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Abstract. Declarative debugging is a semi-automatic debugging tech-
nique that allows the programer to debug a program without the need
to see the source code. The debugger generates questions about the re-
sults obtained in different computations and the programmer only has
to answer them to find the bug. Declarative debugging uses an internal
representation of programs called execution tree, whose structure highly
influences its performance. In this work we introduce two techniques that
optimize the execution trees structure. In particular, we expand and col-
lapse the representation of loops allowing the debugger to find bugs with
a reduced number of questions.
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1 Introduction

Debugging is one of the most difficult and less automated tasks of software en-
gineering. This is due to the fact that bugs are usually hidden under complex
conditions that only happen after particular interactions of software components.
Programmers cannot consider all possible computations of their pieces of soft-
ware, and those unconsidered computations usually produce a bug. In words of
Brian Kernighan, the difficulty of debugging is explained as follows:

“Everyone knows that debugging is twice as hard as writing a program
in the first place. So if you’re as clever as you can be when you write it,
how will you ever debug it?”

The Elements of Programming Style, 2nd edition

The problems caused by bugs are highly expensive. Sometimes more than the
product development price. For instance, the NIST report [17] calculated that
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undetected software bugs produce a cost to the USA economy of $59 billion per
year.

There have been many attempts to define automatic techniques for debug-
ging, but in general with poor results. One notable exception is Declarative De-
bugging [15, 16]. In this work we present a technique to improve the performance
of Declarative Debugging reducing the debugging time.

Declarative debugging is a semi-automatic debugging technique that auto-
matically generates questions about the results obtained in subcomputations.
Then, the programmer answers the questions and with this information the de-
bugger is able to precisely identify the bug in the source code. Roughly speaking,
the debugger discards parts of the source code associated with correct computa-
tions until it isolates a small part of the code (usually a function or procedure).
One interesting property of this technique is that programmers do not need to
see the source code during debugging. They only need to know the actual and
intended results produced by a computation with given inputs. Therefore, if we
have available a formal specification of the pieces of software that is able to
answer the questions, then the technique is fully automatic.

In declarative debugging, a data structure called Execution Tree (ET) rep-
resents a program execution, where each node is associated with a particular
method execution.1 Moreover, declarative debugging uses a navigation strategy
to select ET nodes, and to ask the programmer about their validity. Each node
contains a particular method execution with its inputs and outputs. If the pro-
grammer marks a node as wrong, then the bug must be in its subtree; and it
must be in the rest of the tree if it is marked as correct. We find a buggy node
when the programmer marks a node as wrong, and all its children are marked
as correct. Hence, the debugger reports the associated method as buggy.

Let us explain the technique with an example. Consider the Java program
shown in Fig. 1. This program initializes the elements of a matrix to 1, and then
traverses the matrix to sum all of them. The ET associated with this example
is shown in Fig. 2 (left). Because it is not relevant in our technique, we omit
the information of the nodes in the ETs of this paper, and instead we label
them (inside) with the number of the method associated with them. Observe
that main (0) calls once to the constructor Matrix (1), and then calls nine times
to position (2) inside two nested loops. In the ET, every node has a number
(outside) that indicates the number of questions needed to find the bug when it
is the buggy node. To compute this number, we have considered the navigation
strategy Divide and Query [15], that always selects the ET node that minimizes
the difference between the numbers of descendants and non-descendants (i.e.,
better divides the ET by the half).

Declarative debugging can produce long series of questions making the de-
bugging session too long. Moreover, it works at the level of methods, thus the

1 Nodes represent computations. Hence, depending on the underlying paradigm, they
can represent methods, functions, procedures, clauses, etc. Our technique can be ap-
plied to any paradigm, but, for the sake of concreteness, we will center the discussion
on the object-oriented paradigm and our examples on Java.



public class Matrix {
private int numRows;
private int numColumns;
private int[][] matrix;

(1) public Matrix(int numRows, int numColumns) {
this.numRows = numRows;
this.numColumns = numColumns;
this.matrix = new int[numRows][numColumns];
for (int i = 0; i < numRows; i++)

for (int j = 0; j < numColumns; j++)
this.matrix[i][j] = 1;

}

(2) public int position(int numRow, int numColumn) {
return matrix[numRow][numColumn];
}
}

public class SumMatrix {
(0) public static void main(String[] args) {

int result = 0;
int numRows = 3;
int numColumns = 3;
Matrix m = new Matrix(numRows, numColumns);
for (int i = 0; i < numRows; i++)

for (int j = 0; j < numColumns; j++)
result += m.position(i, j);

