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Abstract

This paper centers on the derivation of a Rodrigues-type formula for Gegenbauer
matrix polynomial. A connection between Gegenbauer and Jacobi matrix poly-
nomials is given.
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1. Introduction and notation

The Gegenbauer (so called ultraspherical) polynomials Cλ
n(x) can be defined

by the formula

Cλ
n(x) =

(2λ)n
(λ+ (1/2))n

P (λ−1/2,λ−1/2)
n (x), (c)n =

Γ(c+ n)

Γ(c)
, n ≥ 0, (1)

where P
(α,β)
n (x) is the Jacobi polynomial, (c)n is the Pochhammer symbol or

shifted factorials. Here, Cλ
n(x) satisfies the Rodrigues formula:

(
1− x2

)λ−1/2
Cλ

n(x) =
(−2)n (λ)n
n!(n+ 2λ)n

Dn
[(
1− x2

)n+λ−1/2
]
, (2)

see [1, p.303] or [2] for details. The extension of this classical family of polyno-
mials to the matrix framework has been proposed in [12]. In fact, orthogonal
matrix polynomials emerge in various important areas of applied mathematics,
see [11, 6, 8, 9, 10]. Only very recently, different applications of matrix polyno-
mials have been pointed out in the literature, e.g. dealing with the solution of
matrix differential equations, finding approximations of inverse Laplace trans-
forms, and calculating the matrix exponential approximation [5, 17, 16, 18].
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The aim of this work is to obtain a Rodrigues-type formula for the Gegen-
bauer matrix polynomials defined in Ref. [12]. Using this formula, we find a
connection between Gegenbauer matrix polynomials and Jacobi matrix poly-
nomials, as introduced in Ref. [3]. This relation is similar to that between
Laguerre’s and Hermite matrix polynomials obtained in Ref. [15].

Throughout this paper, Re(z) denotes the real part of the complex number
z, and I the identity matrix in Cr×r. A matrix polynomial of degree n is an
expression of the form P (x) = Anx

n+An−1x
n−1+ . . .+A1x+A0, where x ∈ R,

and Aj ∈ Cr×r represents a complex square matrix for 0 ≤ j ≤ n. The set of
all matrix polynomials in Cr×r, for all n ≥ 0, will be given by P[x]. Let f(z)
and g(z) be holomorphic functions of the complex variable z, which are defined
on an open set Ω in the complex plane. If C is a matrix in Cr×r so that the set
of all its eigenvalues, σ(C), lies in Ω, then, from matrix functional calculus [7,
p. 558], it follows that

f(C)g(C) = g(C)f(C). (3)

If P is a matrix in Cr×r such that Re(z) > 0 for all eigenvalue z of P , then
Γ(P ) is well defined as

Γ(P ) =

∫ ∞

0

e−ttP−Idt, tP−I = exp ((P − I) log (t)).

The reciprocal scalar Gamma function, Γ−1(z) = 1/Γ(z), is an entire function of
the complex variable z. Thus, for any C ∈ Cr×r, the Riesz-Dunford functional
calculus [7] shows that Γ−1(C) is well defined and is, indeed, the inverse of Γ(C).
Hence, if C ∈ Cr×r is such that C + nI is invertible for every integer n ≥ 0,
then we have the matrix analogue of formula (1):

(C)n = Γ(C + nI)Γ−1(C), n ≥ 0. (4)

If we take into account the scalar factorial function, denoted by (z)n with (z)0 =
1 and

(z)n = z(z + 1) . . . (z + n− 1), n ≥ 1,

then by application of the matrix functional calculus, for any matrix C ∈ Cr×r

it holds
(C)n = C(C + I) . . . (C + (n− 1)I) , n ≥ 1, (C)0 = I. (5)

If matrices D,F ∈ Cr×r satisfy the spectral condition

Re(z) > −1,∀z ∈ σ(D),Re(t) > −1,∀t ∈ σ(F ), (6)

then ∫ 1

−1

(1 + x)D(1− x)F dx = 2D+IB (D + I, F + I) 2F , (7)

where B(P,Q) is the Beta matrix function [14], defined by

B(P,Q) =

∫ 1

0

tP−I(1− t)Q−Idt,Re(z) > 0,∀z ∈ σ(P ),Re(s) > 0,∀s ∈ σ(Q).
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From Theorem 2 of [13], if P , Q are commuting matrices in Cr×r such that for
all integer n ≥ 0, the following condition holds

P + nI,Q+ nI, P +Q+ nI are invertible, (8)

then
B(P,Q) = Γ(P )Γ(Q)Γ−1(P +Q). (9)

For k = 0, 1, 2, . . ., we denote Dk (f(x)) = dk

dxk (f(x)) , and thus, for an

arbitrary matrix A ∈ Cr×r, Dk
[
tA+mI

]
= (A+ I)m

[
(A+ I)m−k

]−1
tA+(m−k)I .

The organization of the paper is as follows: In Section 2, we recall the def-
inition and some properties of Gegenbauer matrix polynomials which will be
used. In Section 3 we derive the Rodrigues-type formula for this class of orthog-
onal matrix polynomials. Finally, a connection between Gegenbauer matrix
polynomials and Jacobi matrix polynomials, introduced in [3], is given.

