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Dpto. de Ingenieŕıa Mecánica y de Materiales

Universitat Politècnica de València
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Abstract

The computation of stress intensity factors (SIF) in curved and non-planar cracks
using domain integrals introduces some difficulties related to the use of curvilinear
gradients. Several approaches exist in the literature that consider curvilinear correc-
tions within a finite element framework, but these depend on each particular crack
configuration and they are not general. In this work, we introduce the curvilinear
gradient correction within the extended finite element method framework (XFEM),
based only on the level set information used for the crack description and the local
coordinate system definition. Our formulation depends only on the level sets coor-
dinates and, therefore, an explicit analytical description of the crack is not needed.
It is shown that this curvilinear correction improves the results and enables the
study of generic cracks. In addition, we have introduced a simple error indicator
for improving the SIF computed via the interaction integral, thanks to the better
behaviour of the J-integral as it does not need auxiliary extraction fields.
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1 Introduction

The accurate modeling of three-dimensional cracks in finite bodies remains
a challenging problem in computational mechanics. The analysis of three-
dimensional fracture problems by the standard finite element method is dif-
ficult because of the need to construct a mesh which conforms to both the
crack surface and the body geometry. The crack surface must be aligned with
the element boundaries. Furthermore, for standard elements, the mesh must
be designed so that is substantially refined around the crack front. The diffi-
culties are further amplified for crack propagation studies, because the model
must be remeshed at each growth step.

The extended finite element method (XFEM) is a technique that enables an
efficient numerical modeling of crack problems [1,2]. The main idea of the
method is to incorporate the crack geometry using enrichment functions within
a finite element model, whose mesh does not need to conform to the crack
boundaries. The enrichment is realized through the partition of unity concept.
The method is useful for the approximation of solutions with pronounced
non-smooth characteristics in small parts of the computational domain, for
example discontinuities and singularities. In these cases, standard numerical
methods, such as the FEM, often exhibit poor accuracy. However, the study
of a generic 3-D problem using XFEM may still need the construction of
a local refined mesh, although the element size should not be so refined as
the adequate mesh for the standard finite element approach and the element
topology does not need to match the crack geometry [3]. The XFEM and level
set methods [4,5] also simplify the analysis and description of curved and/or
non-planar cracks in three dimensions [6–8], as they provide the appropriate
tools to build a local coordinate system natural to the crack geometry as
shown in Fig. 1, where direction 1 is the normal direction to the crack front,
contained in the crack plane, direction 2 is the normal direction to the crack
surface and direction 3 is the tangential direction to the crack front.

 

1direction

3direction

surfacecrack

2direction
r

Fig. 1. Local reference coordinate system for a crack front.

On the other hand, not all the domain integrals are suitable for the study of
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curved or non planar cracks [9–11]. Domain integral formulations based on
interaction integrals rely on the asymptotic crack field solution, which corre-
sponds to a planar or straight case. The solution fields for curved cracks are
not the same as the fields for a straight crack and, to the authors’ knowledge,
a generic expression is still not available. Consequently, the stress intensity
factor extraction for curved crack needs a careful approach as shown in [12,13]
for 2-D problems. Gosz introduces corrections to the interaction integral in the
study of 3-D curved cracks using the finite element method [9,10] achieving an
improvement of the results. It includes the application of curvilinear differen-
tial geometry principles to the crack analysis. On the other hand, when a study
is performed using the XFEM framework the crack is usually introduced using
level sets [1,2,6–8]. Since the level sets introduce explicitly the crack surface
information, an analogy to curvilinear analysis can be built. Our proposal is
the introduction of a curvilinear gradient correction formulation for domain
integrals in a XFEM framework using level sets. In this work, we also take
advantage of the good behavior of the J-integral and its lack of dependency
on auxiliary fields to introduce an easy way to improve the SIF calculations.

The paper is organized according to the following structure, where the main 
contributions are also noted:

• The paper starts with a review of XFEM and level set description for 3D 
cracks. We have proposed a level set orthogonal basis based on di
erential geometry concepts.

• The domain integral formulation for the J-integral and the interaction inte-
gral are reviewed. The strong interaction integral assumption of considering 
straight planar cracks is remarked. We have introduced minor changes in 
the integral formulation and auxiliary field description to improve their per-
formance in curved cracks studies.

• The domain integral computation in XFEM is addressed. We highlight that 
although in principle the XFEM is theoretically mesh independent, the use 
of a mesh related extraction domain for a non planar crack or curved crack 
analyses, introduces oscillations in the results.

• The derivatives of the curvilinear basis using only the level set informa-
tion are developed using the differential curvilinear geometry theory. The 
curvilinear correction constitutes the main contribution of this work.

• We introduce a new error indicator that relies on the relative performance 
between J-integral and the interaction integral.

2 XFEM for 3D cracks

This section revisits the basis of the application of XFEM to 3-D crack studies 
for the sake of clarity and completeness. It covers a basic introduction to the
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XFEM enrichment and the level set crack description. It mainly introduces 
basic concepts extracted from more specific papers [1,2,6–8], but it changes 
the traditional approach for the level set local basis to the viewpoint of a 
curved differential geometry framework.

2.1 XFEM and enrichment for a 3D case

The XFEM is a numerical method that enables a local enrichment of the FE
approximation spaces, realized through the partition of unity concept. The
essential idea in XFEM is to use a displacement field approximation that can
model any crack face discontinuity and the near-tip asymptotic crack field. As
a consequence it is not necessary to modify the mesh to consider a specific
crack; at most, moderate refinement must be introduced around the crack to
achieve good accuracy. The method is based on the enrichment of the FE
model with additional degrees of freedom (DOFs) that are associated with
the nodes of the elements affected by the crack [1].

Fig. 2. Enriched nodes in the X-FEM. Circles: nodes with Generalized Heaviside
function, 3 additional DOFs. Squares: nodes with crack tip enrichment functions,
12 additional DOFs.

Fig. 2 shows a portion of the mesh with linear hexahedron elements. Elements
that contain at least one enriched node are known as enriched elements. Nodes
with three additional DOFs (one for each coordinate direction) have shape
functions that multiply the Generalized Heaviside function H(x) (function of
unit magnitude whose sign changes across the crack, H(x) = ±1). Physically,
this function introduces the discontinuity across the crack faces. Nodes with
twelve additional DOFs are enriched in the three Cartesian directions with
four crack tip functions Fα(x) [1]:
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[Fα(r, θ), α = 1–4] =

[√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ

]

(1)

where r, θ are local polar coordinates defined at the crack tip. We note that
the span of the above functions can reproduce the asymptotic displacement
fields in LEFM, which gives rise to the near-tip singular behavior in strains
and stresses. It is well documented in the literature [1,14], and also verified
through our studies that these functions significantly improve the accuracy of
the SIF extraction.