System.out.println(result);
}
}

Fig. 1. Iterative Java program.

granularity level of the bug found is a method. In this work we propose two new
techniques that reduce (i) the number of questions needed to detect a bug, (ii)
the complexity of the questions, and also (iii) the granularity level of the bug
found. The first technique improves a previous technique called Tree Compres-
sion [4], and the second one is a new technique named Loop Expanssion. While
the first technique is based on a transformation of the ET, the second one is
based on a transformation of the source code. In both cases, the produced ET
can be debugged more efficiently using the standard algorithms. Therefore, the
techniques are conservative with respect to previous implementations and they
can be integrated in any debugger as a preprocessing stage. The cost of the
transformations is low compared with the cost of generating the whole ET. In
fact, they are efficient enough as to be always used in all declarative debuggers
before the ET exploration phase. According to our experiments (summarized in
Table 1), as an average, they reduce the number of questions in 27.65 % with a
temporal cost of 274 ms for loop expansion and 123 ms for tree compression.

The rest of the paper has been organized as follows. In Section 2 we discuss
the related work. Section 3 introduces some preliminary definitions that will be
used in the rest of the paper. In Section 4 we explain our techniques and their
main applications, and we introduce the algorithms that improve the structure
of the ET. Then, in Section 6 we provide details about our implementation
and some experiments carried out with real Java programs. Finally, Section 7
concludes.



Fig. 2. ETs of the examples in Fig. 1 (left) and 8 (right).

2 Related Work

Reducing the number of questions asked by declarative debuggers is a well-known
objective in the field, and there exist several works devoted to achieve this goal.
Some of them face the problem by defining different ET transformations that
modify the structure of the ET to explore it more efficiently.

For instance, in [14], authors improve the declarative debugging of Maude
balancing the ET by introducing nodes. These nodes represent transitivity in-
ferences done by their inference system. Although these nodes could be omitted,
if they are kept, the ET becomes more balanced. Balanced ETs are very conve-
nient for strategies such as Divide and Query [16], because it is possible to prune
almost half of the tree after every answer, thus obtaining a logarithmic number
of questions with respect to the number of nodes in the ET. This approach is
related to our technique, but it has some drawbacks: it can only be applied
where transitivity inferences took place while creating the ET, and thus most of
the parts of the tree cannot be balanced, and even in these cases the balancing
only affects two nodes. Our techniques, in contrast, balance loops, that usually
contain many nodes.

Our first technique is based on Tree Compression (TC) introduced by Davie
and Chitil [4]. In particular, we define an algorithm to decide when TC must
be applied (or partially applied) in an ET. TC is a conservative approach that
transforms an ET into an equivalent (smaller) ET where we can detect the same
bugs. The objective of this technique is essentially different to previous ones:
it tries to reduce the size of the ET by removing redundant nodes, and it is
only applicable to recursive calls. For each recursive call, TC removes the child
node associated with the recursive call and all its children become children of
the parent node. Let us explain it with an example.



Example 1. Consider the ET in Fig. 3. Here, TC removes six nodes, thus stati-
cally reducing the size of the tree. Observe that the average number of questions
has been reduced ( 72

17 vs 42
11 ) thanks to the use of TC.

Fig. 3. Example of Tree Compression.

Unfortunately, TC does not always produce good results. Sometimes reducing
the number of nodes causes a worse ET structure that is more difficult to debug
and thus the number of questions is increased, producing the contrary effect to
the intended one.

Example 2. Consider the ET in Fig. 4 (top). In this ET, the average number
of questions needed to find the bug is 33

9 . Nevertheless, after compressing the
recursive calls (the dark nodes), the average number of questions is augmented
to 28

7 (see the ET at the left). The reason is that in the new compressed ET
we cannot prune any node because its structure is completely flat. The previous
structure allowed us to prune some nodes because deep trees are more convenient
for declarative debugging. However, if we only compress one of the two recursive
calls, the number of questions is reduced to 27

8 (see the ET at the right).

Fig. 4. Negative and positive effects of Tree Compression.



Example 2 clearly shows that TC should not be always applied. From the
best of our knowledge, there does not exist an algorithm to decide when to apply
TC, and current implementations always compress all recursive calls [3, 7]. Our
new technique solves this problem with an analysis to decide when to compress
them.

