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THE  LOJASIEWICZ EXPONENT OF A SET OF WEIGHTED

HOMOGENEOUS IDEALS

C. BIVIÀ-AUSINA AND S. ENCINAS

Abstract. We give an expression for the  Lojasiewicz exponent of a set of ideals which
are pieces of a weighted homogeneous filtration. We also study the application of this
formula to the computation of the  Lojasiewicz exponent of the gradient of a semi-weighted
homogeneous function (Cn, 0)→ (C, 0) with an isolated singularity at the origin.

1. Introduction

Let R be a Noetherian ring and let I be an ideal of R. Let νI be the order function of R

with respect to I, that is, νI(h) = sup{r : h ∈ Ir}, for all h ∈ R, h 6= 0, and ν(0) =∞. Let us

consider the function νI : R→ R>0∪{∞} defined by νI(h) = lims→∞
νI(h

s)
s

, for all h ∈ R. It

was proven by Samuel [17] and Rees [14] that this limit exists and Nagata proved in [12] that,

when finite, the number νI(h) is a rational number. The function ν is called the asymptotic

Samuel function of I. If J is another ideal of R, then the number νI(J) is defined analogously

and if h1, . . . , hr is a generating system of J then νI(J) = min{νI(h1), . . . , νI(hr)}. Let us

denote by I the integral closure of I. As a consequence of the theorem of existence of the

Rees valuations of an ideal (see for instance [8, p. 192]), it is known that, if J is another

ideal and p, q ∈ Z>1, then Jq ⊆ Ip if and only if νI(J) > p
q
.

Let On denote the ring of analytic function germs f : (Cn, 0) → C and let mn denote its

maximal ideal, that will be also denoted by m if no confusion arises. Let I be an ideal of

On of finite colength. Lejeune and Teissier proved in [10, p. 832] that 1
νI(m)

is equal to the

 Lojasiewicz exponent of I (in fact, this result was proven in a more general context, that is,

for ideals in a structural ring OX , where X is a reduced complex analytic space). If g1, . . . , gr
is a generating system of I, then the  Lojasiewicz exponent of I is defined as the infimum of

those α > 0 for which there exist a constant C > 0 and an open neighbourhood U of 0 ∈ Cn

with

‖x‖α 6 C sup
i
|gi(x)|

for all x ∈ U . Let us denote this number by L0(I) and let e(I) denote the Samuel multiplicity

of I. Therefore we have that L0(I) = inf{p
q

: mp ⊆ Iq, p, q ∈ Z>0} and hence, by the Rees’
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2 C. BIVIÀ-AUSINA AND S. ENCINAS

multiplicity theorem (see [8, p. 222]) it follows that L0(I) = inf{p
q

: e(Iq) = e(Iq+mp), p, q ∈
Z>0}. This expression of L0(I) is one of the motivations that lead the first author to introduce

the notion of  Lojasiewicz exponent of a set of ideals in [4]. This notion is based on the Rees’

mixed multiplicity of a set of ideals (Definition 2.1).

 Lojasiewicz exponents have important applications in singularity theory. Here we recall

one of them. If g : (Cn, 0) → (Cn, 0) is an analytic map germ such that g−1(0) = {0} then

we denote by L0(g) the  Lojasiewicz exponent of the the ideal generated by the component

functions of g. Let f : (Cn, 0)→ (C, 0) be the germ of a complex analytic function with an

isolated singularity at the origin. Then ∇f : (Cn, 0)→ (Cn, 0) denotes the gradient map of

f , that is, ∇f = ( ∂f
∂x1
, . . . , ∂f

∂xn
). The Jacobian ideal of f , that we will denote by J(f), is the

ideal generated by the components of ∇f . The degree of C0-determinacy of f , denoted by

s0(f), is defined as the smallest integer r such that f is topologically equivalent to f + g, for

all g ∈ On with νmn(g) > r + 1. Teissier proved in [19, p. 280] that s0(f) = [L0(∇f)] + 1,

where [a] stands for the integer part of a given a ∈ R. Despite the fact that this equality

connects L0(∇f) with a fundamental topological aspect of f , the problem of determining

whether the  Lojasiewicz exponent L0(∇f) is a topological invariant of f is still an open

problem.

The effective computation of L0(I) has proven to be a challenging problem in algebraic

geometry that, by virtue of the results of Lejeune and Teissier is directly related with the

computation of the integral closure of an ideal. In [5] the authors relate the problem of

computing L0(I) with the algorithms of resolution of singularities. The approach that we

give in this paper is based on techniques of commutative algebra.

We recall that, if w = (w1, . . . , wn) ∈ Zn
>1, then a polynomial f ∈ C[x1, . . . , xn] is called

weighted homogeneous of degree d with respect to w when f is written as a sum of monomials

xk11 · · ·xknn such that w1x1 + · · · + wnxn = d. This paper is motivated by the main result of

Krasiński, Oleksik and P loski in [9], which says that if f : C3 → C is a weighted homogeneous

polynomial of degree d with respect to (w1, w2, w3) with an isolated singularity at the origin,

then L0(∇f) is given by the expression

L0(∇f) =
d−min{w1, w2, w3}

min{w1, w2, w3}

provided that d > 2wi, for all i = 1, 2, 3. That is, L0(∇f) depends only on the weights

wi and the degree d in this case. Therefore it is concluded that L0(∇f) is a topological

invariant of f , by virtue of the results of Saeki [16] and Yau [21]. In view of the above

equality it is reasonable to conjecture that the analogous result holds in general, that is,

if f : (Cn, 0) → (C, 0) is a weighted homogeneous polynomial, or even a semi-weighted

homogeneous function (see Definition 4.1), with respect to (w1, . . . , wn) of degree d with an

isolated singularity at the origin, and if d > 2wi, for all i = 1, . . . , n, then

(1) L0(∇f) =
d−min{w1, . . . , wn}

min{w1, . . . , wn}
.
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We point out that inequality (6) always holds in (1) for semi-weighted homogeneous func-

tions (see Corollary 4.11).

In this paper we obtain the equality (1) for semi-weighted homogeneous germs f : (Cn, 0)→
(C, 0) under a restriction expressed in terms of the supports of the component functions of

∇f (see Corollary 4.11). This result arises as a consequence of a more general result in-

volving the  Lojasiewicz exponent of a set of ideals coming from a weighted homogeneous

filtration (see Theorem 4.7). Our approach to  Lojasiewicz exponents is purely algebraic and

comes from the techniques developed in [3] and [4]. This new point of view of the subject

has led us to detect a broad class of semi-weighted homogeneous functions where relation

(1) holds.

