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Abstract

In this paper we study the use of the generalized polynomial chaos method
when the differential equations describing the model depend on more than
one random input, whether parameters or initial or boundary conditions. We
study the effect of the choice of density distribution functions of the inputs
on the output stochastic processes. Specifically we study the effect on the
solutions of Airy’s equation which is good test case since the solutions are
highly oscillatory and errors develop both in the amplitude and the phase.
Several different cases are considered and conclusions are presented.
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1. Introduction and motivation1

Traditionally mathematical models based on deterministic differential2

equations have been considered to describe numerous phenomena appearing3

in scientific areas such as engineering, physics, medicine, economics or biol-4
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ogy. There is a great deal of experience in the use of such models, but their5

application requires accurate knowledge of the data of the model, namely,6

the input coefficients and the initial/boundary conditions given either by7

constants and/or deterministic functions. Often the data can only be es-8

tablished roughly since it may depend on experimental measurements. Also9

the consideration not only of errors in the observed or measured data, but10

also the variability and uncertainty inherent to the complexity of the phe-11

nomenon under study, leads to consider that both, input coefficients and12

initial/boundary conditions, are random variables (r.v.’s) and/or stochastic13

processes (s.p.’s) rather than deterministic quantities. These facts motivate14

the need to consider random differential equations (r.d.e.’s) to describe the15

behavior of quantities of interest instead of their deterministic counterparts.16

As a consequence, numerous mathematical models based on r.d.e.’s have17

been proposed over the last few decades in a wide variety of applied areas18

[1, 2, 3, 4, 5, 6].19

In practice, once the differential equation model has been selected, the20

determination of the statistical distribution for each random input and ini-21

tial/boundary condition is required. Afterward, one deals with the compu-22

tation of the solution s.p. including its main statistical functions such as23

average and standard deviation (or equivalently, variance). To tackle this24

task a considerable number of methods have been developed [7, 8, 9, 10, 11,25

12, 13, 14, 15, 16, 17]. Here we are specifically interested in generalized poly-26

nomial chaos (gPC) technique [18, 19] that has been shown to be relatively27

easy to implement and to give good results for several application models.28

gPC is a powerful method to represent, by means of infinite series, second-29

order r.v.’s. These series are defined in terms of the Wiener-Askey scheme30

which uses common discrete and continuous orthogonal polynomials as ba-31

sis functions to represent the random inputs and outputs solutions of the32

model equations. Taking into account that some of the weighting functions33

associated to these orthogonal polynomials are identical to the probability34

function of certain statistical distributions including the standard families35

such as Binomial, Negative Binomial, Hypergeometric, Poisson, Gaussian,36

Beta, Gamma, gPC allows the variables to be expanded with respect to suit-37

able orthogonal polynomial bases, that in the previous list correspond to38

Krawtchouk, Meixner, Hahn, Charlier, Hermite, Jacobi, Laguerre, respec-39

tively [19]. gPC takes advantage of this key result in dealing with one of its40

most fruitful applications: the solution of r.d.e.’s. In fact, in the outstanding41

paper [19], authors show, through the exponential population growth model42
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Ẏ (t) = −KY (t), Y (0) = 1 (whose decay rate coefficient K is assumed to43

be a r.v. following different standard statistical distributions) that, an ex-44

ponential convergence of the error measures for the average and variance of45

the solution takes place when the series representation of the solution s.p. is46

made in terms of (an optimum) trial polynomial basis from the Wiener-Askey47

scheme in accordance with the distribution of random input K.48

In the usual case where there are more than one random input parameter,49

each having possibly different probability distributions, gPC can still be em-50

ployed. This is usually done by using a single orthogonal polynomial basis,51

although there is no criterion to choose the best basis. Frequently one opts52

to represent the solution s.p. as well as the random model parameters using53

the Hermite orthogonal polynomial basis which is linked with Gaussian r.v.’s54

[18, 20]. Likely this decision can initially be motivated by the well-known role55

that Gaussian r.v.’s play in Probability Theory to represent asymptotically56

many relevant r.v.’s according to the Central Limit Theorem. However in57

dealing with random differential models this decision may not be adequate58

since each random parameter plays a different role in the model, such as,59

diffusion coefficient, source term, initial condition, boundary condition, etc.60

