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2 Grupo de Sistemas de Optimizaión Apliada, Instituto Tenológio de Informátia,Universitat Politènia de Valènia, Camino de Vera s/n, 46021 Valenia, Spain.rruiz�eio.upv.esOtober 26, 2011AbstratMatries with distanes between pairs of loations are essential for solving vehilerouting problems like the Capaitated Vehile Routing Problem (CVRP ), TravelingSalesman Problem (TSP ) and others. This work deals with the omplex reality oftransportation networks and asymmetry. Through a series of omprehensive andthorough omputational and statistial experiments we study the e�et that manyfators like asymmetry, geographial loation of the depot and lients, demand, ter-ritory and maximum vehile apaity have in the solution of CV RP instanes. Weexamine both lassial heuristis as well as urrent state-of-the-art metaheuristisand show that these methods are seriously a�eted by the studied fators from asolution time and quality of solutions perspetive. We systematially ompare thesolutions obtained in the symmetri senario with those obtained in the real asym-metri ase at a quantitative as well as a qualitative level, with the objetive ofarefully measuring and understanding the di�erenes between both ases.Keywords: Asymmetry, Capaitated Vehile Routing Problem, Algorithms, Road Transporta-tion Networks
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1 IntrodutionIn many vehile routing problems and also in several other aspets of logistis, a dis-tane matrix between pairs of loations is needed. This matrix is needed for the Trav-eling Salesman Problem (TSP ) (Flood, 1956), Capaitated Vehile Routing Problem(CV RP ) (Clarke and Wright, 1964), and for almost any other variant of routing prob-lem (Toth and Vigo, 2001). In partiular, in the CV RP eah lient or loation j fromthe loation set V is assoiated with a given demand quantity or requirement dj that isknown in advane, non-negative and deterministi. The demand models a requirementof dj units of produt by lient j that has to be delivered by a single truk, i.e., withoutsplitting the demand into various truks. A �eet K of homogeneous vehiles is available,eah one of them with a given apaity of servie C whih obviously has to be higher thanall demand dj, ∀j ∈ V . The �eet is stationed at a entral depot, usually referred to asnode 0 (or node 1)with no demand. All lients must be served by exatly one vehile. Thislassi problem entails no further onstraints apart from the apaity of all vehiles, whihannot be exeeded. The objetive in the CV RP is to obtain a set of routes, usually oneper vehile, so that the total ost, measured as the total distane traveled by all vehiles,is minimized. Other objetives ould be to minimize travel time, osts, et. (Laporte,2007).Given an instane of the CV RP with n loations or nodes, the distane matrix betweennode pairs o, d, where o, d ∈ V, o 6= d, is denoted by C[n×n]. The diagonal of this matrixontains zeros and is usually disregarded. As a result, the matrix ontains n × (n − 1)elements with all the distanes between nodes.In the vast majority of the routing literature (Laporte, 2009), loations or nodes are de-termined by simple oordinates on the 2D plane and the distanes are alulated by theEulidean formula. A more elaborate alulation an be done by taking the geographialloations of the nodes in the terrestrial surfae (geoloations in latitude and longitude)and measuring the orthodromi distane between them using the great-irle distane for-mula of Vinenty (1975). In both ases, the distanes between nodes o and d is the sameas the distane between d and o, i.e., cod = cdo, ∀o, d ∈ V, o 6= d. As a result, matrix
C is symmetri and an be redued to either the upper or lower triangular with n×(n−1)

2elements. Symmetri matries result in symmetri problems where the orthodromi ar ordistane (cod = cdo) in many ases a weak lower bound of the real shortest route betweentwo loations when this route is alulated onsidering transportation networks. Whenone takes into aount the intriate reality of transportation networks with roads, tra�irles, streets, one way streets, et., the distane matrix is inevitably more omplex and2



asymmetri where generally, cod 6= cdo and distanes are usually larger than symmetriEulidean distanes (Laporte et al., 1986).In the 1970s, some authors set about estimating real distanes (whih were, at the time,hallenging to obtain as the Geographial Information Systems or GIS were yet to be de-veloped) by transforming orthodromi alulations (Christo�des and Eilon, 1969). Otherauthors developed mathematial funtions in order to approximate real distanes likeLove and Morris (1972). After the work of Daganzo (1984), Love and Morris (1988) andDubois and Semet (1995) it is onluded that suh approximations are not pratial fordaily and operational use by ompanies. Furthermore, and most importantly, the degreeof asymmetry in the distane matrix annot be easily estimated as it greatly dependson various fators (Daganzo, 1984). Nodes separated by large distanes usually result inmore symmetri matries as long distane transportation entails using two-way highways.However, nodes loated inside ities, and partiularly ities with old histori enters, resultin highly asymmetri distane matries.Despite this reality, there is a widespread usage of Eulidean matries, mainly motivatedby the di�ulty and ost of obtaining real distane matries. Calulating real distanesrequires a big omputational e�ort as n× (n−1) shortest paths between nodes have to beobtained. Eah shortest path is a omplex alulation omprising of hundreds of roads,turns, et. In a problem with a thousand nodes, almost a million shortest paths are needed.While the omputational ost is still large, fortunately sine the 1990s researhers havehad powerful GIS systems (suh as Google Maps) at their disposal (Goodhild and Kemp,1990). Together with geo-spatial databases and their Advaned Programming Interfaes(APIs), alulating real distane matries is today a reality.This piee of researh studies the CV RP from a very di�erent perspetive. A sizeablehunk of the literature has foused on developing e�ient algorithms and methods foroptimizing the symmetri and Eulidean CV RP . This paper follows a di�erent diretionas we set out to study the e�et that the asymmetry of the distane matrix, as well asmany other fators, have over the e�etiveness and e�ieny of relevant heuristi andmetaheuristi methods for the CV RP . We losely examine how the quality of the solu-tions and the quantity of CPU time employed by the studied methods is a�eted. Wealso ompare the solutions obtained using symmetri and asymmetri matries, in orderto asertain how di�erent these solutions are and to what extent using Eulidean matriesis aeptable for real environments.This work is a natural extension of a previous study by the same authors on the e�et ofthe asymmetri and other fators over heuristi methods for the muh simpler TravelingSalesman Problem (TSP ) (Rodríguez and Ruiz, 2011). One objetive of the present pa-3