For the sake of completeness we recall in Section 2 the definition of Rees’ mixed multiplicity

and basic facts about this notion. In Section 3 we show some results about the notion of

 Lojasiewicz exponent of a set of ideals that will be applied in Section 4. The main results

appear in Section 4.

2. The Rees’ mixed multiplicity of a set of ideals

Let (R,m) be a Noetherian local ring and let I be an ideal of R. We denote by e(I) the

Samuel multiplicity of I. Let dimR = n and let us fix a set of n ideals I1, . . . , In of R of finite

colength. Then we denote by e(I1, . . . , In) the mixed multiplicity of I1, . . . , In, as defined by

Teissier and Risler in [20] (we refer to [8, §17] and [18] for fundamental results about mixed

multiplicities of ideals). We recall that, if the ideals I1, . . . , In are equal to a given ideal, say

I, then e(I1, . . . , In) = e(I).

Let us suppose that the residue field k = R/m is infinite. Let ai1, . . . , aisi be a generating

system of Ii, where si > 1, for i = 1, . . . , n. Let s = s1 + · · · + sn. We say that a property

holds for sufficiently general elements of I1⊕· · ·⊕In if there exists a non-empty Zariski-open

set U in ks verifying that the said property holds for all elements (g1, . . . , gn) ∈ I1⊕ · · · ⊕ In
such that gi =

∑
j uijaij, i = 1, . . . , n and the image of (u11, . . . , u1s1 , . . . , un1, . . . , unsn) in ks

lies in U .

By virtue of a result of Rees (see [15] or [8, p. 335]), if the ideals I1, . . . , In have fi-

nite colength and R/m is infinite, then the mixed multiplicity of I1, . . . , In is obtained as

e(I1, . . . , In) = e(g1, . . . , gn), for a sufficiently general element (g1, . . . , gn) ∈ I1 ⊕ · · · ⊕ In.

Let us denote by On the ring of analytic function germs (Cn, 0) → C. Let g : (Cn, 0) →
(Cn, 0) be a complex analytic map germ such that g−1(0) = {0} and let g1, . . . , gn denote

the component functions of g. We recall that e(I) = dimCOn/I, where I is the ideal of On
generated by g1, . . . , gn. It turns out that this number is equal to the geometric multiplicity

of g (see [11, p. 258] or [13]).

Now we show the definition of a number associated to a family of ideals that generalizes

the notion of mixed multiplicity. This number is fundamental in the results of this paper.

We denote by Z+ the set of non-negative integers. Let a ∈ Z, we denote by Z>a the set

of integers z > a.
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Definition 2.1. [3] Let (R,m) be a Noetherian local ring of dimension n. Let I1, . . . , In be

ideals of R. Then we define the Rees’ mixed multiplicity of I1, . . . , In as

(2) σ(I1, . . . , In) = max
r∈Z+

e(I1 + mr, . . . , In + mr),

when the number on the right hand side is finite. If the set of integers {e(I1+mr, . . . , In+mr) :

r ∈ Z+} is non-bounded then we set σ(I1, . . . , In) =∞.

We remark that if Ii is an ideal of finite colength, for all i = 1, . . . , n, then σ(I1, . . . , In) =

e(I1, . . . , In). The next proposition characterizes the finiteness of σ(I1, . . . , In).

Proposition 2.2. [3, p. 393] Let I1, . . . , In be ideals of a Noetherian local ring (R,m) such

that the residue field k = R/m is infinite. Then σ(I1, . . . , In) <∞ if and only if there exist

elements gi ∈ Ii, for i = 1, . . . , n, such that 〈g1, . . . , gn〉 has finite colength. In this case,

we have that σ(I1, . . . , In) = e(g1, . . . , gn) for sufficiently general elements (g1, . . . , gn) ∈
I1 ⊕ · · · ⊕ In.

Remark 2.3. It is worth pointing out that, if I1, . . . , In is a set of ideals of R such that

σ(I1, . . . , In) <∞, then I1 + · · ·+ In is an ideal of finite colength. Obviously the converse is

not true.

The following result will be useful in subsequent sections.

Lemma 2.4. [4, p. 392] Let (R,m) be a Noetherian local ring of dimension n > 1. Let

J1, . . . , Jn be ideals of R such that σ(J1, . . . , Jn) <∞. Let I1, . . . , In be ideals of R such that

Ji ⊆ Ii, for all i = 1, . . . , n. Then σ(I1, . . . , In) <∞ and

σ(J1, . . . , Jn) > σ(I1, . . . , In).

Now we recall some basic definitions. Let us fix a coordinate system x1, . . . , xn in Cn.

If k = (k1, . . . , kn) ∈ Zn
+, we will denote the monomial xk11 · · ·xknn by xk. If h ∈ On and

h =
∑

k akx
k denotes the Taylor expansion of h around the origin, then the support of h is

the set supp(h) = {k ∈ Zn
+ : ak 6= 0}. If h 6= 0, the Newton polyhedron of h, denoted by

Γ+(h), is the convex hull of the set {k + v : k ∈ supp(h), v ∈ Rn
+}. If h = 0, then we set

Γ+(h) = ∅. If I is an ideal of On and g1, . . . , gs is a generating system of I, then we define

the Newton polyhedron of I as the convex hull of Γ+(g1) ∪ · · · ∪ Γ+(gr). It is easy to check

that the definition of Γ+(I) does not depend on the chosen generating system of I. We say

that I is a monomial ideal of On when I admits a generating system formed by monomials.

Definition 2.5. Let I1, . . . , In be monomial ideals of On such that σ(I1, . . . , In) <∞. Then

we denote by S(I1, . . . , In) the family of those maps g = (g1, . . . , gn) : (Cn, 0) → (Cn, 0) for

which g−1(0) = {0}, gi ∈ Ii, for all i = 1, . . . , n, and σ(I1, . . . , In) = e(g1, . . . , gn), where

e(g1, . . . , gn) stands for the multiplicity of the ideal of On generated by g1, . . . , gn. The

elements of S(I1, . . . , In) are characterized in [3, Theorem 3.10].

