Document downloaded from:
http://hdl.handle.net/10251/36763
This paper must be cited as:
Defez Candel, E. (2013). A Rodrigues-type formula for Gegenbauer matrix polynomials. Applied Mathematics Letters. 26:899-903. doi:10.1016/j.aml.2013.04.001.

The final publication is available at
http://dx.doi.org/10.1016/j.aml.2013.04.001

Copyright
Elsevier

A Rodrigues-type formula for Gegenbauer matrix polynomials ${ }^{1}$

Emilio Defez
Instituto de Matemática Multidisciplinar, Universitat Politècnica de Valencia, Camino de Vera, s/n, 46022, Valencia, Spain. edefez@imm.upv.es

Abstract

This paper centers on the derivation of a Rodrigues-type formula for Gegenbauer matrix polynomial. A connection between Gegenbauer and Jacobi matrix poly-

 nomials is given.Keywords: Gegenbauer matrix polynomials, Jacobi matrix polynomials, Rodrigues-type formula.

1. Introduction and notation

The Gegenbauer (so called ultraspherical) polynomials $C_{n}^{\lambda}(x)$ can be defined by the formula

$$
\begin{equation*}
C_{n}^{\lambda}(x)=\frac{(2 \lambda)_{n}}{(\lambda+(1 / 2))_{n}} P_{n}^{(\lambda-1 / 2, \lambda-1 / 2)}(x),(c)_{n}=\frac{\Gamma(c+n)}{\Gamma(c)}, n \geq 0 \tag{1}
\end{equation*}
$$

where $P_{n}^{(\alpha, \beta)}(x)$ is the Jacobi polynomial, $(c)_{n}$ is the Pochhammer symbol or shifted factorials. Here, $C_{n}^{\lambda}(x)$ satisfies the Rodrigues formula:

$$
\begin{equation*}
\left(1-x^{2}\right)^{\lambda-1 / 2} C_{n}^{\lambda}(x)=\frac{(-2)^{n}(\lambda)_{n}}{n!(n+2 \lambda)_{n}} D^{n}\left[\left(1-x^{2}\right)^{n+\lambda-1 / 2}\right] \tag{2}
\end{equation*}
$$

see [1, p.303] or [2] for details. The extension of this classical family of polynomials to the matrix framework has been proposed in [12]. In fact, orthogonal matrix polynomials emerge in various important areas of applied mathematics, see $[11,6,8,9,10]$. Only very recently, different applications of matrix polynomials have been pointed out in the literature, e.g. dealing with the solution of matrix differential equations, finding approximations of inverse Laplace transforms, and calculating the matrix exponential approximation $[5,17,16,18]$.

[^0]The aim of this work is to obtain a Rodrigues-type formula for the Gegenbauer matrix polynomials defined in Ref. [12]. Using this formula, we find a connection between Gegenbauer matrix polynomials and Jacobi matrix polynomials, as introduced in Ref. [3]. This relation is similar to that between Laguerre's and Hermite matrix polynomials obtained in Ref. [15].

Throughout this paper, $\operatorname{Re}(z)$ denotes the real part of the complex number z, and I the identity matrix in $\mathbb{C}^{r \times r}$. A matrix polynomial of degree n is an expression of the form $P(x)=A_{n} x^{n}+A_{n-1} x^{n-1}+\ldots+A_{1} x+A_{0}$, where $x \in \mathbb{R}$, and $A_{j} \in \mathbb{C}^{r \times r}$ represents a complex square matrix for $0 \leq j \leq n$. The set of all matrix polynomials in $\mathbb{C}^{r \times r}$, for all $n \geq 0$, will be given by $\mathcal{P}[x]$. Let $f(z)$ and $g(z)$ be holomorphic functions of the complex variable z, which are defined on an open set Ω in the complex plane. If C is a matrix in $\mathbb{C}^{r \times r}$ so that the set of all its eigenvalues, $\sigma(C)$, lies in Ω, then, from matrix functional calculus [7, p. 558], it follows that

$$
\begin{equation*}
f(C) g(C)=g(C) f(C) \tag{3}
\end{equation*}
$$

If P is a matrix in $\mathbb{C}^{r \times r}$ such that $\operatorname{Re}(z)>0$ for all eigenvalue z of P, then $\Gamma(P)$ is well defined as

$$
\Gamma(P)=\int_{0}^{\infty} e^{-t} t^{P-I} d t, t^{P-I}=\exp ((P-I) \log (t))
$$

