
Evaluation of a content download service 
based on flute and LDPC for improving the 

quality of experience over multicast wireless 
networks 

ISMAEL DE FEZ LAVA 





 

 
 
 
 

UNIVERSITAT POLITÈCNICA DE VALÈNCIA 
DEPARTAMENTO DE COMUNICACIONES 

 

                                    

 
 

EVALUATION OF A CONTENT DOWNLOAD SERVICE BASED 
ON FLUTE AND LDPC FOR IMPROVING THE QUALITY OF 
EXPERIENCE OVER MULTICAST WIRELESS NETWORKS 

 

 

DOCTORAL THESIS 

Ismael de Fez Lava 
 

Supervisor:  
Dr. Juan Carlos Guerri Cebollada 

 
 

Valencia, Spain 
December 2013 

 

 



 
 
Collection doctoral thesis 
 
 
© Ismael De Fez Lava 
 

© 2014, of the present edition: Editorial Universitat Politècnica de València 
   Telf.: 963 877 012   /   www.lalibreria.upv.es  
 
 
ISBN: 978-84-9048-225-4 (CD version) 
 
 
Any unauthorized copying, distribution, marketing, editing, and in general any other 
exploitation, for whatever reason, of this piece of work or any part thereof, is strictly 
prohibited without the authors’ expressed and written permission. 
 



 

i 

Abstract 

This thesis dissertation studies file distribution in wireless networks, analyzing different 
mechanisms that allow to optimize the transmission in terms of bandwidth and Quality 
of Experience. Specifically, the thesis focuses on file transmission in multicast 
channels. Multicast file transmission results appropriate in certain environments and has 
several applications, some of them are presented in this work. 

The thesis analyzes in depth FLUTE (File Delivery over Unidirectional Transport), a 
protocol for the reliable delivery of files in unidirectional channels, and presents some 
proposals to improve the transmission through FLUTE. In this sense, one of the basis of 
this protocol is the use of a mechanism called File Delivery Table (FDT), used to 
describe the files transmitted. This dissertation assesses how the transmission of the 
FDT affects the performance of the FLUTE protocol, and provides a methodology to 
optimize the content delivery. 

On the other hand, in multicast file transmission services reliability is an essential 
premise. Among the mechanisms used by FLUTE to provide reliability, this work 
mainly focuses on AL-FEC (Application Layer – Forward Error Correction) codes, 
which add redundancy to the transmission in order to minimize the effect of the channel 
losses. Specifically, LDPC (Low Density Parity Check) codes are studied. The thesis 
evaluates LDPC Staircase and LDPC Triangle codes, comparing their performance 
under several transmission conditions.  

Furthermore, in the case of having a feedback channel, one of the main contributions of 
this thesis is the proposal of adaptive LDPC codes for file download services. In these 
codes, the content server changes dynamically the amount of FEC protection provided 
depending on the losses detected by the users. The evaluation proves the good 
performance of these codes for different environments. 
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Resumen 

Esta tesis estudia la distribución de ficheros en redes inalámbricas, analizando 
diferentes mecanismos que permiten optimizar la transmisión en términos de ancho de 
banda y calidad de experiencia. Concretamente, la tesis se centra en la transmisión de 
ficheros en canales multicast. Dicha transmisión resulta adecuada en ciertos entornos y 
tiene múltiples aplicaciones, algunas de las cuales se presentan en este trabajo. 

La tesis analiza en profundidad FLUTE (File Delivery over Unidirectional Transport), 
un protocolo para el envío fiable de ficheros en canales unidireccionales, y presenta 
algunas propuestas para mejorar la transmisión a través de dicho protocolo. En este 
sentido, una de las bases de este protocolo es el uso de un mecanismo llamado Tabla de 
Envío de Ficheros (FDT), que se utiliza para describir los contenidos transmitidos. Este 
trabajo analiza cómo la transmisión de la FDT afecta al funcionamiento del protocolo 
FLUTE, y proporciona una metodología para optimizar el envío de contenido mediante 
FLUTE.  

Por otro lado, en la transmisión de ficheros por multicast resulta esencial ofrecer un 
servicio fiable. Entre los distintos mecanismos utilizados por FLUTE para ofrecer 
fiabilidad, este trabajo analiza principalmente los códigos de corrección AL-FEC 
(Application Layer – Forward Error Correction), los cuales añaden redundancia a la 
transmisión para minimizar los efectos de las pérdidas en el canal. Al respecto, esta 
tesis evalúa los códigos LDPC Staircase y LDPC Triangle, comparando su 
funcionamiento bajo diferentes condiciones de transmisión. 

Además, en el caso de tener un canal de retorno, una de las principales contribuciones 
de esta tesis es la propuesta de códigos LDPC adaptativos para servicios de descarga de 
ficheros. En esta clase de códigos, el servidor de contenidos cambia dinámicamente la 
cantidad de protección FEC proporcionada en función de las pérdidas que detectan los 
usuarios. La evaluación demuestra el buen funcionamiento de estos códigos en distintos 
entornos. 
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Resum 

Esta tesi estudia la distribució de fitxers en xarxes sense fil, analitzant diferents 
mecanismes que permeten optimitzar la transmissió en termes d’amplada de banda i 
qualitat d’experiència. Concretament, la tesi se centra en la transmissió de fitxers en 
canals multicast. La transmissió multicast resulta adequada en certs entorns i té 
múltiples aplicacions, algunes de les quals es presenten en este treball.  

La tesi analitza en profunditat FLUTE (File Delivery over Unidirectional Transport), un 
protocol per a l’enviament fiable de fitxers en canals unidireccionals, i presenta algunes 
propostes per a millorar la transmissió a través de FLUTE. En este sentit, una de les 
bases d’este protocol és l’ús d’un mecanisme anomenat Taula d’Enviament de Fitxers 
(FDT), que s’utilitza per a descriure els continguts transmesos. Este treball analitza com 
la transmissió de la FDT afecta el funcionament del protocol FLUTE, i proporciona una 
metodologia per a optimitzar l’enviament de contingut mitjançant FLUTE.  

D’altra banda, en la transmissió de fitxers per multicast resulta essencial oferir un 
servici fiable. Entre el distints mecanismes utilitzats per FLUTE per a oferir fiabilitat, 
este treball analitza principalment els codis de correcció AL-FEC (Application Layer – 
Forward Error Correction), els quals afegeixen redundància a la transmissió amb 
l’objectiu de minimitzar els efectes de les pèrdues en el canal.  En este sentit, esta tesis 
avalua els codis LDPC Staircase and LDPC Triangle, comparant el seu funcionament 
davall diferents condicions de transmissió.  

A més, en el cas de tindre un canal de retorn, una de les principals contribucions d’esta 
tesi és la proposta de codis LDPC adaptatius per a servicis de descàrrega de fitxers. En 
esta classe de codis, el servidor de continguts canvia dinàmicament la quantitat de 
protecció FEC proporcionada en funció de les pèrdues que detecten els usuaris. 
L’avaluació demostra el bon funcionament d’estos codis per a distints entorns. 

 

 

 





 

vii 

Agradecimientos 

Quisiera aprovechar este espacio para expresar mi gratitud a la gente que ha hecho 
posible que esté escribiendo estas líneas. 

En primer lugar, quisiera dar las gracias a Juan Carlos Guerri, director de esta tesis, por 
guiarme durante esta andadura. Gracias también a todos los compañeros del Grupo de 
Comunicaciones Multimedia que me han acompañado durante todos estos años. 
Especialmente me gustaría dar las gracias a Francisco Fraile, Román Belda y Pau Arce, 
por toda la ayuda, por todo lo que he aprendido con ellos y por los buenos momentos 
vividos desde que llegué al grupo. Mil gracias. Sin vosotros, este camino hubiera sido 
intransitable.  

Gracias a todos mis amigos. En especial tengo que nombrar a Francisco, María, Sandra 
y Miriam, que están conmigo desde hace muchos años. 

Gracias a mi familia, a los que están y ya no están entre nosotros. Gracias a Vicente, 
que forma parte de ella desde hace años. Gracias a Javi, a Dani y al que viene en 
camino, por toda la alegría y ganas de vivir que transmiten. Gracias a mi hermana 
Patricia, por todos los momentos que hemos compartido. No he podido tener mejor 
espejo en el que mirarme.  

Y por último, gracias a mis padres, por tantas y tantas cosas. Porque estos años de 
esfuerzo que han supuesto esta tesis no son nada comparados con todos los años de 
esfuerzo por su parte para darnos a mi hermana y a mí lo mejor. Estoy orgulloso de 
vosotros. Os quiero. Esta tesis va por vosotros.  

 

 

 





 

ix 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is just the beginning... 

 

 

 

 

 

 

 

 

 





 

xi 

Contents 

1 Introduction ....................................................................................................................... 1 
1.1. Scope ........................................................................................................................... 1 
1.2. Objectives and contributions ....................................................................................... 4 
1.3. Structure of the thesis .................................................................................................. 5 

2 State of the art and use cases ............................................................................................ 7 
2.1. Introduction ................................................................................................................. 7 
2.2. FLUTE ........................................................................................................................ 8 

2.2.1. Characteristics and architecture ........................................................................... 8 
2.2.2. FDT ...................................................................................................................... 9 
2.2.3. FLUTE transmission .......................................................................................... 11 
2.2.4. FLUTE packet format ........................................................................................ 13 
2.2.5. FEC codes .......................................................................................................... 16 

2.3. LDPC (Staircase and Triangle) ................................................................................. 18 
2.3.1. Introduction ........................................................................................................ 18 
2.3.2. RFC 5170 specifications .................................................................................... 20 

2.4. Related work ............................................................................................................. 21 
2.5. Implementation ......................................................................................................... 23 

2.5.1. Introduction ........................................................................................................ 23 
2.5.2. FLUTE server .................................................................................................... 24 
2.5.3. FLUTE client ..................................................................................................... 25 

2.6. Use cases ................................................................................................................... 26 
2.6.1. Introduction ........................................................................................................ 26 
2.6.2. Personalization ................................................................................................... 27 
2.6.3. Shopping center .................................................................................................. 29 
2.6.4. Touristic services ............................................................................................... 32 
2.6.5. Background push content download services .................................................... 33 
2.6.6. Hybrid FLUTE/DASH for video delivery .......................................................... 35 



 

 

xii 

2.7. Conclusions ............................................................................................................... 38 

3 Evaluation of LDPC Staircase and LDPC Triangle codes .......................................... 39 
3.1. Introduction ............................................................................................................... 40 
3.2. Evaluation methodology ........................................................................................... 40 
3.3. Results and analysis .................................................................................................. 42 

3.3.1. Number of rebuilding cycles and download time .............................................. 42 
3.3.2. Transmission model ........................................................................................... 43 
3.3.3. Code rate ............................................................................................................ 44 
3.3.4. File size .............................................................................................................. 46 
3.3.5. Number of blocks .............................................................................................. 48 
3.3.6. Number of 1s in the parity check matrix............................................................ 50 

3.4. Conclusions ............................................................................................................... 52 

4 Adaptive LDPC AL-FEC codes ..................................................................................... 53 
4.1. Introduction ............................................................................................................... 53 
4.2. System overview ....................................................................................................... 54 
4.3. Theoretical analysis .................................................................................................. 55 

4.3.1. Analysis of carousel retransmissions ................................................................. 55 
4.3.2. Markov model channel ...................................................................................... 57 
4.3.3. Analysis of adaptive LDPC ............................................................................... 59 

4.4. Evaluation methodology ........................................................................................... 61 
4.4.1. Evaluation parameters........................................................................................ 62 
4.4.2. Experimental scenario........................................................................................ 62 

4.5. Results and analysis .................................................................................................. 64 
4.5.1. Optimum codes and code rates .......................................................................... 64 
4.5.2. Evaluation of adaptive LDPC ............................................................................ 66 

4.6. Conclusions ............................................................................................................... 70 

5 Adaptive codes for limited bandwidth channels........................................................... 73 
5.1. Introduction ............................................................................................................... 73 
5.2. System overview ....................................................................................................... 74 
5.3. Evaluation methodology ........................................................................................... 77 

5.3.1. Calculation of the download time ...................................................................... 77 
5.3.2. Evaluation parameters........................................................................................ 80 

5.4. Results and analysis .................................................................................................. 82 



 

 

xiii 

5.4.1. Analysis of the code rate .................................................................................... 82 
5.4.2. Losses model ...................................................................................................... 84 
5.4.3. Adaptive code rate ............................................................................................. 87 
5.4.4. Multiple losses regions ....................................................................................... 93 
5.4.5. Evaluation of the smoothing .............................................................................. 96 
5.4.6. Delivery frequency of the feedback messages ................................................... 98 
5.4.7. Evaluation of the hysteresis ............................................................................... 99 
5.4.8. Server algorithm ............................................................................................... 100 

5.5. Conclusions ............................................................................................................. 101 

6 Analysis and evaluation of the File Delivery Table .................................................... 103 
6.1. Introduction ............................................................................................................. 103 
6.2. Theoretical analysis ................................................................................................. 104 

6.2.1. Introduction ...................................................................................................... 104 
6.2.2. General case ..................................................................................................... 106 
6.2.3. Partial FDT ....................................................................................................... 112 
6.2.4. Interleaving ...................................................................................................... 113 
6.2.5. Multiple download ........................................................................................... 114 
6.2.6. Prefetching ....................................................................................................... 114 

6.3. Evaluation methodology ......................................................................................... 115 
6.4. Results and analysis ................................................................................................ 116 

6.4.1. General case ..................................................................................................... 116 
6.4.2. Interleaving ...................................................................................................... 123 
6.4.3. Prefetching ....................................................................................................... 124 

6.5. Conclusions ............................................................................................................. 125 

References ......................................................................................................................... 127 

Appendix A. List of Publications .................................................................................... 135 

Appendix B. List of Projects ........................................................................................... 139 

 

 





 

xv 

List of Tables 

Table 3.1. Study parameters ....................................................................................... 42 
Table 4.1. Optimum coding parameters. IANA AL-FEC codes identifiers: (0) 

Compact No-Code, (3) LDPC Staircase, (4) LDPC Triangle .................... 65 
Table 5.1.  Download time (in milliseconds) for different code rates and percentage of 

losses .......................................................................................................... 83 
Table 5.2.  Download time (in milliseconds) for different code rates and losses regions 

and bandwidth increase .............................................................................. 83 
Table 6.1. Key notation............................................................................................. 105 
Table 6.2. Total download time percentage referred to the case of sending m = N FDT 

Instances per carousel cycle for files of constant size of ni = 1000 packets 
with No-FEC ............................................................................................ 119 

Table 6.3. Total download time percentage referred to the case of sending m = N FDT 
Instances per carousel cycle for files of constant size of ni = 1000 packets 
with AL-FEC ........................................................................................... 120 

Table 6.4.  Relation between the total download time obtained with interleaving 
regarding the total download time obtained with sequential scheduling. N = 
100 files and constant file size of ni = 1000 packets ................................ 124 

 

 

 

 

 





 

xvii 

List of Figures 

Fig. 2.1. FLUTE protocol stack ................................................................................. 9 
Fig. 2.2. Example of an FDT.................................................................................... 10 
Fig. 2.3. File delivery using the FLUTE protocol .................................................... 12 
Fig. 2.4. FLUTE packet construction ....................................................................... 12 
Fig. 2.5. FLUTE packet format for data packets ...................................................... 14 
Fig. 2.6. FLUTE packet format for FDT Instances .................................................. 14 
Fig. 2.7. Default LCT header format ........................................................................ 14 
Fig. 2.8. EXT_FDT format ...................................................................................... 16 
Fig. 2.9. FEC Payload ID encoding format for LDPC Staircase and Triangle ......... 16 
Fig. 2.10. Example of an LDPC parity check matrix (k = 6, n = 11) ......................... 19 
Fig. 2.11. Example of LDPC Staircase and LDPC Triangle matrix (k = 6, n = 11) ... 20 
Fig. 2.12. EXT_FTI Header for LDPC Staircase and Triangle .................................. 20 
Fig. 2.13. Protocol stack of DVB-H and MBMS ....................................................... 22 
Fig. 2.14. File transmission server structure .............................................................. 24 
Fig. 2.15. File client structure .................................................................................... 25 
Fig. 2.16. Packet reception flow chart ........................................................................ 26 
Fig. 2.17. Example of an FDT with metadata ............................................................ 29 
Fig. 2.18. Example of an FDT with the proposed metadata structure ........................ 29 
Fig. 2.19. Block diagram of the file distribution system [P.7] ................................... 30 
Fig. 2.20. Diagram of the touristic service [P.3] ........................................................ 33 
Fig. 2.21. Unidirectional background push CDS architecture [J.2] ........................... 34 
Fig. 2.22. Hybrid FLUTE/DASH video delivery architecture [J.3] ........................... 36 
Fig. 3.1. Testbed ....................................................................................................... 40 
Fig. 3.2. Evaluation of losses in Wi-Fi in laboratory environment .......................... 41 
Fig. 3.3. Number of cycles depending on coding ..................................................... 42 
Fig. 3.4. Download time depending on coding ........................................................ 43 
Fig. 3.5. Transmission model evaluation (inefficiency ratio) .................................. 44 
Fig. 3.6. Download time depending on coding (random model) .............................. 44 
Fig. 3.7. Code rate evaluation in a lossless channel (inefficiency ratio) .................. 45 
Fig. 3.8. Code rate evaluation in a loss channel (inefficiency ratio), p=0.1, q=0.3 .. 45 
Fig. 3.9. Code rate evaluation in a loss channel (download time), p=0.1, q=0.3 ..... 46 
Fig. 3.10. Code rate evaluation with a mobile device in Wi-Fi environment............. 46 
Fig. 3.11. Comparison between No-FEC and LDPC depending on file size in a Wi-Fi 

channel ....................................................................................................... 47 



 

 

xviii 

Fig. 3.12. File size evaluation in a lossless channel (inefficiency ratio) .................... 47 
Fig. 3.13. File size evaluation with a mobile device in a Wi-Fi channel (inefficiency 

ratio) .......................................................................................................... 48 
Fig. 3.14. File size evaluation in a lossless channel (download time) ....................... 48 
Fig. 3.15. Number of blocks evaluation in a lossless channel (inefficiency ratio) .... 49 
Fig. 3.16. Number of blocks evaluation with a mobile in a Wi-Fi channel 

(inefficiency ratio) ..................................................................................... 49 
Fig. 3.17. Number of blocks evaluation with a mobile in a lossless channel 

(download time) ........................................................................................ 50 
Fig. 3.18. N1 evaluation in a lossless channel (inefficiency ratio)............................. 50 
Fig. 3.19. N1 evaluation with a mobile device in a wireless channel (inefficiency 

ratio) .......................................................................................................... 51 
Fig. 3.20. N1 evaluation with a mobile device in a lossless channel (download time)

 ................................................................................................................... 51 
Fig. 4.1. System overview for adaptive AL-FEC codes .......................................... 55 
Fig. 4.2. State transition diagram for an example simplified Gilbert model ............ 57 
Fig. 4.3. State transition diagram for the Markov model in the transmission of n 

packets ....................................................................................................... 58 
Fig. 4.4. Download time evaluation with LDPC Staircase codes with 3000-packet 

file size, 1 block and b = 5 Mb/s................................................................ 65 
Fig. 4.5. Comparison between adaptive LDPC and Compact No-Code with 3000-

packet file size, 1 block, b = 5 Mb/s and t_fd = 3 s ................................... 66 
Fig. 4.6. Comparison between analytical and experimental results in a file size 

evaluation with 1 block, b = 5 Mb/s and t_fd = 3 s ................................... 67 
Fig. 4.7. File size evaluation with 1 block, b = 5 Mb/s and t_fd = 3 s ..................... 68 
Fig. 4.8. Feedback time evaluation with 3000-packet file size, 1 block and b = 5 

Mb/s ........................................................................................................... 68 
Fig. 4.9. Download time ratio with rateless codes with 3000-packet file size, 1 block 

and b = 5 Mb/s ........................................................................................... 69 
Fig. 4.10.  Transmission rate evaluation with 3000-packet file size, 1 block and t_fd = 

3 s .............................................................................................................. 69 
Fig. 4.11.  Number of blocks evaluation with 3000-packet file size, b = 5 Mb/s and 

t_fd = 3 s .................................................................................................... 70 
Fig. 5.1. System overview ....................................................................................... 75 
Fig. 5.2. Losses region classification ....................................................................... 76 
Fig. 5.3. Example of a carousel transmission .......................................................... 78 
Fig. 5.4. Losses perceived depending on the distance to the server for a transmission 

rate of 5.5 Mb/s ......................................................................................... 81 
Fig. 5.5. Download time comparison between CR = 0.7 and CR = 0.9 ................... 84 
Fig. 5.6. Losses distribution for scenario 1 .............................................................. 85 
Fig. 5.7. Distance to the server for scenario 1.......................................................... 85 
Fig. 5.8. Losses distribution for scenario 2 .............................................................. 86 
Fig. 5.9. Losses distribution for scenario 3 .............................................................. 86 
Fig. 5.10. Losses distribution for scenario 4 .............................................................. 87 



 

 

xix 

Fig. 5.11. Losses distribution for scenario 5 .............................................................. 87 
Fig. 5.12. Download time evaluation in scenario 1 for Nh = 1/6, Nm = 1/3 ................ 88 
Fig. 5.13. Download time evaluation in scenario 2 for Nh = 1/6, Nm = 1/3 ................ 89 
Fig. 5.14. Download time evaluation in scenario 3 for Nh = 1/6, Nm = 1/3 ................ 89 
Fig. 5.15. Bandwidth increase in different scenarios ................................................. 90 
Fig. 5.16. Download time evaluation in scenario 1 for Nh = 1/3, Nm = 2/3 ................ 91 
Fig. 5.17. Download time evaluation in scenario 2 for Nh = 1/3, Nm = 2/3 ................ 91 
Fig. 5.18. Download time evaluation in scenario 3 for Nh = 1/3, Nm = 2/3 ................ 91 
Fig. 5.19. Evaluation of the number of cycles to complete the download in scenario  

2 ................................................................................................................. 93 
Fig. 5.20. Number of changes of losses regions in scenario 1 ................................... 94 
Fig. 5.21. Download time in scenario 1 ..................................................................... 95 
Fig. 5.22. Number of changes of losses regions in scenario 3 ................................... 95 
Fig. 5.23. Download time in scenario 3 ..................................................................... 96 
Fig. 5.24. Average losses distribution and smooth effect in scenario 4 ..................... 96 
Fig. 5.25. Download time evaluation for different values of α in scenario 4 for Nh = 

1/6, Nm = 1/3 .............................................................................................. 97 
Fig. 5.26. Number of state changes and average download time depending on the 

threshold interval in scenario 5 for Nh = 1/3, Nm = 2/3 .............................. 99 
Fig. 6.1. Example of a carousel transmission ......................................................... 106 
Fig. 6.2. Total download time evaluation for N = 100 files and constant file size of 

ni = 1000 packets, with No-FEC .............................................................. 116 
Fig. 6.3. Total download time evaluation for N = 100 files and constant file size of 

ni = 1000 packets for different values of code rate .................................. 117 
Fig. 6.4. Total download time evaluation for N = 100 files and constant file size of 

ni = 1000 packets, with AL-FEC (CR = 0.7) ........................................... 118 
Fig. 6.5. Total download time evaluation for N = 500 files and constant file size of 

ni = 1000 packets ..................................................................................... 119 
Fig. 6.6. Waiting time evaluation for N = 100 files and constant file size of ni = 

1000 packets ............................................................................................ 120 
Fig. 6.7. tW/tT relation evaluation for m = 1 and m = N .......................................... 121 
Fig. 6.8. Total download time evaluation for N = 100 files and log normal file size 

distribution with mean = 1000 packets .................................................... 122 
Fig. 6.9. Total download time evaluation for N = 100 files and constant file size of 

ni = 3000 packets ..................................................................................... 123 
Fig. 6.10. Total download time evaluation using a buffer for N = 100 files and 

constant file size of ni = 1000 packets ..................................................... 125 
 

 





 

xxi 

Acronyms 

3GPP 3rd Generation Partnership Project 
ALC Asynchronous Layered Coding 
AL-FEC Application Layer – Forward Error Correction  
ARQ Automatic Repeat Request 
AVC Advanced Video Coding 
CCI  Congestion Control Information 
CDS Content Download Services 
DASH Dynamic Adaptive Streaming over HTTP 
DTN Delay-Tolerant Networking 
DVB Digital Video Broadcasting 
DVB-H Digital Video Broadcasting – Handheld 
eMBMS Evolved Multimedia Broadcast and Multicast Services 
ESG Electronic Service Guide 
ESI Encoding Symbol Identifier 
FDT File Delivery Table 
FEC Forward Error Correction 
FLUTE File Delivery over Unidirectional Transport 
FTI FEC Object Transmission Information 
GE Gaussian Elimination 
GF Galois Field 
GOE Generalized Object Encoding 
GoP Group of Pictures 
GPS Global Positioning System 
HEL Header Extension Length 
HET Header Extension Type 
HSPA High-Speed Packet Access 
HTTP Hypertext Transfer Protocol 
IANA Internet Assigned Numbers Authority 
IETF Internet Engineering Task Force 



 

 

xxii 

IP Internet Protocol 
IPTV Internet Protocol TV 
ISO International Organization for Standardization 
J2ME Java 2 Micro Edition 
J2SE  Java 2 Standard Edition 
LCT Layered Coding Transport 
LDPC Low Density Parity Check  
LT Luby Transform 
LTE Long Term Evolution 
MBMS Multimedia Broadcast and Multicast Services 
MD5 Message-Digest Algorithm 5 
MDS Maximum Distance Separable 
MIME Multipurpose Internet Mail Extensions 
MPD Media Presentation Description 
MPEG Moving Picture Experts Group 
MTU Maximum Transfer Unit 
OTI Object Transmission Information 
PRR Packet Reception Ratio 
PSI Protocol-Specific Indication 
QoE Quality of Experience 
RFC Request For Comments 
RTCP RTP Control Protocol 
RTP Real-time Transport Protocol 
SAP Session Announcement Protocol 
SBN Source Block Number 
SDP Session Description Protocol 
TCP Transmission Control Protocol 
TESLA Timed Efficient Stream Loss-Tolerant Authentication 
TOI Transport Object Identifier 
TSI Transport Session Identifier 
UDP User Datagram Protocol 
UEP Unequal Erasure Protection 
URI Uniform Resource Identifier 
WEBRC Wave and Equation Based Rate Control 
WiMAX Worldwide Interoperability for Microwave Access 
XML Extensible Markup Language 



 

 

1 

Chapter 1 

Introduction 

This chapter introduces this thesis dissertation, presenting the scope of the thesis, as 
well as its objectives and contributions. Also, this chapter presents the structure of this 
thesis, introducing each one of the six chapters that compose this work. 

1.1. Scope 
Wireless networks are part of our daily lives for many years. Since the first half of the 
last century, people listened to the news or music through the waves that arrived to their 
radios. Some decades later, the use of the television became popular in all households. 
Today, former analogical broadcasting systems have been replaced by modern digital 
platforms, such as DVB (Digital Video Broadcasting) technologies or connected TVs. 

In contrast to radio and television, other technologies were intended for wired scenarios 
and have evolved to wireless systems. There are two representative examples: telephone 
and Internet. Nowadays, approximately three quarters of the world population has 
access to a mobile phone [1]. This percentage exceeds the 90% in developed countries. 
In the last years, the appearance of smartphones has revolutionized the industry. 
Through these intelligent devices, users connect to the Internet using new technologies 
such as Wi-Fi, HSPA (High-Speed Packet Access), WiMAX (Worldwide 
Interoperability for Microwave Access) or LTE (Long Term Evolution). 

In that regard, the Internet consumption through wireless networks has exploded in the 
last years due to the fact that not only the number of users has increased but also the 
amount of data consumed. Thus, the access to multimedia content has grown 
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considerably and nowadays transmission networks carry all kind of multimedia traffic. 
The visualization of multimedia streaming through video portals and photo sharing on 
social networks are two good examples of the great importance that multimedia content 
has on existing networks. In this sense, a large number of the contents consumed by 
users require a high bandwidth. 

In this way, currently, users demand greater access capacity to utilize an increasing 
number of services and applications. In turn, these applications become more and more 
hungry for bandwidth, especially video services and related applications. As a result, 
wireless broadband demand has experienced a hundredfold growth in the last years and 
one can only expect a similar expansion in the years to come. 

In this framework, the exponential growth of the traffic in wireless networks is 
becoming a problem since, unfortunately, wireless broadband exploits a limited 
resource: frequency spectrum. For this reason, new wireless technologies improve 
spectrum efficiency and regulators reshape radio spectrum allocation, adapting it to 
satisfy the changing needs of society. However, this approach faces important 
challenges to cope with user demands. Modern wireless standards perform very close to 
theoretical limits. Without a major breakthrough, it is very unlikely that the efficiency 
of next generation telecommunication systems would be orders of magnitude greater 
than that of current technologies. Also, new wireless technology needs time to become 
established in markets and even more time to become economically profitable for 
operators. Policymakers face difficulties to reshape radio spectrum as any change 
requires extensive negotiations. 