per is to orroborate if the onlusions obtained in the previous study also apply to moreomplex routing problems. In order to do so, we will arry out a omprehensive study withdi�erent transportation networks, loations of lients and depots, problem sizes, asymme-try degrees, levels of demand and transport apaity, solution methods and CPU time.The rest of the paper is organized as follows: Setion 2 presents the researh hypothe-ses and questions, as well as a more formal de�nition of the studied fators, variablesand the experimental design. Setion 3 summarizes the main obtained results as regardsomputational time, quality of solutions and a omparison of solutions quantitatively andqualitatively. Lastly, Setion 4 onludes the paper.2 Impat of the asymmetry and other fatorsThe following hypotheses are studied in this paper: Asymmetry a�ets the e�etivenessand e�ieny of CV RP heuristis and metaheuristis. The geographial loation of lientsand the entral depot in the territory translates into di�erent degrees of asymmetry in thedistane matrix and in turn a�ets the e�etiveness and e�ieny of the studied methods.The asymmetry of the transportation network has a spei� e�et over those methodsbased on the planar Eulidean geometry. Furthermore, the following researh questions areraised: To what extent are the solutions obtained in symmetri and asymmetri senariossimilar? What is the result of taking the symmetri solution (solution alulated with asymmetri distane matrix) and alulating it with the real asymmetri distane matrixand vie versa?In order to either on�rm or to refute the previous hypotheses and to answer the posedquestions we arry out a omprehensive omputational and statistial testing ampaignwith a set of CV RP instanes, whose details are explained next.2.1 Studied fatorsTerritory: It is the real geographial region where the lients and entral depot areloated. A boundary is reated by two opposed geographial oordinates (latitude andlongitude) that indue a quadrant. The region of hoie, related to the Iberian peninsula,is studied at three territory variants, namely short, medium and large distane. In theshort distane territory routes have to deal with urban transportation (mostly Madridand its surroundings) Medium distane inludes routes in ities plus longer routes thatommuniate other ities through highways. Lastly, large distane deals with a largenational territory and inludes heavy usage of highways. More details about this fator,4
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Figure 1: Loation orretion aording to the transportation network. Left piture: anode plaed in an innaesible loation (A). Right piture: �nal orreted loation (B).inluding longer explanations and graphial examples are given in Rodríguez and Ruiz(2011).Loation: This fator determines how the lients or nodes are distributed insidethe territory. Three variants are studied: random plaement, grid plaement and ra-dial plaement. This fator was also studied previously and all details are given inRodríguez and Ruiz (2011). In all ases, inluding the random variants, all nodes (anddepot) are loated in aessible plaes inside the transportation network. Furthermore,we also make sure that a path exists between eah node and all others. This is furtherexplained by means of the following example, supported by Figure 1: Let us suppose that,when building the instane and after a random plaement of nodes, a node (A) has beenplaed in a geographially inaessible plae. Inaessible plaes are, for example, and asdepited in the Figure, a forest. Other examples ould be in the middle of a �eld, or eveninside of a blok of apartments. We use a GIS funtion whih basially moves the lientto the nearest aessible loation, shown on the right piture in Figure 1. This movementnormally is within a few meters from the original inaessible loation. Note that this�nal loation ould perfetly orrespond to a real lient.Number of nodes: This fator is just the number of lients in a given territory. It isa quantitative fator with 10 levels n = {50, 100, 150, . . . , 500}. Note that this is the lastfator employed in this paper that was also studied as it is by Rodríguez and Ruiz (2011).Depot loation: This is a nominal qualitative fator that studies the e�et of theplaement of the depot respetive to the territory and lients. We have de�ned threevariants: Random: The depot is hosen randomly among the n nodes. Centered: It is thenode whih is losest to the orthodromi enter of the territory. Peripheral: The depot is5