As a consequence, they contribute differently in determining the behavior of61

the solution.62

Assuming different statistical distributions for each of the random model63

parameters and, bearing in mind the idea of developing them with respect64

to one single gPC basis, in this paper we first explore the advisability of65

representing the solution s.p. in other bases likely different from Hermite66

polynomials. Following the gPC method, this trial orthogonal basis is set67

in accordance with the statistical distribution of the random parameter that68

most contributes to determine the behavior of the model. Second, in order69

to improve the results provided by previous approach, we also analyze the70

possibility of computing the solution s.p. when the random model parameters71

are represented in different bases. To conduct our study, we have chosen the72

Airy r.d.e.73

Ẍ(t) + AtX(t) = 0, t > 0, X(0) = Y0, Ẋ(0) = Y1, (1)

because it is well-known that the solution of the deterministic Airy differential74

equation is highly oscillatory, hence it is expected that, in dealing with its75

stochastic counterpart, differences, if any, between the solutions obtained by76

gPC using different orthogonal polynomial bases will be highlighted.77
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This paper is organized as follows. In Section 2, we summarize the gPC78

method focusing on its application to solve the r.d.e. (1). Section 3 is devoted79

to show the numerical results obtained to the study previously described.80

Conclusions and suggestions are drawn in Section 4.81

2. Applying gPC to the random Airy differential equation82

This section is concerned with introducing the gPC method including its83

application in the construction of approximate solution s.p. to problem (1).84

Henceforth we shall assume that coefficient A and initial conditions Y0 and Y185

are independent r.v.’s defined on a common probability space (Ω,F , P ) [21,86

part I]. Thus, r.v.’s A, Y0 and Y1 depend on an outcome ω ∈ Ω, i.e., A = A(ω),87

Y0 = Y0(ω), Y1 = Y1(ω). As a consequence, the solution X(t) = X(t;ω) to88

problem (1) is a s.p.89

The polynomial chaos method was firstly introduced by N. Wiener who90

called it the homogeneous chaos [22]. He used expansions in Hermite poly-91

nomials. In 2002, Xiu et al. [19] introduced the generalized polynomial92

chaos, which allows to use the polynomials of the Wiener-Askey scheme. In93

this context, if L2 denotes the set of all r.v.’s χ whose statistical second-order94

moments with respect to the origin are finite, i.e., r.v.’s such that 〈χ2〉 < +∞,95

(where 〈·〉 denotes the expectation operator), and, as a consequence, also has96

finite variance, then every χ ∈ L2 can be represented in the form97

χ(ω) = χ̂0Γ0 +
∞∑
i1=1

χ̂i1Γ1(ξi1(ω)) +
∞∑
i1=1

i1∑
i2=1

χ̂i1i2Γ2(ξi1(ω), ξi2(ω)) + · · · , (2)

where Γi are successive Wiener-Askey polynomial chaoses which depend on98

i independent r.v.’s of vector ξ = (ξi1 , ξi2 , . . .). These polynomials Γi have99

increasing degrees starting from zero [22, 18, 19]. It has been demonstrated100

that this expansion converges, in the particular case of Hermite polynomials,101

for second-order s.p.’s [23]. As a consequence, the two first terms in the102

representation (2) can be interpreted as the Gaussian part of r.v. χ.103

For convenience, this representation can be arranged using a given poly-104

nomials basis B = {Φj} as105

χ(ω) =
∞∑
j=0

χjΦj(ξ(ω)), (3)
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since there is a one-to-one correspondence between Φj(·) and Γi(·). {Φj}106

constitutes a complete set of statistically orthogonal r.v.’s of the Hilbert107

space L2 with respect to the inner product, i.e., 〈Φi,Φk〉 = δik 〈Φi,Φi〉, where108

〈·〉 denotes the following average109

〈f(ξ), g(ξ)〉 =

∫
f(ξ)g(ξ)W (ξ) dξ, (4)

W (ξ) is the weighting function corresponding to the Wiener-Askey polyno-110

mial chaos basis B = {Φj} and δik is Kronecker delta function. In addition,111

for j ≥ 1 these polynomials are centered at the origin, i.e., 〈Φj〉 = 0, j ≥ 1,112

and Φ0 = 1. As a consequence, from (3)–(4) the expectation and variance of113

r.v. χ can be computed in terms of coefficients χi in the following way114

EBPC = 〈χ(ω)〉 = χ0, DBPC = Var [χ(ω)] =
∞∑
i=1

(χi)
2 〈(Φi(ξ(ω)))2

〉
, (5)

respectively, see [18] for further details.115

In the operational practice, the infinite summation (3) needs to be trun-116

cated at a finite term, say P . The vector ξ = (ξi1 , ξi2 , . . .) is also truncated117

at the number n, called the dimension of the chaos, i.e., ξ = (ξ1, . . . , ξn). In118

our case, this leads to the following expansion of solution s.p. X(t;ω) and119

input r.v.’s A(ω), Y0(ω), Y1(ω)120

X(t;ω) =
P∑
i=0

Xi(t)Φi(ξ(ω)), A(ω) =
P∑
i=0

AiΦi(ξ(ω)),

Y0(w) =
P∑
i=0

Y0,iΦi(ξ(ω)), Y1(w) =
P∑
i=0

Y1,iΦi(ξ(ω)).