2. Gegenbauer matrix polynomials

Let D ∈ Cr×r such that

k /∈ σ(D), for every integer k ≥ −1. (10)

The Gegenbauer matrix polynomial Pn(x,D) is defined by formula (70) in
Ref. [12, p. 281], and satisfies the following three-term recurrence relation:

(n+1)Pn+1(x,D)−x [(2n−1)I−D]Pn(x,D)+[(n−2)I−D]Pn−1(x,D)=0, n ≥ 1,
P0(x,D) = I, P1(x,D) = −(I +D)x.

(11)
If matrix D satisfies

Re(z) < −1,∀z ∈ σ(D), (12)

then the Gegenbauer matrix polynomials satisfy the orthogonality condition

∫ 1

−1

Pk(x,D)Pn(x,D)W (x)dx=

√
π(−D−I)nΓ

(−D
2

)
Γ−1

(
−(I+D)

2

) ((
n− 1

2

)
I−D

2

)−1
δkn

n!
,

(13)
where δkn is the Kronecker delta and W (x) is the matrix function [12].

W (x) =
(
1− x2

)−D
2 −I

. (14)

Of course, for the scalar case (r = 1 and D = d ∈ R), the Gegenbauer matrix
polynomial Pn(x,D) coincide with the Gegenbauer polynomial Cλ

n(x) taking
λ = −d+1

2 .
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3. A Rodrigues-type formula for Gegenbauer matrix polynomials

Suppose that n ≥ 1 and let D be a matrix in Cr×r which satisfies (10) and
(12). Let us consider

Pn(x,D) = K−1
n (W (x))

−1
Dn

[
(1− x2)nW (x)

]
(15)

where W (x), defined by (14), is integrable on interval (−1, 1) and Kn is an
invertible matrix to be determined. Let Inn be defined by

Inn =

∫ 1

−1

xnPn(x,D)W (x) dx. (16)

Replacing (15) and taking into account (3), we obtain

Inn =

∫ 1

−1

xnPn(x,D)W (x) dx =

∫ 1

−1

xnK−1
n (W (x))

−1
Dn

[
(1− x2)nW (x)

]
W (x) dx

= K−1
n

∫ 1

−1

xnDn
[
(1− x2)nW (x)

]
dx.

Integrating by parts once

Inn = K−1
n

∫ 1

−1

xnDn
[
(1− x2)nW (x)

]
dx

= K−1
n

(
xnDn−1

[
(1− x2)nW (x)

] ∣∣1
−1 − n

∫ 1

−1

xn−1Dn−1
[
(1− x2)nW (x)

]
dx

)
= K−1

n (−1)n

∫ 1

−1

xn−1Dn−1
[
(1− x2)nW (x)

]
dx,

and then integrating by parts n times again, we finally arrive at

Inn = K−1
n (−1)nn!

∫ 1

−1

(1− x2)nW (x) dx. (17)

From (17), one obtains∫ 1

−1

(1− x2)nW (x) dx =

∫ 1

−1

(1− x2)n
(
1− x2

)−D
2 −I

dx

=

∫ 1

−1

(1 + x)
−D

2 +(n−1)I
(1− x)

−D
2 +(n−1)I

dx.

As (12) holds, by the spectral mapping theorem [7], it follows that Re(z) >
1/2 ∀z ∈ σ(−D/2), Re(z) > −1 ∀z ∈ σ

(
−D

2 + (n− 1)I
)
. We now apply (7),

(9) and (3) to derive∫ 1

−1

(1− x2)nW (x) dx = 2−
D
2 +nIB

(
−D

2
+ nI,−D

2
+ nI

)
2−

D
2 +(n−1)I
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= 2−
D
2 +nIΓ2

(
−D

2
+ nI

)
Γ−1 (−D + 2nI) 2−

D
2 +(n−1)I

= 2−D22n−1Γ2

(
−D

2
+ nI

)
Γ−1 (−D + 2nI) .

Finally, after taking into account (17), we conclude

InnKn = (−1)nn!2−D22n−1Γ2

(
−D

2
+ nI

)
Γ−1 (−D + 2nI) . (18)

Furthermore, it is easy to see that the leading coefficient of each matrix poly-
nomial Pn(x,D) is given by the matrix(

− 1
2 (I +D)

)
n
2n

n!
, (19)

which under spectral condition (12) is nonsingular, see [12, p.281]. Applying
now the Lemma 2.1 of Ref. [4], we can rewrite the matrix polynomial xnI as a
linear combination of Gegenbauer matrix polynomials, i.e.

xnI =
n∑

k=0

αkPk(x,D), αk ∈ Cr×r, k = 0, 1, . . . , n. (20)

Applying the recurrence relation (11) and (19), one finds

xnI =

n∑
k=0

αkPk(x,D) = αnPn(x,D) + αn−1Pn−1(x,D) + · · ·+ α0P0(x,D)

=
αn

n
((2n− 3)I −D)xPn−1(x,D) +Rn−1(x)

= αn ((2n− 3)I −D)

(
−1

2 (I +D)
)
n−1

2n−1

n!
xn +Rn−1(x),

where Rn−1(x) is a matrix polynomial of degree n − 1. Taking into account
(12), matrices ((2n− 3)I −D) and

(
−1

2 (I +D)
)
n−1

are nonsingular. Thus, in
order to fulfill the above equality, we must impose

αn =
n!