Therefore, as users require more bandwidth and the frequency spectrum is a limited 
resource, it is necessary to search for underexploited features of current wireless 
technologies that could optimize the usage of spectrum efficiency. Modern wireless 
standards provide wireless multicast access, which represents a good mechanism for 
reducing the bandwidth. Although nowadays a large proportion of the data traffic is sent 
through unicast IP networks, the use of multicast networks has a great importance too. 
For instance, multicast networks are used by TV channels or radio stations to broadcast 
their contents. 

The utilization of multicast networks allows to send content to different users using a 
single transmission operation. Thus, depending on the service, multicasting results more 
efficient than unicasting, which generates more traffic in the network. In this way, 
multicast networks are highly recommendable when there is sufficient number of users 
interested in receiving the same contents.  

Multicast networks are used to broadcast both video streaming and files. In this sense, 
the Quality of Experience (QoE) perceived by the users is an important parameter in the 
evaluation of both video streaming and file transmission services. In the first, the delay, 
the losses and the video quality are key aspects for the QoE. Regarding file 
transmissions, a good QoE is obtained when the file is received correctly with the 
minimum download time.  
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In file transmissions users need to receive correctly all the packets that compose a file 
in order to download it successfully, so channel losses should not occur. However, 
multicast transport does not guarantee, generally, error free communication and so it is 
needed to provide protection against errors. Additionally, some multicast file 
transmissions lack of a feedback channel that can be used by clients to report the 
servers about the status of their downloads. Therefore, clients are not able to ask for 
packets lost during the transmission. In this way, in the absence of retransmissions in 
the transport layer, it is necessary that multicast protocols provide reliability at the 
application layer to overcome possible packet loss in the communication channel. 
Among the existing protocols, one of the most used by the different standardization 
organisms is FLUTE [2]. FLUTE is highly used for delivering multimedia content in 
unidirectional environments in a reliable manner. One of the key elements of FLUTE is 
the use of a File Delivery Table (FDT), an in-band mechanism used to inform clients 
about the files (and their characteristics) transmitted within a FLUTE session. Clients 
need to receive the FDT in order to start downloading files. In this sense, the delivery of 
FDT packets and their proper configuration parameters have a great impact on the QoE 
of FLUTE services. 

FLUTE provides reliability using different protection mechanisms. It should be noted 
that, generally, there are two main error correction techniques, ARQ (Automatic Repeat 
Request) and FEC (Forward Error Correction). The former consists of retransmitting 
data that are missed in the communication, whereas FEC allows to reconstruct the 
original data without retransmissions, through error correction encoding. FEC is mainly 
used in unidirectional environments, where a return channel does not exist. 

In this sense, FLUTE works over a FEC block, which is used to protect the file delivery 
service. Although error correction is generally applied in the lower layers of a 
communication system, it can be used at higher layers. Specifically, AL-FEC 
(Application Layer FEC) provides additional robustness to certain services without any 
modification in the lower layers of a system, through applying FEC coding at transport 
packet level. Thus, the use of AL-FEC is particularly interesting for provisioning new 
services over communication networks already in place, since AL-FEC can increase the 
native reliability of the network to meet the requirements of a specific service, without 
additional infrastructure [3]. Moreover, AL-FEC may improve the performance of 
content transfer through wireless communication networks, as it can decrease download 
times as well as network traffic, since it avoids the request of lost packets. 

The performance of AL-FEC is somewhat dependent on the complexity of the 
algorithm used to protect the information. There are different categories of FEC codes: 
convolutional codes, block codes, fountain codes and hybrid systems. In this sense, the 
most advanced algorithms fall in the category of rateless codes and perform very close 
to ideal FEC codes: no matter what is the erasure rate of the channel, receivers need 
only to acquire an amount of data equivalent to the size of the original file to be able to 
restore it. Nevertheless, rateless codes require more processing to generate the parity 
data for a specific file than other AL-FEC codes, such as LDPC (Low Density Parity 
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Check). In environments where the multicast content selection is dynamic, it may be 
impossible to generate the parity data and insert it in the network on time [4]. 

LDPC AL-FEC codes provide a good trade-off between performance (download time) 
and complexity (time required to generate parity and time required to do the decoding 
process) [5]. LDPC AL-FEC parity can be generated nearly in real time but, unlike 
rateless codes, the optimum code rate depends on the erasure rate of the channel. When 
the code rate of LDPC AL-FEC is adjusted to the actual loss rate of the channel, LDPC 
AL-FEC codes achieve a performance comparable to rateless codes in dynamic loss 
environments, especially when adaptive LDPC AL-FEC codes are used. Adaptive codes 
allow servers to send data at an optimum code rate for the channel losses experienced 
by the clients. 

Moreover, in environments with limited bandwidth the performance of adaptive codes 
for file transmission can be improved by choosing the best protection that benefits the 
major part of users. 

In this way, the use of file transmission services through multicast networks by 
employing an appropriate configuration can result very efficient, reducing considerably 
a resource so valuable as the bandwidth is but without degrading the Quality of 
Experience of users. 

1.2. Objectives and contributions 
The main objective of the thesis is: 

The study, analysis and development of a file transmission service for 
multicast wireless networks, based on the FLUTE protocol and LDPC AL-
FEC codes, for improving the channel bandwidth utilization and the Quality of 
Experience perceived by the users.  

To achieve this objective, three different intermediate objectives or milestones are 
defined, which represent the main contributions of this thesis: 

• Objective 1: Analysis and evaluation of the FLUTE protocol, 
implementation of a FLUTE file delivery service and improvements to the 
protocol 
First of all, an exhaustive study of the FLUTE protocol is carried out, analyzing 
its characteristics, its functioning and its applications. Moreover, a set of 
different use cases is defined and analyzed. To that extent, an implementation of 
a FLUTE file delivery service is carried out, developing both a FLUTE server 
and a FLUTE client, which is the starting point of the thesis. Based on this 
implementation, the main characteristics of FLUTE are analyzed, mainly the File 
Delivery Table, which is the most characteristic feature of the protocol.  
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In this sense, we propose certain modifications to the FDT that help to improve 
the QoE of users, such as mechanisms that reduce the download time and 
improve the personalization of file delivery services. 

• Objective 2: Analysis, implementation and evaluation of LDPC AL-FEC 
codes in unidirectional environments 
Reliability is one of the basis of the FLUTE protocol, which employs different 
protection mechanisms, such as the use of AL-FEC codes. Among the different 
codes supported by FLUTE, this thesis is focused on LDPC codes. LDPC codes 
(both Staircase and Triangle structures) are analyzed, implemented and 
integrated into the developed FLUTE server and FLUTE client. A complete 
evaluation of LDPC in file delivery FLUTE sessions is carried out. 

• Objective 3: Analysis and evaluation of Adaptive LDPC AL-FEC codes for 
environments with a feedback channel 
This thesis proposes adaptive LDPC codes for content download services. These 
codes are based on the use of a reporting mechanism through which the server 
obtains an estimation of the erasure rate perceived by every user. This 
information is used to send the information with an optimum protection that 
minimizes the download time on the clients side, thus improving the Quality of 
Experience of the users. The advantages of these codes are assessed, showing 
different studies that consider the main characteristics of file transmissions.  

Moreover, the thesis also presents an efficient proposal of adaptive LDPC codes 
for channels with limited bandwidth.  

A detailed list of publications derived from this thesis is presented in the Appendix A.  

1.3. Structure of the thesis 
This thesis is divided into six chapters: 

• Chapter 1: represents the introduction of this thesis dissertation, where the 
scope, objectives, contributions and structure of the thesis are presented. 

• Chapter 2: presents the main technologies involved in this work. Two main 
technologies are analyzed: the FLUTE protocol and LDPC codes. The chapter 
explains the state of the art of these technologies, detailing the related work.  
Also, this chapter presents the implementation of the FLUTE server and client 
developed in the scope of this thesis. This implementation also includes a LDPC 
coding/decoding library.  
Finally, this chapter presents different use cases that show the functionality of 
file delivery services through multicast networks.  
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• Chapter 3: evaluates the two LDPC structures supported by FLUTE, that is,  
Staircase and Triangle. This chapter presents a complete evaluation of these 
codes, comparing its performance under different conditions, like channel losses 
or content sizes. 

• Chapter 4: proposes the use of adaptive LDPC codes. In these codes, the server 
sends content with a certain protection according to the losses perceived by the 
clients of the file delivery service. The section presents a theoretical analysis of 
these codes, and evaluates their performance, comparing both analytical and 
experimental results. 

• Chapter 5: represents an improvement of the codes presented in the previous 
chapter for limited-bandwidth environments. This chapter presents an algorithm 
that decides which is the optimum protection that benefits the major part of the 
users. Apart from a complete evaluation under different scenarios, this proposal 
is compared to the proposal of Chapter 4. 

• Chapter 6: analyzes the importance of the File Delivery Table in FLUTE file 
delivery services. Specifically, this chapter assesses how the delivery frequency 
of the FDT affects the download time. Also, this chapter proves that the quality 
of a file delivery service based on the FLUTE protocol depends greatly on an 
appropriate configuration of AL-FEC codes and the FDT. 
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Chapter 2 

State of the art and use cases 

This chapter presents the state of the art of the main technologies involved in this thesis 
work. The chapter is mainly focused on the FLUTE protocol and LDPC codes. In this 
sense, this chapter also presents an implementation of a file transmission server and 
client based on FLUTE with LDPC codes developed in the context of this thesis, as 
well as different use cases referred to file distribution using FLUTE.  

2.1. Introduction 
As mentioned in the introductory chapter, the objective of this thesis is to develop a file 
download service to improve the channel bandwidth efficiency. In this regard, this 
proposal is based on multicast networks, where the bandwidth reduction comparing to 
unicast networks is proportional to the amount of users downloading contents. By using 
appropriate mechanisms to send the contents, the bandwidth could be consumed 
efficiently. Specifically, this thesis proposes the use of FLUTE and LDPC AL-FEC 
codes to send files in multicast wireless networks.  

Therefore, it is interesting to start this thesis dissertation by analyzing in depth the main 
technologies used along this work. Thus, Section 2.2 presents the FLUTE protocol, 
detailing its characteristics and architecture, as well as the transmission process of this 
protocol. In this sense, the File Delivery Table, which is the main element of FLUTE, is 
analyzed in detail. Lastly, this section explains the different codes supported by 
FLUTE, providing an introduction to the following section, dedicated to LDPC codes. 
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Specifically, Section 2.3 studies the two LDPC structures defined in the FLUTE 
specifications, that is, LDPC Staircase and LDPC Triangle. The main characteristics of 
both structures and the transmission parameters are explained, by presenting the 
specifications of the RFC 5170 [6], where LDPC Staircase and Triangle are defined. 

Once both FLUTE and LDPC has been explained, Section 2.4 analyzes the work related 
to these technologies. 

On the other hand, Section 2.5 presents the implementation of the FLUTE server and 
client and LDPC codes developed in the context of this thesis. This implementation is 
used to carry the experimental evaluations presented in this dissertation. 

Finally, Section 2.6 presents some use cases related to multicast file transmission, for 
instance personalized multimedia content distribution in shopping centers or touristic 
environments, or background push content download services for mobile devices.  

2.2. FLUTE 

2.2.1. Characteristics and architecture 
FLUTE (File Delivery over Unidirectional Transport) is a protocol for the 
unidirectional delivery of files over the Internet, which is particularly suited to multicast 
networks. FLUTE was initially defined in RFC 3926 (October 2004) [7] and updated by 
the RFC 6726 (November 2012) [2]. Its main characteristic is that this protocol offers 
reliability in the transmission. Moreover, it provides massive scalability, management 
and congestion control.  

FLUTE is applicable to the delivery of large and small files to many hosts. For instance, 
the protocol can be used for the delivery of large software updates to many hosts 
simultaneously. FLUTE could also be used for continuous, but segmented, data such as 
time-lined text for subtitling. Moreover, FLUTE is useful to send metadata, for 
example, Session Description Protocol (SDP) [8] files, or the Electronic Service Guide 
(ESG) in DVB-H (Digital Video Broadcasting – Handheld) [9]. 

The three main mechanisms used by FLUTE to provide reliability are: AL-FEC to add 
redundancy and correct errors; retransmissions by means of data carousels to receive 
packets previously lost; and offline file repair sessions to request certain packets that 
have not been received. 

FLUTE file transfers are organized into file delivery sessions. A session is uniquely 
identified by the multicast source IP address and by a session identifier called TSI 
(Transport Session Identifier). Also, each session contains one or more associated 
channels, in which files are delivered. Each channel sends in a certain port number and 
with a given transmission rate. On the other hand, each file transmitted in a file delivery 
session is uniquely identified both by its content location and an internal identifier 
called TOI (Transport Object Identifier). 
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Fig. 2.1 shows the protocol stack of FLUTE. FLUTE works over Asynchronous 
Layered Coding (ALC) [10], the base protocol designed for massively scalable 
multicast distribution. At the same time, ALC uses the LCT (Layered Coding 
Transport) [11] building block for session management functionalities, the multiple rate 
congestion control (CC) building block, as well as the FEC building block [12] used for 
error control. In the lower layers, FLUTE works over UDP (User Datagram Protocol) 
on transport level and IP (Internet Protocol) on network level. 

 
Fig. 2.1. FLUTE protocol stack. 

On the other hand, to start receiving a file delivery session, clients need to know the 
transport parameters associated with the session. These parameters are obtained through 
the Session Description. This information can be sent out-of-band, through methods 
such as HTTP/MIME (Hypertext Transfer Protocol / Multipurpose Internet Mail 
Extensions) headers, XML (Extensible Markup Language) or SAP (Session 
Announcement Protocol). Normally, the Session Description uses the format defined by 
the SDP protocol [13]. Session Description must include the parameters that identify a 
session and a channel: source IP address, TSI and port number. Moreover, the Session 
Description can include additional information such as the number of channels or the 
congestion control algorithm used. 

Once the clients have the necessary information to join a session and have established 
the connection, they can receive files. But before, they must know which files are being 
transmitted within the session and their characteristics. This information is obtained by 
means of the File Delivery Table, which is explained in detail in the following section. 

2.2.2. FDT 
The File Delivery Table (FDT) provides the means to describe various attributes 
associated with the files sent through the file delivery session. The FDT is described 
using XML language and is delivered through FDT Instances, which are FLUTE 
packets with a special LCT extension header (called EXT_FDT) used to indicate they 
carry FDT data. The XML is the payload of the packet to send. Also, the value 0 of TOI 
is reserved to identify a packet as FDT.  
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The FDT includes a mandatory attribute called “Expires” used to indicate the period of 
validity of the FDT. Also, regarding each file described in the FDT, the only two 
mandatory attributes in the description of each file are the content location (name, 
identification, and location of the file, which are specified as an URI –Uniform 
Resource Identifier) and the TOI. 

The rest of attributes are optional, such as the content length, the content type or the 
content MD5 (Message-Digest Algorithm 5). Moreover, the FDT could carry the FEC 
Object Transmission Information, that is, information used to packetize a file in 
transmission and rebuild it in reception. The FEC Object Transmission information 
provides information like the size of each packet (parameter “FEC-OTI-Encoding-
Symbol-Length”) or the type of FEC coding (parameter “FEC-OTI-FEC-Instance-ID”).   

In this sense, the in-band delivery of the FEC Object Transmission Information is 
mandatory. If not included in the FDT, the server can make use of a LCT header 
extension called EXT_FTI (which is explained later). The FEC Object Transmission 
Information delivered to receivers must be exactly the same whether it is delivered 
using the FDT or using the EXT_FTI (or both). 

Fig. 2.2 shows an example of an FDT. As the figure depicts, the FDT is composed of 
elements, each one containing different attributes. For instance, the description of the 
file with TOI = 1 includes the mandatory attributes “Content-Location” and “TOI” as 
well as the attribute “Content-Type”. On the other hand, the file with TOI = 2 includes 
also some attributes referred to the FEC Object Transmission Information (such as the 
“FEC-OTI-FEC-Instance-ID” or the “FEC-OTI-Maximum-Source-Block-Length”) and 
the attribute “Content-MD5”. A complete description of the elements and attributes in 
the FDT can be found in the RFC 6726 [2]. 

<?xml version="1.0" encoding="UTF-8"?> 
<FDT-Instance  

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:fl="http://www.comm.upv.es/flute" 
xsi:schemaLocation="http://www.comm.upv.es/flutefdt.xsd" 
Expires="2890842807"> 
<File 

Content-Location="http://www.comm.upv.es/list.html" 
TOI="1" 
Content-Type="text/html"/> 

<File 
Content-Location="http://www.comm.upv.es/song2.mp3" 
TOI="2" 
Content-Length="612586" 
Content-Type="audio/mp3" 
FEC-OTI-FEC-Encoding-ID="3" 
FEC-OTI-Maximum-Source-Block-Length="64" 
FEC-OTI-Encoding-Symbol-Length="1428" 
FEC-OTI-Max-Number-of-Encoding-Symbols="1000" 
Content-MD5="+VP5IrWploFkZWc11iLDdA=="/> 

</FDT-Instance> 

Fig. 2.2. Example of an FDT. 
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The original FLUTE RFC [7] and the current FLUTE standard [2] establish that for 
every file delivered within a file delivery session, there must be a file description entry 
included in at least one FDT Instance sent within the session. A file description entry 
contains at a minimum the mapping between the TOI and the URI.  

Also, both RFCs establish that the number of files described in each FDT is variable, 
that is, each FDT Instance contains at least a single file description entry and at most 
the complete FDT of the file delivery session. Therefore, there are two types of FDT 
Instances: partial FDT and complete FDT. An FDT Instance can be sent in any part of 
the file delivery session, so that FDT Instance packets are interleaved with data packets. 
Moreover, both RFCs indicate that the way FDT Instances are transmitted has a large 
impact on the transmission. It is recommended to repeatedly transmit FDT Instances 
describing files while these are being transmitted. Also, it is highly recommended to 
send the FDT Instances reliably using FEC. [2] suggests that mechanisms used for FDT 
Instances transmission should achieve higher delivery probability than the file recovery 
probability. Nevertheless, neither [7] nor [2] analyze how often an FDT Instance should 
be sent and how much FEC protection should be provided for each FDT Instance.  

Precisely, this analysis is one of the main contributions of this thesis. An exhaustive 
study of the File Delivery Table is presented in Chapter 6. 

2.2.3. FLUTE transmission 
Fig. 2.3 shows a general overview of a file transmission using the FLUTE protocol. A 
FLUTE server has a repository of multimedia contents. For example, it could send 
video, audio, images, documents… The FLUTE server broadcasts the contents in a 
certain session (identified by the IP address and the TSI), which contains, at least, one 
delivery channel (identified by the port number). On the other hand, clients follow these 
steps: 

• Step 1. Clients obtain through an out-band mechanism the Session Description 
that contains the transport parameters associated to the session. The way clients 
obtain the Session Description is independent of FLUTE. 

• Step 2. Once the clients have connected to a certain session they have to wait 
until they receive the FDT that describes the files (and their corresponding 
metadata) that the server is sending. 

• Step 3. Then, clients are able to identify the data packets they are receiving and 
they are able to download the files they are interested in. 

If the server wants to stop sending data, the FLUTE protocol contains a field in its 
header to indicate clients that the session will be closed soon. 
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Fig. 2.3. File delivery using the FLUTE protocol. 

Regarding the file transmission, in FLUTE each file represents a transport object. As 
Fig. 2.4 shows, each transport object is fragmented into source blocks. Also, each block 
is composed of encoding symbols. Segmentation of files is provided by a blocking 
algorithm (which calculates blocks from files) and a symbol encoding algorithm (which 
calculates encoding symbols from blocks). The algorithm used to split the file into 
blocks and symbols depends on the type of AL-FEC code used. In this sense, [7] 
proposes an algorithm that calculates source blocks from objects and encoding symbols 
from source blocks. The algorithm is very efficient, since the length of all source blocks 
is very similar, differing, at most, in one encoding symbol.  

 
Fig. 2.4. FLUTE packet construction. 

There are two types of encoding symbols: source and parity symbols. The former 
contain the original data of the file, whereas the parity symbols are created from a 
combination of source symbols (and other parity symbols), through FEC encoding, to 
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provide reliability on the transmission. In this way, the generation of parity symbols 
depends on the type of codes used, as Section 2.2.5 and Section 2.3 explain. Thus, each 
block contains n encoding symbols, k of which are source symbols. If encoding is 
employed, the number of parity symbols per block is n - k. Generally, each symbol 
represents the payload of a FLUTE packet, although one FLUTE packet can contain 
several encoding symbols. The format of the FLUTE header is explained in the next 
subsection. 

The values of k and n specify the code rate, the parameter used to determine the amount 
of protection provided to a file. The code rate is defined as k/n so, higher code rates 
imply less information protection. Obviously, when no AL-FEC is used n = k, so the 
code rate is 1. 

In reception, clients are able to rebuild a file when they receive a number of packets 
equal to k * inefficiency_ratio [14]. The inefficiency ratio represents the relation 
between the number of packets needed to decode a file and the number of source 
packets that make up the file. The less the inefficiency ratio the more efficient is the 
coding (ideally this value is 1). The value of the inefficiency ratio depends on the 
coding algorithm. In codes that belong to the Maximum Distance Separable (MDS) 
category this value is equal to 1, whereas in the rest of codes the inefficiency ratio is 
greater than 1. 

As for the organization of file transmissions, there are two different kinds of FLUTE 
delivery sessions: file transmission sessions and file carousels. In the latter, files are 
sent cyclically on a seamlessly endless loop. In this way, clients can complete their 
downloads if they have suffered losses in previous carousel cycles. Each carousel 
contains all the files to send. Furthermore, sessions can be static or dynamic, depending 
on whether the contents of the session change during its lifetime. The most used kind of 
sessions are file carousels. Recall that the use of carousels is one of the mechanisms 
used by FLUTE to provide reliability on the transmission. 

2.2.4. FLUTE packet format 
As mentioned when presenting the FLUTE protocol stack, both ALC and LCT building 
blocks provide basic transport to FLUTE, which inherits the requirements of these 
blocks. Therefore, the header of a FLUTE packet is composed by the headers of the 
protocols and building blocks that conform the FLUTE protocol stack. Thus, the format 
of a FLUTE packet is very similar to the format of an ALC packet. In fact, the format of 
FLUTE packets depends on the type of packets sent: data packets or FDT Instances. 
When data packets are sent the FLUTE packet format is equal to the ALC packet 
format, as Fig. 2.5 depicts. 
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Fig. 2.5. FLUTE packet format for data packets. 

On the other hand, the packet structure of FDT Instances is slightly different, since it 
includes an additional extension header (EXT_FDT) which indicates that this packet 
contains an FDT Instance, as Fig. 2.6 shows. Moreover, in FDT packets the value of the 
TOI is 0. 

 
Fig. 2.6. FLUTE packet format for FDT Instances. 

The format of IP and UDP headers is well known. The structure of the LCT header is 
specified in RFC 5651 [11], depicted in Fig. 2.7:  

 
Fig. 2.7. Default LCT header format. 
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The meaning of each field is explained below: 

• V: indicates the version. The latest version of the RFC of LCT [11] indicates that 
the value is 1. 

• C, S, O and H: flags used to indicate the length of the fields CCI, TSI and TOI, 
as the figure shows. 

• PSI: protocol-specific indication. In FLUTE these two bits are used for signaling 
purposes when AL-FEC mechanisms are used. 

• Res: reserved. 
• A: close session flag. It is used in order to indicate that the termination of 

transmission of packets for the session is imminent.  
• B: close object flag. It indicates that the termination of transmission of packets 

for a certain object is imminent. 
• HDR_LEN: LCT header length. It is the total length of the LCT header in units 

of 32-bits words. 
• Codepoint: in FLUTE this field indicates the AL-FEC encoding used. It 

corresponds to the value of FEC Encoding ID. 
• CCI: congestion control information. It is used to carry congestion control 

information, such as layer numbers, logical channel numbers or sequence 
numbers.  

• TSI: transport session identifier. As mentioned, the TSI and the IP address 
uniquely identify the session. 

• TOI: transport object identifier. It indicates to which object within the session 
this packet pertains. This value is equal to 0 for FDT Instances. 

• Header extensions. Different header extensions have been defined: 
 EXT_NOP: non-operation extension.  
 EXT_AUTH: packet authentication extension. It includes information 

used to authenticate the sender of the packet.  
 EXT_TIME: time extension. It includes general purpose timing 

information. 
 EXT_FTI: FEC Object Transmission Information extension. This 

extension is intended to carry the FEC Object Transmission Information 
for an object in-band, that is, information related to the FEC encoding 
used. This information must be the same that the information included in 
the FDT (when the FDT includes information related to the encoding). 
The format of this field, therefore, depends on the type of AL-FEC codes 
used.  

 EXT_CENC: content encoding header extension. It is used to indicate 
the content encoding type when FDT Instances are coded. It supports 
following encoding algorithms: ZLIB [15], DEFLATE [16] and GZIP 
[17]. When EXT_CENC is used, it must be used together with a proper 
EXT_FDT. 

 EXT_FDT: it includes information about the FDT. This header extension 
is only included in packets that carry FDT Instances. The format of the 
EXT_FDT is shown in the following figure:  
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Fig. 2.8. EXT_FDT format. 

The field “HET” indicates the type of LCT extension, whereas “V” refers to the version 
of FLUTE (the new RFC [2] indicates that this value must be 2). On the other hand, for 
each file delivery session, the numbering of FDT Instances starts from 0 and is 
incremented by one for each subsequent FDT Instance. Senders must not reuse an “FDT 
Instance ID” value that is already in use for a non-expired FDT Instance. 

Back to the FLUTE packet format shown in Fig. 2.5 and Fig. 2.6, the FEC Payload ID 
[18] identifies uniquely a packet within the transmission of a certain packet. The FEC 
Payload ID is a 32-bit unsigned integer and it contains two fields: 

• Source Block Number (SBN): is used to identify from which source block of 
the object the encoding symbol in the payload of the packet is generated. The 
first source block is identified by the value 0, and the rest of blocks have a 
consecutive numeration. 

• Encoding Symbol ID (ESI): identifies which specific encoding symbol 
generated from the source block is carried in the packet payload. Again, the first 
ESI of a block is identified by the number 0 and so on. 

It should be mentioned that the size of these two fields depends on the AL-FEC code 
used. As an example, Fig. 2.9 shows the structure of the FEC Payload ID for LDPC 
(Staircase and Triangle) structures. 

 
Fig. 2.9. FEC Payload ID encoding format for LDPC Staircase and Triangle. 

Finally, coming back to the FLUTE protocol stack, through the congestion control 
building block, the server can send files in different channels with different code rates. 
In this way, different receivers joined to the same session may be receiving packets at 
different rates depending on the bandwidths of their individual connections to the 
sender. The RFC of ALC [10] indicates that implementations of ALC must support 
WEBRC (Wave and Equation Based Rate Control) [19], which provides rate and 
congestion control for data delivery. WEBRC is specifically designed to support 
protocols using IP multicast. 

2.2.5. FEC codes 
As explained, the format of some of the fields presented depends on the type of AL-
FEC codes used. In this sense, FLUTE supports different codes. Each AL-FEC code is 
uniquely identified by an identifier called FEC Encoding ID. This identifier is included 
in the field “Codepoint” of the LCT header and optionally also is included in the FDT 
Instances. 
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The values of the FEC Encoding IDs assigned by the IANA (Internet Assigned 
Numbers Authority) [20] to identify the codes supported by FLUTE are:  

0. Compact No-Code 
1. Raptor  
2. Reed-Solomon codes over GF (2m)  
3. LDPC Staircase codes  
4. LDPC Triangle codes 
5. Reed-Solomon codes over GF (28) 
6. RaptorQ code 

Both Compact No-Code and Reed Solomon codes belong to the Maximum Distance 
Separable category, where it is necessary to receive a number of encoding symbols 
equal to the number of packets that compose a file in order to rebuild it. In this way, 
both codes have an inefficiency ratio equal to 1. LDPC and Raptor codes have a value 
slightly higher than 1.  

The use of one coding or another depends on the application but, in general, Raptor and 
RaptorQ work more efficiently at the expense of more complexity. Compact No-Code 
is recommended only on reliable channels (with very low losses), whereas Reed-
Solomon is convenient when the amount of data to code is not very high. Also, LDPC 
codes are very efficient and their coding/decoding complexity is low.  

Compact No-Code, Reed Solomon and Raptor (including RaptorQ) codes are briefly 
explained in the next subsections. Due to the relevance of LDPC codes in this thesis 
work, these codes will be explained in a separate section (Section 2.3).   

2.2.5.a. Compact No-Code 
Compact No-Code, specified by the RFC 5445 [18], does not apply any coding 
mechanism, i.e. only source packets are sent. Anyway, the RFC 5445 indicates the 
format of both the FEC Payload ID and the EXT_FTI. Both fields are necessary in 
order to divide an object in blocks and symbols, and to identify them. Since no parity 
symbols are generated, in reception it is needed to receive all the symbols that compose 
a file to download it.  

2.2.5.b. Reed-Solomon 
Reed-Solomon codes were invented by Irving S. Reed and G. Solomon in 1960 [21]. 
These codes are used for a lot of applications, such as data storage (for instance in 
Compact Discs), in wireless networks (mobile phones) or in satellite and wired 
communications, as well as in digital television (DVB uses Reed-Solomon to correct 
errors in the physical layer).  

Reed-Solomon is an error corrector block code based on polynomials, and creates 
symbols by means of m-bits sequences. Each code word is composed of n symbols, 
which k are source symbols and r are parity symbols. The relation between the code 
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word length and the number of symbols is defined by: n = 2m – 1. These codes are able 
to correct up to r/2 erroneous symbols.  