A similar approach to TC is declarative source debugging [2], that instead
of modifying the tree prevents the debugger from selecting questions related
to nodes generated by recursive calls. Another related approach was presented
in [13]. Here, authors introduced a source code (rather than an ET) transforma-
tion for list comprehensions in functional programs. Concretely, this technique
transforms list comprehensions into a set of equivalent methods that implement
the iteration. The produced ET can be further transformed to remove the in-
ternal nodes reducing the size of the final ET as in the TC technique. Even
though this technique is used in other paradigm and only works for a different
program construct (list comprehensions instead of loops), it is very similar to our
loop expansion technique because it transforms the program to implement the
list comprehension iterations with recursive functions. This is somehow equiva-
lent to our transformation for for-each loops. However, the objective of their
technique is different. Their objective is to divide a question related to a list
comprehension in different (probably easier) questions, while our objective is to
balance the tree, and thus they are optimized in a different way. Of course, their
transformation is orthogonal to our technique and it can be applied before.

Even though the techniques discussed can be applied to any language, they
only focus on recursion. This means that they cannot improve ETs that use
loops, avoiding their use in the imperative or the object-oriented paradigm where
loops predominate. Our second technique is based on an automatic transforma-
tion of loops into recursive methods. Hence, it allows the previously discussed
transformations to work in presence of iteration.

3 Preliminaries

Our ET transformations are based on its structure and the signature of the
method in each node. Therefore, for the purpose of this work, we can provide a
definition of ET whose nodes are labeled with a number referring to a specific
method.

Definition 1 (Execution Tree). An execution tree is a labeled directed tree
T = (N,E) whose nodes N represent method executions and are labeled with
method identifiers, where the label of node n is referenced with l(n). Each edge
(n → n′) ∈ E indicates that the method associated with l(n′) is invoked during
the execution of the method associated with l(n).

We use numbers as method identifiers that uniquely identify each method
in the source code. This simplification is enough to keep our definitions and
algorithms precise and simple. Given an ET, simple recursion is represented with
a branch of chained nodes with the same identifier. Nested recursion happens



when a recursive branch is descendant of another recursive branch. Multiple
recursion happens when a node labeled with an identifier n has two or more
children labeled with n.

The weight of a node is the number of nodes contained in the tree rooted at
this node. We refer to the weight of node n as wn. In the following, we will refer
to the two most used navigation strategies for declarative debugging: Top-Down
[12] and Divide and Query (D&Q) [15]. In both cases, we will always implicitly
refer to the most efficient version of both strategies, respectively named, (i)
Heaviest First [1], which always traverses the ET from the root to the leaves
selecting always the heaviest node; and (ii) Hirunkitti’s Divide and Query [6],
which always selects the node in the ET that better divides the number of nodes
in the ET by the half. A comparative study of these techniques can be found in
[16].

For the comparison of strategies we use function Questions(T, s) that com-
putes the number of questions needed (as an average) to find the bug in an ET
T using the navigation strategy s.

4 Execution Trees Optimization

In this section we present two new techniques for the optimization of ETs: Tree
Compression (TC) and Loop Expansion (LE). TC was defined and described in
[4]. Here, we introduce an algorithm to compress a recursive branch of the ET
in any case (i.e., simple recursion, nested recursion, and multiple recursion). We
also discuss how navigation strategies are affected by TC. The other technique
introduced is Loop Expansion that essentially transforms a loop into an equiv-
alent recursive method. Then, TC adequately balances the iterations to obtain
a new ET as optimized as possible. We explain each technique separately and
propose algorithms for them that can work independently.

4.1 When to Apply Tree Compression

Tree compression was proposed as a general technique for declarative debugging.
However, it was defined in the context of a functional language (Haskell) and
with the use of a particular strategy (Hat-Delta). The own authors realized that
TC can produce wide trees that are difficult to debug and, for this reason, defined
strategies that avoid asking about the same method repeatedly. These strategies
do not prevent to apply TC. They just assume that the ET has been totally
compressed and they follow a top-down traversal of the ET that can jump to
any node when the probability of this node to contain the bug is high. This way
of proceeding somehow partially mitigates the bad structure of the produced
ET when it is totally compressed. Our approach is radically different: We do not
create a new strategy to avoid the bad ET structure; but we transform the ET
to ensure a good structure.

Even though TC can produce bad ETs (as shown in Example 4), its authors
did not study how this technique works with other (more extended) strategies



such as Top-Down or D&Q. So it is not clear at all when to use it. To study
when to use TC, we can consider the most general case of a simple recursion
in an ET. It is shown in Fig. 5 where clouds represent possibly empty sets of
subtrees and the dark nodes are the recursion branch with a length of n ≥ 2
calls.