2n−1
((2n− 3)I −D)

−1

[(
−1

2
(I +D)

)
n−1

]−1

. (21)

Replacing xnI given by (20) in (16) and applying (3), we have

Inn =

∫ 1

−1

xnPn(x,D)W (x) dx =

n∑
k=0

αk

∫ 1

−1

Pk(x,D)Pn(x,D)W (x) dx.

Eq. (13) serves to simplify Inn and to derive the following form

Inn =
n∑

k=0

αk

∫ 1

−1

Pk(x,D)Pn(x,D)W (x) dx = αn

∫ 1

−1

P 2
n(x,D)W (x) dx.
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Theorem 4 of [12] immediately yields the final expression

Inn = αn

π
1
2 (−D − I)nΓ

(
− 1

2D
)
Γ−1

(
− 1

2 (I +D)
) (

−1
2D +

(
n− 1

2

)
I
)−1

n!
.

(22)
Because Inn is nonsingular, we can substite (22) in (18), and obtain

Kn = (−1)nn! I−1
nn 2

−D22n−1Γ2

(
−D

2
+ nI

)
Γ−1 (−D + 2nI) .

Next, we simplify

Kn =
(−1)nn!23(n−1)

√
π

2−D ((2n− 3)I −D) ((2n− 1)I −D)Sn, (23)

where

Sn=Γ2

(
−D

2
+nI

)
Γ−1(−D+2nI)

[(
− (I+D)

2

)
n−1

]

× [(−D−I)n]
−1

Γ−1

(
−D

2

)
Γ

(
− (I+D)

2

)
.,

and hence, substituting Sn in (15), we have the formula we were looking for:

KnPn(x,D) = (W (x))
−1

Dn
[
(1− x2)nW (x)

]
=

(
1− x2

)D
2 +I

Dn
[(
1− x2

)−D
2 +(n−1)I

]
, n ≥ 1, (24)

where Kn is given by (23). If we take K0 = I, formula (24) is also valid when
n = 0. This result is summarized by

Theorem 3.1 (Rodrigues-type Formula). Let D ∈ Cr×r satisfy (10) and
(12). Then, the Gegenbauer matrix polynomials Pn(x,D) defined in formula
(70) of [12, p. 281] may be expressed as

KnPn(x,D) =
(
1− x2

)D
2 +I

Dn
[(
1− x2

)−D
2 +(n−1)I

]
,

for n = 0, 1, 2, . . ., where K0 = I and Kn is given by (23) for n ≥ 1.

We now consider Jacobi matrix polynomials which satisfy the Rodrigues’
formula according to Theorem 4.1 of [3, p.795]:

P (A,B)
n (x) =

(−1)n

2nn!
(1−x)−A(1+x)−BDn

[
(1− x)(A+nI)(1 + x)(B+nI)

]
, n ≥ 0,

(25)
where A,B ∈ Cr×r satisfy

Re(z) > −1 for z ∈ σ(A), Re(z) > −1 for z ∈ σ(B) and AB = BA.
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AsD satisfies (10) and (12), then matrix−D/2−I satisfies Re(z) > −1/2 for z ∈
σ(−D/2− I). Taking A = B = −D/2− I in (25), one gets for n ≥ 1:

P
(−D

2 −I,−D
2 −I)

n (x)

=
(−1)n

2nn!
(1−x)

D
2 +I(1+x)

D
2 +IDn

[
(1−x)(−

D
2 +(n−1)I)(1+x)(−

D
2 +(n−1)I)

]
=

(−1)n

2nn!
(1−x2)

D
2 +IDn

[
(1−x2)(−

D
2 +(n−1)I)

]
,

and using (24), we find

P
(−D

2 −I,−D
2 −I)

n (x) =
(−1)n

2nn!
KnPn(x,D), (26)

which is the matricial traslation of formula (1). Note that formula (26) is also
true for n = 0. Of course, formula (26) is reduced to the formula (1) for the
scalar case (r = 1, D = d ∈ R , λ = −d+1

2 ). Thus, a connection between
Gegenbauer matrix polynomials and Jacobi matrix polynomials is established
by formula (26).
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[10] A. J. Duran and P. López-Rodriguez. Orthogonal matrix polynomials:
Zeros and blumenthal’s theorem. Journal Approximation Theory, 84:96–
118, 1996.

[11] Geronimo J. S. Scattering theory and matrix orthogonal polynomials on
the real line. Circuit Systems Signal Process, 1(3-4):471–494, 1982.
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[16] J. Sastre, E. Defez, and L. Jódar. Application of laguerre matrix polyno-
mials to the numerical inversion of laplace transforms of matrix functions.
Applied Mathematics Letters, 24:1527–1532, 2011.
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