We denote by S0(I1, . . . , In) the set formed by the maps g = (g1, . . . , gn) ∈ S(I1, . . . , In)

such that Γ+(gi) = Γ+(Ii), for all i = 1, . . . , n.
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3. The  Lojasiewicz exponent of a set of ideals

In this section we introduce some results concerning the notion of  Lojasiewicz exponent

of a set of ideals in a Noetherian ring. These results will be applied in the next section.

Let I1, . . . , In be ideals of a local ring (R,m) such that σ(I1, . . . , In) <∞. Then we define

(3) r(I1, . . . , In) = min
{
r ∈ Z+ : σ(I1, . . . , In) = e(I1 +mr, . . . , In +mr)

}
.

Theorem 3.1. [4, p. 398] Let I1, . . . , In be monomial ideals of On such that σ(I1, . . . , In) is

finite. If g ∈ S0(I1, . . . , In), then L0(g) depends only on I1, . . . , In and it is given by

(4) L0(g) = min
s>1

r(Is1 , . . . , I
s
n)

s
.

By the proof of the above theorem it is concluded that the infimum of the sequence

{ r(I
s
1 ,...,I

s
n)

s
}s>1 is actually a minimum. Theorem 3.1 motivates the following definition.

Definition 3.2. Let (R,m) be a Noetherian local ring of dimension n. Let I1, . . . , In be

ideals of R. Let us suppose that σ(I1, . . . , In) < ∞. We define the  Lojasiewicz exponent of

I1, . . . , In as

L0(I1, . . . , In) = inf
s>1

r(Is1 , . . . , I
s
n)

s
.

As we will see in Lemma 3.3, we have that r(Is1 , . . . , I
s
n) 6 sr(I1, . . . , In), for all s ∈ Z>1.

Therefore L0(I1, . . . , In) 6 r(I1, . . . , In).

We can extend Definition 2.1 by replacing the maximal ideal m by an arbitrary ideal

of finite colength, but the resulting number is the same. That is, under the hypothesis of

Definition 2.1, let us denote by J an ideal of R of finite colength and let us suppose that

σ(I1, . . . , In) <∞. Then we define

σJ(I1, . . . , In) = max
r∈Z+

e(I1 + Jr, . . . , In + Jr).

An easy computation reveals that σJ(I1, . . . , In) = σ(I1, . . . , In). We also define

(5) rJ(I1, . . . , In) = min
{
r ∈ Z+ : σ(I1, . . . , In) = e(I1 + Jr, . . . , In + Jr)

}
.

Let I be an ideal of R of finite colength. Then we denote by rJ(I) the number rJ(I, . . . , I),

where I is repeated n times. We deduce from the Rees’ multiplicity theorem that, if R is

quasi-unmixed, then rJ(I) = min{r > 1 : Jr ⊆ I}.

Lemma 3.3. Let (R,m) be a Noetherian local ring of dimension n. Let I1, . . . , In be ideals

of R such that σ(I1, . . . , In) <∞ and let J be an m-primary ideal. Then

rJ(Is1 , . . . , I
s
n) 6 srJ(I1, . . . , In)

rJs(I1, . . . , In) >
1

s
rJ(I1, . . . , In)

for all integer s > 1.
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Proof. For the first inequality, set r = rJ(I1, . . . , In). Thus σ(I1, . . . , In) = e(I1 +Jr, . . . , In+

Jr). It is enough to prove that σ(Is1 , . . . , I
s
n) = e(Is1 + Jrs, . . . , Isn + Jrs):

e(Is1 + Jrs, . . . , Isn + Jrs) = e(Is1 + Jrs, . . . , Isn + Jrs) = e((I1 + Jr)s, . . . , (In + Jr)s)

= e((I1 + Jr)s, . . . , (In + Jr)s) = sne(I1 + Jr, . . . , In + Jr)

= snσ(I1, . . . , In) = σ(Is1 , . . . , I
s
n),

where last equality comes from [4, Lemma 2.6].

The second inequality comes directly from the definition of rJs(I1, . . . , In). �

It is easy to find examples of ideals I and J such that rJ(I1, . . . , In) 6= r(I1, . . . , In) in

general. This fact motivates the following definition.

Definition 3.4. Let (R,m) be a Noetherian local ring of dimension n. Let I1, . . . , In be

ideals of R such that σ(I1, . . . , In) < ∞. Let J be an m-primary ideal of R. We define the

 Lojasiewicz exponent of I1, . . . , In with respect to J , denoted by LJ(I1, . . . , In), as

(6) LJ(I1, . . . , In) = inf
s>1

rJ(Is1 , . . . , I
s
n)

s
.

If I is an m-primary ideal of R, then we denote by LJ(I) the number LJ(I, . . . , I), where I

is repeated n times.

Remark 3.5. Under the conditions of the previous definition, we observe that LJ(I1, . . . , In)

can be seen as a limit inferior:

LJ(I1, . . . , In) = lim inf
s→∞

rJ(Is1 , . . . , I
s
n)

s
.

Set ` = LJ(I1, . . . , In). In order to prove the equality above, it is enough to see that for all

ε > 0 and all p ∈ Z+, there exists an integer m > p such that

rJ(Im1 , . . . , I
m
n )

m
6 `+ ε.

Let us fix an ε > 0 and an integer p ∈ Z+. By definition, there exists q ∈ Z+ such that

rJ(Iq1 , . . . , I
q
n)

q
6 `+ ε.

Let s ∈ Z+ such that sq > p. Then, from Lemma 3.3 we obtain that

rJ(Isq1 , . . . , I
sq
n )

sq
6
rJ(Iq1 , . . . , I

q
n)

q
6 `+ ε.

If g : (Cn, 0) → (Cn, 0) denotes an analytic map germ such that g−1(0) = {0} and J is

an ideal of On of finite colength, then we denote the number LJ(I), where I is the ideal

generated by the component functions of g, by LJ(g). A straightforward reproduction of

the argument in the proof of Theorem 3.1 consisting of replacing the powers of the maximal

ideal by the powers of a given ideal of finite colength leads to the following result, which is

analogous to Theorem 3.1.
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Theorem 3.6. Let I1, . . . , In be monomial ideals of On such that σ(I1, . . . , In) is finite and

let J be a monomial ideal of On of finite colength. Then the sequence { rJ (Is1 ,...,I
s
n)

s
}s>1 attains

a minimum and if g ∈ S0(I1, . . . , In) then

(7) LJ(g) = LJ(I1, . . . , In) = min
s>1

rJ(Is1 , . . . , I
s
n)

s
.