the node whih is farthest away from the orthodromi enter and losest to the boundariesof the territory.Symmetry: From the territory and node loations we alulate the distane matries.In Rodríguez and Ruiz (2011), the authors alulated these matries in �ve di�erent ways.However, only two of them are of interest for the CV RP . As a result we only have twovariants for this nominal fator: Orthodromi: A symmetri distanes matrix obtainedby alulating the orthodromi distanes between pairs of nodes using their geoloations.Asymmetri: real distanes matrix using a GIS (Google Maps) and alulating the shortestroute between any two lients, similarly as any turn-by-turn navigation system would do.Demand and maximum apaity (DemCap): Servie demand dj of eah lient jand the maximum transport apaity C of the truks are so intimately related that theyare onsidered as a single fator in this study. Servie demand is modeled as a two levelquantitative fator where demand dj is sampled from a uniform random distribution intwo intervals: Small (P ) using U [1, 10] and Large (L) using U [50, 100] as demand units,respetively. Usually, large distane transportation requires relatively big demands servedby big truks, usually of three axels. Conversely, short distane omprises the delivery ofdemands in greater number but smaller volume and with smaller truks. This is translatedinto longer routes for large distane with a smaller number of stops during the route (s)and relatively shorter routes in short distane transportation but with a higher number ofstops s. In order to model this situation and to alulate the maximum vehile apaity
C, we employ a number of stops generator G(p) de�ned in equation (1) with a probabilityfollowing a triangular distribution as a funtion of a parameter p ∈ U [0, 1]. Table Table 1shows the seleted values a, b, c of the triangular distribution related to G(p) aording tothe territory fator.

G(p) =

{

a+
√

p(b− a)(c− a) p ≤ c−a
b−a

b−
√

(1− p)(b− a)(b− c) p > c−a
b−a

(1)Territory Minimum (a) Maximum (b) Mode ()Short distane 10 25 25Medium distane 10 25 17.5Large distane 10 25 10Table 1: Number of stops s aording to the territory and triangular distribution.From G(p) and the average servie demand d̄j of all lients j ∈ V we de�ne themaximum apaity C as in equation (2): 6



C = max dj + (G(p)− 1)d̄j ∀j ∈ V (2)In the set of proposed instanes, servie demand dj, the related vehile apaity Cand the number of stops s are rounded to the nearest integer. It is important to notethat the number of stops s, number of nodes n and the number of routes k will bein the interval {n = 50, k = 5, s = 10, . . . , n = 500, k = 20, s = 25}. This is inonordane with what an be found in the most ommon benhmarks from the literaturelike those of Christo�des and Eilon (1969), Golden et al. (1977), TSPLIB1, Taillard (1993),and Fisher (1994) among others; where ompletely random instanes and some real asesfrom industries are used.2.2 Experimental design and response variablesThe six studied fators, along with the studied levels and variants are summarized inTable 2. Note that the last row shows the total number of levels or variants for eahfator and that the servie demand and vehile apaity is onsidered as a single fator�DemCap�.Territory (T) Loation (L) Symmetry (M) Number of nodes (n) Depot loation DemCapShort distane Random Orthodromi 50 Random SmallMedium distane Grid Asymmetri 100 Centered LargeLarge distane Radial ... Peripheral5003 3 2 10 3 2Table 2: Fators and their orresponding studied levels or variants.In this paper we employ a full fatorial experimental design. All ombinations of thelevels and variants of the fators are studied whih results in 3 × 3 × 2 × 10 × 3 × 2 =

1, 080 treatments. For eah treatment, �ve di�erent random instanes are generated whihprodues a grand total of 5, 400 CV RP instanes. The full fatorial design allows for thestudy of the e�ets of eah fator as well as the interations of any level over the followingresponse variables:Deviation from best known solution ∆S∗

i : Aording to equation (3) it is theperentage relative deviation of the total distane traveled by the vehiles in the solutionobtained with algorithm A for instane i (Si,A) with respet to the best solution knownfor that very same instane (S∗

i ).1http://omopt.i�.uni-heidelberg.de/software/TSPLIB95/7
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∆S∗

i =
Si,A − S∗

i

S∗

i

· 100 (3)Suess rate: Calulated as the number of times a given algorithm attains the bestknown solution.CPU time: For eah instane i it is the real CPU time employed by a given algorithmto obtain a solution. It does not onsider input/output operations or other operatingsystem times as reommended by Alba (2006). For stohasti algorithms in whih everyinstane is run several times, this CPU time will be an average of all runs.Finally, a very important studied fator, not related with the instanes, is the algo-rithm. We have seleted the following CV RP methods:
• Algorithm of Clarke and Wright (1964) (CW). It is a very well known and thoroughlystudied heuristi that will serve as a baseline indiator of performane.
• Sweep algorithm by Gillett and Miller (1974) (SW). Another simple well known on-strutive method that works over two phases and that is strongly based in the planarproperties of the 2D plane for the �rst phase. For the seond phase, our implementa-tion uses the well known e�ient implementation of the Lin-Kernighan heuristi byHelsgaun (2000) whih is urrently onsidered among the highest performing heuris-tis for the TSP . For this later heuristi we employed the following parameters:reommended parameters by the author.
• General heuristi of Pisinger and Røpke (2007) (PR). It is a uni�ed heuristi thatworks for several variants of routing problems and that uses an Adaptive LargeNeighborhood Searh (ALNS). It is a very apable and robust method. Parameters:reommendations from the author aording to the original paper for both ompilationand exeution.
• Memeti algorithm of Nagata (2007) (NA). Similar to PR, NA is a very powerfuland reent CV RP metaheuristi. Parameters: reommendations from the authoraording to the original paper; 10 trials, population size = 100, 30 hildren, 2parents.The previous algorithms have been seleted by their performane and reognition. Wehave strived for a balane between simple lassial tehniques and urrent and state-of-the-art methods. Algorithms NA and PR were run from the original ode whih waskindly provided by their respetive authors. No ode modi�ation was arried out andthe methods were run aording to their reommendations. Initially, we set no time limit8