Fig. 5. Recursion branch in an ET.

It should be clear that the recursion branch can be useful to prune nodes
of the tree. For instance, in the figure, if we ask for the node n/2, we prune
n/2 subtrees. Therefore, in the case that the subtrees Ti, 1 ≤ i ≤ n, are empty,
then no pruning is possible. In that case, only the nodes in the recursion branch
could be buggy; but, because they form a recursive chain, all of them have the
same label. Thus no matter which one is buggy because all of them refer to
the same method. Hence, TC must be used to reduce the recursive branch to a
single node avoiding navigation strategies to explore this branch. Hence, we can
conclude that we must compress every node whose only child is a recursive call.
This result can be formally stated for Top-Down as follows.

Theorem 1. Let T be an ET with a recursion branch R = n1 → n2 → . . .→ nm

where the only child of a node ni, 1 ≤ i ≤ m − 1, is ni+1. And let T ′ be an
ET equivalent to T except that nodes ni and ni+1 have been compressed. Then,
Questions(T ′,Top-Down) < Questions(T,Top-Down).

The associated proof can be found in [10].
This theorem shows us that, in some situations, TC must be used to statically

improve the ET structure. But TC is not the panacea, and we need to identify
in what cases it should be used. D&Q is a good example of strategy where TC
has a negative effect.

Tree Compression for D&Q

In general, when debugging an ET with the strategy D&Q, TC should only
be applied in the case described by Theorem 1 (Ti, 1 ≤ i ≤ n, are empty).
The reason is that D&Q can jump to any node of the ET without following a
predefined path. This allows D&Q to ask about any node of the recursion branch
without asking about the previous nodes in the branch. Note that this does not
happen in other strategies such as Top-Down. Therefore, D&Q has the ability
to use the recursion branch as a mean to prune half of the iterations.



Observe in Fig. 6 that, except for very small recursion branches (e.g., n ≤ 3),
D&Q can take advantage of the recursion branch to prune half of the iterations.
The greater is n the more nodes pruned. Observe that D&Q can prune nodes
even in the case when there is only one child for every node in the recursion
branch (e.g., Ti, 1 ≤ i ≤ n, is a single node). Therefore, if we add more nodes
to the subtrees Ti, then more nodes can be pruned and D&Q will behave even
better.

Fig. 6. TC applied to a recursive method.

Tree Compression for Top-Down

In the case of Top-Down-based strategies, it is not trivial at all to decide
when to apply TC. Considering again the ET in Fig. 5, there are two factors
that must be considered: (i) the length n of the recursive branch, and (ii) the
size of the trees Ti, 1 ≤ i ≤ n. In order to decide when TC should be used, we
provide Algorithm 1 that takes an ET and compresses all recursion branches
whenever it improves the ET structure.

Essentially, Algorithm 1 analyzes for each recursion what is the effect of ap-
plying TC, and it is finally applied only when it produces an improvement. This
analysis is done little by little, analyzing each pair of parent-child (recursive)
nodes in the sequence separately. Thus, it is possible that the final result is to
only compress one (or several) parts of one recursion branch. For this, variable
recs initially contains all nodes of the ET with a recursive child. Each of these
nodes is processed with the loop in line 1 bottom-up (lines 2-3). That is, the
nodes closer to the leaves are processed first. In order to also consider multiple
recursion, the algorithm uses the loops in lines 5 and 8. These loops store in the
variable improvement the improvement achieved when compressing each recur-
sive branch. In addition to the functions (Cost and Compress) shown here, the
algorithm uses three more functions whose code has not been included because
they are trivial: function Children computes the set of children of a node in
the ET (i.e., Children(m) = {n | (m → n) ∈ E}); function Sort takes a set
of nodes and produces an ordered sequence where nodes have been decreasingly
ordered by their weights; and function Pos takes a node and a sequence of nodes
and returns the position of the node in the sequence.