The displacement approximation for crack modeling in the extended finite
element method takes the form [1]:

uxfem(x) =
∑

i∈I

Ni(x)ui +
∑

i∈J

Ni(x)H(x)ai +
∑

i∈K

[

Ni(x)
4
∑

α=1

Fα(x)biα

]

(2)

where I is the set of all nodes in the mesh, Ni(x) are the nodal shape function
and ui are the standard DOFs of node i (ui represents the physical nodal
displacement for non-enriched nodes only). The subsets J and K contain the
nodes enriched with the Generalized Heaviside function H(x) or the crack-tip
functions Fα(x), respectively, and ai, biα are the corresponding DOFs.

As in the standard FEM, it is necessary to perform numerical integration over
the element domain to compute the element stiffness matrix. However, the
elements that contain the crack include a displacement discontinuity due to
the XFEM formulation. These elements are subdivided into subdomains, in
which the crack is one of the subdomain boundaries, to carry out the nu-
merical integrations. The algorithm presented in [15] is used to subdivide the
elements totally cut by the crack. The integration over normal elements or
over subdomains corresponding to the cut elements is performed using a nor-
mal Gauss-Legendre integration rule. The elements including the crack front
are subdivided and integrated using a quasi polar rule introduced in [16].

2.2 Level sets for crack geometry definition

In addition to the numerical method, a description of the crack geometry is
needed. The information of the crack is introduced through the use of dis-
tance functions based on level sets [6–8]. Two level sets are used for the crack
description. They are denoted as φ and ψ and can be observed in figure 3.
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The φ level set is called the crack surface level set and its zero value corre-
sponds to the crack surface. The ψ level set, called front level set, determines
the position relative to the crack front, which is located at the intersection of
φ = 0 with ψ = 0, and it is desirable that it be orthogonal to the level set φ.
In summary, the crack location is given by

φ(x) = 0 ψ(x) < 0 −→ defines crack surface location

φ(x) = 0 ψ(x) = 0 −→ defines crack front location
(3)

 !=0

 =0

 <0

 >0

 !>0

 <0

Fig. 3. Example of level sets for the general description of a crack.

The use of level sets for describing the crack has other advantages. First, the
evaluation of level sets at these nodes of the elements allows to select which
elements have to be enriched. This is accomplished by observing the change of
sign of the distance functions in the element. Nodes that need to be enriched
are the nodes which fulfill the conditions (4) where Iel is the set of nodes
belonging to a given element [6,8]:







mini∈Iel (sign (φi(x, y)))maxi∈Iel (sign (φi(x, y))) ≤ 0

maxi∈Iel (sign (ψi(x, y))) < 0
−→ Heaviside enrichment







mini∈Iel (sign (φi(x, y)))maxi∈Iel (sign (φi(x, y))) ≤ 0

mini∈Iel (sign (ψi(x, y)))maxi∈Iel (sign (ψi(x, y))) ≤ 0
−→ Crack front enrichment

(4)
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Moreover the level set distance functions φ and ψ can be used to build a
curvilinear local basis associated with the crack geometry. The general local
basis is defined using the normalized gradients of the level set functions (5) as
in [6]. This, the level set local basis defines a natural system of coordinates.
All tensors used are represented in this coordinate system.

e1 =
∇ψ

||∇ψ||
e2 =

∇φ
||∇φ||

e3 = e1 × e2

(5)

Usually, it is assumed that the level sets are orthogonal in the sense that
∇φ∇ψ = 0, but this is not true for the general case. It can be true locally
but not globally, far away from the crack front. However, following an analogy
to the surface differential geometry theory, it is possible to consider the plane
defined by the basis vectors e1 and e3 as the tangent plane to the crack surface
at the considered point. It allows to geometrically rebuild the other basis
vector to obtain an orthogonal basis as e1 = e3× e2. This is a basis related to
the Frenet trihedron and with the same meaning. The Frenet trihedron basis
is clearly equivalent to the local basis, as can be inferred by comparison of
Figs. 1 and 4. This basis description clearly remarks the existing relationships 
with differential geometry for curves and surfaces. This explicit formulation 
constitutes one of the contributions of our work. Our proposal for the basis
definition and its exact relationship with level sets is:

~N =
~T × ~B

||~T × ~B||
= e1

~T =
∇ψ ×∇φ

||∇ψ ×∇φ|| = e3

~B =
∇φ

||∇φ|| = e2

(6)

In our implementation the values of the level sets are stored at the nodes
of the finite element mesh. The usual element shape functions are employed
for interpolating within the domain. The values of the vectors of the local
basis, in the description of curved cracks, are computed at each element and
averaged at the shared nodes with the neighboring elements [7,8]. To some
extent, this maintains the curvature and allows to obtain an approximation
to a continuous smooth local basis variation.

Another advantage that arises from the use of level sets and its associated local
basis is the possibility of building polar coordinates at the crack front, which
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Fig. 4. Example of the Frenet trihedron for a curve.

provides directly r and θ for the crack tip enrichment functions (1) as given
in (7). On the other hand, the Generalized Heaviside enrichment matches the
sign of the φ level set function.

r =
√

ψ2 + φ2

θ = tan−1 φ

ψ

(7)

In this work, we will enforce the orthogonality of the level sets locally for all
the numerical calculations, since it has been shown in [13] that it is necessary
to guarantee convergence [3].

3 Domain integral method for curved cracks

We present a brief summary of the most used domain integrals. The formu-
lation of the interaction integrals is revisited as it is usually based on the 
solution field of straight cracks. Some minor modifications are introduced in 
the interaction integral formulation to minimize the possible error associated 
with the use of straight crack fields. These improvements have been studied 
in [13] using convergence rates in 2D. The modifications do not depend on the 
dimensionality of the problem, and therefore the introduced formulation can 
be implemented in three dimensional cases.

3.1 J-Integral

The J-integral was introduced in [17] and it is one of the most powerful tools
available for the extraction of the SIF, especially in its domain form [18]. An
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expression of the integral as applied to XFEM can be found in [6,8]. However
it does not allow the extraction of the SIF for different modes in mixed mode
situations. The domain form is given by:

J = −
∫

V
∂jqiPijdΩ (8)

where Pij is the Eshelby’s tensor [19], which is defined as

Pij =
1

2
εklσklδij − σjk∂iuk (9)

where ui is the displacement field, σij is the stress field, δij is the Kronecker’s
delta function and qi is a vector in direction e1 with a modulus proportional to
a weight function α(x), which is zero on the contour of the extraction domain
A and one at the crack front point where J is evaluated.