The reciprocal scalar Gamma function, $\Gamma^{-1}(z)=1 / \Gamma(z)$, is an entire function of the complex variable z. Thus, for any $C \in \mathbb{C}^{r \times r}$, the Riesz-Dunford functional calculus [7] shows that $\Gamma^{-1}(C)$ is well defined and is, indeed, the inverse of $\Gamma(C)$. Hence, if $C \in \mathbb{C}^{r \times r}$ is such that $C+n I$ is invertible for every integer $n \geq 0$, then we have the matrix analogue of formula (1):

$$
\begin{equation*}
(C)_{n}=\Gamma(C+n I) \Gamma^{-1}(C), n \geq 0 \tag{4}
\end{equation*}
$$

If we take into account the scalar factorial function, denoted by $(z)_{n}$ with $(z)_{0}=$ 1 and

$$
(z)_{n}=z(z+1) \ldots(z+n-1), n \geq 1,
$$

then by application of the matrix functional calculus, for any matrix $C \in \mathbb{C}^{r \times r}$ it holds

$$
\begin{equation*}
(C)_{n}=C(C+I) \ldots(C+(n-1) I), n \geq 1,(C)_{0}=I . \tag{5}
\end{equation*}
$$

If matrices $D, F \in \mathbb{C}^{r \times r}$ satisfy the spectral condition

$$
\begin{equation*}
\operatorname{Re}(z)>-1, \forall z \in \sigma(D), \operatorname{Re}(t)>-1, \forall t \in \sigma(F) \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{-1}^{1}(1+x)^{D}(1-x)^{F} d x=2^{D+I} B(D+I, F+I) 2^{F} \tag{7}
\end{equation*}
$$

where $B(P, Q)$ is the Beta matrix function [14], defined by

$$
B(P, Q)=\int_{0}^{1} t^{P-I}(1-t)^{Q-I} d t, \operatorname{Re}(z)>0, \forall z \in \sigma(P), \operatorname{Re}(s)>0, \forall s \in \sigma(Q)
$$

From Theorem 2 of [13], if P, Q are commuting matrices in $\mathbb{C}^{r \times r}$ such that for all integer $n \geq 0$, the following condition holds

$$
\begin{equation*}
P+n I, Q+n I, P+Q+n I \text { are invertible, } \tag{8}
\end{equation*}
$$

then

$$
\begin{equation*}
B(P, Q)=\Gamma(P) \Gamma(Q) \Gamma^{-1}(P+Q) \tag{9}
\end{equation*}
$$

For $k=0,1,2, \ldots$, we denote $D^{k}(f(x))=\frac{d^{k}}{d x^{k}}(f(x))$, and thus, for an arbitrary matrix $A \in \mathbb{C}^{r \times r}, D^{k}\left[t^{A+m I}\right]=(A+I)_{m}\left[(A+I)_{m-k}\right]^{-1} t^{A+(m-k) I}$.

The organization of the paper is as follows: In Section 2, we recall the definition and some properties of Gegenbauer matrix polynomials which will be used. In Section 3 we derive the Rodrigues-type formula for this class of orthogonal matrix polynomials. Finally, a connection between Gegenbauer matrix polynomials and Jacobi matrix polynomials, introduced in [3], is given.

2. Gegenbauer matrix polynomials

Let $D \in \mathbb{C}^{r \times r}$ such that

$$
\begin{equation*}
k \notin \sigma(D), \text { for every integer } k \geq-1 \tag{10}
\end{equation*}
$$

The Gegenbauer matrix polynomial $P_{n}(x, D)$ is defined by formula (70) in Ref. [12, p. 281], and satisfies the following three-term recurrence relation:

$$
\begin{align*}
& (n+1) P_{n+1}(x, D)-x[(2 n-1) I-D] P_{n}(x, D)+[(n-2) I-D] P_{n-1}(x, D)=0, n \geq 1, \\
& P_{0}(x, D)=I, P_{1}(x, D)=-(I+D) x . \tag{11}
\end{align*}
$$