RFC 5510 [22] defines the FEC schemes for Reed-Solomon codes over GF (28) and 
over GF (2m). In both cases, the creation of the n symbols through the k symbols that 
make a block is produced by means of a generation matrix. That matrix uses a 
polynomial which depends on the length of the m-finite field elements. 

2.2.5.c. Raptor and RaptorQ 
Raptor codes [23] were created in 2001 by Amin Shokrollahi. These codes belong to 
the fountain codes category, which allows to generate as many symbols as needed on 
the fly from the source symbols of a block, that is, a fixed code rate is not needed. 
Despite being a proprietary implementation, these codes have been adopted by several 
standardization organizations, such as IETF (Internet Engineering Task Force), 3GPP 
(3rd Generation Partnership Project) and DVB. Their main characteristic is that these 
codes are able to generate infinite parity information. Moreover, receivers need only 
few packets more than the number of packets that makes up the file for reconstructing 
it, regardless of the type of the received packets. That is the reason why these codes are 
very efficient. Furthermore, the encoding and decoding are very fast, so their 
implementation in software is easy. 

The encoding process is divided in two steps: first, a precoding is done, in which l 
output packets are created through k input packets (l>k). The second step consist of the 
creation of the n source symbols from the l precoded symbols (n>l), using LT (Luby 
Transform) codes [24], a kind of fountain codes. Each symbol is generated 
independently, and it is possible to create an unlimited number of symbols. RFC 5053 
[25] describes deeply the creation of the symbols and the header format related to 
Raptor.  

On the other hand, in the last years a new generation of Raptor code has appeared, 
called RaptorQ. These codes provide better coding efficiency, since they recover 
missing data packets with minimal amounts of additional repair data (that is, a value of 
inefficiency ratio almost 1), at the expense of increasing the encoding and decoding 
complexity. Also, these codes support larger source symbol block sizes and provide 
superior flexibility. RaptorQ are defined in RFC 6330 (August 2011) [26].  

2.3. LDPC (Staircase and Triangle) 

2.3.1. Introduction 
LDPC (Low Density Parity Check) codes were invented by Gallager in 1960 [27]. But 
they were not used until 30 years later, thanks to MacKay and Neal [28]. The original 
specification has suffered some improvements that make easy their utilization in 
different environments. For instance, they are the base of Tornado [29], LT and Raptor 
codes, all these proprietary implementations. LDPC belongs to the large block codes 
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category, in which it is needed to receive more of the k packets that make up a file for 
reconstructing it. The codes included in this category are advisable when large files are 
encoded, since computational cost does not grow excessively.  

Low Density Parity Check codes are systematic lineal block codes based on a parity 
check matrix used in the encoding and decoding processes. This matrix defines the 
relations between the different encoding symbols (source symbols and parity symbols). 
The matrix consist of some elements with values 0 and 1, and it is by definition 
disperse, since the most part of the elements are 0. By means of the matrix, the encoder 
generates the parity symbols through XOR operations on the source symbols and other 
parity symbols previously generated. Similarly, receivers use the matrix to reconstruct 
the symbols that have not been received by performing XOR operations on the 
encoding symbols already received. Fig. 2.10 shows an example of a parity matrix, and 
establishes the relations between source and parity symbols. 

 
Fig. 2.10. Example of an LDPC parity check matrix (k = 6, n = 11). 

The figure depicts a matrix with values k = 6 and n = 11, which generates 5 parity 
symbols per block. The size of the matrix is [(n - k) x n], so there are n – k rows, each 
one representing an equation. The columns are related to the symbols of the block. Each 
element of the matrix with the value 1 (hij = 1) indicates that the j-th symbol takes part 
in the i-th equation. Thus, for instance, the first parity symbol (identified as p6) is 
composed of the XOR sum of the symbols s1, s3, s4 and s5. Receivers are able to recover 
a symbol from an equation once they have successfully received all other symbols that 
take part in the given equation. 

Moreover, a parity symbol can take part in the creation of other parity symbols. In 
general, each source symbol takes part in a fixed number of equations, that is, the 
number of 1s that contains the corresponding column. That parameter is called N1. The 
number of non-null elements of a row or column is called degree.  

On the other hand, the matrix is divided into two sub-matrixes: the left and the right 
sub-matrixes. The first refers to source symbols, whereas the right sub-matrix refers to 
parity symbols. Obviously, receivers must use the same parity matrix as the sender in 
order to successfully decode each source block. Sender and receivers obtain the parity 
check matrix via a predefined algorithm (depending on the type of LDPC structure). 
The algorithm generates the matrix using these input parameters: number of source 
symbols (k), number of encoding symbols (n), number of equations to which a source 
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symbol belongs to (N1) and seed used to generate the pseudorandom numbers. The 
sender signals all these parameters in the EXT_FTI header extension of LDPC so that 
receivers can generate the exact same matrix used by the encoder.  

Depending on the parity check matrix structure there are two kinds of LDPC codes: 
regular codes and irregular codes. In the first ones, all the rows of the matrix have the 
same degree and all the columns have the same N1 value, while irregular LDPC codes 
do not fulfill either condition. Gallager and Mackay codes are example of LDPC regular 
codes, whereas LDPC Staircase and Triangle are irregular codes.  

In this sense, FLUTE supports two specific structures of LDPC: Staircase and Triangle. 
These structures only differ in the right sub-matrix generation: one has a shape like a 
staircase, and the other like a triangle, as Fig. 2.11 shows. In the LDPC Triangle 
structure, the degree of each row is equal or higher than that of the LDPC Staircase 
structure. 

 
Fig. 2.11. Example of LDPC Staircase and LDPC Triangle matrix (k = 6, n = 11). 

2.3.2. RFC 5170 specifications 
The RFC 5170 [6], from June 2008, introduces the LDPC-Staircase FEC codes and the 
LDPC-Triangle FEC codes. Both schemes belong to the broad class of large block 
codes, according to the definition of the RFC of the FEC building block [12]. 

The RFC 5170 defines the parity matrix generation in both structures. With this 
purpose, it provides an algorithm that creates the parity matrix using certain input 
parameters. In both schemes, the algorithm is the same for the left sub-matrix but 
different for the right sub-matrix. For the creation of the matrix, the RFC proposes the 
use of the pseudorandom number generator algorithm of Park-Miller [30]. The RFC, as 
well, defines the fields of the LCT header extension EXT_FTI for LDPC, which 
includes the coding parameters, as Fig. 2.12 shows:  

 
Fig. 2.12. EXT_FTI Header for LDPC Staircase and Triangle.  
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Following each field is briefly explained: 

• HET: header extension type. It indicates the type of LCT header extension. 
EXT_FTI has a value of 64. 

• HEL: header extension length, meaning the length of the whole header 
extension field, expressed in multiples of 32-bit words. In this case, this value is 
equal to 5.  

• Transfer length: length of the transport object that carries the file in bytes. If no 
encoding is used, this value is equal to the file length. 

• Encoding Symbol Length (E): length of each encoding symbol in bytes, that is, 
the payload length of a FLUTE packet.  

• N1m3: represents the value N1 minus 3. Since the recommended value of N1 is 
3 (according to the RFC 5170), the recommended and default value of N1m3 is 
0, although it could have values from 0 to 7.  

• G: number of encoding symbols per group. If the value of this field is 1, it means 
that each packet contains exactly one symbol.  

• B: maximum source block length. It indicates the maximum number of encoding 
symbols generated for any source block. This field is split into two parts: the 
most significant bits (MSB) and the least significant bits (LSB). 

• max_n: maximum number of encoding symbols generated for any source block.  
• PRNG seed: this value is used to initialize the pseudorandom number generator. 

Regarding the decoding process, decoding consists in solving a system of n – k linear 
equations whose variables are the n encoding symbols.  There are different algorithms 
used to resolve this system. One of the simplest is the algorithm proposed in [31], 
where given a set of linear equations, if one of them has only one remaining unknown 
variable, then the value of this variable is that of the constant term. So, this variable is 
replaced in all the remaining linear equations and reiterate. Thus, the value of several 
variables can be found recursively. Another decoding algorithms are based on Gaussian 
elimination, which is more efficient (since it rebuilds the file using less encoding 
symbols) at the expense of more complexity and thus processing. 

2.4. Related work 
The FLUTE protocol has been established as the multicast file delivery protocol for 
different standards, such as DVB-H [9] and DVB-IPTV (DVB – Internet Protocol TV) 
[32]. Also FLUTE is used by the 3GPP Multimedia Broadcast Multicast Service 
(MBMS) [33] and evolved MBMS (eMBMS) [34] to download multimedia content. 
Fig. 2.13(a-b) show, as an example, the protocol stack of DVB-H and MBMS, 
respectively. As mentioned, both technologies use FLUTE to send different types of 
files, such as multimedia files, metadata or the Electronic Service Guide in DVB.  
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 (a)  IP datacast over DVB-H  (b) MBMS IP multicast 

Fig. 2.13. Protocol stack of DVB-H and MBMS. 

In this regard there are research works that analyze the use of FLUTE in DVB and 
MBMS. For instance, [35] presents FLUTE as a multicast content delivery protocol to 
be used by DVB-H and MBMS, making a comparison among different transmission 
protocols. On the other hand, [36] proposes a hybrid transmission network where 
FLUTE is used by DVB-H to broadcast multimedia content, whereas [37] develops a 
portable middleware for DVB-H clients. Also, other papers explore the use of FLUTE 
in MBMS, for example [38].  

But the use of FLUTE is not limited only for DVB and MBMS. For instance, [39] 
proposes the integration of FLUTE and TESLA (Timed Efficient Stream Loss-Tolerant 
Authentication) over satellite networks, whereas [40] presents an architecture for 
scalable DTN (Delay-Tolerant Networking) communication in sparsely populated areas 
based on FLUTE, similar to that proposed in [41].   

Apart from file distribution, other papers propose FLUTE to provide video on demand 
services, such [42]. Moreover, [43] introduces an efficient progressive downloading 
over multimedia broadcast multicast service using FLUTE. Another related solution to 
highlight is [44], which analyzes on-demand video services using ALC. 

Among the research works related to FLUTE, the paper that best analyzes the behavior 
of the protocol is, probably, [45]. This paper makes a complete analysis of FLUTE, 
evaluating the different configuration parameters of the protocol and how these 
parameters affect the transmission. Among the several contributions to the FLUTE 
protocol from the authors of [45], one of the most important has been the publication of 
an open source implementation of FLUTE, available in [46]. In fact, that 
implementation has been used in different research works, for instance in some papers 
that analyze AL-FEC codes. Other research works of these authors worth highlighting 
are: [47], which presents a bandwidth-efficient file delivery system using the server file 
format for FLUTE; [48], where the use of congestion control protocols in FLUTE is 
studied; and [49], which analyzes the impact of packet scheduling and packet loss 
distributions on FEC performances for content broadcasting applications. Regarding 
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LDPC, these authors have also published an open source implementation, in C 
language, of LDPC Staircase and LDPC Triangle codes for FLUTE applications [50]. 

In this sense, there are several works focused on LDPC codes, their efficiency, their 
applications and the proposal of new codes based on LDPC. In the context of this 
thesis, a complete comparison between the two LDPC structures supported by FLUTE 
(Staircase and Triangle) can be found in [51], which analyzes, among other parameters, 
the inefficiency ratio and the encoding/decoding time, typical evaluation parameters of 
error protection codes.  

Other studies are focused on the efficiency of the decoding process, since the algorithm 
used is a key factor that affects the decoding efficiency and the energy consumption on 
the receiver. For instance, [52] presents low-complexity LDPC codes using maximum 
likelihood decoding. On the other hand, [53] and [54] show how the use of a hybrid 
Zyablov iterative decoding/Gaussian elimination (ID/GE) scheme can improve the 
erasure recovery capabilities of LDPC Staircase and Triangle codes, approaching the 
performances of ideal codes. Another paper that presents an optimization of LDPC 
codes in terms of efficiency is [55].  

A new proposal to highlight is [56], based on LDPC Staircase codes, which proposes a 
Generalized Object Encoding (GOE) FEC scheme for the protection of one or multiple 
objects. This solution enables an Unequal Erasure Protection (UEP) of different 
portions of a given object and an efficient and global protection of a set of potentially 
small files. 

2.5. Implementation 

2.5.1. Introduction 
In the context of this thesis, an own implementation of a FLUTE server and a FLUTE 
client has been developed. This implementation is used in order to carry out the 
different evaluations presented in this thesis work.  

The first version of the implementation fulfilled the requirements of the RFC of FLUTE 
3926 (version 1) [7] and the RFC of LDPC Staircase and Triangle [6]. This 
implementation was updated with the new version of FLUTE (defined in RFC 6726 
[2]).  

As we have mentioned in the related work, there are two open source libraries available 
on the Internet that implement the FLUTE protocol [46] and LDPC (Staircase and 
Triangle) codes [50]. In contrast to these libraries, the implementation hereby presented 
is specifically developed for mobile devices, and it has been programmed using Java 
language instead C.  

Following subsections detail the file transmission server and the file transmission 
receiver developed, both based on FLUTE with LDPC (Staircase and Triangle) codes. 
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2.5.2. FLUTE server 
Fig. 2.14 shows the architecture of the file download server implementation, based on 
the FLUTE protocol. The FLUTE sessions and channels management and their delivery 
through ALC protocol is done by means of the corresponding classes. Each 
“FluteSession” contains at least one “FluteChannel”, which contains the different files 
sent during the session. Each file transmitted is represented by an object, represented by 
the class “FluteObject”. Each time a “FluteObject” is inserted in a certain session, 
automatically the FDT is generated or updated. The class “FluteManager” is in charge 
of managing both sessions, channels and objects, and generating the FDT. 

The packet delivery is carried out with a rate fixed by the class “RateControl”, using a 
transmission model managed by the “Scheduler” block. Specifically, the class 
“RateControl” manages the transmission rate and the “Scheduler” is in charge of 
sending packets according to a specified policy. For instance, packets can be sent 
sequentially or randomly. 

 
Fig. 2.14. File transmission server structure.  

The “ldpclib” library implements the LDPC encoder and decoder (both schemes 
Staircase and Triangle). This library creates the parity matrix, which defines the relation 
between source and parity symbols. Also, the transmitter creates the header including 
the coding parameters. In this way, the receiver can generate the same parity matrix and 
do the decoding. 

Regarding the “ldcplib” library, taking into account that the parity matrix is disperse, it 
has been developed a quadruple linked list for each row and column in order to reduce 
the memory consumption. Each non-null element of the parity matrix, represented by 
the class “LdpcEntry”, points to its “LdpcEntry” neighbors (up, down, right, left). The 
use of this quadruple linked list, apart from reducing computational resources, 
simplifies the decoding process. On the other hand, in order to generate the parity 
matrix it is used a pseudo-random generator called Park-Miller minimal Standard 
(PRNG), as specified by the RFC 5170. 

The library is built over Java SE (J2SE), so it can be used in any application that 
supports J2SE. The application allows to manage sessions and channels, configuring the 
corresponding parameters (IP Address, TSI, port and transmission rate), as well as 
adding different objects to each channel. Also, it is possible to choose for each object 
the coding used, specifying its code rate. 
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2.5.3. FLUTE client 
The FLUTE client structure, shown in Fig. 2.15, is very similar to the structure of the 
server and shares most of the code. 

 
Fig. 2.15. File client structure. 

The client is designed to support two different scenarios: mobile phone devices and 
PCs. This latter client is used to carry out the different evaluations, since it allows to 
manage the channel losses. In order to simulate these losses, in this thesis the two-state 
Markov model (also known as Gilbert model) has been used. We have chosen this 
model because it simulates well the burst losses (typical in wireless networks) and 
because it is widely used in literature [57]. In this way, our library includes a block that 
implements the two-state Markov loss model.  

In our study, the decoding is performed using a simple iterative decoding algorithm, as 
the flow chart of Fig. 2.16 shows. When a new packet arrives, if the packet has not been 
previously received, the client obtains the parity matrix associated to the block that the 
symbol belongs to and checks the rows related to that particular symbol. In our 
algorithm, the decoding is based on partial sum buffers in each row of the parity matrix. 
Each buffer contains the XOR sum of the received symbols of a row. When all packets 
of a row except one have been received, the data of the non-received symbol is the 
partial sum of the buffer of that row. In this way, it is possible to reconstruct a symbol 
that has not been received yet. 

As the case of the FLUTE server, the FLUTE client implementation is built over Java, 
therefore it can be used by any application that supports Java. Current technologies 
change very fast, so the obsolete implementation for J2ME has given way to a new 
application for Android devices.  
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Fig. 2.16. Packet reception flow chart.  

2.6. Use cases 

2.6.1. Introduction 
There are several environments where the use of multicast file delivery is very useful, 
mainly in environments where many users are interested in the same contents. In 
crowded locations (for example in some places of a city such as sights) users could 
benefit of receiving on their mobile devices different information (images, explanatory 
brochures, videos…) related to the place they are visiting. In these situations, it results 
interesting to send the same information (the same files) to a large number of people at 
the same time. 

That is, multicast file transmission is very useful in crowded environments where users 
have similar interests. Other examples are cinemas or theatres, popular festivals and 
celebrations, or sport environments. In this sense, as an example of broadcast content 
distribution in crowded environments we highlight Cisco StadiumVision Mobile [58], a 
solution that delivers content to mobile devices in sports and entertainment venues. 

A possible use case could be the transmission of different kinds of content in a 
basketball court: on the one hand the retransmission of the best moments of a match; on 
the other hand, information related to the shops within the court (burgers, clothes 
shops…) promoting their products and offering discount vouchers. This solution would 
benefit the three main actors implied: users would benefit of a better Quality of 
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Experience, shop owners would obtain more economic benefits due to the effect of 
advertisement, and the organization would increase its incomes (more users and more 
incomes from the shops).  

On the other hand, the performance of systems based on file transmission to multiple 
users can be greatly improved by using recommendation mechanisms, which help to 
filter the most interesting contents for the user. The use of recommender systems 
(specifically content-filtering recommenders) is really useful in environments in which 
there is not a direct communication between the users and the server, such as in 
multicast networks. This is especially important when the amount of contents sent is 
rather high. In this sense, Section 2.6.2 is focused on personalization. 

During the elaboration of this thesis the author has participated in different projects 
related to multicast content distribution, listed in the Appendix B. These projects 
represent good use cases that show the usefulness of the FLUTE protocol. Following 
sections present some of them. Specifically, Section 2.6.3 explains an architecture for 
content distribution in malls, Section 2.6.4 presents a personalized multimedia file 
distribution system for touristic environments, and Section 2.6.5 proposes background 
push content download services for the delivery of television programs.  

Finally, Section 2.6.6 proposes the use of a hybrid system FLUTE/DASH to provide 
mobile video streaming services over broadcast wireless networks.  

There are other use cases based on FLUTE in which the author of this thesis has 
participated. For instance, [36] presents a business model management platform for 
mobile multimedia delivery services through which service operators can enable several 
revenue streams simultaneously and users can access personalized content at an 
affordable cost [P.1]. On the other hand, [59] presents a multimedia on demand 
platform for emergency systems. The objective of this system is to offer a complete 
solution for providing multimedia services (video on demand and reliability file 
transfer) to a rescue team in an emergency situation. 

2.6.2. Personalization 
Personalization is one of the most important design aspects of mobile multimedia 
services [60]. Personalization provides many advantages to the user, for instance the 
automatic discovery of interesting content. The perception of the service adapting to the 
user preferences and needs encourages a positive experience, most significantly when 
accessed from personal devices such as mobile devices. 

Personalization is also a great asset for content distributors. An efficient and functional 
application favors the consumption of content, thus increasing the market share of 
mobile content production. Since users receive content according to their preferences, 
content distributors can rely on the platform delivering the content only to their target 
audience and advertisers can improve the impact of their campaigns. 

The information used by many recommender systems comes from two main sources: 
the user profile and the history. On the one hand, users can specify their preferences in 
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their user applications, by indicating, for example, their favorite genre of film or their 
favorite actors. On the other hand, the application can learn the preferences of the user 
by analyzing their history, for instance, films the user has consumed. In this way, with 
the information indicated by the user and their consumption history, the application can 
recommend new films to the users, discarding several films that do not fit the 
preferences of the user.  

Moreover, another interesting concept in personalization systems is the usage context. 
The concept of context refers to those information items that can be used to characterize 
the situation of entities (people, places or objects), which are relevant for the interaction 
among the user and the application [61]. In this sense, context-sensitive systems adapt 
their services according to the context information received, without any interaction 
from the user. To achieve this, it is desirable that both devices and services have access 
to context information and react accordingly. For instance, the user application detects 
(for example by means of GPS) that the user is in the cinema and automatically the 
mobile changes its state to vibration mode. 

In the literature we can find hundreds of works related to personalization, for instance 
[62] and [63]. Also, several works deal with personalizing intelligent environments, 
such as [64]. Moreover, there are different proposals that use context information to 
improve the performance of content distribution systems. Thus, [65] presents a state of 
the art of context-sensitive systems. In the area of context-aware mobile interaction, 
several proposals have been carried out to adjust the mobile configuration profile 
according to changes in the user context [66]. Also, there are proposals that allow users 
to personalize the mobile interaction depending on the context information [67].  

In the context of this thesis, regarding the FLUTE protocol, the personalization can be 
provided by using the File Delivery Table. Recall that the FDT carries metadata of the 
files that the FLUTE session is delivering. The structure of the FDT is flexible, 
according to the specifications of the RFC 6726. In this way, it is possible to add new 
elements and attributes to the FDT (by means of new labels) in order to include 
additional information regarding the contents sent. In fact, the standard DVB-H [9] 
proposes the use of an additional “group” field in the FLUTE FDT to enable logical 
grouping of related files. This is useful, for instance, in software update packages 
(which are usually composed of several files) or in web pages (which are usually linked 
to each other). 

Following the example related to cinema, Fig. 2.17 shows an example of an FDT 
including additional metadata. As figure shows, each element “File” includes new 
elements referred to the genre, the director and the actresses of a film.  

The problem of this structure is that there could be an infinite number of new elements, 
so receivers could have problems when parsing the FDT. In this thesis we propose the 
use of a general attribute called “Metadata”, which contains all the additional metadata 
of the file in a format dependent on each particular application. Fig. 2.18 shows an 
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example of the attribute proposed. In this way, only receiver applications interested in 
the metadata of the file would have to interpret these data. 

<?xml version="1.0" encoding="UTF-8"?> 
<FDT-Instance  

xsi:schemaLocation="http://www.comm.upv.es/flutefdt.xsd" 
Expires="2890842807"> 
<File 

Content-Location="http://www.comm.upv.es/killbill.mp4" 
TOI="1" 
Content-Type="video/mp4"> 
<Genre> “Thriller” </Genre> 
<Director> “Quentin Tarantino” </Director> 
<Actress> “Uma Thurman” </Actress> 
<Actress> “Lucy Liu” </Actress> 

</File> 
</FDT-Instance> 

Fig. 2.17. Example of an FDT with metadata.  

<?xml version="1.0" encoding="UTF-8"?> 
<FDT-Instance  

xsi:schemaLocation="http://www.comm.upv.es/flutefdt.xsd" 
Expires="2890842807"> 
<File 

Content-Location="http://www.comm.upv.es/killbill.mp4" 
TOI="1" 
Content-Type="video/mp4"> 
<Metadata> Director: Quentin Tarantino; Genre: 
   Thriller; Actress: Uma Thurman, Lucy Liu  
</Metadata> 

</File> 
</FDT-Instance> 

Fig. 2.18. Example of an FDT with the proposed metadata structure. 

Thus, the label “Metadata” could contain several attributes, and receivers could parse 
the metadata as long as they know the structure of the label. In the example, the name 
of each attribute is followed by colon, the elements of each attribute are separated by 
commas, and the attributes are separated by semicolons.  

Following subsection presents a use case where an appropriate configuration of the 
metadata in the FDT is essential to provide a good QoE to users. 

2.6.3. Shopping center 
An interesting use case is content distribution in malls, where clients can receive on 
their mobile devices through a wireless network (such as Wi-Fi) different information 
such as the catalogue of a certain shop or discount vouchers. 

In these scenarios there are two key premises to take into account: 

• On the one hand, the file distribution network. Providing multimedia content 
delivery services for a high number of users (each one with different 
preferences) gathered in a relatively small area is not an easy task. Current 
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solutions need great investments in order to be capable of satisfying the 
demand of a large amount of users. In overcrowded public spaces, basically, 
the bottleneck is the wireless access, which becomes saturated due to the 
amount of simultaneous connections, thus avoiding users to access available 
services with an acceptable quality. In these situations, it results very 
interesting to explode the use of broadcast networks, where contents are sent to 
all interested users over only one connection. 

• On the other hand, the personalization of the contents. Not all contents sent 
by the content server are relevant for all users since each user has different 
preferences and needs. Thus, content delivery should be personalized for each 
user according to their user profile in order to guarantee a good Quality of 
Experience. For example, a runner user in a shopping center may be interested 
in contents about sport sales. 

This use case presents a system for the delivery of personalized multimedia contents 
adapted to the users preferences and their context. This system allows the content server 
to broadcast multimedia contents to an unlimited number of users in an efficient 
manner, by using the FLUTE protocol.  

Also, the user context is used to download the most appropriates contents to each user 
according to their needs and preferences. In this way, in reception, relevant multimedia 
contents for each user are downloaded automatically, so users do not need to look for 
contents manually. When accessing to the mall, users register so as to inform the server 
about the arrival of a new user.  

Fig. 2.19 shows the main building blocks that compose the system as well as their 
interdependences. In the figure, we can see three main blocks: the content server, the 
content delivery server and the client. 

 
Fig. 2.19. Block diagram of the file distribution system [P.7]. 

First, the content server manages and provides the different contents and the available 
metadata. Each content has different metadata associated. For instance, a file can have 
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following metadata: “Fashion”, “Woman”, “Spring”. For each content, this block stores 
in a database the information needed in order to access both the content and the 
associated metadata. This information is related to the user context (e.g., location, time, 
etc.) and it is used by the content adaptation module so as to choose if a certain content 
is going to be sent or not depending on the users of the system. In this way, the content 
adaptation module adapts the contents to the different reception devices. Finally, the 
content manager sends the most relevant information for the user context to the content 
delivery server.  

Then, the content delivery server is in charge of broadcasting the files by means of the 
FLUTE server. The content adaptation module receives the most appropriate files for 
the user context from the content server. Contents are sent through sessions and 
channels using file carousels. These carousels are dynamic, so the files sent and their 
metadata can change during the transmission. As mentioned, the information about the 
files sent in each channel and session is sent through the FDT. Also, the FDT includes 
the metadata of each file, in the way we proposed in Section 2.6.2. On the other hand, 
the transmission channel is Wi-Fi. 

The client block receives all the contents from the FLUTE server and filters this 
information in order to personalize the contents for each user. In particular, the client 
application has a module (content adaptation module) that uses the information of the 
user profile, device features and context information to adapt to the multimedia contents 
to each user. This adaptation is carried out by means of two mechanisms. On the one 
hand, a pre-caching is used, downloading useful contents for users without the need of 
being requested by the application. In this way, the access time to some contents (the 
most appropriate for each user) is minimized, thus improving the QoE. In order to 
determine the utility of files for a user and manage the local storage capacity, content 
filtering techniques are used. On the other hand, the user interface is adapted to the user 
needs at each moment, minimizing the annoyance and therefore increasing the QoE of 
the user. For each situation, the system chooses the most appropriate interaction 
mechanisms for informing the user about new relevant contents downloaded. This 
adaptation is carried out by the content visualization module automatically.  

Finally, it should be noted that an appropriate configuration of both the FLUTE sessions 
and FLUTE channels can help to personalize the service more efficiently. For instance, 
it is possible to create as many channels as categories defined (one channel used to send 
fashion contents, another one for sports…). In this way, user applications only need to 
connect to those channels which are interesting for the user, thus reducing 
computational resources (and therefore battery consumption), which it is very important 
in mobile devices. 

A detailed explanation of this use case can be found in a paper submitted for 
publication [J.4]. 
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2.6.4. Touristic services 
This use case, similar to the previous one, is related to the provision of touristic 
services. Specifically, the multimedia tourism service presented in this use case targets 
mobile devices equipped with broadband and multicast (or broadcast) access 
capabilities. The service presents personalized tourism guides to visitors by 
implementing a personalization engine that adapts the content in the guide to the profile 
of the visitor. 

Tourists access the service through terminals equipped with the appropriate 
connectivity, i.e. broadband and broadcast access. When users access the service, they 
receive an electronic tourism guide in their mobile phones, consisted of a list of 
resources related to tourist locations, events, facilities or amenities in the tourist area. 
Apart from content assets, the platform operator can also include links to third-party 
services into the resource descriptions, through the mobile telephony network, such as 
sending message templates, get contact information, access to external links, make 
automated reservations, buy tickets, or hire a baby-sitter via web services. Thus, users 
can browse the list of touristic resources and then access an interactive multimedia 
description of each resource in the list. 

The electronic tourism guide is generated by a recommender engine every time a user 
access the service. The recommender uses the metadata information about each 
resource to create a personalized list of items for each user, taking into account the user 
preferences, their history and the experience of other users with similar profiles. For 
that purpose, the recommender engine communicates with the users profiles database 
and with the Content Management System (CMS) to obtain the assets offered by the 
tourist agency, as Fig. 2.20 depicts. 

