic agents achieve exactly the same intimacy as unconcerned agents.
This is due to the fact that pragmatic agents do not see MTs as actually malicious until
reaching the reciprocity threshold. Thus, if this threshold is high enough (e.g., ζ = −5),
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Figure 4: Results considering a varying reciprocity threshold ζ per number of malicious target agents.

pragmatist agents disclose because they are more permissive with the amount and reliability
of reciprocations.

Figure 4(b) shows the average privacy loss of agents when considering a varying reci-
procity threshold. The higher the reciprocity threshold the less variable is the privacy loss
of pragmatic agents. Moreover, for ζ = −5 we can see that the privacy loss is constant.
This is due to the fact that pragmatists disclose expecting very few reciprocations. Thus,
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they end up performing the same disclosures regardless the number of MTs. However, we
can observe that this privacy loss is still lower than the privacy loss of unconcerned agents
because pragmatists choose to disclose attributes that minimize privacy loss.

6.4. Fundamentalist Threshold

We also sought to ascertain how the fundamentalist threshold ξ influences the behavior
of fundamentalist agents. To this aim, we repeated the experiment detailed in Section 6.2,
but varying the fundamentalist threshold. Specifically, we considered ξ = {0.5, 2.0, 5.0}.
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Figure 5: Results for fundamentalists per fundamentalist threshold ξ and per number of malicious target
agents.

Figure 5(a) shows the average intimacy achieved per fundamentalist threshold with 200
DRs (similar results were obtained for other number of DRs). As one could expect, the
higher the fundamentalist threshold ξ, the higher the intimacy that fundamentalist agents
achieved. Moreover, as depicted in Figure 5(b) — that shows the average privacy loss
per fundamentalist threshold — the higher the fundamentalist threshold ξ, the higher the
privacy loss of fundamentalist agents.

We can also observe in figures Figure 5(a) and 5(b) that when ξ = 5.0 and the number
of MTs is higher than 10, the intimacy achieved by and the privacy loss of fundamentalist
agents starts decreasing at a faster rate. This is because if the fundamentalist threshold is
high enough (e.g., ξ = 5.0), fundamentalist agents start behaving like pragmatic agents, i.e.,
they disclose attributes as long as they are reciprocated. Thus, for a high number of MTs,
they had less intimacy and privacy loss because they chose not to disclose attributes when
they realized that they were interacting with a MT.

6.5. Sensitivity Array per Agent

In our previous experiments we considered a unique randomly-generated sensitivity array
for all of the agents. In this section, we illustrate the behavior of the agents when the
sensitivity array is randomly generated for each agent, i.e., each agent has its own randomly
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generated sensitivity array. This corresponds to a more realistic scenario, because humans
usually have different sensitivities for the same PDA, as stated in the related literature on
privacy such as in [7]. The other parameters used in this experiment are as in Table 1, and
the number of DRs is 200.
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Figure 6: Results considering a random sensitivity array per agent.

Figures 6(a) and 6(b) show the intimacy achieved by and the privacy loss of unconcerned,
pragmatists, and fundamentalists when considering a random sensitivity array per agent.
The results obtained are very similar to the ones obtained for the same parameters in
Section 6.2 (i.e., Figures 3(a) and 3(b)) but with a unique and shared sensitivity array for
all of the agents. This seems to mean that the behavior of our self-disclosure decision-making
mechanisms is barely affected when each agent has a different sensitivity array — recall that
the experiment was repeated 100 times as described in Table 1 so that each time a sensitivity
array is randomly generated for each agent.

6.6. Varying the Number of Agents, Attributes and Values

In this section, we consider a varying number of agents, attributes and values. The
number of agents, attributes and values that we consider is finite and it is based on current
social networking technologies. The number of agents is based on the number of people
to which one could establish a particular degree of intimacy. For instance, average user in
Facebook has 130 friends11. The number of attributes and values is based on the Friend of a
Friend (FOAF) [31] ontology for connecting social Web sites and the people they describe.
FOAF ontology considers user profiles involving less than 100 different terms to describe
users. These profiles can also be seen as sets of attribute-value pairs. Moreover, the range
of the terms in FOAF is usually finite and statically defined. Again, the rest of parameters
used in this experiment are as in Table 1, and the number of DRs is 200.

Figures 7(a) and 7(b) show the results that we obtained when increasing the number of
agents. When there are 60 agents, there are the same number of unconcerned, pragmatic,

11http://www.facebook.com/press/info.php?statistics
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Figure 7: Results obtained per number of agents.

fundamentalist, and target agents as in Table 1 (i.e., 10 unconcerned, 10 pragmatists, 10 fun-
damentalists, and 30 target agents). Moreover, we maintain the same ratio of unconcerned,
pragmatic, fundamentalist, and target agents when increasing the number of agents. Note
that for each number of agents, we have that half of this number of agents is the number of
target agents in that experiment, which in turn is the maximum number of MTs.