3.2 Interaction Integral

The interaction integral is used to extract the SIF under mixed-mode situ-
ations, [6,8,11,20], enabling the computation of KI and KII in 2D problems.
To achieve this goal, auxiliary fields are needed. The interaction integral is
derived from the application of the J-integral to a problem where two stress
fields are involved, resulting in the following decomposition:

J (1+2) = J (1) + J (2) + I (10)

The term I corresponds to the interaction integral and includes the interaction
between the two intervening fields. With no simplifications the general form
of the interaction integral is

I =−
∫

V

(

1

2
(εauxkl σkl + εklσ

aux
kl ) δij − σaux

kj ∂iuk − σkj∂iu
aux
k

)

∂jqidΩ

−
∫

V

(

1

2
(∂jε

aux
kl σkl + εauxkl ∂jσkl + ∂jεklσ

aux
kl + εkl∂jσ

aux
kl ) δij

)

qidΩ

−
∫

V

(

−∂jσaux
kj ∂iuk − σaux

kj ∂ijuk − ∂jσkj∂iu
aux
k − σkj∂iju

aux
k

)

qidΩ

(11)

The fields denoted with the superscript aux are the auxiliary fields. Usually,
the auxiliary fields are selected to be the straight crack fields, allowing the
extraction of the different SIF modes. The fields ui, σij , qi and the Kronecker’s
delta δij are defined in the same way as in the J-integral, being εij the strain
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field. For straight cracks the interaction integral can be simplified to achieve
the well known expression [6,8,11,20]:

I = −
∫

V
(σklε

aux
kl δij − σaux

kj ∂iuk − σkj∂iu
aux
k )∂jqidΩ (12)

The use of the straight crack fields as auxiliary fields to evaluate a curved crack
configuration, produces that (12) is not longer valid. The usual expression
applied to evaluate the domain form of this integral for curved cracks [1,6,8]
is:

I =−
∫

V
(σklε

aux
kl δij − σaux

kj ∂iuk − σkj∂iu
aux
k )∂jqidΩ

−
∫

V
(∂iσ

aux
kl εklδij − σkl∂liu

aux
k − ∂lσ

aux
kl ∂iuk)qidΩ

(13)

The derivation of the expression (13) can be found, for example, in [11]. The
generic treatment for applying the interaction integral to curved cracks is pre-
sented in [9,10] and it is also analyzed for the J-integral in [23]. It is important
to note that all the hypothesis assumed when deriving the above interaction
integral expression, using the straight crack fields as auxiliary fields, should
not be accepted directly for generic curved cracks [9–12]. However, they are
all admitted in [9,10].

The first problem arises from the fact that the inner equilibrium equation
and the compatibility equations between strains-displacements of the auxiliary
fields do not hold for a curved crack studied in curvilinear coordinates, that is

∂iσ
aux
ij 6= 0

(∂liu
aux
j − ∂lε

aux
ij ) 6= 0

(14)

Therefore, the expression (12) cannot be used in curved cracks. In addition,
the reciprocity relationship is also assumed in the derivation of (12) and (13).
The reciprocity condition implies that the same constitutive tensor is used to
relate the auxiliary strain field and the auxiliary stress field, i.e.

εauxij σij = εauxij Cijklεkl = Cklijε
aux
ij εkl = σaux

kl εkl (15)

If this reciprocity condition is assumed, then the following relationship holds:

1

2
(εauxij σij + εijσ

aux
ij ) = εauxij σij (16)
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As a consequence, Eqs. (12) and (13) are obtained as a simplification of
Eq. (11), as is usually done in the literature. The terms involved in (16) cor-
respond to the interaction strain energy. This way, the auxiliary fields corre-
sponding to a straight crack are enforced to be used with a curved coordinate
system. This is the reason why the reciprocity relationship cannot be accepted
and the simplifications (16) and (13) should not be used for curved crack prob-
lems.

The reciprocity relationship is also used in the derivation of the second inte-
grand of (13) from Eq. (11), i.e.

∂iσ
aux
kl εklδij − σkl∂liu

aux
k − ∂lσ

aux
kl ∂iuk (17)

is a simplification of

1

2
(∂jε

aux
kl σkl + εauxkl ∂jσkl + ∂jεklσ

aux
kl + εkl∂jσ

aux
kl ) δij

−∂jσaux
kj ∂iuk − σaux

kj ∂ijuk − ∂jσkj∂iu
aux
k − σkj∂iju

aux
k

(18)

If the reciprocity relationship is not applied in (18), the computation of deriva-
tives of the numerical approximation near the crack faces are required, such
as ∂jσkl and ∂jεkl. The numerical computation of these derivatives introduces
large numerical errors. However, we have verified that the integrand (18) has
little influence on the final result. Hence, to avoid the introduction of fur-
ther numerical errors, we will admit the reciprocity relationship only in the
derivation of the simplified expression (17). Therefore, the interaction integral
expression that we will use in this work is finally:

I =−
∫

V

(

1

2
(σklε

aux
kl + σaux

kl εkl)δij − σaux
kj ∂iuk − σkj∂iu

aux
k

)

∂jqidΩ

−
∫

V
(∂iσ

aux
kl εklδij − σkl∂liu

aux
k − ∂lσ

aux
kl ∂iuk) qidΩ

(19)

The former interaction integral expression shows the best behavior, at least
in 2-D situations, as tested in [13].

3.2.1 Auxiliary fields

Due to the lack of knowledge of a general expression for the auxiliary fields for
curved cracks, the first terms of the Williams’ asymptotic fields of the LEFM
are used as auxiliary fields, using the definitions stated in (7) as θ and r.
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However, it is important to note that for general curved cracks, the conditions
of compatibility, inner equilibrium and Hooke’s law are not simultaneously
verified for this selection of the auxiliary fields [9,10,12]. The auxiliary dis-
placement field for a straight crack is the first term of the Williams’ series
expansion:

uaux1 =
1

2µ

√

r

2π

{

Kaux
i

cos
θ

2
(κ− cos θ) +Kaux

ii
sin

θ

2
(κ+ 2 + cos θ)

}

uaux2 =
1

2µ

√

r

2π

{

Kaux
i

sin
θ

2
(κ− sin θ) +Kaux

ii
cos

θ

2
(κ− 2 + cos θ)

} (20)

where, assuming plane strain state for 3-D [24]

