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Abstract. Wildland fires are the main cause of tree mortality in Mediterranean Europe and a major 10 

threat to Spanish forests.  This paper focuses on the design and validation of a new wildland fire 11 

index especially adapted to a Mediterranean Spanish region. The index considers ignition and 12 

spread danger components. Indicators of natural and human ignition agents, historical occurrence, 13 

fuel conditions and fire spread make up the hierarchical structure of the index. Multi-criteria 14 

methods were used to incorporate experts' opinion in the process of weighting the indicators and to 15 

carry out the aggregation of components into the final index, which is used to map the probability of 16 

daily fire occurrence on a 0.5-km grid. 17 

Generalized estimating equations models, which account for possible correlated responses, were 18 

used to validate the index, accommodating its values onto a larger scale because historical records 19 

of daily fire occurrence, which constitute the dependent variable, are referred to cells on a 10-km 20 

grid. Validation results showed good index performance, good fit of the logistic model and 21 

acceptable discrimination power. Therefore, the index will improve the ability of fire prevention 22 

services in daily allocation of resources. 23 

 24 

Additional keywords: fire risk, ignition occurrence, generalized estimating equations, logistic regression, odds ratio 25 
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An average of 49838 forest fires affect an area of 471644 ha each year in Mediterranean Europe (JRC 2011). Forest 27 

fires are the main cause of tree mortality in this region and one of the major threats to the Spanish forest ecosystems 28 

(Castedo-Dorado et al. 2011). Due to climate change, higher frequency and longer duration of extreme conditions, such 29 

as droughts, are expected to increase the risk of wildland fire and with it the demand on the resources needed to prevent 30 

and fight forest fires (Climent et al. 2008). 31 

The forest fire phenomenon in Spain is mainly related to socioeconomic and meteorological factors (Vilar et al. 2007). 32 

Between 1998 and 2009, in the Community of Valencia (CV) (Fig. 1), the Mediterranean Spanish autonomous region 33 

where this study was carried out, each year an average of 500 fires affected 14,000 ha, 50% of which was woodland 34 

(DGMNPF 2006, 2010). Although the causes of ignition are very diverse, human activity and lightning have emerged 35 

as the main agents of fire ignition in this area (Romero-Calcerrada et al. 2008). Large fires, despite only accounting for 36 

2% of the total number of fires, have been responsible for more than 90% of the affected area (DGMNPF 2006). This 37 

highlights the importance that early detection and accurate location of wildfire have on fire suppression and on 38 

prevention of large fire occurrences (Sahin and Turker 2009). Thus, fire risk assessment is a critical part in fire 39 

prevention and one of the main concerns of the Spanish Forestry Administration.  40 

Fig. 1. Study region: forested area on a 10-km grid for the three provinces of the Community of Valencia.   41 

Since 1994, the CV Forest Service has been using a wildland fire danger (WFD) index developed by the National 42 

Institute of Meteorology (Mediavilla et al. 1994) to daily deploy a mobile fleet of 97 vehicles in the forest land. This 43 

index does not take into account important risk factors related to fire occurrence, such as human activities or lightning, 44 

nor does it consider potential effects of fire. This is a common problem in Fire Danger Rating (FDR) systems, mainly 45 

because daily registers of human activities do not exist or are rarely available (Martell et al. 1987) and because 46 

traditional approaches do not put a strong emphasis on potential damage of fire (Chuvieco et al. 2010). It is therefore 47 

imperative to develop better forecasting tools to support fire prevention services in the efficient allocation of resources. 48 

In the last decade new approaches to the concept of fire risk have been established (Bachman and Allgöwer 2001; 49 

Blanchi et al. 2002; Fairbrother and Turnley 2005). These include two risk components: WFD and vulnerability. WFD 50 

represents the probability a fire ignites and the potential hazard of fire propagation or spread danger (Finney, 2005), 51 

while vulnerability accounts for potential effects of fire. New FDR systems which incorporated these components can 52 

be found in Sebastián-López et al. (2002), Blanchi et al. (2002),  Yebra et al. (2008), Chuvieco et al. (2010) and Verde 53 

and Zêzere (2010). According to this approach we propose a new WFD index for the CV. Indicators of ignition and 54 

spread danger have been identified, including human and natural occurrence agents, fuel conditions, historical 55 

occurrence and spread rate. These indicators make up the hierarchical structure for the  index, which, following the 56 
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criteria of the European Commission (San-Miguel-Ayanz et al. 2003) should include both short and long-term 57 

