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Abstract

This paper centers on the derivation of a Rodrigues-type formula for Gegenbauer
matrix polynomial. A connection between Gegenbauer and Jacobi matrix poly-
nomials is given.
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1. Introduction and notation

The Gegenbauer (so called ultraspherical) polynomials C;) () can be defined
by the formula

2)) B N T'(c+n)

) = A poiacn) g, = T g
(A+(1/2)),, I'(c)

where P{*" )(a:) is the Jacobi polynomial, (c), is the Pochhammer symbol or

shifted factorials. Here, C}(z) satisfies the Rodrigues formula:

(1-a by = LS pr [

see [1, p.303] or [2] for details. The extension of this classical family of polyno-
mials to the matrix framework has been proposed in [12]. In fact, orthogonal
matrix polynomials emerge in various important areas of applied mathematics,
see [11, 6, 8, 9, 10]. Only very recently, different applications of matrix polyno-
mials have been pointed out in the literature, e.g. dealing with the solution of
matrix differential equations, finding approximations of inverse Laplace trans-
forms, and calculating the matrix exponential approximation [5, 17, 16, 18].
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The aim of this work is to obtain a Rodrigues-type formula for the Gegen-
bauer matrix polynomials defined in Ref. [12]. Using this formula, we find a
connection between Gegenbauer matrix polynomials and Jacobi matrix poly-
nomials, as introduced in Ref. [3]. This relation is similar to that between
Laguerre’s and Hermite matrix polynomials obtained in Ref. [15].

Throughout this paper, Re(z) denotes the real part of the complex number
z, and I the identity matrix in C"™*". A matrix polynomial of degree n is an
expression of the form P(x) = A,2"+ A, 12" ' +...+ Ajx+ Ay, where x € R,
and A; € C™*" represents a complex square matrix for 0 < j < n. The set of
all matrix polynomials in C™*", for all n > 0, will be given by P[z]. Let f(z)
and ¢(z) be holomorphic functions of the complex variable z, which are defined
on an open set  in the complex plane. If C is a matrix in C"*" so that the set
of all its eigenvalues, o(C), lies in Q, then, from matrix functional calculus [7,
p. 558], it follows that

f(C)g(C) = g(C)f(C). (3)

If P is a matrix in C"™*" such that Re(z) > 0 for all eigenvalue z of P, then
['(P) is well defined as

I'(P) = /ODO e~ P at t" =1 = exp (P — I)log (1)).

The reciprocal scalar Gamma function, I71(z) = 1/T'(z), is an entire function of
the complex variable z. Thus, for any C' € C™*", the Riesz-Dunford functional
calculus [7] shows that I'~1(C') is well defined and is, indeed, the inverse of I'(C).
Hence, if C € C™*" is such that C + nl is invertible for every integer n > 0,
then we have the matrix analogue of formula (1):

(0),, =T(C +nTH(C),n > 0. (4)

If we take into account the scalar factorial function, denoted by (z),, with (z)¢ =
1 and

then by application of the matrix functional calculus, for any matrix C' € C™*"
it holds

C),=CC+I)...(C+(n—-1)I),n>1,(C)o=1. (5)
If matrices D, F' € C™*" satisfy the spectral condition
Re(z) > —1,Vz € 0(D),Re(t) > —1,Vt € o(F), (6)
then )
/ (1+2)P(1 - 2)fde =2P"'B(D+1,F+1)2F, (7)
-1

where B(P, Q) is the Beta matrix function [14], defined by

1
B(P,Q) = /O tP=1(1 — )9~ 1dt,Re(z) > 0,Vz € o(P),Re(s) > 0,Vs € 0(Q).



From Theorem 2 of [13], if P, ) are commuting matrices in C"*" such that for
all integer n > 0, the following condition holds

P+nl,Q+nl, P+ Q@+ nl are invertible, (8)

then
B(P,Q) =T(P)L(QI (P +Q). (9)
For k = 0,1,2,..., we denote D* (f(z)) = &—i(f(m)% and thus, for an

arbitrary matrix A € C™", DF [tA*™! ] = (A+ 1), [(A+1),,_] A+ (m—k)]
The organization of the paper is as follows: In Section 2, we recall the def-
inition and some properties of Gegenbauer matrix polynomials which will be
used. In Section 3 we derive the Rodrigues-type formula for this class of orthog-
onal matrix polynomials. Finally, a connection between Gegenbauer matrix
polynomials and Jacobi matrix polynomials, introduced in [3], is given.