But the main characteristic of this guide and the service is that the interactive 
multimedia descriptions of the resources are not delivered together with the tourist 
guide. Instead, the platform uses broadcast networks to distribute the most popular 
elements, while the rest are available through the broadband networks, together with the 
interactive services. When the user selects one of the resources, the client application 
fetches the associated description from either the broadcast or the broadband network, 
according to the access information provided by the tourism guide. In this way, the load 
of the networks is balanced in a transparent way for the user, reducing the congestion 
and improving the performance of the service. While the user browses the personalized 
list of resources, the client application joins the broadcast channel in order to cache the 
resource descriptions transmitted therein. When the user selects a resource it will first 
check the cache memory and in the event of a cache miss, it will access a web server to 
fetch the description of that particular service. Fig. 2.20 presents the temporal diagram 
of the service in a simple manner. 

The platform uses IP protocols (namely FLUTE and HTTP) to deliver the data. In this 
way, the service can be offered in a variety of networks, as long as there is support for 
IP multicast. This use case is described in [68]. 
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Fig. 2.20. Diagram of the touristic service [P.3]. 

2.6.5. Background push content download services 
This use case proposes the use of background Content Download Services (CDS) to 
deliver pre-produced television content through existing broadcast networks. The 
proposal is based on the use of residual capacity in broadcast networks to push popular 
and pre-produced content to storage capacity in customer premises equipment. This is 
possible since, due to the variable nature of video streaming, network operators dedicate 
a considerable amount of network resources to live streaming video, so there is an 
excess of reserved capacity that can be used to provision other services with no instant 
capacity requirements, such as unidirectional background push content download 
services.  
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As an example, Fig. 2.21 shows the architecture of the unidirectional background CDS 
proposed in [69]. A CDS delivers content using FLUTE from a content repository, 
together with metadata of the content sent (Content Descriptions). The Scheduler 
establishes the order at which files are delivered, according to parameters like their size 
or popularity. Later, the CDS is delivered over a background virtual channel by 
inserting packets from the CDS whenever there is capacity available in the network 
(Opportunistic Insertion). In this way, the CDS is delivered over the background 
channel, made of the residual transmission capacity in the reservations of the primary 
service (a television service). 

   
Fig. 2.21. Unidirectional background push CDS architecture [J.2]. 

Regarding the client side, the CDS client is based on the FLUTE protocol, as figure 
shows. The storage memory is controlled by the Storage Management, which ensures 
that the client uses only the storage capacity reserved for the background service. The 
Recommender uses feedback from user interaction and the metadata in the Content 
Guide to generate the User Profile. In this way, the Recommender is able to provide the 
Storage Management with an estimation of the usefulness of each content item. In turn, 
the Storage Management uses this information to filter the contents offered in the CDS, 
in order to keep in storage only the items that better fit the user preferences. This 
introduces some level of personalization to the service, thus improving the Quality of 
Experience. 

A detailed explanation of the architecture proposed in this use case as well as a 
complete evaluation of the different elements that build the system can be found in [69]. 
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2.6.6. Hybrid FLUTE/DASH for video delivery 
Apart from sending files, FLUTE can be useful to send video. Specifically, there are 
three general ways of consuming video: stored video, pseudo-streaming and live 
streaming. In this sense, the transmission of video for their posterior visualization 
corresponds to the case of a file delivery, once the video is completely downloaded the 
user can consume it. On the other hand, in pseudo-streaming users have to wait a 
certain time in order to consume the video. This time depends on the transmission rate 
and the buffer size. Finally, in live streaming users consume the video in real time 
without waiting.  

As we have mentioned in the related work, FLUTE and ALC can be used to send 
pseudo-streaming services. In this sense, this use case proposes the use of a hybrid 
FLUTE/DASH (Dynamic Adaptive Streaming over HTTP) to provide mobile video 
streaming services over broadcast wireless networks. This approach results rather 
innovative comparing it to current related work. Thus, it is worth highlighting the 
standards MBMS [33] and eMBMS [34] of the 3GPP Project, which propose the use of 
RTP (Real Time Transport Protocol) for video streaming and FLUTE to download files. 
Also, FLUTE is proposed to send information related to DASH (such as signaling or 
DASH segments). Unlike this use case, both standards do not propose FLUTE to send 
video nor DASH as a video repair service. A related reference is [70], which presents 
an overview of the challenges of mobile video streaming, such as DASH over eMBMS. 
In fact, this work explains the usage of FLUTE for transmitting DASH segments. In this 
sense, the use of the same segmentation scheme in both protocols can yield innovative 
ways to distribute video segments in wireless networks with broadcast or multicast 
support.    

DASH [71] is a new ISO (International Organization for Standardization) standard for 
the transmission of on-demand and live content with time-shifting capabilities. DASH 
is based on multimedia file segmentation. Each multimedia file is encoded in different 
qualities and every quality file is split into small portions called segments. In order to 
access the whole multimedia content, clients select which quality of each segment they 
want to download. DASH defines a manifest file, called Media Presentation Description 
(MPD), which describes the multimedia content, the different qualities and how the 
content is split into segments. Each video service is represented by a media 
presentation, which is a collection of time dependent media items, as shown at the 
bottom of Fig. 2.22. Media presentations are composed by a sequence of periods. 
Periods are time intervals along the duration of the media, which cannot overlap. Each 
period has different encoded alternatives, referred to as representations. 

The scenario regarded in this use case is depicted in Fig. 2.22. There are many 
interested clients inside the service area and the delivery of the video through unicast 
connections can cause congestion in the wireless link. In order to avoid this, video 
services use the hybrid broadcast/unicast streaming technology proposed in this use 
case. 
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Fig. 2.22. Hybrid FLUTE/DASH video delivery architecture [J.3]. 

Regarding the sampling and encoding processes, modern video encoders based on the 
MPEG-4 family of video coding standards, such as H.264/AVC, exploit adjacent 
frames and nearby pixel correlation to reduce temporal (inter-frame) and spatial (intra-
frame) redundancy as well as perceptually unimportant information. Thus, video frames 
are classified into I, P and B-frames, depending on the coding dependency. Following 
this scheme, a video stream is composed of fully decodable units called Group of 
Pictures (GoPs). Within a GoP, I-frames are encoded independently of any other frame 
in that GoP. Alternatively, P-frames use motion/estimation compensation based on 
information related to a previous frame. Finally, B-frames can reference previous and 
subsequent frames. Remark that this is a basic coding scheme, whereas state-of-the-art 
encoders support more advanced encoding combinations and techniques [72]. 
According to this basic coding scheme, if an error is produced during transmission in 
any I-frame, this error is propagated throughout the GoP due to inter-frame 
dependencies. However, errors in P or B-frames only affect dependent frames, causing 
lesser video distortions.  

After the encoding process the video is segmented according to a given segmentation 
policy, generating DASH segments and FLUTE blocks. The information related to the 
DASH segmentation is indicated in the MPD. Then, clients can access the segments 
through a FLUTE session and a DASH server. The flexibility regarding the 
segmentation of a video in FLUTE and DASH allows to combine both technologies to 
download video frames. It is worth noting that in FLUTE the encoding process is 
carried out in each block and thus, different blocks can use different AL-FEC codes. 
This allows to provide different protection to different blocks, so it is possible to use 
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UEP techniques in a simple way. Note that UEP has been proposed in several works 
regarding video streaming, such as [73]. 

In the proposal, presented in [J.3], each FLUTE block represents a video frame, and is 
formed by n encoding symbols: k source symbols and n - k parity symbols. In this use 
case, the AL-FEC block applies different AL-FEC code rates to source symbols 
belonging to I, P or B-frames, that is, Unequal Error Protection. I-frames have more 
protection (and therefore more parity symbols) than P and B-frames, since I-frames are 
more important, as discussed above. Also, blocks of different frames can have different 
number of symbols, depending on the size of the frame. It is worth remembering that 
the coding parameters regarding each block are included in a FLUTE extension header, 
in a format that depends on the type of coding used. 

Clients connect to the FLUTE multicast session (before the server starts the 
transmission) and filter the packets belonging to the objects they want to download. 
Thus, clients receive the different symbols that compose each block and rebuild the 
corresponding GoPs. The parity symbols received are used to recover the source 
symbols lost. If after applying AL-FEC decoding some packets have not been 
recovered, clients are able to request only the missing data to the DASH server through 
a unicast connection. As mentioned, clients discover the information referred to the 
DASH server by means of the manifest file (MPD), which identifies the alternative 
locations for each segment in their respective segment information descriptions.  

The way DASH carries out the segmentation is very flexible, and each segment could 
contain from only one video frame to several GoPs. In [J.3] it is considered that there is 
a DASH segment per GoP, and each GoP is further divided into sub-segments. In any 
case, in the event of losses, a client can request to the DASH server either the entire 
GoP, or only the bytes lost.  

Clients start playing the video when a certain number of GoPs are received, thus 
providing low initial start-up latency. This number depends on the buffer of the client. 
In order to provide a continuous playback of the video, the transmission bandwidth has 
to be higher than or equal to the playback rate of the video. When clients are displaying 
the content of GoP n, they are receiving packets of following GoPs through the hybrid 
FLUTE/DASH network. On the other hand, the FLUTE transmission rate and the 
number of requests to the DASH server depend on the bandwidth available to fulfill 
with the playback rate condition. 

A complete evaluation of this use case is presented in [J.3]. As a general conclusion, the 
proposed hybrid broadcast/unicast architecture based on FLUTE and DASH can help to 
reduce considerably the bandwidth without degrading neither the video quality nor the 
start-up latency, thanks to the use of AL-FEC mechanisms to repair data (especially 
when using UEP techniques) and DASH to recover lost frames. 
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2.7. Conclusions 
This chapter has presented the state of the art related to the most important technologies 
used within this thesis. Specifically, this chapter has explained in detail the FLUTE 
protocol as well as LDPC codes, presenting the related work. 

Furthermore, this chapter has also presented an implementation of a file transmission 
server/client based on the FLUTE protocol, which includes an LDPC library for 
encoding/decoding purposes. This implementation has been developed in the context of 
this thesis in order to evaluate the several studies presented in this work. 

On the other hand, the different use cases explained have been useful to know some of 
the multiple applications of multimedia file distribution in multicast networks. Among 
them, we have seen how multicast file delivery is useful in crowded environments such 
as sports events or tourist sites. Also, we have explained background push content 
download services and we have presented a hybrid FLUTE/DASH system to provide 
video delivery services.   

In this sense, the use of personalization mechanisms allows to improve the Quality of 
Experience of users in multicast file delivery. Also, in all use cases presented, one of 
the key elements is to offer a reliable service, minimizing the effect of errors in the 
transmission. In this sense, following chapters of this thesis work analyze in depth the 
use of AL-FEC mechanisms based on LDPC codes. 
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Chapter 3 

Evaluation of LDPC Staircase and LDPC Triangle 
codes 

FEC mechanisms improve the reliability of IP content transmissions through the 
recovery of packets lost. Opposite to ARQ, FEC mechanisms are especially suited to 
unidirectional environments or to multicast environments where multiple receivers 
perceive different channel losses, thus making difficult the implementation of 
mechanisms based on feedback information. Among the different types of FEC codes, 
this chapter presents a thorough performance evaluation of LDPC codes, based on an 
implementation developed in the context of this thesis, according to the specifications 
defined by RFC 5170 for the usage of LDPC codes by push content applications based 
on the FLUTE protocol. LDPC codes provide a good trade-off between performance 
and complexity, hence, they are appropriate for mobile applications. Contributions of 
this chapter include tests conducted with commercial mobile phones connected to the 
push content download server over a Wi-Fi network. The evaluation highlights the 
advantages of using packet level FEC encoding in file transmission over unidirectional 
networks and provides with a comparison between two kinds of LDPC structures: 
Staircase and Triangle. This is accomplished by calculating the inefficiency ratio as 
well as the download time of a file using these LDPC structures in different 
environments. Results show that the implemented LDPC codes can provide inefficiency 
ratios close to one when the different coding parameters (as the code rate or the number 
of blocks) are configured to an optimal value that depends on the packet loss rate. Also, 
results reflect how an appropriate configuration of the coding parameters can reduce the 
download time. 
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3.1. Introduction 
This chapter evaluates LDPC Staircase and LDPC Triangle codes, which were 
explained in Chapter 2. Apart from comparing both LDPC structures, the results also 
present a comparison of these structures regarding Compact No-Code, that is, the 
coding where no FEC is applied (No-FEC).  

Section 3.2 explains the methodology used to carry out the evaluation. The evaluation 
parameters are presented as well as the different studies (detailing their configuration 
parameters). The performance of the implementation of LDPC codes has been assessed 
through several tests, which are presented in Section 3.3. Finally, Section 3.4 presents 
the main conclusions of this chapter. 

3.2. Evaluation methodology 
In the tests carried out, two different scenarios have been proposed, as Fig. 3.1 shows. 
In the first scenario the server and the client are in the same machine to avoid 
uncontrolled packet loss in the network. In order to simulate packet losses in the 
channel, a two state Markov model has been implemented in the FLUTE client.  

In the second scenario, the FLUTE client is a mobile phone and connects to the server 
through a Wi-Fi channel. In this sense, one of the main contributions of this chapter is 
the evaluation of LDPC codes with mobile devices through wireless networks. 

 
Fig. 3.1. Testbed.  

In order to see the losses detected in the wireless channel in our scenario, a study over 
the Wi-Fi multicast losses is presented. The study has been carried out in a typical 
laboratory indoor environment, in which there are several computers and access points. 
The measurements assessed the number of packets per cycle received by the mobile 
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terminal, so it is possible to calculate the percentage of lost packets. Fig. 3.2 depicts the 
results of a study made between 9.30 am and 1.00 pm.  

  
Fig. 3.2. Evaluation of losses in Wi-Fi in laboratory environment. 

As figure shows, the percentage of losses is time-dependent. In general, the percentage 
of losses in our trial environment is between 15% and 25%. In order to obtain accurate 
measurements, the tests carried out (which are presented in the next sections) have been 
done in different days and hours, using different transmission rates.  

On the other hand, the parameters evaluated in this chapter are: 

• Inefficiency ratio: represents the relation between the number of received 
packets needed to decode a file and the number of source packets that make up 
the file. The less the inefficiency ratio the more efficient is the coding. Ideally 
this value is 1. 

• Download time: time passed since the client receives the first packet of the file 
to download until the file is completely downloaded. 

• Number of carousel cycles needed to rebuild the file to download. In the studies 
carried out we use carousels to send files. In this way, clients can complete their 
downloads if they have suffered packet losses in previous transmissions of the 
file. 

Table 3.1 shows the coding parameters used in each study (presented in Sections 3.3.1-
3.3.6), emphasizing in bold and italics the parameters evaluated in each case. In the 
table, tD refers to the download time. The file size is expressed in packets with a 
payload size of 1428 bytes. We have used this value according to the results presented 
in [45], and taking into account the maximum transfer unit (MTU) of Ethernet (1500 
bytes). On the other hand, the transmission rate used is 5 Mb/s, although the 
conclusions obtained are independent on the transmission rate. Finally, the number of 
measurements accomplishes good 99% confidence intervals in all scenarios.  
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Table 3.1. Study parameters. 

Study 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 

Evaluation 
parameter 

ncycles, 
tD 

Inef. ratio, 
tD 

Inef. ratio, 
tD 

Inef. ratio, 
tD 

Inef. ratio, 
tD 

Inef. ratio, 
tD 

Tx. Model Sequential Sequential, 
Random Random Random Random Random 

Code rate 2/3 2/3 [0.2, 0.9] 2/3 2/3 2/3 

File size 
(packets) 1500 1500 1500 [10, 

10000] 1500 1500 

Blocks 1 1 1 1 [1, 150] 1 

N1 3 3 3 3 3 [3, 8] 

Channel Simulated Simulated Simulated, 
Wireless 

Simulated, 
Wireless 

Simulated, 
Wireless 

Simulated, 
Wireless 

3.3. Results and analysis 

3.3.1. Number of rebuilding cycles and download time 
The first study shows the number of cycles that one client needs to rebuild a file as well 
as the download time based on the channel losses, which are simulated with a two state 
Markov model. It should be remembered that, in this model, p indicates the probability 
that a packet is lost when the previous was received, and q indicates the probability that 
a packet is received when the previous was lost. A brief explanation of the Markov 
Model can be found in Chapter 4 (Section 4.3.2). The graphs of Fig. 3.3 show the 
results obtained regarding the number of cycles. 

  
 (a) No-FEC (b) LDPC Staircase (c) LDPC Triangle 

Fig. 3.3. Number of cycles depending on coding. 

Noting the scale of each graph, we can clearly see the convenience of using coding (in 
LDPC, 15 cycles are not exceeded, whereas in No-FEC it arrives until almost 100 
cycles with high losses). The tendency is the same in the three codes, but the difference 
between them is higher when the losses increase. In low-loss environments (that is, 
when p is low and q is high), the graphs show that LDPC codes (both Staircase and 
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Triangle) present a more stable behavior and close to 1, whereas when no coding is 
used the number of cycles grows fast with a slight increase of the losses. 

Obviously, the results of the download time offer the same conclusions, since the 
download time is directly related to the number of cycles needed to rebuild the file, as 
Fig. 3.4 shows (note again the different scale of No-FEC). 

  
 (a) No-FEC (b) LDPC Staircase (c) LDPC Triangle 

Fig. 3.4. Download time depending on coding. 

Comparing both LDPC structures, we can see that the results regarding the number of 
cycles and the download time are very similar. In following studies we will analyze in 
further detail the differences of these two structures. 

3.3.2. Transmission model 
This study shows how the transmission model affects the coding efficiency. To that 
extent, two models are analyzed: a sequential model, in which packets are sent in order 
(first source symbols and then parity symbols); and a random model, where packets are 
transmitted randomly (interleaving source and parity symbols). First, the inefficiency 
ratio is analyzed. The results are depicted in the graphs of Fig. 3.5. 

The figures show that in typical lossy environments (low p and high q), the random 
transmission model has a better behavior and is more efficient than the sequential one. 
That is logical if we consider that, in wireless channels, losses are usually produced in 
bursts and, as in LDPC codes a parity symbol depends on the previous symbol, the loss 
of consecutive packets prevents the rebuild of the source symbol. With high losses the 
behavior of both models is similar. 

                  
 (a) LDPC Staircase, Sequential (b) LDPC Staircase, Random 
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 (c) LDPC Triangle, Sequential (d) LDPC Triangle, Random 

Fig. 3.5. Transmission model evaluation (inefficiency ratio). 

On the other hand, the evaluation of the download time using the random transmission 
model is shown in Fig. 3.6:  

  
 (a) No-FEC (b) LDPC Staircase (c) LDPC Triangle 

Fig. 3.6. Download time depending on coding (random model). 

Comparing this figure with the results presented in Fig. 3.4, we can see that both 
transmission models offer similar download times, overall when losses are high. 

According to these conclusions, the evaluations presented throughout this thesis 
dissertation will consider the random transmission model. 

3.3.3. Code rate 
As mentioned, the code rate is a basic parameter of push content download services. It 
is defined as k/n, that is, it represents the relation between the number of source 
symbols and the number of encoding symbols of a file. The number of parity symbols 
is, hence, n - k. Another parameter used is the FEC ratio, defined as n/k, which is the 
inverse of the code rate.  

Fig. 3.7 shows how the code rate affects the inefficiency ratio in a lossless channel (the 
code rate axis has been expanded in order to see in detail the behavior of each 
structure). 
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Fig. 3.7. Code rate evaluation in a lossless channel (inefficiency ratio). 

The higher the code rate the lower (and the better) the inefficiency ratio. Figure shows 
that LDPC Staircase structure is more efficient when the code rate is lower than 0.4, 
whereas LDPC Triangle provides better results for code rates higher than this value. 
Although for values of code rate larger than 0.4 the difference between both structures 
appears to be small, it could be very meaningful when big files are sent. 

As the code rate is higher, less parity packets are sent, so in lossless environments the 
inefficiency ratio will be lower (since less “useless” packets are received). Ideally, in a 
lossless channel, if the code rate is 1 (that is, no coding is used) the inefficiency ratio is 
1. But, unfortunately, most of channels have losses. Before seeing the analysis in a 
wireless environment, we study the behavior in a loss environment, modeling losses 
with the two state Markov model. Fig. 3.8 shows the evaluation of the inefficiency ratio 
of LDPC codes in an emulated channel with parameters p = 0.1 and q = 0.3, which 
represents a packet loss rate of 25% according to Chapter 4 –equation (4.7). 

 
Fig. 3.8. Code rate evaluation in a loss channel (inefficiency ratio), p=0.1, q=0.3. 

We conclude that for choosing an appropriate code rate it is necessary to bear in mind 
the losses of the channel. Using high code rates could cause that the information is not 
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protected appropriately, hence increasing the inefficiency ratio. For instance, for the 
channel evaluated in Fig. 3.8, the best code rate is 0.7. In this sense, we arrive to the 
same conclusion when evaluating the download time in the same losses environment 
(Fig. 3.9). In Chapter 4 we will analyze in detail that there is an optimum code rate that 
minimizes the download time for each percentage of losses.  

 
Fig. 3.9. Code rate evaluation in a loss channel (download time), p=0.1, q=0.3. 

Moreover, the behavior of the code rate has been tested in a Wi-Fi environment with 
mobile devices. Fig. 3.10 gathers the results of this study, where the conclusions 
reached in the previous studies still hold. LDPC Staircase is more efficient with code 
rates lower than 0.4, whereas for code rates higher than 0.4 the behavior of both LDPC 
structures is similar. Depending on the channel, there are code rates that minimize the 
inefficiency ratio. The values of the inefficiency ratio are rather higher than in the Fig. 
3.7, due to the losses of the channel. 

 
Fig. 3.10. Code rate evaluation with a mobile device in Wi-Fi environment. 

3.3.4. File size 
As we have seen, using any coding mechanism makes the transmission more efficient. 
This improvement depends on the size of the information sent. Fig. 3.11 shows a 
comparison among LDPC (an average of LDPC Staircase and LDPC Triangle codes) 
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and No-FEC regarding the inefficiency ratio for different file sizes. The study has been 
carried out in a Wi-Fi channel. 

 
Fig. 3.11. Comparison between No-FEC and LDPC depending on file size in a Wi-Fi channel.  

The behavior of the two coding mechanisms is completely different. With No-FEC the 
larger the file size, the higher (and worse) the inefficiency ratio, whereas with LDPC 
the opposite holds. The advantages of using FEC coding are more evident when large 
files are sent.   

A deeper study of LDPC depending on file size is explained next. First, using a channel 
with no losses. The results are shown in Fig. 3.12.  

 

Fig. 3.12. File size evaluation in a lossless channel (inefficiency ratio). 

LDPC codes are more efficient when large files are sent, as the graph shows. For 
instance, with files of 10 000 packets size (over 14 MB), for the Triangle structure the 
inefficiency ratio is 1.0593. This means that it is only needed to receive a 5.93% more 
of the packets which make up a file to rebuild it. That is, reliability is being provided to 
the communication but without increasing the rebuild time in reception excessively. 
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With regard to the LDPC structure, the figure shows that both structures have a similar 
behavior although, in general, Staircase offers better results than Triangle with small 
files, whereas with large files LDPC Triangle has a better inefficiency ratio. 

The study in a wireless environment reflects the same behavior of both structures, as 
Fig. 3.13 shows.  

 

Fig. 3.13. File size evaluation with a mobile device in a Wi-Fi channel (inefficiency ratio). 

It should be highlighted that the conclusions reached regarding the file size and the code 
rate are consistent with those found in [51].  

Regarding the download time, as expected, the download time increases linearly with 
the size of the file. Once again, LDPC Staircase and LDPC Triangle provide similar 
download times for all file sizes.  

 

Fig. 3.14. File size evaluation in a lossless channel (download time). 

3.3.5. Number of blocks 
A related study is the number of blocks in which a file is divided. In this sense, Fig. 
3.15 shows the inefficiency ratio measured when the number of blocks changes.  
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Fig. 3.15. Number of blocks evaluation in a lossless channel (inefficiency ratio). 

The inefficiency ratio increases with the number of blocks used and therefore, in terms 
of efficiency, it is better to use one block in the delivery of files. That is logical 
considering that, if a high number of blocks is used, each block has fewer packets and, 
as we have seen before, LDPC codes are less efficient with small files. Nevertheless, it 
could be convenient to use more than one block in order to reduce the memory 
consumption. 

Fig. 3.16 shows the behavior in a mobile device using a Wi-Fi channel.  

 

Fig. 3.16. Number of blocks evaluation with a mobile in a Wi-Fi channel (inefficiency ratio).  

The results are very similar to those shown in Fig. 3.15, except for the value of 1 block. 
The tendency is the same: the higher the number of blocks, the higher the inefficiency 
ratio. The LDPC Staircase structure has a better behavior than Triangle when the 
number of blocks increases. 

The download time is also affected by the number of blocks: the less the number of 
blocks the lower the download time, as Fig. 3.17 shows for a lossless channel: 
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Fig. 3.17. Number of blocks evaluation with a mobile in a lossless channel (download time). 

3.3.6. Number of 1s in the parity check matrix 
In the parity matrix creation (specifically in the left submatrix), each source symbol can 
be part of a certain number of equations (N1). This number is fixed for each matrix and 
it is usually equal to 3, as the RFC 5170 [6] recommends. Fig. 3.18 shows the 
inefficiency ratio obtained when N1 varies between 3 and 8 (values under 3 are not 
allowed), in an evaluation through a lossless channel.  

 
Fig. 3.18. N1 evaluation in a lossless channel (inefficiency ratio). 

Similar results are obtained when the same study is done in a wireless environment, as 
Fig. 3.19 presents. Both figures show that the inefficiency ratio increases when the 
parameter N1 is higher. Moreover, the Staircase structure results more efficient than the 
Triangle one when N1 grows. Additionally, the download time evaluation also proves 
the convenience of using a low value of N1, as Fig. 3.20 depicts. 
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Fig. 3.19. N1 evaluation with a mobile device in a wireless channel (inefficiency ratio). 

 
Fig. 3.20. N1 evaluation with a mobile device in a lossless channel (download time). 

Nevertheless, the results depend on the decoding algorithm used. In our case, we have 
used a simple iterative decoding algorithm (explained in Section 2.5.3) due to its 
simplicity and its low memory consumption. As we presented in the related work 
(Section 2.4), there are several studies (such as [52] and [53]) that show that using 
another decoding algorithms (for instance the ones based on Gaussian elimination 
scheme) allows to reduce the inefficiency ratio. Those studies reflect that, using a 
Gaussian elimination scheme, the increase of N1 means a lower inefficiency ratio for 
LDPC codes, at the expense of increasing the memory consumption. 

Therefore, we conclude this study saying that, using a simple iterative decoding 
algorithm, an increase of N1 does not mean an improvement in the inefficiency ratio 
nor in the download time, so the optimal value is N1 = 3. 
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3.4. Conclusions  
LDPC codes allow to reduce considerably the number of cycles needed to reconstruct a 
file and, therefore, the download time. This reduction is bigger in channels with high 
losses.  

On the other hand, the packet delivery scheduling is a parameter that affects the 
efficiency of the content push download service. In environments with low losses, a 
random delivery model is more efficient than the sequential one, since it is more 
resilient to burst packet losses.  

LDPC is more efficient with large files and when only one transmission block is used. 
Regarding LDPC Staircase and LDPC Triangle, both structures offer similar values of 
inefficiency ratio and download time for different configurations although, in general, 
LDPC Staircase is more efficient with code rates lower than 0.4 and when short files are 
sent. In the experiments made with mobile devices in a Wi-Fi network, although the 
results of the inefficiency ratio and the download time are worse, the conclusions that 
we have reached are the same. Anyway, the difference between these two structures is 
pretty minimal. 

On the other hand, one of the parameters that affects the memory consumption is the 
decoding algorithm. The use of other algorithms, such as the Gaussian elimination 
scheme, improves the inefficiency ratio but increases the required memory by the 
terminal.  

Finally, the optimal coding parameters in each case (code rate, number of blocks…) 
depend on the transmission characteristics: channel losses, files sent or processing 
capacities of the receivers. In this sense, the following chapter presents how the 
performance of LDPC codes can be improved by using an adaptive mechanism 
according to the losses perceived by the clients. 

As a result of the work presented in this chapter, we have published a paper in a 
national conference [C.6] and in an international journal [J.5]. 
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Chapter 4 

Adaptive LDPC AL-FEC codes 

This chapter proposes the use of adaptive LDPC AL-FEC codes for content download 
services over erasure channels. In adaptive LDPC codes, clients inform the content 
download server of the losses they are experiencing. Using this information, the server 
makes FEC parity symbols available to the client at an optimum code rate. This chapter 
presents an analytical model of the proposed adaptive LDPC codes. The model is 
validated through measurements performed with an application prototype. Additionally, 
results show the performance of these codes in different scenarios, compared to the 
performance of non-adaptive AL-FEC, optimum LDPC AL-FEC codes and an ideal 
rateless code. Adaptive LDPC AL-FEC codes achieve download times similar to ideal 
rateless codes with less coding complexity, at the expense of an interaction channel 
between server and clients. 