indicators. 58 

Human variables have traditionally been incorporated into prediction models trough indirect indicators adapted to local 59 

conditions. Examples of these indicators are: distance to urban and recreational areas (Romero-Calcerrada 2008; Padilla 60 

and Vega-García 2011), distance to roads (Pew and Larsen 2001; Hernández-Leal et al. 2006), distance to agriculture 61 

land (Vasconcelos et al. 2001), distance to power lines (Vasilakos et al. 2007), agroforestry interface area (Martínez et 62 

al. 2009) and unemployment rate (Maingi and Henry 2007, Martínez et al. 2009). We have also used some of these 63 

indicators to assess fire danger derived from human behavior. 64 

Regarding fire occurrences due to lightning, indirect indicators related to topography (Podur et al. 2003), fuel 65 

characteristics (Chuvieco et al. 2010), polarity of lightning strikes (Wotton and Martell 2005) or historical data 66 

(Castelo-Dorado et al. 2011) have been reported. Since these are long-term indicators and we are seeking for a daily 67 

WFD index, we propose a new indicator based on weather forecasts to obtain the probability of storm calculated 68 

according to Buizza and Hollingsworth (2002).  69 

Traditionally, fuel conditions and their relationship with meteorological variables have also been incorporated into 70 

WFD indexes (Aguado et al. 2007; Padilla and Vega-García 2011). Considering this aspect, we use two indicators of 71 

fuel conditions: a long-term indicator which measures the species flammability and its influence on the ignition process, 72 

and a short-term indicator that measures the probability of ignition according to the methodology by Andrews (1986). 73 

This indicator is based on dead fuel moisture content (DFMC) which is considered one of the most important variables 74 

in the fire ignition component (Yebra et al. 2008; Nieto et al. 2010).  75 

Following the proposal of Stocks et al. (1989), since forest fires are a complex phenomenon with many variables 76 

involved which are difficult to predict, and where it is not possible to model every ignition agent, we also included an 77 

indicator of historical fire occurrence in our index. 78 

FDR systems already in use, such as the Canadian or the United States systems (Stocks et al. 1989) include a fire 79 

propagation component. Spread rate (Rothermel 1983) is considered a good indicator to estimate the probability of an 80 

outbreaking fire to turn into a wildfire (Chuvieco and Salas 1996).  Thus we include this component as a spread danger 81 

indicator. 82 

Integration of the index components has been commonly carried out by different techniques, such as qualitative 83 

methods, which use classification tables for pairs of components (Gouma and Chronopoulou-Sereli 1998), logistic 84 

regression (Preisler et al. 2004; Chuvieco et al. 2004), neural networks (Li et al. 2009), or multi-criteria analysis (MCA) 85 

(Vadrevu et al. 2010). We decided to apply MCA techniques in the integration of the components of our index because 86 
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of its potential to aggregate qualitative and quantitative variables and its capability for taking into account experts' 87 

opinions which have been incorporated into the index through a weighting of the different components. 88 

Regarding the index validation, this has usually been accomplished through an analysis of the relationship between 89 

WFD indexes and historical fire activity (Preisler et al. 2004; Catry et al. 2009; Bradstock et al. 2009). Logistic 90 

regression has been broadly used in the development of danger indexes (Martínez et al. 2009; Chuvieco et al. 2010) as 91 

well as a validation tool (Andrews et al. 2003). We used logistic regression techniques, more specifically Generalized 92 

Estimating Equations (GEE) models to validate our index, using daily historical fire observations as truth terrain data to 93 

contrast the index.   94 

The purpose of this paper is to present the structure of a new WFD index specially adapted to the CV, and the 95 

methodology and difficulties encountered in its validation.  96 

Methods 97 

The wildland fire danger index  98 

The WFD index is structured at four hierarchical levels (Fig. 2), integrating all its components into a single value. At 99 

the second level, the index is considered a combination of two main components: ignition and spread danger. Following 100 

Verde and Zêzere (2010), the ignition danger component was divided into ignition agents (human and natural causes) 101 

and fuel conditions, but we decided to add a historical fire occurrence factor at this level to better account for lurking 102 

human factors which could be responsible of fire (Castedo-Dorado et al. 2007). 103 