µ =
E

2 (1 + ν)
κ = 3− 4ν (21)

The auxiliary stress field is:

σaux
11 =

Kaux
i√
2πr

[

1− sin
θ

2
sin

3θ

2

]

cos
θ

2
− Kaux

ii√
2πr

[

2 + cos
θ

2
cos

3θ

2

]

sin
θ

2

σaux
22 =

Kaux
i√
2πr

[

1 + sin
θ

2
sin

3θ

2

]

cos
θ

2
+
Kaux

ii√
2πr

cos
θ

2
cos

3θ

2
sin

θ

2

σaux
33 = ν (σ11 + σ22) (22)

σaux
12 =

Kaux
i√
2πr

cos
θ

2
cos

3θ

2
sin

θ

2
+
Kaux

ii√
2πr

[

1− sin
θ

2
sin

3θ

2

]

cos
θ

2

σaux
13 =−Kaux

iii√
2πr

sin
θ

2

σaux
23 =

Kaux
iii√
2πr

cos
θ

2

The auxiliary field for the strains is also needed. Two possible choices arise
to obtain the strain field. The first choice is based on the enforcement of the
constitutive strain-stress relationship [6,8] and the strain field is computed
from the stress field by applying the Hooke’s law:

εauxij = C−1
ijklσ

aux
kl (23)

The second option is that the strain field can be obtained from the deriva-
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tives of the displacement field like in [9–11], enforcing the strain-displacement
relationship:

εauxij = {∇simu
aux}ij (24)

In principle, there is no reason to assume that either choice is the best one.
As neither expression verifies simultaneously the compatibility and inner equi-
librium relationships for the auxiliary fields, an averaged strain field between
the two options has also been considered in [13]. The objective is to verify an
averaged condition between compatibility and inner equilibrium relationship.
The averaged auxiliary strain field is given by:

εauxij =
{∇simu

aux}ij + C−1
ijklσ

aux
kl

2
(25)

This averaged field o ption o ption g ives t he b est b ehavior f or 2 D situations 
in [13], and consequently has been accepted as the best choice for our for-
mulation. This averaged auxiliary strain field formulation does not depend on 
the problem dimensionality and its use in three dimensions also constitutes a 
contribution of this work.

We remark that the auxiliary fields used assume that a plane strain state is
present in the proximity of the crack front. However, this is not true in the
vicinity of the intersection of crack fronts with free boundaries.

3.3 SIF extraction

The J integral verifies

J =
∫

C
αG dc (26)

and the interaction integral verifies

I =
∫

C
αGaux dc (27)

where C is the length of the crack front included in the extraction domain and
G and Gaux are energy magnitudes that are related to the SIF. The pointwise
value of G verifies the next relationship with the local SIFs in 3-D problems
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G =
(1− ν2)

E

{

K2
i
+K2

ii

}

+
1

2µ
K2

iii
(28)

and similarly for Gaux

Gaux =
2(1− ν2)

E
{KiK

aux
i

+KiiK
aux
ii

}+ 1

µ
KiiiK

aux
iii

(29)

If the SIFs are assumed as constants in the integration domain, assumption
valid for small extraction domains, then,

(1− ν2)

E

{

K2
i
+K2

ii

}

+
1

2µ
K2

iii
=

J

meas(C)
(30)

where meas(C) is the integration of the virtual crack extension α along the
crack front length of the extraction domain

meas(C) =
∫

C
αdc (31)

The computation for the SIF for each mode using the interaction integral I is
given by the following equations

Ki =
E

2(1− ν2)

I(i)

meas(C)
with Kaux

i
= 1, Kaux

ii
= Kaux

iii
= 0

Kii =
E

2(1− ν2)

I(ii)

meas(C)
with Kaux

ii
= 1, Kaux

i
= Kaux

iii
= 0

Kiii = µ
I(iii)

meas(C)
with Kaux

iii
= 1, Kaux

i
= Kaux

ii
= 0

(32)

I(m) indicates that the interaction integral is computed using an auxiliary field
where only the corresponding mode m = i, ii or iii is non zero, [6,8–11].

4 Extraction Domain computation in XFEM

The integrals (8), (11), (12) and (13) are expressed in domain formulation
which uses the virtual velocity field qi [6,8]. The equivalent contour formula-
tion is not well suited for numerical computations in the finite element frame-
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work. As a consequence, the selection of the virtual velocity field needs to be 
addressed. The extraction domain is controlled through the use of the virtual 
velocity field and the numerical integration is performed within the extraction 
domain using integration points at the element level. The extraction domain 
computation at the mesh nodes, although widely used, introduces an integra-
tion domain that is mesh dependent. This mesh dependency produces that the 
domain is not convex and some oscillations exist in the results. The importance 
of this fact when using XFEM is remarked in this work.

The computation for a crack front point P is done using a change of coordinate
system from a Cartesian coordinate system centered in P to the local coordi-
nated system centered also in P with coordinates ξ1, ξ2, and ξ3 , respectively
in directions e1, e2 and e3. The virtual velocity field must be tangent to the
crack faces and is defined by the expression:

q = α(ξ1, ξ2, ξ3)e1 (33)

Note that the domain extraction region and the weight of the integration on
the extraction domain is controlled through the use of α, which depends on
the level set coordinates. The function α has to take unit value at the crack
front and zero on the boundary of the extraction domain.

The integration volume is a tubular domain centered at the crack point P,
where the integral is computed, see figure 5. The points P selected to perform
the domain integrals are either the intersection of the crack with the element
faces or nodes. The tubular domain is defined using the level set basis and co-
ordinates. In the local coordinate system it corresponds to a cylinder, centered
in P.

P 
Crack front 

Rq
2Sq

Fig. 5. Three dimensional extraction domain.
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α =











(

1−
√

ξ2
1
+ξ2

2

Rq

)

(

1− |ξ3|
Sq

)

if
√

ξ21 + ξ22 < Rq and |ξ3| < Sq

0 if
√

ξ21 + ξ22 ≥ Rq or |ξ3| ≥ Sq

(34)

In practice, the extraction domain size has influence on the convergence rate
and on the computation of the SIF for cracks with generic curvature as shown
in [13] for 2-D. Consequently the domain size has to be controlled. Moreover
as the integration is performed at each integration point where the domain
integral has to be computed, then the effective domain size suffers oscillations
depending on the mesh topology as can be observed in figures 6 and 7. These
oscillations produce variations in the SIF computations and, as a consequence,
the optimum convergence rate cannot be achieved, which is mainly due to the
fact that the domain is not convex.