2. Gegenbauer matrix polynomials
Let D € C™*" such that
k ¢ o(D), for every integer k > —1. (10)

The Gegenbauer matrix polynomial P,(x,D) is defined by formula (70) in
Ref. [12, p. 281], and satisfies the following three-term recurrence relation:

(n+1)Pyy1(z, D)=z [(2n—1)I - D] P, (z, D)+ [(n—2)I—D] P,_1(z, D)=0,n > 1,
Py(x,D)=1,P,(z,D) = —(I + D)zx.
(11)

Re(z) < —1,Vz € (D), (12)

If matrix D satisfies

then the Gegenbauer matrix polynomials satisfy the orthogonality condition

Py(z, D) P, (z, D)W (z)dx=

/1 VA(=D=Dal (F2) T (F52) (=) 1-2) " 61

1 n!
(13)
where 0y, is the Kronecker delta and W (x) is the matrix function [12].
_D_
W(z)=(1-22)"2"". (14)

Of course, for the scalar case (r = 1 and D = d € R), the Gegenbauer matrix

polynomial P, (z, D) coincide with the Gegenbauer polynomial C(z) taking
)= —dfL
2



3. A Rodrigues-type formula for Gegenbauer matrix polynomials

Suppose that n > 1 and let D be a matrix in C™" which satisfies (10) and
(12). Let us consider
Py(z,D) = K" (W(x)) "' D" [(1 - 2%)"W (x)] (15)

n

where W(z), defined by (14), is integrable on interval (—1,1) and K, is an
invertible matrix to be determined. Let I,, be defined by

Lo = / Py (o, D)W () do (16)

-1
Replacing (15) and taking into account (3), we obtain

/_ 2" Py (z, D)W (x) dx = / KN (W(x) ' D [(1—2%)"W(z)] W(z)dx

n
—1

Inn

_ K;l/_lxnpn [(1— 2%)"W ()] da.

Integrating by parts once

Lin = Knlfllm"D" [(1—2*)"W(z)] dx

1
K;! (x"D"l [(1—2®)"W(z)] |1, - n[l "D (1= 2%)" W (2)] dx)

= K;l(—l)n/ "D (1= 2?)" W (2)] da,

-1
and then integrating by parts n times again, we finally arrive at
1
T = K;l(—l)”n!/ (1 — 22)" W (z) da. (17)

-1

From (17), one obtains

/1 (1 —2*)"W(z)dzx /1 (1—2%)"(1- xz)_%_l dx

-1 -1

1
/ (14a) FHODT(q )= B 0D gy
-1
As (12) holds, by the spectral mapping theorem [7], it follows that Re(z) >
1/2Vz € 0(=D/2), Re(z) > =1 Vz € 0 (=2 + (n—1)I). We now apply (7),
(9) and (3) to derive

! D D D D
[ a-wrwya = e #in (<2 par =D ) oo
-1



D
= g =tnip? (—2 + nI) I (=D + 2nI)2- 2 +(n=1I
—Do2n—172 D -1
= 2772 (4l | T (<D +2n1).
Finally, after taking into account (17), we conclude
n —Da2n—1712 D —1
LK, = (~1)"n127 P22 10 (=2 4l )T (=D 4 200). (18)

Furthermore, it is easy to see that the leading coefficient of each matrix poly-
nomial P, (z, D) is given by the matrix

(-3 I+ D)), 2"
n!