Given two nodes parent and child candidates to make a TC, the algorithm
first sorts the children of both the parent and the child (lines 9-10) in the order
in which Top-Down would ask them (sorted by their weight). Then, it combines
the children of both nodes simulating a TC (line 11). Finally, it compares the



Algorithm 1 Optimized Tree Compression

Input: An ET T = (N,E)
Output: An ET T ′

Inicialization: T ′ = T and recs = {n | n, n′ ∈ N ∧ (n→ n′) ∈ E ∧ l(n) = l(n′)}

begin
1) while (recs 6= ∅)
2) take n ∈ recs such that @n′ ∈ recs with (n→ n′) ∈ E+

3) recs = recs\{n}
4) parent = n
5) do
6) maxImprovement = 0
7) children = {c | (n→ c) ∈ E ∧ l(n) = l(c)}
8) for each child ∈ children
9) pchildren = Sort(Children(parent))
10) cchildren = Sort(Children(child))
11) comb = Sort((pchildren ∪ cchildren)\{child})
12) improvement = Cost(pchildren)+Cost(cchildren)

wparent
− Cost(comb)

wparent−1

13) if (improvement > maxImprovement)
14) maxImprovement = improvement
15) bestNode = child
16) end for each
17) if (maxImprovement 6= 0)
18) T ′ = Compress(T ′, parent, bestNode)
19) while (maxImprovement 6= 0)
20) end while
end
return T ′

function Cost(sequence)
begin
21) return

∑
{Pos(node, sequence) ∗ wnode | node ∈ sequence}+ |sequence|

end

function Compress(T = (N,E), parent , child)
begin
22) nodes = Children(child)
23) E′ = E\{(child → n) ∈ E | n ∈ nodes}
24) E′ = E′ ∪ {(parent → n) | n ∈ nodes}
25) N ′ = N\{child}
end
return T ′ = (N ′, E′)

average number of questions when compressing or not the nodes (line 12). The
equation that appears in line 12 is one of the main contributions of the algorithm,
because this equation determines when to perform TC between two nodes in
a branch with the strategy Top-Down. This equation depends in turn on the



formula (line 21 in function Cost) used to compute the average cost of exploring
an ET with Top-Down.

If we analyze Algorithm 1, we can easily realize that its asymptotic cost is
quadratic with the number of recursive calls O(N2) because in the worst case, all
recursive calls would be compared between them. Note also that the algorithm
could be used with incomplete ETs [8] (this is useful when we try to debug a
program while the ET is being generated). In this case, the algorithm can still
be applied locally, i.e., to those subtrees of the ET that are totally generated.

4.2 Loop Expansion

Recursive calls group the iterations in different subtrees whose roots belong to
the recursion branch. This is very convenient because it allows the debugger
to prune different iterations. Therefore, recursion is beneficial for declarative
debugging except in the cases discussed in the previous section. Contrarily, loops
produce very wide trees where all iterations are represented as trees with a
common root. In this structure, it is impossible to prune more than one iteration
at a time, being the debugging of these trees very expensive.

To solve this problem, in this section we present a technique for declarative
debugging that transforms loops into equivalent recursive methods. Because iter-
ation is more efficient than recursion, there exist many approaches to transform
recursive methods into equivalent loops (e.g., [5, 11]). However, there exist few
approaches to transform loops into equivalent recursive methods. An exception
is the one presented in [18] to improve performance in multi-level memory hier-
archies. Nevertheless, we are not aware of any algorithm of this kind proposed
for Java or for any other object-oriented language. Hence, we had to imple-
ment this algorithm as a Java library and made it public for the community:
http://users.dsic.upv.es/∼jsilva/loops2recursion/. Moreover, it has been also in-
tegrated into a declarative debugger [7]. Due to lack of space we cannot describe
here the algorithm, but we made a technical report with a detailed description
[9]. This algorithm has an asymptotic cost linear with the number of loops in
the program and is the basis of LE. Basically, it transforms each loop into an
equivalent recursive method. The transformation is slightly different for each
kind of loop (while, do, for or foreach). In the case of for-loops, it can be
explained with the code in Fig. 7 where A, B, C and D represent blocks of code.
If we observe the transformed ET we see that each iteration is represented with
a different node of the recursive branch r(1) → r(2) → . . . → r(10), thus it is
possible to detect a bug in a single iteration. This means that, in the case that
function f had a bug, thanks to the transformation, the debugger could detect
that a bug exists in the code in B + C or in A + D. Note that this is not possible
in the original ET where the debugger would report that A + B + C + D has
a bug. This is a very important result because it augments the granularity level
of the reported bugs, detecting bugs inside loops and not only inside methods.



Fig. 7. ET transformation from a loop to a recursive method.