If matrix D satisfies

$$
\begin{equation*}
\operatorname{Re}(z)<-1, \forall z \in \sigma(D) \tag{12}
\end{equation*}
$$

then the Gegenbauer matrix polynomials satisfy the orthogonality condition

$$
\begin{equation*}
\int_{-1}^{1} P_{k}(x, D) P_{n}(x, D) W(x) d x=\frac{\sqrt{\pi}(-D-I)_{n} \Gamma\left(\frac{-D}{2}\right) \Gamma^{-1}\left(\frac{-(I+D)}{2}\right)\left(\left(n-\frac{1}{2}\right) I-\frac{D}{2}\right)^{-1} \delta_{k n}}{n!} \tag{13}
\end{equation*}
$$

where $\delta_{k n}$ is the Kronecker delta and $W(x)$ is the matrix function [12].

$$
\begin{equation*}
W(x)=\left(1-x^{2}\right)^{-\frac{D}{2}-I} \tag{14}
\end{equation*}
$$

Of course, for the scalar case ($r=1$ and $D=d \in \mathbb{R}$), the Gegenbauer matrix polynomial $P_{n}(x, D)$ coincide with the Gegenbauer polynomial $C_{n}^{\lambda}(x)$ taking $\lambda=-\frac{d+1}{2}$.

3. A Rodrigues-type formula for Gegenbauer matrix polynomials

Suppose that $n \geq 1$ and let D be a matrix in $\mathbb{C}^{r \times r}$ which satisfies (10) and (12). Let us consider

$$
\begin{equation*}
P_{n}(x, D)=K_{n}^{-1}(W(x))^{-1} D^{n}\left[\left(1-x^{2}\right)^{n} W(x)\right] \tag{15}
\end{equation*}
$$

where $W(x)$, defined by (14), is integrable on interval $(-1,1)$ and K_{n} is an invertible matrix to be determined. Let $I_{n n}$ be defined by

$$
\begin{equation*}
I_{n n}=\int_{-1}^{1} x^{n} P_{n}(x, D) W(x) d x \tag{16}
\end{equation*}
$$

Replacing (15) and taking into account (3), we obtain

$$
\begin{aligned}
I_{n n} & =\int_{-1}^{1} x^{n} P_{n}(x, D) W(x) d x=\int_{-1}^{1} x^{n} K_{n}^{-1}(W(x))^{-1} D^{n}\left[\left(1-x^{2}\right)^{n} W(x)\right] W(x) d x \\
& =K_{n}^{-1} \int_{-1}^{1} x^{n} D^{n}\left[\left(1-x^{2}\right)^{n} W(x)\right] d x
\end{aligned}
$$

Integrating by parts once

$$
\begin{aligned}
I_{n n} & =K_{n}^{-1} \int_{-1}^{1} x^{n} D^{n}\left[\left(1-x^{2}\right)^{n} W(x)\right] d x \\
& =K_{n}^{-1}\left(\left.x^{n} D^{n-1}\left[\left(1-x^{2}\right)^{n} W(x)\right]\right|_{-1} ^{1}-n \int_{-1}^{1} x^{n-1} D^{n-1}\left[\left(1-x^{2}\right)^{n} W(x)\right] d x\right) \\
& =K_{n}^{-1}(-1) n \int_{-1}^{1} x^{n-1} D^{n-1}\left[\left(1-x^{2}\right)^{n} W(x)\right] d x
\end{aligned}
$$

and then integrating by parts n times again, we finally arrive at

$$
\begin{equation*}
I_{n n}=K_{n}^{-1}(-1)^{n} n!\int_{-1}^{1}\left(1-x^{2}\right)^{n} W(x) d x \tag{17}
\end{equation*}
$$

From (17), one obtains

$$
\begin{aligned}
\int_{-1}^{1}\left(1-x^{2}\right)^{n} W(x) d x & =\int_{-1}^{1}\left(1-x^{2}\right)^{n}\left(1-x^{2}\right)^{-\frac{D}{2}-I} d x \\
& =\int_{-1}^{1}(1+x)^{-\frac{D}{2}+(n-1) I}(1-x)^{-\frac{D}{2}+(n-1) I} d x
\end{aligned}
$$