Fig. 2. Hierarchical structure of the WFD index. 104 

(i) Ignition agents. Modeling fire danger related to human activity is very complex (Sturtevant and Cleland 2007), this 105 

explains why human factors are rarely included in fire danger models (Martínez et al. 2009). We have selected a range 106 

of human risk ignition indicators representative of different specific human risk activities. All of them are long-term 107 

risk indicators: 108 

ñ Roads: distance to roads was used as a danger indicator because the presence and distribution of ignition 109 

agents are closely related to road accessibility to forest land. Distances between 100 and 500 m have been 110 

considered as relevant in previous studies (González-Calvo et al. 2008). We decided to assign a 2 danger score 111 

to points in the territory which are less than 250 m apart from roads, 1 to points between 250 and 500 m and 0 112 

to those points whose distance to roads is larger than 500 m.   113 

ñ Railroads: we have defined a 100 m wide buffer around railroads. Points in this area get a danger value of 1. 114 

Previous data on forest fires (DGMNPF 2010) showed absence of fire ignitions for points farther than this 115 

distance, so they receive a 0 risk value. 116 
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ñ Power lines:  distance to power lines has been also used as a measurement of ignition danger due to 117 

photovoltaic arc (Vasilakos et al. 2007). Early reports (DGMNPF 2010) showed that the arc capable of causing 118 

a fire reaches a maximum of 50 m, so we decided to assign a value of 1 to a 50 m buffer either side of the line, 119 

and 0 to the rest of the territory. 120 

ñ Agricultural interface: in 2010, 9% of the wildland fires in the CV were caused by agricultural practices 121 

(DGMNPF 2010). Following Milani et al. (2002), we have defined four buffers of risk around agricultural 122 

areas. Distances to these areas are provided by the Preventive Silvicultural Plan of the CV (CMA 1995). Points 123 

in the territory are classified as being up to 100, 200, 500 or more than 500 m away from agricultural areas, 124 

and receive a decreasing risk value from 4 to 0 as their distance to these areas increase. 125 

Regarding the natural ignition agents, being storm lightning the most efficient cause of fire ignition in the CV in terms 126 

of total area affected per number of fires (DGMNPF, 2010), instead of associating the storm lightning ignition to factors 127 

related to vegetation and orography, the forecasted probability of electric storm, provided by the Ensemble Prediction 128 

System of the European Center for Medium-term Weather Forecast (ECMWF) is used as a short-term risk indicator 129 

(Buizza and Hollingsworth, 2002). This indicator ranges from 0 to 1 and it is doubled when the storm is a dry one. 130 

(ii) Fuel conditions. With respect to the ease at which flammable materials may ignite, we have included two of the 131 

elements which have a bearing on the same: FMC through its relationship to the probability of ignition, and species 132 

flammability.  133 

As a short-term indicator we focused on moisture content of fine dead fuels (FDFMC) because they are very dependent 134 

on atmospheric changes (Chuvieco et al. 2004) and their FMC is inversely related to the probability of ignition (Danson 135 

and Bowyer 2004). Therefore, we have obtained the probability of ignition using the methodology of BEHAVE which 136 

takes into account fuel shading, FDFMC and air temperature (Andrews 2009). FDFMC calculations were performed 137 

assuming the maximum weather forecasted risk scenario, i.e., the worst predicted combination of high temperatures and 138 

very low humidity conditions.  139 

Although FMC is a relevant indicator for the ease of ignition, different species show different ignition times and heating 140 

values under the same FMC because of their flammability (Núñez-Regueira et al. 1997), which is directly influenced by 141 

the chemical composition of its flammable gases, resins, terpenes, etc. To evaluate this long-term danger factor, we 142 

have employed an indicator based on the flammability studies of INIA (Martín and Hernando 1989) and INRA (Valette 143 

et al. 1979) specially adapted to Mediterranean species. Using the classification carried out by these authors, we turned 144 

the CV forest vegetation map (DGMNPF 2005) into a flammability danger map, assigning a flammability value 145 

between 1 and 4 to each vegetation type. 146 
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(iii) Historical occurrence. Historical fire occurrence databases acquire great importance in order to detect hidden 147 

human factors which are responsible for fire and to discover differences in fire danger between regions (Castedo-148 

Dorado et al. 2007). Therefore, we decided to add the historical wildfire occurrence risk index of ICONA (Vélez 2000) 149 

as a long-term danger indicator. This factor, besides the affected area, analyses the number and causes of fires. 150 