Nested recursion augments the possibilities of pruning. For instance, class
Matrix in Fig. 1 can be automatically transformed2 to the code in Fig. 8. The ET
associated with the transformed program is shown in Fig. 2 (right). Observe that
there is a recursion branch for each executed loop, and thus, we have recursive
branches (those labelled with 4) inside a recursive branch (labelled with 3).
Hence, the new nodes added by the transformation are used to represent each
single iteration; and thanks to them, now it is possible to prune loops, iterations,
or single calls inside an iteration.

Our implementation combines the use of TC and LE as follows: (i) Expand all
loops of the source code with LE, (ii) generate the ET with the transformed code,
and (iii) use Algorithm 1 to compress the ET with the current strategy—observe
that if the strategy is later changed, all nodes removed by the compression can
be introduced again, and the ET compressed for the new strategy—. In this
way, we produce an ideal representation of loops where each individual loop is
partially or totally expanded to produce an optimal debugging session.

5 Correctness

In this section we prove that after our transformations, all bugs that could
be detected in the original ET can still be detected in the transformed one.
An even more interesting result is that the transformed ET can contain more
buggy nodes than the original one, and thus, we can detect bugs that before

2 For the sake of clarity, in the figure we replaced the names of the generated recursive
methods by sumRows and sumColumns. In the implementation, if a loop has a Java
label in the original source code, the transformation uses this label to name the
recursive method. If this label does not exist, then the name of the loop is the
name of the method that contains this loop followed by “ loopN”, where N is an
autonumeric. While debugging, the user can see the source code of the loop, and she
can change its name if she wants to do it.



public class SumMatrix {
(0) public static void main(String[] args) {

int result = 0;
int numRows = 3;
int numColumns = 3;
Matrix m = new Matrix(numRows, numColumns);
// For loop
{ // Init for loop

int i = 0;
// First iteration
if (i < numRows) {

Object[] res = SumMatrix.sumRows(m, i, numRows, numColumns, result);
result = (Integer)res[0];

}
}
System.out.println(result);
}

(3) private static Object[] sumRows(Matrix m, int i, int numRows, int numColumns, int result) {
// For loop
{ // Init for loop

int j = 0;
// First iteration
if (j < numColumns) {

Object[] res = SumMatrix.sumColumns(m, i, j, numColumns, result);
result = (Integer)res[0];

}
}
// Update for loop
i++;
// Next iteration
if (i < numRows)

return SumMatrix.sumRows(m, i, numRows, numColumns, result);
return new Object[]{result};
}

(4) private static Object[] sumColumns(Matrix m, int i, int j, int numColumns, int result) {
result += m.position(i, j);
// Update for loop
j++;
// Next iteration
if (j < numColumns)

return SumMatrix.sumColumns(m, i, j, numColumns, result);
return new Object[]{result};
}
}

Fig. 8. Recursive version of the program in Fig. 1.

were undetectable. Regarding TC, its correctness has been proved in [4]. Our
algorithm does not influence this correctness property because it only decides
what nodes should be compressed, but the TC algorithm is the standard one.
The correctness of LE is stated in the following. The associated proofs can be
found in [10].

Theorem 2. [Completeness] Let P be a program, let T be the ET associated
with P, and let T ′ be the ET obtained by applying loop expansion to T . For each
buggy node in T , there is at least one buggy node in T ′.

Theorem 3. [Soundness] Let P be a program, let T be the ET associated with P,
and let T ′ be the ET obtained by applying loop expansion to T . If T ′ contains a
buggy node associated with code f ⊆ P, then T contains a buggy node associated
with code g ⊆ P and f ⊆ g.

From Theorem 2 and 3 we have a very interesting corollary that reveals that
the transformed tree can find more bugs than the original ET.