on omputational times, i.e., algorithms have a stopping riterion set by their originalauthors. The metaheuristis PR and NA are stohasti and therefore, �ve di�erent runsare arried out for eah instane. In total, there are 64, 800 omputational results.2.3 Computational settingAll experiments are run on a luster of 30 blade severs, eah one ontaining two IntelXEON 5254 proessors running at 2.5 GHz with 16 GB of RAM memory. Eah lusterhas two proessors with four ores eah (8 ores per luster) but experiments are arried outin virtualized Windows XP mahines, eah one with one virtualized proessor and 2 GBof RAM memory. For the generation and alulation of the 2, 700 matries, (symmetriand assymetri) we needed a single blade equivalent wall time of 4, 708 hours, almostsolely employed for the alulation of the asymmetri matries as the symmetri distanesare almost instantaneously alulated. The single blade equivalent wall time needed forobtaining the results of 64, 800 experiments was of 12, 704 (almost 530 days!). As a result,a possible ontribution of this paper is in the form of a freely available benhmark ofreal asymmetri CV RP instanes (more than 2.15 GBytes of data) whih an be seen asomplementary to existing and well reognized benhmarks. The instanes are availableat http://soa.iti.es/problem-instanes.3 Experimental resultsAfter running all experiments, and in order to understand the e�et of the asymmetryand all other fators over the response variables, several multifator Analyses of Variane(ANOVA) were arried out. ANOVA is a parametri statistial model. As suh, thereare three main hypotheses that must be met, all of them require the residuals from theexperiment to follow a normal distribution, to be homoesdasti and to be independent(not self orrelated). In an experiment with suh a large dataset, suh hypotheses areeasily met and we did not observe any serious deviation.3.1 CPU timeSome of the most interesting onlusions ome after analyzing the CPU time responsevariable. After all, one ould think that, apart from the number of nodes n, no otherstudied fator should have a large e�et on the CPU time that a given algorithm needs tosolve an instane. Reall that no CPU time limit was established for all methods. We areworking with a signi�ane level of α = 0.05. The resulting multifator ANOVA produed9
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27 statistially signi�ant relations, inluding single fators and two way interations.Table 3 shows a summary of the ANOVA table, inluding the p-values. Due to limitationson spae, only single fator e�ets are shown.Soure Sum of Degrees Mean F -Ratio p-valuesquares of freedom squareMain e�etsA:DemCap 1.934E8 1 1.934E8 1, 519.73 0.0000B:Depot loation 4.385E7 2 2.192E7 172.24 0.0000C:Territory (T) 9.311E6 2 4.655E6 36.57 0.0000D:Loation (L) 2.052E7 2 1.026E7 80.61 0.0000E:Symmetry (M) 617, 811 1 617, 811 4.85 0.0276F:Number of nodes (n) 4.305E9 9 4.784E8 3, 757.57 0.0000G:Algorithm 2.893E10 3 9.645E9 75, 756.96 0.0000Residual 8.228E9 64, 631 127, 319Total (orreted) 8.590E10 64, 799Table 3: Results of the analysis of variane for CPU time response variable.As we an see, the strongest e�et (larger F-Ratios, whih are the quotient betweenthe variane generated by the di�erent levels of the fator and the residual variane,alulated as a quotient between the mean squares) is due to the fators Algorithm andnumber of nodes (n). These two are obvious fators. Quik heuristis like CW and SW arealmost instantaneous while omplex metaheuristis like PR and NA are muh more timeonsuming. The same an be said about n, i.e., the larger the problem, the longer the CPUtime. What is of interest is how these two strong fators interat with all other fators andthe behavior of other fators themselves. For example, the Loation (L) fator stronglya�ets CPU time (F -Ratio= 80.61, p-value= 0.00). Furthermore, this fator a�ets theNA algorithm muh more than all other studied methods as CPU time inreases a 15%in the grid and radial loations with respet to random loations. Comparatively, PR'sCPU time are barely a�eted by this fator, as shown in Table 4. Also of interest is thesimple CW heuristi, whose CPU times, albeit small, inrease by more than 34% for theradial loations with respet to random.Algorithm Random Grid Radial averageCW 2.17 2.56 2.91 2.55NA 1, 351.49 1, 552.47 1,572.91 1, 492.29PR 207.46 198.20 196.99 200.88SW 1.27 1.24 1.28 1.26average 649.85 729.77 737.81Table 4: Average CPU time as a funtion of the Algorithm and Loation (L) fators.10
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Figure 2: CPU time for the ombinations of Algorithm, Loation (L), Depot loation andNumber of nodes (n).Figure 2 depits a series of satter plots for all ombinations of algorithms and nodeloations. The x-axis shows the number of nodes n and the y-axis the CPU time in seondsin a logarithmi sale. Di�erent olors and symbols are used for the Depot loation fator.From the ANOVA it an be observed that the Depot loation has a signi�ant e�et onthe CPU time (F -Ratio= 172.24, p-value= 0.00), espeially for the NA method. Whenthe depot is loated peripherially, CPU times inrease by 22% with respet to a entrallyloated depot. One again PR is robust with respet to the depot loation with a meager
2% inrease in CPU time from the entral to the peripheral. Both CW and SW inreasetheir CPU times by about 5% with a peripherially loated depot with respet to a entraldepot. The loation of the nodes (fator L) also a�ets CPU time in a signi�ant way.Aording to our results, this e�et is more pronouned with the NA method (an inreaseof CPU time of about 15% in Grid and Radial with respet to Random loation). PRis again robust regarding this fator. In relation to the number of nodes n, our experi-ments on�rm the diret and exponential e�et that the size of the problem has on CPUtime. This e�et is observed in all ases both for symmetri as well as for asymmetri ases.Territory has a small, but, de�nitely statistially signi�ant e�et over CPU time11