(iv) Spread danger. We estimated the spread danger component by means of a short-term indicator: the spread rate. This 151 

indicator is calculated using the BEHAVE program (Andrews 1986) and implementing the corresponding weighted 152 

algorithms for each standard fuel model (Anderson 1982) derived from the cartography (DGMNPF 2005) assuming, 153 

once more, the maximum weather forecasted risk scenario. 154 

Study area and data 155 

Our study area is the forested land in the CV, a Spanish autonomous region that lies in the Mediterranean basin. This 156 

forested land is made up of woodland, grassland and shrubland areas, encompassing an overall area of 1247090 ha 157 

which represents 53% of the total extent of land in the CV. The climate is temperate, mean annual temperature ranges 158 

from 11ºC to 26ºC with average annual rainfall varying from 300 to 700 mm. This region is divided into three 159 

administrative provinces: Castellón, Valencia and Alicante (Fig. 1), which present a distinct degree of intensity in urban 160 

and agricultural activities, and are characterized by a north–south vegetation gradient. Furthermore, some factors that 161 

affect the WFD index have a distinct influence in each province (e.g. lightning is responsible for most of forest fires in 162 

Castellón). As these provinces may present different responses to fire, we are interested in checking if the proposed 163 

WFD index accounts for those differences. 164 

The data needed to carry out calculations of the index indicators are very heterogeneous. Some of these come in 165 

cartographic format, while others, such as weather forecast data, come from  alphanumeric databases which need to be 166 

adapted to cartographic format before calculations. A digital terrain model and data on land use, roads, and power lines 167 

have been provided by the MA10 and the CV10 cartographical series of the Valencian Cartographic Institute on a 168 

1:10000 scale. Data related to land cover, species flammability, type of vegetation and fuel model, adapted to the 13 169 

standard fuel models of Anderson (1982) were accommodated using the cartography from the third National Forest 170 

Inventory (DGMNPF 2005) on a 1:50000 scale.  171 

Meteorological data were supplied by the company Meteogrid S.L. Daily forecasts on a 0.5 km grid that covers the CV 172 

are based on reports of the ECMWF. Fire records and data used to derive the historical occurrence indicator and to 173 

validate the index came from the forest fire database of the Ministry of Environment (DGMNPF 2006).  Wildfire data 174 

are related to a 10-km grid cell system anchored to UTM (Universal Transverse Mercator) coordinates. A summary of 175 

all the referenced datasets is shown in Table 1. 176 
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Table 1. Datasets 177 

Name, source, year of publication and scale/resolution for all the datasets used to build the index. 178 

Dataset Source Year Scale / 
Resolution 

Digital terrain model 

Valencian Cartographic Institute  2000 1:10000 Land uses 
Power lines 
Roads 
Types of vegetation 

Ministry of Environment of Spanish 
Government 2005 1:50000 Fuel model 

Land cover (vegetation) 
Flammability (species) 

Weather forecast Meteogrid. Ltda. / European Centre for 
Medium-Range Weather Forecasts  0.5 km 

Forest fire records Ministry of Environment of Spanish 
Government 2006 10 km 

 179 

The initial data for the model were first mapped (vegetation, roads, agricultural interface, weather forecasts, etc.) onto a 180 

0.5-km grid covering the whole territory of the CV. This scale is consistent with other studies on regional indexes 181 

(Sebastián-López et al. 2002; Martínez et al. 2009; Padilla and Vega-García 2011). 182 

Index integration 183 

In order to use a homogeneous numerical scale for the different components, prior to integration these were 184 

standardized using the score range method (Malczewski 1999). Integration consists of the progressive aggregation of 185 

the components that make up every level in the WFD index and, after that, the integration of these levels to obtain a 186 

unique value for the index. As MCA methods are oriented to deal with hierarchically structured problems and with 187 

situations in which conflicting goals prevail, this methodology, which has been applied extensively in the management 188 

of environmental resources (Noble and Chirstmas 2008), has been the one adopted for the aggregation of components.  189 

We used the TOPSIS method (Hwang and Yoon 1981) in the integration of components. This method is applied to 190 

obtain a single value at each hierarchical level of the WFD index. This value depends on its distance, in a geometric 191 

sense, to the ideal and anti-ideal points (Zavadskas et al. 2006).  192 

The opinions of a group of experts are taken into account by weighting each component of the index. An Analytic 193 

Hierarchy Process (AHP) (Saaty, 1987) is used to aggregate experts' opinions on each component into a single value. 194 

The benefits afforded by this method, due to its capability to measure and control inconsistency of individual opinions, 195 

have been key in adopting this methodology – one of the weighting methods most widely used in environmental studies 196 

(Moffet et al. 2006). We conducted a poll among a group of experts (e.g. technical managers of forest administration, 197 

firefighters, surveillance coordinators, etc.) involved in wildfire prevention in the CV. The opinion of nine experts about 198 

the relative contribution of each factor to the corresponding hierarchical danger level was consulted and integrated in 199 
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the index structure through pair-wise comparisons at every index level. Weights obtained applying this method are 200 

shown in Table 2. 201 

Table 2. Hierarchical levels,  names and weights for the WFD components.  202 

Weights obtained integrating the opinion of a group of experts through an AHP 203 