Crack surface Crack surface 

Extraction domain 

section 

Extraction domain 

section 

Rq Rq

Fig. 6. Section of an extraction domain for a non-planar crack.
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Crack front 

P

P

Effective extraction domains 

on the  crack plane 

C 

Rq

Rq

2Sq

2Sq

Fig. 7. Extraction domains on the crack plane for a curved crack front.

5 Derivatives on the curvilinear local basis

The derivation in a local curvilinear coordinate system framework needs a 
change in the formulation and the introduction of new terms. In [9,10] the 
curvilinear derivatives for the crack local basis in the finite element framework 
are introduced for the auxiliary field a nd t he v irtual v elocity fi eld. In  this 
section we introduce our proposal for the derivatives in the XFEM framework, 
using the level set basis as local basis. In our approach the derivatives depend 
only on the level set definition and not explicitly on the problem to be solved, 
as in the FE expressions formulated by Gosz et al. [9,10]. The numerical 
derivation of these terms using the level set information in the di
erential geometry framework is the main contribution of this work.

The gradient operator in curvilinear coordinates is defined as

∂i = ei
1

hi

∂

∂ξi
(35)

where hi is the scale factor and ξi is the respective curvilinear coordinate. On
the other hand, the tensorial product of the gradient operator with a generic
vectorial field, ∂ifj is denoted as

∂ifj = ~∇⊗ ~f (36)

This equation is expressed in curvilinear coordinates as
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~∇⊗ ~f =

(

e1
1

h1

∂

∂ξ1
+ e2

1

h2

∂

∂ξ2
+ e3

1

h3

∂

∂ξ3

)

⊗ (e1f1 + e2f2 + e3f3) (37)

Using matrix notation, the following expression is obtained.

~∇⊗ ~f =



















1

h1

∂f1
∂ξ1

1

h1

∂f2
∂ξ1

1

h1

∂f3
∂ξ1

1

h2

∂f1
∂ξ2

1

h2

∂f2
∂ξ2

1

h2

∂f3
∂ξ2

1

h3

∂f1
∂ξ3

1

h3

∂f2
∂ξ3

1

h3

∂f3
∂ξ3



















+

+
3
∑

m=1

fm



















1

h1

∂em
∂ξ1

• e1
1

h1

∂em
∂ξ1

• e2
1

h1

∂em
∂ξ1

• e3
1

h2

∂em
∂ξ2

• e1
1

h2

∂em
∂ξ2

• e2
1

h2

∂em
∂ξ2

• e3
1

h3

∂em
∂ξ3

• e1
1

h3

∂em
∂ξ3

• e2
1

h3

∂em
∂ξ3

• e3



















(38)

In this expression two terms exist. The first corresponds to the field derivative
and the second corresponds to the derivative of the curvilinear basis. The
symbol • indicates dot product. The products 1

hi

∂em
∂ξi

• ej with j = 1, 2, 3
project the components of the derivatives on each basis direction.

Regrouping terms and rewriting:

∂ifj =
1

hi

∂fj
∂ξi

+
3
∑

m=1

fm
1

hi

∂em
∂ξi

• ej (39)

This generic expression is used to compute ∂iqj and ∂iu
aux
j . The second deriva-

tives ∂i∂jfk can be obtained as
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∂i∂jfk =ei
1

hi

∂

∂ξi
⊗
[

ej ⊗ ek

(

1

hj

∂fk
∂ξj

+
3
∑

m=1

fm
1

hj

∂em
∂ξj

• ek
)]

=

=
1

hi

1

hj

∂2fk
∂ξi∂ξj

+
1

hi

∂
1

hj
∂ξi

∂fk
∂ξj

+
3
∑

m=1

1

hm

∂fk
∂ξm

1

hi

∂em
∂ξi

• ek+

+
3
∑

m=1

1

hj

∂fm
∂ξj

1

hi

∂em
∂ξi

• ek +
3
∑

m=1

1

hi

1

hj

∂fm
∂ξi

∂em
∂ξj

• ek+

+
3
∑

m=1

1

hi
fm

∂
1

hj
∂ξi

∂em
∂ξj

• ek +
3
∑

m=1

1

hi
fm

1

hj

∂2em
∂ξi∂ξj

• ek+

+
3
∑

l=1

3
∑

m=1

1

hi
fm

1

hj

(

∂em
∂ξl

• ek
)(

∂el
∂ξi

• ej
)

(40)

This expression is used for the calculation of ∂i∂ju
aux
k . The last derivative

term to be obtained is an expression of the form ∂ifjk, which is needed in the
derivative of the stress and strain fields, ∂iσ

aux
jk , ∂iε

aux
jk . The result is

∂ifjk =
1

hi

∂fjk
∂ξi

+
3
∑

m=1

fmk

1

hi

∂em
∂ξi

• ek +
3
∑

m=1

fjm
1

hi

∂em
∂ξi

• ej (41)

In the above expressions, some new terms appear that need to be computed
from the level sets. The local coordinates are defined by

∂

∂ξ1
=

∂

∂ψ
∂

∂ξ2
=

∂

∂φ

(42)

The third component ∂
∂ξ3

does not have a direct correspondence in the level set
representation. However it describes the crack direction 3 and measures the
crack length s and can be computed with the Jacobian matrix of the transfor-
mation, (43). The Jacobian matrix associated with the transformation between
the Cartesian system and the curvilinear local system, considering (42) and
ei as the j component of the basis vector ei, is

J =
∂ξi
∂xj

=















(e1)1 (e1)2 (e1)3

(e2)1 (e2)2 (e2)3

(e3)1 (e3)2 (e3)3















(43)
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The scale factors are computed using the jacobian matrix as

h2i =
3
∑

k=1

J−1
ki J

−1
ki (44)

In contrast to the derivations presented in [9,10], our basis is constructed using
averaged finite element gradients evaluated at the nodes. Consequently, the
scale factors cannot be assured to be unitary, and therefore all have to be
evaluated.

Using the chain derivative rule and the jacobian matrix, the next expression
is derived

∂ei
∂ξj

=
3
∑

k=1

∂ei
∂xk

∂xk
∂ξj

=
3
∑

k=1

∂ei
∂xk

J−1
kj

∂
1

hi
∂ξj

=
3
∑

k=1

∂
1

hi
∂xk

∂xk
∂ξj

=
3
∑

k=1

∂
1

hi
∂xk

J−1
kj

(45)

The information is obtained from the finite element approximation, so the fol-
lowing results are evaluated from nodal values. This fact is explicitly remarked
using |i

∂ei
∂xk

=
∑

i

∂Ni

∂xk
ei

∣

∣

∣

∣

∣

i

∂
1

hi
∂xk

=
∑

i

∂Ni

∂xk

1

hi

∣

∣

∣

∣

i

(46)

In the former equation ∂Ni

∂xk
indicates the derivative of the shape function with

respect to the respective Cartesian coordinate xk. In our work, we use only
linear finite element shape functions. In case that higher order finite elements
are used, they could be derived from the above expressions.