(F -Ratio= 36.57). This result was already observed in our previous work for the TSP(Rodríguez and Ruiz, 2011). Large distane territories have less asymmetri matries andless variability between nodes, whih results in longer CPU times for the methods. Thise�et is observed for the algorithm CW and Large distanes where CPU times are in-reased by 68% when ompared with the times obtained for the Short distane territory(with more variability and asymmetry in the distanes, whih helps when searhing forgood solutions quikly).A strong fator spei� to the CV RP is the DemCap fator whih, as we reall,it models the relationship between the servie demand and vehile apaity (F -Ratio=
1, 519.73, p-value= 0.00). For Small DemCap the average CPU time is inreased by 40%for the whole dataset. A possible interpretation of these results, when relating DemCap,Territory and Asymmetry, is that for Short distane and Small DemCap the omplexity ofthe problem inreases and CPU times worsen when ompared to Medium-Large distanesand Large DemCap. In other words, the higher the number of stops per vehile, thehigher the omplexity and hene, CPU time needed. Furthermore, if the Territory isShort distane, the CPU times inrease even further. However, if eah vehile has lessstops and has to travel Medium-Large distanes, the problem ends up easier to solve.Our results point to the idea that the di�erent degree of asymmetry in the transportationnetworks learly and statistially a�et the CPU time (p-value = 0.02). As detailed inTable 5, while for NA and PR the CPU times inrease by a measly 2%, simple algorithmsinrease CPU times by as muh as 15%.Algorithm Asymmetri Orthodromi averageCW 2.42 2.67 2.55NA 1, 507.47 1, 477.12 1, 492.29PR 202.57 199.19 200.88SW 1.09 1.43 1.26average 712.81 698.81Table 5: Average CPU time as a funtion of the Algorithm and Symmetry (M) fators.We �nally provide a means plot with on�dene intervals. We employ the most re-stritive tehnique for alulating the on�dene intervals around the means: the Tukey'sHonest Signi�ant Di�erene (HSD) intervals. As shown in Figure 3, the means and theirorresponding Tukey's HSD intervals at a 95% on�dene level for the Symmetry (M)fator do not overlap. Therefore, the di�erene is statistially signi�ant.12
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SO: Is the objetive value (in our ase total traveled distane) after taking the routesobtained by an algorithm using the symmetri distane matrix.
SA: Is the total traveled distane after taking the routes obtained by an algorithmusing an asymmetri distane matrix.
SOA: Total traveled distane of the routes obtained by an algorithm using the symmet-ri distane matrix but realulated using the real asymmetri matrix, i.e., the algorithmworks with a symmetri matrix but after the solution has been obtained it is realulatedwith the real distane matrix.
SAO: Is the opposite of SOA. Take a solution obtained with an asymmetri matrixand realulate the total distane with the orthodromi distanes.The indiators are therefore the following:

I1 perentage inrease of SA with respet to SO:
I1 =

SA− SO

SO
· 100 (4)

I2 perentage inrease of SOA with respet to SA. It an be negative.
I3 perentage inrease of SAO with respet to SO. It an also be negative.In the following we further detail the previous indiators by means of a simple example.We show below the distane matries between the depot and four lients: O ontains thesymmetri orthodromi distanes and A the real distanes, all measured in kilometers.13