Lemma 3.7. Under the hypothesis of Lemma 3.3 we have

LJ(Is1 , . . . , I
s
n) = sLJ(I1, . . . , In)

LJs(I1, . . . , In) =
1

s
LJ(I1, . . . , In)

for all s ∈ Z>1.

Proof. For the first equality

LJ(Is1 , . . . , I
s
n) = inf

p>1

rJ(Isp1 , . . . , I
sp
n )

p
= s inf

p>1

rJ(Isp1 , . . . , I
sp
n )

sp
> sLJ(I1, . . . , In).

On the other hand, by Lemma 3.3 we obtain

inf
p>1

rJ(Isp1 , . . . , I
sp
n )

p
6 s inf

p>1

rJ(Ip1 , . . . , I
p
n)

p
= sLJ(I1, . . . , In).

Let us see the second equality. Applying Lemma 3.3 we have

LJs(I1, . . . , In) = inf
p>1

rJs(I
p
1 , . . . , I

p
n)

p
>

1

s
inf
p>1

rJ(Ip1 , . . . , I
p
n)

p
=

1

s
LJ(I1, . . . , In).

Let us denote the number rJs(I
p
1 , . . . , I

p
n) by rp, for all p > 1. Then

σ(Ip1 , . . . , I
p
n) > e(Ip1 + Js(rp−1), . . . , Ipn + Js(rp−1)).

In particular

rJ(Ip1 , . . . , I
p
n) > s(rp − 1)

for all p > 1. Dividing the previous inequality by p and taking lim infp→∞ we obtain by

Remark 3.5, that

LJ(I1, . . . , In) = lim inf
p→∞

rJ(Ip1 , . . . , I
p
n)

p
> s lim inf

p→∞

(
rp − 1

p

)
= sLJs(I1, . . . , In).

�

Lemma 3.8. Let (R,m) be a quasi-unmixed Noetherian local ring of dimension n. Let

I1, . . . , In be ideals of R such that σ(I1, . . . , In) < ∞. If J1, J2 are m-primary ideals of R

then

LJ1(I1, . . . , In) 6 LJ1(J2)LJ2(I1, . . . , In).
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Proof. By (5) we have that

rJ1(J2) = min
{
r > 1 : e(J2) = e(J2 + Jr1 )

}
.

Given an integer r > 1, the condition e(J2) = e(J2 +Jr1 ) is equivalent to saying that Jr1 ⊆ J2,

by the Rees’ multiplicity theorem (see [8, p. 222]). Therefore, an elementary computation

shows that

(8) rJ1(I1, . . . , In) 6 rJ1(J2)rJ2(I1, . . . , In).

By the generality of the previous inequality, we have

(9) rJ1(I
s
1 , . . . , I

s
n) 6 rJ1(J

p
2 )rJp2 (Is1 , . . . , I

s
n)

for all integers p, s > 1. The inequality (9) shows that

LJ1(I1, . . . , In) = inf
s>1

rJ1(I
s
1 , . . . , I

s
n)

s
6 inf

s>1

rJ1(J
p
2 )rJp2 (Is1 , . . . , I

s
n)

s
=

= rJ1(J
p
2 )LJp2

(I1, . . . , In) = rJ1(J
p
2 )

1

p
LJ2(I1, . . . , In)

for all integer p > 1, where the last equality comes from Lemma 3.7. Then

LJ1(I1, . . . , In) 6

(
inf
p>1

rJ1(J
p
2 )

p

)
LJ2(I1, . . . , In) = LJ1(J2)LJ2(I1, . . . , In).

�

We recall the following two results, which will be applied in the next section.

Proposition 3.9. [4] Let (R,m) be a Noetherian local ring of dimension n. For each i =

1, . . . , n let us consider ideals Ii and Ji such that Ii ⊆ Ji. Let suppose that σ(I1, . . . , In) <∞
and that σ(I1, . . . , In) = σ(J1, . . . , Jn). Then

(10) L0(I1, . . . , In) 6 L0(J1, . . . , Jn).

Let us denote the canonical basis in Rn by e1, . . . , en.

Proposition 3.10. [2] Let J be an ideal of finite colength of On and set ri = min{r : rei ∈
Γ+(J)}, for all i = 1, . . . , n. Then

max{r1, . . . , rn} 6 L0(J)

and equality holds if J is a monomial ideal.

4. Weighted homogeneous filtrations

Let us fix a vector w = (w1, . . . , wn) ∈ Zn
>1. We will usually refer to w as the vector of

weights. Let h ∈ On, h 6= 0, the degree of h with respect to w, or w-degree of h, is defined as

dw(h) = min{〈k, w〉 : k ∈ supp(h)},

where 〈 , 〉 stands for the usual scalar product. In particular, if x1, . . . , xn denotes a system

of coordinates in Cn and xk11 · · ·xknn is a monomial in On, then dw(xk11 · · ·xknn ) = w1k1 +
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· · · + wnkn. By convention, we set dw(0) = +∞. If h ∈ On and h =
∑

k akx
k is the Taylor

expansion of h around the origin, then we define the principal part of h with respect to w as

the polynomial given by the sum of those terms akx
k such that 〈k, w〉 = dw(h). We denote

this polynomial by pw(h).

Definition 4.1. We say that a function h ∈ On is weighted homogeneous of degree d with

respect to w if 〈k, w〉 = d, for all k ∈ supp(h). The function h is said to be semi-weighted

homogeneous of degree d with respect to w when pw(h) has an isolated singularity at the

origin. Note that pw(h) is weighted homogeneous with respect to w.

It is well-known that, if h is a semi-weighted homogeneous function, then h has an isolated

singularity at the origin and that h and pw(h) have the same Milnor number (see for instance

[1, §12]). Let g = (g1, . . . , gn) : (Cn, 0) → (Cn, 0) be an analytic map germ, let us denote

the map (pw(g1), . . . , pw(gn)) by pw(g). The map g is said to be semi-weighted homogeneous

with respect to w when (pw(g))−1(0) = {0}.
If I is an ideal of On, then we define the degree of I with respect to w, or w-degree of I, as

dw(I) = min{dw(h) : h ∈ I}.