(6)

In these expansions, the total number of terms is P + 1. This value is121

fixed by the relationship P + 1 = (n+ p)!/(n!p!), where n is the dimension of122

the chaos, (i.e., the number of components of vector ξ) and, p, the highest123

order of the polynomial basis B = {Φi}. Since we are going to consider124

A, Y0 and Y1 as the input r.v.’s in problem (1), we will take n = 3, so125

ξ(ω) = (ξ1(ω), ξ2(ω), ξ3(ω)).126

For the sake of clarity in the presentation, we illustrate the notation above127

for p = 2. In this case, the polynomial basis can be chosen as (see for example128

[18])129
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Φ0 = Γ0 = 1,
Φ1 = Γ1(ξ1(ω)), Φ2 = Γ1(ξ2(ω)), Φ3 = Γ1(ξ3(ω)),
Φ4 = Γ2(ξ1(ω), ξ1(ω)), Φ5 = Γ1(ξ1(ω))Γ1(ξ2(ω)), Φ6 = Γ1(ξ1(ω))Γ1(ξ3(ω)),
Φ7 = Γ2(ξ2(ω), ξ2(ω)), Φ8 = Γ1(ξ2(ω))Γ1(ξ3(ω)), Φ9 = Γ2(ξ3(ω), ξ3(ω)),

(7)
where independence between r.v.’s ξ1, ξ2 and ξ3 has been considered.130

So far, we have used the polynomial basis associated to only one of the131

polynomials of the Wiener-Askey scheme. If each r.v. A, Y0 and Y1 is ex-132

panded in a different basis, Γ1
i , Γ2

i and Γ3
i , respectively, taking into account133

(2), after truncation we obtain134

A(ω) = Â0 + Â1Γ
1
1(ξ1(ω)) + Â2Γ

1
2(ξ1(ω), ξ1(ω)),

Y0(w) = Ŷ0,0 + Ŷ0,1Γ
2
1(ξ2(ω)) + Ŷ0,2Γ

2
2(ξ2(ω), ξ2(ω)),

Y1(w) = Ŷ1,0 + Ŷ1,1Γ
3
1(ξ3(ω)) + Ŷ1,2Γ

3
2(ξ3(ω), ξ3(ω)),

and the orthogonal basis, in accordance with expression (7), is135

Φ0 = Γ0 = 1,
Φ1 = Γ1

1(ξ1(ω)), Φ2 = Γ2
1(ξ2(ω)), Φ3 = Γ3

1(ξ3(ω)),
Φ4 = Γ1

2(ξ1(ω), ξ1(ω)), Φ5 = Γ1
1(ξ1(ω))Γ2

1(ξ2(ω)), Φ6 = Γ1
1(ξ1(ω))Γ3

1(ξ3(ω)),
Φ7 = Γ2

2(ξ2(ω), ξ2(ω)), Φ8 = Γ2
1(ξ2(ω))Γ3

1(ξ3(ω)), Φ9 = Γ3
2(ξ3(ω), ξ3(ω)).

Now, we are ready to explain how the polynomial chaos operational136

methodology works in model (1). Firstly, we impose that the truncated137

polynomial chaos series given by (6) satisfies the random Airy differential138

equation (1)139

P∑
i=0

Ẍi(t)Φi(ξ(ω)) + t

P∑
i=0

P∑
j=0

AiXj(t)Φi(ξ(ω))Φj(ξ(ω)) = 0.

A Galerkin projection of previous equation onto each polynomial basis140

B = {Φi} is then conducted in order to ensure the error is orthogonal to the141

functional space spanned by the finite-dimensional basis B = {Φi}142

P∑
i=0

Ẍi(t) 〈Φi(ξ(ω)),Φl(ξ(ω))〉

+t
P∑
i=0

P∑
j=0

AiXj(t) 〈Φi(ξ(ω))Φj(ξ1(ω)),Φl(ξ(ω))〉 = 0, l = 0, 1, . . . , P.
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Now, taking advantage of orthogonality properties of polynomial basis143

B = {Φi}, one obtains the following coupled second-order system of deter-144

ministic differential equations145

Ẍl(t) = − t

el

P∑
i=0

P∑
j=0

eijlAiXj(t),

Xl(0) = Y0,l, Ẋl(0) = Y1,l

l = 0, 1, . . . , P,

where146

eijl = 〈Φi(ξ(ω))Φj(ξ(ω)),Φl(ξ(ω))〉 , i, j, l = 0, 1, . . . , P,

147

el =
〈
(Φl(ξ(ω)))2

〉
, Ai =

〈A,Φi(ξ(ω))〉〈
(Φi(ξ(ω)))2

〉 , i, l = 0, 1, . . . , P.