As (12) holds, by the spectral mapping theorem [7], it follows that $\operatorname{Re}(z)>$ $1 / 2 \forall z \in \sigma(-D / 2), \operatorname{Re}(z)>-1 \forall z \in \sigma\left(-\frac{D}{2}+(n-1) I\right)$. We now apply (7), (9) and (3) to derive

$$
\int_{-1}^{1}\left(1-x^{2}\right)^{n} W(x) d x=2^{-\frac{D}{2}+n I} B\left(-\frac{D}{2}+n I,-\frac{D}{2}+n I\right) 2^{-\frac{D}{2}+(n-1) I}
$$

$$
\begin{aligned}
& =2^{-\frac{D}{2}+n I} \Gamma^{2}\left(-\frac{D}{2}+n I\right) \Gamma^{-1}(-D+2 n I) 2^{-\frac{D}{2}+(n-1) I} \\
& =2^{-D} 2^{2 n-1} \Gamma^{2}\left(-\frac{D}{2}+n I\right) \Gamma^{-1}(-D+2 n I)
\end{aligned}
$$

Finally, after taking into account (17), we conclude

$$
\begin{equation*}
I_{n n} K_{n}=(-1)^{n} n!2^{-D} 2^{2 n-1} \Gamma^{2}\left(-\frac{D}{2}+n I\right) \Gamma^{-1}(-D+2 n I) \tag{18}
\end{equation*}
$$

Furthermore, it is easy to see that the leading coefficient of each matrix polynomial $P_{n}(x, D)$ is given by the matrix

$$
\begin{equation*}
\frac{\left(-\frac{1}{2}(I+D)\right)_{n} 2^{n}}{n!} \tag{19}
\end{equation*}
$$

which under spectral condition (12) is nonsingular, see [12, p.281]. Applying now the Lemma 2.1 of Ref. [4], we can rewrite the matrix polynomial $x^{n} I$ as a linear combination of Gegenbauer matrix polynomials, i.e.

$$
\begin{equation*}
x^{n} I=\sum_{k=0}^{n} \alpha_{k} P_{k}(x, D), \alpha_{k} \in \mathbb{C}^{r \times r}, k=0,1, \ldots, n . \tag{20}
\end{equation*}
$$

Applying the recurrence relation (11) and (19), one finds

$$
\begin{aligned}
x^{n} I & =\sum_{k=0}^{n} \alpha_{k} P_{k}(x, D)=\alpha_{n} P_{n}(x, D)+\alpha_{n-1} P_{n-1}(x, D)+\cdots+\alpha_{0} P_{0}(x, D) \\
& =\frac{\alpha_{n}}{n}((2 n-3) I-D) x P_{n-1}(x, D)+R_{n-1}(x) \\
& =\alpha_{n}((2 n-3) I-D) \frac{\left(-\frac{1}{2}(I+D)\right)_{n-1} 2^{n-1}}{n!} x^{n}+R_{n-1}(x),
\end{aligned}
$$

where $R_{n-1}(x)$ is a matrix polynomial of degree $n-1$. Taking into account (12), matrices $((2 n-3) I-D)$ and $\left(-\frac{1}{2}(I+D)\right)_{n-1}$ are nonsingular. Thus, in order to fulfill the above equality, we must impose

$$
\begin{equation*}
\alpha_{n}=\frac{n!}{2^{n-1}}((2 n-3) I-D)^{-1}\left[\left(-\frac{1}{2}(I+D)\right)_{n-1}\right]^{-1} . \tag{21}
\end{equation*}
$$

Replacing $x^{n} I$ given by (20) in (16) and applying (3), we have

$$
I_{n n}=\int_{-1}^{1} x^{n} P_{n}(x, D) W(x) d x=\sum_{k=0}^{n} \alpha_{k} \int_{-1}^{1} P_{k}(x, D) P_{n}(x, D) W(x) d x .
$$

Eq. (13) serves to simplify $I_{n n}$ and to derive the following form

$$
I_{n n}=\sum_{k=0}^{n} \alpha_{k} \int_{-1}^{1} P_{k}(x, D) P_{n}(x, D) W(x) d x=\alpha_{n} \int_{-1}^{1} P_{n}^{2}(x, D) W(x) d x
$$