O =













0.000 2.218 2.545 1.305 2.585

2.218 0.000 4.503 3.193 2.682

2.544 4.503 0.000 1.313 3.105

1.305 3.193 1.313 0.000 2.255

2.585 2.682 3.105 2.255 0.000













A =













0.000 2.788 3.122 3.193 3.508

3.023 0.000 5.341 5.412 3.722

3.188 5.684 0.000 2.124 4.561

2.571 4.349 3.852 0.000 2.705

3.742 4.041 4.592 3.665 0.000











(5)The demands of the lients are all equal to one and the vehiles have a maximumapaity of C = 3. We used an exat Mixed Integer Linear Programming (MILP) modelin order to obtain the optimal solution, after whih SO and SA are alulated. The resultsare as follows:Symmetri: route 1 (7.485 km.) sequene {1, 2, 5, 1}, route 2 (5.162 km.), sequene
{1, 4, 3, 1}. Total distane SO = 12.647 km.Asymmetri: route 1 (5.811 km.) sequene {1, 2, 1}, route 2 (11.693 km.), sequene
{1, 3, 4, 5, 1}. Total distane SA = 17.504 km.We an see that for this small example, both senarios result in two routes. However,the routes are di�erent and the total traveled distane is muh higher in the asymmetriase. Figure 4 shows a graphial representation of the solutions.
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5Figure 4: An example solution with symmetri routes on the left and asymmetri realroutes on the right.The indiator I1 takes a value of 37.22% whih shows the inrease in the distane SAwith respet to SO. Similarly, SOA = 20.485 km. and reiproally, SAO = 13.134 km. Asa result, I2 = 17.03% and I3 = 3.85%, learly demonstrating that both solutions are farfrom being interhangeable. Furthermore, when losely looking at the resulting routes inboth senarios (Figure 4) we realize that the solutions are very di�erent.The previous SO, SA, SOA and SAO values were alulated for all 64, 800 experimentalresults. All three indiators were then geberated, obtaining 32, 400 results (eah one14



omparing asymmetri and symmetri results). The main statistis for the three indiatorsare given in Table 6. One striking result is the average of I1 with a value of 59.86%,whih learly indiates that there is a large quantitative di�erene between the ost of theasymmetri routes with respet to the ost of the symmetri ones. Note the maximumvalue for I1 of 239.35%, whih is more than double the total distane. Reall that thenodes are plaed in the same loations, the only thing that is hanging is the matrixthat is being fed to the algorithms. The lear onlusion is that for almost all ases, theasymmetri and symmetri problems are indeed, two di�erent problems.
I1 I2 I3Average 59.86 10.28 8.38Standard deviation 21.36 13.12 8.44Minimum 0.3 −58.46 −31.46Maximum 239.35 71.74 154.36Table 6: Statistis of the proposed omparison indiators.Furthermore, I2 and I3 allow us to quantify what happens if we ompare the symmetrisolution alulated with the asymmetri matrix with the real asymmetri solution and vieversa. In other words, a I2 = 0 for all instanes would mean that it really does not matterif we use asymmetri matries or not sine the total traveled distane of the symmetrisolution alulated with the asymmetri matrix would be the same as the asymmetrisolution. Table 6 learly shows that I2 values are, on average, greater than 10%. Thismeans that it is simply not valid to take an algorithm that only works with symmetrimatries and then, one the routes have been obtained, �realulate� them with the realdistanes. Likewise just ignoring real distanes altogether and hoping that the very goodroutes obtained with orthodromi distanes will be equally good in pratie is not a viableapproah. Our results attest to the fat that a bold 10% in total distane is being lost,ompared to the solution obtained with real asymmetri distanes. A similar onlusionis reahed in the ase of I3 as I3 has an average value of 8.38%. Again the onlusion isthat orthodromi solutions are not related to asymmetri solutions.Figure 5 depits the frequeny distribution histograms for all three indiators. For I1 themajority of the ases have values between 30% and 90%. For I2 most ases lie between

10% and 30%. Lastly, for I3 we see that most data stays between 7% and 40%. All theseindiators and results are in stark ontrast with the narrow margins (usually less than 1%)within whih most urrent state-of-the-art algorithms ompete in the benhmarks fromthe literature.All these �ndings orroborate those from our previous study on the TSP . Similarly to the
TSP ase, here the di�erenes go beyond the presented indiators and objetive funtion15



values. Usually, the routes obtained with asymmetri matries have little in ommon withthe routes obtained in the symmetri ase (di�erent number of routes, di�erent sequenesof nodes, et.).
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I1 2I IFigure 5: Frequeny distribution histograms for indiators I1, I2 and I3.In order to better understand the relations between indiator I1 and the other studiedfators, we arried out an ANOVA. The results of the F -Ratios and p-values indiate 18statistially signi�ant e�ets: 6 fators and 12 two-way interations. The full ANOVAtable is omitted due to limitations of spae. A signi�ant e�et is due to the Territoryfator, (F -Ratio= 27355.7, p-value= 0.00). For Large distane territories, the di�erenesbetween the symmetri and asymmetri senarios (as regards I1) are a bit less than 44%.These di�erenes inrease to 55% for Medium distane and up to 81% for Short distane.As previously mentioned, the asymmetry level inreases for short distanes and this ison�rmed for all algorithms, as shown in Table 7.Algorithm Short distane Medium distane Large distane averageCW 78.49 51.99 43.69 58.06NA 78.93 51.61 43.52 58.03PR 79.58 51.81 43.67 58.35SW 103.74 87.68 43.75 78.39average 81.24 54.73 43.62Table 7: Average of I1 as a funtion of the Algorithm and Territory (T) fators.Another noteworthy e�et orresponds to the Depot loation fator (F -Ratio= 3, 603.5,
p-value= 0.00). As shown in Table 8, the di�erenes in I1 are smaller when the depot isloated in the periphery of the territory when ompared to a entrally loated depot16