In the significant case where A is a r.v. of the same class of ξ, according148

to expression (4) the coefficients Ai can still be computed in the same way149

that el and eijl. Whereas if A is not of the same type, the computation of150

the numerator defining coefficients Ai requires the transformation of r.v.’s,151

A and ξ to the same uniformly distributed r.v. U by using the inverse152

transformation method [24]. This can be done as follows153

〈A,Φi(ξ(ω))〉 =

∫ 1

0

F−1A (u)Φi(F
−1
ξ (u)) du, i = 0, 1, . . . , P,

where F−1H denotes the inverse distribution function of r.v. H.154

3. Numerical results155

As we pointed out in Section 1, we are interested in studying how solu-156

tions s.p. to r.d.e.’s depend on the statistical distributions of the random157

model parameters (inputs and initial conditions) as well as the chosen ba-158

sis when applying gPC. As we said in Section 1, the elucidation of this last159

question is of paramount importance in the case that random model param-160

eters have different statistical distributions, when the Hermite basis is often161

chosen to represent the random model parameters and the solution s.p. In162

fact, keeping in mind the idea of developing both, the random data and the163

solution s.p., with respect to a single basis, we will show that the consider-164

ation of, just, the Hermite basis to perform these developments may not be165
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an appropriate choice. Instead, we propose to select the polynomial basis in166

accordance with the random data that most determine the behavior of the167

model.168

169

By the reasons exhibited in Section 1, we will consider the Airy random170

differential equation to conduct this study. Specifically, we will compute the171

solution s.p. to r.d.e. (1) considering that random model parameters A, Y0,172

Y1 have the Gaussian (N) and uniform (U) statistical distributions specified173

in Table 1. The distributions of A, Y0, Y1 have been selected so that each174

one of them has the same mean and variance in all Cases 1–8. Thus, we175

can highlight how important is correctly setting the probability distributions176

of the data. Namely in Table 1, the parameters {a, b}, {c, d} and {e, f},177

associated to the uniform distributions U(a, b), U(c, d) and U(e, f), have178

been fixed in such a way that their mean and variance match those ones179

of the Gaussian r.v.’s A ∼ N(1, 1/4), Y0 ∼ N(1, 1) and Y1 ∼ N(1/3, 1/25),180

respectively. For instance, in the first case, a and b have been determined181

so that the uniform distribution U(a, b) has mean 1 and variance 1/4, and182

analogously, for the parameters c, d, e and f . Thus, we have obtained the183

following values184

a = 4−
√
3

2
, c = 1−

√
3, e = 5−3

√
3

15
,

b = 3+4
√
3

2
√
3
, d = 3+

√
3√

3
, f = 9+5

√
3

15
√
3
.

To study whether there is dependence on the chosen basis when the gPC185

is applied for each of the eight cases collected in Table 1, following the rec-186

ommendations given by [19], we have taken the Hermite and Legendre poly-187

nomials bases, associated to Gaussian and uniform r.v.’s, respectively.188

First, we consider that every random model parameter A, Y0 and Y1 has a189

Gaussian distribution. This corresponds to Case 1 in Table 1. For simplicity,190

it has been denoted by NNN. In this scenario, as all r.v.’s are Gaussian,191

based on [19], we have used the Hermite orthogonal polynomials basis to192

approximate the average and standard deviation by gPC. Henceforth, this193

will denoted by Hermite-gPC. In Figure 1, we show the calculated results for194

different orders, namely 1,2 and 5, of gPC as well as the results using the195

Monte Carlo method with 5 × 105 with the simulations done over the time196

interval [0, 5], where we set our discussion. Notice that in the case of the197

average, the approximations provided by both approaches match very well198

even for gPC with order 2, while a higher order, namely 5, is needed for a good199
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Case A Y0 Y1 Notation
1 N(1, 1/4) N(1, 1) N(1/3, 1/25) NNN
2 N(1, 1/4) N(1, 1) U(e, f) NNU
3 N(1, 1/4) U(c, d) N(1/3, 1/25) NUN
4 N(1, 1/4) U(c, d) U(e, f) NUU
5 U(a, b) N(1, 1) N(1/3, 1/25) UNN
6 U(a, b) N(1, 1) U(e, f) UNU
7 U(a, b) U(c, d) N(1/3, 1/25) UUN
8 U(a, b) U(c, d) U(e, f) UUU