6 SIF error indicator and corrector

The computation of the SIF for non-planar and curved cracks needs a care-
ful treatment [9–11] since the convergence behavior is strongly related to the
extraction domain and the crack curvature as shown in [13]. Even for planar
cracks in 3-D studies some oscillations may appear in the computation of the
SIF associated with the mesh topology [22]. One of the techniques to ensure
that the domain integral yields good results is to verify the domain indepen-
dence by studying the variation with the extraction domain size. However, this
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cannot be used for non-planar and curved cracks as an approximate domain
independence is only guaranteed close to the crack front [12]. Furthermore
other types of singularities can appear in generic 3-D cracks such as vertex
singularities and kink singularities.

i ii iii

The J-integral shows a quadratic dependency on the SIF as can be observed 
in (30). The convergence study realized in [13] shows that it has less depen-
dency on the curvature and better accuracy than the interaction integral. 
Despite the J-integral cannot be used to separate SIF modes, it does not need 
auxiliary fields, which are one of the error sources when using the interaction 
integral for curved cracks. The good behavior of the J-integral can be used to 
provide an indication of the quality of the SIF estimation with the interaction 
integral. The use of this relationship is one of the major contributions of this 
work. We define, after equation (28), three magnitudes from the SIF obtained 
using the interaction integral (K inter, K inter and K inter)

J inter
1 =

(1− ν2)

E
K inter

i

2

J inter
2 =

(1− ν2)

E
K inter

ii

2

J inter
3 =

1

2µ
K inter

iii

2

(47)

The theoretical relationship between J and the new set of magnitudes defined
in equation (47) is clearly

J = J inter
1 + J inter

2 + J inter
3 (48)

but this will only be verified if all the computed SIF match with theoretical
value. It gives a straightforward information about the existing differences
between the SIFs computed using the interaction integral and the SIFs values
associated with the J-integral expression. Despite the SIFs associated with
the J-integral are also an approximated solution, the difference between both
sides of Eq. (48) is an indicator of the level of inaccuracy. We define this
indicator rSIF as

rSIF =
J

J inter
1 + J inter

2 + J inter
3

(49)

If the domain integral results were perfectly correct then rSIF = 1. Furthermore
we propose to use equation (47) to introduce easily a correction for some errors
in the computed SIFs, although this approach can only work for situations with
little error. The new corrected SIFs will be denoted as Kcorr

i
,Kcorr

ii
and Kcorr

iii

and are built using the next algorithm:
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If rSIF ≈ 1 then we can define the corrected SIFs as

Kcorr
i

= rSIFK inter
i

Kcorr
iii

= rSIFK inter
ii

Kcorr
iii

= rSIFK inter
iii

(50)

If at a given point, one of the modes is zero, then the following magnitudes
are computed from the combinations of the remaining two SIFs

rSIFij =
J

J inter
i + J inter

j

(51)

where i, j = i, ii, iii and i 6= j. If any of the rSIFij ≈ 1 then the next correction
can be introduced

Kcorr
i = rSIFij K inter

i

Kcorr
j = rSIFij K inter

j

Kcorr
k = 0

(52)

where i, j, k = i, ii, iii and i 6= j, j 6= k and i 6= k.

Another possibility is that, at a given point, only one mode exists. Then we
can define rSIFk which involves only one mode:

rSIFk =
J

J inter
k

(53)

If any rSIFk verifies rSIFk ≈ 1 then the correction is defined by

Kcorr
k = rSIFk K inter

k

Kcorr
l = 0

(54)

As before k, l = i, ii, iii and k 6= l. If none of the former conditions verifies then
a correction is not possible and the results of the interaction integral should be
discarded. This result may indicate either that the mesh is not refined enough
for achieving a correct description of the crack or the extraction domain is too
big for the crack curvature.

In order to use rSIF as a correction factor, we propose in this work a limiting
value in the range of [0.95, 1.05] of rSIF . The correction proposed has to be
considered carefully and only used in regions where some errors due to the
mesh or curvature can be expected.
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7 Reference problems and numerical result

The main complication about the selection of reference problems in three
dimensions is the lack of problems with known analytical solutions. Problems
where the solution is available correspond to infinite domains. Three problems
have been selected for the numerical verification: the extruded arc crack, the
elliptical crack under traction and the elliptical crack under shear. The arc
crack was also studied in [10] and the exact SIFs for elliptic crack problems
can be found in [21]. The effect of the curvature in a similar elliptic crack has
also been analyzed in [9,11]. The finite element mesh is formed using regular
hexahedron linear elements in the domain where the integration is performed.

We use our proposal for the interaction integral formulation, as it has been
shown in [13] that it improves the estimation. Our proposal for the orthogonal
basis is also used. The first objective is to consider the effect of the curvilinear
correction in the gradients of the auxiliary fields and q in XFEM, since it im-
proves the solution in standard FE as reported in [9,10]. Finally our proposed
J-based error indicator will be used to evaluate the quality of the results.

7.1 Arc crack analysis

The problem considered is an arc crack in an infinite plate subjected to equib-
iaxial tension. The geometry of the crack is defined by the radius Rc and the
angle β, with values Rc = 1 and β = π/2, as shown in Figure 8. We will
consider a finite extrusion of this two dimension model, applying symmetry
boundary conditions to simulate an infinite thickness plate. The domain used
for the XFEM analyses is a finite portion defined by a width w = 2, a height
h = 4 and a thickness t = 1. The analytical stress field solution and symmetry
conditions are imposed on the boundary of the finite domain in order to make
the model equivalent to the infinite domain problem. The analytical solution
to this problem is given in [25]. The reference solution for the SIFs is:

Kex
i

= σ∞ (πa)
1

2

cos
(

β

2

)

1 + sin2
(

β

2

)

Kex
ii

= σ∞ (πa)
1

2

sin
(

β

2

)

1 + sin2
(

β

2

)

Kex
iii

= 0

(55)

where a = Rc sin (β) is related to the crack length and σ∞ is the applied
remote load. The following convergence rate study for this reference problem
is carried out using a mesh sequence with regular hexahedron elements with
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uniform refinement. The mesh sequence used for the analysis is built using
elements with a side length defined by the following series:

h =
(

1
8
, 1

16
, 1

20
, 1

32
, 1

40

)

Rc.