Theorem 4 of [12] immediately yields the final expression

$$
\begin{equation*}
I_{n n}=\alpha_{n} \frac{\pi^{\frac{1}{2}}(-D-I)_{n} \Gamma\left(-\frac{1}{2} D\right) \Gamma^{-1}\left(-\frac{1}{2}(I+D)\right)\left(-\frac{1}{2} D+\left(n-\frac{1}{2}\right) I\right)^{-1}}{n!} \tag{22}
\end{equation*}
$$

Because $I_{n n}$ is nonsingular, we can substite (22) in (18), and obtain

$$
K_{n}=(-1)^{n} n!I_{n n}^{-1} 2^{-D} 2^{2 n-1} \Gamma^{2}\left(-\frac{D}{2}+n I\right) \Gamma^{-1}(-D+2 n I) .
$$

Next, we simplify

$$
\begin{equation*}
K_{n}=\frac{(-1)^{n} n!2^{3(n-1)}}{\sqrt{\pi}} 2^{-D}((2 n-3) I-D)((2 n-1) I-D) S_{n} \tag{23}
\end{equation*}
$$

where

$$
\begin{aligned}
S_{n}=\Gamma^{2} & \left(-\frac{D}{2}+n I\right) \Gamma^{-1}(-D+2 n I)\left[\left(-\frac{(I+D)}{2}\right)_{n-1}\right] \\
& \times\left[(-D-I)_{n}\right]^{-1} \Gamma^{-1}\left(-\frac{D}{2}\right) \Gamma\left(-\frac{(I+D)}{2}\right)
\end{aligned}
$$

and hence, substituting S_{n} in (15), we have the formula we were looking for:

$$
\begin{align*}
K_{n} P_{n}(x, D) & =(W(x))^{-1} D^{n}\left[\left(1-x^{2}\right)^{n} W(x)\right] \\
& =\left(1-x^{2}\right)^{\frac{D}{2}+I} D^{n}\left[\left(1-x^{2}\right)^{-\frac{D}{2}+(n-1) I}\right], n \geq 1 \tag{24}
\end{align*}
$$

where K_{n} is given by (23). If we take $K_{0}=I$, formula (24) is also valid when $n=0$. This result is summarized by

Theorem 3.1 (Rodrigues-type Formula). Let $D \in \mathbb{C}^{r \times r}$ satisfy (10) and (12). Then, the Gegenbauer matrix polynomials $P_{n}(x, D)$ defined in formula (70) of [12, p. 281] may be expressed as

$$
K_{n} P_{n}(x, D)=\left(1-x^{2}\right)^{\frac{D}{2}+I} D^{n}\left[\left(1-x^{2}\right)^{-\frac{D}{2}+(n-1) I}\right]
$$

for $n=0,1,2, \ldots$, where $K_{0}=I$ and K_{n} is given by (23) for $n \geq 1$.
We now consider Jacobi matrix polynomials which satisfy the Rodrigues' formula according to Theorem 4.1 of [3, p.795]:
$P_{n}^{(A, B)}(x)=\frac{(-1)^{n}}{2^{n} n!}(1-x)^{-A}(1+x)^{-B} D^{n}\left[(1-x)^{(A+n I)}(1+x)^{(B+n I)}\right], n \geq 0$,
where $A, B \in \mathbb{C}^{r \times r}$ satisfy

$$
\operatorname{Re}(z)>-1 \text { for } z \in \sigma(A), \operatorname{Re}(z)>-1 \text { for } z \in \sigma(B) \text { and } A B=B A
$$

As D satisfies (10) and (12), then matrix $-D / 2-I$ satisfies $\operatorname{Re}(z)>-1 / 2$ for $z \in$ $\sigma(-D / 2-I)$. Taking $A=B=-D / 2-I$ in (25), one gets for $n \geq 1$:

$$
\begin{aligned}
& P_{n}^{\left(-\frac{D}{2}-I,-\frac{D}{2}-I\right)}(x) \\
& =\frac{(-1)^{n}}{2^{n} n!}(1-x)^{\frac{D}{2}+I}(1+x)^{\frac{D}{2}+I} D^{n}\left[(1-x)^{\left(-\frac{D}{2}+(n-1) I\right)}(1+x)^{\left(-\frac{D}{2}+(n-1) I\right)}\right] \\
& =\frac{(-1)^{n}}{2^{n} n!}\left(1-x^{2}\right)^{\frac{D}{2}+I} D^{n}\left[\left(1-x^{2}\right)^{\left(-\frac{D}{2}+(n-1) I\right)}\right],
\end{aligned}
$$