Table 1: Specification of Cases 1–8 considered to study whether there is dependence on
the chosen basis when gPC is applied. In each case, random model parameters A, Y0 and
Y1 are assumed to be Gaussian (N) and uniform (U).

match for the standard deviation. This comparative study between gPC and200

Monte Carlo methods, allows us to consider as reliable those Hermite-gPC201

approximations on the interval [0, 5] whose order is greater than 5.202

Then, in order to compare the results obtained in Cases 1–4, hereinafter203

we need to take a true or reference solution. This true solution has been204

constructed so that the maximum difference on the interval [0, 5] between205

two approximations of consecutive orders of the standard deviation obtained206

by Hermite-gPC is less than 10−12. Specifically, the solution constructed in207

this way corresponds to that one obtained by applying Hermite-gPC with208

order 17.209

1 2 3 4 5
t

-0.5

0.5

1.0

Average@XHtLD

MC 500000

order 5_HHH

order 2_HHH

order 1_HHH

1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0

Standard Deviation@XHtLD

MC 500000

order 5_HHH

order 2_HHH

order 1_HHH

Figure 1: Approximations of the average and the standard deviation to model (1) in Case
1 of Table 1 by using different orders of Hermite-gPC and Monte Carlo with 5 × 105

simulations.
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Approximations for the standard deviation for the Cases 1–4 have been210

carried out until the difference between two consecutive orders has been less211

than 5× 10−3, when a numerical stabilization of the results is presented. In212

Figure 2, we have represented, in semi-logarithmic scale, the relative error of213

the standard deviation for stabilized Cases 1–4 with respect to the reference214

solution. Notice that, the plot labels in Figure 2 indicate in the first place215

the case under study according to the notation introduced in Table 1 and,216

second, the type of orthogonal polynomial basis used to represent each of the217

random model parameters that, in this case, it corresponds to the Hermite218

(H) polynomials. For instance, NUU HHH notation refers to Case 4 and it219

indicates that r.v. A, which is assumed to be Gaussian, has been represented220

by gPC through Hermite polynomials, and r.v.’s Y0, Y1, which are assumed221

to be uniform, have also been represented by Hermite-gPC. The magnitudes222

of the errors shown in Figure 2 indicate that the statistical distributions of223

the initial conditions Y0, Y1 are not crucial to determine good approximations224

for the average and standard deviation of the s.p. solution by Hermite-gPC225

in each of Cases 1–4.226

1 2 3 4 5
t

10-13

10-10

10-7

10-4

Standard Deviation Error

NUU_HHH

NUN_HHH

NNU_HHH

NNN_HHH

Figure 2: Relative error, in semi-logarithmic scale, of the standard deviation for stabilized
Cases 1–4 collected in Table 1 with respect to the so-called reference solution. First part
of the plot labels indicates the probability distribution of each one of the random model
parameters A, Y0 and Y1, respectively, according to Cases 1–4, while the second part
stands for the orthogonal polynomial basis used to represent them, respectively. In this
case, we have just used Hermite (H) polynomial basis.
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In order to analyze the influence of the chosen distribution for the param-227

eter A in the determination of the approximate solution obtained by gPC,228

in Figure 3 we have plotted the Case 5 for different orders of Hermite-gPC229

together with the approximation computed by Monte Carlo with 5 × 105
230

simulations and the reference solution obtained in the Case 1 (NNN HHH).231

On the one hand, we observe that although r.v. A has a uniform distribution232

and it has been represented through the Hermite polynomials, the results233

provided by Hermite-gPC and Monte Carlo agree. On the other hand, we234

conclude that the obtained solution differs from that one computed in the235

Case 1, where the r.v. A is assumed to be Gaussian and the distributions for236

initial conditions Y0 and Y1 do not change. The analysis above, allows us to237

reach the conclusion that the statistical distribution of r.v. A influences in238

the determination of the solution to model (1).239

1 2 3 4 5
t

-0.5

0.5

1.0

Average@XHtLD

NNN_HHH

MC 500000

order 5_HHH

order 2_HHH

order 1_HHH

1 2 3 4 5
t

0.2

0.4

0.6

0.8

1.0

Standard Deviation@XHtLD

NNN_HHH

MC 500000

order 5_HHH

order 2_HHH

order 1_HHH

Figure 3: Approximations of the average and standard deviation to model (1) in Case 5
of Table 1 by using different orders of Hermite-gPC, Monte Carlo method with 5 × 105

simulations and the so-called reference solution obtained in the Case 1 (NNN HHH) by
Hermite-gPC.