Benchmark
Nodes

LE
Time Questions %

ET LE TCori TCopt LE TC ET LE TCori TCopt LETC TC

Factoricer 55 331 51 51 5 151 105 11.62 8.50 7.35 7.35 63.25 100.0

Classifier 25 57 22 24 3 184 4 8.64 6.19 6.46 6.29 72.80 97.36

LegendGame 87 243 87 87 10 259 31 12.81 8.28 11.84 11.84 92.43 100.0

Romanic 121 171 112 113 3 191 12 16.24 7.74 10.75 9.42 58.00 87.62

FibRecursive 5378 6192 98 101 12 251 953 15.64 12.91 9.21 8.00 51.15 86.86

FactTrans 197 212 24 26 3 181 26 10.75 7.88 6.42 5.08 47.26 79.13

BinaryArrays 141 203 100 100 5 172 79 12.17 7.76 7.89 7.89 64.83 100.0

FibFactAna 178 261 44 49 7 202 33 7.90 8.29 8.50 6.06 76.71 71.29

RegresionTest 13 121 15 15 5 237 4 4.77 7.17 4.20 4.20 88.05 100.0

BoubleFibArrays 16 164 10 10 10 213 27 9.31 8.79 4.90 4.90 52.63 100.0

StatsMeanFib 19 50 23 23 6 195 21 7.79 8.12 6.78 6.48 83.18 95.58

Integral 5 8 8 8 3 152 2 6.80 5.75 7.88 5.88 86.47 74.62

TestMath 3 5 3 3 3 195 2 7.67 6.00 9.00 7.67 100.0 85.22

TestMath2 92 2493 13 13 3 211 607 14.70 11.54 15.77 12.77 86.87 80.98

Figures 2 10 10 10 24 597 13 9.00 7.20 6.60 6.60 73.33 100.0

FactCalc 128 179 75 75 3 206 46 8.45 7.60 7.96 7.96 94.20 100.0

SpaceLimits 95 133 98 100 15 786 10 36.26 12.29 18.46 14.04 38.72 76.06

Table 1. Summary of the experiments.

Corollary 1. Let P be a program, let T be the ET associated with P, and let
T ′ be the ET obtained by applying loop expansion to T . If T contains n buggy
nodes, then T ′ contains n′ buggy nodes with n ≤ n′.

6 Implementation

We have implemented the original TC algorithm and the optimized version pre-
sented in this paper; and also the LE algorithm in such a way that they all can
work together. This implementation has been integrated into the Declarative De-
bugger for Java DDJ [7]. The experiments, the source code of the tool, the bench-
marks, and other materials can be found at http://www.dsic.upv.es/∼jsilva/DDJ/.

All the implementation has been done in Java. The optimized TC algorithm
contains around 90 LOC, and the LE algorithm contains around 1700 LOC.
We conducted a series of experiments in order to measure the influence of both
techniques in the performance of the debugger. Table 1 summarizes the obtained
results.

The first column in Table 1 shows the name of the benchmarks. For each
benchmark, column nodes shows the number of nodes descendant of a loop3 in
the original ET (ET), in the ET after applying LE (LE), in the ET after applying
LE first and then the original version of TC—compressing all nodes—(TCori),
and in the ET after applying LE first and then the optimized version of TC—
Algorithm 1—(TCopt); column LE shows the number of loops expanded; column

3 We consider these nodes because the part of the ET that is not descendant of a loop
remains unchanged after applying our technique, and thus the number of questions
needed to find the bug is the same before and after the transformations.



Time shows the time (in milliseconds) needed to apply LE and TE; column
Questions shows the average number of questions asked with each of the previ-
ously described ETs. Each benchmark has been analyzed assuming that the bug
could be in any node of its associated ET. This means that each value in column
Questions represents the average of a set of experiments. For instance, in order
to obtain the information associated with Factoricer, this benchmark has been
debugged 55 times with the original ET, 331 with the ET after applying loop
expansion, etc. In total, Factoricer was debugged 55+331+51+51=488 times,
considering all ET transformations and assuming each time that the bug was
a different node (and computing the average of all tests for each ET); finally,
column (%) shows, on the one hand, the percentage of questions asked after ap-
plying our transformations (LE and TC) with respect to the original ET (LETC);
and, on the other hand, the percentage of questions asked using Algorithm 1 to
decide when to apply TC, with respect to always applying TC (TC). From the
table we can conclude that our transformations produce a reduction of 27.65 %
in the number of questions asked by the debugger. Moreover, the use of Algo-
rithm 1 to decide when to apply TC also produces an important reduction in
the number of questions with an average of 9.72 %.

7 Conclusions

Declarative debugging can generate too many questions to find a bug, and once
it is found, the debugger reports a whole method as the buggy code. In this
work we make a step forward to solve these problems. We introduce techniques
that reduce the number of questions by improving the structure of the ET. This
is done with two transformations called tree compression and loop expansion.
Moreover, loop expansion also faces the second problem, and it allows us to detect
bugs in loops and not only in methods, augmenting in this way the granularity
level of the bug found. As a side effect, being able to ask about the correctness
of loops allows us to reduce the complexity of questions: the programmer can
answer about a part of a method (a single loop), and not only to the whole
method mixing the effects of different loops. We think that this is an interesting
result that opens new possibilities for future work related to the complexity of
questions. The idea of transforming loops into recursive methods in an ET is
novel, and it allows us to apply all previous techniques based on recursion in the
imperative and object-oriented paradigms.
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Appendix 1: Proofs of technical results

This section presents the proofs of Theorems 1, 2, 3 and Corollary 1.