4.1. Introduction 
In this chapter, the code rate of an LDPC AL-FEC code is adapted to the erasure rate of 
the channel as perceived by a particular user. During the transfer process, clients report 
on the erasure rate they perceived. If needed, the server generates additional FEC rate 
and inserts it in a multicast channel, so that receivers are notified about the availability 
of additional FEC parity data and start processing it. The performance of these proposed 
adaptive LDPC AL-FEC codes is compared to rateless codes, non-adaptive LDPC AL-
FEC codes and optimum LDPC AL-FEC codes. The optimum LDPC AL-FEC codes 
are an ideal implementation of adaptive LDPC codes where the feedback received by 
the clients is instantaneous.  
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The rest of the chapter is structured as follows. Section 4.2 presents the test case 
scenario that sets the basis for the measurements. Section 4.3 analyzes mathematically 
adaptive LDPC codes, whereas Section 4.4 describes the methodology used for the 
measurements. Section 4.5 includes the theoretical and the experimental results and 
their corresponding analysis. Finally, the last section includes some final conclusions 
about the study.  

4.2. System overview 
The system proposed uses a hybrid unicast/multicast content delivery mechanism to 
provide content to users within the boundaries of the service area. It is assumed that the 
overall capacity of the wireless access is shared between unicast and multicast 
connections and that there is a limited bandwidth for multicast connections. It is also 
assumed that users experience a slowly varying channel. Moreover, it is assumed that 
files in the carousel may change with time. This system may be provided on top of any 
wireless network technology with multicast support, such as Wi-Fi. 

During the delivery process, clients and server use a reporting mechanism through 
which the server obtains an estimation of the erasure rate perceived by every user. If 
required, the server generates AL-FEC parity and inserts it in the wireless media. All 
parity symbols belonging to a code rate are inserted on a separate FLUTE channel. 
Therefore, every client receives the base ALC layer, with encoding symbols belonging 
to the base FEC rate and, after some time, they also subscribe to a second ALC channel 
in which they receive additional AL-FEC parity at a rate adapted to the erasure rate that 
the user experiences. 

Obviously, all multicast channels share the overall maximum bitrate allocated for 
multicast in the wireless access. Also, multicast and unicast traffic compete for network 
resources. For this reason, there is no multicast traffic until there are a sufficient number 
of requests for a content item. Similarly, there are no AL-FEC parity channels until 
users need it. In order to upper bound the maximum number of channels, all users that 
experienced similar losses are prompted to join the same multicast channel for 
additional parity data. By separating the parity packets in different channels according 
to their encoding rate, receivers only need to process AL-FEC packets at an optimal rate 
for their channel losses. This multicast scheme achieves lower resource consumption in 
clients, which is appropriate for mobile devices.  

Fig. 4.1 shows a general overview of the proposed scenario. 
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Fig. 4.1. System overview for adaptive AL-FEC codes. 

4.3. Theoretical analysis 
This section analyzes mathematically adaptive LDPC codes. The main goal is to 
calculate analytically the download time for multicast FLUTE file transfer services 
using adaptive LDPC codes. The download time is defined as the time elapsed from a 
download request until the file is completely downloaded to storage memory. The last 
encoding symbol received establishes this download time. In this study, each FLUTE 
packet contains exactly one encoding symbol.  

Regarding the transmission, the server sends files cyclically in a file carousel. In order 
to calculate the download time, it is necessary to know the minimal number of times a 
carousel is sent, that is, the minimal number of cycles or loops needed by a client to 
download a file. This number will in turn depend on the packet losses of the 
communication channel between server and client. [45] presents a mathematical model 
valid for channels with uniform channel losses. In the methodology applied in this 
chapter, a Markov model models the channel packet losses, in order to account for the 
characteristic burstiness of wireless communication channels. The next subsection 
(Section 4.3.1) describes the model for carousel retransmissions, where the expected 
number of cycles is derived from the expected number of packets received every cycle. 
Section 4.3.2 describes how the Markov model is applied to the calculation of the 
expected number of packets received per cycle. Finally, Section 4.3.3 presents an 
algorithm to calculate mathematically the download time.    

4.3.1. Analysis of carousel retransmissions 
The probability of receiving new packets is different depending on whether or not the 
AL-FEC is applied. When No-FEC is used, the probability of receiving x new packets 
at any given loop can be modeled by a hypergeometric distribution: 
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where n is the number of symbols or packets (as there is no FEC, n = k) of the file, l is 
the number of lost packets per loop and m represents the number of missing packets at 
the beginning of the loop. The denominator expresses the probability of receiving n - l 
packets in a carousel cycle. Similarly, the numerator expresses the probability of 
receiving exactly x new packets of the m missing packets out of the received n - l 
packets.  

The range of all possible values for x is [0, m]. Thus, the latter probability yields the 
following expression for the expectation value of the number of packets correctly 
received at loop i: 
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The number of cycles needed to download a file can be estimated using the following 
equation:  
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Similarly, if AL-FEC is used, the probability of receive x new packets at any given loop 
is defined by 
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where, in this case, n is the number of encoding symbols (source symbols plus parity 
symbols), r is the number of received symbols at the beginning of the loop and l is the 
number of lost packets per loop. It should be noted that this expression is equal to (4.1), 
making the substitution m = n - r. In this case, the expectation value is defined by 
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Then, an estimation of the number of cycles is provided by the following expression:  
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It is important to remember that in order to rebuild a file successfully, clients have to 
receive a number of packets slightly higher than the number of packets that compose 
the file. This condition is reflected by considering the inefficiency ratio, as explained in 
Chapter 2.  

4.3.2. Markov model channel 
The Markov model [57], widely used in the literature, simulates well the burst losses, 
typical in wireless networks. Specifically, the two-state Markov model (also known as 
Gilbert model) establishes that the probability of losing a packet depends on whether 
the previous packet has been received or not, as Fig. 4.2 shows. Thus, in a bursty 
wireless channel, it is more likely to lose a packet if the previous packet is lost (1 – q > 
p).  

 

Fig. 4.2. State transition diagram for an example simplified Gilbert model. 

The main parameters that characterize a lossy communication channel are the average 
loss probability (Ploss) and the average burst size (b). An appropriated configuration of 
the parameters p and q allows to model a channel with a given loss probability and burst 
size: 

 .1               ,
q
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+

=   (4.7)  

Fig. 4.3 depicts a state transition diagram defined by applying this model to the FLUTE 
transmission with carousels and considering that in each cycle of the carousel the server 
sends n packets. Each state in the diagram contains a pair (x, y) of numbers, where x is 
the number of packets received in the current loop, and y indicates if the last packet was 
received (0-ON) or not (1-OFF). Thus, there will be 2n + 1 possible states in the 
transition diagram.  
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Fig. 4.3. State transition diagram for the Markov model in the transmission of n packets. 

The transition matrix associated, with dimensions [(2n + 1) x (2n + 1)], is 
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The probabilities vector is a [2n + 1] vector that indicates the probability of being in 
each state: 

 ( ).      )( 0,0,21,10,11,00,0 nPPPPPPi ⋅⋅⋅=Π  (4.9) 

Therefore, the probabilities vector in the iteration i (that is, after i packets have been 
sent) is  

 ,)0()( iTi Π=Π  (4.10) 

where T is the transition matrix and Π(0) is the initial probabilities vector. Considering 
that initially the system is in the state ON, since at the beginning no packets have been 
received, Π(0) is 

  ).0  0 0 0 1()0( ⋅⋅⋅=Π  (4.11) 

In this way, the average number of packets received after i iterations is calculated 
adding up the number of packets of each state multiplied by the probability of being in 
each state: 
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The total number of packets received in a loop is provided by applying (i = n) in (4.12). 
Hence, the estimated number of lost packets per cycle is equal to 

  ).(nNnl −=  (4.13) 

With this value, the number of cycles needed to download a file is calculated using 
formulas (4.1)-(4.6). 

4.3.3.  Analysis of adaptive LDPC 
As explained above, when using adaptive LDPC, clients will receive the file with No-
FEC parity until they are able to join their corresponding parity channel. Thus, in order 
to model adaptive LDPC there is a need to combine the two methods described above, 
corresponding to the cases where AL-FEC is used and where it is not. This section 
presents an algorithm that performs such a combination to calculate the average 
download time using adaptive LDPC codes. 

Basically, the algorithm hereby proposed (Algorithm 4.1) calculates the number of file 
packets downloaded by applying the method presented above for No-FEC for every 
cycle up to feedback time. If the file download is not finished at feedback time, then the 
algorithm applies the method for AL-FEC.  

The algorithm uses the formulas presented in the previous sections, using the following 
input parameters: the values p and q from the Markov loss model, the number of 
packets that make up a file without FEC (k), the transmission rate (b), the packet size 
(S) and the feedback time (t_fd).  

Moreover, in order to implement adaptive LDPC, Algorithm 4.1 has also as input 
parameters the code rate used to do the coding process and the inefficiency ratio derived 
from this code rate. These are two key parameters in the performance of the algorithm. 
Optimum values of code rate provide the minimum values for the download time. In 
this sense, the value of the inefficiency ratio is strongly dependent on the code rate, as 
we analyzed in Chapter 3. As mentioned, the inefficiency ratio depends on the type of 
coding, and low values of inefficiency ratio reduce the download time. 

It is worth mentioning that it is necessary to take into account that the download can 
finish during a cycle, that is, before all packets of a file have been sent. For this reason, 
dichotomy Algorithm 4.2 and Algorithm 4.3 adjust the download time, obtaining the 
percentage of the last cycle in which the download has finished. This adjustment can 
have a great impact on the download time if the cycle time is very high. Specifically, 
Algorithm 4.2 adjusts the download time when No-FEC is applied (used in part 1 of the 
main algorithm) and Algorithm 4.3 adjusts it when adaptive LDPC is applied (used in 
part 2 of the main algorithm). Algorithm 4.2 and Algorithm 4.3 have as input 
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parameters those that appear in equations (4.1) and (4.4), respectively. Algorithm 4.2 
has also as input parameter the value of m from the previous cycle to the cycle where 
the download has finished, whereas Algorithm 4.3 has the r of the previous cycle. 
Moreover, Algorithm 4.3 has the inefficiency ratio as input parameter. 

Note that, when several blocks are used it is necessary to modify the proposed 
algorithm. In the modified algorithm, it is needed to take into account that the feedback 
message will arrive when a specific block is being received. Hence, some blocks can be 
received without FEC, other blocks can be received without FEC and then with 
optimum LDPC, and still other blocks can be received only with optimum LDPC. 
Therefore, the last block downloaded will determine the download time. 

Algorithm 4.1: Adaptive LDPC 

 INPUT: p, q, k, S, b, t_fd, coderate, inef_ratio 
 OUTPUT: download_time 
 1: Initialize (num_cycles1 = 0, num_cycles2 = 0) 
 2: Calculate in which cycle the feedback message (c_fd) arrives 
 Part 1: No-FEC 
 3: while (not all packets have been received and num_cycles1 + 1 < c_fd) 
 4:  Calculate number of losses per cycle according to Markov model (p,q) using 

(4.13) 
 5:  Calculate new packets received (P) in the current loop using (4.2) and update 

the total number of packets received  
 6:  num_cycles1 = num_cycles1 + 1 
 7: end 
 8: if (all packets have been received)  
 9:  Obtain the percentage of the last cycle using Algorithm 4.2 
 10:  download_time = (num_cycles1 – 1 + percentage1) * k * S/b 
 Part 2: Adaptive LDPC 
 11: else 
 12:  while (not all packets have been received) 
 13:   Calculate number of losses per cycle using (4.13) 
 14:   Calculate new packets received (P) in the current loop with (4.5) and 

update the total number of packets received 
 15:   num_cycles2 = num_cycles2 + 1 
 16:  end 
 17:  Adjust download time obtaining percentage2 using Algorithm 4.3 
 18:  download_time = (num_cycles2 – 1 + percentage2) * k * S/b/coderate + t_fd 
 19: end 
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Algorithm 4.2: Download time adjustment (No-FEC)  

 INPUT: k, m, l, last_m 
 OUTPUT: percentage1 
 1: Initialize (bottom = 0, top = 1) 
 2: while (true) 
 3:  percentage1 = (bottom + top)/2 
 4:  Calculate new packets received (P) with (4.2) with input parameters: 
  percentage1 * (k, m, l) and update total packets not yet received 
 5:  if (last_m – P < 0) 
 6:   top = percentage1 
 7:  else if (last_m – P > 0) 
 8:   bottom = percentage1 
 9:  else 
 10:   BREAK 
 11:  end 
 12: end 

 
Algorithm 4.3: Download time adjustment (AL-FEC) 

 INPUT: k, r, l, last_r, inef_ratio 
 OUTPUT: percentage2 
 1: Initialize (bottom = 0, top = 1) 
 2: while (true) 
 3:  percentage2 = (bottom + top)/2 
 4:  Calculate new packets received (P) with (4.5) with input parameters: 
  percentage2 * (k, r, l) and update total packets received 
 5:  if (last_r + P < k * inef_ratio) 
 6:   bottom = percentage2 
 7:  else if (last_r + P > k * inef_ratio) 
 8:   top = percentage2 
 9:  else 
 10:   BREAK 
 11:  end 
 12: end 

4.4. Evaluation methodology 
This section describes the methodology used to evaluate the performance of the 
proposed adaptive AL-FEC codes. The goals of the evaluation are to validate the 
analytical model presented above and to compare the performance of adaptive LDPC 
codes for content download services with other proposals. The metric selected for the 
evaluation is the download time. Thus, it is necessary to identify the system parameters 
that could affect the download time and define values for them that are relevant for the 
case under study, as Section 4.4.1 describes. Furthermore, in order to compare 
analytical and experimental results, it is necessary to setup a valid scenario for 
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conducting trials with the adaptive LDPC implementation, which is explained in 
Section 4.4.2. 

Since optimum LDPC is an ideal implementation of adaptive LDPC, it is necessary to 
obtain the AL-FEC rate that minimizes the download time in the evaluation scenario for 
every packet loss rate. These values are later used to compare the developed 
implementation with the lower bounds established by optimum LDPC. 

Once all environment conditions are set and optimum LDPC is modeled, the evaluation 
will consist of comparisons of the download time achieved under different 
configurations of the system parameters.   

4.4.1. Evaluation parameters 
As mentioned, the parameter used in the evaluation is the average download time. The 
study consists of measurements of this time obtained by applying different AL-FEC 
codes to FLUTE file delivery sessions: No-FEC, optimum LDPC (Staircase and 
Triangle), adaptive LDPC and rateless codes. 

The comparison between these codes is done analyzing their behavior in different 
environments. Specifically, this chapter evaluates these codes for different file sizes, 
different number of blocks, transmission rates and feedback times.  

In this sense, the measurements consider two different file sizes: 3000 and 6000 packets 
file size (i.e., over 4 and 8 MB, as each packet contains 1428 bytes). These are typical 
sizes of multimedia contents played in mobile devices, such as music files or short 
videos [74].  

Moreover, two different number of blocks have been used: 1 block and 10 blocks. In 
efficiency terms, it is more efficient to send the files using one block. However, the 
block represents the decoding unit and hence clients require less memory when they 
work with small blocks. Therefore, using several encoding blocks can be highly 
recommended when clients have limited resources.  

Furthermore, two different transmission rates have been used: 5 Mb/s and 10 Mb/s. In 
addition, feedback times of 1, 3 and 5 seconds have been used, since these are 
reasonable response values according to the transmission rates used. 

The results of the study are presented in Section 4.5, which contains two types of 
results: analytical and experimental. In the first, the evaluation is done calculating the 
download time through the algorithm presented in the previous section. On the other 
hand, the next subsection explains the performance of the experimental results. 

4.4.2. Experimental scenario 
The experimental results have been carried out in order to validate the analytical ones. 
Thus, a more exhaustive analysis of the different parameters can be made using the 
analytical model, since its performance is much faster and easier. 
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The performance of these experimental results has been carried out using the 
implementation of a FLUTE server and client developed by the authors (presented in 
Chapter 2), which implements all the aforementioned AL-FEC codes.  

It is worth noting that the implementation of adaptive AL-FEC codes is not specifically 
regarded in the FLUTE standards. In order to implement the adaptive LDPC, this 
chapter proposes that the FEC information (i.e., the FLUTE header extension 
EXT_FTI) is included in all the parity symbols, so that clients detect the code rate as 
soon as they join the parity channel. The FLUTE RFC [2] does not establish the 
frequency or the type of packets that carry the FEC information, as the only 
requirement is that there is one packet with the EXT_FTI extension per file in a cycle 
and/or the FEC Object Transmission Information is included in FDT Instances. 

Furthermore, the insertion of a new parity channel does not affect ongoing downloads. 
When the server decides to include a new parity channel, it generates the encoding 
symbols for the specific file without interrupting the base channel. Therefore, parity 
channels are only available after the server is able to process the file to generate the 
parity packets. Clearly, the complexity of the AL-FEC algorithm and the size of the 
block lengthen the time needed for a server to include the parity data in the scenario.  

On the other hand, when a client joins a given parity channel, they keep the source 
symbols successfully decoded from the encoding symbols received in the base channel. 
However, if there is a change in the AL-FEC code rate, the client needs to discard 
previously received parity symbols, as these are no longer valid for the new code rate.  

It is assumed that there is a feedback between server and client that provides the server 
with an estimation of the losses experienced by every client. A possible implementation 
of this feedback is described in [75].  

Rateless codes are simulated according to their definition as near ideal FEC codes, 
which establishes that it is only necessary to receive a small additional percentage of the 
packets that make up a file to rebuild it, regardless the erasure rate of the channel [76].  

As concluded in Chapter 3, it is also worth noting that the transmission scheme of the 
packets that compose a block affects the performance of LDPC codes. For this reason, 
the measurements apply a random transmission scheme (source and parity symbols are 
sent in a random order), which provides better results than a sequential scheme in the 
presence of burst losses [77].  

In both analytical and experimental results, the measurements collect as many iterations 
as needed to provide a 99% confidence intervals. The measurements have been made in 
a controlled environment, simulating the losses in the channel with the two state 
Markov model. In order to simulate a typical wireless channel, different channel losses 
between 0% and 30% (in steps of 5%) have been simulated. Also a 50% losses channel 
has been simulated to see the general tendency in the different studies. Fixing a 
percentage of losses and an average burst size, parameters p and q from Markov model 
are obtained using equation (4.7). 
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In the encoding process, values of code rates between 0.2 (very strong protection) and 
0.9 (weak protection) have been used, with a precision of 0.1. Bear in mind that code 
rate represents the relation between the source symbols of a file and the total encoding 
symbols, that is, k/n. Therefore, the less code rate, the more protection. 

4.5. Results and analysis 
This section presents the results of the average download time against different 
parameters such as the channel packet loss rate, the transmission rate, the file size or the 
number of blocks used to send a file.  

Two main studies have been developed: the first evaluates the optimum coding and 
code rates in channels with different loss rates. Once these values have been obtained, 
adaptive LDPC is analyzed and compared with rateless codes and optimum LDPC 
codes. 

The optimum codes and code rates are measured experimentally, according to the 
methodology described in the previous section. On the other hand, the evaluation of 
adaptive LDPC is done through analytical and experimental measurements.  

4.5.1. Optimum codes and code rates 
This study analyzes what is the optimum coding and the optimum code rate depending 
on the losses of the channel and different transmission parameters: the transmission 
rate, the content size and the number of blocks.  

Just to give an example of the results obtained, Fig. 4.4 shows the download time of a 
3000-packet file size, using 1 encoding block with a transmission rate of 5 Mb/s, 
applying LDPC Staircase codes. The results show that for every channel packet loss 
rate there is an optimum AL-FEC code rate that minimizes the download time. For 
instance, in channels with 25% of losses, the optimum code rate for LDPC Staircase is 
0.7. These results are compared with the ones obtained with LDPC Triangle and 
Compact No-Code (no AL-FEC used). The best codes (Compact No-Code, LDPC 
Staircase or Triangle) and the best code rate for each percentage of losses are chosen as 
optimum.  
In this sense, Table 4.1 shows the optimum codes and code rates obtained for each 
scenario. In the table, the AL-FEC codes are identified according to the numeric 
identifier assigned by the IANA: 0) Compact No-Code, 3) LDPC Staircase and 4) 
LDPC Triangle.  The parameters of the four scenarios are as follows: 

• Case 1: 3000-packet file size, 1 block, 5 Mb/s; 
• Case 2: 3000-packet file size, 1 block, 10 Mb/s; 
• Case 3: 6000-packet file size, 1 block, 5 Mb/s; 
• Case 4: 3000-packet file size, 10 blocks, 5 Mb/s; 
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Fig. 4.4. Download time evaluation with LDPC Staircase codes with 3000-packet file size, 1 
block and b = 5 Mb/s. 

Table 4.1. Optimum coding parameters. IANA AL-FEC codes identifiers: (0) Compact No-Code, 
(3) LDPC Staircase, (4) LDPC Triangle. 

Losses Case 1 Case 2 Case 3 Case 4 
0% - (0) - (0) - (0) - (0) 
5% 0.9 (3) 0.8 (3) 0.9 (4) 0.8 (3) 

10% 0.8 (3) 0.8 (3) 0.8 (3) 0.7 (3) 
15% 0.8 (3) 0.7 (3) 0.8 (3) 0.6 (3) 
20% 0.7 (3) 0.7 (3) 0.7 (3) 0.6 (3) 
25% 0.7 (4) 0.6 (3) 0.7 (3) 0.5 (3) 
30% 0.6 (3) 0.6 (3) 0.6 (3) 0.5 (3) 
50% 0.4 (3) 0.4 (3) 0.5 (4) 0.3 (3) 

Clearly, if there are no losses, the addition of AL-FEC parity penalizes the download 
time. For this reason, the best code for lossless channels is Compact No-Code in all 
scenarios. In the event of channel losses, LDPC Staircase generally provides better 
download times than LDPC Triangle. The optimum code rates range between 0.6 and 
0.9 in most of the cases.  

It should be noted that the optimum coding parameters are not only dependent on the 
channel losses, but also on other parameters like the file size, the number of blocks or 
the transmission rate. For instance, in the transmission of a 3000-packet file size, using 
1 block, with a transmission rate of 5 Mb/s in a channel with 25% of losses, the 
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optimum coding parameters are: LDPC Triangle with a code rate of 0.7. However, if 
the file is divided into 10 source blocks, the optimum coding parameters are LDPC 
Staircase with a code rate of 0.5. 

Fig. 4.4 shows how, for every loss rate, the average download time increases as the 
code rate moves away from its optimal value. Nevertheless, moderate deviations of the 
actual channel packet loss rate from an estimated value may not increase the download 
time drastically. For instance, in the first scenario, using LDPC Staircase codes, the 
optimum code rate for a 15% packet loss is 0.8. The same code rate provides the best 
results for a 10% of packet loss and the results for 20% of losses are only slightly worse 
than for the optimum code rate of 0.7. 

4.5.2. Evaluation of adaptive LDPC 
In adaptive LDPC codes, the server changes the coding parameters (coding and code 
rate) upon reception of a message that informs about the losses of the channel after 
some feedback time. Once this message arrives, the server uses the results obtained in 
the previous study to choose the optimum coding parameters depending on the 
transmission parameters (losses, file size, transmission rate and number of blocks) and 
continues sending the file with the new parameters. In order to minimize the download 
time, the server continues sending from the last block that was being transmitted before 
the coding change occurred.  

In the different studies it is assumed that, initially, the server sends the file using 
Compact No-Code (No-FEC) codes, so no protection is used. 

As Fig. 4.5 shows, adaptive LDPC (A-LDPC) codes offer very good results compared 
to No-FEC. As the losses are higher, the need of using AL-FEC mechanisms is more 
obvious.  

 
Fig. 4.5. Comparison between adaptive LDPC and Compact No-Code with 3000-packet file size, 
1 block, b = 5 Mb/s and t_fd = 3 s. 

As mentioned, experimental results have been carried out to validate the analytical 
results. In order to see the differences between the analytical and the experimental 
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results regarding adaptive LDPC codes, Fig. 4.6 shows a comparison between two files 
of different size: 3000 packets and 6000 packets. 

 
Fig. 4.6. Comparison between analytical and experimental results in a file size evaluation with 1 
block, b = 5 Mb/s and t_fd = 3 s. 

As Fig. 4.6 shows the values of analytical and experimental performance are very 
similar, although analytical results are slightly higher than experimental ones. This is 
due to the fact that analytical results use a fixed inefficiency ratio of 1.07 which it is not 
exactly the inefficiency ratio of each percentage of losses. As analyzed in Chapter 3, the 
inefficiency ratio depends on each coding and different transmissions of the same file 
can provide different values so, in some codes it is not possible to obtain the 
inefficiency ratio analytically. We have chosen the value of 1.07 according to the 
results obtained in the previous chapter and [51]. 

It is important to emphasize that all the studies hereby presented have been carried out 
analytically and experimentally. Since both models provide very similar download 
times, only the experimental results are shown. Nevertheless, in the different graphs, the 
experimental results include an upper error bar that represents the difference with 
respect to the download time obtained in the analytical results.     

Returning to the file size analysis, Fig. 4.7 shows a comparison between the proposed 
adaptive LDPC (A-LDPC) codes, optimum LDPC (O-LDPC) and rateless codes. As 
expected, in all codes the download time of 6000-packet file size is approximately twice 
the download time of 3000-packet file size. For instance, the download time using 
adaptive LDPC codes with 20% of losses is 10 693 ms with 3000-packet file size and 
19 710 ms with 6000-packet file size. 

The difference between adaptive LDPC and optimum LDPC is lower as the file size is 
larger. On the contrary, the difference between optimum LDPC and rateless codes is 
higher. Nevertheless the download time ratio (the download time of optimum LDPC 
divided by the download time of rateless codes) gets better, so the larger the file size, 
the better the download time ratio. 
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Fig. 4.7. File size evaluation with 1 block, b = 5 Mb/s and t_fd = 3 s. 

On the other hand, Fig. 4.8 shows the behavior of adaptive LDPC compared with 
optimum LDPC and rateless codes for different feedback times. Regarding optimum 
LDPC codes, adaptive LDPC offers a good behavior, slightly worse than optimum 
LDPC if the feedback time is sufficiently short. As shown in the figure, the feedback 
time has a significant impact on the download time. In channel with high losses, the 
difference between the three feedback times (1, 3 and 5 s) decreases. 

 
Fig. 4.8. Feedback time evaluation with 3000-packet file size, 1 block and b = 5 Mb/s. 

The graph also shows that optimum LDPC codes perform very close to rateless codes 
(especially with moderate channel losses). In this sense, Fig. 4.9 shows the download 
time ratio with respect to rateless codes. The graph shows that the download time for 
optimum LDPC is only between 5% and 15% higher than rateless codes. This ratio is 
only slightly worse for adaptive LDPC, especially when the feedback time is short 
(around 20% for 1 s). When the losses are higher, the download time ratio is similar for 
the different feedback times and optimum LDPC. 
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Fig. 4.9. Download time ratio with rateless codes with 3000-packet file size, 1 block and b = 5 
Mb/s. 

On the other hand, the transmission rate is, obviously, another parameter that affects the 
download time: the higher the transmission rate, the lower the download time. Fig. 4.10 
shows that, when the transmission rate is doubled, the download time is approximately 
divided by two. For instance, using adaptive LDPC in channels with 30% of losses with 
a transmission rate of 5 Mb/s, the download time is equal to 12155 milliseconds, 
whereas the download time is 6815 milliseconds when the transmission rate is 10 Mb/s. 
With respect to adaptive LDPC, it is worth noting that for a fixed feedback time, the 
difference between adaptive LDPC and optimum LDPC codes is lower with low losses. 

 
Fig. 4.10.  Transmission rate evaluation with 3000-packet file size, 1 block and t_fd = 3 s. 

Regarding the number of blocks, Fig. 4.11 shows how dividing a file into source blocks 
affects the download time. Both LDPC and rateless codes work more efficiently with 
large blocks. If more blocks are used, the download time gets worse for all AL-FEC 
codes.   
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Fig. 4.11.  Number of blocks evaluation with 3000-packet file size, b = 5 Mb/s and t_fd = 3 s. 

It is important to note that optimum LDPC outperforms rateless codes when more than 
one block is used, in cases where the channel packet loss rate is relatively low (e.g. 
5%). When several blocks are used, the download time is, in general, determined by the 
number of cycles needed to download the file. So similar percentages of losses involve 
similar download times if the number of cycles is equal. In this case, the last block that 
has not been downloaded determines the download time. So, if a certain block has not 
been decoded in the current cycle, it is necessary to wait one entire cycle to try to 
download the complete file.  

Finally, emphasize that all the graphs hereby presented have shown similar results for 
the analytical and the experimental model. Hence, the analytical model proposed for 
adaptive LDPC AL-FEC codes is validated through experimental measurements. 

4.6. Conclusions  
This chapter has proposed the implementation of adaptive LDPC AL-FEC for multicast 
content distribution based on the FLUTE protocol. Adaptive AL-FEC codes represent a 
good alternative to improve the reliability of multicast connections over lossy channels, 
like wireless channels. 

The different results show that it improves average download times to levels 
comparable to rateless codes, keeping the coding and decoding complexity of LDPC 
codes, but at the expense of an explicit feedback between clients and servers. 