In Figure 4 we have represented, in semi-logarithmic scale, the relative240

error of the standard deviation for the stabilized approximations computed241

in Cases 5–8 by Hermite-gPC with respect to the so-called reference solution.242

From this plot, we see again that the statistical distributions of the initial243

conditions Y0 and Y1 are not decisive to construct reliable approximations of244

the solution s.p. to model (1). Comparing the numerical values of the errors245

represented in Figures 2 and 4, it is clear that those ones corresponding to246

Figure 4 are greater, so we conclude that the probability distribution of r.v.247

A has a significant influence on the approximations constructed by Hermite-248

gPC.249
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0 1 2 3 4 5
t

10-4

0.001

0.01

0.1

Standard Deviation Error

UUU_HHH

UUN_HHH

UNU_HHH

UNN_HHH

Figure 4: Relative error, in semi-logarithmic scale, of the standard deviation for stabilized
Cases 5–8 collected in Table 1 with respect to the so-called reference solution constructed
by Hermite-gPC. First part of the plot labels indicates the probability distribution of each
one of the random model parameters A, Y0 and Y1, respectively, according to Cases 5–8,
while the second part stands for the orthogonal polynomial basis used to represent them,
respectively. In this case, we have just used Hermite (H) polynomial basis.
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To confirm that conclusions drawn by Hermite-gPC do not depend on the250

chosen orthogonal polynomial basis, in Figure 5 we show an analogous study251

to that one we have performed in Figures 2 and 4 for Cases 1–8, but now252

using Legendre-gPC. Following the same criterion of numerical stabilization253

we previously used for Hermite-gPC, in this case the approximations of the254

average and standard deviation have been computed by Legendre-gPC with255

orders 6 and 9, respectively. As reference solution, now we have taken that256

one associated to Case 8 in Table 1 constructed, in accordance with [19], by257

Legendre-gPC with order 15. Again, as we made in the Hermite-gPC analy-258

sis, this true solution has been constructed so that the maximum difference259

on the interval [0, 5] between two approximations of consecutive orders of260

the standard deviation obtained by Legendre-gPC is less than 10−12. From261

plots shown in Figure 5, we observe that the approximations provided by262

Legendre-gPC do not depend on the probability distributions of the initial263

conditions Y0 and Y1. Whereas comparing the magnitudes of the errors repre-264

sented in each plot, we conclude that the constructed approximations depend265

on the probability distribution of the input r.v. A.266
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Figure 5: Relative errors, in semi-logarithmic scale, of the standard deviation for stabilized
Cases 1–4 (right) and Cases 5–8 (left) shown in Table 1 with respect to the so-called
reference solution constructed by Legendre-gPC. First part of the plot labels indicates
the probability distribution of each one of the random model parameters A, Y0 and Y1,
respectively, according to Cases 1–8, while the second part stands for the orthogonal
polynomial basis used to represent them, respectively. In this case, we have just used
Legendre (L) polynomial basis.

So far we have discussed how to influence the probability distributions of267

r.v.’s A, Y0 and Y1 in the determination of the approximation of the solution268

s.p. to model (1) by gPC method. Our analysis allows us to conclude that269
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the choice of the right probability distribution to input r.v. A is particularly270

crucial, whereas the selection of the correct probability distributions of the271

initial conditions is not as critical.272

This conclusion can be strengthened from the so-called gPC-based Sobol’273

indices [25]. The Sobol’ indices are known to be good descriptors of the274

sensitivity of the model to its random input parameters (in our case they275

correspond to A, Y0 and Y1), through r.v.’s of the chosen basis (in our case276

they are denoted by ξ1, ξ2 and ξ3, respectively). These descriptors evaluate277

the part of the total variability of the solution s.p. that is explained by278

each random model parameter through its contribution by gPC expansion.279

Although the part of the total variability that determines each random model280

parameter is not enough to describe completely the statistical distribution281

of the response, it gives a feeling of the role that each parameter plays in282

determining the solution s.p. Let us represent each multivariate polynomial283

of the chosen basis B (that in our previous development, it corresponds to284

Hermite or Legendre bases), by means of a n-tuple α = (α1, . . . , αn) in285

accordance with gPC construction (see [25, Appendix A] for further details).286

In this context, polynomials Φi and Φα are used indifferently according to:287

Φi ≡ Φα : Φi(ξ) =
n∏
j=1

Pαj
(ξj),

where Pk(ξ) denotes the k-th (Hermite or Legendre) univariate orthogonal288

polynomial belonging to basis B. Then, defining Ii1,...,is the set of α-tuples289

such that only the indices (i1, . . . , is) are nonzero, the gPC-based Sobol’s290

indices with respect to basis B are defined as291

SBi1,...,is =

∑
α∈Ii1,...,is

(χα)2
〈
(Φα)2

〉
DBPC

, (8)