 

Rc

 
!

w

2h
x1

x2

Fig. 8. Section for the problem of the extruded arc crack in an infinitely extended
plate subjected to equibiaxial tension.

The SIF distribution along the crack front for Ki, Kii and J with an extraction
domain defined by Rq = 0.1Rc and length Sq equal to the element size, is
shown in Figures 9, 10 and 11. Gosz [10], achieves a relative minimum error of
0.4% with quadratic elements and an element size h = 1

500
Rc. The minimum

relative error in our approximation is less than the 0.7% for an element size
of h = 1

40
Rc. This result shows the accuracy of our proposal.

In Figs. 9, 10, 11, a slightly different result is found for elements at the end of
the crack front when compared to the solution at the inner part of the crack
front. This is due to the subdivision of the hexaedra for integration purposes,
which results in a different subdomain topology at the elements that interesect
the side boundaries of the extruded domain.

The error convergence rates vs. the element size h for Ki, Kii and J are shown
in Figures 12, 13 and 14 respectively. The optimum convergence rate with
linear elements is 1.0. The convergence results are close to the expected value
but show some differences with respect to the optimum value. The main reason
of this divergence is the topological variation of the extraction domain. This
effect was described above, see Fig. 6.

We now study the curvilinear correction using the results for the element size
h = 1

40
Rc (i.e. the most accurate results shown in Figures 9, 10 and 11).
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Fig. 9. Ki distribution along the crack front for the three-dimensional arc crack
reference problem.
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Fig. 10. Kii distribution along the crack front for the three-dimensional arc crack
reference problem.

The effect of taking into account the curvilinear gradients following equa-
tions (39), (40) and (41) is shown in Figures 15, 16 and 17 for Ki, Kii and J
respectively. Although the result for J-integral seems more accurate without
the curvilinear correction, it is a very small difference and does not modify
the error convergence rate. Fig. 18 shows the behavior of Ki for the whole
mesh sequence without considering the curvilinear correction (that can be
compared with the results presented in Fig. 9). It can be observed that it
does not converge to the theoretical value. From these results we can conclude
that the inclusion of the curvilinear gradients as in Section 5 is necessary to
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Fig. 11. J distribution along the crack front for the three-dimensional arc crack
reference problem.
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Fig. 12. Convergence rate of the average error in Ki for the three dimensional
extruded arc crack problem.

achieve a correct behavior with the interaction integral when studying non
planar cracks.

Although the results seem to be reasonably good, we will verify the behavior
using the J based SIF error indicator. The results for rSIF according to Sec-
tion 6 are presented in Figure 19, where the expected loss of accuracy near the
boundary and the element size convergence effect can be observed. Note that
the poor results for rSIF in Fig. 19 near |z/t| = 0.5 are due to the existence
of a spurious mode III that theoretically should not exist, but that appears
when computing the numerical solution. Applying the correction to the re-
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Fig. 13. Convergence rate of the average error in Kii for the three dimensional
extruded arc crack problem.
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Fig. 14. Convergence rate of the average error in J for the three dimensional ex-
truded arc crack problem

sults of the finest mesh and comparing with the original values we obtain the
improved SIF shown in Figures 20 and 21.

7.2 Elliptic crack analysis

The elliptic crack model considers an infinite solid under remote constant
stress. Two stress states are analyzed: a uniform remote tensile traction, σ∞,
which produces mode i, and a uniform remote shear, τ∞, which produces mode
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Fig. 15. Comparison of the effect of the curvilinear gradients consideration in the
interaction integral. Ki for the three dimensional extruded arc crack problem.
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Fig. 16. Comparison of the effect of the curvilinear gradients consideration in the
interaction integral. Kii for the three dimensional extruded arc crack problem.

ii and iii. The crack geometry and applied loads can be observed in Figure 22.

The analytical SIF values for the selected elliptic crack configuration can be
found in several references, such as [9,21,26–28]:
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Fig. 17. Comparison of the effect of the curvilinear gradients consideration in the
J-integral. J for the three dimensional extruded arc crack problem.
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Fig. 18. Ki distribution along the crack front for the three-dimensional arc crack
reference problem. The curvilinear gradient correction is not applied.
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=
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E ′{k}

(
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)
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f (a, c, ϕ)

Kex
ii

=

(

πa3

c

)
1

2 k2τ∞ sinϕ
[(

k2 + ν (k′)2
)

E{k}+ (k′)2K{k}
]

f (a, c, ϕ)

Kex
iii

= 4 (πac)
1

2

− (1− ν) k2τ∞ cosϕ
[
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(56)
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Fig. 19. Error indicator distribution for the mesh sequence along the crack front for
the three-dimensional arc crack problem.
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Fig. 20. Ki along the crack front for the three-dimensional arc crack problem. Effect
of SIF correction using the relationship between J-integral and interaction integral.

where:
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Fig. 21. Kii along the crack front for the three-dimensional arc crack problem. Effect
of SIF correction using the relationship between J-integral and interaction integral.
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Fig. 22. Elliptic crack in infinite solid. Elliptic angle ϕ definition.
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The numerical model is a plate whose dimensions are t = 10a, w = 10c and
h = 10a. Symmetry conditions have been applied to define only a quarter of
the domain. The ratio between the plate dimensions and crack dimensions is
deemed sufficient to model an infinite behavior. The material properties are
E = 104 and ν = 0.3.

An hexahedron element mesh is used, with a regular topology in a parallepi-
pedic region centered at the ellipse center with dimensions 5c

6
× 2c

3
× 4c

3
, as

observed in Figure 23. The mesh sequence used in the analysis is defined by
the element size h =

(

1
6
, 1

12
, 1

24 , 
1
36

)

a. The element size used is fine enough
to detect the potential influence of the curvature on the results.

Symmetry BC 

Symmetry BC for 

tensile traction, 

Antisymmetry 

BC for shear 

Regular 

mesh 

t 

w 

2h 

c 

σ
∞ 

τ
∞ 

a 

Fig. 23. Elliptic crack geometric model

In this problem, the extraction domain is defined by the dimensions Sq =
0, 033c and Rq = 0, 1c. This selection is motivated by the crack dimensions
and relative topology between the crack and the mesh. The elliptic crack
results for the pure traction state are shown in Figures 24 and 25 for Ki and
J . Results for a pure shear loading are shown in Figures 26, 27 and 28 for Kii,
Kiii and J , respectively. It is possible to observe that the results are improved
with the mesh refinement, even under the effects of the topological oscillations
of the extraction domain shown in Figures 6 and 7. However a loss of accuracy
appears near the boundary.