Despite that the ideal LDPC AL-FEC code rate depends on the amount of packets lost, 
a given AL-FEC code rate performs good in a wide interval of packet loss rates around 
the value for which it provides a minimum download time. In this way, it is expected 
that the performance of adaptive LDPC does not depend greatly on the accuracy of the 
channel packet loss estimation. However, results show that it depends considerably on 
the feedback time, defined as the time needed to provide clients with AL-FEC parity 
packets.  
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Although, in general, rateless codes offer better download times, different studies have 
shown that the ratios between rateless codes and optimum LDPC or adaptive LDPC 
codes are not very high. On the contrary, the decoding complexity is much lower in 
LDPC codes, which makes these codes highly recommended in receivers with limited 
resources, for instance, mobile devices. As mentioned, in these devices with limited 
resources it is recommended to send the data using several blocks, in order to reduce the 
decoding complexity. In that case the behavior of adaptive LDPC codes is very similar, 
even better for some percentage of losses, than rateless codes, as the results have 
shown. 

On the other hand, in channels with limited bandwidth it is recommended to use few 
parity channels. So it is necessary to choose dynamically the optimum code rate 
depending on the different feedback messages received by all the clients, in order to 
satisfy the major part of them. The way to choose this best code rate for all users is 
explained in the following chapter. 

The results of this chapter have been presented in an international conference [C.7] and 
in an international journal [J.6].  
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Chapter 5 

Adaptive codes for limited bandwidth channels  

This chapter presents an adaptive mechanism for improving the content download in 
wireless environments with limited bandwidth. Specifically, the system proposed 
reduces the average download time of clients within the coverage area, thus improving 
the Quality of Experience, without increasing the bandwidth. To that extent, clients 
send periodically feedback messages to the server reporting the losses they are 
experiencing. With this information, the server decides which is the optimum AL-FEC 
code rate that minimizes the average download time for all clients within the coverage 
area, taking into account the channel bandwidth, and starts sending data with that code 
rate. The system proposed is evaluated in various scenarios, considering different 
distributions of losses in the coverage area. Results show that the adaptive solution 
proposed is very suitable in wireless networks with limited bandwidth. 

5.1. Introduction 
As shown in the previous chapter, there is an optimum code rate that minimizes the 
download time of a certain file by a client. This download time depends, among other 
parameters, on the channel losses perceived by each client. In this way, it is possible to 
transmit a file at an optimum code rate for each client in order to minimize the 
download time. To that extent, clients must be able to inform the server about the losses 
they are experiencing.  

Nevertheless, in environments with limited bandwidth it could not be possible to send a 
file with different code rates, since the bandwidth would increase considerably. Thus, it 
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will be highly recommended to send data at an optimum code rate that benefits the 
major part of the users. Since the losses perceived by the users could change quickly, 
this code rate should be chosen dynamically.  

In this sense, this chapter presents an adaptive system where the server sends data at an 
optimum code rate for each time interval, according to the losses detected by the clients 
within the coverage area.  

Specifically, the objective of this chapter is to reduce the average download time of 
clients when downloading contents. It should be noted that, one of the main goals of 
any service is to provide a good Quality of Experience to the users. In streaming 
services a good QoE is provided when users receive the video without interruptions, 
with high quality, and with the minimum waiting time. With regards to file transmission 
to multiple receivers, users have a good QoE when they receive files correctly and the 
download time is minimal. In this sense, the download time is a well-known QoE 
metrics for evaluating file multicast download, for instance, in IP Datacast services. 

The rest of the chapter is structured as follows. Next section provides an overview of 
the adaptive system proposed. Section 5.3 explains the evaluation methodology used to 
obtain the results presented in Section 5.4, where the adaptive system is analyzed and 
evaluated. Finally, the last section of the chapter includes some final conclusions. 

5.2. System overview 
This chapter proposes an alternative to the study presented in Chapter 4. Specifically, 
comparing to Chapter 4, this chapter presents a similar proposal which is more efficient 
in terms of bandwidth. It should be noted that in scenarios where the bandwidth is 
limited, it is necessary to find solutions that benefits all users. In the scenario proposed 
in this chapter, only one code rate is used in a given time, therefore only one 
transmission channel is needed. Thus, the file delivery session only contains one 
channel, in which both source and parity symbols are sent, which represents an easy 
solution for the server and the clients.  

It is worth mentioning that, as in the previous studies, it is used a random transmission 
model, where source and parity packets are sent in a fully random order. Furthermore, 
this chapter considers that the losses perceived by the clients can change over time. We 
propose an adaptive mechanism to assign an optimum code rate similar to that used by 
RTP/RTCP (Real-time Transport Protocol / RTP Control Protocol) for dynamic 
adjustment of the bandwidth requirements of multimedia applications [78]. As in [78], 
the proposed algorithm increases, holds or decreases a certain parameter (in this case 
the code rate, instead of the bandwidth) according to the feedback received by the 
clients. 

Fig. 5.1 shows an overview of the system proposed. There is a certain number of clients 
within the coverage area in a multicast wireless network. Clients perceive different 
losses depending on how far they are from the server. Also, clients are continuously 



Chapter 5. Adaptive codes for limited bandwidth channels 

 

75 

moving so the channel losses they perceive are changing. Initially, the server sends data 
with a certain code rate. After a while clients start sending feedback messages 
informing the server about the losses they are perceiving. In this chapter we consider 
that the feedback messages always arrive to the server. The way clients send these 
losses reports is not analyzed in this chapter. Different mechanisms to provide this 
feedback are: [75] and [79], based on RTCP; and the reporting mechanisms used by 
DVB-H [9] and MBMS [33], which support FLUTE. Once the losses reports are 
received by the server, it decides which is the optimum code rate that minimizes the 
average download time of all clients. Then, the server starts sending data at this 
optimum code rate. This process is carried out periodically: the clients are repeatedly 
sending feedback messages and the server is analyzing them at a certain time intervals. 

 
Fig. 5.1. System overview. 

When choosing the code rate that best suits all clients it must be taken into account that 
using insufficient protection for clients with high losses has more impact on the 
download time than using an excessive protection for clients with low losses, as the 
results presented in Chapter 3 have shown. Therefore, feedback messages of clients 
with high losses will have more weight when the optimum code rate is chosen. To that 
extent, the server classifies the losses perceived by each user into three different 
regions: low losses, medium losses and high losses region. Hence, each one of the n 
clients is classified in a certain region according to their loss rate, as Fig. 5.2(a) depicts. 
The server calculates how many clients (nL) are in the low losses region (clients who 
have less than λL losses), how many clients (nM) are in the medium losses region (those 
who have between λL and λH losses) and how many clients (nH) have high losses (those 
who have more than λH losses). Then, the code rate is chosen according to the 
percentage of clients in each region. 

It is important to remember that, according to the conclusions obtained in Chapter 4 
(presented in [80]), a given AL-FEC code rate performs well in a wide interval of 
packet loss rates around the value for which it provides a minimum download time. 
Based on this conclusion, a priori, it could be considered the use of only three different 
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code rates (as many as losses regions). Nevertheless, at the time of choosing the code 
rates for each region, it must be taken into account the bandwidth increase associated to 
each code rate. Using a high protection (low code rates) increases considerably the 
bandwidth, therefore there is a trade-off between the bandwidth and the download time. 
According to the studies presented in Section 5.4.1, this chapter only considers two 
different code rates: one code rate for low losses and another one for medium-high 
losses. Using two code rates instead of three provides very good results regarding the 
download time, and improves considerably the channel bandwidth. 

 

(a) Without hysteresis 

 

(b) With hysteresis 

Fig. 5.2. Losses region classification. 

In this sense, the use of a high number of losses regions would increase the complexity 
of the system and could make the system inefficient, since there would be a lot of 
changes of code rates and clients would have to create continuously the decoding parity 
matrix associated to that code rate and discard continuously parity packets previously 
received, as we will see in Section 5.4.4.  

Hence, in our proposal there are two protection states: a state of low protection (which 
uses a high code rate) and a state of high protection (which uses a medium code rate). 
Furthermore, the encoding (and decoding) process is easier as less different code rates 
are used. The server calculates the optimum code rate in each instant of time according 
to the Algorithm 5.1, based on the one shown in [78] for bitrate: 

Algorithm 5.1: Code rate calculation (2 states) 

 INPUT: n, nM, nH, Nm, Nh 
 OUTPUT: new_state  
 1: if  nH/n ≥ Nh then new_state = HIGH_PROTECTION 
 2: else if (nM + nH)/n ≥ Nm then new_state = HIGH_PROTECTION 
 3: else  then new_state = LOW_PROTECTION 
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Nh and Nm are the thresholds for clients with high and medium losses, respectively. The 
use of these thresholds allows to give more priority to clients with higher losses. The 
design of an efficient adaptive system depends greatly on the values of Nh and Nm. 
Other key parameters are λL and λH. In this sense, since it would not be very efficient to 
change the code rate too frequently when losses do not vary excessively, the system 
performance can be improved by using hysteresis [81]. Fig. 5.2(b) proposes the use of 
three thresholds: λL, λM, and λH. Therefore, when the server calculates the number of 
clients in each region, it takes into account the current protection state. Thus, if the 
server changes their state from the low protection state to the high protection state, a 
client in the low losses region will change to the medium losses region when their 
losses are higher than λM, whereas it will come back to the low losses region when their 
losses are lower than λL, as Fig. 5.2(b) depicts.  

On the other hand, in order to avoid an erroneous estimation of the losses, the server 
can smooth, for each feedback message received, the instantaneous losses (Linst) with 
the previous average losses (Lavg), using a low-pass filter, calculating the new loss rate 
(L) as: L = (1 - α) * Lavg + α * Linst, where α is the influence factor of the new value, 
ranged between 0 and 1.  

5.3. Evaluation methodology 

5.3.1. Calculation of the download time 
This section presents a methodology to calculate analytically the download time. As 
mentioned, the objective of this proposal is to reduce the average download time when 
clients download contents. The download time of a certain file L is defined as the time 
passed since the transmission starts until the file is completely downloaded. This occurs 
when clients have received enough packets to rebuild the file. 

In this study we suppose that the server is sending files during a certain time, then it 
receives feedback messages from clients and then it continues sending files with the 
new code rate. For the sake of simplicity, in this theoretical study we consider that in 
each instant of time the server sends all files available in their repository. That is, this 
involves considering the use of file carousels to send content. In this way, we will 
consider that each cycle of the carousel corresponds to an instant of time.  

Thus, as a first approximation, we are going to study the case where the server sends 
only one file. If a client is not able to download it during a certain instant of time, the 
client will need T instants of time to download the file. In each instant of time the server 
will send contents with a certain code rate, so the duration of each instant of time i 
(tC(i)) could be different. Therefore the download time (tD) is calculated as 
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where tS is the time needed to send all packets (source plus parity packets) that compose 
the file in the cycle that completes the download. Due to the use of AL-FEC encoding, 
clients can download a file before the last packets have been received so, actually 
clients could need a time lower than tS to complete their downloads. To consider this, 
we define a factor 0<β≤1. Remember that, in reception clients need to receive an 
amount of packets equal to the product of the number of source packets of the file to 
download by a factor called inefficiency ratio, which depends on the coding algorithm.  

Developing expression (5.1): 
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where SL is the size of the file L to download, CRi is the code rate of the instant of time 
i, and b is the transmission rate. Moreover, in order to calculate the number of packets 
that compose a file after decoding (and thus the transmission size) it is necessary to ceil 
the division between the number of packets that form a file by the code rate.  

In the case of sending several files within the carousel, the calculation of the download 
time is slightly different. Fig. 5.3 shows an example of a transmission using file 
carousels. In the example we suppose that a client is connected to the channel at the 
start of a certain instant of time and that they want to download the file F3. 

 
Fig. 5.3. Example of a carousel transmission. 

First, if the client only needs one carousel cycle to download the file, the client will 
have to wait a time tW to start receiving packets of the file L to download. After a time 
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tS·β, the client will have downloaded the file. If the client needs more than one cycle to 
complete the download, it will be necessary to consider the transmission time of the 
entire carousel (tC).  

In the example, each instant of time or cycle implies a different code rate so, as the 
protection in the second cycle is higher than in the first, the transmission size of every 
file in the second cycle is higher than in the first. Therefore, the transmission size of the 
entire carousel is bigger in the second cycle and thus the duration of that instant of time 
(tC (2) > tC (1)). The same applies to the value of tW and tS. 

In this way, in the general case, clients will have to wait T - 1 entire cycles, plus a time 
tW and tS from the cycle that completes the download. So, the download time of a file L 
is calculated as 
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Analyzing each term, the value of tW depends on the carousel size and the transmission 
schedule. Considering that the probability of downloading a certain file is equal to the 
probability of downloading another file in the carousel, the waiting time can be 
calculated using the following approximation:   
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The calculation of tS is similar to the equation (5.2). In order to simplify the final 
expression, we do not consider the effect of the ceiling round: 
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 Regarding tC, this term is calculated as 
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where N is the number of files in the carousel and Sj is the size of the file j.  

In this way, the download time is calculated as 
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Simplifying that expression: 
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Analyzing the previous formula, values of Sj, N and b depend on each particular 
implementation. On the other hand, the value of the code rate for each instant of time 
(CRi) is calculated using Algorithm 5.1, which will be analyzed in Section 5.4. The 
parameter β depends on the remaining packets needed to complete the download. This 
parameter is directly related to T, which is the number of instants of time (or number of 
cycles) that a user needs in order to download a certain file. 

In order to obtain T, we use the methodology explained in Chapter 4, that is, calculating 
the number of new packets received by cycle and checking for each cycle if the client 
has received enough packets to rebuild the file. The calculation of this number of cycles 
is obtained using equations (4.4)-(4.6). 

5.3.2. Evaluation parameters 
As Section 5.2 has shown, there are several parameters to configure when evaluating 
the system proposed. Firstly, it will be analyzed the download time of a file in a channel 
with different losses using different code rates. In the studies hereby presented, in order 
to calculate which is the code rate that minimizes the download time for each 
percentage of losses two different methodologies will be used: first, the download time 
will be calculated using the analytical model explained in the previous subsection; 
second, we will calculate the download time by carrying out measurements in a real 
environment. To do this, it will be used again the file server and client based on FLUTE 
implemented in the context of this thesis. It should be highlighted that the major part of 
the results presented in this chapter are obtained through this implementation. 
Regarding the coding, in this chapter we use LDPC Staircase codes to evaluate the 
optimum code rate. 

It is worth noting that both in the analytical and in the experimental results, several 
measurements are made. In the experimental ones, a server sends a file in a multicast 
channel and a client downloads it. Apart from getting the best code rate for each losses 
region, the previous study also will calculate the suitable values for λL, λM, and λH. 

In the scenario proposed, there are many clients within the coverage area that are 
continuously moving (sometimes they are getting closer to the server and sometimes are 
moving away), so the losses they perceive are continuously changing. As mentioned, 
the losses they perceive are directly related to the distance to the server. In [82] it is 
shown the relation between the distance to the server and the PRR (Packet Reception 
Ratio) in a particular wireless network. Based on that study, Fig. 5.4 allows to match 
the distance from clients to the server with the percentage of losses that clients have. 
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These results have been carried out through simulations using ns-3, considering a 
transmission rate of 5.5 Mb/s and an output power of 17 dBm. This transmission rate is 
supported, among other standards, by 802.11b [83] (and subsequent versions), one of 
the Wi-Fi reference standards. Assuming that, in practice, the effective transmission 
rate is lower than the one specified in the standard (due to overheads or routers 
features), in the rest of studies an effective transmission rate of 5 Mb/s is used, the same 
considered in Chapter 4. All these studies only consider clients within the area lower 
than 110 meters, since distances higher than 110 meters provide unreasonable 
percentage of losses (higher than 60%), so it is considered that these clients are out of 
the coverage area. 

 
Fig. 5.4. Losses perceived depending on the distance to the server for a transmission rate of 5.5 
Mb/s. 

The percentage of losses according to the distance to the server depends on the 
transmission rate [84] as well as the transmission power. Thus, if the transmission rate 
increases (or the output power decreases), the coverage area decreases. For instance, 
with a transmission rate of 11 Mb/s, clients further away 20 meters from the server will 
not receive hardly any packet. Taking this into consideration, we will suppose that 
clients send their feedback messages using a lower transmission rate (for example, 1 
Mb/s) with an appropriate output power through a channel that guarantees that the 
packets arrive to the server. 

In order to analyze the behavior of the adaptive system proposed, the losses perceived 
by the clients change in every instant of time. Thus, there will be some moments when 
the average losses of all clients will increase whereas in other moments will decrease. 
The initial position of clients (and thus, losses) is generated randomly. Later positions 
of clients are calculated by using a simplified version of the Gauss-Markov mobility 
model [85]. This model, widely used in the literature, takes into account the previous 
position and speed of clients to estimate the future position of clients. In our case, the 
future position of clients is obtained by choosing a random value in a normal (Gaussian) 
distribution, which mean is the previous position.  
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Different losses scenarios are presented, as Section 5.4.2 explains. Those scenarios have 
a losses distribution completely different. Also, in all scenarios, clients are moving (and 
thus changing their losses). The system behavior is evaluated, in most cases, during ten 
time intervals.  

Then, parameters Nh and Nm will be analyzed, as well as the smooth factor α and the 
hysteresis effect. Once all the configuration parameters are chosen, it is possible to 
calculate the download time for each client in each instant of time. This download time 
is calculated using the results obtained by means of the FLUTE server/client and by the 
analytical results. In order to do a more accurate measurement, the download time of a 
certain client in the instant i is calculated as the average of the download time between 
the instant i - 1 and the instant i, using the code rate obtained in the instant i – 1. Also, 
ten intermediate values in a time interval have been used to calculate the average 
download time. Also, for simplicity we have not considered co-channel interferences 
from other users. 

5.4. Results and analysis  

5.4.1. Analysis of the code rate 
First, the optimum code rate for each percentage of losses is analyzed. To that extent, 
we calculate the download time of a file of approximately 4 MB (3000 FLUTE packets 
with length 1428 bytes), which is sent in a multicast channel using a transmission rate 
of 5 Mb/s. The download time is calculated by measuring the time passed since a client 
starts downloading a file until the file is completely downloaded. It should be noted 
that, apart from the losses, the download time depends greatly on the values of the file 
size and the transmission rate. However, as both parameters have a linear behavior 
regarding the download time [80], the conclusions arisen in this study remain valid 
independently of the value of the file size and the transmission rate.  

Table 5.1 shows the download time (in milliseconds) for different code rates and 
percentage of losses for the experimental measurements. The table reflects that there is 
a code rate (highlighted in italics) that minimizes the download time depending on the 
losses. Based on the results of Table 5.1, Table 5.2 shows the average download time 
for the three losses regions: low, medium and high. We have defined the low losses 
region as the area where losses are between 0 and 10%; the medium losses region 
corresponds with the area where losses are between 10 and 30%; and the high losses 
region is the area where losses are higher than 30%. Table 5.2 also shows the 
bandwidth increase for each code rate. It is worth recalling that a low value of the code 
rate increases considerably the bandwidth.  
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Table 5.1.  Download time (in milliseconds) for different code rates and percentage of losses. 

CR/ Loss 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
0% 8926 7826 7556 7946 8514 7557 6751 6225 
5% 9388 8228 7927 8362 8723 7572 6752 18555 
10% 9776 8704 8408 9349 8714 7582 9318 25622 
15% 10600 9102 8923 9652 8595 7625 10847 29802 
20% 11174 9596 9631 10034 8739 10129 12463 32598 
25% 11396 10296 10467 10045 10196 11640 13399 37966 
30% 12534 11033 11557 11461 11509 12818 15321 45880 
40% 14560 13625 12362 13679 14463 15724 20252 60090 
50% 16859 15310 15876 17502 18026 20656 25208 74105 
60% 22182 20225 20880 22364 24403 27858 34538 101534 

Table 5.2.  Download time (in milliseconds) for different code rates and losses regions and 
bandwidth increase. 

CR/ Loss 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Low 9363 8253 7964 8552 8650 7570 7607 16801 

Medium 11096 9746 9797 10108 9551 9959 12270 34374 
High 16534 15048 15169 16252 17100 19264 23830 70402 
B 233% 150% 100% 67% 43% 25% 11% 0% 

As expected, if no coding is used (that is, the code rate is equal to 1), the download time 
increases drastically when losses increase. When losses are low, code rates 0.8 and 0.9 
provide the minimum download time. Calculating the average download time for low 
losses (Table 5.2), both 0.8 and 0.9 provide a similar value (only a difference of 0.5%). 
Therefore, as the bandwidth increase for code rate 0.9 is lower, this code rate will be 
chosen for the low protection state. 

Regarding the medium losses region, the code rate with lowest average download time 
is 0.7. Finally, with very high losses, the code rate that minimizes the download time is 
0.4. 

Nevertheless, since in the scenario proposed in this chapter the bandwidth is a limited 
resource (and that is why only one transmission channel is used), it is not acceptable to 
use a code rate that increases excessively the bandwidth. In this sense, the code rate 0.4 
provides the best results for high losses at the expense of increasing the channel 
bandwidth a 150%. Comparing the results obtained for high losses with code rates of 
0.4 and 0.7, the download time with a code rate of 0.7 is only 15% higher than the one 
obtained with a code rate of 0.4 when losses are 50%, whereas when losses are 30%, 
the download time of 0.7 is barely 4% higher than the one obtained with a code rate of 
0.4. The difference regarding the bandwidth increase is clear: 43% with a code rate of 
0.7 against 150% with 0.4. Therefore, the code rate of 0.7 will be chosen when losses 
are both medium and high, as mentioned in Section 5.2.    

Summarizing, in the low protection state, the server will send data using a code rate of 
0.9, whereas in the high protection state, the server will use a code rate of 0.7.  
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In order to calculate the threshold values of the low and medium regions shown in Fig. 
5.2(b), that is, λL and λM, it is needed to compare the behavior of the code rates (CR) 0.7 
and 0.9. In this sense, Fig. 5.5 depicts the download time of both code rates for different 
percentage of losses.  

 
Fig. 5.5. Download time comparison between CR = 0.7 and CR = 0.9. 

As Fig. 5.5 shows, when losses are equal or lower than 8%, the code rate 0.9 provides 
lower download times, whereas from 9% of losses the code rate of 0.7 is more suitable. 
Also, there is an area where the difference regarding the download time among the two 
code rates is very low, as Fig. 5.5 stresses. This area delimits the hysteresis zone. 
Initially, in order to provide a reasonable (not very tight) value of hysteresis, λL and λM 
will differ a 5%. Therefore, according to Fig. 5.5 and Table 5.1, the values of the 
thresholds will be: λL = 7%, λM = 12% and λH = 30%. These values will be analyzed in 
Section 5.4.7. 

5.4.2. Losses model 
The studies hereby presented consider that there are n = 100 clients in the coverage 
area. In order to analyze the behavior of the system proposed, five different scenarios 
with different distributions of losses are defined. In all scenarios, clients are 
continuously moving within the coverage area, with the aim of analyzing how the 
system works when losses change.  

The distribution of the instantaneous losses of all clients for each instant of time of the 
first scenario is represented in Fig. 5.6. This scenario considers 10 instants of time. The 
figure shows the percentage of clients per losses region as well as the hysteresis region. 
Clients in the hysteresis zone will be in the low or in the medium losses region 
depending on the state protection. Moreover, the figure also shows the average losses 
perceived by all clients for each instant of time. On the other hand, Fig. 5.7 depicts, for 
the same losses distribution, the distance from clients to the server for all instants of 
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time, and it can be clearly seen how clients are distributed along time. That figure also 
shows three circles that represent the losses thresholds λL, λM and λH. As mentioned, the 
amount of clients in each one of these circles will determine the state of the system and 
therefore the code rate. 

 
Fig. 5.6. Losses distribution for scenario 1. 

 

Fig. 5.7. Distance to the server for scenario 1. 
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In the second scenario, the distribution of losses is different, existing time intervals 
when clients get closer to the server and others when clients move further away from it, 
as Fig. 5.8 shows. In addition, in the third scenario (Fig. 5.9) the losses are, in general, 
rather higher. 

 
Fig. 5.8. Losses distribution for scenario 2. 

 
Fig. 5.9. Losses distribution for scenario 3. 

On the other hand, the fourth scenario is rather different from the previous ones, since 
losses change more abruptly. Fig. 5.10 shows the distribution of losses for each instant 
of time as well as the average losses along the time. 



Chapter 5. Adaptive codes for limited bandwidth channels 

 

87 

 
Fig. 5.10. Losses distribution for scenario 4. 

Finally, the fifth scenario, shown in Fig. 5.11, will be used to evaluate the effect of the 
hysteresis. To that extent, the scenario considers many time intervals, specifically 100, 
instead of 10 used in the previous scenarios. Moreover, the average losses will be all 
around the hysteresis zone.  

 
Fig. 5.11. Losses distribution for scenario 5. 

5.4.3.  Adaptive code rate 
The value of parameters Nh and Nm has a great influence on the performance of the 
system proposed. As mentioned, it is necessary to give more priority to those clients 
who perceive high losses, therefore if a low percentage of clients has high losses the 
protection must be increased. In the following study, we consider Nh = 17% (1/6) and 
Nm = 33% (1/3), and later we will analyze other values. Therefore, if more than a sixth 
of clients have high losses or more than a third of clients have medium or high losses, 
the server will be in the high protection state. Also, initially we consider that α = 1, so 
the server does not smooth the losses perceived by the clients. In the three scenarios 
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used in this subsection this value seems appropriate since there are not excessively 
abrupt changes in losses. 

As mentioned previously, this chapter presents both analytical and experimental 
measurements. In the figures shown, the analytical results are presented as an upper 
error bar that represents the difference regarding the download time obtained in the 
experimental results. 

The performance of the adaptive system in scenario 1 is shown in Fig. 5.12. The figure 
shows the average download time per instant of time for different code rates: a fixed 
code rate of 0.7, a fixed code rate of 0.9, the adaptive code rate and the ideal case. This 
ideal case considers that each client connects to a channel which transmits with the 
optimum code rate according to their losses. That is, this case corresponds with the 
proposal presented in Chapter 4 after all parity channels (with code rates 0.4, 0.5, 0.6, 
0.7, 0.8 and 0.9) plus the base channel have been created. In this way, the ideal case 
provides the minimum average download time possible. 

Initially (in the instant of time 0) the adaptive system is in the low protection state (CR 
= 0.9), and the adaptation begins in the next instant of time. Fig. 5.12 reflects how the 
adaptive system changes its protection state according to the client losses in each instant 
of time. As figure shows, the behavior of the adaptive system is rather good, since the 
server is sending data, in most cases, with the code rate that minimizes the download 
time. Apart from the initial instant of time, in the instant of time 8 the adaptive system 
is not transmitting with the optimum code rate. Nevertheless, in this case, the difference 
regarding the download time between code rates 0.7 and 0.9 is minimal, therefore in 
this scenario the adaptive system works almost perfect. Comparing with the ideal case, 
the adaptive system provides, on average, download times over 20% higher, which is a 
rather good result. 

 
Fig. 5.12. Download time evaluation in scenario 1 for Nh = 1/6, Nm = 1/3. 

The good behavior of the adaptive system is proven in scenarios 2 and 3, as Fig. 5.13 
and Fig. 5.14 reflect.  
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Fig. 5.13. Download time evaluation in scenario 2 for Nh = 1/6, Nm = 1/3. 

 
Fig. 5.14. Download time evaluation in scenario 3 for Nh = 1/6, Nm = 1/3. 

Comparing the experimental and the analytical results in these three scenarios, we see 
that, in general, analytical results provide higher download times, but the difference is 
not very meaningful (it is not higher than a 10% in all cases). In fact, both experimental 
and analytical results provide the same adaptive protection state in all instants of times, 
so the analytical model works rather well. The differences among two models are due to 
the precision of the transmission rate module of the implemented file server when 
calculating the experimental results and due to the value of the inefficiency ratio used in 
the analytical results. It should be noted that the value of the inefficiency ratio cannot be 
calculated analytically in some codes (those which do not belong to the MDS category), 
since the inefficiency ratio depends on the order of the packets upon arrival. In this 
study we have used a specific value of the inefficiency ratio for each code rate, 
according to the results obtained in Chapter 3. 

As mentioned, one of the most important parameters to take into account is the 
bandwidth increase due to the use of AL-FEC. As Table 5.2 has shown, the bandwidth 
increases over 11% with a code rate equal to 0.9 (in low protection state), whereas the 
increase of bandwidth for 0.7 (in high protection state) is over 43%. Thus, the average 
bandwidth increase in the adaptive system will depend on the protection state. In 
scenario 1 the average bandwidth increase is 19.8%, in scenario 2 is 19.8% too, and in 
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scenario 3 is 34.2%. The bandwidth distribution per time intervals in the different 
scenarios is shown in Fig. 5.15(a-c). At this point, it is worth comparing the results 
obtained with the adaptive case regarding the ideal case. As mentioned, the ideal case 
provides, on average, a download time over a 20% lower than the adaptive case. 
Nevertheless, the ideal case provides an overhead of 396% (considering six parity 
channels plus the base channel). 

       
 (a) Scenario 1 (b) Scenario 2 

 
  (c) Scenario 3 

Fig. 5.15. Bandwidth increase in different scenarios.  