where DBPC is given in (5). Notice that in the numerator of (8) the gPC292

expansion coefficients are simply gathered according to the dependency of293

each basis polynomial, square-summed and normalized. It is important to294

stress that the sum defining SBi1,...,is indicates implicitly the dependence of295

each multidimensional (Hermite (H), Legendre(L)) orthogonal polynomial296

to each subset of random input parameters through their identification with297

the r.v.’s of the chosen basis. In particular, note that Ii corresponds to the298

orthogonal polynomials depending on a single r.v. ξi of the chosen basis.299

14



Therefore, in this case the value of the Sobol’ index SBi rates the part of the300

total variability which is explained by r.v. ξi (or equivalently, by the random301

model parameter that it represents). Considering the identification ξ1 → A,302

ξ2 → Y0 and ξ3 → Y1 for each of the Cases 1–8 shown in Table 1, we can303

compute the gPC-based Sobol’s indices SBA, SBY0 and SBY1 to the approximate304

solution s.p. expanded in both bases, B = {H,L}. Notice that in this context305

such indices depend implicitly on time t. In Table 2 we collect Sobol’s indices306

at the endpoint t = 5. Notice that the numerical values corresponding to SBA307

are greater than those ones associated to SBYi , i = 0, 1. This indicates that308

random input parameter A contributes more to explain the central second309

moment of the approximate solution s.p. than initial conditions Y0 and Y1.310

Thus, this conclusion drawn by Sobol’ indices agrees with that one we have311

obtained previously.312

Case SH
A SH

Y0
SH
Y1

SL
A SL

Y0
SL
Y1

1 (NNN) 0.54530 0.05836 0.00618 0.53151 0.06122 0.00663
2 (NNU) 0.54534 0.05837 0.00618 0.53150 0.06122 0.00666
3 (NUN) 0.54567 0.05840 0.00618 0.53129 0.06140 0.00664
4 (NUU) 0.54571 0.05840 0.00618 0.53127 0.06140 0.00666
5 (UNN) 0.52310 0.04425 0.00388 0.52381 0.04371 0.00382
6 (UNU) 0.52315 0.04425 0.00388 0.52369 0.04370 0.00385
7 (UUN) 0.52257 0.04420 0.00388 0.52289 0.04391 0.00382
8 (UUU) 0.52264 0.04420 0.00387 0.52278 0.04390 0.00385

Table 2: Numerical values of gPC-based Sobol’s indices at t = 5 with respect to bases
Hermite (H) and Legendre (L) for Cases 1–8 of Table 1.

In the following, we analyze the role that the chosen polynomial basis313

plays in the determination of the solution. To perform this study, first we314

have represented in Figure 6 the standard deviation corresponding to Case315

1 in Table 1 with respect to both bases, Hermite and Legendre. Computa-316

tions have been carried out on the interval [0, 5] by using Hermite-gPC and317

Legendre-gPC of order 10, as well as, by Monte Carlo with 5 × 105 simula-318

tions. We observe that both approximations generated by gPC agree with319

Monte Carlo results except at the end of the interval where discrepancies320

with respect to Legendre-gPC values are presented. This reveals the great321

importance of the chosen orthogonal polynomial basis in order to get better322

approximations by gPC.323
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Figure 6: Comparison of the approximations of the stabilized standard deviation in Case
1 of Table 1 by Hermite-gPC (NNN HHH) and Legendre-gPC (NNN LLL) with respect
to Monte Carlo values using 5× 105 simulations.

This motivates the subsequent analysis of the results obtained when ap-324

proximations are computed by adapting completely gPC method to the prob-325

lem under study. Hereinafter, we refer to as tailor-made-gPC this approach.326

Tailor-made-gPC consists of representing each independent random model327

parameter in terms of the orthogonal polynomial basis, say Bi, in accordance328

with conclusions given in [19]. Then, by taking advantage of independence,329

the solution s.p. is expressed in terms of the basis constructed as the prod-330

uct of bases Bi. Following this approach, firstly, in Figure 7 we have plotted331

both, the average and standard deviation for the Case 5 in Table 1 (UNN)332

with respect to the Legendre basis for the input r.v. A and the Hermite333

basis for the initial conditions r.v.’s Y0 and Y1. Notice that computations334

have been carried out by using this tailor-made-gPC method for different335

orders. We realize that the approximation of the standard deviation of order336

14 computed by gPC matches the approximation provided by Monte Carlo337

with 5× 105 simulations but over a longer interval, namely [0, 15], than that338

one we considered in the previous analysis, [0, 5]. Following an analogous de-339

velopment as we made previously, secondly, we have determined a reference340

solution for the case under study. This so-called reference solution has been341

constructed so that the maximum difference on the interval [0, 15] between342

two approximations of consecutive orders of the standard deviation obtained343
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by the so-called tailor-made-gPC is less than 10−6. Specifically, the solu-344