(average of 65%). One possible explanation is that the degree of asymmetry depends onthe average distane between ars. Sine all routes start and �nish at the depot, it is morelikely that a entrally loated depot has smaller distanes to the �rst and last stops ofevery route and hene a larger asymmetry e�et is observed, whih inreases the values ofthe I1 indiator. Algorithm Centered Random Peripheral averageCW 62.32 59.27 52.58 58.06NA 62.79 59.29 51.98 58.03PR 63.14 59.63 52.29 58.35SW 91.53 80.45 63.18 78.39average 65.29 61.19 53.09Table 8: Average of I1 as a funtion of the Algorithm and Depot loation fators.Lastly, the Loation fator also has a signi�ant e�et over I1. Radial loations inrease
I1 with respet to Grid and Random, as shown in Table 9. This on�rms the previous�ndings of our TSP study.Algorithm Random Grid Radial averageCW 57.02 55.18 61.97 58.06NA 55.82 57.14 61.10 58.03PR 56.20 57.37 61.49 58.35SW 75.02 75.93 84.20 78.39average 57.68 58.64 63.26Table 9: Average of I1 as a funtion of the Algorithm and Loation (L) fators.To lose this setion we show two randomly hosen examples. The objetive is tographially show the big di�erenes between the symmetri and asymmetri solutions.Figure 6 shows instane G-C-MR-100 on the left with 100 radially loated ustomersin a Medium distane territory, large DemCap and a entrally loated depot. Symmetrisolutions are shown in blue while asymmetri routes are in red. Both solutions have �veroutes but this is where the similarities end. The total traveled distane in the symmetrisolution is 2, 149.4 km. versus the 3, 385.6 km. of the real asymmetri solution with a
I1 = 57.51% and notable di�erenes in the visitation sequene of the nodes at eah route.On the right of Figure 6 we have instane P-A-CA-350 with 350 randomly loated nodesin a short distane territory with a small DemCap and a randomly plaed depot. In thisseond example the di�erenes are huge. The total symmetri traveled distane is 864.17km. whih pales in omparison with the 2, 140.7 km. of the asymmetri distane and I1equaling 147.71%. In this ase, there are 17 symmetri routes and 16 asymmetri routes.17



Note that in real life, doing without one truk is, apart from the total traveled distane,a huge saving.

Figure 6: Symmetri solutions (in blue) and asymmetri (in red) for instanes G-C-MR-100with algorithm PR (left) and P-A-CA-350 with algorithm NA (right).3.3 Quality of solutionsIn previous setions we have studied that asymmetry and other studied fators have a sta-tistially signi�ant e�et on the e�ieny of the studied algorithms. However, it remainsto be seen if e�etiveness is a�eted. In our previous experiments, no CPU time limit wasimposed on the di�erent algorithms. As a result, the di�erenes in the quality of solutionswere hard to observe. Basially, algorithms were taking longer to reah omparable highquality solutions, regardless of the studied fators.In order to study the e�ets on the quality of solutions we arried out additional experi-ments. Among the tested algorithms, NA allowed modi�ations in the stopping riterion.A good way of studying the e�etiveness is to run NA independently for di�erent stoppingtimes. We de�ne a new fator pt as the perentage of allowed CPU time with respet tothe original CPU time used by NA in the previous experiments where no CPU time limitwas imposed (pt = 100%). The levels studied are pt = {10%, 20%, 40%, 60%, 80%, 100%}.The subset of 5, 400 results of the NA method for pt = 100% was enlarged to 32, 400 re-sults. Eah instane i is run from srath, with a di�erent random seed, for eah pt valuein order to ensure the independene of the results and to avoid self orrelation. Under thisnew experiment we study the response variable pS aording to equation (6). A positive
pSi,pt value indiates the deterioration in the total traveled distane for instane i when18



NA is stopped at relative time pt with respet to the total distane traveled when NA isrun without CPU time limit (pt = 100% or Si,100).
pSi,pt =

Si,pt − Si,100

Si,100

· 100 ∀i, pt (6)An ANOVA is obtained for all previous studied fators, exept the fator algorithm(sine we are now only studying NA) and adding the fator pt. We now summarize theresults, from highest to lowest statistial signi�ane indiating the F -Ratios and p-valuesbetween parenthesis: pt fator (5, 996, 0.00), Number of nodes (n) (357.3, 0.00), intera-tion between n and pt (122.61, 0.00), Symmetry (M) (98.55, 0.00), interation between
pt and asymmetry (35.17, 0.00), interation between pt and Territory (T) (31.44, 0.00),interation between pt and DemCap (30.63, 0.00), interation between pt and Loation (L)(28.43, 0.00), DemCap (27.05, 0.00), interation between pt and Depot loation (21.04,
0.00), Depot loation (20.75, 0.00), Territory (15.47, 0.00) and interation between Ter-ritory and Symmetry (10.7, 0.00). As we an see, all studied fators are statistiallysigni�ant, either in isolation or by means of a two way interation.Figure 7 shows the means plot and Tukey's Honest Signi�ant Di�erene (HSD) on�deneintervals of the interation between n and pt.
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Figure 7: Means plot for pS with Tukey's Honest Signi�ant Di�erene (HSD) 95% on-�dene intervals for the interation between n and pt fators. NA algorithm.For lower pt values, NA gives solutions of a muh lower quality and this e�et ismarkedly signi�ant for greater n values. The observed deterioration in results is around
2%, in line with the �ndings of Toth and Vigo (2001), where it is indiated that modernmetaheuristis, albeit time onsuming, yield results that deviate from optimum solutionsbetween 2% and 0.5%. It is observed that for small values of pt of 10% and 20% the resultsare worse for 20% when ompared to those of 10% for some n values. This is due to the19