: (19)

which under spectral condition (12) is nonsingular, see [12, p.281]. Applying
now the Lemma 2.1 of Ref. [4], we can rewrite the matrix polynomial z"I as a
linear combination of Gegenbauer matrix polynomials, i.e.

" = ZakPk(x,D),ozk eC™" k=0,1,...,n. (20)
k=0

Applying the recurrence relation (11) and (19), one finds

"l = Zakpk(l'yD):anPn(x,D)+anflpn71(1’7-D)+"'+QOPO(x7D)
k=0
Qnp

= —(2n=3)] = D)xPyr(z,D) + Rna(2)
(—3(U+D), 2"

n!

= a,((2n—-3)I-D) 2" 4+ Ry—1(x),

where R, _1(x) is a matrix polynomial of degree n — 1. Taking into account
(12), matrices ((2n — 3)I — D) and (-4 (I + D))n are nonsingular. Thus, in
order to fulfill the above equality, we must impose

-1

n!

oy = 27;1((2%3)1719)*1 l(;(I+D))n_1] . (21)

Replacing ™I given by (20) in (16) and applying (3), we have

1 n 1
Lo = / Py, D)W (2) dz = 3 o / Pu(z, D)Po(x, D)W () da.
~1 o ~1
Eq. (13) serves to simplify I,,,, and to derive the following form

n 1

1

k=0 -1



Theorem 4 of [12] immediately yields the final expression

75 (=D — D)L (=3D) T~ (=3I + D)) (-3D + (n—3) 1) "

Inn = 2 .
n!
(22)
Because I, is nonsingular, we can substite (22) in (18), and obtain
n —19—Do2n—112 D -1
Ky = (<1)"nl [}27 P22 710 (=2 4l ) D7 (=D +2n1).
Next, we simplify
—1)" !23(77,71)
K, = SV b (90— 31— D) (20— 1)1 — D) S, (23)
NS

where

S, =T? <—§+nI>F_1(—D+2nI)

(57),]
X [(—D—I)n}_ll‘_1<—§) r(- (IZD)> .,

and hence, substituting S,, in (15), we have the formula we were looking for:

KuPu(a.D) = (W)™ D" [(1 - a?)"'W()
D _Di(pn—
= (1= =2 T iz @)
where K, is given by (23). If we take Ky = I, formula (24) is also valid when
n = 0. This result is summarized by

Theorem 3.1 (Rodrigues-type Formula). Let D € C™*" satisfy (10) and
(12). Then, the Gegenbauer matriz polynomials P,(x, D) defined in formula
(70) of [12, p. 281] may be expressed as

KnPy(z,D) = (1 - x2)%+1 D" [(1 _ x2)—%+(n—1)1] 7

forn=0,1,2,..., where Ko = I and K, is given by (23) for n > 1.

We now consider Jacobi matrix polynomials which satisfy the Rodrigues’
formula according to Theorem 4.1 of [3, p.795]:

—1)"
PAB) (1) = (2n )' (1—z)"*(1+=z)"BD" [(1 — ) ATrD(1 4 g)(BAnD )y >,
n:
(25)
where A, B € C"™*" satisfy

Re(z) > —1 for z € 0(A4), Re(z) > —1 for z € 0(B) and AB = BA.



As D satisfies (10) and (12), then matrix —D/2—1 satisfies Re(z) > —1/2 for z €
o(=D/2 —1I). Taking A= B=—D/2— I in (25), one gets for n > 1:

P(fifl’fifj) (x)
_ (2—1)'"(1_x)%+I(1+x)%HDn{(l_x)(—%Jr(n—l)l)(1+x)( %+(n—1)1)]
_ (;1)7(17x2)%+1Dn [(171:2)(7%“%1)1)} 7

"n!

and using (24), we find

which is the matricial traslation of formula (1). Note that formula (26) is also
true for n = 0. Of course, formula (26) is reduced to the formula (1) for the
scalar case (r = 1, D =d € R, A\ = —dizl) Thus, a connection between
Gegenbauer matrix polynomials and Jacobi matrix polynomials is established
by formula (26).
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