In both figures 7(a) and 7(b), the results for 102, 150, and 204 agents are very similar
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Figure 8: Results obtained per number of attributes.

to the results obtained for 60 agents and 150, 100, and 50 DRs respectively in Section
6.2. Thus, we can conclude that the behavior of the presented self-disclosure decision-
making mechanisms when increasing the number of agents and leaving the number of DRs
unchanged is very similar to when decreasing the number of DRs and leaving the number
of agents unchanged.
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Figure 9: Results obtained per number of values per attribute.

Figures 8(a) and 8(b) show the results that we obtained when increasing the number of
attributes up to 150 attributes. One can observe, that the behavior of our self-disclosure
decision-making mechanisms is very similar to the behavior shown in Figures 2(a) and 2(b),
i.e., the behavior is the same as when there are 10 attributes but very few DRs (i.e, 50 DRs).
Thus, this behavior is also very similar to when increasing the number of agents as shown
above.

Finally, figures 9(a) and 9(b) show the results that we obtained when increasing the
number of values per attribute up to 150 possible values. We can observe that the number
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of values does not affect the overall behavior of agents regardless their privacy attitude.
The only difference is that as the number of attributes increases, the absolute value for the
intimacy achieved and the privacy lost also increases.

6.7. Uncertainty in Observations

Over the course of this section, we have assumed that when an agent calls the observe()
method, this method always returns the correct probability distribution for an attribute of
another agent. However, this may not be the case in environments in which agents may
not have the ability to always observe the correct probability distribution. We now assume
that the observe() method introduces a random normally-distributed noise when it returns
the probability distribution for an attribute of another agent. We considered a normally-
distributed noise with mean 0.0 and a varying standard deviation. Specifically, we considered
the following standard deviations: 0.1,0.2,0.3, and 0.5. The observe() method sums the
generated noise to all of the components of the probability distribution to be returned,
normalizes all of the components to still have a probability distribution (i.e., the addition of
all of the components is equal to 1), and then returns the resulting probability distribution.
The rest of the parameters are the ones detailed in Table 1, and the number of DRs is 200.

Figures 10(a) and 11(a) show the intimacy achieved by unconcerned, pragmatists, and
fundamentalists per number of MTs. As one can observe, the higher the standard devia-
tion of the random noise introduced, the higher the intimacy achieved by all of the agents
regardless of their privacy attitude. This is due to the fact that agents think that their
disclosures are reciprocated based on the observations that they perform. Thus, as these
observations become less accurate, they are less able to realize that they are getting less
reliable reciprocations. We can also observe, that for a standard deviation of 0.1 — this
means that 99.7% of the random noise generated is distributed as follows: 68.2% of the
random noise generated is in the interval [−0.1, 0.1], 27.2% of the random noise generated
is in the interval [−0.2,−0.1[

⋃
]0.1, 0.2], and 4.2% of the random noise generated is in

the interval [−0.3,−0.2[
⋃

]0.2, 0.3] — the differences with respect to when the observe()

method introduces no noise are very few. We can also see that for a standard deviation of
0.2, the overall behavior is very similar regardless of the privacy attitude of agents. However,
from a standard deviation of 0.3 — this means that 99.7% of the random noise generated
is distributed as follows: 68.2% of the random noise generated is in the interval [−0.3, 0.3],
27.2% of the random noise generated is in the interval [−0.6,−0.3[

⋃
]0.3, 0.6], and 4.2% of

the random noise generated is in the interval [−0.9,−0.6[
⋃

]0.6, 0.9] — we start observing
differences in the behavior of pragmatic agents. Specifically, they hardly show the pattern
of a faster intimacy decrease when there is a large amount of MTs, and their behavior is
more similar to unconcerned agents. Moreover, for a standard deviation of 0.5, the behavior
of pragmatists is the same as the behavior of unconcerned.