Hierarchical level  Component Weight 

FWD 
Ignition danger 0.63 
Spread danger 0.37 

Ignition danger 
Historical occurrence 0.11 
Ignition agents 0.45 
Fuel conditions 0.44 

Ignition agents 

Roads 0.18 
Power lines 0.06 
Railroads 0.06 
Agriculture 0.34 
Lightning 0.36 

Fuel conditions 
Probability of ignition 0.63 

Flammability 0.37 

 204 

Index validation 205 

Before introducing our WFD index to fire prevention units, it should undergo rigorous evaluation and validation to fully 206 

assess its relationship to fire activity and to detect any possible limitation. Most authors use historical fire activity to 207 

check the performance of fire danger indexes, analyzing the relationship between the values taken by the index and fire 208 

occurrence (Chuvieco et al. 2010). Others compare their indexes to a well known and established set of indexes 209 

(Dasgupta et al. 2006; Sharples et al. 2009). 210 

Since fires are the unique available truth terrain data, we used the historical fire occurrences compiled by the Spanish 211 

official statistics on wildfires (DGMNPF 2006) recorded on a grid of 275 10-km grid cells as the data to assess our 212 

index performance.  213 

(i) Sample data. The data consisted of historical records for the period from 1994 to 2003. This study period is 214 

consistent with previous studies (Preisler et al. 2008; Carmel et al. 2009) and with the usual time-frame for fire 215 

prevention planning in Spain (Vélez 2000). A 10 year period like this, involves a sample with a large number of 216 

observations with no fire and a very small number of cases with fire. To ensure a minimum number of cases with fire in 217 

the sample, some authors have drawn their samples retrospectively by selecting those days with high probability of fire 218 

activity (e.g. summer days or days with at least one fire) (Dasgupta et al. 2006; Chuvieco et al. 2010).    219 

In our case, data collection were oriented to include all large fires that took place during the study period. In total, 60 220 

days with at least one fire affecting more than 100 ha were selected. As data  referred to a grid of 275 10-km cells, our 221 

sample is integrated by a total of 275 x 60 = 16500 observations (day-cells).  222 
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Therefore, although the index resolution is 0.5 km, since the historical fire database resolution is 10 km, we were forced 223 

to assign a single WFD index value to each 10-km day-cell by summarizing WFD index values in the 0.5-km day-cells 224 

that make them up (see details in Fig. 3). Each 10-km cell is made up of 400 0.5-km cells, however as the index is only 225 

calculated in those cells with forested vegetation (where a fuel model applies), the number of forested cells that make 226 

up the 10-km cells is variable, ranging from 3 to 394. 227 

Fig. 3. Detailed view of the different grids used: our WFD index is calculated for all the 0.5-km forested cells, but 228 

historical data on fire occurrence are related to 10-km cells.   229 

Since wildland fire is a contagious process (Chou et al. 1990), the probability of fire occurrence in a  location is 230 

influenced not only by local conditions but also by conditions in surrounding areas (Bachmann and Allgöwer 2001). 231 

Therefore, on a given day, the probability of fire occurrence in a 10-km cell is strongly related to the maximum 232 

probability of fire occurrence in the set of 0.5-km forested cells that make it up. In fact, other summary measures as the 233 

average or the median could hide extreme conditions.  So, on a daily basis, the summarizing measure for the index in 234 

each of the 10-km cells was calculated as the maximum value of the index in the forested cells that make them up. 235 

Figure 4 shows a map with the probability of fire occurrence (WFD index values) estimated on a given date in each 0.5-236 

km forested cell, highlighting the 10-km cells where a forest fire took place. The right side of this picture represents the 237 

aggregated values of the index in each 10-km cell. 238 

Fig. 4. Probability of fire occurrence map on a 0.5-km grid (left), and its aggregated values on a 10-km grid (right), 239 

including the location of forest fires (10/08/1994). 240 

(ii) Validation methodology 241 

To validate our index, we want to analyze if a positive significant relationship with the observed fire occurrences exists, 242 

and also, if the index is capable of capturing the effect of the potential differences between provinces and the different 243 

number of forested cells that compose each 10-km cell. 244 

A wide range of statistical methods have been used in the validation of WFD indexes. Some nonparametric tests as the 245 