So far, we have considered that clients with high and medium losses have more weight 
than those with low losses. In order to analyze the effect of this condition, the next 
study gives the same priority to all losses areas, therefore the values of Nh and Nm 
change: Nh = 33% (1/3) and Nm = 67% (2/3). As a result, the server tends to be more 
frequently in the low protection state, as Fig. 5.16 (scenario 1) and Fig. 5.17 (scenario 
2) show. Comparing with the ideal case, the difference regarding the download time 
among adaptive and ideal is approximately the same that in the previous studies, that is, 
over 20%. 
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Fig. 5.16. Download time evaluation in scenario 1 for Nh = 1/3, Nm = 2/3. 

 
Fig. 5.17. Download time evaluation in scenario 2 for Nh = 1/3, Nm = 2/3. 

Nevertheless, although in previous scenarios the adaptive system works rather well, in 
environments with a huge number of clients with high losses, previous values of Nh and 
Nm are not appropriate, such as in scenario 3, shown in Fig. 5.18. 

 
Fig. 5.18. Download time evaluation in scenario 3 for Nh = 1/3, Nm = 2/3. 
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Once again, both analytical and experimental results for the previous three study cases 
provide similar values, with a difference regarding the download time lower than a 
10%. 

Finally, we study a particular case. We suppose that the server is sending the same file 
in a carousel, and each instant of time represents the moment when the server has sent 
the last packet of the file (that is, the end of the carousel). Thus, the time between two 
consecutive instants of time is the carousel period.  

Initially all clients within the coverage area are interested in this file, so they start 
downloading it when the server begins to send data. Depending on the losses perceived 
by each client and on the code rate used to send the file, clients could need more than 
one transmission of the file (that is, various carousel cycles) to download it. After 
completing the download, clients leave the channel, so do not send more reports to the 
server. Therefore, the server only will consider those reports received by the clients 
within the coverage area for each instant of time. Next study analyzes the number of 
clients that have completed their downloads in each carousel cycle. In this case, 
scenario 2 has been used. 

Fig. 5.19 depicts, for each instant of time, the percentage of clients that have download 
a certain percentage of the file, analyzing the cases of adaptive code rate –Fig. 5.19(a)–
and code rates 0.9 –Fig. 5.19(b) – and 0.7 –Fig. 5.19(c). Obviously, as the protection 
increases, the number of cycles decreases. It is good to recall that, although using a high 
protection (low code rate) always decreases the number of cycles needed to download a 
file, this does not entail that the download time decreases, since the carousel size and 
the carousel period increases, as we have seen previously. Focusing on the adaptive 
graph of Fig. 5.19(a), we can see that after the first cycle period (instant of time 1), 63% 
of clients have downloaded completely the file, whereas a 3% have not downloaded 
even the half of the file (40-49%). One carousel cycle later, 96% of clients have 
completed their downloads.  

On the other hand, each time the server changes the code rate, clients have to discard 
the parity packets previously received. Even so, as Fig. 5.19(a) shows, the adaptive 
code rate provides (slightly) better results than the code rate 0.9 –Fig. 5.19(b). The 
performance can be improved if clients, instead of discarding parity symbols previously 
received when the code rate changes, save them in case the server sends data with the 
previous code rate in future carousel cycles.  

It is to be noted that considering that clients leave the channel once they have 
completed the download causes that the protection state changes. Thus, after the first 
carousel cycle the code rate changes from 0.9 to 0.7, whereas if consider that all clients 
remain within the coverage area, the code rate does not change during the first carousel 
cycles, as Fig. 5.13 showed. 
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 (a) Adaptive (b) CR = 0.9 

   
 (c) CR = 0.7 

Fig. 5.19. Evaluation of the number of cycles to complete the download in scenario 2. 

5.4.4. Multiple losses regions  
In this section we analyze how the use of different losses regions would affect the 
results presented. For this study we define the double of losses regions, and one losses 
region for each code rate. The losses regions are defined according to the results 
presented in Table 5.1.  

• Losses region 1: between 0 and 7% losses, using a CR = 0.9; 
• Losses region 2: between 7 and 17% losses, using a CR = 0.8; 
• Losses region 3: between 17 and 25% losses, using a CR = 0.7; 
• Losses region 4: between 25 and 35% losses, using a CR = 0.6; 
• Losses region 5: between 35 and 50% losses, using a CR = 0.5; 
• Losses region 6: more than 50% losses, using a CR = 0.4; 

The definition of these losses regions provides following thresholds (for simplicity 
hysteresis is not used): λ1 = 7%, λ2 = 17%, λ3 = 25%, λ4 = 35% and λ5 = 50%. 
Furthermore, making an approximation of values of Nh and Nm used in previous studies, 
we fix following values: N1 = 40%, N2 = 25%, N3 = 20%, N4 = 15%, N5 = 8%. 
Therefore, the algorithm is: 
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Algorithm 5.2: Code rate calculation (6 states)  

 INPUT: n, n2, n3, n4, n5, n6, N1, N2, N3, N4, N5 
 OUTPUT: new code rate (CR)  
 1: if  n6/n ≥ N5 then CR = 0.4 
 2: else if (n5 + n6)/n ≥ N4 then CR = 0.5 
 3: else if (n4 + n5 + n6)/n ≥ N3 then CR = 0.6 
 4: else if (n3 + n4 + n5 + n6)/n ≥ N2 then CR = 0.7 
 5: else if (n2 + n3 + n4 + n5 + n6)/n ≥ N1 then CR = 0.8 
 6: else  then CR = 0.9 

where ni represents the number of clients in the losses region i and n is the total number 
of clients within the coverage area. 

Following figures show the code rate used (Fig. 5.20) and the average download time 
(Fig. 5.21) for each instant of time for the two cases to analyze: the original 
configuration shown in the previous section (that is, two different code rates– 2CR) and 
an adaptive system that uses six different code rates (6CR). The first study is carried out 
using 100 clients in the first losses scenario (Fig. 5.6). As results show, the use of 
several losses regions makes that the code rate changes continuously. Thus, using only 
2 code rates there are 4 changes of code rate, whereas for 6 different code rates, for the 
time interval shown in Fig. 5.20, there are 8 changes of losses regions. However, the 
download time obtained for both configurations is very similar (Fig. 5.21), with an 
average download time reduction of a 2% using 6 different code rates. It should be 
noted that it could be possible to obtain better results regarding the download time if the 
thresholds (λi and Ni) used for each losses region are optimal, but it is rather difficult to 
adjust these thresholds when there are many losses regions. Even so, the results would 
not improve excessively. Finally, regarding the bandwidth, the use of two code rates 
produces an average overhead increase of 20%, whereas using six different code rates 
produces an overhead of 93%. 

 
Fig. 5.20. Number of changes of losses regions in scenario 1. 
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Fig. 5.21. Download time in scenario 1. 

Results and conclusions obtained in scenario 2 are very similar. On the other hand, 
scenario 3 (shown in Fig. 5.9), where the average losses perceived by the clients are 
higher, provides different results. As Fig. 5.22 shows, both configurations provide the 
same number of changes of code rates. This is due to the fact that there is a high 
number of clients that perceive high losses, so both configurations provide the 
maximum protection possible (in one case 0.7 and in the other 0.4). Regarding the 
download time, the configuration with 6 losses regions provides better results for 
almost all instants of time (Fig. 5.23). However this configuration only reduces the 
average download time a 5%, at the expense of an average bandwidth increase of a 
133% (whereas the configuration of only two code rates produces an overhead of a 
34%).  As mentioned previously, it is not worth using very much protection (for 
instance CR = 0.4) since this increases considerably the bandwidth, and there are other 
code rates (such as CR = 0.7) that provide a good trade-off between the download time 
and the overhead. 

 
Fig. 5.22. Number of changes of losses regions in scenario 3. 
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Fig. 5.23. Download time in scenario 3. 

Therefore, results show that it is enough to consider three losses regions (and two code 
rates) to obtain a good performance of the system proposed. 

5.4.5. Evaluation of the smoothing 
Coming back to the analysis considering three losses regions, in networks where clients 
have high mobility, losses are continuously changing. Sometimes, when calculating the 
losses for a certain instant of time it can occur that the estimation is not correct, since 
there are peak errors that distort the average losses. In those cases, it is very common 
the use of a smooth factor, through which the server considers both the current and the 
previous losses in order to estimate the system losses. In the three scenarios previously 
shown, as there were not abrupt changes regarding the losses, no smooth process was 
used (and thus α was equal to 1). In order to evaluate how this smooth parameter affects 
the system proposed, next study considers scenario 4 (shown in Fig. 5.10). Fig. 5.24 
depicts the distribution of the average losses of n = 100 clients along time as well as the 
smooth effect for different values of α. In this scenario some bursts appear, where 
losses change rapidly.  

 
Fig. 5.24. Average losses distribution and smooth effect in scenario 4. 
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The methodology used is the same employed in the previous studies, that is, in each 
instant of time clients report their losses, the server smoothes them and then it chooses 
the optimum code rate according to this information. It should be noted that clients only 
inform about the losses they are perceiving in a specific instant of time. For example, in 
the instant of time 1, clients only inform about the losses they perceive in that instant, 
and not about the partial losses perceived between the instants of time 0 and 1. 

Fig. 5.25 compares the average download time obtained for different values of α for 
each instant of time. In the figure, the download time is in range [8000 ms, 12 000 ms]. 
Due to the smooth process, in those cases where the value of α is low, the server tends 
to be in the same protection state. Fig. 5.25 shows that, in this scenario, smoothing the 
losses provides better results. Specifically, the system adapts better to the changing 
losses using α = 0.3 or α = 0.5. Analyzing the system behavior for α = 0.3, we can see 
that the server sends at an optimum code rate in 8 out of 10 time intervals. This is a very 
good result, since in the instants of time when the server does not send with the 
optimum code rate, the difference between the adaptive and the optimum code rate is 
pretty minimal. Therefore, we can consider that the adaptive system performs very well 
using an appropriate smooth factor. Obviously, an erroneous estimation of the losses 
can increase the average download time of the clients as well as the bandwidth. 

 
Fig. 5.25. Download time evaluation for different values of α in scenario 4 for Nh = 1/6, Nm = 
1/3. 
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5.4.6. Delivery frequency of the feedback messages 
Regarding the transmission of the feedback messages from the clients to the server, 
there are two main methods to send these reports: synchronously or asynchronously. In 
the first, clients send periodically their losses reports with a delivery frequency which 
depends on, for instance, the number of users and the available bandwidth. In the latter, 
clients inform about their losses only when it is necessary (for instance, when they 
detect a meaningful change of losses). As an example, it is worth mentioning that 
RTP/RTCP [78] implement both mechanisms: a synchronous one, where users send 
their reports with a certain offset to avoid the feedback implosion problem; and an 
asynchronous mechanism (immediate feedback), where users report the server only 
when required. 

In this way, when choosing the best policy to decide the delivery period of the feedback 
messages, there are several things to take into account: 

• If the delivery period of the feedback messages is very short, too much traffic is 
introduced into the network. There would be many collisions between the 
feedback messages of all clients, which could lead to network congestion. Also, 
if losses do not change excessively it is not worth sending too many reports. 

• Moreover it is not optimal to change continuously the code rate: clients have to 
discard continuously the parity packets previously received and generate the 
parity matrix. If clients do not send very frequently their reports, the server does 
not need to recalculate and generate a new optimum code rate constantly.  

• On the other hand, sending feedback messages with a low frequency could 
become the system inefficient. 

In this sense, we consider a good alternative that clients send the feedback messages 
each time they receive a FLUTE block. It should be remembered that in FLUTE the 
coding is generated by block, so different blocks of the same file can have different 
coding and/or code rate. Thus, the delivery period of the feedback messages should be 
equal or higher than the transmission time of a FLUTE block. This solution is similar to 
the one used by DASH clients to request for new segments each time a segment is 
received.  

The size of a block depends on the parameters established in the blocking algorithm 
(such as the code rate or the encoding symbol length). As explained, LDPC codes work 
more efficiently with higher block sizes [51]. But when choosing the size of the blocks 
it should be taken into account the computational resources of the mobile receivers (the 
higher the block size the more complex the decoding), so there is a trade-off between 
coding efficiency and computational cost. 

As we have seen in previous chapters, a block size of 3000 FLUTE packets offers good 
results of the coding efficiency and the decoding time. Precisely, the experiments 
presented in this chapter have been carried out with blocks of 3000-packet size. 
According to the results presented in Table 5.1, the transmission of a block of this size 
takes among 7000 and 15 000 ms using the optimal code rate for different channel 
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losses. Thus, assuming an average of 10 000 ms, with an average feedback delivery 
period of 10 000 ms and 100 users in the system, the bandwidth consumed by the 
feedback messages will be around 8 kbps (considering that the feedback packet size is 
around 100 B). This is a good value taking into account that the multicast transmission 
rate considered is 5 Mb/s. Also, following the DASH example, a feedback time of 10 s 
is reasonable compared to the feedback times used to request DASH segments (2 s in 
Microsoft Smooth Streaming or 10 s in Adobe HTTP Dynamic Streaming [86]). 

These results show that the proposal of sending feedback messages after receiving each 
block results convenient in terms of bandwidth, which is one of the premises of this 
chapter.  

5.4.7. Evaluation of the hysteresis 
The last study evaluates how the hysteresis affects two main parameters: the average 
download time and the number of times that the state protection changes. If the server 
changes their protection state too frequently, the adaptive system could become 
inefficient: the server is changing the code rate continuously whereas the clients are 
consuming more computational resources since they have to process a lot of coding 
changes. Thus, there is a trade-off between minimizing the download time and the 
number of state changes. 

Scenario 5 is used to evaluate the hysteresis, shown in Fig. 5.11. In that scenario, the 
average losses for each instant of time fluctuates in range [8%, 17%], in this way the 
state protection changes very frequently. With the aim of evaluating the hysteresis 
effect, we fix the lower threshold (λL) to 7% and we increase the upper threshold (λM) 
progressively. Fig. 5.26 shows the results obtained regarding the number of state 
changes and the average download time of all clients considering all the time intervals. 
In the graph, the x label represents the threshold interval, that is, λM - λL. Thus, a value 
of threshold interval equal to 1 indicates that: λL = 7% and λM = 8%. It should be noted 
that, in this study we establish Nh = 1/3 and Nm = 2/3, so that the high losses do not 
mask the effect of the hysteresis.  

 
Fig. 5.26. Number of state changes and average download time depending on the threshold 
interval in scenario 5 for Nh = 1/3, Nm = 2/3.    
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Obviously, as the threshold interval increases, the number of state changes is lower, 
since the system tends to be in the same state protection. However, as the threshold 
interval is higher the average download time increases. 

As Fig. 5.26 shows, the threshold interval used in the previous studies (5%, λL = 7% and 
λM = 12%) represents a good trade-off, since there are not very much changes of 
protection state and the average download time does not get worse considerably 
regarding the minimum value (only 1.5% higher).  

5.4.8. Server algorithm 
After evaluating all the parameters presented in the chapter, this last subsection presents 
an algorithm (Algorithm 5.3) that summarizes the process carried out by the server to 
obtain the best code rate for each instant of time so as to provide an optimal delivery. 

It is worth mentioning that the algorithm is heuristic, since it uses the different 
parameters obtained throughout the evaluation section. The fact that the algorithm 
works well for the five scenarios evaluated provides a certain guarantee to be valid in 
other scenarios.  

Algorithm 5.3: Server procedure 

 INPUT: feedbacks from clients informing about the losses perceived for each instant of 
time 

 OUTPUT: new code rate (CR) 
 1: Fix parameters (λL = 7%, λM = 12%, λH = 30%) 
 2: Initialize (CR = 0.9, Nh = 1/6 and Nm = 1/3, α = 1) 
 3: for (each instant of time) 
 4:  Receive feedback from clients, generate “losses_vector” and calculate nH, n 
 5:  if (nH/n ≤ 5%) then Nh = 1/3, Nm = 2/3 
 6:  else then Nh = 1/6, Nm = 1/3 
 7:  end 
 8:  if (losses variation ≥ 10%) then αcurrent = 0.8 * αprev 
 9:  else then αcurrent = αprev + 0.1 
 10:  end 
 11:  Calculate “smooth_losses_vector” and nM, nH, n 
 12:  if (nH/n ≥ Nh) then CR = 0.7 
 13:  else if ((nM + nH)/n ≥ Nm) then CR = 0.7 
 14:  else then CR = 0.9 
 15:  end 
 16: end 

Initially, the server fixes a conservative value of the code rate (CR = 0.9) in order to 
save bandwidth. Also, the server considers an environment of low client mobility (so α 
= 1) and that clients with high losses have more priority than those with low losses (Nh 
= 1/6 and Nm = 1/3). According to the previous studies, the parameters that delimit each 
losses region are fixed to λL = 7%, λM = 12% and λH = 30%. 
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For each instant of time the server creates a vector with the losses of those clients who 
have sent losses reports. If the percentage of clients with high losses is very low (≤  
5%), the server could give the same priority to all losses regions by assigning Nh = 1/3 
and Nm = 2/3. Next, the server checks if the percentage of losses perceived by each 
client has changed a lot regarding the previous instant of time, by comparing the current 
losses vector with the previous. If the average increment or decrement of losses 
perceived by the clients is higher than a 10%, the server increases the value of α. 
Otherwise the server reduces α (note that 0 ≤ α ≤ 1). We apply the additive-
increase/multiplicative-decrease algorithm (using the results obtained in the studies 
carried out in this chapter), which is used by RTP/RTCP for dynamic adjustment of the 
bandwidth as well as TCP (Transmission Control Protocol) to manage network 
congestion. Then the server calculates the smoothed losses of all clients, generating a 
smooth losses vector. After that, the server counts the number of clients in each losses 
region and calculates the new protection state, and thus the code rate. 

5.5. Conclusions 
The adaptive system presented in this chapter represents a good solution for file 
transmission in multicast environments with limited bandwidth. The use of an adaptive 
code rate minimizes the average download time of all clients within the coverage area, 
with a reasonable use of bandwidth.  

Although there is an optimum code rate per each client depending on the amount of 
losses perceived, a certain code rate provides good values of download time in a wide 
range of packet losses around the code rate that minimizes the download time. 
Therefore, it is possible to send using a code rate that benefits the major part of users. In 
order to do this, it is necessary to analyze the losses perceived by each client and decide 
the optimum code rate for each situation. In the studies carried out two different code 
rates have been considered: one code rate when the major part of clients have low 
losses and another one when they have medium-high losses. Clients with high losses 
must have more priority than those with low losses, since using insufficient protection 
for clients with high losses penalizes more the download time than using too much 
protection for clients with low losses. As the results have shown, the adaptive system 
proposed works very well using only two different code rates. The value of these code 
rates has a great impact on the system performance, as well as the thresholds that 
delimit the protection state of the system, which establish the code rate used to transmit. 
In this sense, it is recommended the use of hysteresis to avoid too much coding 
changes. 

As a particular case, this chapter has shown a carousel where the server sends the same 
file in each loop and clients download the file in one or several carousel cycles, 
depending on the losses. In that case, the adaptive system performs rather well, despite 
the fact that the optimum code rate could change every carousel cycle and clients must 
discard parity packets previously received. 
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Finally, in environments where the losses perceived by the users change very abruptly, 
it is recommended that the server smoothes the losses when it chooses the optimum 
code rate. In that case, choosing an accurate smooth factor has a great influence on the 
suitable performance of the adaptive system. 

To sum up, the adaptive mechanism proposed in this chapter represents a good trade-off 
between the bandwidth used by the file server and the Quality of Experience perceived 
by the clients, therefore it is appropriate for content download services in multicast 
wireless networks. Comparing to the results of the previous chapter, the system 
proposed in this chapter reduces the bandwidth at the expense of increasing the 
download time.  

This chapter has led to the following work in an international journal: [J.7].  
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Chapter 6 

Analysis and evaluation of the File Delivery Table 

The key element of the FLUTE protocol is the use of the File Delivery Table (FDT), 
which is the in-band mechanism used by FLUTE to inform clients about the files (and 
their characteristics) transmitted within a FLUTE session. Clients need to receive the 
FDT in order to start downloading files. Thus, the delivery of FDT packets and the 
proper configuration of their parameters have a great impact on the Quality of 
Experience perceived by the users of FLUTE content download services. This chapter 
presents a complete analysis about how the FDT transmission frequency affects the 
download time of files. Moreover, results show which are the optimum values that 
minimize this download time. An appropriate configuration of the FDT transmission 
frequency as well as the use of AL-FEC mechanisms provides an optimum content 
delivery using the FLUTE protocol. 

6.1. Introduction 
As seen throughout this thesis dissertation, FLUTE is the standard protocol used in 
unidirectional environments to provide reliability in the transmission of multimedia 
files. The main characteristic of FLUTE is the use of an in-band signaling mechanism, 
i.e. the File Delivery Table. The FDT describes the main properties of the files that are 
being transmitted, such as the file name, the content length or the encoding type. Once 
the clients receive the FDT, they know the files the server is delivering and can start 
downloading them. 
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On the other hand, as commented in the introductory section of this work, the Quality 
of Experience perceived by the users is an important parameter in the evaluation of both 
video streaming and file transmission services. In file transmissions, a good QoE is 
obtained when the file is received correctly with the minimum download time. This is 
accomplished by sending files with a high transmission rate in channels with minimum 
losses. But these conditions cannot always be controlled and therefore it is essential to 
send the content in the most efficient way. 

Regarding this, file transmissions through FLUTE can be optimized to improve the 
efficiency of the content delivery. Previous chapters explained how AL-FEC 
mechanisms help to improve the file transmission. Also, the FDT is a key element in 
FLUTE sessions and how often the FDT is transmitted has an important impact on the 
QoE of FLUTE services. It should be remembered that first clients have to receive the 
FDT and then they are able to start downloading files. In this way, if the FDT is sent 
with low frequency, clients have to wait a long time until they can start downloading 
the contents. On the other hand, if the FDT is received too frequently, clients have to 
wait less time to receive the FDT (and therefore to start the download) at the expense of 
receiving more useless packets afterwards, thus reducing the efficiency of the 
transmission. 

In this sense, this chapter analyzes how the transmission of the FDT affects FLUTE file 
delivery sessions and evaluates which are the optimum values of the FDT transmission 
frequency that minimize the download time and, therefore, improve the Quality of 
Experience perceived by the users. 

In Section 2.4 the related work of FLUTE was explained. It is worth highlighting that, 
despite that the FDT is one of the most characteristic elements of FLUTE, there are no 
papers where the FDT is analyzed in detail. Also, neither the original FLUTE RFC [7] 
nor the new FLUTE standard [2] analyze how often an FDT Instance should be sent and 
how much FEC protection should be provided for each FDT Instance. This chapter is 
intended to fill this gap. 

6.2. Theoretical analysis 

6.2.1. Introduction 
The objective of this study is to calculate the total download time (tT) of a file and 
evaluate how it is affected by the FDT delivery configuration. Throughout this section 
several variables appear. Table 6.1 shows these variables and explains their meaning. 
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Table 6.1. Key notation. 

b Transmission rate nL Number of packets that make up 
the file to download 

CR Code rate Si Size of file i 
CRf Code rate applied to files SL Size of the file to download 

CRFDT Code rate applied to FDT 
Instances tC Cycle time 

DFDT Number of data packets sent 
between two FDT Instances tD Download time 

e Encoding symbol length of a 
FLUTE data packet tFDT Delivery period of FDT 

Instances 

e’ Encoding symbol length of a 
FLUTE FDT Instance packet tM 

Time passed since the FDT is 
received until the client receives 
the first packet of the file to 
download 

m Number of times per cycle that 
an FDT is sent tS Time needed to send once the 

file to download 

mL Number of FDT Instances of file 
L sent in each carousel cycle tT Total download time 

N Number of files in the carousel tW Waiting time 

nCR Number of packets that make up 
a file after applying AL-FEC α Adjustment factor of the file size 

ncycles 
Number of cycles needed to 
download a file αL Adjustment factor of the file size 

referred to the file L 

n’cycles 
Entire number of the ncycles, 
defined as: ceil (ncycles) 

β 

In the last cycle, it represents the 
remaining cycle percentage to 
complete an entire cycle, 
referred to the entire carousel 

ncyclesFDT Number of cycles needed to 
download an FDT βL 

In the last cycle, it represents the 
remaining cycle percentage to 
complete an entire cycle, 
referred to the file to download 

ni 
Number of packets that make up 
file i γ Number of packets that compose 

an FDT 

This section analyzes five transmission configurations, each one explained in a different 
subsection as follows. Section 6.2.2 presents the general case: download of one file, use 
of a complete FDT and sequential scheduling. Section 6.2.3 analyzes partial FDTs, 
downloading one file and using sequential scheduling. Section 6.2.4 studies the 
scheduling model: download of one file, use of a complete FDT and interleaving 
scheduling. Section 6.2.5 considers multiple downloads, using a complete FDT and 
sequential scheduling. Finally, Section 6.2.6 analyzes the use of prefetching with the 
parameters of the general case: download of one file, use of a complete FDT and 
sequential scheduling. 
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6.2.2. General case 
As explained in Chapter 2, the RFC of FLUTE establishes that there are two types of 
FDT Instances: partial FDT and complete FDT, since each FDT Instance contains at 
least a single file description entry and at most the complete FDT of the file delivery 
session. As a first study case, among the two types of FDTs, this section analyzes the 
complete FDT. Each FDT Instance is transmitted in γ FLUTE packets, depending on 
the number of files and attributes that the FDT Instance describes. This study evaluates 
different cases: sending only one FDT Instance per cycle; sending as many FDT 
Instances as files in the carousel; and sending FDT Instances more frequently.  

In this study, it is assumed that a server sends N files sequentially in a FLUTE carousel 
and that a user wants to download a certain file L with size SL. Also, the server sends 
files always using the same coding and code rate, so the carousel size is equal for every 
cycle. Fig. 6.1 shows an example of a FLUTE delivery session based on carousels 
where three files are sent. It should be noted that the FDT Instances are sent in-band 
with the files. In the example, a certain client wants to download the file F3. 

  

Fig. 6.1. Example of a carousel transmission. 

Assuming that clients connect to the channel after the server starts sending content, a 
client will access to the carousel in a certain moment and will not be able to download 
the file until that client receives the FDT. So, the client needs to wait a certain time to 
receive the FDT, called waiting time (tW). After receiving the FDT, the client needs a 
time to download the file (tD). In this way, the total download time needed to complete 
a download (tT) is  

 .DWT ttt +=  (6.1) 

Regarding the calculation of the download time (tD), this is composed by three different 
times, as Fig. 6.1 shows. Firstly, there is a time tM that indicates the time passed since 
the FDT is received until the client receives the first packet of the file to download. In 
that example, when the client accesses to the carousel, F1 is being transmitted. 
Therefore, the client will have to wait until the server finishes the transmission of F1 
and then the server sends F2 completely. Secondly, tS indicates the time needed to send 
once the file to download, that is, the time passed from the transmission of the first 
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packet until the transmission of the last one. As Fig. 6.1 shows, it is very likely that, if 
there are losses during the transmission, the client needs more than one carousel cycle 
to download a certain file. In the example, after the first cycle, the client has 
downloaded a 25% of the file, whereas after the second cycle, the client has 
downloaded 90%. The download is completed during the third cycle. Thus, the 
download time also depends on the number of cycles needed to complete the download. 
Therefore, the download time is calculated as 

 ).1·( −++= cyclesCSMD ntttt   (6.2) 

Hence, the cycle time (tC) has a great impact on the download time. As we have seen in 
previous chapters, the use of AL-FEC mechanisms allows to reduce the number of 
carousel cycles. In the case of considering AL-FEC, the code rate must be taken into 
account when calculating the cycle time:  
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where N is the number of files in the carousel; Si is the size of the file i; m is the number 
of FDT Instances sent during a carousel cycle; e’ is the size of an FDT Instance packet; 
γ is, as mentioned, the number of packets that compose an FDT Instance; CRf and 
CRFDT represent the code rate used to send the files and the FDT Instances, respectively; 
and b is the transmission rate. It should be noted that Si can be calculated as the product 
of the number of packets of the file i (ni) and the size of FLUTE packets (e). Also, the 
use of AL-FEC encoding generates more packets. The total number of packets after 
coding is calculated by ceiling the division of the number of packets by the code rate. 
Assuming that both the files and the FDT will have the same protection (and thus the 
same code rate) and not considering the effect of the ceiling round, formula (6.3) is 
simplified: 
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It must be stressed that this formula and the following ones are valid when No-FEC is 
used, simply assigning CR = 1.  

Returning to (6.1), with regard to the waiting time (tW), this is a random variable with 
expected value E[tW]. In this study, it is assumed that the instant of time when the client 
accesses the carousel is uniformly distributed in the interval [t, t + tFDT], where tFDT is 
the delivery period of the FDT Instances, that is:  
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In this way, the expected waiting time is  
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The delivery period of FDT Instances is directly related to the parameter DFDT, which 
indicates how many packets are sent between two FDT Instances:  
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The approximation of the latter expression is due to the fact that the encoding symbol 
length of the data packets (e) and the FDT Instances (e’) can be different. 

Moreover, if there are losses in the transmission, it must be taken into account that FDT 
Instances can be lost, so several FDT cycles (ncyclesFDT) –considering that an FDT cycle 
is the period between the delivery of two FDT Instances (tFDT) – can be necessary to 
obtain the FDT. Thus, formula (6.6) becomes  
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Simplifying this expression yields  
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As (6.9) shows, the expected value of the waiting time decreases as the number of FDT 
Instances sent in the carousel is higher and as the number of cycles is lower. 