tion constructed in this way corresponds to that one obtained by applying345

gPC with order 20. In Figure 8 we have plotted, in semi-logarithmic scale,346

the relative error of the standard deviation constructed by tailor-made-gPC347

for different orders, namely, 8, 11, 14 and 17, with respect to the reference348

solution.349
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Figure 7: Approximations of the average and standard deviation computed for different
orders by gPC for the Case 5 in Table 1 (UNN) using the Legendre basis for the input r.v. A
and the Hermite basis for the initial conditions r.v.’s Y0 and Y1. These approximations are
compared with respect to those ones computed by Monte Carlo using 5× 105 simulations.

In Figure 9 we have represented, in semi-logarithmic scale, the relative350

error of the standard deviation by Legendre-gPC (left) and Hermite-gPC351

(right) for different orders with respect to the reference solution constructed352

by the so-called tailor-made-gPC for the Case 5 in Table 1 (UNN). We notice353

that the maximum order used to construct the approximations by Hermite-354

gPC has been 8 since for higher orders the approximations deteriorate.355

By comparing the numerical values of the errors represented in Figure356

9, we observe that the approximations provided by Legendre-gPC are bet-357

ter than those ones obtained by Hermite-gPC. Finally, a new comparison358

between errors shown in Figure 8 and Figure 9 (left) reveals that the approx-359

imations can still be improved by using the so-called tailor-made-gPC.360

4. Conclusions and suggestions361

Over the last few decades, random differential equations have demon-362

strated to be a powerful tool to model problems appearing in applied areas363

such as physics, medicine, epidemiology, etc. This modelling requires setting364
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Figure 8: Relative error, in semi-logarithmic scale, of the standard deviation constructed
by tailor-made-gPC for different orders, namely, 8, 11, 14 and 17, with respect to the
so-called reference solution constructed by tailor-made-gPC for the Case 5 in Table 1
(UNN).
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Figure 9: Relative errors, in semi-logarithmic scale, of the standard deviation constructed
by Legendre-gPC (left) and by Hermite-gPC (right) for different orders with respect to
the reference solution obtained by the so-called tailor-made-gPC for the Case 5 in Table
1 (UNN).
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the statistical distributions of the random model parameters. In practice,365

the right choice of these distributions can be very difficult due not only to366

the inherent complexity of the phenomenon under study, but also by the367

measurement errors that usually contain the samples required to construct368

such distributions. As a consequence, only approximate distributions for the369

random model parameters are available. Therefore, an analysis about how370

this affects the computation of the solution stochastic process to random dif-371

ferential equation is demanded. In this paper we have performed this study372

for generalized Polynomial Chaos (gPC) which constitutes one of the most373

powerful methods to deal with the solution of random differential equations.374

The obtained results have been compared with respect to those ones pro-375

vided by Monte Carlo technique. To conduct this study we have chosen the376

random Airy differential equation (1) because of it has highly oscillatory so-377

lutions, what allows us to highlight differences when changing the statistical378

distribution of random inputs (coefficient A and initial conditions Y0 and Y1).379

Our study shows that setting correctly the distributions of the random model380

parameters plays an important role in dealing with the solution of random381

differential equations by gPC. In the specific case of equation (1), we have382

shown that it is most crucial to fix correctly the statistical distribution as-383

sociated to the input r.v. A rather than those ones associated to Y0 and Y1.384

This conclusion has also been supported by gPC-based Sobol’ indices.385

The application of gPC entails implicitly the trial choice of an orthog-386

onal polynomial basis. Then, once the statistical distributions of the ran-387

dom model parameters have been set, another significant issue is to analyze388

whether the chosen basis influences the determination of the solution. In this389

paper, we have answered this question by considering both, the Hermite and390

Legendre orthogonal polynomial bases.391

In dealing with random models containing just one single random input,392

the choice of the orthogonal polynomial basis to represent the inputs and the393

solution can be made according to recommendations given in [19]. For more394

random inputs, the Hermite polynomials are usually chosen to represent ev-395

ery random parameter and also the solution. In this case, our study shows396

that this single trial basis should be determined in two steps. First, analyzing397

the random model parameter that most influences the determination of the398

solution. Second, choosing the orthogonal polynomial basis associated to this399

random model parameter in accordance with [19]. However, we conclude our400

study showing that previous results can be further improved by constructing401

the solution of the random model through a tailor -made-gPC method based402
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on representing every random model parameter in the adequate basis in ac-403

cordance with [19] and, then constructing the solution by the corresponding404

orthogonal polynomial bases.405
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