Wilcoxon and the Kruskall-Wallis tests are used to see if significant differences on the index values exist between 246 

cells/days with and without fire activity (Wasserman 2007). Logistic regression is one of the techniques most widely 247 

used because of its capability for modeling binary data (Preisler et al. 2008; Catry et al. 2009; Bradstock et al. 2009; 248 

Padilla and Vega-García 2011). Andrews et al. (2003) demonstrated the reliability of using logistic regression to 249 

validate fire danger indexes. Following these authors, we aimed to use a logistic regression model to validate our index, 250 

however, observations in our sample may not be independent because they conform a set of 275 clusters, each a 10-km 251 

cell, with repeated observations on 60 different days. Responses in each cluster might be correlated due to the impact 252 
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that some geographical characteristics and time considerations have on the different risk indicators, so the assumption 253 

of independence of responses made by standard logistic regression models may not hold in our setting. We needed to 254 

use an analytic approach that explicitly took into account possible correlated binary responses: the generalized 255 

estimating equations (GEE) models. A review of methods for clustered binary data can be found in Pendergast et al. 256 

(1996). 257 

We have tested two within cluster correlation structures: first order autoregressive (AR1) and independent (Kleinbaum 258 

and Klein 2002). If responses were correlated, the AR1 structure accounts for situations where the chances of a fire 259 

occurring at a certain cell on a given time period are dependent on the situation encountered in that cell on the previous 260 

time period considered. This is clearly the case when the time interval between two observations is small and for cells 261 

where the forested area is not too large (if a fire burned all the available fuel, the chances of having another fire in the 262 

next observation period are less than if there were no fire in that cell in the near past). 263 

To perform an assessment of fit via external validation, we decided to randomly exclude 25% of our observations and 264 

develop a model based on the remaining cases. To assure a minimum number of day-cells in the validation sample, as 265 

our data constitute a set of clusters (275 10-km cells) with repeated observations (60 days),  we randomly selected 15 266 

days and excluded all the related cell-days from the original sample to obtain and fit the models. 267 

Results and discussion 268 

Exploratory analysis 269 

Before proceeding with the GEE models, we carried out an exploratory analysis of our index using only the sample for 270 

calibration – 45 observations (days) in each of the 275 10-km cells. The total number of day-cells without fires is 12176 271 

while the number of day-cells with fires is 199, representing 1.63% of the whole set. The distribution of the index 272 

values is similar in all 275 cells, ranging from 0.23 to 0.76. As it might be expected, there is a positive correlation (r = 273 

0.4) between the index values and the number of forested cells that make up each 10-km cell (NumCells) (P < 2.2·10-16 274 

from the Spearman's rank correlation test). This result suggests that the variable NumCells  could be an explanatory 275 

variable in the GEE model. 276 

Although the number of fires and their geographical distribution is similar for the three provinces,  Valencia is the 277 

province with the largest area, while Castellón is the one with the largest mean number of forested cells per 10-km cell 278 

(193.2) compared to Valencia (161.9) and Alicante (122.2), these differences are clearly significant (P = 0.0007 from a 279 

Kruskal-Wallis rank sum test). This outcome and the different geographic and demographic characteristics of the three 280 

provinces convert Province into another eligible explanatory variable. 281 

A first approach to assess the performance of the WFD index is to compare the distributions of the index in the samples 282 
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of day-cells with and without fires. Comparisons of theses distributions  through box plots and the empirical cumulative 283 

distribution functions (ECDF) (Fig. 5) showed the expected behavior of the index: day-cells where a fire took place 284 

present larger values of the index than day-cells with no fire. This conclusion was supported by a Wilcoxon rank sum 285 

test with continuity correction applied to two samples of equal sizes (each with 199 observations), where a one-sided p-286 

value as small as 8.47·10-7 shows a clearly significant and positive shift location for the distribution of the index in the 287 

population of day-cells with fires. 288 

Fig. 5. Comparison of the WFD index distribution in the samples of cell-days with and without fires: boxplots and 289 

Empirical Cumulative Distribution Funtions (ECDF). 290 

GEE models fitting 291 

Taking into account these results, apart from the index, two additional explanatory variables were considered to account 292 

for possible sources of variation associated with the Province and to the number of 0.5-km forested cells that make up 293 

each cluster (NumCells). The data structure is presented in Table 3.  294 

Table 3.   Data structure.  295 

For each observation (day-cell): cell identification, province, number of forested cells that make up each 10-km cell, 296 

index value and the binary response variable. 297 

Cell. Id Province NumCells Index Fire 

1 Valencia 17 0.29 0 

1 Valencia 17 0.34 0 

... ... ... ... ... 