Theorem 1 Let T be an ET with a recursion branch R = n1 → n2 → . . .→ nm

where the only child of a node ni, 1 ≤ i ≤ m − 1, is ni+1. And let T ′ be an
ET equivalent to T except that nodes ni and ni+1 have been compressed. Then,
Questions(T ′,Top-Down) < Questions(T,Top-Down).

Proof. Let us consider the two nodes that form the sub-branch to be compressed.
For the proof we can call them n1 → n2. Firstly, the number of questions needed
to find a bug in any ancestor of n1 is exactly the same if we compress or not the
sub-branch. Therefore, it is enough to prove that Questions(T1c,Top-Down) <
Questions(T1,Top-Down) where T1 is the subtree whose root is n1 and T1c is
the subtree whose root is n1 after tree compression.
Let us assume that n2 has j children. Thus we call T2 the subtree whose root is
n2, and T2i the subtree whose root is the i-th child of n2. Then,

Questions(T2,Top-Down) =
(j+1)+

j∑
i=1
|T2i
|∗(i+Questions(T2i

,Top-Down))

|T2|

Here, (j + 1) are the questions needed to find a bug in n2. To reach the children
of n2, the own n2 and the previous i− 1 children must be asked first, and this is
why we need to add i to Questions(T2i ,Top-Down), Finally, |Tx| represents the
number of nodes in the (sub)tree Tx.
Therefore, Questions(T1c,Top-Down) = Questions(T2,Top-Down)

and Questions(T1,Top-Down) = 2+|T2|∗(i+Questions(T2,Top-Down))
|T2|+1

Clearly, Questions(T1c,Top-Down) < Questions(T1,Top-Down), and thus the
claim follows.

Theorem 2 Let P be a program, let T be the ET associated with P, and let T ′

be the ET obtained by applying loop expansion to T . For each buggy node in T ,
there is at least one buggy node in T ′.

Proof. Let us prove the theorem for an arbitrary buggy node n in T associated
with a function f . Firstly, because loop expansion only transforms iterative loops
into recursive loops, all functions executed in T are also executed in T ′. This
means that every node in T has a counterpart (equivalent) node in T ′ that
represents the same (sub)computation. Therefore, we can call n′ to the node
that represents in T ′ the same execution than n in T . Because n is buggy, then
n is wrong, and all the children of n (if any) are correct. Hence, n′ is also wrong.
Moreover, if f does not contain a loop, then loop expansion has no effect on
the code of f and thus n and n′ will have exactly the same children, and thus,
trivially, n′ is also buggy in T ′. If we assume the existence of a loop in f , then we
will have a situation as the one shown in the ETs of Figure 7. We can consider
for the proof that the ET at the left is the subtree of n and the ET at the right is
the subtree of n′. Then, because n is buggy, all nodes labeled with g are correct
(in both ETs) and, thus, either n′ or one of the nodes labeled with r are buggy.



Theorem 3 Let P be a program, let T be the ET associated with P, and let
T ′ be the ET obtained by applying loop expansion to T . If T ′ contains a buggy
node associated with code f ⊆ P, then, T contains a buggy node associated with
code g ⊆ P and f ⊆ g.

Proof. According to the proof of Theorem 2, every node in T has a counterpart
(equivalent) node in T ′. Hence, let n be the buggy node in T and let n′ be the
associated buggy node in T ′. If f does not have a loop, then both n and n′ point
to the same function (f) and thus the theorem holds trivially. If f contains a
loop that has been expanded, then, as stated in the proof of Theorem 2, either
n′ or one of its descendants (say n′′) that represent the iterations of the loop are
buggy. But we know that the code of n′′ is the code of the loop that is included
in the code of f . Therefore, in all cases f ⊆ g.

Corollary 1 Let P be a program, let T be the ET associated with P, and let
T ′ be the ET obtained by applying loop expansion to T . If T contains n buggy
nodes, then T ′ contains n′ buggy nodes with n ≤ n′.

Proof. Trivial from Theorems 2 and 3. On the one hand, equality is ensured with
Theorem 2 because for each buggy node in T , there is at least one buggy node
in T ′. On the other hand, if a node in T is associated with a function whose
code contains more than one loop that has been expanded, then T ′ can contain
more than one new buggy node not present in T .