If g1, . . . , gr constitutes a generating system of I, then it is straightforward to see that

dw(I) = min{dw(g1), . . . , dw(gr)}.
Let r ∈ Z+, then we denote by Br the set of all h ∈ On such that dw(h) > r (therefore

0 ∈ Br). We observe that

(a) Br is an integrally closed monomial ideal of finite colength, for all r > 1;

(b) BrBs ⊆ Br+s, r, s > 1;

(c) B0 = On.

The family of ideals {Br}r>1 is called the weighted homogeneous filtration induced by w. We

denote by Ar the ideal of On generated by the monomials xk such that dw(xk) = r. If there

is not any monomial xk such that dw(xk) = r then we set Ar = 0. Given an integer r > 1, we

observe that Ar ⊆ Br and that Ar 6= Br in general. Moreover it follows easily that Ar = Br

if and only if Ar is an ideal of finite colength of On.

If r1, . . . , rn ∈ Z>1, then it is not true in general that σ(Ar1 , . . . ,Arn) < ∞, even if

Ari 6= 0, for all i = 1, . . . , n. However σ(Br1 , . . . ,Brn) <∞, since Bri has finite colength, for

all i = 1, . . . , n. For instance, let us consider the vector w = (3, 1). Then we have

A4 = 〈xy, y4〉, A5 = 〈xy2, y5〉.

We observe that the ideal A4 + A5 does not have finite colength, therefore σ(A4,A5) is not

finite (see Remark 2.3).

Proposition 4.2. Let r1, . . . , rn ∈ Z>1. If σ(Ar1 , . . . ,Arn) < ∞ then σ(Br1 , . . . ,Brn) < ∞
and

σ(Ar1 , . . . ,Arn) = σ(Br1 , . . . ,Brn) =
r1 · · · rn
w1 · · ·wn

.
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Proof. By Proposition 2.2, there exists a sufficiently general element (h1, . . . , hn) ∈ Br1 ⊕
· · · ⊕Brn such that

(11) σ(Br1 , . . . ,Brn) = e(h1, . . . , hn).

The condition σ(Ar1 , . . . ,Arn) < ∞ implies that Ari 6= 0, for all i = 1, . . . , n. The ideal

Ari is generated by the monomials of w-degree ri, for all i = 1, . . . , n, then hi can be written

as hi = gi + g′i, for all i = 1 . . . , n, where (g1, . . . , gn) is a sufficiently general element of

Ar1 ⊕ · · · ⊕ Arn and g′i ∈ On verifies that dw(g′i) > ri, for all i = 1, . . . , n. Therefore

pw(hi) = gi, for all i = 1, . . . , n.

Let g denote the map (g1, . . . , gn) : (Cn, 0)→ (Cn, 0). The condition σ(Ar1 , . . . ,Arn) <∞
and the genericity of g imply that g is finite, that is, g−1(0) = {0} and σ(Ar1 , . . . ,Arn) =

e(g1, . . . , gn). Consequently the map h : (Cn, 0) → (Cn, 0) is semi-weighted homogeneous

with respect to w. By [1, §12] (see also [7] for a more general phenomenon), this implies that

e(h1, . . . , hn) = e(g1, . . . , gn) =
r1 · · · rn
w1 · · ·wn

.

Then the result follows. �

Definition 4.3. Let J1, . . . , Jn be a family of ideals of On and let ri = dw(Ji), for all

i = 1, . . . , n. We say that J1, . . . , Jn admits a w-matching if there exists a permutation τ of

{1, . . . , n} and an index i0 ∈ {1, . . . , n} such that

(a) wi0 = min{w1, . . . , wn},
(b) rτ(i0) = max{r1, . . . , rn} and

(c) the pure monomial x
rτ(i)/wi
i belongs to Jτ(i), for all i 6= i0.

Remark 4.4. If r ∈ Z>1 then we observe that Ar has finite colength if and only if wi
divides r, for all i = 1, . . . , n. Let r1, . . . , rn ∈ Z>1 such that Ari has finite colength, for all

i = 1, . . . , n. Then condition (c) of the above definition is not a restriction in this case and

therefore Ar1 , . . . ,Arn admits a w-matching.

Let us consider the case n = 2 of the previous definition. Therefore, let r1, r2 ∈ Z>1 with

r1 > r2 and let us suppose that w1 < w2. Let J1, J2 be ideals of O2 such that dw(Ji) = ri,

i = 1, 2. Then J1, J2 admits a w-matching if and only if yr2/w2 ∈ J2.

Example 4.5. Set w = (1, 2, 3, 4) and r1 = 10, r2 = 9, r3 = 8, r4 = 6. The family of ideals

given by

J1 = 〈x1x
3
3〉, J2 = 〈x3

3, x1x
2
4〉, J3 = 〈x2

4, x
2
1x

2
3〉, J4 = 〈x3

2, x2x4〉,

admits a w-matching. Observe that here i0 = 1 and the permutation τ is defined by τ(1) = 1,

τ(2) = 4, τ(3) = 2, τ(4) = 3.

Let us observe that, if J1, . . . , Jn admits a w-matching, then it is always possible to reorder

the ideals Ji in such a way that τ(i0) = i0, and therefore one could restrict to the case τ = id

after a permutation of the ideals Ji. But the permutation τ is specially relevant when

considering ideals coming from the gradient of a function f (see Example 4.12).
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Lemma 4.6. Let r1, . . . , rn ∈ Z>1 and let I1, . . . , In be monomial ideals of On such that

dw(Ii) = ri, for all i = 1, . . . , n, and σ(I1, . . . , In) = r1···rn
w1···wn . Let J be an ideal of On such

that J = 〈xrα1
1 , . . . , xrαnn 〉, for some r > 1, where αi = w

wi
and w = w1 · · ·wn. Then

(12) e(I1 + J, . . . , In + J) =
min{r1, wr} · · ·min{rn, wr}

w
.

Proof. Let A = {i : ri < rw}. After a reordering of the integers r1, . . . , rn we can assume that

A = {1, . . . , s}, for some s > 1. Then, since J = Brw we conclude that e(I1 +J, . . . , In+J) =

e(I1 + J, . . . , Is + J, J, . . . , J).

By Proposition 2.2, there exist an element (g1, . . . , gn) ∈ I1⊕· · ·⊕In such that dw(gi) = ri,

for all i = 1, . . . , n, and

(13) e(g1, . . . , gn) = σ(I1, . . . , In) =
r1 · · · rn
w1 · · ·wn

.