177 Castellón 31 0.51 1 

177 Castellón 31 0.62 0 

... ... ... ... ... 

275 Alicante 14 0.38 0 

275 Alicante 14 0.34 0 
 298 

The initial GEE logistic models proposed to fit our data, considered the effect of these three explanatory variables and 299 

all second and third order interaction terms. Table 4 shows results for the terms that could not be eliminated from the 300 

initial model using a drop-in-deviance test, for a GEE model with an AR1 correlation structure. A backward elimination 301 

procedure was used to eliminate non significant variables (significance level α=0.05).  302 

Table 4.  GEE model that assumes an AR1 correlation structure 303 

Estimates for the coefficients, standard errors, Wald statistics and associated P values for the explanatory variables that 304 

could not be eliminated using a backward selection procedure.  305 

Parameter Estimate Std. Error Wald P(>|W|) 
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Intercept -8.06447 0.53490 227.31 < 2·10-16 

Index 7.52329 0.91535 67.55   2·10-16 

Castellón -0.13906 0.47117 0.09 0.768 

Valencia 0.37385 0.36953 1.02 0.312 

NumCells 0.00155 0.00157 0.97 0.324 

Cast*NumCells -0.00217 0.00213 1.04 0.309 

Val*NumCells -0.00441 0.00192 5.52 0.019 
 306 

The estimated correlation parameter for this model is r = 0.0439 which is not significant (P =0.31   two-sided Wald 307 

test). Although not shown here, to avoid replication, we obtained similar estimated parameters and standard errors with 308 

the GEE model that use an independence correlation structure. Furthermore results are almost identical to the ones 309 

obtained from scratch, with a standard logistic regression model using a backward selection method (Table 5). All these 310 

results reveal that responses inside the 10-km cells are independent. 311 

Table 5. Standard logistic regression model 312 

Estimates for the coefficients, standard errors, z statistics and associated P values for the explanatory variables that 313 

could not be eliminated using a backward selection procedure.  314 

Parameter Estimate Std. Error z-value P(>|z|) 

Intercept -8.16273 0.53724 -15.19 < 2·10-16 

Index 7.72658 0.95357 8.1 5.4·10-16 

Castellón -0.12215 0.40976 -0.3 0.766 

Valencia 0.36408 0.32096 1.13 0.257 

NumCells 0.00151 0.00153 0.99 0.324 

Cast*NumCells -0.00225 0.00201 -1.12 0.262 

Val*NumCells -0.00449 0.00178 -2.53 0.011 
 315 

In these models, the only significant effects are: Index which is clearly significant, and the interaction term 316 

Val*NumCells. As results obtained with the three models are consistent, using as an example, the standard logistic 317 

regression model, the estimated coefficient associated to Index is 7.727 – 95% confidence interval (CI): 5.86 to 9.60 –  318 

showing a clear positive association between the values of our index and the probability of a fire being present. 319 

The estimated coefficient associated to the interaction term Val*NumCells is -0.004489 (95% CI: -0.00798 to -0.001), 320 

so it seems that the larger the number of forested cells that make up each 10-km cell in Valencia, the lower the 321 

probability of having a fire. Although this upshot needs further investigation, a possible explanation of this result could 322 

be related to the existence of a distinctive distribution of the forested cells in the province of Valencia, as could be the 323 

case if, those 10-km cells which are integrated with a lower number of 0.5-km forested cells were the ones with a higher 324 
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risk of fire because of, for example, being closer to railways or roads, or being the ones that are immersed into 325 

agricultural areas.  326 

Assessing the fit of the model 327 

Using the validation sample, we followed the directions of Hosmer and Lemeshow (2000), and used a combination of 328 

three tests to assess the fit of the model: the Hosmer-Lemeshow decile of risk test yield a Ĉ statistic of 7.76 (P=0.54), 329 

hence we conclude that the model fits, the Osius and Rojek normal approximation to the distribution of the Pearson chi-330 

square statistic, another overall measure of the model fit, was z =-0.85 (P=0.39), so again we cannot reject the 331 

hypothesis that the model fits, and finally, the Stukel's test that determines if the tails of the proposed model are either 332 

longer or shorter that the standard logistic regression model. This contrast provides a test of the basic logistic regression 333 

model assumption and in that sense it is a useful adjunct to the previous tests. The partial likelihood ratio for this test 334 

yield a value of 1.56 (P=0.21), concluding that we cannot reject the hypothesis that the logistic regression model is the 335 

correct model. 336 

Another measure of model performance which could be a useful supplement to the previous overall tests of fit is the 337 