In order to calculate this number of cycles, the methodology explained in [45] and in 
Section 4.3 can be used. The first considers uniformly distributed losses whereas the 
latter models the channel losses using the Markov model. Again, as considered 
throughout this thesis work, this chapter considers bursty losses, thus the Markov model 
[57] is used. Therefore, in order to calculate the number of cycles, we consider the same 
methodology used in Chapter 4 and Chapter 5. In this way, we use again equations 
(4.1)-(4.3) to calculate the number of cycles when No-FEC is used, and equations (4.4)-
(4.6) when AL-FEC is used. 

On the other hand, in regard to the calculation of the expected download time (tD), as 
explained before this is composed by three terms: tM, tS and the number of cycles 
needed to complete the download.  
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 [ ] [ ] [ ] [ ].)1·( −++= cyclesCSMD ntEtEtEtE   (6.10) 

Concerning tM, it is possible to obtain an analytical expression considering m possible 
cases, each one corresponding to an FDT Instance in the file carousel. It is assumed that 
the client accesses the carousel at any instant [t, t + tC] and therefore, the m possible 
cases have equal probabilities, yielding to the following approximation: 
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where S’L is the size of the file to download adjusted by the number of FDT Instances 
sent during the delivery of that file per carousel cycle. That adjustment is represented 
by the variable α. Also, S’L is adjusted by the additional packets transmitted because of 
the use of AL-FEC. Thus, 
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Returning to (6.10), the calculation of tS is more intuitive: 
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On the other hand, in (6.10) the number of cycles is calculated using again formulas 
(4.1)-(4.6). This number of cycles has a great impact on the tT and, as mentioned, is 
directly related to the losses in the transmission channel. It is worth noting that the 
client, in order to complete the download, needs actually an entire number of cycles 
(n’cycles) minus a percentage of the last cycle (βL), where βL represents the download 
percentage referred to the file. In this sense, β  is defined as the download percentage of 
the entire carousel. In the example of Fig. 6.1, the client needs 3 cycles to complete the 
download minus a little percentage of the last cycle.  

 .' β−= cyclescycles nn   (6.15) 

Algorithm 6.1 and Algorithm 6.2 show how to calculate both n’cycles and β, for the case 
of No-FEC and AL-FEC, respectively. Both algorithms use the formulas presented in 
(4.1)-(4.6), with the following input parameters: the number of packets that make up a 
file (n), the percentage of channel losses and the maximum number of iterations used to 
calculate β. Also, Algorithm 6.2 receives as input parameters the number of packets of 
the file after decoding (nCR) and the inefficiency ratio. Each algorithm calculates the 
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number of new packets received in each cycle and checks if enough packets have been 
received to rebuild the file. In that case, it adjusts the percentage of the last cycle that 
completes the download. This is calculated through an iterative process with a precision 
determined by the maximum number of iterations. For instance, with 10 iterations there 
is a precision smaller than 10-3 cycles. 

Algorithm 6.1: Calculation of the download time (No-FEC) 

 INPUT: n, losses, max_iter 
 OUTPUT: n’cycles, βL 
 1: Initialize (n’cycles = 1, βL = 0, packets_received = 0) 
 2: Calculate number of losses per cycle (l = n * losses) and number of packets 

received at first loop 
 3: while (not all packets have been received) 
 4:  n’cycles = n’cycles + 1; 
 5:  Calculate new packets received (P) in the current loop using (4.2)  
 6:  if (packets_received + P = n) 
 7:   Initialize (bottom = 0, top = 1, thres = 0, iter = 1) 
 8:   while (iter < max_iter) 
 9:    thres = (bottom + top)/2 
 10:    Calculate new packets received (P) with (4.2) and input parameters: 
    thres * (n, packets_received, l) 
 11:    if (packets_received + P = n) 
 12:     top = thres; 
 13:    else 
 14:     bottom = thres; 
 15:    endif 
 16:    iter = iter + 1; 
 17:   endwhile 
 18:   βL = 1 – thres; 
 19:   BREAK  
 20:  else 
 21:   packets_received = packets_received + P; 
 22:  endif 
 23: endwhile 

 
Algorithm 6.2: Calculation of the download time (AL-FEC) 

 INPUT: n, nCR, losses, inef_ratio, max_iter  
 OUTPUT: n’cycles, βL 
 1: Initialize (n’cycles = 1, βL = 0, packets_received = 0) 
 2: Calculate number of losses per cycle (l = nCR * losses) and number of packets 

received at first loop 
 3: while (not enough packets have been received) 
 4:  n’cycles = n’cycles + 1; 
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 5:  Calculate new packets received (P) in the current loop using (4.5)  
 6:  if (packets_received + P ≥ n * inef_ratio) 
 7:   Initialize (bottom = 0, top = 1, thres = 0, iter = 1) 
 8:   while (iter < max_iter) 
 9:    thres = (bottom + top)/2 
 10:    Calculate new packets received (P) with (4.5) and input parameters:  
    thres * (nCR, packets_received, l) 
 11:    if (packets_received + P ≥ n * inef_ratio) 
 12:     top = thres; 
 13:    else 
 14:     bottom = thres; 
 15:    endif 
 16:    iter = iter + 1; 
 17:   endwhile 
 18:   βL = 1 – thres; 
 19:   BREAK  
 20:  else 
 21:   packets_received = packets_received + P; 
 22:  endif 
 23: endwhile 

Both algorithms return the entire number of cycles (n’cycles) and the percentage of the 
last cycle that completes the download referred to the file to download (βL). In order to 
calculate the β  referred to the entire carousel, formula (6.16) is used: 
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In this way, taking into consideration expressions (6.11)-(6.16), the expected value of tD 
of a file L is obtained by replacing in (6.10): 
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That expression can be simplified: 
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Finally, once the expected waiting time and the expected download time are calculated, 
the estimated value of the expected total download time of a file L is calculated 
replacing in (6.1): 
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For the sake of clarity, we sum up the main formulas presented. The expected download 
time of a certain file is calculated using (6.19), where tC is obtained with formula (6.3) 
or (6.4), α is calculated with (6.11), and the number of cycles (both the file and the 
FDT) is obtained by means of Algorithm 6.1 (if No-FEC is used) or by means of 
Algorithm 6.2 (if AL-FEC is used). 

It should be noted that the procedure is similar to the one explained in Section 5.3.1 
when calculating the download time. The differences regarding Section 5.3.1 are: 
firstly, this section considers the waiting time; then, in this section the server uses the 
same coding and code rate during the transmission; and finally, Section 5.3.1 did not 
consider the effect of FDT Instances when calculating the download time.  

6.2.3. Partial FDT 
The theoretical analysis presented in previous section assumes that the FDT sent by the 
server is complete, that is, it describes all files of the carousel. The calculation of the 
expected total download time of a file with partial FDT is very similar. The main 
difference regarding (6.19) is the value of m, which must be replaced by a partial m 
(mL), which indicates how many FDT Instances describing file L are sent in each 
carousel cycle.   
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Supposing that each partial FDT only carries information of one certain file, the sum of 
all mi must be equal to m: 
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Moreover, the value of αL could be different depending on the way partial FDT 
Instances are sent. If they are sent throughout the carousel, αL will be equal to 
expression (6.13), whereas if partial FDT Instances are only sent during the 
transmission of the file they describe, then αL will be calculated using the next 
expression: 
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In partial FDT the number of cycles needed to rebuild an FDT (ncyclesFDT) will be lower 
or equal to the ones needed in the previous case since FDT Instances will be made up 
by less packets (in general, γ = 1 if FDT Instances only describe one file). 
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6.2.4. Interleaving 
On the other hand, server may interleave the packets belonging to different files, instead 
of using a sequential transmission. The waiting time is not affected by the transmission 
model (only by the transmission frequency of FDT Instances and the cycle time), so 
formula (6.9) remains valid. Nevertheless, when calculating the download time –
formula (6.10) – both tM and tS change. The term referred to the number of cycles is 
equal. Specifically, as packets are interleaved, the time passed since the FDT is received 
until the first packet of the file to download is received, that is tM, is reduced. When 
calculating tM, considering that packets are interleaved according to a periodic 
sequence, it is taken into account that files with higher sizes will have a lower tM. This 
time is calculated by multiplying the time needed to transmit a packet by the size of the 
whole carousel and divided by the size of the file to download. Thus, the expected tM of 
a file L is 
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On the contrary, the value of tS increases considerably. This value is different 
depending on whether FEC is used or not. Without FEC, on average, the client must 
wait until almost the end of the carousel to get the last packet of the file to download. 
Thus, following a similar reasoning that in formula (6.22), it is possible to calculate the 
expected value of tS:   

 [ ] .
'

1'

·

e
S
e

S

ttE
L

L

C
L
S

−
=  (6.24) 

If AL-FEC is used, the value of tS is in the range 
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The best case is when there are no losses, so the client has to receive n * inef_ratio 
packets to rebuild the file. As the losses increase, tS increases too, with a maximum 
value of almost tC. Thus, the total download time is obtained as in the general case, that 
is, considering tW, tM, tS and the number of cycles necessary to complete the download. 
In any case, the download time using interleaved scheduling will always be higher than 
the one obtained using sequential transmission. Nevertheless, the use of interleaving 
could be highly recommended in order to minimize the effect of burst losses. 
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6.2.5. Multiple download 
Back to the case of sequential scheduling, if the client decides to download all files of 
the carousel instead of only one, the total download time is calculated in a similar way. 
In this case, the waiting time would be the same that in the general case, calculated 
using formula (6.9). On the other hand, the term tM disappears. In this case, the 
download time is determined by the file that takes longer to download. In general, this 
file will be the largest file in the carousel, because its download requires more carousel 
cycles. The expression of the total download time of the entire carousel is 
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6.2.6. Prefetching 
In this regard, it would be interesting to start storing packets before the FDT is received, 
in order to reduce the total download time. In this sense, the RFC of FLUTE [2] 
indicates that, although generally a receiver needs to receive an FDT Instance 
describing a file before it is able to recover the file itself, when packets are received 
before the FDT, the system performance might be improved by caching such packets 
within a reasonable time window and storage size. Therefore, the client can save 
packets although the client does not know which file the packets belong to until the 
client receives the FDT. This can be useful in environments where the size of the data 
carousel is not very high and the client does not have limited resources or storage 
problems. In this case, the total download time can be reduced considerably. Regarding 
the waiting time, this will be the same that in the previous analysis, that is:  
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If the client starts saving data before the FDT is received, the expression of the 
download time does not change, considering that, in this situation, tM represents the 
time passed since the client connects to the channel until the client receives the first 
packet of the file to download (although the client is storing all the packets that it 
receives), so the formula that defines the download time is 
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As clients need to receive the FDT to assign the properties to the file, the total 
download time will be specified by the waiting time if all packets are received before 
the FDT does, or by the download time otherwise: 
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Finally, it should be recalled that all presented formulas remain valid when No-FEC is 
used, by fixing the code rate to 1. 

6.3. Evaluation methodology 
This section presents the evaluation of the FDT transmission frequency, first for the 
general case (Section 6.4.1) and then for some particular cases. Specifically, Section 
6.4.2 analyzes the interleaving scheduling and Section 6.4.3 evaluates the advantages of 
using prefetching.  

The main evaluation parameter is the total download time (tT). This section shows 
various results for different values of the number of files in the carousel (N), different 
AL-FEC protection, and for different sizes and file distributions of packets (Si).   

The evaluation of the FDT transmission frequency has been done through different 
simulations, each comprised of as many iterations as needed to provide narrow (99%) 
confidence intervals. The studies consider different values of the number of times an 
FDT Instance is sent in each carousel cycle (that is, different values of m, which imply 
different values of DFDT). Specifically, the values of m considered have been: 1, N/50, 
N/10, N/5, N/2, N, 2N, 5N, 10N, and 50N. These values of m provide the following 
approximated values of DFDT: ni*N, ni*50, ni*10, ni*5, ni*2, ni, ni/2, ni/5, ni/10, and 
ni/50 packets respectively.  

As in previous chapters, in the evaluation, a packet size (e) of 1428 bytes has been used, 
according to the maximum transfer unit (MTU) of Ethernet (1500 bytes) and the results 
presented in [45]. With that size, and with typical file parameters in an FDT (such as 
content location, TOI or file size), it is assumed that one packet can contain over six file 
descriptions. In this way, γ = ceil(N/6). Also, it is supposed that e’ = e. Moreover, a 
transmission rate (b) of 5 Mb/s has been used, although the value of this parameter does 
not affect the conclusions of this study. Regarding channel losses, the different studies 
consider errors from 0 to 50% packet losses, in steps of 5%. 

In relation to AL-FEC, it is considered that LDPC codes are used. Nevertheless, the 
studies hereby presented remain valid independently of the codes used. The only 
difference in the results presented is the value of the inefficiency ratio. In this case, it is 
considered a value of inefficiency ratio equal to 1.07, according to [51] and [77], as we 
considered in Chapter 4 and Chapter 5. 

Finally, it is worth mentioning that in the studies the file L to download will always be 
the largest of the carousel. 
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6.4. Results and analysis 

6.4.1. General case 
As a first study case, it is considered that a server sends a data carousel with N = 100 
files of ni = 1000 packets (that is, Si = 1 428 000 bytes). These values of N and ni, 
according to (6.7), provide the following values of DFDT: 100 000, 50 000, 10 000, 
5000, 2000, 1000, 500, 200, 100, and 20 packets.  

Fig. 6.2(a-b) show the results of the total download obtained when No-FEC is used for 
different configurations of the FDT frequency and channel losses. Fig. 6.2(a-b) show 
two different representations of the same data. Figures depict that there are high 
differences regarding the total download time depending on the FDT transmission 
frequency when No-FEC is applied. These differences are higher as losses increase. As 
Fig. 6.2 reflect, the values of m that provide minimum download times are in the range 
[N/10, 2N] for all percentage of losses. On the other hand, the download time gets 
worse if a lot of FDT Instances (m = 50N) are sent. Furthermore, sending only one FDT 
Instance per cycle is not the best option either. 

  
 (a) Representation 1 (b) Representation 2  

Fig. 6.2. Total download time evaluation for N = 100 files and constant file size of ni = 1000 
packets, with No-FEC. 

The system performance can be improved by using AL-FEC. In this sense, Fig. 6.3(a-f) 
show the total download time for different values of the code rate (CR). It should be 
noted that the scale of the total download time is different comparing with Fig. 6.2, as 
well as the scale of Fig. 6.3(f). 

As expected, the use of AL-FEC reduces considerably the total download time. 
Regarding the FDT frequency, as in Fig. 6.2, values around m = N provide minimum 
download times for all percentage of losses and code rates, whereas sending only one 
FDT Instance or a lot of FDT Instances is not a good solution. Fig. 6.3(a-f) reflect in 
some cases a constant total download time for different percentage of losses, due to the 
use of enough AL-FEC. When the amount of AL-FEC applied is not enough (high 
values of code rate) the download time starts increasing (for instance, for losses higher 
than 10% when the code rate is 0.8) because more carousel cycles are needed to 
complete the download. Although using a high code rate guarantees a good protection, 
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this does not always entails a minimum value of download time, since using too much 
parity produces that a lot of parity packets are sent, thus reducing the efficiency of the 
transmission. Furthermore, a high protection increases considerably the bandwidth. In 
this example, as the figures show, a code rate that provides a good tradeoff between 
total download time and bandwidth is 0.7 –Fig. 6.3(d)–, so this code rate will be used in 
the rest of studies. 

  
 (a) CR = 0.4 (b) CR = 0.5 

  
 (c) CR = 0.6 (d) CR = 0.7 

  
 (e) CR = 0.8 (f) CR = 0.9  

Fig. 6.3. Total download time evaluation for N = 100 files and constant file size of ni = 1000 
packets for different values of code rate. 
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In this sense, Fig. 6.4 depicts the total download time for different percentage of losses 
and values of m for the code rate equal to 0.7. Figure shows that there is a range 
(between m = N/10 and m = 2N) where the total download time is minimum. 

 
Fig. 6.4. Total download time evaluation for N = 100 files and constant file size of ni = 1000 
packets, with AL-FEC (CR = 0.7). 

6.4.1.a. Impact of the number of files in the carousel 
Regarding the number of files in the carousel, previous conclusions are confirmed in the 
studies carried out with low and high values of N. The differences between the different 
values of m are higher as the number of files in the carousel increases. To see this, Fig. 
6.5(a-d) show the behavior of the FDT when N = 500 files in two different 
representations. The figures show higher differences between the different values of m. 
Once again, values in range [N/10, 2N] provide minimum download times for all 
channel losses, whether AL-FEC is applied or not. 

Table 6.2 and Table 6.3 show the difference between the total download time obtained 
with the optimum value (m = N) and the rest of values, for different values of N and 
percentage of losses, without using FEC and using AL-FEC respectively. It should be 
noted that, in the case of N = 10, the value of m = N/50 has no sense (since m < 1), and 
the value of m = N/10 is the same as m = 1. Tables show how the optimum value of m 
slightly decreases as the number of files in the carousel increases. Thus, when N = 10 or 
N = 100, value of m = N provides the minimum total download time, whereas when N = 
500, values of m lower than N provide slightly better results. In any case, there is a 
range of values of m that provide similar and minimal values of the total download 
time. According to the table, values of m in range [N/10, 2N] are optimal for all 
percentage of losses. Other values increase the total download time considerably. For 
example, in Table 6.2 and Table 6.3 for N = 500 files and m = 10N (that is, sending an 
FDT Instance each 100 packets) the total download time obtained is over 70% higher 
than the one obtained with m = N (that is, sending an FDT Instance each 1000 packets). 
Moreover, as mentioned, sending FDT Instances more frequently increases the total 
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download time considerably, as value of m = 50N shows. Also, sending only one FDT 
per cycle provides values of total download time rather higher. 

   
 (a) No-FEC (1) (b) AL-FEC (1) 

  

 (c) No-FEC (2) (d) AL-FEC (2) 

Fig. 6.5. Total download time evaluation for N = 500 files and constant file size of ni = 1000 
packets. 

Table 6.2. Total download time percentage referred to the case of sending m = N FDT Instances 
per carousel cycle for files of constant size of ni = 1000 packets with No-FEC. 

 
N = 10 N = 100 N = 500 

losses losses losses 

m. 5% 25% 50% 5% 25% 50% 5% 25% 50% 

1 22% 14% 14% 34% 40% 46% 51% 50% 52% 
N/50 - - - 17% 19% 20% 3% -2% -2% 
N/10 - - - 5% 3% 3% -2% -6% -7% 
N/5 10% 7% 7% 1% -1% 3% -3% -6% -6% 
N/2 1% -1% 1% 1% -1% 0% -1% -5% -5% 
2N 1% -3% 0% 2% 3% 2% 10% 7% 8% 
5N 2% -1% -1% 6% 7% 7% 36% 28% 32% 

10N -1% 2% -1% 16% 15% 16% 78% 68% 68% 
50N 9% 5% 7% 78% 82% 83% 404% 377% 384% 
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Table 6.3. Total download time percentage referred to the case of sending m = N FDT Instances 
per carousel cycle for files of constant size of ni = 1000 packets with AL-FEC. 

 
N = 10 N = 100 N = 500 

losses losses losses 

m. 5% 25% 50% 5% 25% 50% 5% 25% 50% 

1 78% 179% 99% 94% 94% 94% 84% 84% 82% 
N/50 - - - 46% 46% 45% 1% 1% 1% 
N/10 - - - 7% 7% 7% -5% -5% -5% 
N/5 36% 64% 51% 3% 3% 3% -5% -5% -5% 
N/2 9% 14% 10% 0% 0% 0% -4% -4% -4% 
2N -5% -9% -7% 1% 1% 1% 8% 8% 8% 
5N -7% -13% -9% 6% 6% 6% 31% 31% 31% 

10N -7% -13% -10% 14% 14% 14% 69% 69% 69% 
50N -1% -8% -4% 80% 80% 80% 379% 379% 379% 

6.4.1.b. Impact of the waiting time 
On the other hand, as mentioned in the theoretical analysis, there are two variables that 
make up the total download time (tT): the waiting time (tW) and the download time of 
the file (tD). According to the theoretical analysis, the number of FDT Instances sent 
affects mainly the waiting time. Fig. 6.6(a-b) show the waiting time for only two values 
of m (m = 1 and m = N), since values higher than m = N provide values very close to 0. 
Results are very clear: it is enough to send only N FDT Instances per cycle so as to 
minimize the waiting time.  

  
 (a) No-FEC (b) AL-FEC 

Fig. 6.6. Waiting time evaluation for N = 100 files and constant file size of ni = 1000 packets. 

In this sense, a related study is presented in Fig. 6.7(a-b), where it is shown how the 
waiting time affects the total download time. Specifically, the figures depict the 
percentage of tW regarding tT for different values of N. Also, the same two values of m 
of the previous figures are shown. As m is higher, the waiting time hardly affects the 
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total download time. In contrast, when only one FDT is sent in each carousel cycle, the 
waiting time has a great impact on the total download time. 

  
 (a) No-FEC (b) AL-FEC 

Fig. 6.7. tW/tT relation evaluation for m = 1 and m = N. 

When No-FEC is used, the percentage of tW regarding tT is higher as the number of files 
in the carousel increases if only one FDT Instance is sent. For instance, when N = 500, 
tW represents over 40% of the tT. Moreover, Fig. 6.7(a) reflects that, for a fixed value of 
N, the percentage remains very similar independently of the losses, except in the case of 
no losses. In contrast, if AL-FEC is used the waiting time has more importance on the 
total download time when the FDT is not sent very frequently. Fig. 6.7(b) shows how 
the relation tW/tT varies depending on the losses. From a certain percentage of losses, the 
relation tW/tT decreases and then increases again. This percentage of losses is delimited 
by the code rate used. In Fig. 6.7(b), this percentage is over a 25%, a result coherent 
with Fig. 6.3(d) and Fig. 6.5(b).  

For example, if 100 files are sent in a channel with 10% losses and only one FDT per 
cycle carousel is sent, the waiting time represents 25% of the total download time if No-
FEC is used, whereas this percentage increases up to 50% when AL-FEC is used. On 
the contrary, if N FDTs are sent, the waiting time represents only the 0.5% of the total 
download time without FEC and the 1% with FEC. This percentage is similar in all 
cases studied in this section.  

6.4.1.c. Impact of the file size distribution 
Regarding the file size distribution, normally the files of the carousel will not have the 
same size. Fig. 6.8 considers a carousel where the size of the files follows a log normal 
distribution which mean is 1000 packets. Regarding the comparison between different 
values of m, results are very similar to those shown in Fig. 6.2(a-b), Fig. 6.3(d) and Fig. 
6.4. In addition, as Fig. 6.8(a) and Fig. 6.8(c) show, a carousel which file size follows a 
log normal distribution provides slightly higher download times when No-FEC is used. 
Nevertheless, when AL-FEC is used –Fig. 6.8(b) and Fig. 6.8(d)– the total download 
time obtained using a log normal file size distribution is almost the same as the one 
obtained when files have the same size. Again, it should be noted the different scale of 
Fig. 6.8(a and c) and Fig. 6.8(b and d). 
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 (a) No-FEC (1) (b) AL-FEC (1) 

  

 (c) No-FEC (2) (d) AL-FEC (2) 

Fig. 6.8. Total download time evaluation for N = 100 files and log normal file size distribution 
with mean = 1000 packets. 

6.4.1.d. Impact of the file size 
Next study considers a carousel which files are 3 times larger than in previous studies, 
that is, files of 3000 packets (over 4 MB). In this study, the values of m have been 
modified in order to maintain the same values of DFDT of the previous studies. Thus, the 
values of m: 1, 3*N/50, 3*N/10, 3*N/5, N, 3*N/2, 3*N, 3*2N, 3*5N, 3*10N and 3*50N 
mean sending the FDT Instances every approximately 300 000, 50 000, 10 000, 5000, 
3000, 2000, 1000, 500, 200, 100 and 20 packets respectively. Fig. 6.9(a-d) show that, 
again, there is a wide range of values around m = N that minimizes the total download 
time for all percentage of losses. These are also the optimum values in a carousel in 
which the file size of the carousel follows a log normal distribution (although they are 
not shown here). Therefore, the conclusions are very similar to those reached in the 
previous studies. 
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 (a) No-FEC (1) (b) AL-FEC (1) 

  

 (c) No-FEC (2) (d) AL-FEC (2) 

Fig. 6.9. Total download time evaluation for N = 100 files and constant file size of ni = 3000 
packets. 

6.4.2. Interleaving 
On the other hand, next study analyzes the effect of the scheduling model. Table 6.4 
shows the increase (in percentage) of the total download time using interleaving with 
respect to using sequential scheduling for different percentage of losses, number of 
FDT Instances sent and using AL-FEC or not. The increase is especially important, 
apart from the case of no losses without FEC, when AL-FEC is used. In these cases, the 
difference between sequential and interleaved transmission is approximately half cycle. 
For instance, in the case of AL-FEC with 25% of losses, it is necessary only one cycle 
to download the file but, whereas in the sequential mode the download is completed 
after approximately half cycle, the interleaved transmission requires almost the 
complete cycle, thus the difference regarding the total download time is almost the 
double comparing these two models. This fact and the rest of results on the table are 
coherent with the formulas previously presented. Independently of the number of FDT 
Instances sent during the carousel, the interleaving model always increases the total 
download time. 
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Table 6.4.  Relation between the total download time obtained with interleaving regarding the 
total download time obtained with sequential scheduling. N = 100 files and constant file size of ni 
= 1000 packets. 

 
No-FEC AL-FEC 

losses losses 

m. 0% 5% 25% 50% 0% 5% 25% 50% 

1 92% 29% 10% 4% 24% 28% 49% 17% 
N/50 66% 15% 8% 4% 32% 38% 65% 22% 
N/10 89% 16% 6% 4% 44% 51% 89% 30% 
N/5 93% 20% 9% 2% 46% 54% 93% 31% 
N/2 96% 20% 10% 5% 47% 55% 96% 32% 
N 181% 38% 14% 8% 48% 56% 97% 33% 

2N 182% 36% 15% 9% 48% 56% 97% 33% 
5N 183% 34% 18% 7% 48% 56% 98% 33% 

10N 183% 35% 15% 7% 48% 56% 98% 33% 
50N 183% 38% 16% 6% 48% 56% 98% 33% 

6.4.3.  Prefetching 
Finally, it is considered the case of storing packets before the FDT is received. It may 
appear that this could reduce considerably the total download time but, according to 
Fig. 6.6(a-b) and equation (6.27), this assumption is only true when few FDT Instances 
are sent. In this sense, Fig. 6.10(a-b) show a comparison among the total download 
obtained when a buffer is used and when is not, for two different values of m. It should 
be noted that, for the sake of clarity, only it is shown one value of m (specifically m = 1) 
when a buffer is used, since other values provide practically the same total download 
time. Fig. 6.10(a-b) show that it is recommended to use a buffer only when few FDT 
Instances are sent. For example, if only one FDT is sent, saving packets before the FDT 
is received can reduce the total download time almost a 50% for different percentages 
of losses. Nevertheless, the storage space required by clients could increase by a factor 
equal to the number of files in the carousel, in this case by 100.   
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 (a) No-FEC (b) AL-FEC 

Fig. 6.10. Total download time evaluation using a buffer for N = 100 files and constant file size 
of ni = 1000 packets. 

6.5. Conclusions  
This chapter has shown the great influence that the FDT transmission frequency has 
over the total download time of a file. A proper configuration of the FDT transmission 
frequency increases the bandwidth efficiency, thus improving the Quality of Experience 
perceived by the users. In this sense, there are certain configurations of the FDT that 
reduce the total download time. The results show that there is a range of values of the 
FDT delivery frequency that minimizes the total download time. Sending as many FDT 
Instances as files (N) in the carousel per cycle provide very good results, whether AL-
FEC is used or not. However, if only one FDT Instance per cycle is sent, the time 
clients wait until they receive the FDT increases considerably, therefore the total 
download time increases too. Moreover, if several FDT Instances are sent the total 
download time also gets worse considerably. The difference among the total download 
time obtained using an optimum FDT configuration and other configurations is higher 
as the number of files in the carousel and its size is higher, and as the amount of losses 
in the channel increases. Thus, in general, there is a range of values around N which 
provides miminum download times. 

Obviously the use of AL-FEC mechanisms improves considerably the total download 
time. In this sense, it is important to consider the percentage of losses of the 
transmission channel, in order to use an appropriate code rate that provides a good 
value of the total download time without increasing excessively the channel bandwidth.  

Among the two parameters that make up the total download time, the waiting time has 
an important impact on the total download time only when few FDT Instances per cycle 
are sent. Sending more FDT Instances allows to minimize the waiting time. In this 
sense, it is not a great advantage to save packets before the FDT is received. In doing 
this, the waiting time would disappear, but as this waiting time would be very low with 
a proper value of FDT frequency, the profit would be minimal, at the expense of 
increasing extensively the memory and computational resources in reception. 
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On the other hand, although interleaved scheduling can be very useful to minimize the 
burst losses, sequential transmission always reduces the total download time.  

To sum up, as a particular conclusion of this chapter and as a general conclusion of this 
thesis work, a proper configuration of the AL-FEC protection and the FDT provides an 
optimum content delivery through the FLUTE protocol in multicast wireless networks. 

The following publication in an international journal summarizes the results presented 
in this chapter: [J.8]. 
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