This effect is due to problems in the extraction domain and local basis def-
inition related with the topological relationship between the crack geometry
and the mesh topology. Oscillations are mainly produced by the fact that the
extraction domain is not convex.

The error order observed in the SIF for the finest mesh is of the same order
of the errors presented in the bibliography for finite element studies with a
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mesh adapted to the crack and smaller element size. For the model under pure
tensile traction an error of 2% is reported in [9] for an element size of h = a

200

and an error or about 1% is reported [11] for an element size of h = a
60
. Our

error order is about 2% with an element size of h = a
36
. Further differences

exist in the model for remote shear. In [11] is reported an error of about 2%
for an element size of h = a

60
and our error order, without considering the

region affected by the boundaries inaccuracies, is about 5% for an element
size of h = a

36
.
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Fig. 24. Ki distribution along the crack front for different element sizes. Elliptic
crack under remote tensile traction.
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Fig. 25. J distribution along the crack front for different element sizes. Elliptic crack
under remote tensile traction.

The effect of curvilinear correction of the gradients in the domain integrals is
shown in Figures 29 and 30 for Ki and J for the crack under remote tensile
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Fig. 26. Kii distribution along the crack front for different element sizes. Elliptic
crack under remote shear.
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Fig. 27. Kiii distribution along the crack front for different element sizes. Elliptic
crack under remote shear.

36
traction for the finest element size, h =  . It is also shown in Figures 31, 32
and 33 for Kii, Kiii and J for the crack under remote shear. It can be observed
that the introduction of the curvilinear correction improves the results close
to ϕ = 0. As expected the improvement appears in the region with greater
curvature. The same behavior is presented in [9] for the analytical introduction
of the curvature terms using finite elements.

The defined extraction domain and the finest element size used can yield
good results but do not allow to achieve the accuracy and optimum behavior,
because it is still too coarse to describe some of the curvature effects for
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Fig. 28. J distribution along the crack front for different element sizes. Elliptic crack
under remote shear.
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Fig. 29. Comparison of the effect of the curvilinear gradients consideration in the
interaction integral. Ki for elliptic crack under remote tensile traction.

small ϕ, as shown in [13] for 2-D. In addition, the convexity and lack of
smothness of the extraction domain produce oscillations that affect the quality
of the solution. In order to verify the behaviour of the proposed methodology 
with non-structured meshes, we have generated new meshes with a random
modification of the nodal coordinates in the mesh corresponding to an element
size h = a

12
. The effect of curvilinear correction of the gradients in the domain

integrals for the elliptic crack in a non-structured mesh is shown in Fig. 34 
for Ki (remote tensile traction) and in Figs. 35 and 36 for Kii and Kiii for the 
crack under remote shear. Although some oscillations appear in the solution, 
the improvement can be observed in the region with greater curvature.
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Fig. 30. Comparison of the effect of the curvilinear gradients consideration in the
domain integral. J for elliptic crack under remote tensile traction.
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Fig. 31. Comparison of the effect of the curvilinear gradients consideration in the
interaction integral. Kii for elliptic crack under remote shear.

The lack of accuracy is checked using the proposed error indicator. The result 
for the elliptic crack under remote tensile traction is shown in Figure 37 and 
for remote shear in Figure 38. The error indicator shows that a mismatch of 
about 15% exists. The mismatch of 15% provided by the error indicator should 
not be directly related with the true error level (which in this case is about 
5%). The error indicator simply detects the regions where greater differences 
exist between the crack and the mesh relative topologies, and where higher 
error is expected. This error indicator suggests that a mesh refinement or an 
adaptation of the mesh to the crack topology will improve the solution
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Fig. 32. Comparison of the effect of the curvilinear gradients consideration in the
interaction integral. Kiii for elliptic crack under remote shear.
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Fig. 33. Comparison of the effect of the curvilinear gradients consideration in the
domain integral. J for elliptic crack under remote shear.
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Fig. 34. Comparison of the effect of the curvilinear gradients consideration in the
interaction integral. Ki for elliptic crack under remote tensile traction using a non
structured mesh.
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Fig. 35. Comparison of the effect of the curvilinear gradients consideration in the
interaction integral. Kii for elliptic crack under remote shear using a non structured
mesh.
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Fig. 36. Comparison of the effect of the curvilinear gradients consideration in the
interaction integral. Kiii for elliptic crack under remote shear using a non structured
mesh.
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Fig. 37. Error indicator distribution results for the mesh sequence along the crack
front for the three-dimensional elliptic crack under remote tensile traction, including
the non structured mesh.
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Fig. 38. Error indicator distribution results for the mesh sequence along the crack
front for the three-dimensional elliptic crack under remote shear.
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8 Conclusions

In the present work, we have introduced some contributions to the domain in-
tegral formulation for curved cracks in 3-D. One of the contributions is based 
on the explicit formulation of the level sets basis using di
erential geometry concepts. The interaction integral formulation includes also 
minor changes to minimize the effect of the auxiliary fields. We also remark 
the domain extrac-tion dependency with relative topology of crack and mesh 
and its effect. We have also proposed a curvilinear derivation of correction 
terms, along with its numerical implementation, and the introduction of an 
error indicator benefit-ing from the high convergence rate of the J-Integral.

A curvilinear correction to the J-integral and the interaction integral expres-
sion for XFEM for analysis of curved and non-planar cracks has been intro-
duced. The proposal is sufficiently general to be used in other domain integrals
in applications where curvilinear magnitudes have to be considered. The cor-
rection is dependent on the level of refinement, as it imposes limits in the level
set information of the crack description and the information is stored at the
nodes and interpolated within the elements. The correction allows to capture
the behavior of SIFs of curved and non-planar cracks as in [9,10], but it does
not rely of the analytical information of the crack geometry as it depends only
on the level set curvilinear coordinates. Therefore the correction is clearly an
improvement of the previous interaction integrals proposed in the litterature.
The results, based on numerical examples, show that the correction is needed
to improve the convergence to the exact value in non-planar-cracks and in-
troduces an improvement for curved cracks. The amount of this improvement
depends on the local curvature, crack description and the mesh element size.

A SIF error indicator is also introduced. The proposed error indicator relies
on the existing relationships between SIFs and the different domain integrals:
J-integral and interaction integral. The relationships allow to improve the
interaction integral results if the error in these results is not large.
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[1] Moës N, Dolbow J, Belytschko T. A finite element method for crack growth
without remeshing. Int J Numer Methods Engng 1999;46:131–150.
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