ROC curve which plots sensitivity (probability of detecting true fire) and 1-specificity (probability of detecting a false 338 

fire). The area under the ROC curve provides a measure of the model's ability to discriminate between those day-cells 339 

with an actual fire, and those day-cells with no fire. The area under the ROC curve in our model is 0.73, pointing an 340 

adequate performance of our model, as values between 0.7 and 0.9 are considered as useful discrimination (Swets 341 

1988). Similar values are reported by Modugno et al. (2008) for their risk index in Catalunya (Spain) and Padilla and 342 

Vega-García (2011) for the logistic models they propose to model fire risk in 53 Spanish ecoregions. 343 

Model applicability 344 

The sample used to carry out all the analyses was selected retrospectively from the population of days with fires to 345 

assure a minimum number of observation with fire. As this is a case-control study, prospective probabilities cannot be 346 

estimated because the intercept in these models cannot be validly estimated without knowledge of the sampling 347 

fractions within cases and controls, being the risk odds ratio (ROR) – which compares the odds of having a fire in two 348 

different locations – the only valid estimate that can be used to compare two groups of binary responses (Hosmer and 349 

Lemeshow 2000). 350 

Using the estimated coefficients from the proposed logistic regression model (Table 5), the ROR comparing two cells in 351 

Castellón and/or Alicante, on a specific day where, as an example, the WFD index takes the values 0.5 and 0.6 would 352 

be: ROR = exp(7.72658 x (0.6-0.5)) = 2.17. So, if we compare cells where the WFD index differs in 0.1 353 

units, the odds of fire for the cells with the largest values are estimated to be 2.17 times as large as 354 



   14 

the odds of fire for the cells with the lowest values. A 95% CI for the odds of fire for cells where 355 

the WFD index increase 0.1 points relative to the other cells is 1.80 to 2.61. 356 

When considering cells in the province of Valencia, the effect of increasing the values of the WFD index on the odds 357 

ratio depends on the number of forested cells that make up each 10-km cell. Figure 6 presents point and confidence 358 

estimates of the odds ratio for 0.1 and 0.25 increase in the WFD index. The point-wise 95% limits are indicated by the 359 

vertical bars. The graph indicates that 10-km cells in Valencia whose WFD index values increase (by 0.1 or 0.25 points) 360 

are progressively more likely to remain fire free as the number of 0.5-km forested cells that make up each 10-km cell 361 

increases. The decrease in the estimates of the odds ratio are more important for large increments of the WFD index 362 

values (e.g. the odds ratios gradually decrease from 6.89 to 4.43 for a 0.25 increase in the index, while the odds ratios 363 

change from 2.16 to 1.81 for a 0.1 increase).   364 

Fig. 6. Estimated odds ratio and 95% confidence limits for a 0.1 and 0.25 increase in Index based on the model in Table 365 

4.  366 

The proposed models (Tables 4 and 5) which were use for validating our WFD index, could also be exploited this way 367 

to obtain a risk map on a 10-km scale using the odd ratios derived from them.  368 

Conclusions 369 

In this paper, a new WFD index to obtain the daily probability of fire occurrence and specially adapted to a 370 

Mediterranean Spanish region has been presented. The index is structured in four hierarchical levels, including dynamic 371 

and structural risk ignition indicators and can be used to improve our ability to target resource protection efforts and 372 

manage fire risk on a local scale. 373 

The index uses the TOPSIS method in the aggregation of components and the AHP methodology to integrate the 374 

opinions of a group of experts on the importance of the different risk and danger factors, obtaining this way a better fit 375 

to local conditions in the study area.  376 

GEE models used to validate the index showed that responses inside the different cells on a 10-km grid were 377 

independent. This result denotes the appropriateness of the standard logistic models for this type of studies. 378 

The proposed WFD index, and the second order interaction term Val*NumCells are clearly significant to predict fire 379 

occurrence on a 10-km cell grid. Validation results showed good index performance, good fit of the logistic model and 380 

acceptable discrimination power.  381 

Apart from validating the index, the proposed GEE models can be used to derive risk odd ratios, which can be used to 382 

obtain a new map representation of fire risk. This idea could be used to obtain risk maps in those case-control analysis 383 

that use logistic regression or other binomial regression techniques to predict the probability of fire occurrence, where 384 
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the prospective probabilities cannot be properly estimated. 385 

The proposed WFD index could be integrated into a more general FDR model which considers also vulnerability, 386 

accounting this way, for potential damage caused by fire. 387 
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