Let us denote by R the quotient ring On/〈pw(g1), . . . , pw(gs)〉 and let H denote the ideal

of On generated by xrα1
1 , . . . , xrαnn .

Relation (13) implies, by [6, Theorem 3.3], that the ideal generated by pw(g1), . . . , pw(gn)

has finite colength. In particular, these elements form a regular sequence and then dim(R) =

n − s. Hence there exists a sufficiently general element (h1, . . . , hn−s) ∈ H ⊕ · · · ⊕ H

such that the images of the hi in R generate a reduction of the image of J in R, by

the theorem of existence of reductions (see [8, p. 166]). In particular, the ideal K =

〈pw(g1), . . . , pw(gs), h1, . . . , hn−s〉 has finite colength.

Since hi is a generic C-linear combination of xrα1
1 , . . . , xrαnn , for all i = 1, . . . , n, we have

that pw(hi) = hi, for all i = 1, . . . , n. Then K = 〈pw(g1), . . . , pw(gs), pw(h1), . . . , pw(hn−s)〉.
Therefore

(14) e(K) =
r1 · · · rs(wr)n−s

w1 · · ·wn
=

min{r1, wr} · · ·min{rn, wr}
w

,

where the first equality comes from [1, §12] (see also [6, Theorem 3.3]).

Since Ii is a monomial ideal, for all i = 1, . . . , n, we have that pw(gi) ∈ Ii, for all i =

1, . . . , n. In particular we have e(K) > e(I1 + J, . . . , In + J), by Lemma 2.4. Then

(15) e(K) > e(I1 +H, . . . , In +H) >
min{r1, wr} · · ·min{rn, wr}

w
,

where the second inequality follows from [6, Theorem 3.3].

The hypothesis J = H implies that

(16) e(I1 + J, . . . , In + J) = e(I1 +H, . . . , In +H).

Then the result follows by joining (14), (15) and (16). �

Theorem 4.7. Let r1, . . . , rn ∈ Z>1 such that σ(Ar1 , . . . ,Arn) <∞. Let J1, . . . , Jn be a set

of ideals of On with dw(Ji) = ri, for all i = 1, . . . , n, and σ(J1, . . . , Jn) = σ(Ar1 , . . . ,Arn).

Then

(17) L0(J1, . . . , Jn) 6 L0(Br1 , . . . ,Brn) 6
max{r1, . . . , rn}
min{w1, . . . , wn}
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and the above inequalities turn into equalities if J1, . . . , Jn admit a w-matching.

Proof. The condition σ(Ar1 , . . . ,Arn) <∞ and the equality σ(J1, . . . , Jn) = σ(Ar1 , . . . ,Arn)

imply that

σ(J1, . . . , Jn) = σ(Br1 , . . . ,Brn) =
r1 · · · rn
w1 · · ·wn

,

by Proposition 4.2. Then we can apply Proposition 3.9 to deduce that

L0(J1, . . . , Jn) 6 L0(Br1 , . . . ,Brn).

Let us denote max{r1, . . . , rn} and min{w1, . . . , wn} by p and q, respectively. Let us see that

L0(Br1 , . . . ,Brn) 6 p
q
.

Let us denote by w the product w1 · · ·wn and let us consider the ideal J = 〈xα1
1 , . . . , x

αn
n 〉,

where αi = w
wi

, for all i = 1, . . . , n. Since σ(Br1 , . . . ,Brn) < ∞, it makes sense to compute

the number rJ(Bs
r1
, . . . ,Bs

rn), for all s > 1:

rJ(Bs
r1
, . . . ,Bs

rn) = min
{
r > 1 : σ(Bs

r1
, . . . ,Bs

rn) = e(Bs
r1

+ Jr, . . . ,Bs
rn + Jr)

}
= min

{
r > 1 :

sr1 · · · srn
w

=
min{sr1, wr} · · ·min{srn, wr}

w

}
= min

{
r > 1 : wr > max{sr1, . . . , srn}

}
= min

{
r > 1 : r >

max{sr1, . . . , srn}
w

}
=

⌈
max{sr1, . . . , srn}

w

⌉
,

where dae denotes the least integer greater than or equal to a, for any a ∈ R, and the second

equality is a direct application of Lemma 4.6. Therefore

LJ(Br1 , . . . ,Brn) = inf
s>1

rJ(Bs
r1
, . . . ,Bs

rn)

s
6 inf

a>1

rJ(Baw
r1
, . . . ,Baw

rn )

aw

= inf
a>1

1

aw

⌈
max{awr1, . . . , awrn}

w

⌉
=

max{r1, . . . , rn}
w

.

Moreover, by Proposition 3.10 we have

L0(J) = max{α1, . . . , αn} =
w

min{w1, . . . , wn}
,

since J is a monomial ideal. Therefore, by Lemma 3.8 we obtain

L0(Br1 , . . . ,Brn) 6 L0(J)LJ(Br1 , . . . ,Brn)

6
w

min{w1, . . . , wn}
max{r1, . . . , rn}

w
=

max{r1, . . . , rn}
min{w1, . . . , wn}

.

Let us prove that L0(J1, . . . , Jn) > p
q

suposing that J1, . . . , Jn admit a w-matching. This

inequality holds if and only if

r(Js1 , . . . , J
s
n)

s
>
p

q
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for all s > 1. By Lemma 3.3 we have that qr(Js1 , . . . , J
s
n) > r(Jsq1 , . . . , J

sq
n ), for all s > 1.

Therefore it suffices to show that

(18) r(Jsq1 , . . . , J
sq
n ) > sp− 1,

for all s > 1. Let us fix an integer s > 1, then relation (18) is equivalent to saying that

(19) σ(Jsq1 , . . . , J
sq
n ) > e(Jsq1 +msp−1, . . . , Jsqn +msp−1).

Since J1, . . . , Jn admits a w-matching, let us consider a permutation τ of {1, . . . , n} such

that

(a) wi0 = min{w1, . . . , wn},
(b) rτ(i0) = max{r1, . . . , rn} and

(c) the pure monomial x
rτ(i)/wi
i belongs to Jτ(i) for all i 6= i0.

Let us define the ideal

H =

〈
x

rτ(i)sq

wi
i : i 6= i0

〉
+
〈
xsp−1
i0

〉
.