and using (24), we find

$$
\begin{equation*}
P_{n}^{\left(-\frac{D}{2}-I,-\frac{D}{2}-I\right)}(x)=\frac{(-1)^{n}}{2^{n} n!} K_{n} P_{n}(x, D), \tag{26}
\end{equation*}
$$

which is the matricial traslation of formula (1). Note that formula (26) is also true for $n=0$. Of course, formula (26) is reduced to the formula (1) for the scalar case $\left(r=1, D=d \in \mathbb{R}, \lambda=-\frac{d+1}{2}\right)$. Thus, a connection between Gegenbauer matrix polynomials and Jacobi matrix polynomials is established by formula (26).
[1] G.E. Andrews, R. Askey, and R. Roy. Special functions, Encyclopedia of Mathematics and its Applications, Vol 71. Encyclopedia of Mathematics and Its Applications Series. Cambridge University Press, 2001.
[2] T. S. Chihara. An Introduction to Orthogonal Polynomials. Gordon and Breach, New York, USA, 1978.
[3] E. Defez, L. Jódar, and A. Law. Jacobi matrix differential equation, polynomial solutions, and their properties. Computers and Mathematics with Applications, 48(5-6):789-803, 2004.
[4] E. Defez, L. Jódar, A. Law, and E. Ponsoda. Three term recurrences and matrix orthogonal polynomials. Utilitas Mathematica, 57:129-146, 2000.
[5] Emilio Defez and Lucas Jódar. Some applications of the Hermite matrix polynomials series expansions. J. Comput. Appl. Math., 99(1-2):105-117, 1998.
[6] A. Draux and O. Jokung-Nguena. Orthogonal polynomials in a noncommutative algebra. non-normal case. IMACS Annals of Computing and Appl. Maths., 9:237-242, 1991.
[7] N. Dunford and J. T. Schwartz. Linear Operators I. Interscience Publishers, New York, NY, USA, 1957.
[8] A. J. Duran. On orthogonal polynomials with respect to a positive definite matrix of measures. Canadian J. of Math., 47:88-112, 1995.
[9] A. J. Duran and W. Van Assche. Orthogonal matrix polynomials and higher order recurrence relations. Linear Algebra Applications, 219:261-280, 1995.
[10] A. J. Duran and P. López-Rodriguez. Orthogonal matrix polynomials: Zeros and blumenthal's theorem. Journal Approximation Theory, 84:96118, 1996.
[11] Geronimo J. S. Scattering theory and matrix orthogonal polynomials on the real line. Circuit Systems Signal Process, 1(3-4):471-494, 1982.
[12] L. Jódar, R. Company, and E. Ponsoda. Orthogonal matrix polynomials and systems of second order differential equations. Differential Equations and Dynamical Systems, 3(3):269-288, 1995.
[13] L. Jódar and J.C Cortés. On the hypergeometric matrix function. Journal of Computational and Applied Mathematics, 99:205-217, 1998.
[14] L. Jódar and J.C Cortés. Some properties of gamma and beta matrix functions. Applied Mathematics Letters, 11(1):89-93, 1998.
[15] L. Jódar and E. Defez. A connection between laguerre's and hermite's matrix polynomials. Applied Mathematical letters, 1(11):13-17, 1998.
[16] J. Sastre, E. Defez, and L. Jódar. Application of laguerre matrix polynomials to the numerical inversion of laplace transforms of matrix functions. Applied Mathematics Letters, 24:1527-1532, 2011.
[17] J. Sastre, J. J. Ibáñez, E. Defez, and P. Ruiz. Accurate matrix exponential computation to solve coupled differential models in engineering. Mathematical and Computer Modelling, 54:1835-1840, 2011.
[18] J. Sastre, J. J. Ibáñez, E. Defez, and P. Ruiz. Efficient orthogonal matrix polynomial based method for computing matrix exponential. Applied Mathematics and Computation, 217:6451-6463, 2011.

[^0]: ${ }^{1}$ Acknowledgements. This research has been supported by the Universitat Politècnica de València under grant PAID-06-11-2020