divergene in the solutions as regards total traveled distane and number of routes. Notethat NA was run from srath eah time and it is possible that, in some ases, the resultat the �rst stages of evolution is worse for pt = 20% than for pt = 10%. In any ase,NA is a �exible and robust metaheuristi whih adapts very well to asymmetri senarios.Figure 8 shows the e�et of the Symmetry fator.
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Figure 8: Means plot for pS with Tukey's Honest Signi�ant Di�erene (HSD) 95% on-�dene intervals for the Symmetry (M) fator. NA algorithm.We see that the level of asymmetry has an e�et over the NA method and pS responsevariable. This e�et is small albeit statistially signi�ant. These di�erenes are muhgreater for pt = 10% but are non-existent for pt ≥ 40%.Aording to Figure 9, the Territory fator also a�ets NA in a similar way as inthe previous experiments. In this new experiment though, the di�erenes are no longerstatistially signi�ant when pt ≥ 40%.We also on�rm that the DemCap fator is also a�eted for smaller proessing times(pt < 40%), shown in Figure 10.Similarly, Figure 11 shows that the Loation fator is a�eted by the allowed CPUtime. Another signi�ant fator is the Depot loation depited in Figure 12. Peripheriallyloated depots pose inreased di�ulties for NA in short allowed CPU times (pt ≤ 20%).To lose the study we provide in Table 10 the results of the number of suesses (S∗)by the algorithms, number of results (Exp.) and the suess rates %S∗ aording to thetype of matrix (Asymmetri as A and Orthodromi as O). For the asymmetri ase wesee how the suess rate of NA dereases by 1.52%, 2.53% for PR and 0.02% for SW. Thealgorithm with the highest suess rate is NA followed by PR.Lastly, and aording to the several ANOVA experiments arried out, the∆S∗

i indiatoris in�uened in a statistially signi�ant way by all studied fators. This on�rms the20
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Figure 9: Means plot for pS with Tukey's Honest Signi�ant Di�erene (HSD) 95% on-�dene intervals for the Territory (T) fator. NA algorithm.
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Figure 12: Means plot for pS with Tukey's Honest Signi�ant Di�erene (HSD) 95%on�dene intervals for the Depot loation fator. NA algorithm.methods. A noteworthy result is the e�et that the Depot loation fator has over the
∆S∗

i response variable, espeially for the SW heuristi whih is strongly based in the planarproperties of the 2D plane. In this ase, the results of the heuristi deteriorate by a large
60% when the depot is peripherially loated with respet to the entrally loated depotin the asymmetri senario.4 ConlusionsIn this work we have studied the e�et of the asymmetry of transportation networks andother fators over real CV RP instanes. We have studied the Territory, Number of nodes(n), Loation, Depot loation, Asymmetry, lient demand and maximum truk apaity as22



fators. All these fators have been examined during thorough omputational and statisti-al experiments. Several heuristi and state-of-the-art metaheuristis have been tested. Ina �rst phase no CPU time limit has been imposed. Later, in a seond phase, di�erent CPUtime limits have been tested for the NA metaheuristi. Di�erent response variables havebeen investigated, namely CPU time, quantitative and qualitative omparison of solutionsand the quality of solutions, under di�erent indiators.This paper is a natural extension of the previous study on the muh simpler TSP setting(Rodríguez and Ruiz, 2011). The results obtained in the more omplex CV RP orrobo-rate previous �ndings: A higher asymmetry degree in the instanes a�ets in a statistiallysigni�ant way the CPU time needed by the algorithms and deteriorates the quality of thesolutions obtained.The asymmetry and the number of nodes in a given problem instane are not the only fa-tors a�eting the omplexity of the CV RP . Short distane territories in urban networksand the distribution of the lients in the territory are deisive fators as well. The Depotloation is also of paramount importane from a logistis point of view. The demand andtruk apaity strongly interat. The result is that routes with a higher number of stopsin asymmetri transportation (as in ity distribution) hallenge routing algorithms.The main ontribution of this work is the demonstration that under the omplex real-ity of the transportation network, the level of asymmetry surfaes and asymmetry have alarge e�et over the solution methods for the CV RP . This e�et is many times larger thanthe outperformane margins between ompeting state-of-the-art methods when traditionalEulidean distane benhmarks are employed. Given that these results hold true for boththe TSP and now for the CV RP , it an be inferred that this e�et will be present in mostderived routing problems. As a �nal onlusion, we postulate that the sienti� ommu-nity should onsider asymmetry and other asymmetry induing fators when proposingand improving routing algorithms in order for suh methods to prove useful in real lifeenvironments.AknowledgementsThe authors are indebted to Keld Helsgaun, Stefan Røpke and espeially to Yuihi Nagatafor their kind help, ollaboration and for failitating the binaries of their algorithms. Thiswork is partially funded by the Spanish Ministry of Siene and Innovation, under theprojet �SMPA - Advaned Parallel Multiobjetive Sequening: Pratial and TheoretialAdvanes� with referene DPI2008-03511/DPI. The authors should also thank the IMPIVA- Institute for the Small and Medium Valenian Enterprise, for the projet TASER withreferene IMDEEA/2011/142. 23
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