Then

e(H) = e
(
x

rτ(1)sq

w1
1 , . . . , x

rτ(i0−1)sq

wi0−1

i0−1 , xsp−1
i0

, x

rτ(i0+1)sq

wi0+1

i0+1 , . . . , x
rτ(n)sq

wn
n

)
= (sq)n−1 r1 · · · rn

rτ(i0)

wi0
w1 · · ·wn

(sp− 1).

Since x

rτ(i)
wi
i ∈ Jτ(i) for all i ∈ {1, . . . , n} \ {i0}, and xsp−1

i0
∈ msp−1, we can apply Lemma

2.4 to conclude that

(20) e(H) > e(Jsqτ(1) +msp−1, . . . , Jsqτ(n) +msp−1) = e(Jsq1 +msp−1, . . . , Jsqn +msp−1).

Hence, if we prove that σ(Jsq1 , . . . , J
sq
n ) > e(H) then the result follows.

By [4, Lemma 2.6], we have that σ(Jsq1 , . . . , J
sq
n ) = (sq)nσ(J1, . . . , Jn). Then, using the

hypothesis σ(J1, . . . , Jn) = σ(Ar1 , . . . ,Arn) and Proposition 4.2, we obtain that

(21) σ(Jsq1 , . . . , J
sq
n ) = (sq)n

r1 · · · rn
w1 · · ·wn

.

Thus, since we assume that rτ(i0) = p and wi0 = q, we have that σ(Jsq1 , . . . , J
sq
n ) > e(H) if

and only if

sq >
q

p
(sp− 1),

which is to say that spq > spq − q. Therefore relation (19) holds for all integer s > 1 and

consequently the inequality L0(Jr1 , . . . , Jrn) > p
q

follows. Thus relation (17) is proven. �

Remark 4.8. We observe that the condition that J1, . . . , Jn admits a w-matching can not

be removed from the hypothesis of the previous theorem. Let us consider now the weighted

homogeneous filtration in O2 induced by the vector of weights w = (1, 4) and let J1, J2 be

the ideals of O2 given by J1 = 〈x4〉, J2 = 〈y2〉. We observe that dw(x4) = 4, dw(y2) = 8 and

consequently the right hand side of (17) would lead to the conclusion that L0(J1, J2) = 8,
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which is not the case, since clearly L0(x
4, y2) = 4. We also observe that the system of ideals

J1, J2 does not admit a w-matching.

In order to simplify the exposition, we need to introduce the following definition.

Definition 4.9. If f ∈ On, f(0) = 0, then f is termed convenient when Γ+(f) intersects

each coordinate axis. Let Ji denote the ideal of On generated by all monomials xk such

that k ∈ Γ+(∂f/∂xi), i = 1, . . . , n. Let us fix a vector of weights w ∈ Zn
>1. Then we say

that f admits a w-matching when the family of ideals J1, . . . , Jn admits a w-matching (see

Definition 4.3).

If a function f ∈ On is convenient and quasi-homogeneous, then f admits a w-matching.

Observe that in this case the monomials x
d/wi
i are in the support of f , for i = 1, . . . , n. Then

there is a pure monomial in xi belonging to the support of the partial derivative ∂f/∂xi and

one could take τ = id in the definition of w-matching (see Definition 4.3).

Let us fix a vector of weights w = (w1, . . . , wn) ∈ Zn
>1 and an integer d > 1. Then we

denote by O(w; d) the set of all functions f ∈ On such that f is semi-weighted homogeneous

with respect to w of degree d.

Remark 4.10. From Definition 4.3 we observe that a function f ∈ O(w; d) admits a w-

matching if and only if pw(f) admits a w-matching, since the ideals Ji introduced in Definition

4.9 have the same w-degree as the analogous ideals defined for pw(f).

Corollary 4.11. Let f : (Cn, 0)→ (C, 0) be a semi-weighted homogeneous function of degree

d with respect to the weights w1, . . . , wn. Then

(22) L0(∇f) 6
d−min{w1, . . . , wn}

min{w1, . . . , wn}
and equality holds if f admits a w-matching.

Proof. Let Ji denote the ideal ofOn generated by all monomials xk such that k ∈ Γ+(∂f/∂xi),

i = 1, . . . , n. Since f has an isolated singularity at the origin (that is, the ideal J(f) has

finite colength) then σ(J1, . . . , Jn) <∞, by Proposition 2.2. Then Theorem 3.1 shows that

L0(∇f) = L0(J1, . . . , Jn). We observe that dw(Ji) = d − wi, for all i = 1, . . . , n. Then the

result arises as a direct application of Theorem 4.7. �

It has been proven recently by P loski et al. [9] that equality holds in (22) for all weighted

homogeneous functions f : (C3, 0) → (C, 0) such that f has an isolated singularity at the

origin, under the hypothesis that 2wi 6 d for all i.

The result of Corollary 4.11 holds for any number of variables.

Example 4.12. Let us consider the vector of weights w = (1, 2, 3, 5) and the polynomial

f : (C4, 0)→ (C, 0) given by f(x1, x2, x3, x4) = x9
3 − x11

2 x4 + x2x
5
4 + x27

1 . Then f is weighted

homogenous with w-degree 27 and f has an isolated singularity at the origin. The ideals Ji
introduced in Definition 4.9 are given by

J1 = 〈x26
1 〉 J2 = 〈x10

2 x4, x
5
4〉 J3 = 〈x8

3〉 J4 = 〈x11
2 , x2x

4
4〉.
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Then we observe that the polynomial f admits w-matching. Here the permutation τ of

Definition 4.3 is τ(1) = 1, τ(2) = 4, τ(3) = 3, τ(4) = 2. Then it follows from Corollary 4.11

that L0(∇f) = 26.

Given a vector of weights w = (w1, . . . , wn) and a degree d, then it is not always possible

to find a weighted homogeneous function f : (Cn, 0)→ (C, 0) of degree d with respect to w

such that f admits a w-matching, as the following example shows.

Example 4.13. Let w = (1, 2, 3) and d = 16. Let f be a weighted homogeneous function

of degree d with respect to w. Let Ji denote the ideal of O3 generated by all monomials xk

such that k ∈ Γ+(∂f/∂xi), for all i = 1, 2, 3. As a direct consequence of Definition 4.3, if

J1, J2, J3 admits a w-matching, then J3 contains a pure monomial of x2 or a pure monomial

of x3, which is impossible since dw(J3) = 13 and neither 2 nor 3 are divisors of 13.