Figures 10(b) and 11(b) show the privacy loss of unconcerned, pragmatists, and funda-
mentalists per number of MTs. As one can easily observe, unconcerned and fundamentalists
had the same privacy loss for all of the standard deviations tested. Unconcerned do not
consider if they are being reciprocated or not, so they are not interested on performing ob-
servations about other agents. Fundamentalists had the same constant privacy loss. They
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Figure 10: Results considering a random normally-distributed noise in observations (unconcerned and prag-
matists).

used the same fundamentalist threshold as in Table 1, that in this case is low enough so
that they did not disclose any more when they reached this threshold regardless the ob-
servations that they performed. We can also see that for standard deviations of 0.1 and
0.2, pragmatists have a very similar behavior to when the observe() method introduces
no noise. However, the higher the standard deviation, the more constant the privacy loss
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Figure 11: Results considering a random normally-distributed noise in observations (fundamentalists).

becomes. This is because as pragmatists have more uncertain observations they have more
difficulties to realize that they are interacting with MTs. However, we can see that even
when the standard deviation is 0.5 (which is a very adverse scenario), pragmatists lost much
less privacy than unconcerned.

Finally, to sum up, we conclude that for a moderated noise (std 0.1 and 0.2), our self-
disclosure decision-making mechanisms behaved very similar to when there is no added noise.
If this noise is very adverse (std 0.3 and 0.5) our self-disclosure decision-making mechanisms
did not behave so similar, specially for the case of pragmatists. However, even in these very
adverse conditions, pragmatists lost much less privacy than unconcerned.

7. Related Work

The privacy-utility tradeoff in online interactions has been studied in the last few years
[10, 19, 14, 29]. This tradeoff considers the direct benefit of disclosing a PDA and the
privacy loss it may cause. Agents disclose a PDA if the particular privacy-utility tradeoff
for disclosing this PDA is acceptable. Given a set of PDAs A, the utility of disclosing these
PDAs U(A) and the privacy cost of disclosing these PDAs C(A), the privacy-utility tradeoff
is usually modeled as A∗ = arg maxA U(A) − C(A) [10]. For instance, in [10], the authors
use the reduction in time for performing an online search if some PDAs such as geographical
location are given as a utility function.

This tradeoff is often called privacy-trust tradeoff as well [21], [16]. An entity then is
willing to disclose PDAs for increasing the trust others have in it. However, the authors of
these works associate different levels of payoff for an entity for different trust levels others
have in an entity. Then, a trust level is matched with a direct benefit so that an increase in
trust results in an increase in utility. As a result, this can be finally modeled as a privacy-
utility tradeoff.

Our proposed self-disclosure decision-making mechanisms differ from the works based on
the privacy-utility tradeoff in two main aspects: (i) they consider repeated disclosures and
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their implications, such as the disclosure reciprocity phenomenon [5]; and (ii) they are based
on the privacy-intimacy tradeoff that can deal with situations where the direct benefit for
disclosing a PDA is unknown.

The LOGIC negotiation model [24] describes relationships between a pair of negotiating
agents using intimacy and balance measures based on information theory. In this paper,
we adapt these two measures to deal with PDAs and present a privacy loss metric (privacy
loss is not directly considered in LOGIC). Then, the two self-disclosure decision-making
mechanisms that we propose are based on intimacy and balance on the one hand, and
privacy loss on the other hand.

8. Conclusions

In this paper, we presented self-disclosure decision-making mechanisms based on infor-
mation measures. These self-disclosure decision-making mechanisms model pragmatic and
fundamentalist attitudes towards privacy by considering the increase in intimacy and the
loss of privacy a disclosure may cause. Both intimacy and privacy loss are based on uncer-
tain agent identities, a formalism that we presented to describe agents based on personal
data attributes.

These self-disclosure decision-making mechanisms aim to be used in environments in
which there can be repeated disclosures and in which disclosures may no report any benefit
(or this benefit may not be known in advance). Thus, other already existing self-disclosure
decision-making mechanisms, which do not consider repeated disclosures and that need that
disclosures have an associated utility, cannot be used.

We experimentally showed that pragmatists lose less privacy than unconcerned agents
for the same intimacy. We also showed that fundamentalists lose less privacy than both
pragmatic and unconcerned agents but are unable to achieve the same intimacy. Moreover,
in environments in which agents must interact with a moderate percent of malicious agents,
pragmatists achieve even greater intimacy than unconcerned agents while losing less privacy.
In environments in which agents must interact with a high percent of malicious agents, both
pragmatists and fundamentalists lose much less privacy than unconcerned agents.

We also showed experimentally the properties of the self-disclosure decision-making
mechanisms presented in this paper with respect to their main parameters and possible
environmental conditions: the reciprocity and fundamentalist thresholds; the sensitivity
array; the uncertainty in observations; and the number of agents, PDAs, and values.

As future work, we are exploring strategies for pragmatists and fundamentalists not to
be sincere when disclosing a PDA. This could be useful once these agents detect that they
are interacting with malicious agents. They could choose to keep on disclosing PDAs while
being insincere instead of not disclosing any other PDA to such malicious agents. Thus,
using such strategies agents would be able to lie to liars.
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