However we observe that O(w; d) 6= ∅, since the function f(x1, x2, x3) = x16
1 + x8

2 + x1x
5
3

belongs to O(w; d).

Proposition 4.14. Let d, w1, . . . , wn be non-negative integers such that wi divides d for

all i = 1, . . . , n. Let f : (Cn, 0) → (C, 0) be a weighted homogeneous function of degree

d with respect to the weights w1, . . . , wn. Let us assume that f has an isolated singularity

at the origin. Then there exists a change of coordinates x in (Cn, 0) of the form xi =

yi + hi(y1, . . . , yn), where hi is a polynomial in y1, . . . , yn, i = 1, . . . , n, such that:

(1) the function f ◦ x is convenient;

(2) if hi 6= 0, then the polynomial hi is weighted homogeneous of degree wi with respect

to w and therefore f ◦ x is weighted homogeneous of degree d with respect to w.

Proof. Since f has an isolated singularity at the origin, for any i = 1, . . . , n we can fix an

index ki ∈ {1, . . . , n} such that xmii appears in the support of ∂f
∂xki

, where mi =
d−wki
wi

, which

is to say that the monomial xkix
mi
i appears in the support of f . Then wi divides d−wki and

consequently wi divides wki , since wi divides d by assumption.

For all j = 1, . . . , n, we set Lj = {i : ki = j, i 6= j}. Let us define

(23) hj =

{∑
i∈Lj aj,iy

wj/wi
i if Lj 6= ∅

0 otherwise,

where we suppose that {aj,i}j,i is a generic choice of coefficients in C. It is straightforward

to see that, given an index j ∈ {1, . . . , n} such that hj 6= 0, the polynomial hj is weighted

homogeneous of degree wj.

Let us consider the map x : (Cn, 0)→ (Cn, 0), x(y1, . . . , yn) = (x1, . . . , xn), given by

xj = yj + hj(y) for all j = 1, . . . , n.

We conclude that x is a local biholomorphism, the function f ◦x is weighted homogeneous

with respect to w of degree d and, by the genericity of the coefficients aj,i in (23), the pure

monomial y
d/wi
i appears in the support of f ◦x, for all i = 1, . . . , n. Hence the function f ◦x

is convenient. �



16 C. BIVIÀ-AUSINA AND S. ENCINAS

Example 4.15. Set w = (1, 2, 3, 4, 6) and d = 12. The polynomial f = x12
1 + x4

2x4 + x3
4 +

x2
3x5 + x2

5 is weighted homogeneous of degree 12. Let Ji denote the ideal of O5 generated by

all monomials xk such that k ∈ Γ+(∂f/∂xi), i = 1, . . . , 5. A straightforward computation

shows that

J1 = 〈x11
1 〉, J2 = 〈x3

2x4〉, J3 = 〈x3x5〉, J4 = 〈x4
2, x

2
4〉, J5 = 〈x2

3, x5〉.

Since the ideals J2 and J3 do not contain any pure monomial, the family of ideals {Ji : i =

1, . . . , 5} does not admit a w-matching.

Following the proof of Proposition 4.14, we consider the coordinate change x : (C5, 0) →
(C5, 0), given by: x1 = y1, x2 = y2, x3 = y3, x4 = y4 + y2

2, x5 = y5 + y2
3. Let g = f ◦ x

and let J ′i denote the ideal of O5 generated by all monomials yk such that k ∈ Γ+(∂g/∂yi),

i = 1, . . . , 5. Then, as shown in that proof, the function g is convenient and therefore the

family of ideals {J ′i : i = 1, . . . , 5} admits a w-matching.

Corollary 4.16. Let d, w1, . . . , wn be non-negative integers such that wi divides d for all

i = 1, . . . , n. Let f : (Cn, 0) → (C, 0) be a semi-weighted homogeneous function of degree d

with respect to the weights w1, . . . , wn. Then

L0(∇f) =
d−min{w1, . . . , wn}

min{w1, . . . , wn}

Proof. Since f is semi-weighted homogeneous, the principal part pw(f) has an isolated singu-

larity at the origin. Let x : (Cn, 0)→ (Cn, 0) denote the analytic coordinate change obtained

in Proposition 4.14 applied to pw(f). The function pw(f) ◦ x is weighted homogeneous of

degree d with respect to w. Therefore

pw(f) ◦ x = pw(f ◦ x),

which implies that f ◦ x is a semi-weighted homogeneous function. Then, by Proposition

4.14 and Remark 4.10, the function f ◦x admits a w-matching. Thus we obtain, by Corollary

4.11, that

L0(∇(f ◦ x)) =
d−min{w1, . . . , wn}

min{w1, . . . wn}
Then the result follows, since the local  Lojasiewicz exponent is a bianalytic invariant. �

We remark that in Corollary 4.16 we do not assume 2wi 6 d as in [9]. This assumption

can not be eliminated from the main result of [9], as the following example shows. The result

in 4.16 holds for any number of variables, but the assumptions are also restrictive, since we

are assuming that the weights wi divide d.

Example 4.17. Let us consider the polynomial f of O3 given by f = x1x3 + x2
2 + x2

1x2. We

observe that f is weighted homogeneous of degree 4 with respect to the vector of weights

w = (1, 2, 3). The Jacobian ideal is 〈x1, x2, x3〉 so that L0(∇f) = 1 6= 3. We remark that it

is easy to check that f does not admit a w-matching.
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3 (1967), 54–65.
[14] Rees, D. Valuations associated with a local ring II, J. London Math. Soc. 31 (1956), 228–235.
[15] Rees, D. Generalizations of reductions and mixed multiplicities, J. London Math. Soc. (2) 29 (1984),

397–414.
[16] Saeki, O. Topological invariance of weights for weighted homogeneous isolated singularities in C3, Proc.

Amer. Math. Soc. 103, No. 3 (1988), 905–909.
[17] Samuel, P. Some asymptotic properties of powers of ideals, Ann. of Math. 56, no. 1 (1952), 11–21.
[18] Swanson, I. Multigraded Hilbert functions and mixed multiplicities. Syzygies and Hilbert functions,

267–280, Lect. Notes Pure Appl. Math., 254, Chapman & Hall/CRC, Boca Raton, FL, 2007.
[19] Teissier, B. Variétés polaires I. Invariants polaires des singularités d’hypersurfaces, Invent. Math. 40,

No. 3 (1977), 267–292.
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Caḿı de Vera, s/n, 46022 València, Spain
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